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Preface 

This book is intended as a text for a course in analysis, at the senior or 
first-year graduate level. 

A year-long course in real analysis is an essential part of the preparation 
of any potential mathematician. For the first half of such a course, there 
is substantial agreement as to what the syllabus should be. Standard topics 
include: sequence and series, the topology of metric spaces, and the derivative 
and the Riemannian integral for functions of a single variable. There are a 
number of excellent texts for such a course, including books by Apostol [A], 
Rudin [Ru], Goldberg [Go], and Royden (Ro], among others. 

There is no such universal agreement as to what the syllabus of the second 
half of such a course should be. Part of the problem is that there are simply 
too many topics that belong in such a course for one to be able to treat them 
all within the confines of a single semester, at more than a superficial level. 

At M.I.T., we have dealt with the problem by offering two independent 
second-term courses in analysis. One of these deals with the derivative and 
the Riemannian integral for functions of several variables, followed by a treat
ment of differential forms and a proof of Stokes' theorem for manifolds in 
euclidean space. The present book has resulted from my years of teaching 
this course~ The other deals with the Lebesgue integral in euclidean space 
and its applications to Fourier analysis. 

Prequisites 

As indicated, we assume the reader has completed a one-term course in 
analysis that included a study of metric spaces and of functions of a single 
variable. We also assume the reader has some background in linear algebra, 
including vector spaces and linear transformations, matrix algebra, and de
terminants. 

The first chapter of the book is devoted to reviewing the basic results from 
linear algebra and analysis that we shall need. Results that are truly basic are 
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vi Preface 

stated without proof, but proofs are provided for those that are sometimes 
omitted in a first course. The student may determine from a perusal of this 
chapter whether his or her background is sufficient for the rest of the book. 

How much time the instructor will wish to spend on this chapter will 
depend on the experience and preparation of the students. I usually assign 
Sections 1 and 3 as reading material, and discuss the remainder in class. 

How the book is organized 

The main part of the book falls into two parts. The first, consisting of 
Chapter 2 through 4, covers material that is fairly standard: derivatives, the 
inverse function theorem, the Riemann integral, and the change of variables 
theorem for multiple integrals. The second part of the book is a bit more 
sophisticated. It introduces manifolds and differential forms in Rn, providing 
the framework for proofs of the n-dimensional version of Stokes' theorem and 
of the Poincare lemma. 

A final chapter is devoted to a discussion of abstract manifolds; it is 
intended as a transition to more advanced texts on the subject. 

The dependence among the chapters of the book is expressed in the fol
lowing diagram: 

Chapter 1 

Chapter 2 

Chapter 3 

Chapter 4 

Chapter 5 

Chapter 7 

The Algebra and Topology of Rn 

! 
Differentiation 

! 
Integration 

ChLge of Variables 

Mlifolds 

Chapter 6 Differential Forms 

I 
Stokes' Theorem 

Chapter 8 Closed Forms and Exact Forms 

Chapter 9 Epilogue-Life Outside nn 



Preface VII 

Certain sections of the books are marked with an asterisk; these sections 
may be omitted without loss of continuity. Similarly, certain theorems that 
may be omitted are marked with asterisks. When I use the book in our 
undergraduate analysis sequence, I usually omit Chapter 8, and assign Chap
ter 9 as reading. With graduate students, it should be possible to cover the 
entire book. 

At the end of each section is a set of exercises. Some are computational in 
nature; students find it illuminating to know that one can compute the volume 
of a five-dimensional ball, even if the practical applications are limited! Other 
exercises are theoretical in nature, requiring that the student analyze carefully 
the theorems and proofs of the preceding section. The more difficult exercises 
are marked with asterisks, but none is unreasonably hard. 
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The Algebra and Topology of Rn 

§1. REVIEW OF LINEAR ALGEBRA 

Vector spaces 

Suppose one is given a set V of objects, called vectors. And suppose 
there is given an operation called vector addition, such that the sum of the 
vectors x and y is a vector denoted x + y. Finally, suppose there is given an 
operation called scalar multiplication, such that the product of the scalar 
(i.e., real number) e and the vector xis a vector denoted ex. 

The set V, together with these two operations, is called a vector space 
(or linear space) if the following properties hold for all vectors x, y, z and 
all scalars e, d: 

(1) X + y = y + X. 

(2) x + (y + z) = (x + y) + z. 
(3) There is a unique vector Osuch that x + 0 = x for all x. 
(4) x + (-l)x = 0. 
(5) lx = x. 
(6) e(dx) = (ed)x. 
(7) ( c + d)x = ex + dx. 
(8) e(x + y) = ex+ cy. 
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2 The Algebra and Topology of Rn Chapter 1 

One example of a vector space is the set Rn of all n-tuples of real numbers, 
with component-wise addition and multiplication by scalars. That is, if x = 
(x1, ... ,xn) andy= (Yt,•••,Yn), then 

X + Y = (x1 + Yt, · · •, Xn + Yn), 
ex= (cxi, ... , cxn)• 

The vector space properties are easy to check. 
If V is a vector space, then a subset W of V is called a linear subspace 

( or simply, a subspace) of V if for every pair x,y of elements of W and every 
scalar c, the vectors x + y and ex belong to W. In this case, W itself satisfies 
properties (1)-(8) if we use the operations that W inherits from V, so that 
Wis a vector space in its own right. 

In the first part of this book, nn and its subspaces are the only vector 
spaces with which we shall be concerned. In later chapters we shall deal with 
more general vector spaces. 

Let V be a vector space. A set a 1 , ... , Rm of vectors in V is said to 
span V if to each x in V, there corresponds at least one m-tuple of scalars 
C1, ... , Cm such that 

X = C1a1 + · · · + Cm8m, 

In this case, we say that x can be written as a linear combination of the 
vectors a1, ... , Rm. 

The set a1, ... , am of vectors is said to be independent if to each x in 
V there corresponds at most one m-tuple of scalars c1, ... , Cm such that 

Equivalently, { a1, ... , am} is independent if to the zero vector O there corre
sponds only one m-tuple of scalars d1, ... , dm such that 

0 = d1a1 + · · · + dmam, 

namely the scalars d1 = d2 = · · · = dm = 0. 
If the set of vectors a1, ... , Rm both spans V and is independent, it is 

said to be a basis for V. 
One has the following result: 

Theorem 1. 1. Suppose V has a basis consisting of m vectors. 
Then any set of vectors that spans V has at least m vectors, and any set 
of vectors of V that is independent has at most m vectors. In particular, 
any basis for V has exactly m vectors. □ 

If V has a basis consisting of m vectors, we say that m is the dimension 
of V. We make the convention that the vector space consisting of the zero 
vector alone has dimension zero. 



§1. Review of Linear Algebra 

It is easy to see that Rn has dimension n. (Surprise!) The following set 
of vectors is called the standard basis for Rn: 

e1 = (1,0,0, ... ,0), 
e2 = (0,1,0, ... ,o), 

en= (0,0,0, ... ,1). 

The vector space Rn has many other bases, but any basis for Rn must consist 
of precisely n vectors. 

One can extend the definitions of spanning, independence, and basis to 
allow for infinite sets of vectors; then it is possible for a vector space to have 
an infinite basis. (See the exercises.) However, we shall not be concerned with 
this situation. 

Because nn has a finite basis, so does every subspace of Rn. This fact is 
a consequence of the following theorem: 

Theorem 1. 2. Let V be a vector space of dimension m. If W is 
a linear subspace of V {different from VJ, then W has dimension less 
than m. Furthermore, any basis a 1 , . .. , ak for W may be extended to a 
basis a1, ... ,ak, ak+l, ... ,am for V. □ 

Inner products 

If V is a vector space, an inner product on V is a function assigning, 
to each pair x, y of vectors of V, a real number denoted (x, y), such that the 
following properties hold for all x, y, z in V and all scalars c: 

(1) (x,y) = (y, x). 
(2) (x + y, z) = (x, z) + (y, z). 

(3) (cx,y) = c(x,y) = (x, cy). 

(4) (x,x) > 0 if x / 0. 

A vector space V together with an inner product on V is called an inner 
product space. 

A given vector space may have many different inner products. One par
ticularly useful inner product on nn is defined as follows: If x = ( x 1, ... , Xn) 

and y = (Y1, ... , Yn), we define 

The properties of an inner product are easy to verify. This is the inner prod
uct we shall commonly use in Rn. It is sometimes called the dot product; 
we denote it by (x, y) rather than x • y to avoid confusion with the matrix 
product, which we shall define shortly. 

3 



4 The Algebra and Topology of R" Chapter 1 

If V is an inner product space, one defines the length ( or norm) of a 
vector of V by the equation 

The norm function has the following properties: 

(1) llxll > 0 if xi 0. 

(2) llcxll = lcl llxll-
(3) llx + YII < llxll + IIYII-

The third of these properties is the only one whose proof requires some work; 
it is called the triangle inequality. (See the exercises.) An equivalent form 
of this inequality, which we shall frequently find useful, is the inequality 

(3') !Ix - YII > llxll - IIYII-
Any function from V to the reals R that satisfies properties (1)-(3) just 

listed is called a norm on V. The length function derived from an inner 
product is one example of a norm, but there are other norms that are not 
derived from inner products. On Rn, for example, one has not only the familiar 
norm derived from the dot product, which is called the euclidean norm, but 
one has also the sup norm, which is defined by the equation 

The sup norm is often more convenient to use than the euclidean norm. We 
note that these two norms on Rn satisfy the inequalities 

lxl < llxll < v'nlxl. 

Matrices 

A matrix A is a rectangular array of numbers. The general number 
appearing in the array is called an entry of A. If the array has n rows and m 
columns, we say that A has size n by m, or that A is "an n by m matrix." 
We usually denote the entry of A appearing in the ith row and Ph column by 
llij; we call i the row index and j the column index of this entry. 

If A and B are matrices of size n by m, with general entries aii and bi;, 
respectively, we define A + B to be the n by m matrix whose general entry 
is· aij + b,;, and we define cA to be the n by m matrix whose general entry 
is Cllij. With these operations, the set of all n by m matrices is a vector 
space; the eight vector space properties are easy to verify. This fact is hardly 
surprising, for an n by m matrix is very much like an nm-tuple; the only 
difference is that the numbers are written in a rectangular array instead of a 
linear array. 
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The set of matrices has, however, an additional operation, called matrix 
multiplication. If A is a matrix of size n by m, and if B is a matrix of size 
m by p, then the product A • B is defined to be the matrix C of size n by 
p whose general entry c1; is given by the equation 

m 

c1; = I: aikb1c;. 
k=l 

This product operation satisfies the following properties, which are straight
forward to verify: 

(1) A· (B -C) =(A· B) · C. 

(2) A· (B + C) =A· B +A· C. 

(3) (A+ B)-C = A-C + B · C. 

(4) (cA). B = c(A • B) =A· (cB). 

(5) For each k, there is a k by k matrix I1c such that if A is any n by m 
matrix, 

and A-Im= A. 

In each of these statements, we assume that the matrices involved are of 
appropriate sizes, so that the indicated operations may be performed. 

The matrix I1c is the matrix of size k by k whose general entry Oij is 
defined as follows: Di; = 0 if i i= j, and /J1; = 1 if i = j. The matrix l1c is 
called the identity matrix of size k by k; it has the form 

1 

0 

0 

1 

0 

0 

0 0 1 

with entries of 1 on the "main diagonal" and entries of O elsewhere. 
We extend to matrices the sup norm defined for n-tuples. That is, if A 

is a matrix of size n by m with general entry ai;, we define 

IAI = max{lai;I; i = 1, ... , n and j = 1, ... , m}. 

The three properties of a norm are immediate, as is the following useful result: 

Theorem 1.3. If A has size n by m, and B has size m by p, then 

IA· Bl < mlAI IBI. □ 

5 



6 The Algebra and Topology of Rn Chapter 1 

Linear transformations 

If V and W are vector spaces, a function T : V --+ W is called a linear 
transformation if it satisfies the following properties, for all x, yin V and 
all scalars c: 

(1) T(x + y) ;::: T(x) + T(y). 
(2) T(cx) = cT(x). 

If, in addition, T carries V onto W in a one-to-one fashion, then T is called 
a linear isomorphism. 

One checks readily that if T : V--+ W is a linear transformation, and if 
S : W --+ X is a linear transformation, then the composite S o T : V --+ X is 
a linear transformation. Furthermore, if T : V --+ W is a linear isomorphism, 
then T- 1 : W--+ V is also a linear isomorphism. 

A linear transformation is uniquely determined by its values on basis 
elements, and these values may be specified arbitrarily. That is the substance 
of the following theorem: 

Theorem 1.4. Let V be a vector space with basis a1, ... , a,,.. Let 
W be a vector space. Given any m vectors b 1, ... , bm in W, there is 
exactly one linear transformation T : V --+ W such that, for all z, 
T(ai) = bi. □ 

In the special case where V and W are "tuple spaces" such as nm and 
R", matrix notation gives us a convenient way of specifying a linear transfor
mation, as we now show. 

First we discuss row matrices and column matrices. A matrix of size 1 
by n is called a row matrix; the set of all such matrices bears an obvious 
resemblance to Rn. Indeed, under the one-to-one correspondence 

the vector space operations also correspond. Thus this correspondence is a 
linear isomorphism. Similarly, a matrix of size n by 1 is called a column 
matrix; the set of all such matrices also bears an obvious resemblance to Rn. 
Indeed, the correspondence 

is a linear isomorphism. 
The second of these isomorphisms is particularly useful when studying 

linear transformations. Suppose for the moment that we represent elements 
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of Rm and Rn by column matrices rather than by tuples. If A is a fixed n by 
m matrix, let us define a function T : Rm ~ Rn by the equation 

T(x) = A ·x. 

The properties of matrix product imply immediately that T is a linear trans
formation. 

In fact, every linear transformation of Rm to Rn has this form. The proof 
is easy. Given T, let bi, ... , bm be the vectors of Rnsuch that T(e;) = h;. 
Then let A be the n by m matrix A = [b1 • • • bm] with successive columns 
b 1, ... , bm. Since the identity matrix has columns e1, ... , em, the equation 
A· Im= A implies that A· e; = h; for all j. Then A· e; = T(e;) for all j; 
it follows from the preceding theorem that A• x = T(x) for all x. 

The convenience of this notation leads us to make the following conven
tion: 

Convention. Throughout, we shall represent the elements of Rn 
by column matrices, unless we specifically state otherwise. 

Rank of a matrix 

Given a matrix A of size n by m, there are several important linear spaces 
associated with A. One is the space spanned by the columns of A, looked 
at as column matrices (equivalently, as elements of Rn). This space is called 
the column space of A, and its dimension is called the column rank of A. 
Because the column space of A is spanned by m vectors, its dimension can 
be no larger than m; because it is a subspace of Rn, its dimension can be no 
larger than n. 

Similarly, the space spanned by the rows of A, looked at as row matrices 
(or as elements of Rm) is called the row space of A, and its dimension is 
called the row rank of A. 

The following theorem is of fundamental importance: 

Theorem 1.5. 
column rank of A. 

For any matrix A, the row rank of A equals the 
□ 

Once one has this theorem, one can speak merely of the rank of a matrix 
A, by which one means the number that equals both the row rank of A and 
the column rank of A. 

The rank of a matrix A is an important number associated with A. One 
cannot in general determine what this number is by inspection. However, 
there is a relatively simple procedure called Gauss-Jordan reduction that 
can be used for finding the rank of a matrix. (It is used for other purposes 
as well.) We assume you have seen it before, so we merely review its major 
features here. 

7 



8 The Algebra and Topology of Rn Chapter 1 

One considers certain operations, called elementary row operations, 
that are applied to a matrix A to obtain a new matrix B of the same size. 
They are the following: 

(1) Exchange rows i1 and i2 of A (where i1 f:. i2). 
(2) Replace row i1 of A by itself plus the scalar c times row i2 (where 

i1 j i2). 
(3) Multiply row i of A by the non-zero scalar A. 

Each of these operations is invertible; in fact, the inverse of an elementary 
operation is an elementary operation of the same type, as you can check. One 
has the following result: 

Theorem 1.6. If B is the matrix obtained by applying an elemen
tary row operation to A, then 

rank B = rank A. □ 

Gauss-Jordan reduction is the process of applying elementary operations 
to A to reduce it to a special form called echelon form (or stairstep form), 
for which the rank is obvious. An example of a matrix in this form is the 
following: 

@ * * * * * 
@ * * * * B= 
0 0 @ * * 

0 0 0 0 0 0 

Here the entries beneath the "stairsteps" are 0; the entries marked * 
may be zero or non-zero, and the "corner entries," marked @, are non-zero. 
(The corner entries are sometimes called "pivots.") One in fact needs only 
operations of types (1) and (2) to reduce A to echelon form. 

Now it is easy to see that, for a matrix B in echelon form, the non-zero 
rows are independent. It follows that they form a basis for the row space of B, 
so the rank of B equals the number of its non-zero rows. 

For some purposes it is convenient to reduce B to an even more spe
cial form, called reduced echelon form. Using elementary operations of 
type (2), one can make all the entries lying directly above each of the corner 
entries into O's. Then by using operations of type (3), one can make all the 
corner entries into 1 's. The reduced echelon form of the matrix B considered 
previously has the form: 

1 0 * 0 * * 

C= o'71 * o * * 
0 0 011 * * 
0 0 0 0 0 0 
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It is even easier to see that, for the matrix C, its rank equals the number 
of its non-zero rows. 

Transpose of a matrix 

Given a matrix A of size n by m, we define the transpose of A to be 
the matrix D of size m by n whose general entry in row i and column j is 
defined by the equation di;= a;i- The matrix Dis often denoted Atr_ 

The following properties of the transpose operation are readily verified: 
(1) (Atryr = A. 
(2) (A+ B)tr = Atr + Btr. 

(a) (A. C)tr = Ctr. Atr. 

(4) rank Atr = rank A. 

The first three follow by direct computation, and the last from the fact that 
the row rank of A tr is obviously the same as the column rank of A. 

EXERCISES 

1. Let V be a vector space with inner product (x, y} and norm llxll = 
(x, x}1/2. 

(a) Prove the Cauchy-Schwarz inequality (x, y} $ llxll IIYII• [Hint: 
If x, y -=/:- 0, set c = 1/llxll and d = 1/IIYII and use the fact that 
llcx ± dyll 2: O.] 

(b) Prove that llx + YII $ llxll + IIYII • [Hint: Compute (x + Y, x + y) 
and apply (a).] 

(c) Prove that llx - YII 2: IJxll - IIYll-
2. If A is an n by m matrix and Bis an m by p matrix, show that 

IA· Bl$ mlAI IBI. 
3. Show that the sup norm on R2 is not derived from an inner product on R2 . 

[Hint: Suppose (x, y) is an inner product on R2 (not the dot product) 
having the property that lxl = (x, y)112 . Compute (x ± y, x ± y} and 
apply to the case x = e1 and y = e2.] 

4. (a) If x = (X1, X2) and y = (Y1, Y2), show that the function 

is an inner product on R2 . 

*(b) Show that the function 

[ 2 - 1] [Y1] 
-1 1 Y2 

(x, y) = [x1 x2] [ ab be] [YY12] 

is an inner product on R2 if and only if b2 - ac < 0 and a > 0. 

9 



10 The Algebra and Topology of Rn Chapter 1 

*5. Let V be a vector space; let {aa} be a set of vectors of V, as a ranges over 
some index set J (which may be infinite). We say that the set {aa} spans 
V if every vector x in V can be written as a finite linear combination 

of vectors from this set. The set { a 0} is independent if the scalars are 
uniquely determined by x. The set {aa} is a basis for V if it both spans 
V and is independent. 
(a) Check that the set R"'of all "infinite-tuples" of real numbers 

is a vector space under component-wise addition and scalar multipli
cation. 

(b) Let R00 denote the subset of R"' consisting of all x = (.r1, X2, ... ) 
such that x, = 0 for all but finitely many values of i. Show R00 is a 
subspace of R"'; find a basis for R00 . 

(c) Let :F be the set of all real-valued functions/: [a, b] - R. Show that 
:F is a vector space if addition and scalar multiplication are defined 
in the natural way: 

(! + g)(x) = f (x) + g(x), 

(cf)(x) = cf (x). 

(d) Let :Fs be the subset of :F consisting of all bounded functions. Let 
:F1 consist of all integrable functions. Let :Fe consist of all continuous 
functions. Let :Fo consist of all continuously differentiable functions. 
Let :Fp consist of all polynomial functions. Show that each of these 
is a subspace of the preceding one, and find a basis for :Fp. 

There is a theorem to the effect that every vector space has a 
basis. The proof is non-constructive. No one has ever exhibited 
specific bases for the vector spaces R"', :F, :Fe, :Fi, :Fe, :Fo. 

(e) Show that the integral operator and the differentiation operator, 

(I J)(x) = /.:1: f (t) dt and (Df)(x) = /'(x), 

are linear transformations. What are possible domains and ranges of 
these transformations, among those listed in (d)? 
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§2. MATRIX INVERSION AND DETERMINANTS 

We now treat several further aspects of linear algebra. They are the following: 
elementary matrices, matrix inversion, and determinants. Proofs are included, 
in case some of these results are new to you. 

Elementary matrices 

Definition. An elementary matrix of size n by n is the matrix ob
tained by applying one of the elementary row operations to the identity ma
trix In. 

The elementary matrices are of three basic types, depending on which 
of the three operations is used. The elementary matrix corresponding to the 
first elementary operation has the form 

1 

1 

0 1 

1 0 

1 

1 

The elementary matrix corresponding to the second elementary row operation 
has the form 

1 

1 

1 C 

E'= . . 
row i2 

0 1 

1 

1 
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And the elementary matrix corresponding to the third elementary row oper
ation has the form 

1 

1 

E" = 

1 

1 

One has the following basic result: 

, row t. 

Theorem 2.1. Let A be an n by m matrix. Any elementary 
row operation on A may be carried out by premultiplying A by the 
corresponding elementary matrix. 

Proof. One proceeds by direct computation. The effect of multiplying A 
on the left by the matrix E is to interchange rows i1 and i2 of A. Similarly, 
multiplying A by E' has the effect of replacing row i1 by itself plus c times 
row i2. And multiplying A by E" has the effect of multiplying row i by .A. D 

We will use this result later on when we prove the change of variables 
theorem for a multiple integral, as well as in the present section. 

The inverse of a matrix 

Definition. Let A be a matrix of size n by m; let B and C be matrices 
of size m by n. We say that B is a left inverse for A if B • A = Im, and we 
say that C is a right inverse for A if A · C = In. 

Theorem 2.2. If A has both a left inverse B and a right inverse 
C, then they are unique and equal. 

Proof. Equality follows from the computation 

If B1 is another left inverse for A, we apply this same computation with B1 

replacing B. We conclude that C = B 1 ; thus B 1 and B are equal. Hence B 
is unique. A similar computation shows that C is unique. D 
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Definition. If A has both a right inverse and a left inverse, then A is 
said to be invertible. The unique matrix that is both a right inverse and a 
left inverse for A is called the inverse of A, and is denoted A- 1 . 

A necessary and sufficient condition for A to be invertible is that A be 
square and of maximal rank. That is the substance of the following two 
theorems: 

Theorem 2.3. 
then 

Let A be a matrix of size n by m. If A is invertible, 

n = m = mnk A. 

Proof. Step 1. ,ve show that for any k by n matrix D, 

rank (D · A) s rank A. 

The proof is easy. If R is a row matrix of size 1 by n, then R • A is a row 
matrix that equals a linear combination of the rows of A, so it is an element 
of the row space of A. The rows of D • A are obtained by multiplying the 
rows of D by A. Therefore each row of D · A is an element of the row space 
of A. Thus the row space of D · A is contained in the row space of A and our 
inequality follows. 

Step 2. We show that if A has a left inverse B, then the rank of A 
equals the number of columns of A. 

The equation Im = B · A implies by Step 1 that m = rank (B · A) s 
rank A. On the other hand, the row space of A is a subspace of m-tuple 
space, so that rank A < m. 

Step 3. We prove the theorem. Let B be the inverse of A. The fact 
that B is a left inverse for A implies by Step 2 that rank A = m. The fact 
that B is a right inverse for A implies that 

whence by Step 2, rank A= n. □ 

We prove the converse of this theorem in a slightly strengthened version: 

Theorem 2.4. Let A be a matrix of size n by m. Suppose 

n = m = rank A. 

Then A is invertible; and furthermore, A equals a product of elementary 
matrices. 

13 
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Proof. Step 1. We note first that every elementary matrix is invert
ible, and that its inverse is an elementary matrix. This follows from the fact 
that elementary operations are invertible. Alternatively, you can check di
rectly that the matrix E corresponding to an operation of the first type is its 
own inverse, that an inverse for E' can be obtained by replacing c by -c in 
the formula for E', and that an inverse for E" can be obtained by replacing 
A by 1 / A in the formula for E". 

Step 2. We prove the theorem. Let A be an n by n matrix of rank n. 
Let us reduce A to reduced echelon form C by applying elementary row 
operations. Because C is square and its rank equals the number of its rows, 
C must equal the identity matrix In. It follows from Theorem 2.1 that there 
is a sequence E1, ... , E1i: of elementary matrices such that 

If we multiply both sides of this equation on the left by E;1, then by E;!1 , 

and so on, we obtain the equation 

A - E-1 E-1 E-1. - 1. 2 ••• k' 

thus A equals a product of elementary matrices. Direct computation shows 
that the matrix 

is both a right and a left inverse for A. □ 

One very useful consequence of this theorem is the following: 

Theorem 2.5. If A is a square matrix and if B is a left inverse 
for A, then B is also a right inverse for A. 

Proof. Since A has a left inverse, Step 2 of the proof of Theorem 2.3 
implies that the rank of A equals the number of columns of A. Since A is 
square, this is the same as the number of rows of A, so the preceding theorem 
implies that A has an inverse. By Theorem 2.2, this inverse must be B. □ 

An n by n matrix A is said to be singular if rank A < n; otherwise, 
it is said to be non-singular. The theorems just proved imply that A is 
invertible if and only if A is non-singular. 

Determinants 

The determinant is a function that assigns, to each square matrix A, a 
number called the determinant of A and denoted <let A. 
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The notation IAI is often used for the determinant of A, but we are using 
this notation to denote the sup norm of A. So we shall use "det A" to denote 
the determinant instead. 

In this section, we state three axioms for the determinant function, and 
we assume the existence of a function satisfying these axioms. The actual 
construction of the general determinant function will be postponed to a later 
chapter. 

Definition. A function that assigns, to each n by n matrix A, a real 
number denoted det A, is called a determinant function if it satisfies the 
following axioms: 

( 1) If B is the matrix obtained by exchanging any two rows of A, then 
det B = - det A. 

(2) Given i, the function det A is linear as a function of the i th row alone. 

(3) det In = l. 
Condition (2) can be formulated as follows: Let i be fixed. Given an 

n-tuple x, let Ai(x) denote the matrix obtained from A by replacing the i th 

row by x. Then condition (2) states that 

det Ai( ax+ by) = a det Ai(x) + b <let Ai(y). 

These three axioms characterize the determinant function uniquely, as we 
shall see. 

EXAMPLE 1. In low dimensions, it is easy to construct the determinant func
tion. For 1 by 1 matrices, the function 

det [a]= a 

will do. For 2 by 2 matrices, the function 

suffices. And for 3 by 3 matrices, the function 

will do, as you can readily check. For matrices of larger size, the definition 
is more complicated. For example, the expression for the determinant of a 4 
by 4 matrix involves 24 terms; and for a 5 by 5 matrix, it involves 120 terms! 
Obviously, a less direct approach is needed. We shall return to this matter in 
Chapter 6. 

Using the axioms, one can determine how the elementary row operations 
affect the value of the determinant. One has the following result: 

15 
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Theorem 2.6. Let A be an n by n matrix. 
(a) If E is the elementary matrix corresponding to the operation 

that exchanges rows i 1 and i2 , then det(E • A) = - <let A. 
(b) If E' is the elementary matrix corresponding to the operation 

that replaces row i 1 of A by itself plus c times row i2 , then det(E' •A)= 
<let A. 

( c) If E" is the elementary matrix corresponding to the operation 
that multiplies row i of A by the non-zero scalar ,\, then det(E" •A)= 
,\(det A). 

( d) If A is the identity matrix In, then det A = l. 

Proof. Property (a) is a restatement of Axiom 1, and (d) is a restate
ment of Axiom 3. Property (c) follows directly from linearity (Axiom 2); it 
states merely that 

detAi(.\x) = .\(detAi(x)). 

Now we verify (b ). Note first that if A has two equal rows, then <let A = 0. 
For exchanging these rows does not change the matrix A, but by Axiom 1 it 
changes the sign of the determinant. Now let E' be the elementary operation 
that replaces row i = i1 by itself plus c times row i2. Let x equal row i1 and 
let y equal row i2. We compute 

det(E' • A) = <let Ai(x + cy) 

= <let Ai(x) + c <let Ai(Y) 

= <let Ai(x), since Ai(Y) has two equal rows, 

= <let A, since Ai(x) = A. □ 

The four properties of the determinant function stated in this theorem are 
what one usually uses in practice rather than the axioms themselves. They 
also characterize the determinant completely, as we shall see. 

One can use these properties to compute the determinants of the elemen
tary matrices. Setting A= In in Theorem 2.6, we have 

det E = -1 and <let E' = 1 and det E" = .\. 

We shall see later how they can be used to compute the determinant in general. 
Now we derive the further properties of the determinant function that we 

shall need. 

Theore1n 2. 7. Let A be a square matrix. If the rows of A are 
independent, then <let A f: 0; if the rows are dependent, then <let A = 0. 
Thus an n by n matrix A has rank n if and only if det A f: 0. 



Matrix Inversion and Determinants 17 

Proof. First, we note that if the ith row of A is the zero row, then 
det A = 0. For multiplying row i by 2 leaves A unchanged; on the other 
hand, it must multiply the value of the determinant by 2. 

Second, we note that applying one of the elementary row operations to A 
does not affect the vanishing or non-vanishing of the determinant, for it alters 
the value of the determinant by a factor of either -1 or 1 or A (where A '::/; 0). 

Now by means of elementary row operations, let us reduce A to a matrix B 
in echelon form. (Elementary operations of types (1) and (2) will suffice.) If 
the rows of A are dependent, rank A < n; then rank B < n, so that B must 
have a zero row. Then det B = 0, as just noted; it follows that det A = 0. 

If the rows of A are independent, let us reduce B further to echelon 
form C. Since C is square and has rank n, C must equal the identity ma
trix In, Then det C '::/; 0; it follows that det A'::/; 0. □ 

The proof just given can be refined so as to provide a method for calcu
lating the determinant function: 

Theorem 2.8. Given a square matrix A, let use reduce it to 
echelon form B by elementary row operations of types (1) and (2). If 
B has a zero row, then det A = 0. Otherwise, let k be the number of row 
exchanges involved in the reduction process. Then det A equals (-1 l 
times the product of the diagonal entries of B. 

Proof. If B has a zero row, then rank A < n and det A = 0. So 
suppose that B has no zero row. We know from (a) and (b) of Theorem 2.6 
that det A= (-l)l: det B. Furthermore, B must have the form 

B= ' 
0 0 bnn 

where the diagonal entries are non-zero. It remains to show that 

det B = bub22 • • • bnn• 

For that purpose, let us apply elementary operations of type (2) to make 
the entries above the diagonal into zeros. The diagonal entries are unaffected 
by the process; therefore the resulting matrix has the form 

0 0 bnn 
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Since only operations of type (2) are involved, we have <let B = <let C. 
Now let us multiply row 1 of C by 1/bu, row 2 by l/b22, and so on, obtaining 
as our end result the identity matrix In. Property (c) of Theorem 2.6 implies 
that 

<let In= (1/bn) (l/b22) • • • (1/bnn) <let C, 

so that (using property (d)) 

as desired. □ 

Corollary 2.9. The determinant function is uniquely character-
ized by its three axioms. It is also characterized by the four properties 
listed in Theorem 2.6. 

Proof. The calculation of det A just given uses only properties (a)-(d) 
of Theorem 2.6. These in turn follow from the three axioms. D 

Theorem 2.10. Let A and B be n by n matrices. Then 

det(A · B) = (<let A)· (det B). 

Proof. Step 1. The theorem holds when A is an elementary matrix. 
Indeed: 

det(E · B) = -det B = (det E)(det B), 

det(E' • B) = <let B = (<let E')(det B), 
det(E" • B) =A· det B = (<let E") (det B). 

Step 2. The theorem holds when rank A = n. For in that case, A is 
a product of elementary matrices, and one merely applies Step 1 repeatedly. 
Specifically, if A = E1 •••Ek, then 

det(A • fl) = det(E1 ···Ek • B) 

= (detEi)det(E2 •• -Ei: • B) 

= ( det E 1) ( <let E 2 ) • •• ( <let E,.:) ( det B). 

This equation holds for all B. In the case B = In, it tells us that 

The theorem follows. 
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Step 3. We complete the proof by showing that the theorem holds if 
rank A< n. We have in general, 

rank (A· B) = rank (A• B)tr = rank (Btr • Atr) < rank Atr, 

where the inequality follows from Step 1 of Theorem 2.3. Thus if rank A < n, 
the theorem holds because both sides of the equation vanish. D 

Even in low dimensions, this theorem would be very unpleasant to prove 
by direct computation. You might try it in the 2 by 2 case! 

Theorem 2.11. <let Atr = <let A. 

Proof. Step 1. We show the theorem holds when A is an elementary 
matrix. 

Let E, E', and E" be elementary matrices of the three basic types. Direct 
inspection shows that Etr = E and (E")tr = E", so the theorem is trivial 
in these cases. For the matrix E' of type (2), we note that its transpose is 
another elementary matrix of type (2), so that both have determinant 1. 

Step 2. We verify the theorem when A has rank n. In that case, A is a 
product of elementary matrices, say 

Then 

<let Atr = det(Elr · · · E~r · Eir) 

= ( <let Elr) • · · ( det E~r) ( det Efr) by Theorem 2 .10, 

= ( <let Ee)··· ( det E2)( <let E1) by Step 1, 

= ( <let E1) ( <let E2) · · · ( det Ee) 

= det(E1 • E2 ···Ek) 

= det A. 

Step 3. The theorem holds if rank A < n. In this case, rank A tr < n, 
so that <let Atr = 0 = <let A. D 

A formula for A - l 

We know that A is invertible if and only if <let A f:. 0. Now we derive a 
formula for A- 1 that involves determinants explicitly. 

Definition. Let A be an n by n matrix. The matrix of size n - 1 by 
n - 1 that is obtained from A by deleting the i th row and the Ph column of 
A is called the (i,j)-minor of A. It is denoted Aij• The number 

(-l)Hi <let Ai; 

is called the (i,j)-cofactor of A. 

19 
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Lemma 2.12. Let A be an n by n matrix; let b denote its entry 
in row i and column j. 

( a) If all the entries in row i other than b vanish, then 

det A = b( -1 / + i det Aii . 

(b) The same equation holds if all the entries in column j other than 
the entry b vanish. 

Proof. Step 1. We verify a special case of the theorem. Let b, a2, ... , an 
be fixed numbers. Given an n - 1 by n - 1 matrix D, let A(D) denote the n 
by n matrix 

b a2 ... an 

0 
A(D) = 

D 

0 

We show that det A( D) = b( <let D). 
If b = 0, this result is obvious, since in that case rank A(D) < n. So 

assume b =/:- 0. Define a function f by the equation 

f(D) = (1/b) det A(D). 

\Ve show that f satisfies the four properties stated in Theorem 2.6t so that 
f(D) = det D. 

Exchanging two rows of D has the effect of exchanging two rows of A(D), 
which changes the value off by a factor -1. Replacing row i1 of D by itself 
plus c times row i2 of D has the effect of replacing row ( i1 + 1) of A( D) 
by itself plus row (i2 + 1) of A(D), which leaves the value off unchanged. 
Multiplying row i of D by .X has the effect of multiplying row (i + 1) of A(D) 
by A, which changes the value off by a factor of A. Finally, if D = In-l, 

then A(D) is in echelon form, so det A(D) = b • 1 • • • 1 by Theorem 2.8, and 
f(D) = 1. 

Step 2. It follows by taking transposes that 

b 0 ... 0 

a2 
det = b( <let D). 

D 

an 

Step 3. \Ve prove the theorem. Let A be a matrix satisfying the hy
potheses of our theorem. One can by a sequence of i-1 exchanges of adjacent 
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rows bring the ?h row of A up to the top of matrix, without affecting the 
order of the remaining rows. Then by a sequence of j - 1 exchanges of adja
cent columns, one can bring the Jth column of this matrix to the left edge of 
the matrix, without affecting the order of the remaining columns. The ma
trix C that results has the form of one of the matrices considered in Steps 1 
and 2. Furthermore, the (1,1)-minor C1,1 of the matrix C is identical with 
the ( i, j)-minor Aij of the original matrix A. 

Now each row exchange changes the sign of the determinant. So does 
each column exchange, by Theorem 2.11. Therefore 

det C = (-l)(i-l)+(j-l) <let A= (-l)i+J det A. 

Thus 
<let A= (-l)i+i <let C, 

= (-1 i+i b det C1 ,1 by Steps 1 and 2, 

= (-1/+ibdet Aii• □ 

Theore1n 2.13 (Cramer's rule). 
successive columns a 1, ... , an. Let 

Let A be an n by n matrix with 

X = [] and C = [] 

be column matrices. If A• x = c, then 

Proof. Let e1, ... , en be the standard basis for Rn, where each ei 1s 
written as a column matrix. Let C be the matrix 

The equations A • e; = aj and A • x = c imply that 

By Theorem 2.10, 

(det A)· (<let C) = det [a1 • • • ai-1 c ai+l ···an]-

21 
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Now C has the form 

1 X1 0 

C= 0 Xi 0 
' 

0 Xn 1 

where the entry Xi appears in row i and column i. Hence by the preceding 
lemma, 

detC = X;(-l)Hidetln-1 = Xi. 

The theorem follows. D 

Here now is the formula we have been seeking: 

Theorem 2.14. Let A be an n by n matrix of rank n; let B = A- 1 . 

Then 
(-l);+s det A;, 

b,; = <let A • 

Proof. Let j be fixed throughout this argument. Let 

denote the Ph column of the matrix B. The fact that A • B = In implies in 
particular that A • x = e; . Cramer's rule tells us that 

(det A)· Xi= <let [a1 • • ·Bi-1 e; 8i+1 ···an]. 

We conclude from Lemma 2.12 that 

(<let A)· x, = 1 • (-1)i+i det A;i. 

Since Xi =bi;, our theorem follows. D 

This theorem gives us an algorithm for computing the inverse of a ma
trix A. One proceeds as follows: 

(1) First, form the matrix whose entry in row i and column j is 
( -1 )i+i det Ai;; this matrix is called the matrix of cofactors of A. 

(2) Second, take the transpose of this matrix. 

(3) Third, divide each entry of this matrix by <let A. 
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This algorithm is in fact not very useful for practical purposes; computing 
determinants is simply too time-consuming. The importance of this formula 
for A- 1 is theoretical, as we shall see. If one wishes actually to compute A- 1, 

there is an algorithm based on Gauss-Jordan reduction that is more efficient. 
It is outlined in the exercises. 

Expansion by cofactors 

We now derive a final formula for evaluating the determinant. This is the 
one place we actually need the axioms for the determinant function rather 
than the properties stated in Theorem 2.6. 

Theorem 2.15. Let A be an n by n matrix. Let i be fixed. Then 

n 

det A= 1)-l)i+kao: • det AH:• 

k=l 

Here Aik is, as usual, the (i, k)-minor of A. This rule is called the "rule 
for expansion of the determinant by cofactors of the ith row." There is a 
similar rule for expansion by cofactors of the ih column, proved by taking 
transposes. 

Proof. Let Ai(x), as usual, denote the matrix obtained from A by re
placing the ith row by the n-tuple x. If e 1 , ... , en denote the usual basis 
vectors in R" (written as row matrices in this case), then the ith row of A 
can be written in the form 

Then 
n 

<let A= L aik • <let A,:(ek) 
k=l 

n 

= L ai1:(-l )i+k det Aik 
k=l 

by linearity (Axiom 2), 

by Lemma 2.12. D 

23 
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EXERCISES 

1. Consider the matrix 

(a) Find two different left inverses for A. 
(b) Show that A has no right inverse. 

2. Let A be an n by m matrix with n =I- m. 

Chapter 1 

(a.) If rank A = m, show there exists a matrix D that is a. product of 
elementary ma.trices such that 

(b) Show that A has a left inverse if and only if rank A= m. 

(c) Show that A has a right inverse if and only if rank A= n. 
3. Verify that the functions defined in Example 1 satisfy the axioms for the 

determinant function. 

4. (a) Let A be an n by n matrix of rank n. By applying elementary row 
operations to A, one can reduce A to the identity matrix. Show 
that by applying the same operations, in the same order, to In, one 
obtains the matrix A-1. 

(b) Let 

A= [~ ! ~] 
Calculate A-1 by using the algorithm suggested in (a). [Hint: An 
easy way to do this is to reduce the 3 by 6 matrix (A /3] to reduced 
echelon form.] 

(c) Calculate A-1 using the formula involving determinants. 

5. Let 

where ad - be =I- 0. Find A- 1 . 

*6. Prove the following: 

Theorem. Let A be a k by k matrix, let D have size n by n and 
let C have size n by k. Then 

det [~ ~] = (detA)-(detD). 
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Proof. First show tha.t 

[ A o] · [lk O] = [A o] . 
o In C D C D 

Then use Lemma 2.12. 

§3. REVIEW OF TOPOLOGY IN Rn 

Metric spaces 

Recall that if A and B are sets, then Ax B denotes the set of all ordered 
pairs (a,b) for which a EA and b EB. 

Given a set X, a metl'ic on X is a function d: X x X ....... R such that 
the following properties hold for all x, y, z E X: 

(1) d(x,y) = d(y,x). 
(2) d(x, y) > 0, and equality holds if and only if x = y. 

(3) d(x,z) < d(x,y) + d(y, z). 
A metric space is a set X together with a specific metric on X. We often 
suppress mention of the metric, and speak simply of "the metric space X ." 

If X is a metric space with metric d, and if Y is a subset of X, then the 
restriction of d to the set Y x Y is a metric on Y; thus Y is a metric space 
in its own right. It is called a subspace of X. 

For example, Rn has the metrics 

d(x, Y) = II x - Y II and d(x,y) = Ix - y I; 

they are called the euclidean metric and the sup metric, respectively. It 
follows immediately from the properties of a norm that they are metrics. For 
many purposes, these two metrics on Rn are equivalent, as we shall see. 

We shall in this book be concerned only with the metric space Rn and 
its subspaces, except for the expository final section, in which we deal with 
general metric spaces. The space Rn is commonly called n-dimensional 
euclidean space. 

If X is a metric space with metric d, then given Xo E X and given f > 0, 
the set 
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is called the £-neighborhood of x0 , or the £-neighborhood centered at 
x0 . A subset U of X is said to be open in X if for each x0 E U there is a 
corresponding f > 0 such that U(x0;E) is contained in U. A subset C of X 
is said to be closed in X if its complement X - C is open in X. It follows 
from the triangle inequality that an £-neighborhood is itself an open set. 

If U is any open set containing x 0 , we commonly refer to U simply as a 
neighborhood of x 0 . 

Theorem 3.1. Let (X, d) be a metric spa.ce. Then finite intersec
tions and arbitrary unions of open sets of X are open in X. Similarly, 
finite unions and arbitrary intersections of closed sets of X are closed 
in X. □ 

Theorem 3.2. Let X be a metric space; let Y be a subspace. A 
subset A of Y is open in Y if and only if it has the form 

A= UnY, 

where U is open in X. Similarly, a subset A of Y is closed in Y if and 
only if it has the form 

A=CnY, 

where C is closed in X. □ 

It follows that if A is open in Y and Y is open in X, then A is open in 
X. Similarly, if A is closed in Y and Y is closed in X, then A is closed in X. 

If X is a metric space, a point x 0 of X is said to be a limit point 
of the subset A of X if every £-neighborhood of Xo intersects A in at least 
one point different from Xo. An equivalent condition is to require that every 
neighborhood of x0 contain infinitely many points of A. 

Theorem 3.3. If A is a subset of X, then the set A consisting 
of A and all its limit points is a closed set of X. A subset of Xis closed 
if and only if it contains all its limit points. □ 

The set A is called the closure of A. 
In Rn, the £-neighborhoods in our two standard metrics are given special 

names. If a E Rn, the £-neighborhood of a in the euclidean metric is called the 
open ball of radius f centered at a, and denoted B(a; f). The £-neighborhood 
of a in the sup metric is called the open cube of radius f centered at a, and 
denoted C(a; f). The inequalities Ix [ < II x II < y'n Ix I lead to the following 
inclusions: 

B(a; £) C C(a; E) C B(a; vn £). 

These inclusions in turn imply the following: 
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Theorem 3.4. If X is a subspace of Rn, the collection of open 
sets of X is the same whether one uses the euclidean metric or the sup 
metric on X. The same is true for the collection of closed sets of X. □ 

In general, any property of a metric space X that depends only on the 
collection of open sets of X, rather than on the specific metric involved, is 
called a topological property of X. Limits, continuity, and compactness 
are examples of such, as we shall see. 

Limits and Continuity 

Let X and Y be metric spaces, with metrics dx and dy, respectively. 
We say that a function f: X -+ Y is continuous at the point Xo of X 

if for each open set V of Y containing f(xo), there is an open set U of X 
containing Xo such that f (U) C V. \,Ve say f is continuous if it is continuous 
at each point x0 of.\'". Continuity off is equivalent to the requirement that 
for each open set V of Y, the set 

is open in X, or alternatively, the requirement that for each closed set D 
of Y, the set f- 1(D) is closed in X. 

Continuity may be formulated in a way that involves the metrics specif
ically. The function f is continuous at x 0 if and only if the following holds: 
For each f > O, there is a corresponding 8 > 0 such that 

dy(f(x), f(xo)) < f whenever dx(x, xo) < .i. 

This is the classical ('f-D formulation of continuity." 
Note that given Xo E X it may happen that for some 8 > 0, the 8-

neighborhood of Xo consists of the point Xo alone. In that case, x 0 is called an 
isolated point of X, and any function f: X-+ Y is automatically continuous 
at xo! 

A constant function from X to Y is continuous, and so is the identity 
function ix: X-+ X. So are restrictions and composites of continuous func
tions: 

Theore1n 3.5. ( a) Let xo E A, where A is a subspace of X. If 
f : X -+ Y is continuous at x 0 , then the restricted Junction f I A: A -+ Y 
is continuous at x 0 . 

{b) Let f: X-+ Y and g: Y-+ Z. If f is continuous at x0 and g is 
continuous at Yo = f(x 0 ), then go f: X-+ Z is continuous at x 0 • □ 

Theorem 3.6. 
the form 

(a) Let X be a metric space. Let f: X-+ nn have 

f(x) = (f1(x), ... ,fn(x)). 
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Then J is continuous at x0 if and only if each function Ji : X --+ R is 
continuous at x0 . The functions Ji are called the component functions 
off. 

(b) Let J,g: X-+ R be continuous at xo. Then J + g and f - g and 
J · g are continuous at xo; and f/g is continuous at Xo if g(x0 ) # 0. 

(c) The projection function 'Tri :R" -+ R given by 1r,(x) = Xi is con
tinuous. □ 

These theorems imply that functions formed from the familiar real-valued 
continuous functions of calculus, using algebraic operations and composites, 
are continuous in R". For instance, since one knows that the functions ex and 
sin x are continuous in R, it follows that such a function as 

f(s, t, u, v) = (sin(s + t))/euv 

is continuous in R4 . 

Now we define the notion of limit. Let X be a metric space. Let ACX 
and let J: A-+ Y. Let Xo be a limit point of the domain A of J. (The point 
Xo may or may not belong to A.) We say that f(x) approaches Yo as x 

approaches Xo if for each open set V of Y containing y0 , there is an open 
set U of X containing Xo such that f(x) E V whenever x is in Un A and 
x # Xo. This statement is expressed symbolically in the form 

f(x)-+ Yo as x-+ Xo-

We also say in this situation that the limit of f(x), as x approaches Xo, is 
Yo- This statement is expressed symbolically by the equation 

lim f(x) = Yo• 
x-xo 

Note that the requii-ement that x0 be a limit point of A guarantees that 
there exist points x different from x0 belonging to the set Un A. We do not 
attempt to define the limit off if x0 is not a limit point of the domain 
of J. 

Note also that the value off at Xo (provided f is even defined at xo) is 
not involved in the definition of the limit. 

The notion of limit can be formulated in a way that involves the metrics 
specifically. One shows readily that f(x) approaches Yo as x approaches Xo 
if and only if the following condition holds: For each € > 0, there is a 
corresponding 6 > 0 such that 

dy(f (x), y0 ) < € whenever x E A and O < dx(x, x0) < o. 
There is a direct relation between limits and continuity; it is the following: 
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Theorem 3. 7. Let f: X --+ Y. If x 0 is an isolated point of X, 
then f is continuous at x 0 • Otherwise, f is continuous at x 0 if and only 
if f ( X) --+ f (XO) as X --+ XO , □ 

Most of the theorems dealing with continuity have counterparts that deal 
with limits: 

Thcoren1 3.8. ( a) Let A C X; let f: A --+ R" have the form 

f(x) = (f1(x), ... , fn(x)). 

Let a= (a1, ... , an)- Then f(x) --+ a as x--+ Xo if and only if fi(x)--+ ai 

as x --+ xo, for each i. 
(b) Let f,g: A--+ R. If f(x) --+ a and g(x)--+ b as x --+ xo, then as 

X --+ Xo, 

J(x) + g(x)--+ a+ b, 
J(x) - g(x)--+ a - b, 

f(x) • g(x)--+ a• b; 

also, f(x)/g(x)--+ a/b if b # 0. D 

Interior and Exterior 

The following concepts make sense in an arbitrary metric space. Since we 
shall use them only for R", we define them only in that case. 

Definition. Let A be a subset of Rn. The interior of A, as a subset of 
Rn, is defined to be the union of all open sets of R" that are contained in A; 
it is denoted Int A. The exterior of A is defined to be the union of all open 
sets of R" that are disjoint from A; it is denoted Ext A. The boundary of A 
consists of those points of Rn that belong neither to Int A nor to Ext A; it is 
denoted Bd A. 

A point x is in Bd A if and only if every open set containing x intersects 
both A and the complement R" - A of A. The space R" is the union of the 
disjoint sets Int A, Ext A, and Bd A; the first two are open in nn and the 
third is closed in Rn. 

For example, suppose Q is the rectangle 

consisting of all points x of R" such that ai < Xi < bi for all i. You can check 
that 
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We often call Int Q an open rectangle. Furthermore, Ext Q = R" - Q and 
Bd Q = Q - Int Q. 

An open cube is a special case of an open rectangle; indeed, 

The corresponding ( closed) rectangle 

is often called a closed cube, or simply a cube, centered at a. 

EXERCISES 

Throughout, let X be a metric space with metric d. 
1. Show that U(x0 ; t:) is an open set. 

2. Let Y C X. Give an example where A is open in Y but not open in X. 
Give an example where A is closed in Y but not closed in X. 

3. Let ACX. Show that if C is a closed set of X and C contains A, then 
C contains A. 

4. ( a) Show that if Q is a rectangle, then Q equals the closure of Int Q. 
(b) If Dis a closed set, what is the relation in general between the set D 

and the closure of Int D? 

(c) If U is an open set, what is the relation in general between the set U 
and the interior of U? 

5. Let /: X - Y. Show that / is continuous if and only if for each x EX 
there is a neighborhood U of x such that / I U is continuous. 

6. Let X = AU B, where A and B are subspaces of X. Let /: X - Y; 
suppose that the restricted functions 

/IA:A-Y and /IB:B-Y 

are continuous. Show that if both A and B are closed in X, then / is 
continuous. 

7. Finding the limit of a composite function go f is easy if both / and g are 
continuous; see Theorem 3.5. Otherwise, it can be a bit tricky: 

Let/ :X - Y and g: Y - Z. Let Xo be a limit point of X and let 
Yo be a limit point of Y. See Figure 3.1. Consider the following three 
conditions: 

(i) / (x) - Yo as x - Xo. 

(ii) g(y) - Zo as y - Yo, 

(iii) g(f (x)) - zo as x - Xo. 

(a) Give an example where (i) and (ii) hold, but (iii) does not. 

(b) Show that if (i) and (ii) hold and if g(y0 ) = zo, then (iii) holds. 
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8. Let f: R - R be defined by setting f(x) = sin z if z is rational, and 
/(x) = 0 otherwise. At what points is/ continuous? 

9. If we denote the general point of R2 by ( z, y), determine Int A, Ext A, a.nd 
Bd A for the subset A of R2 specified by each of the following conditions: 

(a) x = 0. (e) x and y are rational. 

(b) 0 $ X < 1. (f) 0 < x2 + y2 < 1. 

(c) 0 :5 x < 1 and O :5 y < 1. (g) y < x2 • 

(d) xis rational and y > 0. (h) y :5 x2 . 

I g 
• Zo --· • y 

Yo 

y 

Figure 3.1 



32 The Algebra and Topology of Rn Chapter 1 

§4. COMPACT SUBSPACES ANO CONNECTED SUBSPACES OF R" 

An important class of subspaces of Rn is the class of compact spaces. We shall 
use the basic properties of such spaces constantly. The properties we shall 
need are summarized in the theorems of this section. Proofs are included, 
since some of these results you may not have seen before. 

A second useful class of spaces is the class of connected spaces; we sum
marize here those few properties we shall need. 

We do not attempt to deal here with compactness and connectedness in 
arbitrary metric spaces, but comment that many of our proofs do hold in that 
more general situation. 

Compact spaces 

Definition. Let X be a subspace of Rn. A covering of Xis a collection 
of subsets of R" whose union contains X; if each of the subsets is open in Rn, 
it is called an open covering of X. The space X is said to be compact if 
every open covering of X contains a finite subcollection that also forms an 
open covering of X. 

While this definition of compactness involves open sets of R", it can be 
reformulated in a manner that involves only open sets of the space X: 

Theorem 4.1. A subspace X of Rn is compact if and only if for 
every collection of sets open in X whose union is X, there is a finite 
subcollection whose union equals X. 

Proof. Suppose X is compact. Let { A0} be a collection of sets open 
in X whose union is X. Choose, for each a, an open set U a of R" such 
that A 0 = U0 n .X. Since X is compact, some finite subcollection of the 
collection { U a} covers X, say for a = a 1, ... , O'k. Then the sets A0 , for 
a = O::i, ... , ak, have X as their union. 

The proof of the con verse is similar. D 

The following result is always proved in a first course in analysis, so the 
proof will be omitted here: 

Theorem 4.2. The subspace [a, b] of R is compact. □ 

Definition. A subspace X of Rn is said to be bounded if there is an 
M such that lxl < l.1 for all x EX. 

We shall eventually show that a subspace of Rn is compact if and only if 
it is closed and bounded. Half of that theorem is easy; we prove it now: 
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Theorem 4.3. 
and bounded. 
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If X is a compact subspace of Rn, then X is closed 

Proof. Step 1. We show that X is bounded. For each positive inte
ger N, let UN denote the open cube UN= C(O;N). Then UN is an open 
set; and U1 C U2 C • • •; and the sets UN cover all of R" (so in particular they 
cover X). Some finite subcollection also covers X, say for N =Ni, ... ,N1;. 
If M is the largest of the numbers N 1 , ... , N 1;, then X is contained in UM; 
thus X is bounded. 

Step 2. We show that X is closed by showing that the complement of 
X is open. Let a be a point of R" not in X; we find an £-neighborhood of a 
that lies in the complement of X. 

For each positive integer N, consider the cube 

CN={x;Jx-al <1/N}. 
Then C1 :) C2 :) • • •, and the intersection of the sets CN consists of the 
point a alone. Let VN be the complement of CN; then VN is an open set; and 
V1 C V2 C • • •; and the sets VN cover all of R"except for the point a (so they 
cover X). Some finite subcollection covers X, say for N = N1, ... , N1;. If M 
is the largest of the numbers Ni, ... , Nk, then X is contained in VM. Then 
the set CM is disjoint from X, so that in particular the open cube C(a; 1/ M) 
lies in the complement of X. See Figure 4.1. D 

X 

Figure 4.1 

Corollary 4.4. Let X be a compact subspace of R. Then X has a 
largest element and a smallest element. 
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Proof. Since X is bounded, it has a greatest lower bound and a least 
upper bound. Since X is closed, these elements must belong to X. □ 

Here is a basic ( and familiar) result that is used constantly: 

Theorem 4.5 {Extre1ne-value theorem). Let X be a compact 
subspace of Rm. If f : X - Rn is continuous, then f (X) is a compact 
subspace of Rn. 

In particular, if </> : X - R is continuous, then </> has a maximum 
value and a minimum value. 

Proof. Let {Va} be a collection of open sets of Rn that covers f(X). 
The sets f- 1(Va) form an open covering of X. Hence some finitely many of 
them cover X, say for a= a1, ... ,ak. Then the sets Va for a= 01, ... ,ak 
cover f (X). Thus f (X) is compact. 

Now if</> : X --+ R is continuous, </>(X) is compact, so it has a largest 
element and a smallest element. These are the maximum and minimum values 
of <f>. □ 

Now we prove a result that may not be so familiar. 

Definition. Let .. Y be a subset of nn. Given f > 0, the union of the 
sets B(a; f), as a ranges over all points of X, is called the €-neighborhood 
of X in the euclidean metric. Similarly, the union of the sets C(a; f) is called 
the €-neighborhood of X in the sup metric. 

Theoren1 4.6 {The €-neighborhood theorem). Let X be a com-
pact subspace of R"; let U be an open set of R"containing X. Then 
there is an l > 0 such that the €-neighborhood of X (in either metric) 
is contained in U. 

Proof. The €-neighborhood of X in the euclidean metric is contained in 
the €-neighborhood of X in the sup metric. Therefore it suffices to deal only 
with the latter case. 

Step 1. Let C be a fixed subset of R". For each x E R", we define 

d(x, C) = inf {Ix - c I; c E C}. 

We call d(x,C) the distance from x to C. We show it is continuous as a 
function of x: 

Let c EC; let x, y ER". The triangle inequality implies that 

d(x,C)- lx-yl < Ix-cl- lx-yl < ly-cl, 
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This inequality holds for all c E C; therefore 

d(x,C)- lx-yl <d(y,C), 

so that 
d(x,C)-d(y,C) < lx-yl. 

The same inequality holds if x and y are interchanged; continuity of d(x, C) 
follows. 

Step 2. We prove the theorem. Given U, define / : X -+ R by the 
equation 

/ (x) = d(x, Rn - U). 

Then/ is a continuous function. Furthermore, /(x) > 0 for all x EX. For if 
x EX, then some c5-neighborhood of xis contained in U, whence J(x) > c5. 
Because X is compact, f has a minimum value €. Because f takes on only 
positive values, this minimum value is positive. Then the €-neighborhood 
of X is contained in U. □ 

This theorem does not hold without some hypothesis on the set X. If X 
is the x-axis in R2, for example, and U is the open set 

then there is no € such that the €-neighborhood of X is contained in U. See 
Figure 4.2. 

Figure 4.2 

Here is another familiar result. 

Theorem 4.7 (Uniform continuity). Let X be a compact subspace 
of Rm; let f : X -+ Rn be continuous. Given € > 0, there is a c5 > 0 
such that whenever x, y E X, 

Ix - y I < c5 implies I/ (x) - /(y) I < €. 
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This result also holds if one uses the euclidean metric instead of the 
sup metric. 

The condition stated in the conclusion of the theorem is called the con
dition of uniform continuity. 

Proof. Consider the subspace X X X of nm X nm; and within this, 
consider the space 

.6. = { (x, x) Ix EX}, 

which is called the diagonal of X x X. The diagonal is a compact subspace 
of R2m, since it is the image of the compact space X under the continuous 
map f(x) = (x, x). 

We prove the theorem first for the euclidean metric. Consider the function 
g : X x X ~ R defined by the equation 

g(x, y) = II f (x) - f (y) II• 

Then consider the set of points (x, y) of X x X for which g(x, y) < €. 

Because g is continuous, this set is an open set of X x X. Also, it contains 
the diagonal .6., since g(x, x) = 0. Therefore, it equals the intersection with 
X x X of an open set U of Rm x Rm that contains .6.. See Figure 4.3. 

X 

X 

(x,y) 

.,...,__,_-(y' y) 

Figure 4.3 

Compactness of .6. implies that for some 6, the 6-neighborhood of .6. is 
contained in U. This is the fJ required by our theorem. For if x, y E X with 
llx-yll <6,then 

II (x, Y) - (y, Y) II = ll (x - Y, 0) II = II x - Y II < c5, 

so that (x,y) belongs to the 6-neighborhood of the diagonal .6.. Then (x,y) 
belongs to U, so that g(x, y) < €, as desired. 
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The corresponding result for the sup metric can be derived by a similar 
proof, or simply by noting that if I x-y I < 8 / fa, then II x -y II < 8, whence 

I/ (x) - /(y) I < II f(x) - f (y) II < €. □ 

To complete our characterization of the compact subspaces of Rn, we need 
the following lemma: 

Lemma 4.8. The rectangle 

Q = [a1, b1] X • • • X [an, bn] 

in Rn is compact. 

Proof. We proceed by induction on n. The lemma is true for n = I; we 
suppose it true for n - 1 and prove it true for n. We can write 

where X is a rectangle in Rn- 1 . Then X is compact by the induction hy
pothesis. Let A be an open covering of Q. 

Step 1. We show that given t E [an, bn], there is an € > 0 such that the 
set 

X X (t - €, t + €) 

can be covered by finitely many elements of A. 
The set X x t is a compact subspace of Rn, for it is the image of X under 

the continuous map / : X _,. Rn given by f (x) = (x, t). Therefore it may be 
covered by finitely many elements of A, say by A1, ... , Ak. 

Let U be the union of these sets; then U is open and contains Xx t. See 
Figure 4.4. 

u 
t 

Xx t 

X 

Figure 4.4 

Because X x t is compact, there is an € > 0 such that the €-neighborhood 
of Xx tis contained in U. Then in particular, the set Xx (t - €, t + €) is 
contained in U, and hence is covered by A1, ... , A1:. 



38 The Algebra and Topology of Rn Chapter 1 

Step 2. By the result of Step 1, we may for each t E [an, bn] choose an 
open interval V, about t, such that the set X x V, can be covered by finitely 
many elements of the collection A. 

Now the open intervals ¼ in R cover the interval [an, bn]; hence finitely 
many of them cover this interval, say for t = t1, ... , tm. 

Then Q = X x (an, bn] is contained in the union of the sets X x Vi 
for t = t1, ... , tm; since each of these sets can be covered by finitely many 
elements of A, so may Q be covered. D 

Theorem 4.9. If X is a closed and bounded subspace of R", then 
X is compact. 

Proof. Let A be a collection of open sets that covers X. Let us adjoin 
to this collection the single set R" - X, which is open in Rn because X is 
closed. Then we have an open covering of all of R". Because X is bounded, 
we can choose a rectangle Q that contains X; our collection then in particular 
covers Q. 

Since Q is compact, some finite sub collection covers Q. If this finite 
sub collection contains the set R" - X, we discard it from the collection. We 
then have a finite sub collection of the collection A; it may not cover all of Q, 
but it certainly covers X, since the set R" - X we discarded contains no point 
of X. □ 

All the theorems of this section hold if Rn and nm are replaced by ar
bitrary metric spaces, except for the theorem just proved. That theorem 
does not hold in an arbitrary metric space; see the exercises. 

Connected spaces 

If X is a metric space, then X is said to be connected if X cannot be 
written as the union of two disjoint non-empty sets A and B, each of which 
is open in X. 

The following theorem is always proved in a first course in analysis, so 
the proof will be omitted here: 

Theoren1 4.10. The closed interval (a, b] of R" is connected. □ 

The basic fact about connected spaces that we shall use is the following: 

Theorein 4.11 (Inter1nediate.value theorem). Let X be con
nected. If f : X --+ Y is continuous, then f(X) is a connected subspace 
of Y. 

In particular, if </J : X --+ R is continuous and if f(x0) < r < f(x1) 
for some points x 0 ,x1 of X, then f(x) = r for some point x of X. 
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Proof. Suppose / (X) = AU B, where A and B are disjoint sets open 
in f(X). Then J- 1(A) and J- 1(B) are disjoint sets whose union is X, and 
each is open in X because f is continuous. This contradicts connectedness 
of X. 

Given <P, let A consist of all yin R with y < r, and let B consist of ally 
with y > r. Then A and B are open in R; if the set f (X) does not contain r, 
then f (X) is the union of the disjoint sets f(X) n A and f(X) n B, each of 
which is open in f (X). This contradicts connectedness off (X). □ 

If a and b are points of Rn, then the line segment joining a and b is 
defined to be the set of all points x of the form x = a+ t(b - a), where 
0 :s; t < 1. Any line segment is connected, for it is the image of the interval 
[O, 1) under the continuous map t -- a+ t(b - a). 

A subset A of R" is said to be convex if for every pair a,b of points of 
A, the line segment joining a and b is contained in A. Any convex subset A 
of Rn is automatically connected: For if A is the union of the disjoint sets U 
and V, each of which is open in A, we need merely choose a in U and b in 
V, and note that if L is the line segment joining a and b, then the sets Un L 
and V n L are disjoint, non-empty, and oper. in L. 

It follows that in R" all open balls and open cubes and rectangles are 
connected. (See the exercises.) 

EXERCISES 

1. Let R+ denote the set of positive real numbers. 

(a) Show that the continuous function f : R+ --+- R given by f (x) = 
1/(l+x) is bounded but has neither a maximum value nor a minimum 
value. 

(b) Show that the continuous function g : R+ - R given by g(x) = 
sin( 1 / x) is bounded but does not satisfy the condition of uniform 
continuity on R+. 

2. Let X denote the subset ( -1, 1) X 0 of R2 , and let U be the open ball 
B(O; 1) in R2 , which contains X. Show there is no£ > 0 such that the 
£-neighborhood of X in R" is contained in U. 

3. Let RO() be the set of all "infinite-tuples" x = (x1, X2, ... ) of real numbers 
that end in an infinite string of O's. (See the exercises of § 1.) Define 
an inner product on RO() by the rule (x, y) :;::;; Ex,y,. (This is a finite 
sum, since all but finitely many terms vanish.) Let II x - y II be the 
corresponding metric on R00 • Define 

e, = { 0 I • • • l O I 1, 0 I • • • IO I • • •) I 

where 1 appears in the i' h place. Then the e, form a basis for R00 • Let X 
be the set of all the points ei. Show that X is closed, bounded, and 
non-compact. 
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4. (a) Show that open balls and open cubes in Rnare convex. 

(b) Show that (open and closed) rectangles in Rn are convex. 



Differentiation 

In this chapter, we consider functions mapping Rm into Rn, and we define 
what we mean by the derivative of such a function. Much of our discussion 
will simply generalize facts that are already familiar to you from calculus. 

The two major results of this chapter are the inverse function theorem, 
which gives conditions under which a differentiable function from Rn to Rn has 
a differentiable inverse, and the implicit function theorem, which provides 
the theoretical underpinning for the technique of implicit differentiation as 
studied in calculus. 

Recall that we write the elements of Rm and Rn as column matrices unless 
specifically stated otherwise. 

§5. THE DERIVATIVE 

First, let us recall how the derivative of a real-valued function of a real variable 
is defined. 

Let A be a subset of R; let </> : A --+ R. Suppose A contains a neighbor
hood of the point a. We define the derivative of</> at a by the equation 

"..,( ) - 1· ¢,(a+ t) - ¢,(a) 
V/ a - 1m t , 

t-+0 

provided the limit exists. In this case, we say that </> is differentiable at a. 
The following facts are an immediate consequence: 

41 
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(1) Differentiable functions are continuous. 

(2) Composites of differentiable functions are differentiable. 

We seek now to define the derivative of a function f mapping a subset of 
Rm into nn. We cannot simply replace a and tin the definition just given by 
points of Rm, for we cannot divide a point of Rn by a point of Rm if m > 1! 
Here is a first attempt at a definition: 

Definition. Let A C Rm; let f : A - Rn. Suppose A contains a 
neighborhood of a. Given u E Rm with u f. 0, define 

! '( ) 1. /(a+ tu) - J(a) 
a; u = 1m t , 

t-o 

provided the limit exists. This limit depends both on a and on u; it is called 
the directional derivative of / at a with respect to the vector u. (In 
calculus, one usually requires u to be a unit vector, but that is not necessary.) 

EXAMPLE 1. Let / : R2 ---+ R be given by the equation 

The directional derivative of / at a = (a1, a2) with respect to the vector 
u=(l,O)is 

/ '( ) 1. (a1 + t)a2 - a1a2 
a; u = 1m t = a2. 

t-o 

With respect to the vector v = (1, 2), the directional derivative is 

/ '( ) 1. (a1 + t) (a2 + 2t) - a1a2 
a; v = 1m t = a2 + 2a1 . 

t-0 

It is tempting to believe that the "directional derivative" is the appropri
ate generalization of the notion of "derivative," and to say that f is differen
tiable at a if f'(a; u) exists for every u f. 0. This would not, however, be a 
very useful definition of differentiability. It would not follow, for instance, that 
differentiability implies continuity. (See Example 3 following.) Nor would it 
follow that composites of differentiable functions are differentiable. (See the 
exercises of § 7.) So we seek something stronger. 

In order to motivate our eventual definition, let us reformulate the defi
nition of differentiability in the single-variable case as follows: 

Let A be a subset of R; let <f> : A - R. Suppose A contains a neighbor
hood of a. We say that <f> is differentiable at a if there is a number A such 
that 

<f>(a + t) - <f>(a) - At _ 0 
t 

as t-+- 0. 
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The number A, which is unique, is called the derivative of</> at a, and denoted 
</>' (a). 

This formulation of the definition makes explicit the fact that if</> is differ
entiable, then the linear function At is a good approximation to the "increment 
function" </>(a+ t)- </>(a); we often call At the "first-order approximation" or 
the "linear approximation" to the increment function. 

Let us generalize this version of the definition. If AC nm and if/ : A--+ 
R", what might we mean by a "first-order" or "linear" approximation to the 
increment function /(a+ h) - /(a)? The natural thing to do is to take a 
function that is linear in the sense of linear algebra. This idea leads to the 
following definition: 

Definition. Let A C Rm, let f : A --+ R". Suppose A contains a 
neighborhood of a. We say that / is differentiable at a if there is an n by 
m matrix B such that 

f (a+ h) - f (a) - B • h _.. 0 
lhl 

as h- 0. 

The matrix B, which is unique, is called the derivative off at a; it is denoted 
Df(a). 

Note that the quotient of which we are taking the limit is defined for h 
in some deleted neighborhood of O, since the domain off contains a neigh
borhood of a. Use of the sup norm in the denominator is not essential; one 
obtains an equivalent definition if one replaces I h I by II h II-

It is easy to see that B is unique. Suppose C is another matrix satisfying 
this condition. Subtracting, we have 

(C-B) ·h 
lhl - 0 

as h - 0. Let u be a fixed vector; set h = tu; let t --+ O. It follows that 
(C - B) · u = O. Since u is arbitrary, C = B. 

EXAMPLE 2. Let/: Rm - R" be defined by the equation 

/(x) = B • x + b, 

where B is an n by m matrix, and b E Rn. Then / is differentiable and 
D f (x) = B. Indeed, since 

/(a+ h) - /(a) = B • h, 

the quotient used in defining the derivative vanishes identically. 
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We now show that this definition is stronger than the tentative one we 
gave earlier, and that it is indeed a "suitable" definition of differentiability. 
Specifically, we verify the following facts, in this section and those following: 

(1) Differentiable functions are continuous. 

(2) Composites of differentiable functions are differentiable. 

(3) Differentiability off at a implies the existence of all the directional 
derivatives of f at a. 

We also show how to compute the derivative when it exists. 

Theorem 5.1. Let A C Rm; let f : A - R". If f is differentiable 
at a, then all the directional derivatives off at a exist, and 

f'(a; u) = D f (a)• u. 

Proof. Let B = D f (a). Seth= tu in the definition of differentiability, 
where t :/ 0. Then by hypothesis, 

f ( a + tu) - / ( a) - B · tu ~ 0 
ltul 

as t - 0. If t approaches O through positive values, we multiply ( *) by lul to 
conclude that 

f ( a + tu) - / ( a) _ B . u ~ 0 
t 

as t - 0, as desired. If t approaches O through negative values, we multiply 
(*) by -lul to reach the same conclusion. Thus f'(a; u) = B • u. D 

EXAMPLE 3. Define /: R2 - R by setting /(0) = 0 and 

We show all directional derivatives of/ exist at 0, but that / is not differen
tiable at 0. Let u =f:. 0. Then 

/(0 + tu) - /(0) _ (th) 2 (tk) !_ if u = [hkl 
t (th)• + (tk)2 t 

so that 
/'(0; u) = { h 2 /k ~£ k =f:. 0, 

o 1£ k = o. 
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Thus f'(O; u) exists for all u =/ 0. However, the function f is not differentiable 
at 0. For if g : R2 -+ R is a function that is differentiable at O, then Dg(O) is 
a 1 by 2 matrix of the form [a b], and 

g'(O; u) =ah+ bk, 

which is a linear function of u. But /'(O; u) is not a linear function of u. 
The function f is particularly interesting. It is differentiable (and hence 

continuous) on each straight line through the origin. (In fact, on the straight 
line y = mx, it has the value mx/(m2 + x2).) But f is not differentiable at 
the origin; in fact, f is not even continuous at the origin! For / has value 0 
at the origin, while arbitrarily near the origin are points of the form (t, t2), at 
which f has value 1/2. See Figure 5.1. 

Figure 5.1 

Thcoren1 5.2. Let A C Rm; let f : A --+ Rn. If f is differentiable 
at a, then f is continuous at a. 

Proof. Let B = D f (a). For h near O but different from 0, write 

By hypothesis, the expression in brackets approaches 0 as h approaches 0. 
Then, by our basic theorems on limits, 

lim [f(a + h) - f (a)] = 0. 
h-O 

Thus f is continuous at a. D 

We shall deal with composites of differentiable functions in § 7. 
Now we show how to calculate D f(a), provided it exists. We first intro

duce the notion of the "partial derivatives" of a real-valued function. 

45 
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Definition. Let A C Rm; let f : A - R. We define the Ph partial 
derivative off at a to be the directional derivative of/ at a with respect 
to the vector ei, provided this derivative exists; and we denote it by D1 f (a). 
That is, 

Partial derivatives are usually easy to calculate. Indeed, if we set 

then the ph partial derivative of / at a equals, by definition, simply the 
ordinary derivative of the function ¢> at the point t = a;. Thus the partial 
derivative D; f can be calculated by treating X1, ... , X;-1, x;+ 1 , ... , Xm as 
constants, and differentiating the resulting function with respect to x1, using 
the familiar differentiation rules for functions of a single variable. 

We begin by calculating the derivative c• f in the case where f is a 
real-valued function. 

Theorem 5.3. 
at a, then 

Let A c Rm; let f : A - R. If f is differentiable 

That is, if D /(a) exists, it is the row matrix whose entries are the partial 
derivatives of/ at a. 

Proof. By hypothesis, D f (a) exists and is a matrix of size 1 by m. Let 

It follows (using Theorem 5.1) that 

We generalize this theorem as follows: 

Theorem 5.4. Let A C Rm; let f : A - Rn. Suppose A contains 
a neighborhood of a. Let Ji : A - R be the ith component function off, 
so that 

[
/1(x)] 

f (x) = : . 
fn(x) 
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(a) The function f is differentiable at a if and only if each component 
function Ji is differentiable at a. 

(b) If f is differentiable at a, then its derivative is the n by m matrix 
whose ith row is the derivative of the function Ji. 

This theorem tells us that 

[
D/1(a)] 

D f(a) = : , 
Dfn(a) 

so that D /(a) is the matrix whose entry in row i and column j is D;/i(a). 

Proof. Let B be an arbitrary n by m matrix. Consider the function 

F(l ) _ /(a+ h) - /(a) - B • h 
l - lhl ' 

which is defined for O < lhl < € (for some€). Now F(h) is a column matrix 
of size n by 1. Its ith entry satisfies the equation 

F.·(h) = fi(a + h) - /i(a) - (row i of B) • h 
' lhl • 

Leth approach 0. Then the matrix F(h) approaches O if and only if each of 
its entries approaches 0. Hence if B is a matrix for which F(h) - O, then the 
i th row of Bis a matrix for which ~(h) - 0. And conversely. The theorem 
follows. D 

Let AC Rffl and /: A - Rn. If the partial derivatives of the component 
functions Ji of/ exist at a, then one can form the matrix that has D;/i(a) as 
its entry in row i and column j. This matrix is called the Jacobian matrix 
of f. If f is differentiable at a, this matrix equals D /(a). However, it is 
possible for the partial derivatives, and hence the Jacobian matrix, to exist, 
without it following that f is differentiable at a. (See Example 3 preceding.) 

This fact leaves us in something of a quandary. We have no convenient way 
at present for determining whether or not a function is differentiable (other 
than going back to the definition). We know that such familiar functions as 

sin(xy) and xy 2 + ze:cy 

have partial derivatives, for that fact is a consequence of familiar theorems 
from single-variable analysis. But we do not know they are differentiable. 

We shall deal with this problem in the next section. 
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REMARK. If m = 1 or n = 1, our definition of the derivative is simply 
a reformulation, in matrix notation, of concepts familiar from calculus. For 
instance, if/ : R1 --+ R3 is a differentiable function, its derivative is the column 
matrix 

r/{(t)] 
D f (t) = /Ht) . 

n(t) 

In calculus, f is often interpreted as a parametrized-curve, and the vector 

is called the velocity vector of the curve. (Of course, in calculus one is apt to 

use i,J, and k for the unit basis vectors in R3 rather than e1 ,e2 , and e3 .) 

For another example, consider a differentiable function g : R3 --+ R1 . Its 
derivative is the row matrix 

and the directional derivative equals the matrix product Dg(x)-u. In calculus, 
the function g is often interpreted as a scalar field, and the vector field 

is called the gradient of g. (It is often denoted by the symbol ~g.) The 
directional derivative of g with respect to u is written in calculus as the dot 
product of the vectors grad g and u. 

Note that vector notation is adequate for dealing with the derivative of 
/ when either the domain or the range of f has dimension 1. For a general 
function / : Rm -+ Rn, matrix notation is needed. 

EXERCISES 

1. Let AC Rm; let f: A - Rn. Show that if f'(a; u) exists, then /'(a; cu) 
exists and equals cf'(a; u). 

2. Let f : R2 --+ R be defined by setting / (0) = 0 and 

f(x,y) = xy/(x2 + y2) if (x,y) =I- 0. 

(a) For which vectors u =:/- 0 does f'(0; u) exist? Evaluate it when it 
exists. 

(b) Do Di/ and D2/ exist at 0? 

( c) Is / diff eren ti able at 0? 

(d) Is/ continuous at 0? 
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3. Repeat Exercise 2 for the function f defined by setting / (0) = 0 and 

f(x, y) = x 2 y2 /(:r:2y2 + (y - x)2) if (x, y) =fi 0. 

4. Repeat Exercise 2 for the function / defined by setting /(0) = 0 and 

5. Repeat Exercise 2 for the function 

f(x,y)=lxl+IYI• 

6. Repeat Exercise 2 for the function 

7. Repeat Exercise 2 for the function / defined by setting /(0) = 0 and 

f(x, y) = x I y 1/(x2 + 11)112 if (x, y) =fi 0. 

§6. CONTINUOUSLY DIFFERENTIABLE FUNCTIONS 

In this section, we obtain a useful criterion for differentiability. We know that 
mere existence of the partial derivatives does not imply differentiability. If, 
however, we impose the (comparatively mild) additional condition that these 
partial derivatives be continuous, then differentiability is assured. 

We begin by recalling the mean-value theorem of single-variable analysis: 

Theorem 6.1 (Mean-value theorem). If</>: [a, b] -+ R is continu
ous at each point of the closed interval [a, b], and differentiable at each 
point of the open interval (a,b), then there exists a point c of (a,b) 
such that 

</>(b) - </>(a)= ¢/(c)(b- a). □ 

In practice, we most often apply this theorem when </> is differentiable on 
an open interval containing [a,b]. In this case, of course,</> is continuous on 
[a,b]. 
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Theorem 6.2. Let A be open in Rm. Suppose that the partial 
derivatives D;fi(x) of the component functions off exist at each point 
x of A and are continuous on A. Then f is differentiable at each point 
of A. 

A function satisfying the hypotheses of this theorem is often said to be 
continuously differentiable, or of class C 1, on A. 

Proof In view of Theorem 5.4, it suffices to prove that each component 
function of f is differentiable. Therefore we may restrict ourselves to the case 
of a real-valued function f : A -+ R. 

Let a be a point of A. We are given that, for some€, the partial derivatives 
D; f(x) exist and are continuous for Ix - al < €. We wish to show that f is 
differentiable at a. 

Step 1. Let h be a point of Rm with O < lhl < ~; let h1, ... , hm be the 
components of h. Consider the following sequence of points of Rm: 

Po= a, 

P1=a+h1e1, 

P2 =a+ h1e1 + h2e2, 

The points Pi all belong to the ( closed) cube C of radius I h I centered at a. 
Figure 6.1 illustrates the case where m = 3 and all hi are positive. 

Figure 6.1 

Since we are concerned with the differentiability of f, we shall need to 
deal with the difference f(a + h) - f(a). We begin by writing it in the form 

m 

/(a+ h) - f(a) = L [f(p;) - /(P;-i)]. 
j=l 
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Consider the general term of this summation. Let j be fixed, and define 

</>(t) = f (P;-1 + te; ). 

Assume h; f. 0 for the moment. As t ranges over the closed interval I with 
end points O and h;, the point P;-i + te; ranges over the line segment from 
P;-1 to P;i this line segment lies in C, and hence in A. Thus</> is defined for 
t in an open interval about I. 

Ast varies, only the j th component of the point P;-i +te; varies. Hence 
because D;f exists at each point of A, the function </> is differentiable on 
an open interval containing I. Applying the mean-value theorem to </>, we 
conclude that 

</>( h;) - </>(0) = </>' ( c; )h; 

for some point c; between O and h;. (This argument applies whether h; is 
positive or negative.) We can rewrite this equation in the form • 

where q; is the point P;-1 + c;e; of the line segment from P;-1 to P;, which 
lies in C. 

We derived ( **) under the assumption that h; -1- 0. If h; = 0, then ( **) 
holds automatically, for any point q; of C. 

Using ( ** ), we rewrite (*) in the form 

m 

/(a +h)- /(a)= L D;/(q;)h;, 
j=l 

where each point Qj lies in the cube C of radius lhl centered at a. 

Step 2. We prove the theorem. Let B be the matrix 

B = [D1/(a) • • • Dm/(a)]. 

Then 
m 

B -h = L D;f(a)h;. 
j=l 

Using(***), we have 

/(a+h)- /(a)- B • h = t [D;/(q;)- D;f(a)]h;; 

lhl j=l lhl 

then we let h -+ 0. Since Q; lies in the cube C of radius lhl centered at a, 
we have q,; -+ a. Since the partials of / are continuous at a, the factors in 
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brackets all go to zero. The factors h; /lhl are of course bounded in absolute 
value by 1. Hence the entire expression goes to zero, as desired. D 

One effect of this theorem is to reassure us that the functions familiar to us 
from calculus are in fact differentiable. We know how to compute the partial 
derivatives of such functions as sin(xy) and xy2 + zexy, and we know that 
these partials are continuous. Therefore these functions are differentiable. 

In practice, we usually deal only with functions that are of class C1 . While 
it is interesting to know there are functions that are differentiable but not of 
class C1 , such functions occur rarely enough that we need not be concerned 
with them. 

Suppose f is a function mapping an open set A of Rm into Rn, and suppose 
the partial derivatives Di/i of the component functions of/ exist on A. These 
then are functions from A to R, and we may consider their partial derivatives, 
which have the form Dk(D; Ji) and are called the second-order partial 
derivatives of /. Similarly, one defines the third-order partial derivatives 
of the functions fi, or more generally the partial derivatives of order r for 
arbitrary r. 

If the partial derivatives of the functions /i of order less than or equal 
to r are continuous on A, we say / is of class er on A. Then the function / 
is of class er on A if and only if each function D;/i is of class cr-1 on A. 
We say f is of class C00 on A if the partials of the functions /, of all orders 
are continuous on A. 

As you may recall, for most functions the "mixed" partial derivatives 

are equal. This result in fact holds under the hypothesis that the function / 
is of class C2 , as we now show. 

Theorem 6.3. Let A be open in Rm; let f : A-+ R be a Junction 
of class C2 . Then for each a E A, 

Proof Since one calculates the partial derivatives in question by letting 
all variables other than Xk and Xj remain constant, it suffices to consider the 
case where / is a function merely of two variables. So we assume that A is 
open in R2 , and that / : A -+ R2 is of class C2 . 

Step 1. We first prove a certain "second-order" mean-value theorem 
for /. Let 

Q = [a, a+ h] x [b, b + k] 
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be a rectangle contained in A. Define 

>.(h,k) = f(a,b)- /(a+ h, b) - f(a,b + k) + f(a + h, b + k). 

Then >. is the sum, with appropriate signs, of the values of / at the four 
vertices of Q. See Figure 6.2. We show that there are points p and q of Q 
such that 

>.(h,k) = D2D1/(p) • hk, and 

>.(h,k) = D1D2/(q) • hk. 

b+k T 
I 
I 
I 

+ I 
b l 

a s a+h 

Figure 6.2 

By symmetry, it suffices to prove the first of these equations. To begin, 
we define 

<f,(s) = f(s, b + k) - f(s, b). 

Then </>(a+ h)- </>(a)= >.(h, k), as you can check. Because D 1/ exists in A, 
the function </> is differentiable in an open interval containing [a, a + h]. The 
mean-value theorem implies that 

</>( a + h) - <f,( a) = </>' (so) • h 

for some So between a and a+ h. This equation can be rewritten in the form 

Now So is fixed, and we consider the function D1/(so, t). Because D2D1f 
exists in A, this function is differentiable for t in an open interval about 
[b, b + k]. We apply the mean-value theorem once more to conclude that 
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for some to between b and b + k. Combining ( *) and ( **) gives our desired 
result. 

Step 2. We prove the theorem. Given the point a = (a,b) of A and 
given t > 0, let Q, be the rectangle 

Qt= [a,a + t] x [b,b + t]. 

If t is sufficiently small, Qt is contained in A; then Step 1 implies that 

for some point Pt in Qt. If we let t --+ 0, then Pt --+ a. Because D2D1f is 
continuous, it follows that 

A similar argument, using the other equation from Step 1, implies that 

The theorem follows. D 

EXERCISES 

1. Show that the function f (x, y) = lxyl is differentiable at O, but is not of 
class C1 in any neighborhood of O. 

2. Define / : R -+ R by setting /(0) = 0, and 

f (t) = t2 sin{l/t) if t-::/- 0. 

(a) Show/ is differentiable at 0, and calculate /'{0). 

(b) Calculate J1 ( t) if t -::/- 0. 

(c) Show /' is not continuous at 0. 

(d) Conclude that / is differentiable on R but not of class C1 on R. 

3. Show that the proof of Theorem 6.2 goes through if we assume merely 
that the partials D, f exist in a neighborhood of a and are continuous 
at a. 

4. Show that if AC Rm and / : A - R, and if the partials Djf exist and 
are bounded in a neighborhood of a, then / is continuous at a. 

5. Let f : R2 __. R2 be defined by the equation 

f(r,0) = (rcos0, rsin0). 

It is called the polar coordinate transformation. 
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( a) Calculate D f and det D f. 
(b) Sketch the image under / of the set S = [1, 2] x [O, 1r]. [Hint: Find 

the images under / of the line segments that bound S .] 
6. Repeat Exercise 5 for the function f : R2 --+ R2 given by 

f(x,y) = (x 2 - y2 , 2xy). 

Take S to be the set 

S = {(x,y) lx2 + y2 :S a2 and x ~ 0 and y ~ O}. 

[Hint: Parametrize part of the boundary of S by setting x = a cost and 
y = a sin t; find the image of this curve. Proceed similarly for the rest of 
the boundary of S.] 

We remark that if one identifies the complex numbers C with R2 in 
the usual way, then f is just the function f(z) = z 2 . 

7. Repeat Exercise 5 for the function f : R2 --+ R2 given by 

f (x, y) = ( ex cosy, ex sin y). 

Take S to be the set S = [O, I] x [O, 1r]. 
We remark that if one identifies C with R2 as usual, then f is the 

function f (z) = ez. 

8. Repeat Exercise 5 for the function f : R3 --+ R3 given by 

f(p,</>,0) = (pcos0sin¢, psin0sincp, pcoscp). 

It is called the spherical coordinate transformation. Take S to be 
the set 

S = [1,2] X (0,71"/2] X (0,71"/2]. 

9. Let g : R -+ R be a function of class C2 . Show that 

l. g(a+h}-2g(a)+g(a-h) _ "() 
1m h2 - g a . 

h-o 

[Hint: Consider Step 1 of Theorem 6.3 in the case f(x, y) = g(x + y).] 
*10. Define f : R2 -+ R by setting f (0) = 0, and 

f(x,y) = xy(x2 -y2 )/(x2 + y2 ) if (x,y) =I- O. 

(a) Show D1f and D2/ exist at 0. 

(b) Calculate D1/ and D2f at (x, y) =I- 0. 

(c) Show/ is of class C1 on R2 . [Hint: Show D1f(x, y) equals the prod
uct of y and a bounded function, and D2/(x,y) equals the product 
of x and a bounded function.] 

(d) Show that D2D1f and D1D2/ exist at 0, but are not equal there. 

55 
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§7. THE CHAIN RULE 

In this section we show that the composite of two differentiable functions 
is differentiable, and we derive a formula for its derivative. This formula is 
commonly called the "chain rule." 

Theorem 7.1. Let Ac Rm; let B c Rn. Let 

/ : A --+ Rn and g : B --+ RP' 

with f ( A) C B. Suppose f ( a) :::: b. If J is differentiable at a, and if g 
is differentiable at b, then the composite function go f is differentiable 
at a. Furthermore, 

D(g o f)(a) = Dg(b). D /(a), 

where the indicated product is matrix multiplication. 

Although this version of the chain rule may look a bit strange, it is really 
just the familiar chain rule of calculus in a new guise. You can convince 
yourself of this fact by writing the formula out in terms of partial derivatives. 
We shall return to this matter later. 

Proof. For convenience, let x denote the general point of Rm, and let y 
denote the general point of Rn. 

By hypothesis, g is defined in a neighborhood of b; choose f so that g(y) 
is defined for IY - bl < f. Similarly, since f is defined in a neighborhood of a 
and is continuous at a, we can choose 6 so that /(x) is defined and satisfies 
the condition 1/(x) - bl < f, for Ix - al < 6. Then the composite function 
(go f)(x) = g(/(x)) is defined for Ix - al < b. See Figure 7.1. 

g 
•c 

z ERP 

Figure 7.1 
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Step 1. Throughout, let .6.(h) denote the function 

.6.(h) = /(a+ h) - / (a), 

which is defined for lhl < 6. First, we show that the quotient l.6.(h)l/lhJ is 
bounded for h in some deleted neighborhood of 0. 

For this purpose, let us introduce the function F(h) defined by setting 
F(O) = 0 and 

F(h) = [11.(h) -,ita) • h] for O < ihi < 6. 

Because / is differentiable at a, the function F is continuous at 0. Further
more, one has the equation 

.6.(h) = DJ (a) • h + lhlF(h) 

for O < lhl < 6, and also for h = 0 (trivially). The triangle inequality implies 
that 

1.6.(h)l < mlD f (a)I lh[ + lhl IF(h)I. 

Now IF(h)I is bounded for h in a neighborhood of O; in fact, it approaches 0 
as h approaches 0. Therefore 1.6.(h)I / Jhl is bounded on a deleted neighbor
hood of 0. 

Step 2. We repeat the construction of Step 1 for the function g. We 
define a function G(k) by setting G(O) = 0 and 

G(k) = g(b + k) - g(b) - Dg(b) • k 
lkl for O < lkl < f. 

Because g is differentiable at b, the function G is continuous at 0. Further
more, for lkl < f, G satisfies the equation 

g(b + k) - g(b) = Dg(b). k + lklG(k). 

Step 3. We prove the theorem. Let b be any point of Rm with jhl < 6. 
Then l.6.(h)I < f, so we may substitute .6.(h) fork in formula ( ** ). After this 
substitution, b + k becomes 

b + .6.(h) = /(a)+ .6.(h) = /(a+ h), 

so formula ( **) takes the form 

g(f(a + b)) - g(/(a)) = Dg(b) • .6.(h) + l.6.(h)IG{.6.(h)). 
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Now we use ( *) to rewrite this equation in the form 

1 
lh/ [g(f(a + h)) - g(/(a)) - Dg(b) • D f(a). h] 

Chapter 2 

1 
= Dg(b) • F(h) + 1h11 ~(h)IG(~(h)). 

This equation holds for O < lhl < b. In order to show that go f is differentiable 
at a with derivative Dg(b) • D J(a), it suffices to show that the right side of 
this equation goes to zero as h approaches 0. 

The matrix Dg(b) is constant, while F(h) --+ 0 as h --+ 0 (because F 
is continuous at O and vanishes there). The factor G(~(h)) also approaches 
zero as h --+ O; for it is the composite of two functions G and ~, both of 
which are continuous at O and vanish there. Finally, l~(h)I / lhl is bounded 
in a deleted neighborhood of O, by Step 1. The theorem follows. D 

Here is an immediate consequence: 

Corollary 7 .2. Let A be open in Rm; let B be open in R". Let 

f : A --+ R" and g : B - RP, 

with f(A) CB. If f and g are of class er, so is the composite function 
go f. 

Proof. The chain rule gives us the formula 

D(g o f)(x) = Dg(f(x)) · D J(x), 

which holds for x E A. 
Suppose first that / and g are of class C 1 . Then the entries of Dg are 

continuous real-valued functions defined on B; because f is continuous on 
A, the composite function Dg (f (x)) is also continuous on A. Similarly, the 
entries of the matrix D f (x) are continuous on A. Because the entries of the 
matrix product are algebraic functions of the entries of the matrices involved, 
the entries of the product Dg (J(x)} · D J(x) are also continuous on A. Then 
go J is of class C 1 on A. 

To prove the general case, we proceed by induction. Suppose the theorem 
is true for functions of class er- 1 . Let f and g be of class Cr. Then the 
entries of Dg are real-valued functions of class cr-l on B. Now f is of class 
cr-l on A (being in fact of class Cr); hence the induction hypothesis implies 
that the function D;gi(f(x)), which is a composite of two functions of class 
cr- l, is of class cr- l. Since the entries of the matrix fl j ( X) are also of class 
cr-l on A by hypothesis, the entries of the product Dg(f(x)) ·DJ (x) are 
of class cr- 1 on A. Hence go f is of class Cr on A, as desired. 
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The theorem follows for r finite. If now / and g are of class C00 , then they 
are of class er for every r, whence 9 0 / is also of class er for every r. □ 

As another application of the chain rule, we generalize the mean-value 
theorem of single-variable analysis to real-valued functions defined in Rm. We 
will use this theorem in the next section. 

Theorem 7.3 (Mean-value theorem). Let A be open in Rm; let 
f : A ...... R be differentiable on A. If A contains the line segment with 
end points a and a+ h, then there is a point c = a+ t0h with O < t0 < 1 
of this line segment such that 

/(a+ h)- f(a) = D/(c) • h. 

Proof. Set </>(t) = f(a + th); then </> is defined fort in an open interval 
about [O, 1]. Being the composite of differentiable functions, </> is differentiable; 
its derivative is given by the formula 

</>'(t) = D f (a+ th)• h. 

The ordinary mean-value theorem implies that 

</>(1) - </>(O) =</>'(to)· 1 

for some to with O < to < 1. This equation can be rewritten in the form 

f (a+ h) - f (a) = D f (a+ t0h) · h. □ 

As yet another application of the chain rule, we consider the problem of 
differentiating an inverse function. 

Recall the situation that occurs in single-variable analysis. Suppose </>(x) 
is differentiable on an open interval, with </>'(x) > 0 on that interval. Then</> 
is strictly increasing and has an inverse function 'Ip, which is defined by letting 
1/J(y) be that unique number x such that </>(x) = y. The function 'l/J is in fact 
differentiable, and its derivative satisfies the equation 

tf/(y) = 1/</>'(x), 

where y = </>(x). 
There is a similar formula for differentiating the inverse of a function / 

of several variables. In the present section, we do not consider the question 
whether the function f has an inverse, or whether that inverse is differentiable. 
We consider only the problem of finding the derivative of the inverse function. 
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Theorem 7.4. Let A be open in Rn; let f : A --+ Rn; let f (a) = b. 
Suppose that g maps a neighborhood of b into Rn, that g(b) = a, and 

g(f(x)) = X 

for all x in a neighborhood of a. If f is differentiable at a and if g is 
differentiable at b, then 

Proof. Let i : Rn --+ Rn be the identity function; its derivative is the 
identity matrix In. We are given that 

g(f (x)) = i(x) 

for all x in a neighborhood of a. The chain rule implies that 

Dg(b) - D /(a)= In. 

Thus Dg(b) is the inverse matrix to D f (a) (see Theorem 2.5). D 

The preceding theorem implies that if a differentiable function / is to have 
a differentiable inverse, it is necessary that the matrix D f be non-singular. 
It is a somewhat surprising fact that this condition is also sufficient for a 
function f of class C 1 to have an inverse, at least locally. We shall prove this 
fact in the next section. 

REMARK. Let us make a comment on notation. The usefulness of well-chosen 
notation can hardly be overemphasized. Arguments that are obscure, and 
formulas that are complicated, sometimes become beautifully simple once the 
proper notation is chosen. Our use of matrix notation for the derivative is a 
case in point. The formulas for the derivatives of a composite function and an 
inverse function could hardly be simpler. 

Nevertheless, a word may be in order for those who rem em her the notation 
used in calculus for partial derivatives, and the version of the chain rule proved 
there. 

In advanced mathematics, it is usual to use either the functional notation 
¢' or the operator notation D¢ for the derivative of a real-valued function 
of a real variable. ( D¢ denotes a 1 by 1 matrix in this case!) In calculus, 
however, another notation is common. One often denotes the derivative ¢'(x) 
by the symbol d¢/dx, or, introducing the "variable" y by setting y = cp(x), 
by the symbol dy/ dx. This notation was introduced by Leibnitz, one of 
the originators of calculus. It comes from the time when the focus of every 
physical and mathematical problem was on the variables involved, and when 
functions as such were hardly even thought about. 
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The Leibnitz notation has some familiar virtues. For one thing, it makes 
the chain rule easy to remember. Given functions¢: R - R and tp: R-;, R, 
the derivative of the composite function tp o ¢ is given by the formula 

D(l/} o ¢)(x) = D¢(¢(x)) • D¢(x). 

If we introduce variables by setting y = ¢( x) and z = t/J(y), then the derivative 
of the composite function z = t/J(¢(x)) can be expressed in the Leibnitz 
notation by the formula 

dz dz dy 
dx = dy. dx. 

The latter formula is easy to remember because it looks like the formula for 
multiplying fractions! However, this notation has its ambiguities. The letter 
"z," when it appears on the left side of this equation, denotes one function (a 
function of x); and when it appears on the right side, it denotes a different 
function ( a function of y). This can lead to difficulties when it comes to 
computing higher derivatives unless one is very careful. 

The formula for the derivative of an inverse function is also easy to re
member. If y = ¢(x) has the inverse function x = l/J(y), then the derivative 
of tp is expressed in Leibnitz notation by the equation 

1 
dx/dy = dy/dx' 

which looks like the formula for the reciprocal of a fraction! 
The Leibnitz notation can easily be extended to functions of several vari

ables. If A C Rm and f : A - R, we often set 

Y = f (x) = f (x1, ... , Xm), 

and denote the partial derivative Di/ by one of the symbols 

of 
OXi 

or 

The Leibnitz notation is not nearly as convenient in this situation. Con
sider the chain rule, for example. If 

f •. Rm ~ R" d Rn R ~ an g: - , 

then the composite function F;;;; go f maps Rm into R, and its derivative is 
given by the formula 

DF(x) = Dg(f(x)) • Df(x), 
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which can be written out in the form 

Dm-~~(x)] . 

Dm/n(x) 

The formula for the Ph partial derivative of F is thus given by the equa
tion 

n 

DiF(x) = L D,.g(f(x)) Difk(x). 
k=l 

If we shift to "variable" notation by setting y = /(x) and z = g(y ), this 
equation becomes 

this is probably the version of the chain rule you learned in calculus. Only 
familiarity would suggest that it is easier to remember than ( * )! Certainly 
one cannot obtain the formula for {)zj OXj by a simple-minded multiplication 
of fractions, as in the single-variable case. 

The formula for the derivative of an inverse function is even more trou
blesome. Suppose f : R2 - R2 is differentiable and has a differentiable inverse 
function g. The derivative of g is given by the formula 

Dg(y) = [D/(x))-1 . 

where y = / (x). In Leibnitz notation, this formula takes the form 

8x1/oy2] = [{)yifox1 

8x2/oy2 oy2/8x1 

oy1/8x2]-l 

{)y2/ox2 

Recalling the formula for the inverse of a matrix, we see that the partial 
derivative OXi/Oyj is about as far from being the reciprocal of the partial 
derivative oy,/ OXi as one could imagine! 
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1. Let f : R3 - R2 satisfy the conditions /(0) = (1, 2) and 

[ 1 2 3] Df(O) = . 
0 0 1 

Let g : R2 - R2 be defined by the equation 

g(x, y) = (x + 2y + I, 3xy). 

Find D(g o /)(0). 

EXERCISES 

2. Let f : R2 - R3 and g: R3 - R2 be given by the equations 

f (x) = ( € 2 x 1 +x2 , 3x2 - cos X1, Xi+ X2 + 2), 

g(y) = (3y1 + 2yz + Yi, yt - y3 + 1). 

(a) If F(x) = g(/(x)), find DF(O). [Hint: Don't compute F explicitly.] 

(b) If G(y) = f (g(y)), find DG(O). 

3. Let f : R3 - R and g : R2 - R be differentiable. Let F : R2 - R be 
defined by the equation 

F(x, y) = f (x, y, g(x, y)). 

(a) Find DF in terms of the partials off and g. 

(b) If F(x, y) = 0 for all (x, y), find D1g and D2g in terms of the partials 
off. 

4. Let g: R2 - R2 be defined by the equation g(x, y) = (x,y + x2). Let 
/ : R2 - R be the function defined in Example 3 of§ 5. Let h = fog. 
Show that the directional derivatives of f and g exist everywhere, but 
that there is au =j:. 0 for which h'(O; u) does not exist. 
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§8. THE INVERSE FUNCTION THEOREM 

Let A be open in Rn; let f : A -+ Rn be of class C 1 . We know that for f 
to have a differentiable inverse, it is necessary that the derivative D f (x) of/ 
be non-singular. We now prove that this condition is also sufficient for / to 
have a differentiable inverse, at least locally. This result is called the inverse 
Junction theorem. 

We begin by showing that non-singularity of D f implies that / is locally 
one-to-one. 
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Lemma 8.1. Let A be open in nn ,· let f: A - Rn be of class C 1 . 

If D /(a) is non-singular, then there exists an o > 0 such that the 
inequality 

lf(xo) - f(xi)I > alxo - xii 

holds for all x0,x1 in some open cube C(a; €) centered at a. It follows 
that f is one-to-one on this open cube. 

Proof. Let E = D f(a); then E is non-singular. We first consider the 
linear transformation that maps x to E • x. We compute 

lxo - x1 I = IE-1 • (E • xo - E • xi)! 
< njE- 1 1 • JE • xo - E-xij. 

If we set 2o = I/nlE- 1 I, then for all xo, x1 in Rn, 

Now we prove the lemma. Consider the function 

H(x) = f(x)-E ·x. 

Then DH(x) = Df(x)-E, so thatDH(a) = 0. Because H isofclassC1, we 
can choose€> 0 so that JDH(x)I < a/n for x in the open cube C = C(a; €). 
The mean-value theorem, applied to the ith component function of H, tells 
us that, given xo, x1 E C, there is a c E C such that 

Then for xo, x1 EC, we have 

olxo - x1 I> IH(xo) - H(x1)I 

The lemma follows. D 

= I/ ( xo) - E • Xo - f ( xi) + E • x1 I 
>IE· x1 - E • xol - lf(x1) - /(xo)I 

~ 20:lx1 - xol - lf(x1) - f(xo)I-

Now we show that non-singularity of D f, in the case where f is one-to
one, implies that the inverse function is differentiable. 
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Theorem 8.2. Let A be open in Rn; let f : A -+ Rn be of class er; 
let B = f(A). If f is one-to-one on A and if D f(x) is non-singular for 
x E A, then the set B is open in Rn and the inverse function g : B -+ A 
is of class er. 

Proof. Step 1. We prove the following elementary result: If</> : A -+ R 
is differentiable and if</> has a local minimum at x 0 E A, then D<f,(x0) = 0. 

To say that r/> has a local minimum at x0 means that </J(x) > ef>(x0) for 
all x in a neighborhood of x 0 . Then given u f. 0, 

ef>(xo + tu) - ef>(xo) > 0 

for all sufficiently small values oft. Therefore 

r/>'(xo; u) = lim [ef>(xo + tu) - r/>(xo)]/t 
t-+0 

is non-negative if t approaches O through positive values, and is non-positive 
if t approaches O through negative values. It follows that ef>'(x0 ; u) = 0. In 
particular, D;r/>(xo) = 0 for all j, so that Def>(xo) = 0. 

Step 2. We show that the set B is open in Rn. Given b E B, we show B 
contains some open ball B(b; 6) about b. 

We begin by choosing a rectangle Q lying in A whose interior contains 
the point a = J- 1(b) of A. The set Bd Q is compact, being closed and 
bounded in Rn. Then the set /(Bd Q) is also compact, and thus is closed and 
bounded in Rn. Because f is one-to-one, f(Bd Q) is disjoint from b; because 
f(Bd Q) is closed, we can choose 6 > 0 so that the ball B(b; 26) is disjoint 
from f(Bd Q). Given c E B(b; 6) we show that c = f(x) for some x E Q; it 
then follows that the set f (A) = B contains each point of B(b; 6), as desired. 
See Figure 8.1. 

I - -

/(Bd Q) 

Figure 8.1 
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Given c E B(b; «5), consider the real-valued function 

</>(x) = 11/ (x) - cll 2, 

which is of class er. Because Q is compact, this function has a minimum 
value on Q; suppose that this minimum value occurs at the point x of Q. We 
show that /(x) = c. 

Now the value of </> at the point a is 

</>(a) = 11/(a) - cll 2 = llb - cll2 < «5 2 • 

Hence the minimum value of</> on Q must be less than «52 . It follows that this 
minimum value cannot occur on Bd Q, for if x E Bd Q, the point f (x) lies 
outside the ball B(b; 2«5), so that 11/(x) - ell > «5. Thus the minimum value 
of</> occurs at a point x of Int Q. 

Because x is interior to Q, it follows that </> has a local minimum at x; 
then by Step 1, the derivative of</> vanishes at x. Since 

n 

</>(x) = L (fk(x) - c1:)2, 

n 

D;</>(x) = L 2(/1:(x)- c1:)D;Jk(x). 
k=l 

The equation D</>(x) = 0 can be written in matrix form as 

(/n(x) - Cn)] • D /(x) = 0. 

Now D f(x) is non-singular, by hypothesis. Multiplying both sides of this 
equation on the right by the inverse of D /(x), we see that f(x) - c = O, as 
desired. 

Step 3. The function / : A --+ B is one-to-one by hypothesis; let g : 
B--+ A be the inverse function. We show g is continuous. 

Continuity of g is equivalent to the statement that for each open set U of 
A, the set V = g- 1 (U) is open in B. But V = f(U); and Step 2, applied to 
the set U, which is open in A and hence open in Rn, tells us that V is open 
in Rn and hence open in B. See Figure 8.2. 
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I 

g 

Figure 8.2 

It is an interesting fa.ct that the results of Steps 2 and 3 hold without assuming 
that D f ( x) is non-singular, or even that / is di:fferen tiable. If A is open in 
Rn and / : A-+ Rn is continuous and one-to-one, then it is true that /(A) is 
open in Rn and the inverse function g is continuous. This result is known as 
the Brouwer theorem on invariance of domain. Its proof requires the tools 
of algebraic topology and is quite difficult. We have proved the differentiable 
version of this theorem. 

Step 4. Given b E B, we show that g is differentiable at b. 
Let a be the point g(b ), and let E = D f (a). We show that the function 

G(k) = [g(b + k) -r~7)- E-•. k], 

which is defined _for k in a deleted neighborhood of 0, approaches 0 as k 
approaches 0. Then g is differentiable at b with derivative E- 1. 

Let us define 
d(k) = g(b + k) - g(b) 

for k near 0. We first show that there is an f > 0 such that ld(k)l/lkl is 
bounded for O < lkl < f. (This would follow from differentiability of g, but 
that is what we are trying to prove!) By the preceding lemma, there is a 
neighborhood C of a and an a > 0 such that 

lf(xo) - f(x1)I > alxo - x1 I 
for x0 ,x1 EC. Now /(C) is a neighborhood of b, by Step 2; choose f so that 
h+k is in /(C) whenever lkl < f. Then for lkl < f, we can set xo = g(b + k) 
and x 1 = g(b) and rewrite the preceding inequality in the form 

[(b + k) - bl> alg(b + k) - g(b)I, 
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which implies that 
1/ a> l~(k)l/lkl, 

as desired. 
Now we show that G(k) ---. 0 as k ---. 0. Let 0 < lkl < f. We have 

G(k) = t.(k) lkf-' • k by definition, 

= -E-1 . [k - E • ~(k)] l~(k)I 
l~(k)I lkl • 

(Here we use the fact that ~(k) # 0 for k # 0, which follows from the fact 
that g is one-to-one.) Now E- 1 is constant, and l~(k)I/ lkl is bounded. It 
remains to show that the expression in brackets goes to zero. We have 

b + k = f (g(b + k)) = f(g(b) + 6.(k)) = f (a+ ~(k)). 
Thus the expression in brackets equals 

f (a+ ~(k)) - /(a) - E · ~(k) 

l~(k)I 
Let k ---. 0. Then ~(k) ---. 0 as well, because g is continuous. Since f is 
differentiable at a with derivative E, this expression goes to zero, as desired. 

Step 5. Finally, we show the inverse function g is of class Cr. 
Because g is differentiable, Theorem 7.4 applies to show that its derivative 

is given by the formula 

Dg(y) = [D /(g(y))J- 1 , 

for y E B. The function Dg thus equals the composite of three functions: 

B-.!....+ A !!.L GL(n) ~ GL(n), 

where G L( n) is the set of non-singular n by n matrices, and I is the function 
that maps each non-singular matrix to its inverse. Now the function I is given 
by a specific formula involving determinants. In fact, the entries of l(C) are 
rational functions of the entries of C; as such, they are C00 functions of the 
entries of C. 

We proceed by induction on r. Suppose f is of class C1 . Then D f is 
continuous. Because g and I are also continuous (indeed, g is differentiable 
and I is of class C00 ), the composite function, which equals Dg, is also 
continuous. Hence g is of class C 1 . 

Suppose the theorem holds for functions of class cr- 1. Let f be of 
class er. Then in particular f is of class cr- l, so that (by the induction 
hypothesis), the inverse function g is of class cr-l _ Furthermore, the function 
D f is of class cr-l. VVe invoke Corollary 7 .2 to conclude that the composite 
function, which equals Dg, is of class er- 1. Then g is of class er. □ 

Finally, we prove the inverse function theorem. 
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Theorem 8.3 (The inverse function theorem). Let A be open 
in R"; let f : A --+ R" be of class er. If D f(x) is non-singular at 
the point a of A, there is a neighoorhood U of the point a such that f 
carries U in a one-to-one fashion onto an open set V of R" and the 
inverse function is of class er. 

Proof. By Lemma 8.1, there is a neighborhood U0 of a on which f is 
one-to-one. Because det D f(x) is a continuous function ofx, and det D f(a) f; 
0, there is a neighborhood U1 of a such that det D f (x) f; 0 on U1 . If U equals 
the intersection of Uo and U1, then the hypotheses of the preceding theorem 
are satisfied for / : U --+ R". The theorem follows. D 

This theorem is the strongest one that can be proved in general. While 
the non-singularity of D f on A implies that / is locally one-to-one at each 
point of A, it does not imply that f is one-to-one on all of A. Consider the 
following example: 

EXAMPLE 1. Let / : R2 -+ R2 be defined by the equation 

J ( r, 9) = ( r cos 9, r sin 9). 

Then 

[
cos 9 -rsin 9] 

Df(r,9)= , 
sin 9 r cos (J 

so that det Df(r,9) = r. 
Let A be the open set (0, 1) x (O,b) in the (r,8) plane. Then DJ is non

singular at each point of A. However, / is one-to-one on A only if b < 2,r. 
See Figures 8.3 and 8.4. 

8 

I y -------

1 

Figure 8.3 
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EXERCISES 

1 

f -----

Figure B.4 

1. Let f : R2 - R2 be defined by the equation 

J(x,y) = (x2 -'Jt,2xy). 

Chapter 2 

y 

(a) Show that f is one-to-one on the set A consisting of all (x, y) with 
x > 0. [Hint: If f(x,y) = f(a,b), then 11/(x,y)II = 11/(a,b)II-] 

(b) What is the set B = f(A)? 

(c) If g is the inverse function, find Dg(O, 1). 

2. Let / : R2 - R2 be defined by the equation 

f(x,y) = (excosy,exsiny). 

(a) Show that / is one-to-one on the set A consisting of all (x, y) with 
0 < y < 2,r. [Hint: See the hint in the preceding exercise.] 

(b) What is the set B = f (A)? 

(c) If g is the inverse function, find Dg(O, 1). 

3. Let / : Rn - Rn be given by the equation / (x) = llxll2 • x. Show that 
/ is of class C00 and that / carries the unit ball B(O; 1) onto itself in 
a one-to-one fashion. Show, however, that the inverse function is not 
differentiable at 0. 

4. Let g ; R2 - R2 be given by the equation 

Let / : R2 - R3 be given by the equation 

f(x, y) = (3x - y2 , 2x + y, xy + y3). 
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(a) Show that there is a neighborhood of (0, 1) that g carries in a one
to-one fashion onto a neighborhood of (2, 0). 

(b) Find D(f o g-1 ) at {2, 0). 

5. Let A be open in Rn; let /: A-+ Rn be of class Cr; assume D/(x) is 
non-singular for x E A. Show that even if/ is not one-to-one on A, the 
set B = /(A) is open in Rn. 

*§9. THE IMPLICIT FUNCTION THEOREM 

The topic of implicit differentiation is one that is probably familiar to you 
from calculus. Here is a typical problem: 

"Assume that the equation x3 y + 2e~Y = 0 determines y as 
a differentiable function of x. Find dy/ dx ." 

One solves this calculus problem by "looking at y as a function of x," and 
differentiating with respect to x. One obtains the equation 

which one solves for dy/dx. The derivative dy/dx is of course expressed in 
terms of x and the unknown function y. 

The case of an arbitrary function f is handled similarly. Supposing that 
the equation f(x, y) = 0 determines y as a differentiable function of x, say 
y = g(x), the equation J (x,g(x)) = 0 is an identity. One applies the chain 
rule to calculate 

of /ox+ (of /oy)g'(x) = 0, 

so that 
, 8//ox 

9 ( x) = - 8 f / 8y ' 

where the partial derivatives are evaluated at the point (x,g(x)). Note that 
the solution involves a hypothesis not given in the statement of the problem. 
In order to find g'( x ), it is necessary to assume that Of/ 8y is non-~ero at the 
point in question. 

It in fact turns out that the non-vanishing of 8 J / 8y is also sufficient 
to justify the assumptions we made in solving the problem. That is, if the 
function f(x,y) has the property that 8f/8y "IO at a point (a,b) that is a 
solution of the equation f(x,y) = 0, then this equation does determine y as 
a function of x, for x near a, and this function of x is differentiable. 
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This result is a special case of a theorem called the implicit function 
theorem, which we prove in this section. 

The general case of the implicit function theorem involves a system of 
equations rather than a single equation. One seeks to solve this system for 
some of the unknowns in terms of the others. Specifically, suppose that J : 
Rk+n -+ Rn is a function of class C 1 . Then the vector equation 

is equivalent to a system of n scalar equations ink+ n unknowns. One would 
expect to be able to assign arbitrary values to k of the unknowns and to solve 
for the remaining unknowns in terms of these. One would also expect that 
the resulting functions would be differentiable, and that one could by implicit 
differentiation find their derivatives. 

There are two separate problems here. The first is the problem of finding 
the derivatives of these implicitly defined functions, assuming they exist; the 
solution to this problem generalizes the computation of g'(x) just given. The 
second involves showing that (under suitable conditions) the implicitly defined 
functions exist and are differentiable. 

In order to state our results in a convenient form, we introduce a new 
notation for the matrix D f and its submatrices: 

Definition. Let A be open in Rm; let f : A-+ Rn be differentiable. Let 
f1, ... , fn be the component functions off. We sometimes use the notation 

for the derivative off. On occasion we shorten this to the notation 

DJ= 8J/8x. 

More generally, we shall use the notation 

8(fi1,•",fi,,) 

8(xii,··•,x;,) 

to denote the k by f matrix that consists of the entries of D f lying in rows 
ii, ... , i1: and columns Ji, ... ,Jt- The general entry of this matrix, in row p 
and column q, is the partial derivative 8fip/8x;q• 

Now we deal with the problem of finding the derivative of an implicitly 
defined function, assuming it exists and is differentiable. For simplicity, we 
shall assume that we have solved a system of n equations ink+ n unknowns 
for the last n unknowns in terms of the first k unknowns. 
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Theorem 9.1. Let A be open in Rk+n; let f : A -+ Rn be differen
tiable. Write fin the form f(x,y), for x E Rk and y E Rn; then DJ has 
the form 

D f = [ 8 f / 8x 8 f / 8y l · 
Suppose there is a differentiable function g : B -+ Rn defined on an open 
set B in Rk, such that 

f (x,g(x)) = 0 

for all x EB. Then for x EB, 

8f 8f 
Bx (x,g(x)) + By (x,g(x)) • Dg(x) = 0. 

This equation implies that if the n by n matrix 8 f / 8y is non-singular at 
the point (x, g(x)), then 

[8f i-l 8f 
Dg(x) = - By (x, g(x)) • Bx (x, g(x )) . 

Note that in the case n = k = 1, this is the same formula for the derivative 
that was derived earlier; the matrices involved are 1 by 1 matrices in that 
case. 

Proof. Given g, let us define h : B-+ Rk+n by the equation 

h(x) = (x, g(x)). 

The hypotheses of the theorem imply that the composite function 

JI ( X) = f ( h ( X)) = f ( X' g ( X)) 

is defined and equals zero for all x E B. The chain rule then implies that 

as desired. D 

o = DH(x) = D f (h(x)) · Dh(x) 

= [:~ (h(x)) :t (h(x)) l · [n:(x)] 
= :: (h(x)) + :~ (h(x)) • Dg(x), 

The preceding theorem tells us that in order to compute Dg, we must 
assume that the matrix 8 f / 8y is non-singular. Now we prove that the non
singularity of 8 f / 8y suffices to guarantee that the function g exists and is 
differentiable. 
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Theorem 9.2 (Implicit function theorem). Let A be open in 
Rk+n; let f : A -+ R" be of class er. Write f in the form f (x, y)' 
for x E Rk and y E Rn. Suppose that ( a, b) is a point of A such that 
f(a, b) = 0 and 

8f 
det By (a, b) # 0. 

Then there is a neighborhood B of a in Rk and a unique continuous 
function g: B-+ Rn such that g(a) = b and 

f (x,g(x)) = 0 

for all x E B. The function g is in fact of class er. 

Proof. We construct a function F to which we can apply the inverse 
function theorem. Define F : A ____,. Rk+n by the equation 

F(x,y) = (x,f(x,y)). 

Then F maps the open set A of Rk+n into Rk x Rn = Rk+n. Furthermore, 

DF = [&!i&x &f ~&J • 

Computing <let DF by repeated application of Lemma 2.12, we have 
det DF = <let 8f /8y. Thus DF is non-singular at the point (a, b). 

Now F(a, b) = (a,O). Applying the inverse function theorem to the map 
F, we conclude that there exists an open set U x V of Rk+n about (a, b) 
(where U is open in Rk and V is open in Rn) such that: 

(1) F maps U x V in a one-to-one fashion onto an open set Win Rk+n 
containing (a, 0). 

(2) The inverse function G: W-+ U x V is of class er. 
Note that because F(x, y) = (x, f(x,y)), we have 

(x,y) = G(x,f(x,y)). 

Thus G preserves the first k coordinates, as F does. Then we can write G in 
the form 

G(x, z) = (x, h(x, z)) 

for X E Rk and z E Rn; here h is a function of class er mapping w into Rn. 
Let B be a connected neighborhood of a in Rk, chosen small enough that 

B x O is contained in 1¥. See Figure 9.1. We prove existence of the function 
g: B-+ R". If x EB, then (x,O) E l1V, so we have: 

G(x, 0) = (x, h(x, 0)), 

(x,O) = F(x,h(x,O)) = (x,f(x,h(x,o))), 

0 = J(x, h(x,O)). 
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R" 

V (a, b) 

F 
/

(x,O) 
w 

G /(a,O) 

u Rk Rk 

Figure 9.1 

We set g(x) = h(x, 0) for x EB; then g satisfies the equation f (x,g(x)) = 0, 
as desired. Furthermore, 

(a,b) = G(a,0) = (a,h(a,0)); 

then b = g(a), as desired. 
Now we prove uniqueness of g. Let 9o : B -+ Rn be a continuous function 

satisfying the conditions in the conclusion of our theorem. Then in particular, 
g0 agrees with g at the point a. We show that if 9o agrees with g at the point 
ao E B, then g0 agrees with g in a neighborhood Bo of ao. This is easy. 
The map g carries a0 into V. Since 9o is continuous, there is a neighborhood 
Bo of a0 contained in B such that 9o also maps Bo into V. The fact that 
/ (x, go(x)) = 0 for x E Bo implies that 

F(x, 9o(x)) = (x, 0), so 

(x, Yo(x)) = G(x, 0) = (x, h(x, 0)). 

Thus Yo and g agree on Bo. It follows that 9o and g agree on all of B: The set 
of points of B for which lg(x) - g0(x)I = 0 is open in B (as we just proved), 
and so is the set of points of B for which jg(x) - go(x)I > 0 (by continuity 
of g and go). Since B is connected, the latter set must be empty. D 

In our proof of the implicit function theorem, there was of course nothing 
special about solving for the last n coordinates; that choice was made simply 
for convenience. The same argument applies to the problem of solving for any 
n coordinates in terms of the others. 
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For example, suppose A is open in R5 and f : A ----► R2 is a function 
of class er. Suppose one wishes to "solve" the equation f ( x, y, z, u, v) = 0 
for the two unknowns y and u in terms of the other three. In this case, the 
implicit function theorem tells us that if a is a point of A such that f (a) = 0 
and 

8/ 
det 8(y,u) (a) -I 0, 

then one can solve for y and u locally near that point, say y = </>( x, z, v) and 
u = 1/J(x, z, v). Furthermore, the derivatives of</> and 1/; satisfy the formula 

8( </>, 1P) [ 81 1-l [ 81 l 
8(x, z, v) = - 8(y, u) • 8(x, z, v) • 

EXAMPLE 1. Let /: R2 ---.. R be given by the equation 

f(x,y) = x2 + y2 - 5. 

Then the point (x, y) = (1, 2) satisfies the equation /(x, y) = 0. Both {)J /8x 
and {J f / {)y are non-zero at (1,2), so we can solve this equation locally for 
either variable in terms of the other. In particular, we can solve for yin terms 
of x, obtaining the function 

y = g(x) = [5 - ;z;2]1 12 . 

Note that this solution is not unique in a neighborhood of x = 1 unless we 
specify that g is continuous. For instance, the function 

for X ~ 1, 
for z < 1 

satisfies the same conditions, but is not continuous. See Figure 9.2. 

1 

Figure 9.2 
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EXAMPLE 2. Let/ be the function of Example 1. The point (x, y) = (v's, 0) 
also satisfies the equation / (x, y) = 0. The derivative lJ f / IJy vanishes at 
( -Is, 0), so we do not expect to be able to solve for y in terms of x near this 
point. And, in fact, there is no neighborhood B of -Is on which we can solve 
for yin terms of x. See Figure 9.3. 

( v's, 0) 

Figure 9.3 

EXAMPLE 3. Let / : R2 - R be given by the equation 

Then (0,0) is a solution of the equation f(x, y) = 0. Because IJJ /IJy vanishes 
at (0,0), we do not expect to be able to solve this equation for yin terms of 
x near (0,0). But in fact, we can; and furthermore, the solution is unique! 
However, the function we obtain is not differentiable at x = 0. See Figure 9.4. 

Figure 9.4 

EXAMPLE 4. Let / : R2 - R be given by the equation 

J(x,y) = y2 - x 4 • 

Then (0,0) is a solution of the equation f(x, y) = 0. Because IJ/ /IJy vanishes 
at {0,0), we do not expect to be able to solve for yin terms of x near (0,0). In 
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fact, however, we can do so, and we can do so in such a way that the resulting 
function is differentiable. However, the solution is not unique. 

Figure 9.5 

Now the point (1,2) also satisfies the equation f(x, y) = 0. Because 
{)J /{)y is non-zero at (1,2), one can solve this equation for y as a continuous 
function of x in a neighborhood of x = 1. See Figure 9.5. One can in fact 
express y as a continuous function of x on a larger neighborhood than the one 
pictured, but if the neighborhood is large enough that it contains 0, then the 
solution is not unique on that larger neighborhood. 

EXERCISES 

1. Let / : R3 - R2 be of class C1 ; write/ in the form f(x, Y1, Y2). Assume 
that /(3, -1, 2) = 0 and 

D/(3, -1, 2) = [1
1 2 

-1 

(a) Show there is a function g : B - R2 of class C1 defined on an open 
set B in R such that 

I ( X' 91 ( X), g2 ( X)) = 0 

for x E B, and g(3) = (-1, 2). 

(b) Find Dg(3). 

( c) Discuss the problem of solving the equation / ( x, Y1, Y2) = 0 for an 
arbitrary pair of the unknowns in terms of the third, near the point 
(3, -1, 2). 

2. Given/: R5 - R2, of class C1 . Let a= (1,2,-1,3,0); suppose that 
/(a)= 0 and 

DJ(a) = [: 
3 

0 

1 

1 

-1 

2 
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(a) Show there is a function g : B - R2 of class C1 defined on an open 
set B of R3 such that 

for x = (x1, z2, xa) EB, and g(l, 3, 0) = (2, -1). 
(b) Find Dg(l, 3, 0). 
(c) Discuss the problem of solving the equation / (x) = 0 for an arbitrary 

pair of the unknowns in terms of the others, near the point a. 

3. Let / : R2 - R be of class C1, with /(2, -1) = -1. Set 

G(x,y,u) = f(x,y) +u2, 
H(x,y,u) = ux+ 3y3 +u3 • 

The equations G(x, y, u) = 0 and H(x, y, u) = 0 have the solution 
(x, y, u) = (2, -1, 1). 
(a) What conditions on DJ ensure that there are C1 functions z = g(y) 

and u = h(y) defined on an open set in R that satisfy both equations, 
such that g(-1) = 2 and h(-1) = 1? 

(b) Under the conditions of (a), and assuming that D/(2, -1) = [1 -3], 
find g'(-1) and h'(-1). 

4. Let F : R2 - R be of class C2 I with F(O, 0) = 0 and DF(0, 0) = (2 3). 
Let G : R3 - R be defined by the equation 

G(x,y,z) = F(x+2y+3z -I,x3 +y2- z2 ). 

(a) Note that G(-2, 3, -1) = F(0, 0) = O. Show that one can solve 
the equation G(x, y, z) = 0 for z, say z = g(x, y), for (z, y) in a 
neighborhood B of (-2, 3), such that g(-2, 3) = -1. 

(b) Find Dg(-2, 3). 

*(c) If D1D1F = 3 and D1D2F = -1 and D2D2F = 5 at (0,0), find 
D2D1g(-2, 3). 

5. Let /, g : R3 - R be functions of class C1 . "In general," one expects 
that each of the equations /(x, y, z) = 0 and g(x, y, z) = 0 represents a 
smooth surface in R3, and that their intersection is a smooth curve. Show 
that if (x0 , y0 , zo) satisfies both equations, and if IJ(f, g)/ 8(x, y, z) has 
rank 2 at (xo, Yo, zo), then near (xo, Yo, zo), one can solve these equations 
for two of x, y, z in terms of the third, thus representing the solution set 
locally as a parametrized curve. 

6. Let/: Rk+n - R" be of class C 1 ; suppose that /(a)= 0 and that D/(a) 
has rank n. Show that if c is a point of R" sufficiently close to O, then 
the equation / (x) = c has a solution. 
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Integration 

In this chapter, we define the integral of real-valued function of several real 
variables, and derive its properties. The integral we study is called Riemann 
integral; it is a direct generalization of the integral usually studied in a first 
course in single-variable analysis. 

§10. THE INTEGRAL OVER A RECTANGLE 

We begin by defining the volume of a rectangle. Let 

be a rectangle in R". Each of the intervals [ai, bi] is called a component 
interval of Q. The maximum of the numbers b1 - a1, ... , bn - an is called 
the width of Q. Their product 

is called the volwne of Q. 
In the case n = l, the volume and the width of the (I-dimensional) 

rectangle [a,bJ are the same, namely, the number b- a. This number is also 
called the length of [a,b]. 

Definition. Given a closed interval [a, b] of R, a partition of [a, bJ is 
a finite collection P of points of [a, b] that includes the points a and b. We 
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usually index the elements of P in increasing order, for notational convenience, 
as 

a = to < ti < · · · < t" = b; 

each of the intervals [ti-l, ti], for i = 1, ... , k, is called a subinterval deter
mined by P, of the interval [a, b]. More generally, given a rectangle 

in Rn, a partition P of Q is an n-tuple (P1, ... , Pn) such that P; is a 
partition of [a;, b;] for each j. If for each j, I; is one of the subintervals 
determined by P; of the interval [a;, b;], then the rectangle 

is called a subrectangle determined by P, of the rectangle Q. The maxi
mum width of these subrectangles is called the mesh of P. 

Definition. Let Q be a rectangle in Rn; let f : Q -+ R; assume / is 
bounded. Let P be a partition of Q. For each subrectangle R determined 
by P, let 

mn(/) = inf {/(x) Ix E R}, 

Mn(/) = sup{/(x) Ix E R}. 

We define the lower sum and the upper sum, respectively, of /, determined 
by P, by the equations 

L(f, P) = L mn(f) • v(R), 
n 

U(f,P) = L Mn(/)• v(R), 
n 

where the summations extend over all subrectangles R determined by P. 

Let P = ( P1, ... , Pn) be a partition of the rectangle Q. If P" is a 
partition of Q obtained from P by adjoining additional points to some or all 
of the partitions P1, ... , Pn, then P" is called a refinement of P. Given two 
partitions P and P' = (P{, ... , P~) of Q, the partition 

is a refinement of both P and P'; it is called their common refinement. 
Passing from P to a refinement of P of course affects lower sums and 

upper sums; in fact, it tends to increase the lower sums and decrease the 
upper sums. That is the substance of the following lemma: 
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Lemma 10.1. Let P be a partition of the rectangle Q; let f ; Q -+ 

R be a bounded function. If P" is a refinement of P, then 

L(f, P) < L(f, P") and U(f, P") < U(f, P). 

Proof Let Q be the rectangle 

Q = [a1,b1] X • • • X [an,bn]• 

It suffices to prove the lemma when P" is obtained by adjoining a single 
additional point to the partition of one of the component intervals of Q. 
Suppose, to be definite, that P is the partition ( P1, ... , Pn) and that P" is 
obtained by adjoining the point q to the partition P1. Further, suppose that 
P1 consists of the points 

and that q lies interior to the subinterval [ti-i, ti]-
We first compare the lower sums L(f, P) and L(f, P"). Most of the 

subrectangles determined by Pare also subrectangles determined by P". An 
exception occurs for a subrectangle determined by P of the form 

Rs = [ti-1, ti] x S 

(where S is one of the subrectangles of [a2 , b2] x • • • x [an, bn] determined by 
(P2, ... , Pn)), The term involving the subrectangle Rs disappears from the 
lower sum and is replaced by the terms involving the two subrectangles 

which are determined by P". See Figure 10.1. 

s 

q 

Figure 10.1 
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Now since mn5 (f) < f(x) for each x E R~ and for each x E Ri, it 
follows that 

Because v(Rs) = v(R's) + v(R~) by direct computation, we have 

Since this inequality holds for each subrectangle of the form Rs, it follows 
that 

L(f, P) < L(f, P"), 

as desired. 
A similar argument applies to show that U(f,P) > U(f,P"). □ 

Now we explore the relation between upper sums and lower sums. We 
have the following result: 

Lemma 10.2. Let Q be a rectangle; let f : Q ---+ R be a bounded 
function. If P and P' are any two partitions of Q, then 

L(f, P) < U(f, P'). 

Proof. In the case where P = P', the result is obvious: For any sub
rectangle R determined by P, we have mn(f) < Mn(f). Multiplying by 
v(R) and summing gives the desired inequality. 

In general, given partitions P and P' of Q, let P" be their common 
refinement. Using the preceding lemma, we conclude that 

L(f, P) < L(f, P") < U (f, P") < U(f, P'). □ 

Now (finally) we define the integral. 

Definition. Let Q be a rectangle; let f: Q -+ R be a bounded function. 
As P ranges over all partitions of Q, define 

f J = sup {L(f, P)} h p 
and ff= inf {U(f,P)}. }q p 



§10. The Integral Over a Rectangle 

These numbers are called the lower integral and upper integral, respec
tively, of / over Q. They exist because the numbers L(f, P) are bounded 
above by U(f, P') where P' is any fixed partition of Q; and the numbers 
U(f, P) are bounded below by L(f, P'). If the upper and lower integrals 
off over Q are equal, we say / is integrable over Q, and we define the inte
gral of/ over Q to equal the common value of the upper and lower integrals. 
We denote the integral of/ over Q by either of the symbols 

or I. /(x). 
xeQ 

EXAMPLE 1. Let / : [a, bJ -+ R be a non-negative bounded function. If P 
is a partition of I = [a, b), then L(f, P) equals the total area of a bunch of 
rectangles inscribed in the region between the graph of/ and the x-axis, and 
U(f, P) equals the total area of a bunch of rectangles circumscribed a.bout 
this region. See Figure 10.2. 

L(f,P) U(f,p) 

a b a b 

Figure 10.2 

The lower integral represents the so-called "inner area" of this region, 
computed by approximating the region by inscribed rectangles, while the up
per integral represents the so-called "outer area," computed by approximating 
the region by circumscribed rectangles. If the "inner" and "outer" areas are 
equal, then / is integrable. 

Similarly, if Q is a. rectangle in R2 and / : Q -+ R is non-negative and 
bounded, one can picture L(f, P) as the total volume of a bunch of boxes 
inscribed in the region between the graph of/ and the zy-plane, and U(/, P) 
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as the total volume of a bunch of boxes circumscribed about this region. See 
Figure 10.3. 

Figure 10.3 

EXAMPLE 2. Let I = [D, 1]. Let / : I - R he defined by setting f (x) = 0 if 
xis rational, and f (x) = 1 if x is irrational. We show that / is not integrable 
over/. 

Let P be a partition of I. If R is any subinterval determined by P, then 
mR(/) = 0 and MR(!) = 1, since R contains both rational and irrational 
numbers. Then 

L(f, P) = L O • v(R) = D, 
R 

and 
U(f, P) = L 1 • v(R) = I. 

R 

Since P is arbitrary, it follows that the lower integral of / over I equals 0, 
and the upper integral equals 1. Thus/ is not integrable over I. 

A condition that is often useful for showing that a given function is inte
grable is the following: 

Theorem 10.3 (The Rien1ann condition). 
let f : Q - R be a bounded function. Then 

Let Q be a rectangle; 

equality holds if and only if given £ > 0, there exists a corresponding 
partition P of Q J or which 

U(f, P) - L(f, P) < L 
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Proof. Let P' be a fixed partition of Q. It follows from the fact that 
L(f, P) < U(f, P') for every partition P of Q, that 

1 f < U(f, P'). 

Now we use the fact that P' is arbitrary to conclude that 

Suppose now that the upper and lower integrals are equal. Choose a 
partition P so that L(f, P) is within £/2 of the integral Jq f, and a partition 
P' so that U(f, P') is within f./2 of the integral Jq /. Let P" be their common 
refinement. Since 

L(f' P) < L(f, P") < k f < u (I, P") < u (f, P'), 

the lower and upper sums for f determined by P" are within f. of each other. 
Conversely, suppose the upper and lower integrals are not equal. Let 

Let P be any partition of Q. Then 

hence the upper and lower sums for f determined by P are at least f. apart. 
Thus the Riemann condition does not hold. □ 

Here is an easy application of this theorem. 

Theorem 10.4. Every constant function f(x) = c is integrable. 
Indeed, if Q is a rectangle and if P is a partition of Q, then 

where the summation extends over all subrectangles determined by P. 
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Proof. If R is a subrectangle determined by P, then mn(/) = c = 
Mn(/). It follows that 

L(f,P) = c Ev(R) = U(f,P), 
R 

so the Riemann condition holds trivially. Thus Jq c exists; since it lies between 
L(f, P) and U(f, P), it must equal c LR v(R). 

This result holds for any partition P. In particular, if P is the trivial 
partition whose only subrectangle is Q itself, 

kc~c-v(Q). □ 

A corollary of this result, which we shall use in the next section, is the 
following: 

Corollary 10.5. Let Q be a rectangle in Rn; let {Q1, ... , Q1:} be a 
finite collection of rectangles that covers Q. Then 

1: 

v(Q) < L v(Qi)-
i=l 

Proof. Choose a rectangle Q' containing all the rectangles Q1, ... , Q 1:-

U se the end points of the component intervals of the rectangles Q, Q 1, ... , Q k 

to define a partition P of Q1• Then each of the rectangles Q, Q 1, ... , Q k is a 
union of subrectangles determined by P. See Figure 10.4. 

I I I I I ----~--~---------~-----
1 I Q1 

_____ I I __ .1 ____ _ 
I Q 

- - - - - -P--+-t--+--

.__ __ _,_ _ _.__.___,......., _ __,..._ __ ...._ ____ Q, 

Figure 10.4 
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From the preceding theorem, we conclude that 

v(Q) = E v(R), 
RCQ 

where the summation extends over all subrectangles contained in Q. Be
cause each such subrectangle R is contained in at least one of the rectangles 
Qi, ... , Q1c, we have 

le 

E v(R) < E E v(R). 
RCQ i=l RCQi 

Again using Theorem 10.4, we have 

E v(R) = v(Qi); 
RcQ, 

the corollary follows. D 

A remark about notation. We shall often use a slightly different notation 
for the integral in the case n = 1. In this case, Q is a closed interval [a,b] in 
R, and we often denote the integral of/ over [a, b] by one of the symbols 

[ f or 

instead of the symbol fca,b] f. 
Yet another notation is used in calculus for the one-dimensional integral. 

There it is common to denote this integral by the expression 

J.' f(x)dx, 

where the symbol "dx" has no independent meaning. We shall avoid this 
notation for the time being. In a later chapter, we shall give "dx" a meaning 
and shall introduce this notation. 

The definition of the integral we have given is in fact due to Darboux. An 
equivalent formulation, due to Riemann, is given in Exercise 7. In practice, it 
has become standard to call this integral the Riemann integral, independent 
of which definition is used. 
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EXERCISES 

1. Let f,g: Q - R be bounded functions such that /(x) :5 g(x) for x E Q. 

Show that bl :5 bu and Jql :5 JqY· 
2. Suppose/ : Q - R is continuous. Show/ is integrable over Q. [Hint: 

Use uniform continuity of/.] 

3. Let [O, 1]2 = [O, l] x [O, 1]. Let / : [O, 1]2 - R be defined by setting 
/(z, y) = 0 if y #:, z, and /(:r:, y) = 1 if y = z. Show that / is integrable 
over [O, 1]2 • 

4. We say/: [O, 1] - R is increasing if /(z1) :5 /(z2) whenever z1 < z2. 
If/, g : [O, 1] - R are increasing and non-negative, show that the function 
h(z, y) = /(z)g(y) is integrable over [O, 1]2. 

5. Let /: R - R be defined by setting /(z) = 1/q if :r: = p/q, where p and 
q are positive integers with no common factor, and /(:r:) = 0 otherwise. 
Show / is integrable over [O, 1]. 

*6. Prove the following: 

Theorem. Let f : Q - R be bounded. Then f is integrable over Q if 
and only if given E > O, there is a 6 > 0 such that U(f, P)-L(f, P) < 
E for every partition P of mesh less than 6. 

Proof. (a) Verify the "if" part of the theorem. 

(b) Suppose J/(x)I :5 M for x E Q. Let P be a partition of Q. Show 
that if P" is obtained by adjoining a single point to the partition of 
one of the component intervals of Q, then 

O < L(f, P") - L(f, P) ~ 2M(mesh P) (width Q)"-1 . 

Derive a similar result for upper sums. 

(c) Prove the "only if" part of the theorem: Suppose / is integrable 
over Q. Given E > 0, choose a partition P' such that U(f, P') -
L(f, P') < €/2. Let N be the number of partition points in P'; then 
let 

6 = €/BM N (width Q)"-1 . 

Show that if P has mesh less than 6, then U(J, P) - L(f, P) < €. 
[Hint: The common refinement of P and P' is obtained by adjoining 
at most N points to P.] 

7. Use Exercise 6 to prove the following: 

Theorem. Let f : Q - R be bounded. Then the statement that f 
is integrable over Q, with Jq f = A, is equivalent to the statement 
that given f. > 0, there is a 6 > 0 such that if P is any partition of 
mesh less than 6, and if, for each subrectangle R determined by P, 
XR is a point of R, then 

IE /(xR)v(R) - Al < €. 

R 
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§11. EXISTENCE OF THE INTEGRAL 

In this section, we derive a necessary and sufficient condition for the existence 
of the integral Jq f. It involves the notion of a "set of measure zero." 

Definition. Let A be a subset of R". We say A has measure zero in 
R" if for every f > 0, there is a covering Qi, Q2, ... of A by countably many 
rectangles such that 

00 

If this inequality holds, we often say that the total volume of the rectangles 
Qi, Q2, ... is less than €. 

We derive some properties of sets of measure zero. 

Theorem 11.1. (a) If BC A and A has measure zero in R'\ then 
so does B. 

(b) Let A be the union of the countable collection of sets A1, A2, .... 
If each Ai has measure zero in Rn, so does A. 

( c) A set A has measure zero in Rn if and only if for every € > O, 
there is a countable covering of A by open rectangles Int Q 1 , Int Q2 , ... 

such that 
00 

Lv(Qi) < f. 

i=l 

(d) If Q is a rectangle in Rn, then Bd Q has measure zero in R" 
but Q does not. 

Proof. (a) is immediate. To prove (b), cover the set A; by countably 
many rectangles 

Q lj , Q 2j , Q 3j , • • • 

of total volume less than f. / 2i. Do this for each j. Then the collection of 
rectangles { Q,;} is countable, it covers A, and it has total volume less than 

00 

E €./2i = €.. 
j=l 

(c) If the open rectangles Int Q1, Int Q2, ... cover A, then so do the 
rectangles Qi, Q2, .... Thus the given condition implies that A has mea
sure zero. Conversely, suppose A has measure zero. Cover A by rectangles 
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Qi, Q;, ... of total volume less than f/2. For each i, choose a rectangle Qi 
such that 

Q~ C Int Q, and v(Q,) < 2v(QD. 

(This we can do because v(Q) is a continuous function of the end points of 
the component intervals of Q .) Then the open rectangles Int Qi, Int Q2, ... 
cover A, and Ev(Q,) < €. 

(d) Let 
Q = [a1,b1] X .. • X [an,bn]• 

The subset of Q consisting of those points x of Q for which x, = a, is called 
one of the ith faces of Q. The other ith face consists of those x for which 
Xi = bi. Each face of Q has measure zero in Rn; for instance, the face for 
which x, = ai can be covered by the single rectangle 

[a1,b1] x • • • x [a,,ai + 6] X • • • X [an,bn], 

whose volume may be made as small as desired by taking 6 small. Now Bd Q 
is the union of the faces of Q, which are finite in number. Therefore Bd Q 
has measure zero in Rn. 

Now we suppose Q has measure zero in Rn, and derive a contradiction. 
Set f = v(Q). We can by (c) cover Q by open rectangles Int Q1, Int Q2, ... 
with L v(Q,) < €. Because Q is compact, we can cover Q by finitely many 
of these open sets, say Int Q 1, ... , Int Q 1c. But 

" 
Lv<Qi> < £, 

i=l 

a result that contradicts Corollary 10.5. □ 

EXAMPLE 1. .~llowing for a countably infinite collection of rectangles is an 
essential part of the definition of a set of measure zero. One would obtain 
a different notion if one allowed only finite collections. For instance, the set 
A of rational numbers in 1 = [0, 1] is a countable union of one-point sets, so 
that A has measure zero in R by (b) of the preceding theorem. But A cannot 
be covered by finitely many intervals of total length less than E if E < 1. For 
suppose 11, . . . 11c is a finite collection of intervals covering A. Then the 
set B which is their union is a finite union of closed sets and therefore closed. 
Since B contains all rationals in 1, it contains all limit points of these rationals; 
that is, it contains all of I. But this implies that the intervals 11, ... I1c cover 
1, whence by Corollary 10.5, 

k 

L v(1,) ~ v(1) = 1. 
i=l 

Now we prove our main theorem. 



§11. Existence of the Integral 93 

Theorem 11.2. Let Q be a rectangle in Rn; let f : Q -+ R be a 
bounded function. Let D be the set of points of Q at which f fails to be 
continuous. Then f Q f exists if and only if D has measure zero in Rn. 

Proof. Choose M so that If (x)I < 11:f for x E Q. 
Step 1. We prove the "if' part of the theorem. Assume D has measure 

zero in Rn. We show that f is integrable over Q by showing that given f > 0, 
there is a partition P of Q for which U(f, P) - L(f, P) < f. 

Given f, let €1 be the strange number 

First, we cover D by countably many open rectangles Int Q 1, Int Q2, ... of 
total volume less than f', using ( c) of the preceding theorem. Second, for each 
point a of Q not in D, we choose an open rectangle Int Qa containing a such 
that 

lf(x) - f(a)I < f' for x E Qa n Q. 

(This we can do because f is continuous at a.) Then the open sets Int Qi 
and Int Qa, for i = 1, 2, ... and for a E Q - D, cover all of Q. Since Q is 
compact, we can choose a finite subcollection 

Int Qi, ... , Int Qk, Int Qa1 , ... , Int Qa, 

that covers Q. (The open rectangles Int Q1, ... , Int Qk may not cover D, 
but that does not matter.) 

Denote QaJ by Q1 for convenience. Then the rectangles 

cover Q, where the rectangles Qi satisfy the condition 

00 

(1) I:v(Qi)<f', 
i:1 

and the rectangles Qi satisfy the condition 

(2) lf(x) - f(y)I < 2€' for x,y E Q1 n Q. 

Without change of notation, let us replace each rectangle Qi by its inter
section with Q, and each rectangle Q'. by its intersection with Q. The new 
rectangles {Qi} and {Q1} still cover Q and satisfy conditions (1) and (2). 

Now let us use the end points of the component intervals of the rectangles 
Q 1 , ... , Q k, Q~, ... , Q~ to define a partition P of Q. Then each of the 
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rectangles Qi and Q1 is a union of subrectangles determined by P. We 
compute the upper and lower sums of/ relative to P. 

RE 'R. 

Figure 11.1 

Divide the collection of all subrectangles R determined by P into two 
disjoint subcollections 'R and 'R', so that each rectangle R E 'R lies in one of 
the rectangles Qi, and each rectangle R E 'R' lies in one of the rectangles Q1. 
See Figure 11.1. We have 

RE'R' RE'R' 

these inequalities follow from the fact that 

1/(x) - /(y)I < 21vt 

for any two points x,y belonging to a rectangle RE 'R, and 

1/(x) - / (y) I ~ 2€' 

for any two points x,y belonging to a rectangle RE 'R'. Now 

k k 

L v(R) < L L v(R) = Ev(Q;) < ,:', and 
RE'R i=l RCQ, 

L v(R) < L v(R) = v(Q). 
RE1V RCQ 

Thus 
U(f, P) - L(f, P) < 21\1 £1 + 2£'v(Q) = €. 
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Step 2. We now define what we mean by the "oscillation" of a function / 
at a point a of its domain, and relate it to continuity of/ at a. 

Given a E Q and given .i > 0, let A6 denote the set of values of /(x) at 
points x within o of a. That is, 

A6 = {f (x) I X E Q and Ix - al < o}. 

Let McS(/) = sup A6, and let mcS(/) = inf A6. We define the oscillation of 
/ at a by the equation 

v(f; a) = inf [M6(/) - mcS(/)]. 
6>0 

Then v(f; a) is non-negative; we show that / is continuous at a if and only 
if v(f; a) = 0. 

If/ is continuous at a, then, given E' > 0, we can choose 6 > 0 so that 
I/ (x) - /(a)I < E' for all x E Q with Ix - al < 6. It follows that 

M6(/) </(a)+€ and m6(/) > /(a) - E'. 

Hence v(f; a) < 2€. Since E' is arbitrary, v(f; a) = 0. 
Conversely, suppose v(f; a) = 0. Given £ > 0, there is a .i > 0 such that 

Now if x E Q and Ix - al < .i, 

Since /(a) also lies between m6(/) and M6(/), it follows that 1/(x)- /(a)I < 
E'. Thus/ is continuous at a. 

Step 3. We prove the "only if' part of the theorem. Assume / is inte
grable over Q. We show that the set D of discontinuities of / has measure 
zero in nn. 

For each positive integer m, let 

Dm = {a I v(/;a) > 1/m}. 

Then by Step 2, D equals the union of the sets Dm. We show that each set 
Dm has measure zero; this will suffice. 

Let m be fixed. Given E' > 0, we shall cover Dm by countably many 
rectangles of total volume less than €. 

First choose a partition P of Q for which U(f, P) - L(f, P) < £/2m. 
Then let n:n consist of those points of Dm that belong to Bd R for some 
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su brec tangle R determined by P; and let n::i consist of the remainder of D m. 

We cover each of n:n and n::_ by rectangles having total volume less than f/2. 
For D~, this is easy. Given R, the set Bd R has measure zero in Rn; then 

so does the union UR Bd R. Since n:.n is contained in this union, it may be 
covered by countably many rectangles of total volume less than f/2. 

Now we consider D::_. Let R1, ... , Rk be those subrectangles determined 
by P that contain points of D~. We show that these subrectangles have 
total volume less than f/2. Given i, the rectangle Ri contains a point a of 
D~. Since a ¢ Bd Ri, there is a 6 > 0 such that Ri contains the cubical 
neighborhood of radius 6 centered at a. Then 

Multiplying by v(Ri) and summing, we have 

k 

L)l/m)v(Ri) < U(f, P) - L(f, P) < f/2m. 
i:1 

Then the rectangles R1, ... , Rk have total volume less than f/2. D 

We give an application of this theorem: 

Theorem 11.3. Let Q be a rectangle in Rn; let f: Q --+ R; assume 
f is integrable over Q. 

(a) If f vanishes except on a set of measure zero, then IQ f = 0. 

(b) If f is non-negative and if IQ f = 0, then f vanishes except on a 
set of measure zero. 

Proof. (a) Suppose J vanishes except on a set E of measure zero. Let 
P be a partition of Q. If R is a subrectangle determined by P, then R is 
not contained in E, so that f vanishes at some point of R. Then mR(f) ~ 0 
and MR(!) > 0. It follows that L(f, P) < 0 and U(f, P) > 0. Since these 
inequalities hold for all P, 

Since IQ f exists, it must equal zero. 
(b) Suppose f(x) > 0 and IQ f = 0. We show that if f is continuous 

at a, then f (a) = 0. It follows that f must vanish except possibly at points 
where f fails to be continuous; the set of such points has measure zero by the 
preceding theorem. 
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We suppose that / is continuous at a and that /(a) > 0 and derive a 
contradiction. Set f = /(a). Since / is continuous at a, there is a .i > 0 such 
that 

/ (x) > f/2 for Ix - al < 6 and x E Q. 

Choose a partition P of Q of mesh less than 6. If Ro is a subrectangle 
determined by P that contains a, then mRo(f) > f/2. On the other hand, 
mR(/) > 0 for all R. It follows that 

But 

L(f, P) = L mR(f) v(R) > (f/2)v(Ro) > 0. 
R 

L(f,P) < l f = 0. □ 

EXAMPLE 2. The assumption that fc~ f exists is necessary for the truth of 
this theorem. For example, let I= [O, I] and let /(z) = I for z rational and 
/(z) = 0 for z irrational. Then / vanishes except on a set of measure zero. 
But it is not true that f1 f = 0, for the integral of / over I does not even 
exist. 

EXERCISES 

1. Show that if A has measure zero in R", the sets A and Bd A need not 
have measure zero. 

2. Show that no open set in R" has measure zero in R". 

3. Show that the set R"-1 x O has measure zero in R". 

4. Show that the set of irrationals in [O, 1) does not have measure zero in R. 

5. Show that if A is a compact subset of R" and A has measure zero in R'\ 
then given f > O, there is a finite collection of rectangles of total volume 
less than f covering A. 

6. Let / : [a, b] - R. The g1·apb of/ is the subset 

G, = {(z,y) I y = /(z)} 

of R2. Show that if / is continuous, G J has measure zero in R2. [Hint: 
Use uniform continuity of/.] 

7. Consider the function / defined in Example 2. At what points of [O, 1] 
does f fail to be continuous? Answer the same question for the function 
defined in Exercise 5 of §10. 
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8. Let Q be a rectangle in R"; let f: Q - R be a bounded function. Show 
that if f vanishes except on a closed set B of measure zero, then fr~ f 
exists and equals zero. 

9. Let Q be a rectangle in R"; let f: Q-+ R; assume f is integrable over Q. 
(a) Show that if J(x) 2 0 for x E Q, then fQ f 2 0. 

(b) Show that if/ (x) > 0 for x E Q, then f Q f > 0. 

10. Show that if Q1 , Q2 , ... is a countable collection of rectangles covering 
Q, then v(Q) ~ I:v(Qi), 

§12. EVALUATION OF THE INTEGRAL 

Given that a function f : Q - R is integrable, how does one evaluate its 
integral? 

Even in the case of a function f : [a, b] - R of a single variable, the 
problem is not easy. One tool is provided by the fundamental theorem of 
calculus, which is applicable when f is continuous. This theorem is familiar 
to you from single-variable analysis. For reference, we state it here: 

Theorem 12.1 (Fundamental theorem of calculus). 
continuous on [a, b], and if 

F(x)= [ I 

for x E [a, b], then F'(x) exists and equals f(x). 

(a) If f is 

(b) If f is continuous on [a, b], and if g is a function such that 
g'(x) = f(x) for x E [a,b], then 

l I = g( b) - g( a). □ 

(When one refers to the derivatives F' and g' at the end points of the 
interval [a, b], one means of course the appropriate "one-sided" derivatives.) 

The conclusions of this theorem are summarized in the two equations 

D [ / = /(x) and [ Dg = g(x) - g(a). 
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In each case, the integrand is required to be continuous on the interval. in 
question. 

Part (b) of this theorem tells us we can calculate the integral of a contin
uous function / if we can find an antiderivative of /, that is, a function g 
such that g' = f. Part (a) of the theorem tells us that such an antiderivative 
always exists (in theory), since F is such an antiderivative. The problem, of 
course, is to find such an antiderivative in practice. That is what the so.-called 
"Technique of Integration," as studied in calculus, is about. 

The same difficulties of evaluating the integral occur with n-dimensional 
integrals. One way of approaching the problem is to attempt to reduce the 
computation of an n-dimensional integral to the presumably simpler prob
lem of computing a sequence of lower-dimensional integrals. One might even 
be able to reduce the problem to computing a sequence of one-dimensional 
integrals, to which, if the integrand is continuous, one could apply the funda
mental theorem of calculus. 

This is the approach used in calculus to compute a double integral. To 
integrate the continuous function / ( x, y) over the rectangle Q = [a, b] x [c, d], 
for example, one integrates / first with respect to y, holding x fixed, and 
then integrates the resulting function with respect to x. (Or the other way 
around.) In doing so, one is using the formula 

or its reverse. (In calculus, one usually inserts the meaningless symbols "dx" 
and "dy," but we are avoiding this notation here.) These formulas are not 
usually proved in calculus. In fact, it is seldom mentioned that a proof is 
needed; they are taken as "obvious." We shall prove them, and their appro
priate n-dimensional versions, in this section. 

These formulas hold when / is continuous. But when / is integrable but 
not continuous, difficulties can arise concerning the existence of the various 
integrals involved. For instance, the integral 

y:d L, f(x,y) 

may not exist for all x even though JQ f exists, for the function/ can behave 
badly along a single vertical line without that behavior affecting the existence 
of the double integral. 

One could avoid the problem by simply assuming that all the integrals 
involved exist. What we shall do instead is to replace the inner integral in 
the statement of the formula by the corresponding lower integral (or upper 
integral), which we know exists. When we do this, a correct general theorem 
results; it includes as a special case the case where all the integrals exist. 
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Theorem 12.2 (Fubini's theorem). Let Q = Ax B, where A is a 
rectangle in R,1; and B is a rectangle in R". Let f : Q -+- R be a bounded 
function; write fin the form f(x, y) for x E A and y E B. For each 
x EA, consider the lower and upper integrals 

f f(x,y) 
h_eB 

and J. /(x,y). 
yEB 

If f is integrable over Q, then these two functions of x are integrable 
over A, and 

1 f f(x,y) 
xeA h_eB 1 1 f(x,y). 

xEA yEB 

Proof. For purposes of this proof, define 

l(x) = 1 f(x, y) and /(x) = 1 f(x, y) 
ll,EB yEB 

for x E A. Assuming IQ f exists, we show that I and I are integrable over 
A, and that their integrals equal IQ f. 

Let P be a partition of Q. Then P consists of a partition PA of A, and a 
partition PB of B. We write P = (PA, PB), If RA is the general subrectangle 
of A determined by PA, and if RB is the general subrectangle of B determined 
by PB, then RA x RB is the general subrectangle of Q determined by P. 

We begin by comparin~ the lower and upper sums for f with the lower 
and upper sums for 1 and/. 

Step 1. We first show that 

that is, the lower sum for f is no larger than the lower sum for the lower 
integral, /. 

Consider the general subrectangle RA x RB determined by P. Let x0 be 
a point of RA, Now 

for ally E RB; hence 

mRAxRs(f) < mRs(f(xo,Y)). 

See Figure 12.1. Holding x0 and RA fixed, multiply by v(RB) and sum over 
all subrectangles RB, One obtains the inequalities 
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Figure 12.1 

This result holds for each x 0 E RA. We conclude that 

L mRA xRa(f)v(Rn) ~ mRA (/). 
Ra 

Now multiply through by v(RA) and sum. Since v(RA)v(Rn) = v(RA x Rn), 
one obtains the desired inequality 

Step 2. An entirely similar proof shows that 

that is, the upper sum for f is no smaller than the upper sum for the upper 
integral, I. The proof is left as an exercise. 

Step 3. We summarize the relations that hold among the upper and 
lower sums of f, L and I in the following diagram: 

The first and last inequalities in this diagram come from Steps 1 and 2. Of the 
remaining inequalities, the two on the upper left and lower right follow from 
the fact that L(h, P) < U(h, P) for any hand P. The ones on the lower left 
and upper right follow from the fact that /(x) < J(x) for all x. This diagram 
contains all the information we shall need. 
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Step 4. We prove the theorem. Because / is integrable over Q, we can, 
given f > 0, choose a partition P = (PA, PB) of Q so that the numbers at the 
extreme ends of the diagram in Step 3 are within f of each other. Then the 
upper and lower sums for l are within f of each other, and so are the upper 
and lower sums for I. It follows that both Land I are integrable over A. 

Now we note that by definition the integral IA I lies between the upper 
and lower sums of I. Similarly, the integral JA I lies between the upper and 
lower sums for I. Hence all three numbers 

£r and £ 1 and f/ 
lie between the numbers at the extreme ends of the diagram. Because f is 
arbitrary, we must have 

This theorem expresses IQ f as an iterated integral. To compute Iq /, 
one first computes the lower integral (or upper integral) off with respect to 
y, and then one integrates the resulting function with respect to x. There is 
nothing special about the order of integration; a similar proof shows that one 
can compute IQ f by first taking the lower integral (or upper integral) of/ 
with respect to x, and then integrating this function with respect to y. 

Corollary 12.3. Let Q = Ax B, where A is a rectangle in R1 and 
B is a rectangle in Rn. Let f : Q -+ R be a bounded function. If Jq f 

exists, and if IyeB f(x, y) exists for each x E A, then 

!. r f(x, y). □ 
xEA JyEB 

Corollary 12.4. Let Q = I 1 x • • • x In, where I; is a closed interval 
in R /or each j. If f: Q--+ R is continuous, then 
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EXERCISES 

1. Carry out Step 2 of the proof of Theorem 12.2. 

2. Let I= [O, 1]; let Q =Ix I. Define/: Q - R by letting /(z,y) = 1/q 
if y is rational and z = p/q, where p and q are positive integers with no 
common factor; let /(z,y) = 0 otherwise. 

(a) Show that IQ f exists. 

(b) Compute 

J f(z,y) and 
:LJIEI 

(c) Verify Fubini's theorem. 

!. /(z, y). 
yEI 

3. Let Q = A x B, where A is a rectangle in Rk and B is a rectangle in R". 
Let/: Q - R be a bounded function. 

(a) Let g be a function such that 

1 /(x, y) ::; g(x)::; J. /(x, y) 
a.EB yEB 

for all x E A. Show that if/ is integrable over Q, then g is integrable 
over A, and JQ f = IA g. [Hint: Use Exercise 1 of §10.] 

(b) Give an example where Jq I exists and one of the iterated integrals 

1 1 f(x, y) and 
xEA yEB 

1 1 /(x,y) 
yEB xEA 

exists, but the other does not. 

*(c) Find an example where both the iterated integrals of (b) exist, but 
the integral Jq f does not. [Hint: One approach is to find a subset 
S of Q whose closure equals Q, such that S contains at most one 
point on each vertical line and at most one point on each horizontal 
line.] 

4. Let A be open in R2 ; let / : A - R be of class C2 • Let Q be a rectangle 
contained in A. 
(a) Use Fubini's theorem and the fundamental theorem of calculus to 

show that h D,D,f = h D,D,t. 

(b) Give a proof, independent of the one given in §6, that D2 D1 /(x) = 
D1D2/(x) for each x EA. 
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§13. THE INTEGRAL OVER A BOUNDED SET 

In the applications of integration theory, one usually wishes to integrate func
tions over sets that are not rectangles. The problem of finding the mass of a 
circular plate of variable density, for instance, involves integrating a function 
over a circular region. So does the problem of finding the center of gravity of 
a spherical cap. Therefore we seek to generalize our definition of the integral. 
That is not in fact difficult. 

Definition. Let S be a bounded set in R"; let f : S -+ R be a bounded 
function. Define fs : R" -+ R by the equation 

/s(x) = { f (x) for x E_ S, 
0 otherwise. 

Choose a rectangle Q containing S. We define the integral of f over S by 
the equation 

provided the latter integral exists. 

We must show this definition is independent of the choice of Q. That is 
the substance of the following lemma: 

Lemma 13.1. Let Q and Q' be two rectangles in R". If f : R" -+ R 
is a bounded function that vanishes outside Q n Q', then 

1 f = f f; 
Q JQ, 

one integral exists if and only if the other does. 

Proof. We consider first the case where Q C Q'. Let E be the set 
of points of Int Q at which / fails to be continuous. Then both the maps 
/ : Q -+ R and / : Q' -+ R are continuous except at points of E and 
possibly at points of Bd Q. Existence of each integral is thus equivalent to 
the requirement that E have measure zero. 

Now suppose both integrals exist. Let P be a partition of Q', and let P" 
be the refinement of P obtained from P by adjoining the end points of the 
component intervals of Q. Then Q is a union of subrectangles R determined 
by P". See Figure 13.1. If R is a subrectangle determined by P" that is not 
contained in Q, then f vanishes at some point of R, whence mn(f) < 0. It 
follows that 

L(f, P") < L mn(f) v(R) ~ 1 f. 
RCQ Q 
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We conclude that L(f, P) < Jq /. 

''L L 11 I I --~.-,--,i--r1~--;---J[ _ __ .,.... ... _ _...,._....,_~-~--
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Figure 13.1 

An entirely similar argument shows that U(f, P) > Jq f. Since Pis an 
arbitrary partition of Q', it follows that Jq f = Jq, f. 

The proof for an arbitrary pair of rectangles Q, Q' involves choosing 
a rectangle Q" containing them both, and noting that Jq f = Jq,, f = 
Jq, /. □ 

In the remainder of this section, we study the basic properties of this 
integral, and we obtain conditions for its existence. In the next section, we 
derive ( as far as we are able) a method for its evaluation. 

Lemma 13.2. Let S be a subset of Rn; let f ,g : S -+ Rn. Let 
F, G : S -+ Rn be defined by the equations 

F(x) = max{/(x),g(x)} and G(x) = min{/(x),g(x)}. 

( a) If f and g are continuous at x0 , so are F and G. 
(b) If f and g are integrable over S, so are F and G. 

Proof. (a) Suppose / and g are continuous at xo. Consider first the 
case in which /(xo) = g(xo) = r. Then F(x0) = G(x0 ) = r. By continuity, 
given f > 0, we can choose 6 > 0 so that 

1/(x) - r I < f and I g(x) - r I < f 

for Ix - xo I < 6 and x E S; for such values of x, it follows automatically that 

I F(x) - F(xo)I < f and IG(x) - G(xo)I < f. 

On the other hand, suppose /(xo) > g(xo). By continuity, we can find a 
neighborhood U of xo such that /(x) - g(x) > 0 for x E U and x E S. 
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Then F(x) = /(x) and G(x) = g(x) on Un S; it follows that F and Gare 
continuous at x 0• A similar argument holds if /(Xo) < g(xo). 

(b) Suppose / and g are integrable over S. Let Q be a rectangle con
taining S. Then fs and gs are continuous on Q except on subsets D and E, 
respectively, of Q, each of measure zero. Now 

Fs(x) = max{/s(x),gs(x)} and Gs(x) = min{/s(x),9s(x)}, 

as you can easily check. It follows that Fs and Gs are continuous on Q 
except on the set DUE, which has measure zero. Furthermore, Fs and 
Gs are bounded because Is and gs are. Then Fs and Gs are integrable 
over Q. □ 

Theorem 13.3 (Properties of the integral). Let S be a bounded 
set in Rn; let f,g: S-+ R be bounded functions. 

(a) (Line.o.rity). If f and g are integrable over S, so is a/+ bg, and 

ls (a/+ bg) 

(b) (Comparison). Suppose f and g are integrable over S. If /(x) < 
g(x) for x E S, then 

ls I< lsg. 
Furthermore, 1/1 is integrable over S and 

(c) (Monotonicity). Let T c S. If f is non-negative on S and 
integrable over T and S, then 

(d) (Additivity). If S = S1 u S2 and f is integrable over S1 and S2 , 

then f is integrable over Sand S1 n S2 ; furthermore 

Proof. (a) It suffices to prove this result for the integral over a rectangle, . smce 
(a/+ bg)s = afs + bgs. 
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So suppose / and g are integrable over Q. Then / and g are continuous except 
on sets D, E, respectively, of measure zero. It follows that the function a/ +bg 
is continuous except on the set DUE, so it is integrable over Q. 

We consider first the case where a, b > 0. Let P" be an arbitrary partition 
of Q. If R is a subrectangle determined by P", then 

a mR(/) + b mR(g) < a /(x) + b g(x) 

for all x E R. It follows that 

a mR(/) + b mR(g) < mR(af + bg), 

so that 

a L(f, P") + b L(g, P") < L(af + bg, P") < l (af + bg). 

A similar argument shows that 

a U(f, P'') + b U(g, P'') > l (af + bg). 

Now let P and P' be any two partitions of Q, and let P" be their common 
refinement. It follows from what have just proved that 

a L(f, P) + b L(g, P') < l (af + bg) < a U(f, P) + b U(g,P'). 

Now by definition the number a Jq f + b Jq g also lies between the numbers 
at the ends of this sequence of inequalities. Since P and P' are arbitrary, we 
conclude that 

l(af +bg) 

Now we complete the proof by showing that 

Let P be a partition of Q; let R be a subrectangle determined by P. For 
x ER, we have 

so that 
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Multiplying by v(R) and summing, we obtain the inequalities 

-U(f,P) < L(-f,P) < l<-f) < U(-f,P) <-L(f,P). 

Chapter 3 

By definition, the number - Jq f also lies between the numbers at the extreme 
ends of this sequence of inequalities. Since P is arbitrary, our result follows. 

(b) It suffices to prove the comparison property for the integral over a 
rectangle. So suppose /(x) < g(x) for x E Q. If R is any rectangle contained 
in Q, then 

mR(/) < /(x) < g(x) 

for each x E R. Then mR(f) < mR(g). It follows that if Pis any partition 
ofQ, 

L(f, P) < L(g, P) < l/· 
Since P is arbitrary, we conclude that 

The fact that I / I is integrable over S follows from the equation 

1/(x)I = max{/(x), - /(x)}. 

The desired inequality follows by applying the comparison property to the 
inequalities 

-I /(x)I < /(x) < 1/(x)I, 
(c) If/ is non-negative and if TC S, then /T(x) < /s(x) for all x. One 

then applies the comparison property. 
(d) Let T = S1 n S2. We prove f is integrable over S and T. Consider 

first the special case where / is non-negative on S. Let Q be a rectangle 
containing S. Then both /s1 and /s2 are integrable over Q by hypothesis. It 
follows from the equations 

that ls and /T are integrable over Q. 
In the general case, set 

/+(x) = max{/(x),0} and /_(x) = max{-/(x),0}. 

Since / is integrable over S 1 and S2, so are / + and /-. By the special case 
already considered, f + and f- are integrable over Sand T. Because 

/(x) = /+(x) - /-(x), 
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it follows from linearity that J is integrable over Sand T. 
The desired additivity formula follows by applying linearity to the equa

tion 

Corollary 13.4. Let Si, ... , St be bounded sets in R"; assume 
Sin S; has measure zero whenever i #; j. Let S = S1 U • • • U S1c. If 
/ : S -+- R is integrable over each set Si, then f is integrable over S and 

Proof. The case k = 2 follows from additivity, since the integral off 
over S 1 n S2 vanishes by Theorem 11.3. The general case follows by induction. 
□ 

Up to this point, we have made no a priori restrictions on the functions f 
we deal with in integration theory, other than that they be bounded. In 
particular, we have not required f to be continuous. The reason is obvious; 
in order to define the integral Is J, even in the case where f is continuous on 
S, we needed to deal with the function f s, which need not be continuous at 
points of Bd S. 

However, our primary interest in this book is in integrals of the form Is J, 
where f is continuous on S. Therefore we make the following: 

Convention. Henceforth, we restrict ourselves in studying integra
tion theory to the integration of continuous functions f: S-+- R. 

Now we consider conditions under which the integral Is f exists. Even if 
we assume f is bounded and continuous on S, we need some sort of condition 
involving the set S to ensure that fs J exists. That condition is the following: 

Theorem 13.5. Let S be a bounded set in R"; let f : S -+- R be a 
bounded continuous function. Le.t E be the set of points x 0 of Bd S for 
which the condition 

fails to hold. If E has measure zero, then f is integrable over S. 

The converse of this theorem also holds; since we shall not need it, we 
leave the proof to the exercises. 
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Proof. Let xo be a point of Rn not in E. We show that the function ls 
is continuous at x 0 ; the theorem follows. 

If xo E Int S, then the functions l and ls agree in a neighborhood of xo; 
since l is continuous at x 0 , so is is- If x 0 E Ext S, then ls vanishes in a 
neighborhood of xo, Suppose xo E Bd S; then x 0 may or may not belong 
to S. See Figure 13.2. Since x 0 ¢ E, we know that l(x) - 0 as x approaches 
xo through points of S. Since f is continuous, it follows that f(xo) = 0 if 
xo belongs to S. It also follows, since ls(x) equals either i (x) or 0, that 
is(x) - 0, as x approaches xo through points of R". To show that ls is 
continuous at xo, we must show that ls(xo) = 0. If xo ¢ S, this follows 
by definition. If Xo E S, then ls(xo) = l (xo), which vanishes, as noted 
earlier. D 

Figure 13.2 

The same techniques may be used to prove the following theorem, which 
is sometimes useful: 

Theorem 13.6. Let S be, a bounded set in R0; let i: S - R be, a 
bounded continuous function; let A = Int S. If f is integrable over S, 
then i is integrable over A, and fs l = JA l. 

Proof. Step 1. We show that if ls is continuous at x 0 , then lA is 
continuous and agrees with ls at x 0 . The proof is easy. If xo E Int S or 
xo E Ext S, then ls and f A agree in a neighborhood of x 0 , and the result is 
trivial. Let xo E Bd S. Continuity of ls at xo implies that fs(x) - is(xo) 
as x - xo. Arbitrarily near xo are points x not in S, for which f s(x) = O; 
hence this limit must be 0. Thus is(xo) = 0. Since lA(x) equals either f s(x) 
or 0, we have ls(x) - 0 also as x - x 0 . Furthermore, fA(x0 ) = 0 because 
xo ¢ A. Thus f A is continuous at xo and agrees with is at xo. 

Step 2. We prove the theorem. If i is integrable over S, then ls is 
continuous except on a set D of measure zero. Then lA is continuous at 
points not in D, soi is integrable over A. Since fs - f A vanishes at points 
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not in D, we have Iq(fs - f A) 

Then Is f = IA f · □ 

0, where Q is a rectangle containing S. 

EXERCISES 

1. Let /, g: S - R; assume f and g are integrable over S. 

( a) Show that if f and g agree except on a set of measure zero, then 

Isf = IsY· 
(b) Show that if /(x) ~ g(x) for x E S and Is f = Is g, then f and g 

agree except on a set of measure zero. 
2. Let A be a rectangle in Rk; let B be a rectangle in R"; let Q =Ax B. 

Let f : Q - R be a bounded function. Show that if IQ f exists, then 

1 /(x,y) 
yEB 

exists for x EA - D, where Dis a set of measure zero in Rk. 

3. Complete the proof of Corollary 13.4. 

4. Let S1 and S2 be bounded sets in R"; let f : S - R be a bounded 
function. Show that if f is integrable over S1 and S2, then f is integrable 
over S1-S2, and 

r t = r i- r ,. 
ls1 -s2 ls1 ls1 ns2 

5. Let S be a bounded set in R"; let f : S - R be a bounded continuous 
function; let A = Int S. Give an example where IA f exists and Is f 
does not. 

6. Show that Theorem 13.6 holds without the hypothesis that f is continuous 
on S. 

*7. Prove the following: 

Theorem. Let S be a bounded set in R"; let f : S _,. R be a bounded 
function. Let D be the set of points of S at which f fails to be 
continuous. Let Ebe the set of points of Bd Sat which the condition 

lim / (x) = 0 
,c-xo 

fails to hold. Then Is f exists if and only if D and E have measure 
zero. 

Proof. (a) Show that Js is continuous at each point xo fi DUE. 
(b) Let B be the set of isolated points of S; then B C E because the 

limit cannot be defined if xo is not a limit point of S. Show that if 
f sis continuous at Xo, then Xo ¢.DU (E - B). 

(c) Show that Bis countable. 
(d) Complete the proof. 
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§14. RECTIFIABLE SETS 

We now extend the volume function, defined for rectangles, to more general 
subsets of R". Then we relate this notion to integration theory, and extend 
the Fubini theorem to certain integrals of the form f 8 f. 

Definition. Let S be a bounded set in R". If the constant function 
1 is integrable over S, we say that S is rectifiable, and we define the ( n
dimensional) volume of S by the equation 

v(S) = ls I. 

Note that this definition agrees with our previous definition of volume when 
S is a rectangle. 

Theorem 14.1. A subset S of nnis rectifiable if and only if S is 
bounded and Bd S has measure zero. 

Proof. The function ls that equals 1 on S and O outside S is continuous 
on the open sets Ext S and Int S. It fails to be continuous at each point of 
Bd S. By Theorem 11.2, the function ls is integrable over a rectangle Q 
containing S if and only if Bd S has measure zero. D 

We list some properties of rectifiable sets. 

Theorem 14.2. (a) (Positivity). If Sis rectifiable, v(S) > O. 

(b) {lvfonotonicity). If S1 and S2 are rectifiable and if S1 C S2 , then 
v(Si) < v( S2), 

(c) (Additivity). If S 1 and S2 are rectifiable, so are S1 U S2 and 
S1 n S2, and 

v(S1 u S2) = v(Si) + v(S2) - v(S1 n S2). 

(d) Suppose S is rectifiable. Then v(S) = 0 if and only if S has 
measure zero. 

(e) If Sis rectifiable, so is the set A= Int S, and v(S) = v(A). 

(f) If S is rectifiable, and if f : S ___,. R is a bounded continuous 
function, then f is integrable over S. 

Proof Parts (a), (b), and (c) follow from Theorem 13.3. Part (d) follows 
by applying Theorem 11.3 to the non-negative function 1 S · Part ( e) follows 
from Theorem 13.6, and (f) from Theorem 13.5. D 
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Let us make a remark on terminology. The concept of volume, as we have 
defined it, was called cla.ssically the theory of content (or Jordan content). 
This terminology distinguishes this concept from a more general one, called 
measure (or Lebesgue measure). This concept is important in the develop
ment of an integral called the Lebesgue integral, which is a generalization of 
the Riemann integral. 

Measure is defined for a larger class of sets than content is, but the two 
concepts agree when both are defined. A "set of measure zero" as we have 
defined it is in fact just a set whose Lebesgue measure exists and equals zero. 
Such a set need not of course be rectifiable. 

A set whose Lebesgue measure is defined is usually called measurable. 
But there is no universally accepted corresponding term for a set whose Jordan 
content is defined. Some call such sets "Jordan-measurable"; others refer to 
such sets as "domains of integration," because bounded continuous functions 
are integrable over such sets. One student suggested to me that a set whose 
Jordan content is defined should be called "contented"! I have taken the 
term rectifiable, which is commonly used to refer to a curve whose length is 
defined, and have adopted it to refer to any set having volume (content). 

The class of rectifiable sets in Rn is not easy to describe other than by 
the condition stated in Theorem 14.1. It is tempting to think, for instance, 
that any bounded open set in R", or any bounded closed set in R", should be 
rectifiable. That is not the case, as the following example shows: 

EXAMPLE 1. We construct a bounded open set A in R such that Bd A does 
not have measure zero. 

The rational numbers in the open interval (0,1) are countable; let us 
arrange them in a sequence q1 , q2 , . • • . Let O < a < 1 be fixed. For ea.ch i, 
choose an open interval (ai, bi) of length less than a/2i that contains qi and 
is contained in (0,1). These intervals will overlap, of course, but that doesn't 
matter. Let A be the following open set of R: 

We assume Bd A has measure zero and derive a contradiction. Set E = 
I - a. Since Bd A has measure zero, we may cover Bd A by countably many 
open intervals of total length less than E. Because A is a subset of [0,1) that 
contains each rational in (0,1), we have A = [O, 1). Since A = AU Bd A, 
the open intervals covering Bd A, along with the open intervals (ai, bi) whose 
union is A, give an open covering of the interval [0,1]. The total length of 
the intervals covering Bd A is less than E, and the total length of the intervals 
covering A is less than ~ a/i = a. Because [0,1] is compact, it can be 
covered by finitely many of these intervals; the total length of these intervals 
is less than f + a < 1. This contradicts Corollary 10.5. 

We conclude this section by discussing certain rectifiable sets that are 
especially useful; they are called the "simple regions." For these sets, a version 
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of the Fubini theorem holds, as we shall see. We shall use these results only 
in the examples and the exercises. 

Definition. Let C be a compact rectifiable set in nn- 1; let cf>, -rJ, : C ~ 
R be continuous functions such that <f>(x) < -rp(x) for x E C. The subset S 
of R" defined by the equation 

S = {(x,t) Ix EC and <l>{x) < t < -,J,(x)} 

is called a simple region in R". 

There is nothing special about the last coordinate here. If k + l = n - 1, 
and if y and z denote the general points of Rl: and Rl, respectively, then the 
set 

S1 = {(y,t,z) l(y,z) EC and </>(y,z) < t < -rp(y,z)} 

is also called a simple region in Rn. 

*Lemma 14.3. 
and rectifiable. 

If S is a simple region in Rn, then S is compact 

Proof. Let S be a simple region, as in the definition. We show that S 
is compact and that Bd S has measure zero. 

Step 1. The graph of cf> is the subset of Rn defined by the equation 

G4,={(x,t)lxEC and t=</>(x)}. 

We show that Bd S lies in the union of the three sets G4, and Gt/J and 

D = {(x,t) Ix E Bd C and </>(x) < t < -,J,(x)}. 

Since each of these sets is contained in S, it follows that Bd SC S, so that S 
is closed. Being bounded, S is thus compact. See Figure 14.1. 

Suppose that (xo, to) belongs to none of the sets G4,,G,JJ, or D. We show 
that (xo, to) lies either in Int S or Ext S. As you can check, there are three 
possibilities: 

(1) xo ft C, 
(2) xo E C and either t0 < </>(xo) or to > '¢(xo), 

(3) xo E Int C and </>(xo) < to < '¢(xo). 

In case (1), there is a neighborhood U of xo disjoint from C. Then U x R is 
disjoint from S, so that (xo, t0) E Ext S. 

Consider case (2). Suppose that to < <f>(xo). By continuity of¢,, we can 
choose a neighborhood lV of (x0 , to) such that the function ¢,(x)-t is positive 
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t 

t = cp(x) 

Figure 14.1 

for x EC and (x,t) E W. Then Wis disjoint from S, so that (xo,to) E Ext 
S. A similar argument applies if t0 > 'f/,(x0). 

Consider case (3). By continuity, there is a neighborhood U x V of (xo, to) 
in R" such that U CC and both functions t- </>(x) and 'f/,(x)- tare positive 
on U x V. Then U x Vis contained in S, so that (xo, to) E Int S. 

Step 2. We show that G; and Gv, have measure zero. 
It suffices to consider the case of G;. Choose a rectangle Q in Rn-l 

containing the set C. Given f. > 0, let c be the number f! = £/2v(Q). 
Because </> is continuous and C is compact, there is, by the theorem on uniform 
continuity, a 6 > 0 such that l<l>(x) - <l>(Y)I < f! whenever x,y E C and 
Ix - YI < 6. Choose a partition P of Q of mesh less than 6. If R is a 
subrectangle determined by P, and if R intersects C, then l<l>(x)-<l>(Y)I < f.1 

for x, y E Rn C. For each such R, choose a point xn of Rn C and define 
In to be the interval 

Then the n-dimensional rectangle R x In contains every point of the form 
(x,</>(x)) for which x E C n R. See Figure 14.2. 

The rectangles R x In, as R ranges over all subrectangles that intersect 
C, thus cover G;. Their total volume is 

L v(R x In)= L v(R) (2£') < 2f.'v(Q) = f.. 
n n 
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Figure 14.2 

Chapter 3 

Step 3. We show the set D has measure zero; then the proof is complete. 
Because</> and t/J are continuous and C is compact, there is a number M such 
that 

for x EC. Given£ > 0, cover Bd C by rectangles Q1, Q2, ... in Rn-l of total 
volume less than £/2M. Then the rectangles Qi x [-M, M] in R" cover D 
and have total volume less than £. D 

*Theorem 14.4 (Fubini's theorem for simple regions). Let 

S = {(x,t)I x EC and </>(x) < t < tp(x)} 

be a simple region in Rn. Let f : S -. R be a continuous function. Then 
f is integrable over S, and 

1 it=,p(x) 
f(x,t). 

xec t=cf>(x) 

Proof. Let Q x [-M, M] be a rectangle in Rn containing S. Because f 
is continuous and bounded on S and S is rectifiable, / is integrable over S. 
Furthermore, for fixed xo E Q, the function /s(x0 , t) is either identically zero 
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{if x 0 ¢ C), or it is continuous at all but two points of R. We conclude from 
Fubini 's theorem that 

1 1t-M 

fs(x,t). 
xEQ t:-M 

Since the inner integral vanishes if x ¢ C, we can write this equation as 

fs(x,t). 1 1t-M 

xEC t=-M 

Furthermore, the number fs(x,t) vanishes unless <f,(x) < t < t/J(x), in which 
case it equals /(x,t). Therefore we can write 

1 l,t=t/i(x) □ 
f (x,t). 

xec t=t/>(x) 

The preceding theorem gives us a reasonable method for reducing the 
n-dimensional integral fs f to lower-dimensional integrals, at least if the in
tegrand is continuous and the set S is a simple region. 

If the set S is not a simple region, one can often in practice express S 
as a union of simple regions that overlap in sets of measure zero. Additivity 
of the integral tells us that we can evaluate the integral fs f by integrating 
over each of these regions separately and adding the results together. Just 
as in calculus, the procedure can be reasonably laborious. But at least it is 
straightforward. 

Of course, there are rectifiable sets that cannot be broken up in this way 
into simple regions. Computing integrals over such sets is more difficult. One 
way of proceeding is to approximate S by a union of simple regions and follow 
a limiting procedure. 
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Figure 14.:J 

EXAMPLE 2. Suppose one wishes to integrate a continuous function / over 
the set S in R2 pictured in Figure 14.3. While S is not a simple region, it is 
easy to break S up into simple regions that overlap in sets of measure zero, 
as indicated by the dotted lines. 

EXAMPLE 3. Consider the set S in R2 given by 

S = {(x,y)l 1::; x2 + y2 ::; 4}; 

it is pictured in Figure 14.4. While S is not a simple region, one can evaluate 
an integral over S by breaking S up into two simple regions that overlap in 
a set of measure zero, as indicated, and integrating over each of these regions 
separately. The limits of integration will be rather unpleasant, of course. 

Now if one were actually assigned a problem like this in a calculus course, 
one would do no such thing! What one would do instead would be to express 
the integral in terms of polar coordinates, thereby obtaining an integral with 
much simpler limits of integration. 

Expressing a two-dimensional integral in terms of polar coordinates is a 
special case of a quite general method for evaluating integrals, which is called 
"substitution" or "change of variables." We shall deal with it in the next 
chapter. 

Figure 14 .4 

Let us make one final remark. There is one thing lacking in our discus
sion of the notion of volume. How do we know that the volume of a set is 
independent of its position in space? Said differently, if S is a rectifiable set, 
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and if h : Rn - Rn is a rigid motion (whatever that means), how do we know 
that the sets S and h(S) have the same volume? 

For example, each of the sets S and T pictured in Figure 14.5 represents 
a square with edge length 5; in fact T is obtained by rotating S through 
the angle 0 = arctan 3 / 4. It is immediate from the definition that S has 
volume 25. It is clear that T is rectifiable, for it is a simple region. But how 
do we know T has volume 25? 

(-3, 4) 
(4,3) 

Figure 14.s 

One can of course simply calculate v(T). One way to proceed is to write 
equations for the functions 1/J(x) and </>(x) whose graphs bound T above and 
below respectively, and to integrate the function 1/J( x )- ¢( x) over the interval 
[-3,4]. See Figure 14.6. 

Another way to proceed is to enclose Tin a rectangle Q, take a partition P 
of Q, and calculate the upper and lower sums of the function lr with respect 
to P. The lower sum equals the total area of all subrectangles contained in T, 

-3 4 

Figure 14.6 
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while the upper sum equals the total area of all subrectangles that intersect T. 
One needs to show that 

L(lr, P) < 25 < U(lr, P) 

for all P. See Figure 14.7. 
Neither of these procedures is especially appealing! What one needs is a 

general theorem. In the next chapter, we shall prove the following result: 
Suppose h : Rn -+ Rn is a function satisfying the condition 

II h(x) - h(y)II = II x - Y II 

for all x, y E Rn; such a function is called an isometry. If S is a rectifiable 
set in Rn, then the set T = h( S) is also rectifiable, and v(T) = v( S). 

Figure 1,4. 7 

EXERCISES 

1. Let S be a bounded set in Rn that is the union of the countable collection 
of rectifiable sets S1 , S2, .... 
(a) Show that S1 U • • • U Sn is rectifiable. 

(b) Give an example showing that S need not be rectifiable. 

2. Show tha.t if S1 and S2 are rectifiable, so is S1 - S2, and 

3. Show that if A is a nonempty, rectifiable open set in Rn, then v(A) > 0. 

4. Give an example of a bounded set of measure zero that is rectifiable, and 
an example of a bounded set of measure zero that is not rectifiable. 

5. Find a bounded closed set in R that is not rectifiable. 
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6. Let A be a bounded open set in Rn; let / : Rn - R be a bounded 
continuous function. Give an example where fr/ exists but IA f does 
not. 

7. Let S be a bounded set in Rn. 

(a) Show that if Sis rectifiable, then so is the set S, and v(S) = v( S). 
(b) Give an example where S and Int S are rectifiable, but Sis not. 

8. Let A and B be rectangles in Rk and Rn, respectively. Let S be a set 
contained in A x B. For each y E B, let 

Sy={xlxeA and (x,y)eS}. 

We call Sy a cross-section of S. Show that if S is rectifiable, and if Sy 
is rectifiable for each y E B, then 

v(S) = 1 v(Sy ). 
yEB 

§15. IMPROPER INTEGRALS 

We now extend our notion of the integral. We define the integral J 8 f in the 
case where S is not necessarily bounded and f is not necessarily bounded. 
Such an integral is sometimes called an improper integral. 

We shall define our extended notion of the integral only in the case 
where S is open in Rn. 

Definition. Let A be an open set in Rn; let f: A--+ R be a continuous 
function. If f is non-negative on A, we define the (extended) integral off 
over A, denoted IA J, to be the supremum of the numbers In J, as D ranges 
over all compact rectifiable subsets of A, provided this supremum exists. In 
this case, we say that f is integrable over A (in the extended sense). More 
generally, if f is an arbitrary continuous function on A, set 

/+(x) = max{/(x),O} and /_(x) = max{-/(x),O}. 

We say that f is integrable over A (in the extended sense) if both f + and 
f- are; and in this case we set 

where f A denotes the extended integral throughout. 
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If A is open in Rn and both f and A are bounded, we now have two 
different meanings for the symbol f A f. It could mean the extended integral, 
or it could mean the ordinary integral. It turns out that if the ordinary 
integral exists, then so does the extended integral and the two integrals are 
equal. Nevertheless, some ambiguity persists, because the extended integral 
may exist when the ordinary integral does not. To avoid ambiguity, we make 
the following convention: 

Convention. If A is an open set in nn, then f A f will denote the 
extended integral unless specifically stated othen.oise. 

Of course, if A is not open, there is no ambiguity; JA f must denote the 
ordinary integral in this case. 

We now give a reformulation of the definition of the extended integral that 
is convenient for many purposes. It is related to the way improper integrals 
are defined in calculus. We begin with a preliminary lemma: 

Lenuna 15.1. Let A be an open set in R". Then there exists a 
sequence Ci, C2, ... of compact rectifiable subsets of A whose union is 
A, such that CN C Int CN+i for each N. 

Proof. Let d denote the sup metric d(x, y) = Ix -yl on nn. If B C Rn, 
let d(x, B) denote the distance from x to B, as usual. (See §4.) 

Now set B = R" - A. Then given a positive integer N, let DN denote 
the set 

DN = {x I d(x,B) > 1/N and d(x,0) < N}. 

Since d(x,B) and d(x, 0) are continuous functions of x (see the proof of The
orem 4.6), DN is a closed subset of Rn. Because DN is contained in the cube 
of radius N centered at O, it is bounded and thus compact. Also, DN is 
contained in A, since the inequality d(x,B) > 1/ N implies that x cannot be 
in B. To show the sets DN cover A, let x be a point of A. Since A is open, 
d(x,B) > O; then there is an N such that d(x,B) > 1/ N and d(x, 0) < N, 
so that x E D N. Finally, we note that the set 

AN+l = {x I d(x,B) > 1/(N + 1) and d(x,0) < N + 1} 

is open (because d(x,B) and d(x, 0) are continuous). Since AN+l is contained 
in DN+I and contains DN by definition, it follows that DN C Int DN+l• 

See Figure 15.1. 
The sets DN are not quite the sets we want, since they may not be 

rectifiable. We construct the sets C N as follows: For each x E D N, choose a 
closed cube that is centered at x and is contained in Int DN+l · The interiors 
of these cubes cover DN; choose finitely many of them whose interiors cover 
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Figure 15.1 

D N and let their union be C N. Since C N is a finite union of rectangles, it is 
compact and rectifiable. Then 

It follows that the union of the sets CN equals A and that CN C Int CN+l 
for each N. □ 

Now we obtain our alternate formulation of the definition: 

Theorem 15.2. Let A be open in Rn; let f : A -+- R be continuous. 
Choose a sequence C N of compact rectifiable subsets of A whose union 
is A such that CN C Int CN+1 for each N. Then J is integrable over A 
if and only if the sequence fcN 1/1 is bounded. In this case, 

It follows from this theorem that J is integrable over A if and only if Ill 
is integrable over A. 

Proof. Step 1. We prove the theorem first in the case where f is 
non-negative. Here J = lfl. Since the sequence fcN J is increasing (by 
monotonicity), it converges if and only if it is bounded. 
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Suppose first that / is integrable over A. If we let D range over all 
compact rectifiable subsets of A, then 

L f < supD {L f} = 1 f, 
since C N is itself a compact rectifiable subset of A. It follows that the sequence 
fcN f is bounded, and 

J~=L 1<1r 
Conversely, suppose the sequence fcN f is bounded. Let D be an arbi

trary compact rectifiable subset of A. Then D is covered by the open sets 

Int C1 c Int C2 c · · · , 
hence by finitely many of them, and hence by one of them, say Int CM. Then 

f f < f f < lim / f. 
ln lcM N-= lcN 

Since D is arbitrary, it follows that / is integrable over A, and 

ff< lim / /. 
JA N-+oo JcN 

Step 2. Now let f : A -+ R be an arbitrary continuous function. By 
definition,/ is integrable over A if and only if/+ and f- are integrable over A; 
this occurs if and only if the sequences Jc N f + and Jc N f- are bounded, by 
Step 1. Note that 

0 < /+(x) $ 1/(x)I and O < /_(x) < 1/(x)I, 
while 

1/(x)I = f+(x) + J_(x). 

It follows that the sequences fcN f+ and fcN f- are bounded if and only if the 
sequence fcN 1/1 is bounded. In this case, the former two sequences converge 

to J A J + and f A f-, respectively. Since convergent sequences can be added 
term-by-term, the sequence 

converges to JA J + - JA f-; and the latter equals JA f by definition. D 

We now verify the properties of the extended integral; many are analogous 
to those of the ordinary integral. Then we relate the extended integral to the 
ordinary integral in the case where both are defined. 
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Theorem 15.3. Let A be an open set in Rn. Let f, g : A - R be 
continuous functions. 

(a) (Linearity). If f and g are integrable over A, so is af + bg; and 

(b) (Comparison). Let f and g be integrable over A. If f(x) < g(x) 
for x EA, then 

In particular, 

1L 11 < L ,1,. 

(c) (Monotonicity). Assume B is open and B c A. If f is non
negative on A and integrable over A, then f is integrable over B and 

(d) (Additivity). Suppose A and Bare open in Rn and f is contin
uous on A U B. If f is integrable on A and B, then J is integrable on 
Au B and A n B, and 

f f = f f + f f - f f. 
JAuB JA JB JAnB 

Note that by our convention, the integral symbol denotes the extended 
integral throughout the statement of this theorem. 

Proof. Let C N be a sequence of compact rectifiable sets whose union is 
A, such that CN C Int CN+l for all N. 

(a) We have 

< lal / Ill + 
lcN 

by the comparison and linearity properties of the ordinary integral. Since both 
sequences fc Ill and fcN IYI are bounded, so is fcN laf +bgl. Linearity now 
follows by taking limits in the equation 

f (af + bg) 
lcN 



126 Integration Chapter 3 

(b) If J(x) < g(x) 1 one takes limits in the inequality 

( c) If D is a compact rectifiable subset of B, then D is also a compact 
rectifiable subset of A, so that 

by definition. Since D is arbitrary, J is integrable over B and f n f :5 J A f. 
( d) Let D N be a sequence of compact rectifiable sets whose union is B 

such that DN C Int DN+1 for each N. Let 

Then EN and FN are sequences of compact rectifiable sets whose unions equal 
AU B and An B, respectively. See Figure 15.2. 

Figure 15.2 

We show ENC Int EN+l and FN C Int FN+l· If x E EN, then xis in 
either C N or D N. If the former, then some neighborhood of x is contained in 
CN+l· If the latter, some neighborhood ofx is contained in DN+l· In either 
case, this neighborhood of x is contained in EN+l, so that x E Int EN+l. 

Similarly, if x E FN, then some neighborhood U of x is contained in 
CN+1 1 and some neighborhood of V of xis contained in DN+l· The neigh
borhood Un V of xis thus contained in FN+l, so that x E Int FN+I• 
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Additivity of the ordinary integral tells us that 

Applying this equation to the function 1/1, we see that feN 1/1 and JFN lfl 
are bounded above by 

I Ill+ I I1I-
lcN JDN 

Thus f is integrable over AU B and An B. The desired equation now follows 
by taking limits in ( * ). D 

Now we relate the extended integral to the ordinary integral. 

Theorem 15.4. Let A be a bounded open set in Rn; let f : A -+ 

R be, a bounded continuous function. Then the extended integral JA f 
exists. If the ordinary integml JA f also exists, then these two integmls 
are equal. 

Proof. Let Q be a rectangle containing A. 
Step 1. We show the extended integral of f exists. Choose M so that 

1/(x)I < M for x E A. Then for any compact rectifiable subset D of A, 

L Ill< L M < M • v(Q). 

Thus/ is integrable over A in the extended sense. 

Step 2. We consider the case where f is non-negative. Suppose the 
ordinary integral of f over A exists. It equals, by definition, the integral 
over Q of the function f A. If D is a compact rectifiable subset of A, then 

L f = L f A because J = f A on D, 

< l f A by monotonicity, 

= (ordinary) L J. 

Since D is arbitrary, it follows that 

(extended) L f < (ordinary) L f. 
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Figure 15.3 

D 

A 

Chapter 3 

On the other hand, let P be a partition of Q, and let R denote the general 
subrectangle determined by P. Denote by Ri, ... , Ri: those subrectangles 
that lie in A, and let D = R 1 U • • • U Ri:. See Figure 15.3. Now 

k 

L(f A, P) = L ffiR; (f) • v(Ri ), 
i=l 

because mR(f A)= mR(f) if R is contained in A and mR(f A)= 0 if R is not 
contained in A. On the other hand, 

k 

L mR;(J) • v(Ri) 
i=l 

k 

< ~L/ by the comparison property, 

= Li by additivity, 

< (extended) L f by definition. 

Since P is arbitrary, we conclude that 

(ordinary) L f < (extended) L f. 
Step 9. Now we consider the general case. Write f = f + - f- , as usual. 

Since f is integrable over A in the ordinary sense, so are / + and f-, by 
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Lemma 13.2. Then 

(ordinary) L f = (ordinary) L f + - (ordinary) L / _ 
(extended) L f + - (extended) L /

(extended) L f by definition. □ 

by linearity, 

by Step 2, 

EXAMPLE 1, If A is a. bounded open set in Rn and /: A - Risa bounded 
continuous function, then the extended integral f A f exists, but the ordinary 
integral f A f may not. For example, let A be the open subset of R constructed 
in Example 1 of §14. The set A is bounded, but Bd A does not have measure 
zero. Then the ordinary integral JA 1 does not exist, although the extended 

integral f A 1 does. 

A consequence of the preceding theorem is the following: 

Corollary 15.5. Let S be a bounded set in nn; let f : S --+ R be a 
bounded continuous function. If f is integrable over S in the ordinary 
sense, then 

( ordinary) L f {extended} f f. 
lint s 

Proof. One applies Theorems 13.6 and 15.4. □ 

This corollary tells us that any theorem we prove about extended integrals 
has implications for ordinary integrals. The change of variables theorem, 
which we prove in the next chapter, is an important example. 

We have already given two formulations of the definition of the extended 
integral, and we will give another in the next chapter. All these versions of 
the definition are useful for different theoretical purposes. Actually applying 
them to computational problems can be a bit awkward, however. Here is a 
formulation that is useful in many practical situations. We shall use it in some 
of the examples and exercises: 
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*Theorem 15.6. Let A be open in Rn; let f : A ~ R be continuous. 
Let U1 c U2 c • • • be a sequence of open sets whose union is A. Then 
IA f exists if and only if the sequence IuN 1/1 exists and is bounded; in 
this case, 

ff= lim / f. 
}A N-oo luN 

Proof. It suffices, as usual, to consider the case where f is non-negative. 
Suppose the integral IA J exists. Monotonicity of the extended integral 

implies that / is integrable over UN and that for each N, 

It follows that the increasing sequence IuN f converges, and that 

Conversely, suppose the sequence I u N J exists and is bounded. Let D 
be a compact rectifiable subset of A. Since D is covered by the open sets 
U1 C U2 C • • • , it is covered by finitely many of them, and hence by one of 
them, say UM. Then, by definition, 

Since D is arbitrary, 

In applying this theorem, we usually choose UN so that it is rectifiable 
and J is bounded on UN; then the integral IuN f exists as an ordinary in
tegral (and hence as an extended integral) and can be computed by familiar 
techniques. See the examples following. 
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EXAMPLE 2. Let A be the open set in R2 defined by the equation 

A= { (x, y) I x > 1 and y > 1 }. 

Let f(x,y) = 1/x2 y2 . Then f is bounded on A, but A is unbounded. We 
could use Theorem 15.2 to calculate JA f, by setting CN = [(N + 1)/ N, N] 2 

and integrating f over CN, It is a bit easier to use Theorem 15.6, setting 
UN = (1, N) 2 and integrating f over UN, See Figure 15.4. The set UN is 
rectifiable; f is bounded on UN because UN is compact and / is continuous 
on UN, Thus fuN f exists as an ordinary integral, so we can apply the Fubini 
theorem. We compute 

We conclude that JA f = 1. 

B 

1 N 1/N 1 

Fagure 1s.4 Figure 15.5 

EXAMPLE 3. Let B = (0, 1) 2

; let f (x, y) = 1/x 2 y2

, as before. Here B is 
bounded but f is not bounded on B; indeed, f is unbounded near each point 
of the x and y axes. However, if we set UN = (1 / N, 1 )2 , then f is bounded 
on UN. See Figure 15.5. We compute 

We conclude that J Bf does not exist. 
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EXERCISES 

1. Let /: R - R be the function f(x) = x. Show that, given A ER, there 
exists a sequence CN of compact rectifiable subsets of R whose union is 
R, such that CN C Int CN+i for each N and 

Does the extended integral Ia f exist? 

2. Let A be open in R"; let /, g : A - R be continuous; suppose that 
1/(x)I :5 g(x) for x E A. Show that if IA g exists, so does IA f. (This 
result is analogous to the so-called "comparison test" for the convergence 
of an infinite series.) 

3. (a) Let A and B be the sets of Examples 2 and 3; let f(x, y) = I/(xy) 1l 2 . 

Determine whether IA f and Inf exist; if either does, calculate it. 

(h) Let C = {(x, y) I x > 0 and y > O}. Let 

f(x, y) = I/(x2 + ,/x) (y2 + y'y). 

Show that I cf exists; do not attempt to calculate it. 

4. Let f(x, y) = I/(y + 1)2 • Let A and B be the open sets 

A = { ( x, y) I x > 0 and x < y < 2x}, 

B={(x,y)lx>O and x2 <y<2x2 }, 

of R2. Show that IA f does not exist; show that Inf does exist and 
calculate it. See Figure 15.6. 

Figure 15.6 
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5. Let J(x, y) = l/x(xy)1l 2 for x > 0 and y > 0. Let 

Ao = {( x, y) I O < x < 1 and x < y < 2x}, 

Bo = {( x, y) I O < x < 1 and x2 < y < 2x2 }. 

Determine whether fAo J and J80 J exist; if so, calculate. 

6. Let A be the set in R2 defined by the equation 

A = { ( x, y) I x > 1 a.nd O < y < 1 / x}. 

Calculate JA l/zy1 l 2 if it exists. 

*7. Let A be a bounded open set in Rn; let / : A - R be a bounded 
continuous function. Let Q be a rectangle containing A. Show that 

*8. Let A be open in Rn. We say / : A - R is locally bounded on A if 
each x in A has a neighborhood on which / is bounded. Let .r(A) be 
the set of all functions / : A - R that are locally bounded on A and 
continuous on A except on a set of measure zero. 

(a) Show that if/ is continuous on A, then / E .r(A). 
(b) Show that if/ is in .r(A), then/ is bounded on each compact subset 

of A and the definition of the extended integral JA J goes through 
without change. 

(c) Show that Theorem 15.3 holds for functions / in .r(A). 
(d) Show that Theorem 15.4 holds if the word "continuous" in the hy

pothesis is replaced by "continuous except on a set of measure zero." 





Change of Variables 

In evaluating the integral of a function of a single variable, one of the most 
useful tools is the so-called "substitution rule." It is used in calculus, for 
example, to evaluate such an integral as 

1' (2x2 + 1 )10( 4x) dx; 

one makes the substitution y = 2x2 + 1, reducing this integral to the integral 

1· ylD dy, 

which is easy to evaluate. (Here we use the "dx" and "dy" notation of calcu
lus.) 

Our intention in this chapter is to generalize the substitution rule in two 
ways: 

(1) We shall deal with n-dimensional integrals rather than one-dimen
sional integrals. 

(2) We shall prove it for the extended integral, rather than merely for 
integrals of bounded functions over bounded sets. This will require 
us to limit ourselves to integrals over open sets in Rn, but, as Corol
lary 15.5 shows, this is not a serious restriction. 

We call the generalized version of the substitution rule the change of vari
ables theorem. 

135 
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§16. PARTITIONS OF UNITY 

In order to prove the change of variables theorem, we need to reformulate the 
definition of the extended integral IA f. This integral is obtained by breaking 
the set A up into compact rectifiable sets C N, and taking the limit of the 
corresponding integrals fcN f. In our new approach, we instead break the 
function f up into functions fN, each of which vanishes outside a compact set, 
and we take the limit of the corresponding integrals IA f N. This approach has 
many advantages, especially for theoretical purposes; it will recur throughout 
the rest of the book. 

This approach involves a notion of comparatively recent origin in mathe
matics, called a "partition of unity," which we define in this section. 

We begin with several lemmas. 

Lemma 16.1. Let Q be a rectangle in nn. The.re is a C00 function 
</>: nn --+ R such that <f>(x) > 0 for x E Int Q and <f>(x) = 0 otherwise. 

Proof. Let f : R -+ R be defined by the equation 

{ 
-l/z: "f > 0 

/(x) = e I x , 
0 otherwise. 

Then /(x) > 0 for x > 0. It is a standard result of single-variable analysis 
that / is of class C00 • (A proof is outlined in the exercises.) Define 

g(x) = f(x) • /(1- x). 

Then g is of class C00 ; furthermore, g is positive for O < x < 1 and vanishes 
otherwise. See Figure 16.1. Finally, if 

1 

Figure 16.1 
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define 

Lemma 16.2. Let A be a collection of open sets in Rn; let A be 
their union. Then there exists a countable collection Q1, Q2, ... of 
rectangles contained in A such that: 

(1) The sets Int Qi cover A. 
(2) Each Qi is contained in an element of A. 
(3) Each point of A has a neighborhood that intersects only finitely 

many of the sets Qi. 

Proof. It is not difficult to find rectangles Qi satisfying (1) and (2). 
Choosing them so they also satisfy (3), the so-called "local finiteness condi
tion," is more difficult. 

Step 1. Let Di, D 2, ... be a sequence of compact subsets of A whose 
union is A, such that Di C Int Di+l for each i. For convenience in notation, 
let Di denote the empty set for i < 0. Then for each i, define 

Bi = Di - Int Di-1• 

The set Bi is bounded, being a subset of Di; and it is closed, being the 
intersection of the closed sets Di and Rn - Int Di-l· Thus Bi is compact. 
Also, Bi is disjoint from the closed set Di-2, since Di-2 C Int Di-1• For 
each x E Bi, we choose a closed cube Cx centered at x that is contained in A 
and is disjoint from Di_2; also choose Cx small enough that it is contained 
in an element of the collection of open sets A. See Figure 16.2. 

Figure 16.2 
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The interiors of the cubes Cx cover Bi; choose finitely many of these 
cubes whose interiors cover Bi; let Ci denote this finite collection of cubes. 
See Figure 16.3. 

Figure 16.3 

Step 2. Let C be the collection 

C = Ci U C2 U • • • ; 

then C is a countable collection of rectangles {in fact, of cubes). We show this 
collection satisfies the requirements of the lemma. 

By construction, each element of C is a rectangle contained in an element 
of the collection A. We show that the interiors of these rectangles cover A. 
Given x E A, let i be the smallest integer such that x E Int D;. Then x is 
an element of the set Bi = Di - Int Di-1• Since the interiors of the cubes 
belonging to the collection Ci cover Bi, the point x lies interior to one of these 
cubes. 

Finally, we check the local finiteness condition. Given x, we have x E 

Int Di for some i. Each cube belonging to one of the collections Ci+2 ,Ci+J, ... 
is disjoint from D,, by construction. Therefore the open set Int Di can inter
sect only the cubes belonging to one of the collections C1 , ... , Ci+1 . Thus x 
has a neighborhood that intersects only finitely many cubes from the collec
tion C. D 

We remark that the local finiteness condition holds for each point x of 
A, but it does not hold for a point x of Bd A. Each neighborhood of such a 
point necessarily intersects infinitely many of the cubes from the collection C, 
as you can check. 
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Definition. If ¢ : R11 --+ R, then the support of ¢ is defined to be 
the closure of the set {x I </J(x) f. 0}. Said differently, the support of ¢ 
is characterized by the property that if x i Support </>, then there is some 
neighborhood of x on which the function </> vanishes identically. 

Theorem 16.3 (Existence of a partition of unity). Let .A be 
a collection of open sets in Rn; let A be their union. There exists a 
sequence ¢ 1 , ¢2 , ... of continuous functions <Pi : Rn - R such that: 

(1) ¢.>i(x) > 0 for all x. 
(2) The set Si = Support <Pi is contained in A. 
(3) Each point of A has a neighborhood that intersects only finitely 

many of the sets Si. 
( 4) E:1 <Pi(x) = 1 for each x E A. 
(5) The functions </>, are of class C00 • 

(6) The sets S, are compact. 
(7) For each i, the set Si is contained in an element of .A. 

A collection of functions { ¢d satisfying conditions ( 1 )-( 4) is called a 
partition of unity on A. If it satisfies (5), it is said to be of class C00 ; if 
it satisfies (6), it is said to have compact supports; if it satisfies (7), it said 
to be do111inated by the collection A. 

Proof. Given A and A, let Q1 , Q2 , ... be a sequence of rectangles in A 
satisfying the conditions stated in Lemma 16.2. For each i, let tp; : Rn - R be 
a C00 function that is positive on Int Qi and zero elsewhere. Then 'lPi(x) > 0 
for all x. Furthermore, Support 'lPi = Qi; the latter is a compact subset 
of A that is contained in an element of A. Finally, each point of A has a 
neighborhood that intersects only :finitely many of the sets Qi. The collection 
{ tpi} thus satisfies all the conditions of our theorem except for ( 4). 

Condition (3) tells us that for x E A, only finitely many of the numbers 
1P1(x), 1P2(x), ... are non-zero. Thus the series 

00 

,.\(x) = L 'lPi(x) 
i=l 

converges trivially. Because each x E A has a neighborhood on which ,.\(x) 
equals a finite sum of C00 functions, ,.\(x) is of class C 00 . Finally, ,.\(x) > 0 
for each x E A; given x, there is a rectangle Qi whose interior contains x, 
whence tf'i(x) > 0. We now define 

the functions ¢; satisfy all of the conditions of our theorem. D 
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Conditions (1) and (4) imply that, for each x E A, the numbers </>i(x) 
actually "partition unity," that is, they express the unity element 1 as a sum of 
non-negative numbers. The local finiteness condition (3) has the consequence 
that for any compact set C contained in A, there is an open set about C 
on which <Pi vanishes identically except for finitely many i. To find such an 
open set, one covers C by finitely many neighborhoods, on each of which q>;, 
vanishes except for finitely many i; then one takes the union of this finite 
collection of neighborhoods. 

EXAMPLE 1. Let/: R - R be defined by the equation 

{ 
(1 +cosx)/2 for -11"::; x::; 1r, 

/(x) = 
0 otherwise. 

Then / is of class C 1 . For each integer m 2: 0, set ¢2m+i(x) = /(x - m1r). 
For each integer m ~ 1, set ¢2m(x) = f(x + m1r). Then the collection {¢i} 
forms a partition of unity on R. The support Si of </>i is a closed interval of the 
form [k,r, {k+2)1r], which is compact, and each point of R has a neighborhood 
that intersects at most three of the sets Si. We leave it to you to check that 
E<t>,(x) = 1. Thus {<Pi} is a partition of unity on R. See Figure 16.4. 

Figure 16.,4 

Now we explore the connection between partitions of unity and the ex
tended integral. We need a preliminary lemma: 

Lemma 16.4. Let A be open in Rn; let f : A ~ R be continuous. 
If f vanishes outside the compact subset C of A, then the integrals JA f 
and Jc f exist and are equal. 
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Proof. The integral Ic f exists because C is bounded, and the function 
Jc, which equals/ on A and vanishes outside C, is continuous and bounded 
on all of nn. 

Let Ci be a sequence of compact rectifiable sets whose union is A, such 
that Ci C Int Ci+l for each i. Then C is covered by finitely many sets Int Ci, 

and hence by one of them, say Int CM. Since f vanishes outside C, 

for all N > M. Applying this fact to the function Ill shows that lim I cN Ill 
exists, so that J is integrable over A; applying it to / shows that fc J = 
limfcN f = IA f. □ 

Theorem 16.5. Let A be open in Rn; let f : A --+ R be continuous. 
Let {<Pi} be a partition of unity on A having compact supports. The 
integral f A J exists if and only if the series 

converges; in this case, 

Note that the integral IA ef>if exists and equals the ordinary integral 
Is; <Pi/ (where S, = Support ef>i) by the preceding lemma. 

Proof. We consider first the case where f is non-negative on A. 

Step 1. Suppose / is non-negative on A, and suppose the senes 
E[f A <Pif] converges. We show that JA f exists and 

Let D be a compact rectifiable subset of A. There exists an M such that for 
all i > M, the function ¢, vanishes identically on D. Then 

M 

/(x) = L <Pi(x)/(x) 
i:l 
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for x ED. We conclude that 

M L f = ~ [ L </>d] by linearity, 

M 

< E [ { </>if] by monotonicity, 
i=l lvus; 

M 

= L [1 (/>if] by the preceding lemma, 
i=l A 

It follows that f is integrable over A, and 

Chapter 4 

Step 2. Suppose f is non-negative on A, and suppose f is integrable 
over A. We show the series E[JA </>if] converges, and 

Given N, the set D = S1 U • • • U SN is compact. Furthermore, for 
i = 1, ... , N, the function </>if vanishes outside D, so that 

by the preceding lemma. We conclude that 

N N 

I: lL <t>if1 = I: r/, 4>if1 
i=l A i=l D 

N 

= 1 [E ¢1 f] by linearity, 
D i:l 

by the comparison property, 
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Thus the series E [IA </>i/l converges because its partial sums are bounded, 
and its sum is less than or equal to IA/. 

The theorem is now proved for non-negative functions /. 

Step 9. Consider the case of an arbitrary continuous function / : A --+ 

R. By Theorem 15.2, the integral J A f exists if and only if the integral JA 1/1 
exists, and this occurs if and only if the series 

f: 1!, 1,Wll 
i=l A 

converges, by Steps 1 and 2. 
On the other hand, if IA f exists, then 

L f = L f+ - L f- by definition, 

= t. [L t/>d+l - t. [L t/>d-1 by Steps 1 and 2, 

= t. [L ef,;/) by linearity, 

since convergent series can be added term-by-term. D 

EXERCISES 

1. Prove that the function/ of Lemma 16.1 is of class C 00 as follows: Given 
any integer n ~ O, define /n : R - R by the equation 

(a) Show that /n is continuous at 0. [Hint: Show that a < e 0 for all a. 
Then set a = t/2n to conclude that 

Set t = 1/x and let x approach O through positive values.] 

(b) Show tha.t /n is differentiable at 0. 

(c) Show that f~(x) = /n+2(x) - n/n+1(x) for all x. 
(d) Show that /n is of class C 00 • 
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2. Show that the functions defined in Example 1 form a partition of unity 
on R. [Hint: Let /m(x) = f(x - m1r), for all integers m. Show that 
L hm(x) = (1 + cos x)/2. Then find L hm+t (x).] 

3. (a) Let S be an arbitrary subset of R"; let x0 ES. We say that the func
tion / : S -+ R is differentiable at Xo, of class er, provided there 
is a er function g : U -+ R defined in a. neighborhood U of xo in 
R", such that g agrees with / on the set Un S. In this case, show 
that if </> : R" - R is a Cr function whose support lies in U, then 
the function 

{ 
</>(x)g(x) for x EU, 

h(x) = 
0 for x 'i Support </>, 

is well-defined and of class er on R". 

(b) Prove the following: 

Theorem. If f : S - R and f is differentiable of class er 
at each point xo of S, then f may be extended to a er function 
h : A - R that is defined on an open set A of R" containing S. 

[Hint: Cover S by appropriately chosen neighborhoods, let A be 
their union, and take a C00 partition of unity on A dominated by 
this collection of neighborhoods.] 

§17. THE CHANGE OF VARIABLES THEOREM 

Now we discuss the general change of variables theorem. We begin by review
ing the version of it used in calculus; although this version is usually proved 
in a first course in single-variable analysis, we reprove it here. 

Recall the common convention that if/ is integrable over [a, b], then one 
defines 

Theorem 17.1 (Substitution rule). Let I = [a, b]. Let g : J -+ R 
be a function of class C 1 , with g'(x) i O for x E (a, b). Then the set 
g(I) is a closed interval J with end points g(a) and g(b). If f: J.....,. R 
is continuous, then 

1g(b) lb 
f = (f O g)g', 

g(a) a 
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or equivalently, 

L f = f/1 ° g)lg'I-

Proof. Continuity of g' and the intermediate-value theorem imply that 
either g'(x) > 0 or g'(x) < 0 on all of (a,b). Hence g is either strictly 
increasing or strictly decreasing on I, by the mean-value theorem, so that g 
is one-to-one. In the case where g' > 0, we have g(a) < g(b); in the case 
where g' < 0, we have g(a) > g(b). In either case, let J = [c,d] denote the 
interval with end points g(a) and g(b). See Figure 17.1. The intermediate
value theorem implies that g carries I onto J. Then the composite function 
f (g( x)) is defined for all x in [a, b], so the theorem at least makes sense. 

d d 

C C 

a b a b 
g' > 0 g' < 0 

Figure 11.1 

Define 

F(y) = ly f 

for y in [c, d]. Because f is continuous, the fundamental theorem of calculus 
implies that F'(y) = f(y). Consider the composite function h(x) = F(g(x)); 
we differentiate it by the chain rule. We have 

h'(x) = F'(g(x))g'(x) = J(g(x))g'(x). 

Because the latter function is continuous, we can apply the fundamental the
orem of calculus to integrate it. We have 

1::• f(g(x))g'(x) = h(b)- h(a) 

= F(g(b)) - F(g(a)) 

lg(b) 

= f 
C 

lg(a) 

f. 
C 
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Now c equals either g(a) or g(b). In either case, this equation can be written 
in the form 

Lb J.g(b) 
(/ 0 g)g' = J. 

a g(a) 

This is the first of our desired formulas. 
Now in the case where g' > O, we have J = (g(a),g(b)]. Since IY'I = g' 

in this case, equation ( *) can be written in the form 

/,(I O u)lg'I = /, /. 

In the case where g' < O, we have J = [g(b),g(a)]. Since lg'I = -g' in this 
case, equation(*) can again be written in the form(••). D 

EXAMPLE 1. Consider the integral 

Set /(y) = y10 and g(z) = 2z2 + 1. Then g'(z) = 4z, which is positive for 
0 < x < 1. See Figure 17.2. The substitution rule implies that 

3 

2 
1 y=g(x) 

1 

1 -'Ir /2 1r/2 

-1 

Figure 17.a Figure 17.3 
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EXAMPLE 2. Consider the integral 

1.:~·, 1/(1-,/)1/2, 

In calculus one proceeds as follows: Set y = g(x) = sinx for -1r/2 < x $ 
1r/2. Then g'(x) = cos x, which is positive on (-1r/2, 1r/2) and satisfies 
the conditions g(-1r/2) = -1 a.nd g(1r/2) = 1. See Figure 17.3. If /(y) is 
continuous on the interval [-1, 1], then the substitution rule tells us that 

11 I= 11r12 (fog)g'. 
-1 -,r/2 

Applying this rule to the function /(y) = 1/(1 - y2 ) 1l 2 , we have 

11 1/{1 - if )112 = lw/'l [1/(1 - sin2 x)112] cos x = 11r/'l 1 = 7r. 

-1 -fr/2 -,r/2 

Thus the problem seems to be solved. 
However, there is a difficulty here. The substitution rule does not apply in 

this case, for the function /(y) is not continuous on the interval -1 $ y < 1! 
The integral of/ is in fact an improper integral, since / is not even bounded 
on the interval {-1, 1). 

As indicated earlier, we shall generalize the substitution rule to n-dimen
sional integrals, and we shall prove it for the extended integral rather than 
merely for the ordinary integral. One reason is that the extended integral is 
actually easier to work with in this context than the ordinary integral. The 
other is that even in elementary problems one often needs to use the substi
tution rule in a situation where Theorem 17.1 does not apply, as Example 2 
shows. 

If we are to generalize this rule, we need to determine what a "substi
tution" or a "change of variables" is to be, in an n-dimensional extended 
integral. It is the following: 

Definition. Let A be open in Rn. Let g : A --+ nn be a one-to-one 
function of class er, such that det Dg(x) -1- 0 for x E A. Then g is called a 
change of variables in Rn. 

An equivalent notion is the following: If A and B are open sets in Rn 
and if g : A --+ B is a one-to-one function carrying A onto B such that both 
g and g- 1 are of class er I then g is called a diffeomorphism (of class er). 
Now if g is a diffeomorphism, then the chain rule implies that Dg is non
singular, so that det Dg -1- O; thus g is also a change of variables. Conversely, 
if g : A --+ nn is a change of variables in nn, then Theorem 8 .2 tells us that 
the set B = g(A) is open in nn and the function g-1 : B --+ A is of class 
Cr. Thus the terms "diffeomorphism" and "change of variables" are different 
terms for the same concept. 

We now state the general change of variables theorem: 
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Theorem 17.2 (Change of variables theorem). Let g: A-+ B 
be a diff eomorphism of open sets in Rn. Let f : B -+ R be a contin
uous function. Then f is integrable over B if and only if the function 
(f o g) I det Dg I is integrable over A; in this case, 

L f = 1 (f o g)I detDgl. 

Note that in the special case n = 1, the derivative Dg is the 1 by 1 matrix 
whose entry is g'. Thus this theorem includes the classical substitution rule 
as a special case. It includes more, of course, since the integrals involved 
are extended integrals. It justifies, for example, the computations made in 
Example 2. 

We shall prove this theorem in a later section. For the present, let us 
illustrate how it can be used to justify computations commonly made in mul
tivariable calculus. 

EXAMPLE 3. Let B be the open set in R2 defined by the equation 

B = { ( x, y) I x > 0 and y > 0 and x 2 + y2 < a2 } • 

One commonly computes an integral over B, such as f B x 2 y2 , by the use of the 
polar coordinate t1·ansformation. This is the transformation g: R2 ---+ R2 

defined by the equation 

g(r,0) = (rcos0,rsin0). 

One checks readily that det Dg( r, 0) = r, and that the map g carries the open 
rectangle 

A= {(r, 0) I O < r < a and O < 0 < ,r/2} 

in the (r, 0) plane onto Bin a one-to-one fashion. Since det Dg = r > 0 on 
A, the map g : A _,. B is a diffeomorphism. See Figure 17.4. 

0 

a 

g -----
r 

Figure 11.4 

y 

a X 
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The change of variables theorem implies that 

since the latter exists as an ordinary integral as well as an extended integral, 
it can be evaluated (easily) by use of the Fubini theorem. 

EXAMPLE 4. Suppose we wish to integrate the same function x2y2 over the 
open set 

Here the use of polar coordinates is a bit more tricky. The polar coordinate 
transformation g does not in this case define a diffeomorphism of an open set 
in the (r, 8) plane with lV. However, g does define a diffeomorphism of the 
open set U = (O, a) x (O, 21r) with the open set 

V = {(x, y) I x 2 + y2 < a2 and x < 0 if y = O} 

of R2 . See Figure 17.5; the set V consists of W with the non-negative x-axis 
deleted. Because the non-negative x-axis has measure zero, 

The latter can be expressed as an integral over U, by use of the polar coordi
nate transformation. 

8 

a r 

g ------

Figure 17.5 

y 

X 
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EXAMPLE 5. Let B be the open set in R3 defined by the equation 

B= {{x,y,z) Ix> O and y > O and x2 +y2 +z2 < a 2 }. 

Chapter 4 

One commonly evaluates an integral over B, such as f8 x2 z, by the use of 
the spherical coordinate transformation, which is the transformation g : 
R3 - R3 defined by the equation 

g(p, <P, 6) = (psin ¢,cos 8, psin ¢,sin 8, pcos ¢,). 

Now det Dg = p2 sin¢,, as you can check. Thus det Dg is positive if O < ¢, < 1r 

and p ::/:, 0. The transformation g carries the open set 

A= {(p, ¢,, 8) I O < p < a and O < <P < 1r and O < 8 < 1r /2} 

in a one-to-one fashion onto B, as you can check. See Figure 17.6. Since 
det Dg > 0 on A, the change of variables theorem implies that 

L x2 z = 1 (psin<f,cos8)2 (pcos¢,)p2sin¢,. 

The latter can be evaluated by the Fubini theorem. 

8 

g .....------.... 

Figure 11.6 
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I. Check the computations made in Examples 3 and 5. 

2. If 
V = {(z,y, z) I z 2 + y2 + z2 < a2 and z > o}, 

EXERCISES 

use the spherical coordinate transformation to express Iv z as an integral 
over an appropriate set in (p, ¢,, 8) space. Justify your answer. 

3. Let U be the open set in R2 consisting of all x with llxll < 1. Let 
/(z, y) = 1/(z2 + y2) for (z, y)-::/:- 0. Determine whether / is integrable 
over U - 0 and over R2 - U; if so, evaluate. 

4. (a) Show that 

/. 
e-(:i:2+1?) = [!. e-z2]2, 

R2 R 

provided the first of these integrals exists. 

(b) Show the first of these integrals exists and evaluate it. 

5. Let B be the portion of the first quadrant in R2 lying between the hyper
bolas zy = 1 and zy = 2 and the two straight lines y = z and y = 4z. 
Evaluate Is z 2 'J/. [Hint: Set z = u/v and y = uv.] 

6. Let S be the tetrahedron in R3 having vertices (0,0,0), (1,2 13), (0,1,2), 
and (-1, 1, 1). Evaluate Is f, where f(x, y, z) = x + 2y - z. [Hint: Use 
a suitable linear transformation gas a change of variables.] 

7. Let O < a< b. If one takes the circle in the zz-plane of radius a centered 
at the point (b, O, 0), and if one rotates it about the z-axis, one obtains 
a surface called the torus. If one rotates the corresponding circular disc 
instead of the circle, one obtains a 3-dimensional solid called the solid 
torus. Find the volume of this solid torus. See Figure 17.7. [Hint: One 
can proceed directly, but it is easier to use the cylindrical coordinate 
transformation 

g( r, 8, z) = ( r cos 8, r sin 8, z). 

The solid torus is the image under g of the set of all (r, 8, z) for which 
(r - b)2 + z2 < a2 and O :$ 8 :$ 2,r.] 

z 

Figure 11. 1 
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§18. DIFFEOMORPHISMS IN Rn 

In order to prove the change of variables theorem, we need to obtain some 
fundamental properties of diffeomorphisms. This we do in the present section. 
Our first basic result is that the image of a compact rectifiable set under a 
diffeomorphism is another compact rectifiable set. And the second is that any 
diffeomorphism can be broken up locally into a composite of diffeomorphisms 
of a special type, called "primitive diffeomorphisms." 

We begin with a preliminary lemma. 

Lemma 18.1. Let A be open in Rn; let g : A -+ Rn be a function 
of class C 1 . If the subset E of A has measure zero in Rn, then the set 
g(E) also has measure zero in Rn. 

Proof. Step 1. Let f, 8 > 0. We first show that if a set S has measure 
zero in Rn, then S can be covered by countably many closed cubes, each of 
width less than 8, having total volume less than €. 

To prove this fact, it suffices to show that if Q is a rectangle 

in Rn, then Q can be covered by finitely many cubes, each of width less than 
8, having total volume less than 2v(Q). Choose A > 0 so that the rectangle 

has volume less than 2v(Q). 
Then choose N so that 1 / N is less than the smaller of 8 and A. Consider 

all rational numbers of the form m/N, where mis an arbitrary integer. Let 
Ci be the largest such number for which Ci < ai, and let di be the smallest 
such number for which di~ bi, Then [ai, bi] C [ci, di} C [ai - .X,bi + .X]. See 
Figure 18.1. Let Q' be the rectangle 

which contains Q and is contained in Q).. Then v(Q') < 2v(Q). Each of 
the component intervals [ci, di] of Q' is partitioned by points of the form 
m/N into subintervals oflength 1/N. Then Q' is partitioned into subrectan
gles that are cubes of width 1/N (which is less than 8); these subrectangles 
cover Q. By Theorem 10.4, the total volume of these cubes equals v(Q'). 
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Figure 18.1 

Step 2. Let C be a closed cube contained in A. Let 

IDg(x)I < M for x EC. 
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We show that if C has width w, then g( C) is contained in a closed cube in 
Rn of width ( nM)w. 

Let a be the center of C; then C consists of all points x of Rn such that 
Ix - al < w/2. Now the mean-value theorem implies that given x E C, there 
is a point c; on the line segment from a to x such that 

Y;(x)- Y;(a) = Dg;(c;) • (x - a). 

Then 
IY;(x) - g;(a)I < nlDg;(c; )I· jx - al< nM(w/2). 

It follows from this inequality that if x E C, then g(x) lies in the cube 
consisting of all y E Rn such that 

IY - g(a)I < nM(w/2). 

This cube has width (nM)w, as desired. 

Step 3. Now we prove the theorem. Suppose Eis a subset of A and E 
has measure zero. We show that g( E) has measure zero. 

Let C, be a sequence of compact sets whose union is A, such that Ci C 
Int Ci+1 for each i. Let Ek = C1i: n E; it suffices to show that g(Ek) has 
measure zero. Given £ > 0, we shall cover g(E1i:) by cubes of total volume 
less than€. 

Since Ck is compact, we can choose 8 > 0 so that the 8-neighborhood of 
C1: (in the sup metric) lies in Int C1:+1, by Theorem 4.6. Choose M so that 

IDg(x)I < M for x E C1:+1• 

Using Step 1, cover E1: by countably many cubes, each of width less than D, 
having total volume less than 

£' = €./(nMt. 
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g 
_..---......,_ 

Figure 18.2 
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Let Di, D2, ... denote those cubes that actually intersect E1:, Because Di 
has width less than 8, it is contained in C1:+1. Then IDg(x)I < M for x E Di, 
so that 9(Di) lies in a cube D~ of width nM(width Di), by Step 2. The cube 
D~ has volume 

Therefore the cubes DL which cover g(E1:), have total volume less than 
(nM)n€1 = €, as desired. See Figure 18.2. D 

EXAMPLE 1. Differentiability is needed for the truth of the preceding 
lemma. If g is merely continuous, then the image of a set of measure zero 
need not have measure zero. This fact follows from the existence of a contin
uous map / : [O, 1] -+ [o, 1]2 whose image set is the entire square [o, 1]2 ! It 
is called the Peano space-filling curve; and it is studied in topology. (See 
[M], for example.) 

Theorem 18.2. Let g : A -+ B be a diff eomorphism of class er, 
where A and B are open sets in nn. Let D be a compact subset of A, 
and let E = g(D). 

(a) We have 

g(Int D) = Int E and g(Bd D) = Bd E. 

(b) If D is rectifiable, so is E. 
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Proof. (a) The map g-1 is continuous. Therefore, for any open set U 
contained in A, the set g(U) is an open set contained in B. In particular, 
g(Int D) is an open set in nn contained in the set g(D) = E. Thus 

(1) g(Int D) C Int E. 

Similarly, g carries the open set (Ext D)nA onto an open set contained in B. 
Because g is one-to-one, the set g((Ext D) n A) is disjoint from g(D) = E. 
Thus 

(2) g((Ext D) n A) c Ext E. 

It follows that 

(3) g(Bd D) :::> Bd E. 

For let y E Bd E; we show that y E g(Bd D). The set E is compact, since D 
is compact and g is continuous. Hence E is closed, so it must contain its 
boundary pointy. Then y EB. Let x be the point of A such that g(x) = y. 
The point x cannot lie in Int D, by (1), and cannot lie in Ext D, by (2). 
Therefore x E Bd D, so that y E g(Bd D), as desired. See Figure 18.3. 

g -

Figure 18.3 

Symmetry implies that these same results hold for the map g- 1 : B--+ A. 
In particular, 

(1') 

(3') 

g- 1(Int E) C Int D, 

g-1(Bd E) :::> Bd D. 
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Combining (1) and (1') we see that g(Int D) = Int E; combining (3) and (3') 
gives the equation g(Bd D) = Bd E. 

(b) If D is rectifiable, then Bd D has measure zero. By the preceding 
lemma, g(Bd D) also has measure zero. But g(Bd D) = Bd E. Thus E is 
rectifiable. □ 

Now we show that an arbitrary diffeomorphism of open sets in Rn can 
be ''factored" locally into diffeomorphisms of a certain special type. This 
technical result will be crucial in the proof of the change of variables theorem. 

Definition. Let h : A -+ B be a diffeomorphism of open sets in Rn 
(where n > 2), given by the equation 

Given i, we say that h preserves the ith coordinate if hi(x) = X; for 
all x E A. If h preserves the i th coordinate for some i, then h is called a 
primitive diff eomorphism. 

Theorem 18.3. Let g : A - B be a diffeomorphism of open sets 
in Rn, where n > 2. Given a E A, there is a neighborhood Uo of a 
contained in A, and a sequence of diffeomorphisms of open sets in Rn, 

such that the composite h1: o • • • o h 2 o h 1 equals gl U0 , and such that each 
hi is a primitive diffeomorphism. 

Proof. Step 1. We first consider the special case of a linear transfor
mation. Let T : nn - Rn be the linear transformation T(x) = C • x, where 
C is a non-singular n by n matrix. We show that T factors into a sequence 
of primitive non-singular linear transformations. 

This is easy. The matrix C equals a product of elementary matrices, by 
Theorem 2.4. The transformation corresponding to an elementary matrix may 
either (1) switch two coordinates, or (2) replace the ith coordinate by itself plus 
a multiple of another coordinate, or (3) multiply the ith coordinate by a non
zero scalar. Transformations of types (2) and (3) are clearly primitive, since 
they leave all but the ith coordinate fixed. We show that a transformation of 
type (1) is a composite of transformation of types (2) and (3), and our result 
follows. Indeed, it is easy to check that the following sequence of elementary 
operations has the effect of exchanging rows i and j: 
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Row i Row j 

Initial state a b 

Replace (row i) by (row i) - (row j) a-b b 

Replace (row j) by (row j) + (row i) a-b a 

Replace (row i) by (row i) - (row j) -b a 

Multiply (row i) by -1 b a 

Step 2. We next consider the case where g is a translation. Lett : Rn -
Rn be the map t(x) = x + c. Then t is the composite of the translations 

t1 (x) = x + (0, Cz, ... , Cn), 

both of which are primitive. 

Step 3. We now consider the special case where a = 0 and g(O) = 0 
and Dg(O) = In. We show that in this case, g factors locally as a composite 
of two primitive diffeomorphisms. 

Let us write g in components as 

Define h : A - Rn by the equation 

h(x) = (g1(x), ... , gn-1(x), Xn). 
Now h(o) = 0, because 9i(O) = 0 for all i; and 

[ 
fJ(g1, .. • , 9n - i) / fJx] 

Dh(x) = . 
0 0 1 

Since the matrix fJ(g1, ... , Yn-1) / fJx equals the first n - 1 rows of the matrix 
Dg, and Dg(O) = In, we have Dh(O) = In· It follows from the inverse 
function theorem that h is a diffeomorphism of a neighborhood Vo of O with 
an open set V1 in Rn. See Figure 18.4. Now we define k : V1 - Rn by the 
equation 

k(y) =(Yi,• .. , Yn-1,9n(h- 1(y))). 

Then k(O) = 0 (since h- 1(0) = 0 and Un(O) = 0). Furthermore, 

Dk(y) = 

157 
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Figure 18,4 

Applying the chain rule, we compute 

D(gn o h- 1)(0) = Dgn(O) · Dh- 1(0) 

= Dgn(O). [Dh(o)r1 

= [O • • • 0 1] • In = [O .. • 0 1]. 

Chapter 4 

Hence Dk(O) = In. It follows that k is a diffeomorphism of a neighborhood 
W1 of o in nn with an open set W2 in Rn. 

Now let W0 = h- 1(W1). The diffeomorphisms 

h Ti: TXT 
Wo -W1 - vv2 

are primitive. Furthermore, the composite koh equals glWo, as we now show. 
Given x E Wo, let y = h(x). Now 

by definition. Then 

k(y) = (Y1, ... , Yn-1,9n(h-1(y))) by definition, 

= {g1(x), ... , 9n-1(x),gn(x)) by(*), 

= g(x). 
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g 

~ g 

Figure 18.5 
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B 

G) 

r.),.u(a) 

Vno 

Step 4. Now we prove the theorem in the general case. 
Given g : A--+ B, and given a E A, let C be the matrix Dg(a). Define 

diffeomorphisms t1 , t2, T: Rn -+ Rn by the equations 

t1(x) = X + a and t2(x) = X - g(a) and T(x) = c-1 · x. 

Let g equal the composite To t2 o go ti. Then g is a diffeomorphism of the 
open set t11(A) of nn with the open set T(t 2(B)) of nn. See Figure 18.5. It 
has the property that 

g(O) = o and Dg(o) = In; 

the first equation follows from the definition, while the second follows from 
the chain rule, since DT(o) = c- 1 and Dti = In for i = 1, 2. 

By Step 3, there is an open set W0 about O contained in t11(A) such 
that glW0 factors into a sequence of (two) primitive diffeomorphisms. Let 
W2 = g(Wo). Let 

Ao= t1(ftVo) and Bo= t21T- 1(W2 ). 

Then g carries Ao onto Bo, and gjA0 equals the composite 

t-1 - T-1 t-1 
Ao ...!....+ Wo .-!- W2 -+ r- 1(W2) -2....+ Bo. 

By Steps 1 and 2, each of the maps t11 and t21 and T- 1 factors into primitive 
transformations. The theorem follows. D 
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EXERCISES 

1. (a) If/ : R2 - R1 is of class C1 , show that / is not one-to-one. [Hint: 
If D/(x) = 0 for all x, then/ is constant. If D/(xo) ::/- 0, apply the 
implicit function theorem.] 

(b) If/ : R 1 

- R 2 is of class C1 , show that / does not carry R 1 onto R 2

. 

In fact, show that /(R 1

) contains no open set of R2

. 

*2. Prove a generalization of Theorem 18.3 in which the statement "h is 
primitive" is interpreted to mean that h preserves all but one coordinate. 
[Hint: First show that if a=O and g(O) = 0 and Dg(O) = In, then g can 
be factored locally as k oh, where 

h(x) = (g1 (x), ... , 9i-1 (x), Xi, Yi+1 (x), ... , 9n(x)) 

and k preserves all but the i th coordinate; and furthermore, h(O) = 
k(O) = 0 and Dh(O) = Dk(O) = In, Then proceed inductively.] 

3. Let A be open in Rm; let g : A - R". If S is a subset of A, we say that g 
satisfies the Lipschitz condition on S if the function 

A(x,y) = lg(x)-g(y)l/lx-yl 

is bounded for x, y in S and x ::/- y. We say that g is locally Lipschitz 
if each point of A has a neighborhood on which g satisfies the Lipschitz 
condition. 

(a) Show that if g is of class C 1 , then g is locally Lipschitz. 

(b) Show that if g is locally Lipschitz, then g is continuous. 

(c) Give examples to show that the converses of (a) and (b) do not hold. 

(d) Let g be locally Lipschitz. Show that if C is a compact subset of A, 
then g satisfies the Lipschitz condition on C. [Hint: Show there is a 
neighborhood V of the diagonal 6. in C x C such that A is bounded 
on V - 6..] 

4. Let A be open in R"; let g : A - R" be locally Lipschitz. Show that if 
the subset E of A has measure zero in R", then g(E) has measure zero 
in R". 

5. Let A and B be open in R"; let g : A - B be a one-to-one map carrying A 
onto B. 
(a) Show that (a) of Theorem 18.2 holds under assumption that g and 

g-1 are continuous. 

(b) Show that (b) of Theorem 18.2 holds under the assumption that g is 
locally Lipschitz and g-1 is continuous. 



§19. Proof of the Change of Variables Theorem 161 

§19. PROOF OF THE CHANGE OF VARIABLES THEOREM 

Now we prove the general change of variables theorem. We prove first the 
"only if' part of the theorem. It is stated in the following lemma: 

Lemma 19.1. Let g : A -+ B be a diffeomorphism of open sets in 
Rn. Then for every continuous function f : B -+ R that is integrable 
over B, the function (/ o g)I det Dgl is integrable over A, and 

Lt= L(/og)ldetDgj. 

Proof. The proof proceeds in several steps, by which one reduces the 
proof to successively simpler cases. 

Step 1. Let g : U -+ V and h : l/ -+ l.V be diffeomorphisms of open 
sets in Rn. We show that if the lemma holds for g and for h, then it holds for 
hog. 

Suppose / : W-+ R is a continuous function that is integrable over W. 
It follows from our hypothesis that 

fw f = [ (f o h)I det Dhl = L (f oho g)l(det Dh) o g[ I det Dgl; 

the second integral exists and equals the first integral because the lemma holds 
for h; and the third integral exists and equals the second integral because the 
lemma holds for g. In order to show that the lemma holds for hog, it suffices 
to show that 

l(det Dh) o YI I <let Dgl = I det D(h o g)j. 

This result follows from the chain rule. We have 

D(h o g)(x) = Dh(g(x)) · Dg(x), 

whence 
det D(h o g) = [(det Dh) o g] • [det Dg], 

as desired. 

Step 2. Suppose that for each x E A, there is a neighborhood U of x 
contained in A such that the lemma holds for the diffeomorphism g : U -+ V 
(where V = g(U)) and all continuous functions f : V -+ R whose supports 
are compact subsets of V. Then we show that the lemma holds for g. 

Roughly speaking, this statement says that if the lemma holds locally for 
g and functions f having compact support, then it holds for g and all /. 
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This is the place in the proof where we use partitions of unity. Write A 
as the union of a collection of open sets U a such that if Va = g( U a), then 
the lemma holds for the diffeomorphism g : U a --+ Va and all continuous 
functions / : Va -+ R whose supports are compact subsets of Va. The union 
of the open sets Va equals B. Choose a partition of unity { </>i} on B, having 
compact supports, that is dominated by the collection {Va}- We show that 
the collection { </>;, o g} is a partition of unity on A, having compact supports. 
See Figure 19.1. 

g ----

Figure 19.1 

f 

R 

First, we note that <Pi(g(x)) > 0 for x E A. Second, we show <Pio g has 
compact support. Let Ti= Support <Pi• The set g- 1 (Ti) is compact because 
Ti is compact and g- 1 is continuous; furthermore, <Pi o g vanishes outside 
g- 1(Ti). The closed set S1 = Support (</>;, o g) is contained in g- 1(T;,), so 
that S; is compact. Third, we check the local finiteness condition. Let x be 
a point of A. The point y = g(x) has a neighborhood W that intersects T; 
for only finitely many values of i. Then the set g- 1(W) is an open set about 
x that intersects Si for at most these same values of i. Fourth, we note that 

Thus{¢,, o g} is a partition of unity on A. 
Now we complete the proof of Step 2. Suppose f: B--+ R is continuous 

and J is integrable over B. We have 

J, f = f. [!, ¢,fl, 
B i::l B 
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by Theorem 16.5. Given i, choose a so that Ti C V0 . The function ¢,if is 
continuous on B and vanishes outside the compact set Ti. Then 

by Lemma 16.4. Our lemma holds by hypothesis for g : U0 --+ Va and the 
function ¢,if. Therefore 

1 ¢,;f = j (¢,i o g) (f o g)I det Dgl. 
Ve, Ua 

Since the integrand on the right vanishes outside the compact set S;, we can 
apply Lemma 16.4 again to conclude that 

l </>if= L (¢,; o g) (f o g)I det Dgl. 

We then sum over i to obtain the equation 

1 f = f [ h </>; o g) (f o g) I det D g I ] . 
B i=l A 

Since If I is integrable over B, equation ( *) holds if f is replaced throughout 
by 1/1- Since {¢,i o g} is a partition of unity on A, it then follows from 
Theorem 16.5 that (f o g)I det Dgl is integrable over A. We then apply(*) 
to the function / to conclude that 

L f = L (/ o g)\ det Dgl. 

Step 3. We show that the lemma holds for n = 1. 
Let g : A --+ B be a diffeomorphism of open sets in R1 . Given x E A, let I 

be a closed interval in A whose interior contains x; and let J = g(I). Now J is 
an interval in R1 and g maps Int I onto Int J. (See Theorems 17 .1 and 18.2.) 
Since x is arbitrary, it suffices by Step 2 to prove the lemma holds for the 
diffeomorphism g : Int I --+ Int J and any continuous function J : Int J -+ R 
whose support is a compact subset of Int J. That is, we wish to verify the 
equation 

I I= I (! o g)Jg'l-
l1nt J lint I 

This is easy. First, we extend f to a continuous function defined on J by 
letting it vanish on Bd J. Then ( **) is equivalent to the equation 
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in ordinary integrals. But this equation follows from Theorem 17 .1. 

Step 4. Let n > 1. In order to prove the lemma for an arbitrary diffeo
morphism g : A --+ B of open sets in Rn, we show that it suffices to prove it 
for a primitive diffeomorphism h : U--+ V of open sets in Rn. 

Suppose the lemma holds for all primitive diffeomorphisms in nn. Let 
g: A--+ B be an arbitrary diffeomorphism in Rn. Given x EA, there exists 
a neighborhood Uo of x and a sequence of primitive diffeomorphisms 

whose composite equals glU0. Since the lemma holds for each of the diffeo
morphisms hi, it follows from Step 1 that it holds for glUo. Then because x 
is arbitrary, it follows from Step 2 that it holds for g. 

Step 5. We show that if the lemma holds in dimension n - 1, it holds 
in dimension n. 

This step completes the proof of the lemma. 
In view of Step 4, it suffices to prove the lemma for a primitive diffeomor

phism h : U --+ V of open sets in Rn. For convenience in notation, we assume 
that h preserves the last coordinate. 

Let p E U; let q = h(p). Choose a rectangle Q contained in V whose 
interior contains q; let S = h- 1(Q). By Theorem 18.2, the map h defines a 
diffeomorphism of Int S with Int Q. Since p is arbitrary, it suffices by Step 2 
to prove that the lemma holds for the diffeomorphism h : Int S --+ Int Q and 
any continuous function /: Int Q--+ R whose support is a compact subset of 
Int Q. See Figure 19.2. 

Figure 19.2 
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Now (f o h)I <let Dhl vanishes outside a compact subset of Int S; hence 
it is integrable over Int S by Lemma 16.4. We need to show that 

1. f = f (f o h)I <let Dhl. 
Int Q J1nt S 

This is an equation involving extended integrals. Since these integrals ex
ist as ordinary integrals, it is by Theorem 15.4 equivalent to the corresponding 
equation in ordinary integrals. 

Let us extend f to Rn by letting it vanish outside Int Q, and let us define 
a function F: Rn --;. R by letting it equal (f oh)! <let Dhl on Int Sand vanish 
elsewhere. Then both f and F are continuous, and our desired equation is 
equivalent to the equation 

The rectangle Q has the form Q = D x I, where D is a rectangle in 
Rn-l and I is a closed interval in R. Since S is compact, its projection on the 
subspace Rn-l x O is compact and thus contained in a set of the form E x 0, 
where E is a rectangle in Rn-l _ Because h preserves the last coordinate, the 
set S is contained in the rectangle E x I. See Figure 19.3. 

I 
t 

[ • E X 

Ut X t 

] 

Figure 19.3 

[ • D y 
] 

Because F vanishes outside S, our desired equation can be written in the 
form 

{ I= [ F, 
JQ JExl 
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which by the Fubini theorem is equivalent to the equation 

I 1 J (y, t) = / 1 F(x, t). 
lteI yED lteI xeE 

It suffices to show the inner integrals are equal. This we now do. 
The intersections of U and V with nn-l x t are sets of the form U, x t 

and Vi x t, respectively, where U, and Vi are open sets in nn-1. Similarly, 
the intersection of S with nn-l x t has the form S, x t, where S, is a compact 
set in nn- 1. Since F vanishes outside S, equality of the "inner integrals" is 
equivalent to the equation 

f f(y,t)=J. F(x,t), 
}yED xes, 

and this is in turn equivalent by Lemma 16.4 to the equation 

f /(y, t) = J. F(x, t). 
Jyev, xeu, 

This is an equation in ( n - 1 )-dimensional integrals, to which the induction 
hypothesis applies. 

The diffeomorphism h : U --1- V has the form 

h(x, t) = (k(x, t), t) 

for some C1 function k: U --1- nn-1. The derivative of h has the form 

Dh = [8k/8x 8k/8t], 
0 • • • 0 1 

so that detDh = det8k/8x. For fixed t, the map x-+ k(x,t) is a C1 map 
carrying U, onto Vi in a one-to-one fashion. Because det 8k/ 8x = det Dh 1-
0, this map is in fact a diffeomorphism of open sets in nn-1. 

We apply the induction hypothesis; we have, for fixed t, the equation 

J. f(y, t) = f. I (k(x, t), t)I det 8k/ ax 1. 
yEV, xeu, 

For x E U,, the integrand on the right equals 

I (h(x, t)) I det Dhl = F(x, t). 

The lemma follows. □ 

We now prove the "if' part of the change of variables theorem. 
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Lemma 19.2. Let g: A - B be a diffeomorphism of open sets in 
Rn; let f: B--+ R be continuous. If (f o g)I det DgJ is integro.ble over A, 
then f is integrable over B. 

Proof. We apply the lemma just proved to the diffeomorphism g- 1 

B --+ A. The function F = (f o g)I det Dgl is continuous on A, and is 
integrable over A by hypothesis. It follows from Lemma 19.1 that the function 

(F o g- 1 )I det Dg- 11 

is integrable over B. But this function equals f. For if g(x) == y, then 

by Theorem 7 .4, so that 

(F o g- 1 )(y) · l(det D(g- 1))(y)I = F(x) • 11/det Dg(x)I = /(y). D 

EXAMPLE 1. If it happens that both integrals in the change of variables the
orem exist a.s ordinary integrals, then the theorem implies that these two ordi
nary integrals are equal. However, it is possible for only one of these integrals, 
or neither, to exist as an ordinary integral. Consider, for instance, Exam
ple 2 of §17. The change of variables theorem, applied to the diffeomorphism 
g: (-1r/2,1r/2)-. (-1, 1) given by g(x) = cosx, implies that 

1 1/(1 - y2)1/2 = 1 l. 
(-1,1) (-7r/2,rr/2) 

Here the integral on the right exists as an ordinary integral, but the integral 
on the left does not. 

EXERCISES 

1. Let A be the region in R2 bounded by the curve x 2 - xy + 2y2 = 1. 
Express the integral JA xy as an integral over the unit ball in R2 centered 
at O. [Hint: Complete the square.] 

2. (a) Express the volume of the solid in R3 bounded below by the surface 
z = x 2 + 2y2, and above by the plane z = 2x + 6y + l, as the integral of 
a suitable function over the unit ball in R2 centered at 0. 

(b) Find this volume. 

3. Let 7rk : R" -. R be the kth projection function, defined by the equa
tion 7rk(x) = Xk. Let S be a rectifiable set in Rn with non-zero volume. 
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The centroid of Sis defined to be the point c(S) of Rn whose kth coor
dinate, for each k, is given by the equation 

We say that Sis symmetric with respect to the subspace X1c = 0 of Rn 
if the transformation 

carries S onto itself. In this case, show that c1c(S) = 0. 

4. Find the centroid of the upper half-ball of radius a in R3. (See Exercise 2 
of §17.) 

5. Let A be an open rectifiable set in Rn-1 . Given the point pin Rn with 
Pn > O, let S be the subset of R" defined by the equation 

S = {x I x = {1 -t)a + tp, where a EA x O and O < t < 1}. 

Then S is the union of all open line segments in R:_joining p to points 
of A x O; its closure is called the cone with base A x O and vertex p. 
Figure 19.4 illustrates the case n = 3. 

(a) Define a diffeomorphism g of Ax (0, 1) with S. 
(b) Find v(S) in terms of v(A). 

*(c) Show that the centroid c(S) of S lies on the line segment joining 
c(A) and p; express it in terms of c(A) and p. 

p 

Figure 19.4 

*6. Let B"(a) denote the closed ball of radius a in R", centered at 0. 

(a) Show that 

for some constant An. Then An= v(B"(l)). 
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(b) Compute A1 and A2. 
(c) Compute An in terms of An-2• 

(d) Obtain a formula for An, [Hint: Consider two cases, according as n 
is even or odd.] 

*7. (a) Find the centroid of the upper half-ball 

in terms of An and An-1 and a, where An= v(B"(l)). 

(b) Express c(B+(a)) in terms of c{n:-2(a)). 

§20. APPLICATIONS OF CHANGE OF VARIABLES 

The meaning of the determinant 

We now give a geometric interpretation of the determinant function. 

Theorem 20. 1. Let A be an n by n matrix. Let h : R" --+ R" be 
the linear transformation h(x) = A• x. Let S be a rectifiable set in R", 
and let T = h(S). Then 

v(T) = I det A I· v(S). 

Proof. Consider first the case where A is non-singular. Then his a dif
feomorphism of R" with itself; h carries Int S onto Int T; and Tis rectifiable. 
We have 

v(T) = v(Int T) = { 1 = f I det Dhl 
lint T l1nt S 

by the change of variables theorem. Hence 

v(T) = { I <let A I = I det A I· v(S). 
lints 

Consider now the case where A is singular; then det A = 0. We show 
that v(T) = 0. Since S is bounded, so is T. The transformation h carries R" 
onto a linear subspace V of R" of dimension p less than n, which has measure 
zero in Rn, as you can check. Then Tis closed and bounded and has measure 
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zero in nn. The function lT is continuous and vanishes outside T; hence the 
integral JT l exists and equals 0. 0 

-
This theorem gives one interpretation of the number I det A I; it is the 

factor by which the linear transformation h(x) = A• x multiplies volumes. 
Here is another interpretation. 

Definition. Let a 1, ... , ak be independent vectors in Rn. We define 
the k-dimensional parallelopiped P = P(a1, ... , ak) to be the set of all x 
in Rn such that 

X = C1a1 + ···+Ciak 

for scalars Ci with 0 < ci < l. The vectors a1, ... , &k are called the edges 
of P. 

A few sketches will convince you that a 2-dimensional parallelopiped is 
what we usually call a "parallelogram," and a 3-dimensional one is what we 
usually call a "parallelopiped." See Figure 20.1, which pictures parallelograms 
in R2 and R3 and a 3-dimensional parallelopiped in R3. 

Figure 20.1 

We eventually wish to define what we mean by the "k-dimensional vol
ume" of a k-parallelopiped in nn. In the case k = n, we already have a notion 
of volume, as defined in §14. It satisfies the following formula: 

Theorem 20.2. Let a1, ... , &n be n independent vectors in nn. 
Let A = [a1 . . . an] be the n by n matrix with columns a1, ... , an. Then 

v(P(a1, ... , an)) = I det A 1-

Proof. Consider the linear transformation h : Rn --+ Rn given by 
h(x) = A • x. Then h carries the unit basis vectors e1, ... , en to the vec
tors a1, ... , an, since A • e; = a; by direct computation. Furthermore, h 
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carries the unit cube Jn = [O, l]n onto the parallelopiped 1'(a1, ... , an)- By 
the preceding theorem, 

v(1'(a1, ... , an)) = I det A I· v(In) = I det A I- D 

EXAMPLE 1. In calculus, one studies the 3-dimensional version of this for
mula. One learns that the volume of the parallelopiped with edges a, b, c is 
given (up to sign) by the "triple scalar product" 

a• (bx c) = det [a b c]. 

(We write a, b, and c as column matrices here, as usual.) One learns also that 
the sign of the triple scalar product depends on whether the triple a, b, c 
is "right-handed" or "left-handed." We now generalize this second notion to 
Rn, and indeed, to an arbitrary finite-dimensional vector space V. 

Definition. Let V be an n-dimensional vector space. An n-tuple 
(a1 , ... , an) of independent vectors in V is called an n-frame in V. In 
Rn, we call such a frame right-handed if 

we call it left-handed otherwise. The collection of all right-handed frames in 
Rn is called an orientation of Rn; and so is the collection of all left-handed 
frames. More generally, choose a linear isomorphism T : Rn --+ V, and define 
one orientation of V to consist of all frames of the form (T(ai), ... , T(an)) 
for which (a1, ... , an) is a right-handed frame in Rn, and the other orientation 
of V to consist of all such frames for which (a1, ... , an) is left-handed. Thus 
V has two orientations; each is called the reverse, or the opposite, of the 
other. 

It is easy to see that this notion is well-defined (independent of the choice 
of T). Note that in an arbitrary n-dimensional vector space, there is no well
defined notion of "right-handedt" although there is a well-defined notion of 
orientation. 
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EXAMPLE 2. In R1 , a frame consists of a single non-zero number; it is right
handed if it is positive, and left-handed if it is negative. In R2, a frame (a1 , a 2 ) 

is right-handed if one must rotate a 1 in a counterclockwise direction through 
an angle less than 7r to make it point in the same direction as a 2 • (See the 
exercises.) In R3, a frame (a1,a2,83) is right-handed if curling the fingers of 
one's right hand in the direction from a1 to a2 makes one's thumb point in 
the direction of 8 3 . See Figure 20.2. 

a 

Figure 20.2 

One way to justify this statement is to note that if one has a frame 
(a1 (t), a2(t), a3(t)) that varies continuously as a function oft for O S t S 1, 
and if the frame is right-handed when t = 0, then it remains right-handed for 
all t. For the function det [a1 a 2 8 3 ] cannot change sign, by the intermediate
value theorem. Then since the frame (e1, e2, e3) satisfies the "curled right
hand rule" as well as the condition det [e1 e2 e3] > O, so does the frame 
corresponding to any other position of the "curled right hand" in 3-dimensional 
space. 

We now obtain another interpretation of the sign of the determinant. 

Theorem 20.3. Let C be a non-singular n by n matrix. Let 
h: Rn - Rn be the linear transformation h(x) = C · x. Let (a1, ... , an) 

be a frame in nn. If det C > 0, the the frames 

(a, ... , an) and (h(ai), ... , h(an)) 

belong to the same orientation of Rn; if det C < O, they belong to op
posite orientations of nn. 

If det C > O, we say h is orientation-preserving; if det C < 0, we 
say h is orientation-reversing. 

Proof. Let bi = h(ai) for each i. Then 

C • [a1 • • • an] = [b1 • • • bn], 
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so that 

If det C > 0, then det [a1 • • • an] and det [b1 • • • bn] have the same sign; if 
det C < 0, they have opposite signs. 0 

Invariance of volume under isometries 

Definition. The vectors a1 , ... , a1: of Rn are said to form an orthog
onal set if (ai, a;) = 0 for i ¢ j. They form an orthonormal set if 
they satisfy the additional condition (ai, ai) = 1 for all i. If the vectors 
a1, ... , a1: form an orthogonal set and are non-zero, then the vectors a1 /lla1II, 
... , a1: /lla1: II form an orthonormal set. 

An orthogonal set of non-zero vectors a 1 , ... , a1: is always independent. 
For, given the equation 

one takes the dot product of both sides with a, to obtain the equation 
di(a;,ai) = 0, which implies (since ai ¢ 0) that d; = 0. 

An orthogonal set of non-zero vectors in Rn that consists of n vectors is 
thus a basis for Rn. The set e1, ... , en is one such basis for Rn, but there are 
many others. 

Definition. An n by n matrix A is called an orthogonal matrix if 
the columns of A form an orthonormal set. This condition is equivalent to 
the matrix equation 

as you can check. 

If A is orthogonal, then A is square and A tr is a left inverse for A; it 
follows that Atr is also a right inverse for A. Thus A is an orthogonal matrix 
if and only if A is non-singular and A tr = A- 1. 

Note that if A is orthogonal, then det A= ±1. For 

(det A)2 = (det Atr)(det A)= det(Atr ·A)= det In= 1. 

The set of orthogonal matrices forms what is called, in modern algebra, 
a group. That is the substance of the following theorem: 
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Theorem 20.4. Let A, B, C be orthogonal n by n matrices. Then: 
(a) A • B is orthogonal. 
(b) A • ( B • C) = ( A • B) · C. 
(c) There is an orthogonal matrix In such that A• In = In ·A= A 

for all orthogonal A. 
(d) Given A, there is an orthogonal matrix A- 1 such that A-A-1 = 

A- 1 -A=ln. 

Proof. To check ( a), we compute 

(A. B)tr. (A. B) = (Btr. Atr). (A. B) 

- Btr B-1 - • - n• 

Condition (b) is immediate and (c) follows from the fact that In is orthogonal. 
To check (d), we note that since Atr equals A-1, 

In= A. Atr = (Atr)tr. Atr = (A-l)tr. A-1. 

Thus A- 1 is orthogonal, as desired. 0 

Definition. The linear transformation h : Rn -+ Rn given by 

h(x) = A ·x 

is called an orthogonal transfor111atio11 if A is an orthogonal matrix. This 
condition is equivalent to the requirement that h carry the basis ei, ... , en 
·:or Rn to an orthonormal basis for Rn. 

Definition. Let h: Rn - R". We say that his a (euclidean) isometry 
if 

llh(x) - h(y)II = llx - YII 
for all x,y E Rn. Thus an isometry is a map that preserves euclidean dis
tances. 

Theorem 20.5. Leth: Rn - nn be a map such that h(0) = 0. 

( a) The map h is an isometry if and only if it preserves dot products. 
(b) The map h is an isometry if and only if it is an orthogonal 

trans/ ormation. 

Proof. ( a) Given x and y, we compute: 

(1) llh(x) - h(y)ll2 = (h(x), h(x)) - 2(h(x), h(y)) + (h(y), h(y)) 

(2) [Ix - yll2 = (x, x) - 2(x, y) + (y, y). 
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If h preserves dot products, then the right sides of (1) and (2) are equal; 
thus h preserves euclidean distances as well. Conversely, suppose h preserves 
euclidean distances. Then in particular, for all x, 

llh(x) - h(O)II = llx - OIi, 

so that llh(x)II = llxll. Then the first and last terms on the right side of (1) 
are equal to the corresponding terms on the right side of (2). Furthermore, 
the left sides of (1) and (2) are equal by hypothesis. It follows that 

(h(x),h(y)) = (x,y), 

as desired. 

(b) Let h(x) = A · x, where A is orthogonal; we show h is an isometry. 
By (a), it suffices to show h preserves dot products. Now the dot product of 
h(x) and h(y) can be expressed as the matrix product 

h(x)tr • h(y) 

if h(x) and h(y) are written as column matrices (as usual). We compute 

h(x/r · h(y) = (A· xtr · (A • y) 

Thus h preserves dot products, so it is an isometry. 
Conversely, let h be an isometry with h(O) = 0. Let ai be the vector 

a, = h(e,) for all i; let A be the matrix A = [a1 • • • an]. Since h preserves 
dot products by (a), the vectors a1, ... , &n are orthonormal; thus A is an 
orthogonal matrix. We show that h(x) = A• x for all x; then the proof is 
complete. 

Since the vectors Bi form a basis for Rn, for each x the vector h(x) can 
be written uniquely in the form 

n 

h( X) = L Oj ( X )Bi ' 
i=l 

for certain real-valued functions ai(x) of x. Because the &i are orthonormal, 

(h(x), a;} = a; (x) 

for each j. Because h preserves dot products, 

(h(x),a;} = (h(x),h(e;)) = {x,e;} = X; 
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for all j. Thus O'.j (x) = x;, so that 

= A ·X. □ 

Theorem 20.6. Let h : Rn --+ Rn. Then h is an isometry if and 
only if it equals an orthogonal transformation followed by a translation, 
that is, if and only if h has the form 

h(x) = A · x + p, 

where A is an orthogonal matrix. 

Proof. Given h, let p = h(0), and define k(x) = h(x) - p. Then 

llk(x) - k(y)II = llh(x) - h(y)II, 

by direct computation. Thus k is an isometry if and only if h is an isometry. 
Since k(O) = O, the map k is an isometry if and only if k(x) = A• x, 

where A is orthogonal. This in turn occurs if and only if h(x) = A-x+p. 0 

Theorem 20. 7. Let h : Rn --+ Rn be an isometry. If S is a rectifi-
able set in Rn, then the set T = h( S) is rectifiable, and v(T) = v( S). 

Proof. The map h is of the form h(x) = A • x + p, where A is 
orthogonal. Then Dh(x) = A, and it follows from the change of variables 
theorem that 

v(T) = I det Al· v(S) = v(S). □ 
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EXERCISES 

1. Show that if h is an orthogonal transformation, then h carries every 
orthonormal set to an orthonormal set. 

2. Find a linear transformation h : Rn - Rn that preserves volumes but is 
not an isometry. 

3. Let V be an arbitrary n-dimensional vector space. Show that the two 
orientations of V are well-defined. 

4. Consider the vectors ai in R3 such that 

Let V be the subspace of R3 spanned by a 1 and a2. Show that~ and a 4 
also span V, and that the frames (a 1 ,a2 ) and (a3,a4) belong to opposite 
orientations of V. 

5. Given fJ and ¢, let 

a1 = (cos 8, sinfJ) and a2 = (cos(0 + ¢), sin(B + ¢)). 

Show that (a1,a2) is right-handed if O < ¢ < 1r, and left-handed if 
-1r < ¢ < 0. What happens if¢ equals O or 1r? 





Manifolds 

We have studied the notion of volume for bounded subsets of euclidean space; 
if A is a bounded rectifiable set in Rk, its volume is defined by the equation 

v(A) = 11. 

When k = 1, it is common to call v(A) the length of A; when k = 2, it is 
common to call v( A) the area of A. 

Now in calculus one studies the notion of length not only for subsets of 
R1

, but also for smooth curves in R2 and R3

. And one studies the notion of 
area not only for subsets of R2

, but also for smooth surfaces in R3

. In this 
chapter, we introduce the k-dimensional analogues of curves and surfaces; 
they are called k-manifolds in Rn. And we define a notion of k-dimensional 
volume for such objects. We also define what we mean by the integral of 
a scalar function over a k-manifold with respect to k-volume, generalizing 
notions defined in calculus for curves and surfaces. 

179 



180 Manifolds Chapter 5 

§21. THE VOLUME OF A PARALLELOPIPEO 

We begin by studying parallelopipeds. Let P be a k-dimensional parallelop
iped in Rn, with k < n. We wish to define a notion of k-dimensional vol
ume for P. (Its n-dimensional volume is of course zero, since it lies in a 
k-dimensional subspace of Rn, which has measure zero in Rn.) How shall we 
proceed? There are two conditions that it is reasonable that such a volume 
function should satisfy. We know that an orthogonal transformation of Rn 
preserves n-dimensional volume; it is reasonable to require that it preserve k
dimensional volume as well. Second, if the parallelopiped happens to lie in the 
subspace Rk x O of Rn, then it is reasonable to require that its k-dimensional 
volume agree with the usual notion of volume for a k-dimensional parallelop
iped in Rk. These two "reasonable" conditions determine k-dimensional vol
ume completely, as we shall see. 

We begin with a result from linear algebra which may already be familiar 
to you. 

Lemma 21.1. Let W be a linear subspace of Rn of dimension k. 
Then there is an orthonormal basis for Rn whose first k elements form 
a basis for W. 

Proof. By Theorem 1.2, there is a basis a1, ... , an for R" whose first k 
elements form a basis for W. There is a standard procedure for forming from 
these vectors an orthogonal set of vectors b1, ... , bn such that for each i, the 
vectors bi, ... , bi span the same space as the vectors a 1 , ... , ai. It is called 
the Gram-Schmidt process; we recall it here. 

Given a1, ... , an, we set 

b1 = ai, 

h2 = a2 - A21b1, 

and for general i, 

where the Aij are scalars yet to be specified. No matter what these scalars are, 
however, we note that for each j the vector a1 equals a linear combination of 
the vectors b1, ... , b1. Furthermore, for each j the vector bj can be written 
as a linear combination of the vectors a1, ... , ai. (The proof proceeds by 
induction.) These two facts imply that, for each i, a1, ... , ~ and bi, ... , bi 
span the same subspace of R0. It also follows that the vectors b 1, ... , bn are 
independent, for there are n of them, and they span Rn as we have just noted. 
In particular, none of the bi can equal 0. 
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Now we note that the scalars Ai; may in fact be chosen so that the vec
tors bi are mutually orthogonal. One proceeds by induction. If the vectors 
b1, ... , bi-1 are mutually orthogonal, one simply takes the dot product of 
both sides of the equation for bi with each of the vectors b; for j = 1, ... , i-1 
to obtain the equation 

Since b; f:. 0, there is a (unique) value of Ai; that makes the right side of 
this equation vanish. With this choice of the scalars Ai;, the vector bi is 
orthogonal to each of the vectors b1, ... , bi-1• 

Once we have the non-zero orthogonal vectors bi, we merely divide each 
by its norm llbill to find the desired orthonormal basis for R". D 

Theorem 21.2. Let W be a k-dimensional linear subspace of Rn. 
There is an orthogonal transformation h: R"-+ R" that carries W onto 
the subspace Rk x O of R". 

Proof. Choose an orthonormal basis bi, ... , bn for Rn such that the 
first k basis elements bi, ... , bk form a basis for W. Let g : Rn -+ R" be 
the linear transformation g(x) = B · x, where Bis the matrix with successive 
columns b1, ... , bn, Then g is an orthogonal transformation, and g(e;) = bi 
for all i. In particular, g carries Rk x 0, which has basis e1, ... , ek, onto W. 
The inverse of g is the transformation we seek. D 

Now we obtain our notion of k-dimensional volume. 

Theorem 21.3. There is a unique function V that assigns, to 
each k-tuple (x1, ... , Xk) of elements of R", a non-negative number 
such that: 

(1) If h: Rn-+ nn is an orthogonal transformation, then 

(2) If Y1, ... , Yk be.long to the subspace Rk x O of Rn, so that 

for zi E Rk, then 
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The function V vanishes if and only if the vectors xi, ... , x1: are de
pendent. It satisfies the equation 

V(x1, ... , X1:) = [det(Xtr • X)]1l2, 

where X is the n by k matrix X = [x1 • • • x1:]. 

We often denote V(x1, ... , x1:) simply by V(X). 

Proof. Given X = (x1 • • • xi:], define 

F(X) = det(Xtr • X). 

Step 1. If h : R" -+ R" is an orthogonal transformation, given by the 
equation h(x) =A• x, where A is an orthogonal matrix, then 

F(A · X) = det((A. X)tr. (A. X)) 

= det(Xtr · X) = F(X). 

Furthermore, if Z is a k by k matrix, and if Y is then by k matrix 

then 

F(Y) = det([Z'' OJ· [ !] ) 
= det(ztr • Z) = det2 Z. 

Step 2. It follows that F is non-negative. For given x1, ... , x1: in R", 
let W be a k-dimensional subspace of Rn containing them. (If the x; are 
independent, Wis unique.) Let h(x) = A •X be an orthogonal transformation 
of R" carrying W onto the subspace Rk x O. Then A • X has the form 

A-X = [ !] , 
so that F(X) = F(A . X) = det2 Z > 0. Note that F(X) = O if and only 
if the columns of Z are dependent, and this occurs if and only if the vectors 
X1, ... , x1: are dependent. 

Step 3. Now we define V(X) = (F(X)) 112. It follows from the com
putations of Step 1 that V satisfies conditions (1) and (2). And it follows 
from the computation of Step 2 that V is uniquely characterized by these two 
conditions. □ 

Definition. If x1, ... , Xk are independent vectors in R", we define the 
k-dimensional volume of the parallelopiped P = P(x1 , ... , x1:) to be the 
number V(x1, ... , x1:), which is positive. 
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EXAMPLE 1. Consider two independent vectors a and b in R3 ; let X be 
the matrix X = [a bJ. Then V(X) is the area of the parallelogram with 
edges a and b. Let fJ be the angle between a and b, defined by the equation 
(a, b) = llall 11h11 cos fJ. Then 

(V(X)) 2 = det(X'r, X) 

= det [ llall2 (a, b)l 
(b,a) llbll2 

= llalJ2 llbll2 (1 - cos2 fJ) = llall2 llbll2 sin2 (J. 

Figure 21.1 shows why this number is interpreted in calculus as the square of 
the area of the parallelogram with edges a and b, 

-------------, 
I 
L---llbll sin (J 

I 
I 

a 

Figure 21.1 
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I 

I 
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In calculus one studies another formula for the area of the parallelogram 
with edges a and b. If a x b is the cross product of a and b, defined by the 
equation 

then one learns in calculus that the number Ila x bll equals the area of 1'(a, b). 
This is justified by verifying directly that 

Often this verification is left as an "exercise for the reader." Some exercise! 

Just as there are for a parallelogram in R3, there are for a k-parallelopiped 
in R" two different formulas for its k-dimensional volume. The first is the 
formula given in the preceding theorem. It is very convenient for theoretical 
purposes, but sometimes not very pleasant for computational purposes. The 
second, which is a generalization of the cross-product formula just discussed, 
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is often more convenient to use in practice. We derive it now; it will be used 
in some of the examples and exercises. 

Definition. Let xi, ... , Xk be vectors in R" with k < n. Let X be the 
matrix X = [x1 • • • Xk]- If J = (i1, ... , ik) is a k-tuple of integers such that 
1 < i1 < i2 < • · • < ik < n, we call J an ascending k-tuple from the set 
{1, ... , n }, and we denote by 

the k by k submatrix of X consisting of rows i1, ... , ik of X. 

More generally, if J is any k-tuple of integers from the set {1, ... , n}, 
not necessarily distinct nor arranged in any particular order, we use this same 
notation to denote the k by k matrix whose successive rows are rows ii, ... , ik 

of X. It need not be a submatrix of X in this case, of course. 

*Theorem 21.4. Let X be an n by k matrix with k < n. Then 

V(X) = [Ldet2 X 1] 1l 2, 

(/) 

where the symbol[/] indicates that the summation extends over all as
cending k-tuples from the set {1, ... , n}. 

This theorem may be thought of as a Pythagorean theorem for k-volume. 
It states that the square of the volume of a k-parallelopiped P in R" is equal 
to the sum of the squares of the volumes of the k-parallelopipeds obtained by 
projecting P onto the various coordinate k-planes of Rn. 

Proof. Let X have size n by k. Let 

F(X) = det(Xtr • X) and G(X) = L det2 X1, 
(/) 

Proving the theorem is equivalent to showing that F(X) = G(X) for all X. 
Step 1. The theorem holds when k = 1 or k = n. If k = 1, then X is a 

column matrix with entries Ai, ... , An, say. Then 

If k = n, the summation in the definition of G has only one term, and 

F(X) = det2 X = G(X). 
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Step 2. If X = [x1 • • • Xk] and the Xi are orthogonal, then 

F(X) = llx11l2llx21l2 • • • llxkll 2• 
The general entry of _,,ytr • X is x}r • Xj, which is the dot product of Xi and 
Xj. Thus if the Xi are orthogonal, Xtr · X is a diagonal matrix with diagonal 
entries llxdl 2• 

Step 3. Consider the following two elementary column operations, where 
j # f: 

(1) Exchange columns j and l. 
(2) Replace column j by itself plus c times column l. 

We show that applying either of these operations to X does not change the 
values of F or G. 

Given an elementary row operation, with corresponding elementary ma
trix E, then E • X equals the matrix obtained by applying this elementary 
row operation to X. One can compute the effect of applying the correspond
ing elementary column operation to X by transposing X, premultiplying 
by E, and then transposing back. Thus the matrix obtained by applying an 
elementary column operation to X is the matrix 

(E. xtr)tr = X. Etr_ 

It follows that these two operations do not change the value of F. For 
F()(_ · Etr) = det(E . Xtr. X . Etr) 

= ( <let E) ( det(Xtr · X)) ( det Etr) 

= F(X), 
since <let E = ±l for these two elementary operations. 

Nor do these operations change the value of G. Note that if one applies 
one of these elementary column operations to X and then deletes all rows 
but i1, ... , ik, the result is the same as if one had first deleted all rows but 
i1, ... , ik and then applied the elementary column operation. This means 
that 

We then compute 

G(X · Etr) = E det2{X · Etr)J 
[/) 

= L det2(X1 • Etr) 
[/) 

= L (det2 X1)(det2 Etr) 
[/) 

= G(X). 
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Step 4. In order to prove the theorem for all matrices of a given size, 
we show that it suffices to prove it in the special case where all the entries of 
the bottom row are zero except possibly for the last entry, and the columns 
form an orthogonal set. 

Given X, if the last row of X has a non-zero entry, we may by elementary 
operations of the specified types bring the matrix to the form 

[ * ] D= ' o ... o.x 

where A f. 0. If the last row of X has no non-zero entry, it is already of 
this form, with A = 0. One now applies the Gram-Schmidt process to the 
columns of this matrix. The first column is left as is. At the general step, the 
lh column is replaced by itself minus scalar multiples of the earlier columns. 
The Gram-Schmidt process thus involves only elementary column operations 
of type (2). And the zeros in the last row remain unchanged during the 
process. At the end of the process, the columns are orthogonal, and the 
matrix still has the form of D. 

Step 5. We prove the theorem, by induction on n. 
If n = 1, then k = 1 and Step 1 applies. If n = 2, then k = 1 or k = 2, 

and Step 1 applies. Now suppose the theorem holds for matrices having fewer 
than n rows. We prove it for matrices of size n by k. In view of Step 1, we 
need only consider the case 1 < k < n. In view of Step 4, we may assume 
that all entries in the bottom row of X, except possibly for the last, are zero, 
and that the columns of X are orthogonal. Then X has the form 

0 

the vectors b; of Rn-l are orthogonal because the columns of X are orthog
onal vectors in R". For convenience in notation, let B and C denote the 
matrices 

B = [b1 • • • b1:] and C = [h1 • • • h1:-d-

We compute F(X) in terms of B and C as follows: 

F(X) = llb1ll 2 

• • • llb1c-111 2 

( llb1:ll 2 + A2

) by Step 2, 

= F(B) + .X 2 F(C). 

To compute G(X), we break the summation in the definition of G(X) 
into two parts, according to the value of i1:, We have 
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Now if J = (i1, ... , ik) is an ascending k-tuple with ik < n, then X1 = B1. 
Hence the first summation in ( *) equals G(B). On the other hand, if ik = n, 
one computes 

detX(ii, ... , it- 1 ,n) = ±.\detC(ii, ... , ik-1). 

It follows that the second summation in (*) equals .\2G(C). Then 

G(X) = G(B) + .\2G(C). 

The induction hypothesis tells us that F(B) = G(B) and F(C) = G(C). It 
follows that F(X) = G(X). □ 

1. Let 

(a) Find X'r. X. 
(b) Find V(X). 

2. Let x1 .... , x1c be vectors in Rn. Show that 

V(x1, ... , >.xi, ... , x1c) = l>.IV(x1, ... , x1c), 

EXERCISES 

3. Let h : Rn - Rn he the function h(x) = >.x. If P is a k-dimensional 
parallelopiped in Rn, find the volume of h(P) in terms of the volume of 1'. 

4. (a) Use Theorem 21.4 to verify the last equation stated in Example 1. 

(b) Verify this equation by direct computation(!). 

5. Prove the following: 
Theorem. Let W be an n-dimensional vector space with an inner 
product. Then there exists a unique real-valued function V(x1, ... , 
x1c) of k-tuples of vectors of W such that: 

(i) Exchanging Xi with x; does not change the value of V. 
(ii) Replacing Xi by x, + ex, (for j #:- i) does not change the value 

ofV. 
(iii) Replacing Xi by >.xi multiplies the value of V by l>.I. 

(iv) If the x, are orthonormal, then V(x1, ... , x1c) = I. 

Proof. (a) Prove uniqueness. [Hint: Use the Gram-Schmidt process.] 

(h) Prove existence. [Hint: If/ : W - Rn is a linear transformation 
that carries an orthonormal basis to an orthonormal basis, then / 
carries the inner product on W to the dot product on Rn.] 
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§22. THE VOLUME OF A PARAMETRIZED-MANIFOLD 

Now we define what we mean by a parametrized-manifold in R", and we 
define the volume of such an object. This definition generalizes the definitions 
given in calculus for the length of a parametrized-curve, and the area of a 
parametrized-surface, in R3 . 

Definition. Let k < n. Let A be open in Rk, and let a : A -+ R" be a 
map of class Cr(r > 1). The set Y = a(A), together with the map a, con
stitute what is called parametrized-manifold, of dimension k. We denote 
this parametrized-manifold by Ya; and we define the (k-dimensional) volurne 
of Ya by the equation 

v(Ya) = 1 V(Da ), 

provided the integral exists. 

Let us give a plausibility argument to justify this definition of volume. 
Suppose A is the interior of a rectangle Q in Rk, and suppose a : A -+ R" 
can be extended to be of class Cr in a neighborhood of Q. Let Y = a(A). 

Let P be a partition of Q. Consider one of the subrectangles 

R = [a1,a1 + hi] x • • • x [ak,ak + hk] 
determined by P. Now R is mapped by a onto a "curved rectangle" contained 
in Y. The edge of R having endpoints a and a+ hiei is mapped by a into a 
curve in R"; the vector joining the initial point of this curve to the final point 
is the vector 

a(a + hiei) - a(a). 

A first-order approximation to this vector is, as we know, the vector 

vi= Da(a) • hiei = (8a/8xi) • hi. 

Figure 22.1 
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It is plausible therefore to consider the k-dimensional parallelopiped P whose 
edges are the vectors vi to be in some sense a first-order approximation to 
the "curved rectangle" a(R). See Figure 22.1. The k-dimensional volume of 
'P is the number 

V(vi, ... , v1:) = V(8a/8x 1 , ..• , 8a/8x1:) •(hi••• h1:) 

= V(Da(a)) • v(R). 

When we sum this expression over all subrectangles R, we obtain a number 
which lies between the lower and upper sums for the function V(Da) relative 
to the partition P. Hence this sum is an approximation to the integral 

1 V(Da); 

the approximation may be made as close as we wish by choosing an appropri
ate partition P. 

We now define the integral of a scalar function over a parametrized
manifold. 

Definition. Let A be open in R1:; let a : A - R" be of class er; let 
Y = a(A). Let / be a real-valued continuous function defined at each point 
of Y. We define the integral of f over Ya, with respect to volume, by 
the equation 

f f dV = f (f o a)V(Da), 
iv,,, jA 

provided this integral exists. 

Here we are reverting to "calculus notation" in using the meaningless 
symbol dV to denote the "integral with respect to volume." Note that in this 
notation, 

v(Y0 ) = f dV. 
}yo, 

We show that this integral is "invariant under reparametrization." 

Theorem 22.1. Let g : A - B be a diffeomorphism of open sets 
in R1:. Let /J: B - R" be a map of class er; let Y = /J(B). Let a= /Jog; 
then a: A- R" and Y = a(A). If f; Y - R is a continuous function, 
then f is integrable over Y/j if and only if it is integrable over Y0 ; in this 
case 

I f dV = I f dV. 
lv0 iv, 

In particular, v(Y0 ) = v(Y/j)-
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B 

Figure 22.2 

Proof. We must show that 

l (f o {3)V(D/3) = 1 (f o a)V(Da), 

where one integral exists if the other does. See Figure 22.2. 
The change of variables theorem tells us that 

l (f o {3)V(D{3) = 1 ((Jo {3) o g) (V(D{3) o g)I det Dgl. 

We show that 
(V(D/3) a g) I <let Dgl = V(Da), 

and the proof is complete. Let x denote the general point of A; let y = g(x). 
By the chain rule, 

Da(x) = D/3(y) • Dg(x). 

Then 

[V(Da(x))] 2 = det(Dg(x)tr • D{3(y)tr • D/3(y) • Dg(x)) 

= det(Dg(x)) 2[V (D/3(y))]2. 

Our desired equation follows. D 

A remark on notation. In this book, we shall use the symbol dV when 
dealing with the integral with respect to volume, to avoid confusion with 
the differential operator d and the notation f A dw, which we shall introduce 
in succeeding chapters. The integrals IA dV and IA dw are quite different 
notions. It is however common in the literature to use the same symbol d 
in both situations, and the reader must determine from the context which 
meaning is intended. 
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EXAMPLE 1. Let A be an open interval in R1 , and let a: A - Rn be a map 
of class er. Let Y = a( A). Then Ya is called a parametrized-curve in Rn, 
and its !-dimensional volume is often called its length. This length is given 
by the formula 

since Dais the column matrix whose entries are the functions dai/ dt. This 
formula may be familiar to you from calculus, in the case n = 3, as the formula 
for computing the arc length of a parametrized-curve. 

EXAMPLE 2. Consider the parametrized-curve 

a(t) = (acost,asint) for O < t < 31r. 

Using the formula of Example 1, we compute its length as 

1311" 

2·2 2 212 

0 [ a sm t + a cos t] 1 = 31r a. 

See Figure 22.3. Since a is not one-to-one, what this number measures is not 
the actual length of the image set (which is the circle of radius a) but rather 
the distance travelled by a particle whose equation of motion is x = a(t) for 
0 < t < 31r. We shall later restrict ourselves to parametrizations that are 
one-to-one, to avoid this situation. 

0 

Cl:' ..----... 

Figure 22.3 

EXAMPLE 3. Let A be open in R2 ; let o : A - R" be of class er; let 
Y = a(A). Then Y0 is called a parametrized-su1•face in Rn, and its 2-
dimensional volume is often called its area. 

Let us consider the case n = 3. If we use ( x, y) as the general point of 
R2 , then Da = [8a/8x tJa/lJy], and 

I I oa oa 
v(Ya) = }A V(Da) = }A {}:,; X t)y 
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(See Example 1 of the preceding section.) In particular, if o has the form 

o(x, y) = {x, y, f(x, y)), 

where f : A - R is a Cr function, then Y is simply the graph of/, and we 
have 

[ 
I O ] 

Do= o 1 , 

{)J /8x {)f /8y 

so that 

You may recognize these as formulas for surface area given in calculus. 

EXAMPLE 4. Suppose A is the open disc x2 + y2 < a 2 in R2 , and / is the 
function 

/(z, y) = [a2 _ x2 _ y2]1/2. 

The graph off is called a hemisphere of radius a. See Figure 22.4. 

Figure 22.4 

Let a(z, y) = (x, y, f(x, y)). You can check that 

so that (using polar coordinates) 



§22. The Volume of a Parametrized-Manifold 193 

where Bis the open set (0, a) x (0, 21r) in the (r, 0)-plane. This is an improper 
integral, so we cannot use the Fubini theorem, which was proved only for the 
ordinary integral. Instead, we integrate over the set (0, an) x (0, 21r) using the 
Fubini theorem, where O < an < a, and then we let an - a. We have 

v(Yo) = Lim (-21ra)[(a2 - a!) 112 - a] = 21ra 2 . 
n-+OO 

A different method for computing this area, one that avoids improper 
integrals, is given in §25. 

EXERCISES 

1. Let A be open in Rk; let a : A - Rn be of class er; let Y = a(A). 
Suppose h : Rn - Rn is an isometry; let Z = h(Y) and let f3 = ho a. 
Show that Yo and Z13 have the same volume. 

2. Let A be open in Rk; let f : A - R be of class er; let Y be the graph 
of f in Rk+i, parametrized by the function a : A - Rk+i given by 
a(x) = (x, /(x)). Express v(Yo) as an integral. 

3. Let A be open in Rk; let a : A - nn be of class er; let Y = a(A). 
The centroid c(Yo) of the parametrized-manifold Yo is the point of Rn 
whose i th coordinate is given by the equation 

where 7ri : Rn - R is the ith projection function. 

(a) Find the centroid of the parametrized-curve 

a(t)=(acost,asint) with O<t<1r. 

(b) Find the centroid of the hemisphere of radius a in R3. (See Exam
ple 4.) 

*4. The following exercise gives a strong plausibility argument justifying our 
definition of volume. We consider only the case of a surface in R3 , but a 
similar result holds in general. 

Given three points a, b, c in R3, let e be the matrix with columns 
b-a and c-a. The transformation h: R2 - R3 given by h(x)::;;; C-x+a 
carries 0, e 1 , e2 to a, b, c, respectively. The image Y under h of the set 

A= {(x, y) Ix> 0 and y > 0 and x + y < 1} 

is called the (open) triangle in R3 with vertices a, b, c. See Figure 22.5. 
The area of the parametrized-surface Yh is one-half the area of the par
allelopiped with edges b - a and c - a, as you can check. 
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Figure 22.5 

a 

Now let Q be a rectangle in R2 and let a: Q-+ R3 ; suppose a extends 
to a map of class er defined in an open set containing Q. Let P be a 
partition of Q. Let R be a subrectangle determined by P, say 

R = [a, a+ h] x [b, b + k]. 

Consider the triangle b.1 ( R) having vertices 

a(a,b), a(a+h,b), and a(a+h,b+k) 

and the triangle b. 2 (R) having vertices 

a(a, b), a(a, b + k), and a(a + h, b + k). 

We consider these two triangles to be an approximation to the "curved 
rectangle" a( R). See Figure 22.6. We then define 

A(P) = I)v(b.1(R)) + v(b.2(R))], 
R 

where the sum extends over all subrectangles R determined by P. This 
number is the area of a polyhedral surface that approximates a(Q). 
Prove the following: 

Theorem. Let Q be a rectangle in R2 and let a: A-+ R3 be a 
map of class er defined in an open set containing Q. Given f > 0, 
there is a fJ > 0 such that for every partition P of Q of mesh less 
than fJ, 

A(P) - i V(Da) < ,. 
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I I 

(a,b+k) (a+h,b+k) 

I l1/ I 
(a, b) (a+h,b) 

Q 

Figure 22.6 

Proof. (a) Given points X1, ... , X6 of Q, let 

[
D1a1(xi) D2a1(x4)] 

Va(x1, ... , X6) = D1a2(x2) D20:2(xs) 

D1a3(x3) D2a3(X6) 

Then Va is just the matrix Da with its entries evaluated at different 
points of Q. Show that if Risa subrectangle determined by P, then 
there are points X1, ... , X6 of R such that 

Prove a similar result for v ( ~ 2 ( R)). 

(b) Given E > 0, show one can choose 6 > 0 so that if Xi, Yi E Q with 
lxi - Yd < 6 for i = 1, ... , 6, then 

(c) Prove the theorem. 

a(Q) 
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§23. MANIFOLDS IN Rn 

Manifolds form one of the most important classes of spaces in mathemat
ics. They are useful in such diverse fields as differential geometry, theoretical 
physics, and algebraic topology. We shall restrict ourselves in this book to 
manifolds that are submanifolds of euclidean space Rn. In a final chapter, we 
define abstract manifolds and discuss how our results generalize to that case. 

We begin by defining a particular kind of manifold. 

Definition. Let k > 0. Suppose that M is a subspace of Rn having 
the following property: For each p E M, there is a set V containing p that 
is open in M, a set U that is open in R1:, and a continuous map a : U - V 
carrying U onto Vin a one-to-one fashion, such that: 

( 1) a is of class er . 

(2) a- 1 : V - U is continuous. 

(3) Da(x) has rank k for each x E U. 

Then M is called a k-manifold without boundary in Rn, of class er. The 
map a is called a coordinate patch on M about p. 

Let us explore the geometric meaning of the various conditions in this 
definition. 

EXAMPLE 1. Consider the case k = 1. If et is a coordinate patch on M, the 
condition that Da have rank 1 means merely that Det -::/; 0. This condition 
rules out the possibility that Af could have "cusps" and "corners." For exam
ple, let et : R - R2 be given by the equation et(t) = (t3, t2), and let M be the 
image set of et. Then M has a cusp at the origin. (See Figure 23.1.) Here Ct 

is of class C 00 and et-1 is continuous, but Det does not have rank 1 at t = 0. 

Ct -----
Figure 23.1 

Similarly, let /3 : R - R2 be given by /J(t) = (t3 , lt3 1), and let N be the 
image set of /J. Then N has a corner at the origin. (See Figure 23.2.) Here 
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/3 -----
Figure 23.2 

/3 is of class C 2 (as you can check) and 13-1 is continuous, but D/3 does not 
have rank I at t = 0. 

EXAMPLE 2. Consider the case k = 2. The condition that Do:(a) have rank 2 
means that the columns 8fr/8x 1 and 8fr/8x2 of Do: are independent at a. 
Note that 8fr/8x1 is the velocity vector of the curve f(t) = a(a + te1 ) and 
is thus tangent to the surface M. Then 8fr/8x1 and 8a/8x2 span a 2-
dimensional "tangent plane" to M. See Figure 23.3. 

fr -----

Figure 23.3 

M 

As an example of what can happen when this condition fails, consider the 
function fr : R2 -+ R3 given by the equation 

and let M be the image set of o:. Then M fails to have a tangent plane at 
the origin. See Figure 23.4. The map o: is of class C00 and 0-1 is continuous, 
but Do: does not have rank 2 at 0. 
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( 

0 

a ------- M 

Figure 23.4 

EXAMPLE 3. The condition that 0-1 be continuous also rules out vanous 
sorts of "pathological behavior." For instance, let o be the map 

o(t) =(sin2t)(lcostl, sint) for O < t < 1r, 

and let M be the image set of o. Then M is a "figure eight" in the plane. 
The map o is of class C 1 with Da of rank 1, and o maps the interval (0, 1r) 
in a one-to-one fashion onto M. But the function 0-1 is not continuous. For 
continuity of 0-1 means that a carries any set Uo that is open in U onto 
a set that is open in M. In this case, the image of the smaller interval Uo 
pictured in Figure 23.5 is not open in M. Another way of seeing that 0-1 is 
not continuous is to note that points near O in M need not map under 0-1 

to points near 7r /2. 

a .....-----.... 
Uo M 

( • ) ) 
1r/2 7'i 

Figure 23.5 

EXAMPLE 4. Let A be open in Rk; let o : A - Rn be of class Cr; let 
Y = o(A). Then YQ is a parametrized-manifold; but Y need not be a mani
fold. However, if o is one-to-one and 0-1 is continuous and Da has rank k, 
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then Y is a manifold without boundary, and in fact Y is covered by the single 
coordinate patch o. 

Now we define what we mean by a manifold in general. We must first gen
eralize our notion of differentiability to functions that are defined on arbitrary 
subsets of Rk. 

Definition. Let S be a subset of Rk; let f: S - R". We say that/ is 
of class er on S if f may be extended to a function g : U-+ R" that is of 
class er on an open set U of RJ: containing S. 

It follows from this definition that a composite of er functions is of class 
er. Suppose S C Rt and /i : S - R" is of class er. Next, suppose that 
T C R" and f 1 ( S) C T and /2 : T - RP is of class er. Then f 2 O /i : S - RP 
is of class er. For if 91 is a er extension of /1 to an open set u in Rk, and 
if g2 is a er extension of /a to an open set V in R", then 92 o 91 is a er 
extension of /2 o /i that is defined on the open set g11 (V) of Rk containing S. 

The following lemma shows that / is of class er if it is locally of class er: 

Lemma 23.1. Let S be a subset of Rk; let f : S - R". If for each 
x ES, there is a neighborhood Ux of x and a function Yx: Ux - R" of 
class er that agrees with I on Ux n s, then I is of class er on s. 

Proof. The lemma was given as an exercise in §16; we provide a proof 
here. Cover S by the neighborhoods Ux; let A be the union of these neigh
borhoods; let {<Pi} be a partition of unity on A of class er dominated by the 
collection {Ux}- For each i, choose one of the neighborhoods Ux containing 
the support of <Pi, and let Yi denote the er function Yx : Ux - R". The er 
function <Pi9i : Ux - R" vanishes outside a closed subset of Ux; we extend 
it to a er function hi on all of A by letting it vanish outside Ux, Then we 
define 

00 

g(x) = L hi(x) 
i=l 

for each x E A. Each point of A bas a neighborhood on which g equals a 
finite sum of functions hi; thus g is of class er on this neighborhood and 
hence on all of A. Furthermore, if x E S, then 

for each i for which <Pi(x) ~ 0. Hence if x E S, 

00 

g(x) = L <Pi(x)f(x) = f(x). D 
i=l 
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Definition. Let Hk denote upper half-space in Rk, consisting of those 
x E Rk for which Xk > 0. Let Ht denote the open upper half-space, 
consisting of those x for which Xk > 0. 

We shall be particularly interested in functions defined on sets that are 
open in Hk but not open in Rk. In this situation, we have the following useful 
result: 

Lemma 23.2. Let U be open in Hk but not in Rk; let a : U ---+ Rn 
be of class er. Let /3 : U' ---+ nn be a er extension of a defined on an 
open set U' of Rk. Then for x E U, the derivative Df)(x) depends only 
on the function a and is independent of the extension (3. It follows that 
we may denote this derivative by Da(x) without ambiguity. 

Proof. Note that to calculate the partial derivative 8f3d Bxj at x, we 
form the difference quotient 

[/3(x + hei) - {3(x)]/ h 

and take the limit as h approaches 0. For calculation purposes, it suffices to 
let h approach 0 through positive values. In that case, if x is in Hk then so 
is x + hei. Since the functions /3 and a agree at points of Hk, the value of 
D/3(x) depends only on a. See Figure 23.6. D 

Q'. ----

Figure 23.6 

Now we define what we mean by a manifold. 

I 
I 
\ 
\ 

' ' , ... ....... __ __ 

Definition. Let k > 0. A k-manifold in Rn of class er is a subspace 
M of R" having the following property: For each p E M, there is an open 
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set V of M containing p, a set U that is open in either Rk or Hk, and a 
continuous map a : U--+ V carrying U onto V in a one-to-one fashion, such 
that: 

(1) a is of class er. 

(2) a- 1 : V --+ U is continuous. 

(3) Do(x) has rank k for each x E U. 

The map a is called a coordinate patch on M about p. 

We extend the definition to the case k = 0 by declaring a discrete collec
tion of points in Rn to be a 0-manifold in Rn. 

Note that a manifold without boundary is simply the special case of a 
manifold where all the coordinate patches have domains that are open in Rk. 

Figure 23.7 illustrates a 2-manifold in R3 . Indicated are two coordinate 
patches on M, one whose domain is open in R2 and the other whose domain 
is open in H2 but not in R2 . 

Figure 23. 7 

It seems clear from this figure that in a k-manifold, there are two kinds of 
points, those that have neighborhoods that look like open k-balls, and those 
that do not but instead have neighborhoods that look like open half-balls of 
dimension k. The latter points constitute what we shall call the boundary 
of M. Making this definition precise, however, requires a certain amount of 
effort. We shall deal with this question in the next section. 

We close this section with the following elementary result: 
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Lemma 23.3. Let M be a manifold in Rn, and let a : U --+ V be 
a coordinate patch on M. If U0 is a subset of U that is open in U, then 
the restriction of a to Uo is also a coordinate patch on M. 

Proof. The fact that U0 is open in U and 0-1 is continuous implies that 
the set Vo = a(Uo) is open in V. Then U0 is open in Rk or Hk (according 
as U is open in Rt or Hk), and V0 is open in M. Then the map alUo is a 
coordinate patch on M: it carries Uo onto Vo in a one-to-one fashion; it is of 
class Cr because a is; its inverse is continuous being simply a restriction of 
0- 1 ; and its derivative has rank k because Da does. □ 

Note that this result would not hold if we had not required 0-1 to be 
continuous. The map a of Example 3 satisfies all the other conditions for 
a coordinate patch, but the restricted map alUo is not a coordinate patch 
on M, because its image is not open in /J.f. 

EXERCISES 

1. Let o : R -+ R2 be the map o(x) = (z, x2); let M be the image set of 
a. Show that M is a !-manifold in R2 covered by the single coordinate 
patch o. 

2. Let /3 : H1 -+ R2 be the map /3(x) = (x, x2); let N be the image set of {3. 
Show that N is a I-manifold in R2 • 

3. (a) Show that the unit circle 8 1 is a I-manifold in R2. 

(b) Show that the function o : [O, I)-+ 8 1 given by 

o(t) = (cos 21rt, sin 21rt) 

is not a coordinate patch on 8 1 . 

4. Let A be open in Rk; let / : A --+ R be of class er. Show that the graph 
of/ is a k-manifold in Rk+l. 

5. Show that if M is a k-manifold without boundary in Rm, and if N is an 
l-manifold in Rn, then M x N is a k + l manifold in Rm+n. 

6. (a) Show that I= (0, 1] is a !-manifold in R1. 

(b) Is Ix I a 2-manifold in R2? Justify your answer. 
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§24. THE BOUNDARY OF A MANIFOLD 

In this section, we make precise what we mean by the boundary of a manifold; 
and we prove a theorem that is useful in practice for constructing manifolds. 

To begin, we derive an important property of coordinate patches, namely, 
the fact that they "overlap differentiably." We make this statement more 
precise as follows: 

Theorem 24.1. Let M be a k-manifold in Rn, of class er. Let 
ao : Uo --+ V0 and a 1 : U1 --+ V1 be coordinate patches on M, with 
W = V0 n V1 non-empty. Let l¥i = a;1(W). Then the map 

a 11 o ao : Wo-+ W1 

is of class er, and its derivative is non-singular. 

Typical cases are pictured in Figure 24.1. We often call a 11 o a 0 the 
transition function between the coordinate patches a 0 and a 1 . 

u 

Figure 24.1 

Proof. It suffices to show that if a : U --+ V is a coordinate patch on M, 
then a- 1 : V--+ Rk is of class er, as a map of the subset V of Rn into Rk. For 



204 Manifolds Chapter S 

then it follows that, since a 0 and 0 11 are of class er, so is their composite 
011 0 Oo. The same argument applies to show Oo 1 0 01 is of class er; then 
the chain rule implies that both these transition functions have non-singular 
derivatives. 

To prove that 0-1 is of class er, it suffices (by Lemma 23.1) to show that 
it is locally of class er. Let p 0 be a point of V; let o-1(p0) = x 0 . We show 
0-1 extends to a er function defined in a neighborhood of p 0 in Rn. 

Let us first consider the case where U is open in Hl: but not in Rk. By 
assumption, we can extend o to a er map {3 of an open set U' of Rl: into 
Rn. Now Do(x0) has rank k, so some k rows of this matrix are independent; 
assume for convenience the first k rows are independent. Let ,r : Rn -+ Rk 
project R" onto its first k coordinates. Then the map g = ,r o {3 maps U' into 
n1:, and Dg(x0) is non-singular. By the inverse function theorem, g is a er 
diffeomorphism of an open set W of Rl: about x 0 with an open set in Rl:. See 
Figure 24.2. 

M 

Figure 24.2 

We show that the map h = g-1 o 1r, which is of class er, is the desired 
extension of a- 1 to a neighborhood A of p 0. To begin, note that the set 
Uo = W n U is open in U, so that the set V0 = o(Uo) is open in V; this 
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means there is an open set A of nn such that A n V = V0 . We can choose A 
so it is contained in the domain of h (by intersecting with 1r-1 (g(W)) if 
necessary). Then h: A - Rk is of class er; and if p EA n V = Vo, then we 
let x = o-1(p) and compute 

as desired. 
A similar argument holds if U is open in Rk. In this case, we set U' = U 

and /3 = a, and the preceding argument proceeds unchanged. 0 

Now we define the boundary of a manifold. 

Definition. Let M be a k-manifold in Rn; let p E M. If there is a 
coordinate patch a : U - V on M about p such that U is open in Rk, we 
say pis an interior point of M. Otherwise, we say pis a boundary point 
of M. We denote the set of boundary points of M by {)M, and call this set 
the boundary of M. 

Note that our use here of the terms "interior" and "boundary" has noth
ing to do with the way these terms are used in general topology. Any subset S 
of Rn has an interior and a boundary and an exterior in the topological sense, 
which we denote by Int S and Bd S and Ext S, respectively. For a mani
fold M, we denote its boundary by {)M and its interior by M - 8M. 

Given M, one can readily identify the boundary points of M by use of 
the following criterion: 

Lemma 24.2. Let M be a k-manifold in nn; let a : U - V be a 
coordinate patch about the point p of M. 

(a) If U is open in Rk, then p is an interior point of M. 

(b) If U is open in Hk and if p = a(xo) for xo E Hi, then p is an 
interior point of M. 

(c) If U is open in Hk and p = a(x0 ) for x0 E nk-l x O, then p is a 
boundary point of M. 

Proof. (a) is immediate from the definition. (b) is almost as easy. Given 
a : U - V as in (b), let Uo = Un Hi and let Vo = a(U0 ). Then ajU0 , 

mapping Uo onto V0 , is a coordinate patch about p, with Uo open in Rk. 
We prove ( c). Let ao : Uo - V0 be a coordinate patch about p, with 

Uo open in Hk and p = ao(x0 ) for xo E Rk-l x 0. We assume there is a 
coordinate patch 01 : U1 - Vi about p with U1 open in Rk. and derive a 
contradiction. 
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Since Vo and V1 are open in M, the set W = Vo n Vi is also open in M. 
Let Wi = a;- 1 (W) for i = 0, 1; then W0 is open in Hk and contains xo, and 
W1 is open in Rk. The preceding theorem tells us that the transition function 

is a map of class er carrying W1 onto l¥o in a one-to-one fashion, with 
non-singular derivative. Then Theorem 8.2 tells us that the image set of this 
map is open in Rk. But W 0 is contained in Hk and contains the point x0 of 
Rk-l x 0, so it is not open in Rk! See Figure 24.3. □ 

Figure 24.3 

Note that Hk is itself a k-manifold in Rk; and it follows from this lemma 
that oHk = Rk-l X 0. 

Theorem 24.3. Let M be a k-manif old in Rn, of class er. If 8 M 
is non-empty, then 8 M is a k - 1 manifold without boundary in R0 of 
class er. 

Proof. Let p E 8 M. Let a : U --+ V be a coordinate patch on M 
about p. Then U is open in Hk and p = 0::( x0 ) for some x0 E c)Hk. By the 
preceding lemma, each point of Un Ht is mapped by a to an interior point 
of M, and each point of U n ( EJHk) is mapped to a point of 8 A1. Thus the 
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restriction of a to Un (lJHk) carries this set in a one-to-one fashion onto the 
open set Vo = V n {)M of {)M. Let Uo be the open set of n1- 1 such that 
Uo x O = U n {JH1 ; if x E U0 , define ao(x) = a(x, 0). Then ao : Uo -+ Vo is 
a coordinate patch on 8M. It is of class er because a is, and its derivative 
has rank k - 1 because Dao(x) consists simply of the first k - 1 columns 
of the matrix Da(x,O). The inverse ao" 1 is continuous because it equals the 
restriction to V0 of the continuous function a- 1 , followed by projection of R1 

onto its first k - 1 coordinates. D 

The coordinate patch a 0 on 8M constructed in the proof of this theorem 
is said to be obtained by restricting the coordinate patch a on M. 

Finally, we prove a theorem that is useful in practice for constructing 
manifolds. 

Theorem 24.4. Let O be open in nn; let f : 0 -+ R be of class er. 
Let M be the set of points x for which f(x) = O; let N be the set of points 
for which /(x) > 0. Suppose Af is non-empty and D f (x) has rank 1 at 
each point of M. Then N is an n-manif old in nn and 8 N = M. 

Proof Suppose first that p is a point of N such that f(p) > 0. Let 
U be the open set in Rn consisting of all points x for which /(x) > O; let 
a : U -+ U be the identity map. Then a is (trivially) a coordinate patch 
on N about p whose domain is open in nn. 

Now suppose that f (p) = 0. Since D f (p) is non-zero, at least one of 
the partial derivatives Dif(p) is non-zero. Suppose Dn/(p) ;/; 0. Define 
F: 0-+ nn by the equation F(x) = (xi, ... , Xn-1, /(x)). Then 

DF= , [ ln-1 0 ] 

* Dnf 

so that DF(p) is non-singular. It follows that Fis a diffeomorphism of a 
neighborhood A of p in R" with an open set B of nn. Furthermore, F carries 
the open set An N of N onto the open set B n Hn of Hn, since x E N if and 
only if /(x) > 0. It also carries An M onto B n lJHn, since x E M if and 
only if f(x) = 0. Then p-t : B n Hn -+ An N is the required coordinate 
patch on N. See Figure 24.4. D 

Definition. Let Bn(a) consist of all points x of nn for which llxll < a, 
and let sn-1(a) consist of all x for which llxl/ = a. We call them then-ball 
and the n - 1 sphere, respectively, of radius a. 
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F 

Figure 24.4 

Corollary 24.5. The n-ball Bn(a) is an n-manifold in nn of class 
C 00 ' and sn-l(a) = aBn(a). 

Proof. We apply the preceding theorem to the function f(x) = a2 -

llxll 2• Then 
D f (x) = ((-2xi) (-2xn)], 

which is non-zero at each point of 5n-1(a). □ 

EXERCISES 

1. Show tha.t the solid torus is a 3-manifold, a.nd its boundary is the torus T. 
(See the exercises of §17.) [Hint: Write the equation for Tin cartesian 
coordinates and apply Theorem 24.4.] 

2. Prove the following: 

Theorem. Let f; Rn+k - Rn be of class er. Let M be the set of all 
x such that f(x) = 0. Assume that Mis non-empty and that DJ (x) 
has rank n for x E M. Then M is a k-manifold without boundary in 
Rn+k. Furthermo'IY!, if N is the set of all x for which 

f1(x) = • • • = fn-1(x) = 0 and fn(x) ~ O, 

and if the matrix 
8(/i, ... , fn-1)/8x 
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has rank n - l at each point of N, then N is a k + l manifold, and 
8N=M. 

3. Let J, g : R3 - R be of class Cr. Under what conditions can you be 
sure that the solution set of the system of equations f(x, y, z) = 0, 
g(x, y, z) = 0 is a smooth curve without singularities (i.e., a I-manifold 
without boundary)? 

4. Show that the upper hemisphere of sn-l (a), defined by the equation 

is an n - 1 manifold. What is its boundary? 

5. Let 0(3) denote the set of all orthogonal 3 by 3 matrices, considered as 
a subspace of R9 . 

(a) Define a C 00 function f : R9 - R6 such that 0(3) is the solution set 
of the equation f (x) = 0. 

(b) Show that 0(3) is a compact 3-manifold in R9 without boundary. 
[Hint: Show the rows of D f (x) are independent if x E 0(3).] 

6. Let 0( n) denote the set of all orthogonal n by n matrices, considered 
as a subspace of RN, where N = n2 . Show 0( n) is a compact manifold 
without boundary. What is its dimension? 

The manifold O(n) is a particular example of what is called a Lie 
group (pronounced "lee group"). It is a group under the operation of 
matrix multiplication; it is a C 00 manifold; and the product operation and 
the map A - A-1 are C 00 maps. Lie groups are of increasing importance 
in theoretical physics, as well as in mathematics. 

§25. INTEGRATING A SCALAR FUNCTION OVER A MANIFOLD 

Now we define what we mean by the integral of a continuous scalar function f 
over a manifold M in Rn. For simplicity, we shall restrict ourselves to the case 
where M is compact. The extension to the general case can be carried out 
by methods analogous to those used in §16 in treating the extended integral. 

First we define the integral in the case where the support of f can be 
covered by a single coordinate patch. 

Definition. Let }.t/ be a compact k-manifold in Rn, of class er. Let 
f : M -+ Rn be a continuous function. Let C = Support f; then C is 
compact. Suppose there is a coordinate patch a : U -. V on M such that 
CCV. Now a- 1(C) is compact. Therefore, by replacing U by a smaller open 
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set if necessary, we can assume that U is bounded. We define the integral 
of f over M by the equation 

!. f dV = l. (f o a)V(Da). 
M Int U 

Here Int U = U if U is open in Rk, and Int U = U n Hi if U is open in Hk 
but not in RA:. 

It is easy to see this integral exists as an ordinary integral, and hence as 
an extended integral: The function F = (f o a)V(Da) is continuous on U 
and vanishes outside the compact set o-1(C); hence Fis bounded. If U is 
open in Rk, then F vanishes near each point x0 of Bd U. If U is not open 
in Rk, then F vanishes near each point of Bd U not in 8Hk, a set that has 
measure zero in Rk. In either case, F is integrable over U and hence over 
Int U. See Figure 25.1. 

0 -

Figure 25.1 

Lemma 25.1. If the support off can be covered by a single CIJOr-
dinate patch, the integral JM f dV is well-defined, independent of the 
choice of coordinate patch. 
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Proof. We prove a preliminary result. Let o: U-+ V be a coordinate 
patch containing the support of/. Let W be an open set in U such that 
a(W) also contains the support of /. Then 

f (/ o a)V(Da) = f (/ o a)V(Da); 
lint W lint U 

the (ordinary) integrals over Wand V are equal because the integrand van
ishes outside W; then one applies Theorem 13.6. 

Let ai : Ui -+ ½ for i = O, 1 be coordinate patches on M such that both 
Vo and V1 contain the support of /. We wish to show that 

f (/ o a0 )V(Da0 ) = f (/ o ai)V(Dai). 
lint Uo lint U1 

Let W = V0 nV1 and let l½ = a;1(W). In view of the result of the preceding 
paragraph, it suffices to show that this equation holds with Ui replaced by 
Wi, for i = 0, 1. Since 0 11 o a 0 : Int W0 -+ Int W1 is a diffeomorphism, this 
result follows at once from Theorem 22.1. □ 

To define f M f dV in general, we use a partition of unity on M. 

Lemma 25.2. Let M be a compact k-manifold in Rn, of class er. 
Given a covering of M by coordinate patches, there exists a finite col
lection of C00 functions </>1, ... , </>1. mapping nn into R such that: 

(1) </>,(x) > 0 for all x. 
(2) Given i, the support of </>i is compact and there is a coordinate 

patch ai : Ui -+ 11; belonging to the given covering such that 

((Support </>.) n M) C ¼. 

(3) L<l>i(x) = 1 /or x EM. 

We call { </>1 , ... , <Pt.} a partition of unity on M dominated by the 
given collection of coordinate patches. 

Proof. For each coordinate patch a : U -+ V belonging to the given 
collection, choose an open set Av of Rn such that Av n M = V. Let A be 
the union of the sets Av. Choose a partition of unity on A that is dominated 
by this open covering of A. Local finiteness guarantees that all but finitely 
many of the functions in the partition of unity vanish identically on M. Let 
</>1, ... , </>1. be those that do not. D 

Definition. Let M be a compact k-manifold in nn, of class er. Let 
/ : M -+ R be a continuous function. Choose a partition of unity </>1, ... , </>1. 



212 Manifolds Chapter 5 

on M that is dominated by the collection of all coordinate patches on M. We 
define the integral of / over }.tf by the equation 

l I. I dV = L)/. (</>i/) dV]. 
M i=l M 

Then we define the (k-dimensional) volume of M by the equation 

v(M) = L 1 dV. 

If the support of/ happens to lie in a single coordinate patch a: U-+ V, 
this definition agrees with the preceding definition. For in that case, letting 
A= Int U, we have 

l l 

"{;. [ L ( t/>;/) d VJ = "{;. [ 1 ( t/>; o o )(/ o o )V (Do)] by definition, 

l 

= 1 ["{;. (,f,; o o)(/ o o)V(Do)] by linearity, 

= 1 (/ o a)V(Da) because 
l 

E ( 4>1 o a) = 1 on A, 
i=l 

by definition. 

We note also that this definition is independent of the choice of the par
tition of unity. Let VJ1, ... , "Pm be another choice for the partition of unity. 
Because the support of VJ;/ lies in a single coordinate patch, we can apply 
the computation just given (replacing / by VJ;/) to conclude that 

l 

tt [L (,f,;'1/J;/) dV] = L ('1/J;/) dV. 

Summing over j, we have 

m l m 

E El/. (</>it/J;/) dV] = El/. (t/J;/) dV]. 
j:1 i=l M j=l M 

Symmetry shows that this double summation also equals 
l 

E [/. (</>,/) dV], 
i:l Al 

as desired. 
Linearity of the integral follows at once. We state it formally as a theorem: 
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Theorem 25.3. Let M be a compact k-manifold in Rn, of class er. 
Let f, g : M -+ R be continuous. Then 

l(af+bg)dV alfdV + bjMgdV. □ 

This definition of the integral f M f dV is satisfactory for theoretical pur
poses, but not for practical purposes. If one wishes actually to integrate a 
function over then - 1 sphere sn-l, for example, what one does is to break 
sn-l into suitable "pieces," integrate over each piece separately, and add the 
results together. We now prove a theorem that makes this procedure more 
precise. We shall use this result in some examples and exercises. 

Definition. Let M be a compact k-manifold in Rn, of class er. A 
subset D of Mis said to have measure zero in M if it can be covered by 
countably many coordinate patches Oi : Ui --+ ¼ such that the set 

D, = a- 1(D n V.) 

has measure zero in Rt for each i. 

An equivalent definition is to require that for any coordinate patch 
o: : U -+Von M, the set a- 1(D n V) have measure zero in Rt. To verify 
this fact, it suffices to show that a- 1(DnVn¼) has measure zero for each i. 
And this follows from the fact that the set o:; 1(D n V n V;) has measure zero 
because it is a subset of D,, and that a-1 o o:, is of class er. 

*Theorem 25.4. Let M be a compact k-manifold in Rn, of class 
er. Let f : M -+ R be a continuous function. Suppose that o:i : A, -+ 
M,, for i = 1, ... , N, is a coordinate patch on M, such that A, is open 
in Rt and Mis the disjoint union of the open sets Mi, ... , MN of M 
and a set I( of measure zero in M. Then 

N I. f dV = Erl (f O a,)V(Dai)J. 
M i=l Ai 

This theorem says that JM f dV can be evaluated by breaking M up 
into pieces that are parametrized-manifolds and integrating f over each piece 
separately. 

Proof. Since both sides of ( *) are linear in /, it suffices to prove the 
theorem in the case where the set C = Support f is covered by a single 
coordinate patch a : U --+ V. We can assume that U is bounded. Then 

I. I dV = f (f o o:)V(Da), 
M lint U 

by definition. 
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Step 1. Let wi = o:- 1(Mi n V) and let L = a-1(K n V). Then w, is 
open in RI:, and L has measure zero in RI:; and U is the disjoint union of L 
and the sets Wi. See Figures 25.2 and 25.3. We show first that 

LI dV = ~[L;u oa)V(Da)]. 

Figure !!5.2 

Figure !!5.3 

Note that these integrals over Wi exist as ordinary integrals. For the 
function F = (f o a)V(Do:) is bounded, and F vanishes near each point of 
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Bd Wi not in L. Then we note that 

E [/. F] = I F 
i W, }(Int U)-L 

by additivity, 

_{ F 
lint u 

since L has measure zero, 

by definition. 

Step 2. We complete the proof by showing that 

where~=(/ o ai)V(Dai). See Figure 25.4. 

-----,-.~ -- -.,, .,,, 
/ 

I 
I 

I 

' \ 
\ 
\ 

/ 

', 
......... _ -----....., __ __ 

Figure 25.,4 

The map o;-1 o a is a diffeomorphism carrying W, onto the open set 
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of Rk. It follows from the change of variables theorem that 

just as in Theorem 22.1. To complete the proof, we show that 

These integrals may not be ordinary integrals, so some care is required. 
Since C = Support / is closed in M, the set a,1(C) is closed in A, and 

its complement 
Di= Ai - a,1(C) 

is open in Ai and thus in Rk. The function ~ vanishes on D,. We apply 
additivity of the extended integral to conclude that 

The last two integrals vanish. D 

EXAMPLE 1. Consider the 2-sphere S2 (a) of radius a in R3 . We computed 
the area of its open upper hemisphere as 2,ra2 . (See Example 4 of §22.). Since 
the reflection ma.p ( x I y, z) - ( x, y, -z) is a.n isometry of R3, the open lower 
hemisphere also has area. 2,ra2 • (See the exercises of §22.) Since the upper 
and lower hemispheres constitute a.II of the sphere except for a. set of measure 
zero in the sphere, it follows that S2 (a) has area. 4,ra2 • 

EXAMPLE 2. Here is an a.lterna.te method for computing the area. of the 2-
sphere; it involves no improper integrals. 

Given zo E R with lzol < a, the intersection of S2 (a) with the plane 
z = Zo is the circle 

This fa.ct suggests that we parametrize S2 (a) by the function ct : A - R3 

given by the equation 

where A is the set of a.11 (t, z) for which O < t < 2,r a.nd [zl < a. It is easy 
to check that ct is a. coordinate patch that covers a.II of S2 (a) except for a 
great-circle arc, which has measure zero in the sphere. See Figure 25.5. By 
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the preceding theorem, we ma.y use this coordinate patch to compute the a.rea. 
of S2 (a). We ha.ve 

(-zcost)/(a2 - z2 ) 112 ] 

(-zsint)/(a2 - z2 ) 112 , 

1 

whence V(Da) = a, a.s you ca.n check. Then v(S2 (a)) = f,. a= 4,ra2 • 

z 

a ..,..----...... 

2,r t 

Figure 25.5 

EXERCISES 

1. Check the computations made in Example 2. 

2. Let a:(t), /J(t), /(t) he real-valued functions of class C1 on [O, 1], with 
f (t) > O. Suppose M is a 2-ma.nifold in R3 whose intersection with the 
plane z = t is the circle 

(x - a(t)) 2 + (y - ,B(t)) 2 = (/(t)) 2 ; z = t 

if O ::5 t ::5 1, a.nd is empty otherwise. 

(a.) Set up an integral for the a.rea. of M. [Hint: Proceed a.sin Example 2.] 

(b) Evaluate when a: and /3 a.re constant and /(t) = 1 + t2 • 

(c) What form does the integral take when / is constant a.nd a(t) = 0 
and ,B(t) = at? (This integral cannot be evaluated in terms of the 
elementary functions.) 

3. Consider the torus T of Exercise 7 of §17. 

(a.) Find the a.rea. of this torus. [Hint: The cylindrical coordinate tra.ns
forma.tion carries a cylinder onto T. Parametrize the cylinder using 
the fact tha.t its cross-section a.re circles.] 
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(b) Find the area of that portion of T satisfying the condition x 2 + 
y2 ~ b2. 

4. Lei M be a compact k-manifold in R". Let h : R" - R" be an isometry; 
let N = h(M). Let/: N - R be a continuous function. Show that N 
is a k-manifold in R", and 

Conclude that M and N have the same volume. 

5. (a) Express the volume of S"(a) in terms of the volume of B"-1(a). 
(Hint: Follow the pattern of Example 2.] 

(b) Show that fort > O, 

[Hint: Use the result of Exercise 6 of §19.] 

6. The centroid of a compact manifold M in R" is defined by a formula 
like that given in Exercise 3 of §22. Show that if M is symmetric with 
respect to the subspace Zi = 0 of R", then c,(M) = 0. 

*7. Let E+(a) denote the intersection of S"(a) with upper half-space H"+ 1 . 

Let ,\n = v{B"(l)). 
(a) Find the centroid of E+(a) in terms of ,\n and ,\n-1• 

(b) Find the centroid of E+ (a) in terms of the centroid of B~-1 (a). (See 
the exercises of §19.) 

8. Let M and N be compact manifolds without boundary in Rm and R", 
respectively. 

(a) Let/: M-+ R and g: N - R be continuous. Show that 

1 f • g d V = [ / / d V] [/. g d V ]. 
MxN JM N 

[Hint: Consider the case where the supports of/ and g are contained 
in coordinate patches.] 

(b) Show that v(M x N) = v(M) · v(N). 
(c) Find the area of the 2-manifold S1 x S1 in R4. 



Differential Forms 

We have treated, with considerable generality, two of the major topics of 
multivariable calculus-differentiation and integration. We now turn to the 
third topic. It is commonly called "vector integral calculus," and its major 
theorems bear the names of Green, Gauss, and Stokes. In calculus, one limits 
oneself to curves and surfaces in R3. We shall deal more generally with k
manifolds in Rn. In dealing with this general situation, one finds that the 
concepts of linear algebra and vector calculus are no longer adequate. One 
needs to introduce concepts that are more sophisticated; they constitute a 
subject called multilinear algebra that is a sequel to linear algebra. 

In the first three sections of this chapter, we introduce this subject; in 
these sections we use only the material on linear algebra treated in Chap
ter 1. In the remainder of the chapter, we combine the notions of multilinear 
algebra with results about differentiation from Chapter 2 to define and study 
differential forms in Rn. Differential forms and their operators are what are 
used to replace vector and scalar fields and their operators-grad, curl, and 
div-when one passes from R3 to Rn. 

In the succeeding chapter, additional topics, including integration, man
ifolds, and the change of variables theorem, will be brought into the picture, 
in order to treat the generalized version of Stokes' theorem in ffR. 

219 
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§26. MULTILINEAR ALGEBRA 

Tensors 

Definition. Let V be a vector space. Let y1: = V x • • • x V denote the 
set of all k-tuples (v1 , ... , v1:) of vectors of V. A function / : y1: -+ R is 
said to be linear in the ith variable if, given fixed vectors v; for j =f:. i, the 
function T : V -+ R defined by 

is linear. The function f is said to be multilinear if it is linear in the ith 

variable for each i. Such a function f is also called a k-tensor, or a tensor of 
order k, on V. We denote the set of all k-tensors on V by the symbol .Cl:(V). 
If k = 1, then .C1(V) is just the set of all linear transformations f : V-+ R. 
It is sometimes called the dual space of V and denoted by V*. 

How this notion of tensor relates to the tensors used by physicists and 
geometers remains to be seen. 

Theorem 26.1. 
space if we define 

The set of all k-tensors on V constitutes a vector 

(f + g)(v1, .. . , v1:) = f(v1, ... , v1:) + g(v1, ... , v1:), 

(c/)(v1, ... , vi)= c(f(vi, ... , v1:)). 

Proof. The proof is left as an exercise. The zero tensor is the function 
whose value is zero on every k-tuple of vectors. D 

Just as is the case with linear transformations, a multilinear transforma
tion is entirely determined once one knows its values on basis elements. That 
we now prove. 

Lemma 26.2. Let a1, ... , an be a basis for V. If f, g : vi --+ R are 
k-tensors on V, and if 

for every k-tuple I= (ii, ... , ii) of integers from the set {l, ... , n}, 
then f = g. 
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Note that there is no requirement here that the integers i1, ... , ik be 
distinct or arranged in any particular order. 

Proof. Given an arbitrary k-tuple (v1, ... , vk) of vectors of V, let us 
express each Vi in terms of the given basis, writing 

Then we compute 

n 

n 

Vi= L C1;a;. 
j=l 

f(v1, ... , vk) = L c1;. f(a11,v2, ... , vk) 
h=l 

n n 

= L L C1j 1 C2iJf(aii,ai-J,v3, ... , vk), 
ii=l h=l 

and so on. Eventually we obtain the equation 

The same computation holds for g. It follows that f and g agree on all 
k-tuples of vectors if they agree on all k-tuples of basis elements. D 

Just as a linear transformation from V to W can be defined by specifying 
its values arbitrarily on basis elements for V, a k-tensor on V can be defined 
by specifying its values arbitrarily on k-tuples of basis elements. That fact is 
a consequence of the next theorem. 

Theorem 26.3. Let V be a vector space with basis a 1, ... , an. Let 
J = (i1, ... , i1:) beak-tuple of integers from the set {1, ... , n}. There is 
a unique k-tensor </>1 on V such that, for every k-tuple J = (ji, ... , i1:) 
from the set {1, ... , n}, 

.,J.,.I (a· · .. a · ) = { O 
<p )1' ' )Ir. 1 

The tensors ¢,1 form a basis for ,Ck(V). 

if I -I J, 

if I= J. 

The tensors </>1 are called the elementary k-tensors on V corresponding 
to the basis a1, ... , an for V. Since they form a basis for ,Ck (V) and since 
there are nk distinct k-tuples from the set {1, ... , n}, the space ,Ck (V) must 
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have dimension nk. When k = I, the basis for V* formed by the elementary 
tensors ¢1, ... , <Pn is called the basis for V"' dual to the given basis for V. 

Proof. Uniqueness follows from the preceding lemma. We prove exis
tence as follows: First, consider the case k = 1. We know that we can deter
mine a linear transformation c/>i : V -+ R by specifying its values arbitrarily 
on basis elements. So we can define rfai by the equation 

These then are the desired I-tensors. In the case k > I, we define <PI by the 
equation 

It follows, from the facts that (1) each </>i is linear and (2) multiplication is 
distributive, that </>1 is multilinear. One checks readily that it has the required 
value on (a;i, • • •, aj,. ). 

We show that the tensors </>1 form a basis for .Ck(V). Given a k-tensor / 
on V, we show that it can be written uniquely as a linear combination of the 
tensors ¢>1. For each k-tuple I= (i1, ... , ik), let d1 be the scalar defined by 
the equation 

Then consider the k-tensor 

where the summation extends over all k-tuples J of integers from the set 
{1, ... , n}. The value of g on the k-tuple (ai 1 , ••• , ai,.) equals d1, by(*), 
and the value of/ on this k-tuple equals the same thing by definition. Then 
the preceding lemma implies that f = g. Uniqueness of this representation 
of/ follows from the preceding lemma. D 

It follows from this theorem that given scalars d1 for all I, there is exactly 
one k-tensor f such that /(ai1, ..• , ai,.) = d1 for all/. Thus a k-tensor may 
be defined by specifying its values arbitrarily on k-tuples of basis elements. 
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EXAMPLE 1. Consider the case V = R". Let e1, ... , en be the usual basis 
for R"; let </>1, .•• , 'Pn be the dual basis for C1 (V). Then if x has components 
X1, ... , Xn, we have 

Thus 'Pi : R" - R equals projection onto the i' h coordinate. 
More generally, given I= (i1, ... , ik), the elementary tensor </>1 satisfies 

the equation 

Let us write X = [x1 • • • xk], and let Xij denote the entry of X in row i and 
column j. Then Xj is the vector having components Xtj, ... , Xnj• In this 
notation, 

Thus ¢;1 is just a monomial in the components of the vectors x1, ... , Xk; and 
the general k-tensor on R" is a linear combination of such monomials. 

It follows that the general I-tensor on R" is a function of the form 

for some scalars di. The general 2-tensor on R" has the form 

n 

g(x, y) = L dijXiYi, 

i,j=l 

for some scalars d,j. And so on. 

The tensor product 

Now we introduce a product operation into the set of all tensors on V. 
The product of a k-tensor and an £-tensor will be a k + l tensor. 

Definition. Let / be a k-tensor on V and let g be an £-tensor on V. 
We define a k + l tensor / ® g on V by the equation 

It is easy to check that the function f © g is multilinear; it is called the tensor 
product of/ and g. 

We list some of the properties of this product operation: 
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Theorem 26.4. Let f, g, h be tensors on V. Then the following 
properties hold: 

(1) ( Associativity). f 0 (g 0 h) = (f 0 g) 0 h. 

(2) (Homogeneity). (cf) 0 g = c(f 0 g) = f 0 (cg). 

(3) {Distributivity). Suppose f and g have the same order. Then: 

(f + g) 0 h = f 0 h + g 0 h, 

h 0 (f + g) = h 0 f + h 0 g. 

( 4) Given a basis a 1, ... , an for V, the corresponding elementary 
tensors </>1 satisfy the equation 

where I= (ii, ... , ik). 

Note that no parentheses are needed in the expression for ¢1 given in (4), 
since 0 is associative. Note also that nothing is said here about commutativ
ity. The reason is obvious; it almost never holds. 

Proof. The proofs are straightforward. Associativity is proved, for in
stance, by noting that (if f, g, h have orders k, l, m, respectively) 

(f 0 (g 0 h)) (v1, ... , Vk+l+m) 

= f(v1, ... , vk) • g(vk+l, ... , Vk+l) • h(vk+l+l, ... , vk+l+m)• 

The value of (f 0 g) 0 h on the given tuple is the same. 0 

The action of a linear transformation 

Finally, we examine how tensors behave with respect to linear transfor
mation of the underlying vector spaces. 

Definition. Let T: V-+ W be a linear transformation. We define the 
dual transformation 

T* : t,k(W)-+ Ck(V), 

(which goes in the opposite direction) as follows: If f is in £,k(W), and if 
v1 , ... , Vk are vectors in V, then 
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The transformation T* is the composite of the transformation T x · · • x T 
and the transformation f, as indicated in the following diagram: 

TX ... X T 

R 
It is immediate from the definition that T* f is multilinear, since T is linear 
and f is multilinear. It is also true that T* itself is linear, as a map of 
tensors, as we now show. 

Theorem 26.5. Let T : V -+ W be a linear trans/ ormation; let 

be the dual transformation. Then: 

(1) T* is linear. 

(2) T*(f 0 g) = T* f 0 T*g. 

(3) If S : W - X is a linear transformation, then (So T)* f = 
T*(S* /). 

Proof. The proofs are straightforward. One verifies (1), for instance, as 
follows: 

(T*(af + bg)) (vi, ... , vk) = (af + bg) (T(vi), ... , T(vk)) 

= a f (T(v1), ... , T(vk)) + bg(T(vi), ... , T(vk)) 

= aT* /(vi, ... , vk) + bT*g(v1, ... , vk), 

whence T*(af + bg) = a T• J + b T*g. □ 

The following diagrams illustrate property (3): 

w 

1/~ 
v-------x 

SoT 



226 Differential Forms 

EXERCISES 

1. {a) Show that if/, g: Vk - H are multilinear, so is a/+ bg. 

(b) Check that .ctr(V) satisfies the axioms of a vector space. 

2. (a) Show that if/ and g are multilinear, so is/® g. 

Chapter 6 

(b) Check the basic properties of the tensor product (Theorem 26.4). 

3. Verify (2) and (3) of Theorem 26.5. 

4. Determine which of the following are tensors on R', and express those 
that are in terms of the elementary tensors on H': 

/(x, y) = 3z1y2 + Sz2z3, 

g(x, y) = X1Y2 + z2y, + 1, 

h(x, y) = Z1Y1 - 7z2y3. 

5. Repeat Exercise 4 for the functions 

/(x, Y, z) = 3X1X2Z3 - X3y1z,, 

g(x, y, z, u, v) = 5xaY2Z3U4 v,, 

h(x,y,z) = z1y2z, +2z1Z3. 

6. Let / and g be the following tensors on H4 : 

/(x, y, z) = 2z1y2z2 - x2y3z1, 

g = 'P2,1 - S<p3,1 . 

(a) Express / ® g as a linear combination of elementary 5-tensors. 

(b) Express (/ ® g) (x, y, z, u, v) as a function. 

7. Show that the four properties stated in Theorem 26.4 characterize the 
tensor product uniquely, for finite-dimensional spaces V. 

8. Let/ be a 1-tensor on Rn; then /(y) =A• y for some matrix A of size l 
by n. If T : R'" - Rn is the linear transformation T(x) = B • x, what is 
the matrix of the I-tensor T* f on Rm? 

§27. ALTERNATING TENSORS 

In this section we introduce the particular kind of tensors with which we shall 
be concerned-the alternating tensors-and derive some of their properties. 
In order to do this, we need some basic facts about permutations. 



§21. Alternating Tensors 227 

Permutations 

Definition. Let k > 2. A permutation of the set of integers {1, ... , k} 
is a one-to-one function a mapping this set onto itself. We denote the set of 
all such permutations by Sk, If a and Tare elements of Sk, so are a o T and 
C1- 1. The set S k thus forms a group, called the symmetric group ( or the 
permutation group) on the set { 1, ... , k}. There are k1 elements in this 
group. 

Definition. Given 1 < i < k, let ei be the element of Sk defined by 
setting ei(j) = j for j -f; i,i + 1; and 

We call ei an elementary permutation. Note that eioei equals the identity 
permutation, so that ei is its own inverse. 

Lemma 27.1. 
permutations. 

If a E S k, then er equals a composite of elementary 

Proof. Given O < i < k, we say that a fixes the first i integers if 
C1(j) = j for 1 < j < i. If i = 0, then a need not fix any integers at all. 
If i = k, then a fixes all the integers 1, ... , k, so that C1 is the identity 
permutation. In this case the theorem holds, since the identity permutation 
equals e; o e; for any j. 

We show that if a fixes the first i-1 integers (where O < i < k), then er can 
be written as the composite a = 1f o a', where 7f is a composite of elementary 
permutations and a' fixes the first i integers. The theorem then follows by 
induction. 

The proof is easy. Since a fixes the integers 1, ... , i - 1, and since a is 
one-to-one, the value of er on i must be a number different from 1, ... , i - 1. 
If a( i) = i, then we set a' = er and 7r equal to the identity permutation, and 
our result holds. If er( i) = f > i, we set 

I a = e,; o ••• a et- i o a. 

Then a' fixes the integers 1, ... , i - 1 because er fixes these integers and so 
do e,;, ... , et-i. And er' also fixes i, since a( i) = i and 

We can rewrite the equation defining a' in the form 

el-1 o • • • o ei o if = er; 

thus our result holds. D 
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Definition. Let u E S-t. Consider the set of all pairs of integers i,j 
from the set {1, ... , k} for which i < j and u(i) > u(j). Each such pair is 
called an inversion in u. We define the sign of u to be the number -1 if the 
number of inversions in u is odd, and to be the number +1 if the number of 
inversions in u is even. We call u an odd or an even permutation according 
as the sign of u equals -1 or +1, respectively. Denote the sign of u by sgn u. 

Lemma 27.2. Let u,T E Si. 
(a) If u equals a composite of m elementary permutations, then 

sgn <T = (-l)m. 

(b) sgn(u o T) = (sgn u) · (sgn T). 
(c) sgn u- 1 = sgn u. 
(d) If pf:. q, and if T is the permutation that exchanges p and q and 

leaves all other integers fixed, then sgn T = -1. 

Proof. Step 1. We show that for any u, 

sgn( u o et) = -sgn u. 

Given u, let us write down the values of u in order as follows: 

(u(l), u(2), ... , u(l), u(l + 1), ... , u(k)). 

Let T = uoet; then the corresponding sequence for Tis the k-tuple of numbers 

(T(l), T{2), ... , T(l), T(l + 1), ... , T(k)) 

= (u(l), u(2), ... , u(l + 1),u(l), ... , u(k)). 

The number of inversions in u and T, respectively, are the number of pairs of 
integers that appear in the sequences ( *) and ( **),respectively, in the reverse 
of their natural order. We compare inversions in these two sequences. Let 
p f:. q; we compare the positions of u(p) and u(q) in these two sequences. 
If neither p nor q equals l or l + 1, then u(p) and u( q) appear in the same 
slots in both sequences, so they constitute an inversion in one sequence if and 
only if they constitute an inversion in the other. Now consider the case where 
one, say p, equals either l or l + 1, and the other q is different from both l 
and l + 1. Then u(q) appears in the same slot in both sequences, but u(p) 
appears in the two sequences in adjacent slots. Nevertheless, it is still true 
that u(p) and u(q) constitute an inversion in one sequence if and only if they 
constitute an inversion in the other. 

So far the number of inversions in the two sequences are the same. But 
now we note that if u( l) and u( l + 1) form an inversion in the first se
quence, they do not form an inversion in the second; and conversely. Hence 
sequence(••) has either one more inversion, or one fewer inversion, than(•). 
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Step 2. We prove the theorem. The identity permutation has sign +1; 
and composing it successively with m elementary permutation changes its 
sign m times, by Step 1. Thus (a) holds. To prove (b), we write u as 
the composite of m elementary permutations, and T as the composite of n 
elementary permutations. Then <1 o T is the composite of m + n elementary 
permutations; and (b) follows from the equation (-1 )m+n = ( -1 )m (-1 )n. 
To check ( c), we note that since u-1 o u equals the identity permutation, 
(sgn u-1)(sgn u) = 1. 

To prove (d), one simply counts inversions. Suppose that p < q. We can 
write the values of T in order as 

(1, ... , p-1, [q),p+ 1, ... , p+ l-1, [E),p+l + 1, ... , k), 

where q = p+l. Each of the pairs {q,p+l}, ... , {q,p+l-1} constitutes an 
inversion in this sequence, and so does each of the pairs {p+ 1,p} .... , {p+ 
l - 1,p}. Finally, {q,p} is an inversion as well. Thus T has 2l-1 inversions, 
so it is odd. D 

Alternating tensors 

Definition. Let / be an arbitrary k-tensor on V. If u is a permutation 
of {1, ... , k}, we define / 17 by the equation 

/ 17 (v1, .•• , vk) = /(vt7(1), .•. , Yo-(k))-

Because f is linear in each of its variables, so is f 17; thus f 17 is a k-tensor 
on V. The tensor / is said to be sy1nmeti-ic if /e = / for each elemen
tary permutation e, and it is said to be alternating if /e = - / for every 
elementary permutation e. 

Said differently, / is symmetric if 

for all i; and / is alternating if 

While symmetric tensors are important in mathematics, we shall not be con
cerned with them here. We shall be primarily interested in alternating tensors. 

Definition. If V is a vector space, we denote the set of alternating k
tensors on V by .Ak(V). It is easy to check that the sum of two alternating 
tensors is alternating, and that so is a scalar multiple of an alternating tensor. 
Then .Ak(V) is a linear subspace of the space .Ck(V) of all k-tensors on V. 
The condition that a 1-tensor be alternating is vacuous. Therefore we make 
the convention that ..41(V) = .C1(V). 
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EXAMPLE 1. The elementary tensors of order k > 1 are not alternating, but 
certain linear combinations of them are alternating. For instance, the tensor 

is alternating, as you can check. Indeed, if V = Rn and we use the usual basis 
for Rn and corresponding dual basis <Pi, the function / satisfies the equation 

[ 
Xi Yi] /(x,y) = XiYi - XiYi = det . 
x; Yi 

Here it is obvious that / (y, x) = - / (x, y). Similarly, the function 

[
x, 

g(x, y, z) = det x, 

Xk 

is an alternating 3-tensor on Rn; one can also write gin the form 

This example suggests that alternating tensors and the determinant f unc
tion are intimately related. This is in fact the case, as we shall see. 

We now study the space Ak(V); in particular, we find a basis for it. Let 
us begin with a lemma: 

Lemma 27.3. Let f beak-tensor on V; let a, TES.,:. 

( a) The transformation f -+ f" is a linear transformation of r/~ (V) 
to t,k (V). It has the property that for all a, T, 

(f"Y = fTO<T. 

(b) The tensor f is alternating if and only if/"= (sgn u)/ for all a. 
If f is alternating and if vp = v, with p-:/, q, then /(v1, ... , v1i;) = 0. 

Proof. (a) The linearity property is straightforward; it states simply 
that (a/+ bg)" =a/"+ bg". To complete the proof of (a), we compute 

(/"Y (v1, ... , vi:) = f" (vT(l), ... , VT(k)) 

= f(wa(l), • •., Wa(k)) 

= f(vT(a(l)), ••• ' VT(a(k))) 

= /roa(v1, ... , v1i;). 
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(b) Given an arbitrary permutation a, let us write it as the composite 

where each O'i is an elementary permutation. Then 

= ( -1 )m f because f is alternating, 

= (sgn u)f. 

Now suppose Vp = Vq for p =/- q. Let T be the permutation that ex
changes p and q. Since vp = vq, 

On the other hand, 

since sgn r = -1. It follows that f (vi, ... , vt) = 0. D 

We now obtain a basis for the space Ak(V). There is nothing to be done 
in the case k = l, since A 1(V) == £ 1(V). And in the case where k > n, 
the space Ak(V) is trivial. For any k-tensor f is uniquely determined by 
its values on k-tuples of basis elements. If k > n, some basis element must 
appear in the k-tuple more than once, whence if f is alternating, the value 
off on the k-tuple must be zero. 

FinaUy, we consider the case I < k < n. We show first that an alternating 
tensor f is entirely determined by its values on k-tuples of basis elements 
whose indices are in ascending order. Then we show that the value off 
on such k-tuples may be specified arbitrarily. 

Lemma 27.4. Let ai, ... , an be a basis for V. If f,g are alternat-
ing k-tensors on V, and if 

for every ascending k-tuple of integers I = (i1, ... , ik) from the set 
{1, ... , n}, then f =g. 

Proof. In view of Lemma 26.2, it suffices to prove that f and g have 
the same values on an arbitrary k-tuple (ait, ... , aik) of basis elements. Let 
J = (ji, ••• ' it)-
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If two of the indices, say, Jp and ]q, are the same, then the values off 
and g on this tuple are zero, by the preceding lemma. If all the indices 
are distinct, let a be the permutation of { 1, ... , k} such that the k-tuple 
I= (jq(l), ... , ia(lc)) is ascending. Then 

/(aii, ... , ai,.) = /a(aji, ... , a;,.) by definition of fa, 

= (sgn u)f(a1i, ... , a;,.) because f is alternating. 

A similar equation holds for g. Since f and g agree on the k-tuple 
(ai 1 , ••• , ai,. ), they agree on the k-tuple (a;i, ... , a;,.). D 

Theorem 27.5. Let V be a vector space with basis a 1, ... , a,p Let 
I= (ii, ... , i1c) be an ascending k-tuple from the set {1, ... , n}. There 
is a unique alternating k-tensor '¢1 on V such that for every ascending 
k-tuple J = (j1, ... , i1c) from the set {1, ... , n}, 

if I;/ J, 

if I= J. 

The tensors 1/;1 form a basis for Ak(V). The tensor 1/;1 in fact satisfies 
the formula 

q 

where the summation extends over all a E S1c. 

The tensors 1/;1 are called the eleiuentary alternating k-tensors on V 
corresponding to the basis a1, ... , an for V. 

Proof. Uniqueness follows from the preceding lemma. To prove exis
tence, we define 1/;1 by the formula given in the theorem, and show that 1/;1 
satisfies the requirements of the theorem. 

First, we show 1/;1 is alternating. If TE S.1c, we compute 

(1/J1r = L (sgn a) ((</>1 t) T by linearity, 
q 

= L (sgn a) (</>1 yoq 

q 

= (sgn T) L (sgn(T O a)) (4>1r 0 q 

q 



§21. Alternating Tensors 233 

the last equation follows from the fact that r o a ranges over S1,: as a does. 
We show 1/J1 has the desired values. Given J, we have 

1/J1(a;17 ... , a;")= L (sgn u)</>1(a;,,<1>' ... , a; .. <">). 
(I 

Now at most one term of this summation can be non-zero, namely the term 
corresponding to the permutation a for which / = (j<1(l), ... , j<1(J:))· Since 
both I and J are ascending, this occurs only if / = J and a is the identity 
permutation, in which case the value is 1. If I ':/; J, then all terms vanish. 

Now we show the 1/)1 form a basis for Ak(V). Let f be an alternating k
tensor on V. We show that / can be written uniquely as a linear combination 
of the tensors 1/J 1. 

Given /, for each ascending k-tuple I = (ii, ... , i1,:) from the set 
{l, ... , n}, let d1 be the scalar 

d1 = /(8 i1, • • ·, 8i1,)• 

Then consider the alternating k-tensor 

where the notation [J] indicates that the summation extends over all ascend
ing k-tuples from {1, ... , n }. If I is an ascending k-tuple, the the value of g 
on the k-tuple (ai1 , ..• , Si") equals d1; and the value of/ on this k-tuple is 
the same. Hence / = g. Uniqueness of this representation of / follows from 
the preceding lemma. D 

This theorem shows that once a basis a1, ... , 3n for V has been chosen, 
an arbitrary alternating k-tensor / can be written uniquely in the form 

The numbers d1 are called components of/ relative to the basis { 1/J1 }. 
What is the dimension of the vector space Ali:(V)? If k = 1, then A1(V) 

has dimension n, of course. In general, given k > 1 and given any subset of 
{ 1, ... , n} having k elements, there is exactly one corresponding ascending 
k-tuple, and hence one corresponding elementary alternating k-tensor. Thus 
the number of basis elements for .Ali:(V) equals the number of combinations 
of n objects, taken k at a time. This number is the binomial coefficient 

(n) n! 
k - k!(n - k)!' 
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The preceding theorem gives one formula for the elementary alternating 
tensor ¢1. There is an alternative formula that expresses ¢1 directly in terms 
of the standard basis elements for the larger space .Ck(V). It is given in 
Exercise 5. 

Finally, we note that alternating tensors behave properly with respect to 
a linear transformation of their underlying vector spaces. The proof is left as 
an exercise. 

Theorem 27.6. Let T : V - W be a linear transformation. 
If f is an alternating tensor on W, then T• f is an alternating tensor 
on V. □ 

Determinants 

We now (at long last!) construct the determinant function for matrices 
of size greater than 3 by 3. 

Definition. Let e1, ... , en be the usual basis for Rn; let </>1, ... , <Pn 
denote the dual basis for .C 1(Rn). The space An(Rn) of alternating n-tensors 
on Rn has dimension 1; the unique elementary alternating n-tensor on Rn is 
the tensor t/J1, ... , n• If X = [x1 • • • xn] is an n by n matrix, we define the 
determinant of X by the equation 

detX = 1/'1, ... ,n(x1, ... , Xn). 

We show this function satisfies the axioms for the determinant function 
given in §2. For convenience, let us for the moment let g denote the function 

g(X) = t/J1(x1, ... , Xn), 

where I = (1, ... , n). The function g is multilinear and alternating as a 
function of the columns of X, because t/J1 is an alternating tensor. Therefore 
the function f defined by the equation f (A) = g( A tr) is mul tilinear and 
alternating as a function of the rows of the matrix A. Furthermore, 

/(In) = g(ln) = t/J1(e1, ... , en) = 1. 

Hence the function f satisfies the axioms for the determinant function. In 
particular, it follows from Theorem 2.11 that /(A)= /(Atr). Then f(A) = 
f(Atr) = g((Atr)tr) = g(A), so that g also satisfies the axioms for the deter
minant function, as desired. 

The formula for t/J1 given in Theorem 27.5 gives rise to a formula for the 
determinant function. If / = ( 1, ... , n), we have 

<let X = L (sgn a)ef>1(xu(l), ... , Xu(n)) 
q 

= L (sgn a)x1,u(l) • X2,o-(2) • • • Xn,u(n), 
q 
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as you can check. This formula is sometimes used as the definition of the 
determinant function. 

We can now obtain a formula for expressing 1/J1 directly as a function of 
k-tuples of vectors of R". It is the following: 

Theorem 27. 7. Let 'ljJ1 be an elementary alternating tensor on R" 
corresponding to the usual basis for R", where I= (i1, ... , it). Given 
vectors x1 , ... , Xt of R", let X be the matrix X = (x1 • • • x1;]. Then 

1/J1(x1, ... , xi:)= detX1, 

where X1 denotes the matrix whose successive rows are rows i1, ... , ii 
of X. 

Proof. We compute 

1/J1(x1, ..• , x.1:) = L (sgn a)</>1(Xe1(1), ••. , Xo-(k)) 
C7 

C7 

This is just the formula for det XI· □ 

EXAMPLE 2. Consider the space A 3(R4). The elementary alternating 3-
tensors on R', corresponding to the usual basis for R4, are the functions 

[ 
Zi Yi z,] 

'Pi,1 ,11:(x,y,z)=det z, Yi Zj , 

Zic Ylc Zic 

where (i, j, k) equals (1,2,3) or (1,2,4) or (1,3,4} or (2,3,4). The general ele
ment of A3(R4) is a linear combination of these four functions. 

A remark on notation. There is in the subject of multilinear algebra a 
standard construction called the exterior product operation. It assigns to any 
vector space W a certain quotient of the "k-fold tensor product" of W; this 
quotient is denoted Ak(W) and is called the "k-fold exterior product" of W. 
(See [Gr], [N].) If V is a finite-dimensional vector space, then the exterior 
product operation, when applied to the dual space V* = £ 1(V), gives a space 
Ak(V*) that is isomorphic to the space of alternating k-tensors on V, in a 
natural way. For this reason, it is fairly common among mathematicians to 
abuse notation and denote the space of alternating k-tensors on V by A1(V*). 
(See [B-G] and [G-P], for example.) 

Unfortunately, others denote the space of alternating k-tensors on V by 
the symbol A1 (V) rather than by Ak(V*). (See [A-M-R], [BJ, (D].) Other 
notations are also used. (See [F], [S].) Because of this notational confusion, 
we have settled on the neutral notation Ak(V) for use in this book. 
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EXERCISES 

1. Which of the following are alternating tensors in R4 ? 

2. Let u E S5 be the permutation such that 

(u(l), u(2), u(3), u(4), u(5)) = (3, 1, 4, 5, 2). 

Use the procedure given in the proof of Lemma 27.1 to write <T as a 
composite of elementary permutations. 

3. Let '¢1 be an elementary k-tensor on V corresponding to the basis 
a1, ... , an for V. If j1, ... , jk is an arbitrary k-tuple of integers from 
the set {1, ... , n}, what is the value of 

4. Show that if T: V - Wis a linear transformation and if/ E Ak(W), 
then T• J E Ak(V). 

5. Show that 

a 

where if I= (i1, ... , ik), we let l(T = (i(T(J), ..• , iu(k))- [Hint: Show 
first that ( ¢1,, )a = ¢1 .] 

§28. THE WEDGE PRODUCT 

Just as we did for general tensors, we seek to define a product operation in the 
set of alternating tensors. The product f ®g is almost never alternating, even 
if / and g are alternating. So something else is needed. The actual definition 
of the product is not very important; what is important are the properties it 
satisfies. They are stated in the following theorem: 
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Theorem 28.1. Let V be a vector space. There is an operation 
that assigns, to each f e Ak(V) and each g E Al(V), an element f Ag E 
Ak+i(V), such that the following properties hold: 

(1) ( Associativity). f A (g Ah) = (f Ag) Ah. 
(2) (Homogeneity). (cf) Ag= c(f Ag)= f A (cg). 
(3) (Distributivity). If f and g have the same order, 

(/ + g) A h = f A h + g A h, 

h A (f + g) = h A/+ h Ag. 

(4) ( Anticommutativity). If f and g have orders k and l, respec
tively, then 

gAf = (-l)"tf Ag. 

(5) Given a basis a 1, ... , an for V, let </>i denote the dual basis for 
V*, and let 1/)1 denote the corresponding elementary alternating 
tensors. If I = (ii, ... , i1:) is an ascending k-tuple of integers 
from the set {1, ... , n}, then 

These five properties characterize the product A uniquely for finite
dimensional spaces V. Furthermore, it has the following additional 
property: 

(6) If T : V -+ W is a linear transformation, and if f and g are 
altemating tensors on W, then 

The tensor f Ag is called the wedge product off and g. Note that 
property (4) implies that for an alternating tensor f of odd order, / A f = 0. 

Proof. Step 1. Let F be a k-tensor on W (not necessarily alternat
ing). For purposes of this proof, it is convenient to define a transformation 
A : C"(V)-+ C"(V) by the formula 

AF= L(sgn o')F", 
(1 

where the summation extends over all a E Si. (Sometimes a factor of 1/ k! 
is included in this formula, hut that is not necessary for our purposes.) Note 
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that in this notation, the definition of the elementary alternating tensors can 
be written as 

The transformation A has the following properties: 

(i) A is linear. 

(ii) AF is an alternating tensor. 

(iii) If Fis already alternating, then AF= (k!)F. 
Let us check these properties. The fact that A is linear comes from the 

fact that the map F - F 17 is linear. The fact that AF is alternating comes 
from the computation 

by linearity, 
q 

= L ( sgn u )FT017 
q 

= (sgn r) L (sgn To a)FTou 
q 

= (sgn r)AF. 

(This is the same computation we made earlier in showing that 1/)1 is alter
nating.) Finally, if F is already alternating, then F 17 = (sgn cr)F for all er. 
It follows that 

AF= L (sgn cr) 2 F = (k!)F. 
q 

Step 2. We now define the product f /\g. If/ is an alternating k-tensor 
on V, and g is an alternating £-tensor on V, we define 

Then f I\ g is an alternating tensor of order k + l. 
It is not entirely clear why the coefficient 1/k!l! appears in this formula. 

Some such coefficient is in fact necessary if the wedge product is to be asso
ciative. One way of motivating the particular choice of the coefficient 1/k!l! 
is the following: Let us rewrite the definition of f A g in the form 

(/ A g)(v1, ... , Vk+l) = 
1 

k!l! L (sgn cr)/{v t7(l), ••• , v q(k)) • g(v u(k+I), ••• , Yu(k+l))· 
q 
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Then let us consider a single term of the summation, say 

A number of other terms of the summation can be obtained from this one 
by permuting the vectors v tt(l), ... , v o-(k) among themselves, and permuting 
the vectors Vu(k+l), ... , Vo-(k+l) among themselves. Of course, the factor 
(sgn a) changes as we carry out these permutations, but because f and g are 
alternating, the values of f and g change by being multiplied by the same 
sign. Hence all these terms have precisely the same value. There are k!l! such 
terms, so it is reasonable to divide the sum by this number to eliminate the 
effect of this redundancy. 

Step 3. Associativity is the most difficult of the properties to verify, so 
we postpone it for the moment. To check homogeneity, we compute 

(cf)Ag = A((c/)0g)/k!l! 

= A(c(f 0 g))/k!l! by homogeneity of 0, 

= cA(f 0 g)/k!l! by linearity of A, 

==c(f Ag). 

A similar computation verifies the other part of homogeneity. Distributivity 
follows similarly from distributivity of® and linearity of A. 

Step 4. We verify anticommutativity. In fact, we prove something 
slightly more general: Let F and G be tensors of orders k and l, respec
tively (not necessarily alternating). We show that 

To begin, let 7r be the permutation of (1, ... , k + l) such that 

(1r(l), ... , 1r(k+l)) = (k+1,k+2, ... , k+l,l,2, ... , k). 

Then sgn 7r = (-1 )kl. ( Count inversions!) It is easy to see that ( G © F)'lf = 
F ® G, since 

(G 0 Ft (v1, ... , Vk+l) = G(vk+l, ... , vk+t) • F(v1, ... , Vt), 

(F 0 G)(vi, ... , Vk+l) == F{v1, ... , Vk) • G(vk+l, ... , Vk+t), 
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We then compute 

A(F ® G) = L (sgn u)(F ® er 
(1 

(1 

= (sgn 1r) L (sgn O' o 1r)(G © F)"0 1f 

(1 

= (sgn 1r)A(G @F), 

since a o ,r runs over all elements of Sk+l as a does. 

Step 5. Now we verify associativity. The proof requires several steps, 
of which the first is this: 

Let F and G be tensors ( not necessarily alternating) of orders k and l, 
respectively, such that AF = 0. Then A(F © G) = 0. 

To prove that this result holds, let us consider one term of the expression 
for A( F © G), say the term 

Let us group together all the terms in the expression for A(F©G) that involve 
the same last factor as this one. These terms can be written in the form 

T 

where T ranges over all permutations of {I, ... , k}. Now the expression in 
brackets is just 

AF(v<1(I), ... , Vq(J:)), 

which vanishes by hypothesis. Thus the terms in this group cancel one an
other. 

The same argument applies to each group of terms that involve the same 
last factor. We conclude that A(F © G) = 0. 

Step 6. Let F be an arbitrary tensor and let h be an alternating tensor 
of order m. We show that 

1 
(AF) Ah= - 1A(F ® h). 

m. 

Let F have order k. Our desired equation can be written as 
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Linearity of A and distributivity of© show this equation is equivalent to each 
of the equations 

A{(AF) © h - (k!)F © h} = o, 

A{ [AF- (k!)F] © h} = 0. 

In view of Step 5, this equation holds if we can show that 

A[AF - (k!)FJ = O. 

But this follows immediately from property (iii) of the transformation A, since 
AF is an alternating tensor of order k. 

Step 7. Let J, g, h be alternating tensors of orders k, l, m respectively. 
We show that 

1 
(/Ag) Ah= k!l!m!A((f ® g) © h). 

Let F = J © g, for convenience. We have 

1 
f Ag= k!l!AF 

by definition, so that 

1 
(/Ag) Ah = k!l! (AF) Ah 

1 
k!l!m! A(F © h) by Step 6, 

1 
= k!i!m!A((f ® g) © h). 

Step 8. Finally, we verify associativity. Let f, g, h be as in Step 7. 
Then 

(k!l!m!)(/ Ag) I\ h = A((f © g) © h) 

=A(f©(g©h)) 

by Step 7, 

by associativity of©, 

= (-l)k(l+m) A((g © h) ® f) by Step 4, 

= (-1t<t+m)(£!m!k!)(g /\ h) A/ by Step 7, 

= (k!l!m!)/ A (g Ah) by anticommutativity. 

Step 9. We verify property (5). In fact, we prove something slightly 
more general. We show that for any collection / 1, ... , /k of !-tensors, 
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Property (5) is an immediate consequence, since 

Formula(*) is trivial fork= 1. Supposing it true fork- 1, we prove it 
for k. Set F =Ji®···© b:-1• Then 

A(F © !,.:) = (l!){AF) A /1: by Step 6, 

= (Ii A ... A /1:-il A Ii:' 

by the induction hypothesis. 

Step 10. We verify uniqueness; indeed, we show how one can calculate 
wedge products, in the case of a finite-dimensional space V, using only prop
erties (1)-(5). Let <Pi and t/Jr be as in property (5). Given alternating tensors 
/ and g, we can write them uniquely in terms of the elementary alternating 
tensors as 

f = L b11/J1 and g = L c;,p;. 
[ij µJ 

(Here I is an ascending k-tuple, and J is an ascending l-tuple, from the set 
{1, ... , n}.) Distributivity and homogeneity imply that 

/Ag= LL b1C1,P1 A 1/J;. 
(/) (J] 

Therefore, to compute f Ag we need only know how to compute wedge prod
ucts of the form 

For that, we use associativity and the simple rules 

which follow from anticommutativity. It follows that the product t/Jr A tp; 
equals zero if two indices are the same. Otherwise it equals {sgn 1r) times the 
elementary alternating k + l. tensor 1/JK whose index is obtained by rearrang
ing the indices in the k + l tuple (/, J) in ascending order, where ,r is the 
permutation required to carry out this rearrangement. 

Step 11. We complete the proof by verifying property (6). Let T : 
V-+ W be a linear transformation, and F be an arbitrary tensor on W (not 
necessarily alternating). It is easy to verify that T•(Fa) = (T• FY,. Since 
T• is linear, it then follows that T•(AF) = A(T• F). 
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Now let f and g be alternating tensors on W of orders k and l, respec
tively. We compute 

T*(J Ag)= k~l! T* (A(f 0 g)) 

= k:£! A(T*(f 0 g)) 

= k~l! A((T* f) 0 (T*g)) by Theorem 26.5, 

= (T* f) A (T*g). □ 

With this theorem, we complete our study of multilinear algebra. There 
is, of course, much more to the subject (see [N] or (GrJ, for example), but this 
is all we shall need. We shall in fact need only alternating tensors and their 
properties, as discussed in this section and the preceding one. 

We remark that in some texts, such as [G-P], a slightly different definition 
of the wedge product is used; the coefficient 1/(k+t')! appears in the definition 
in place of the coefficient 1/ k!l!. This choice of coefficient also leads to an 
operation that is associative, as you can check. In fact, all the properties 
listed in Theorem 28.1 remain unchanged except for (5), which is altered by 
the insertion of a factor of k! on the right side of the equation for 1/J1. 

EXERCISES 

1. Let x, y, z E R5 . Let 

h(w) = W1 - 2w3. 

(a) Write AF and AG in terms of elementary alternating tensors. [Hint: 
Write F and Gin terms of elementary tensors and use Step 9 of the 
preceding proof to compute Acf>I-] 

(b) Express (AF) I\ h in terms of elementary alternating tensors. 

(c) Express (AF)(x,y, z) as a function. 

2. If G is symmetric, show that AG= 0. Does the converse hold? 

3. Show that if ft, ... , f k are alternating tensors of orders l1, ... , lk, re
spectively, then 
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4. Let x1, ... , xi be vectors in Rn; let X be the matrix X = [x1 • • • xi]. 
HI= (i1, ... , i11) is an arbitrary k-tuple from the set {1, ... , n}, show 
that 

5. Verify that T*(F0 ') = (T* F)i7. 

6. Let T: Rm-+ Rn be the linear transformation T(x) = B • x. 

(a) If tpr is an elementary alternating k-tensor on ~, then T*,pr has the 
form 

where the tpJ are the elementary alternating k-tensors on r. What 
are the coefficients CJ? 

(b) Hf = EclJ d11J,1 is an altern&ting k-tensor on R", express T• / in 
terms of the elementary alternating k-tensors on r. 

§29. TANGENT VECTORS AND DIFFERENTIAL FORMS 

In calculus, one studies vector algebra in R3-vector addition, dot products, 
cross products, and the like. Scalar and vector fields are introduced; and 
certain operators on scalar and vector fields are defined, namely, the operators 

grad/= V/, curl F = V x F', - - -and div G = V • G. 

These opera.tors are crucial in the formulation of the basic theorems of the 
vector integral calculus. 

Analogously, we have in this chapter studied tensor algebra in Rn-tensor 
addition, alternating tensors, wedge products, and the like. Now we introduce 
the concept of a tensor field; more specifically, that of an alternating tensor 
field, which is called a. "differential form." In the succeeding section, we shall 
introduce a certain operator on differential forms, called the "differential op
erator" d, which is the analogue of the operators grad, curl, and div. This 
operator is crucial in the formulation of the basic theorems concerning inte
grals of differential forms, which we shall study in the next chapter. 

We begin by discussing vector fields in a. somewhat more sophisticated 
manner than is done in calculus. 
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Tangent vectors and vector fields 

Definition. Given x E Rn, we define a tangent vector to Rn at x to 
be a pair (x; v), where v E Rn. The set of all tangent vectors to Rn at x 
forms a vector space if we define 

(x; v) + (x; w) = (x; v + w), 

c(x; v) = (x; cv). 

It is called the tangent space to Rn at x, and is denoted Tx(Rn). 

Although both x and v are elements of Rn in this definition, they play 
different roles. We think of x as a point of the metric space Rn and picture it 
as a "dot." We think of v as an element of the vector space Rn and picture it 
as an "arrow." We picture (x; v) as an arrow with its initial point at x. The 
set Tx(Rn) is pictured as the set of all arrows with their initial points at x; it 
is, of course, just the set X X nn. 

We do not attempt to form the sum (x; v) + (y; w) if x I- y. 

Definition. Let (a,b) be an open interval in R; let"'{: (a,b)-+- Rn be 
a map of class C". We define the velocity vector of "'f, corresponding to the 
parameter value t, to be the vector (;(t); D;(t)). 

This vector is pictured as an arrow in Rn with its initial point at the 
point p = "'{(t). See Figure 29.1. This notion of a velocity vector is of course 
a reformulation of a familiar notion from calculus. If 

is a parametrized-curve in R3 , then the velocity vector of ; is defined m 
calculus as the vector 

t 
• ) 

Figure 29.1 
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More generally, we make the following definition: 

Definition. Let A be open in RJ: or HJ:; let a : A --+ R" be of class er. 
Let x EA, and let p = a(x). We define a linear transformation 

by the equation 
a.(x; v) = (p; Da(x) • v). 

It is said to be the transformation induced by the differentiable map a. 

Given (x; v), the chain rule implies that the vector a.(x; v) is in fact the 
velocity vector of the curve ;(t) = a(x + tv), corresponding to the parameter 
value t = 0. See Figure 29.2 . 

• 0 

a -----...... 

Figure 29.2 

For later use, we note the following formal property of the transforma
tion a,..: 

Lemma 29.1. Let A be open in Rk or Hk; let a -+ nm be of class 
er. Let B be an open set of Rm or Hm containing a(A); let /3 : B -+ R" 
be of class er. Then 

(/3 o a). = [3. o a •. 
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Proof. This formula is just the chain rule. Let y = a(x) and let z = 
f3(y). We compute 

(/3 o a).(x; v) = (f3(a(x)); D(/3 o a)(x) • v) 

= (f3(y); D{3(y) · Da(x) · v) 

= {3.(y; Do:(x) • v) 

= /3 .. (a.(x;v)). 0 

These maps and their induced transformations are indicated in the fol
lowing diagrams: 

() o a 
A -------- Rn 

~B/, 
Definition. If A is an open set in Rn, a tangent vector field in A is 

a continuous function F : A ---+ Rn x Rn such that F(x) E Tx(Rn), for each 
x EA. Then F has the form F(x) = (x; /(x)), where f: A---+ Rn. If Fis of 
class er, we say that it is a tangent vector field of class er. 

Now we define tangent vectors to manifolds. \Ve shall use these notions 
in Chapter 7. 

Definition. Let M be a k-manifold of class Cr in Rn. If p E M, choose 
a coordinate patch a : U---+ V about p, where U is open in Rk or Hk. Let x 
be the point of U such that a(x) = p. The set of all vectors of the form 
o:..,(x; v), where vis a vector in Rk, is called the tangent space to M at p, 
and is denoted Tp( M). Said differently, 

Tp(M) = a.(Tx(Rk)). 

It is not hard to show that Tp(M) is a linear subspace of Tp(Rn) that is 
well-defined, independent of the choice of a. Because Rk is spanned by the 
vectors e1, ... , ek, the space Tp( M) is spanned by the vectors 
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Ck) 

a 

a ------

Figure 29.3 

Chapter 6 

for j = 1, ... , k. Since Do. has rank k, these vectors are independent; hence 
they form a basis for Tp(M). Typical cases are pictured in Figure 29.3. 

We denote the union of the tangent spaces Tp(.l\f), for p EM, by T(M); 
and we call it the tangent bundle of M. A tangent vector field to M 
is a continuous function F : M --+ T(M) such that F(p) E Tp(M) for each 
peM. 

Tensor fields 

Definition. Let A be an open set in Rn. A k-tensor field in A is a 
function w assigning, to each x E A, a k-tensor defined on the vector space 
Tx(Rn). That is, 

for each x. Thus w(x) is a function mapping k-tuples of tangent vectors to 
Rn at x into R; as such, its value on a given k-tuple can be written in the 
form 

w(x)((x; vi), ... , (x; v1J). 

We require this function to be continuous as a function of (x, v1 , ... , v,1:); if 
it is of class er, we say that w is a tensor field of class er. If it happens that 
w(x) is an alternating k-tensor for each x, then w is called a differential 
form (or simply, a form) of order k, on A. 
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More generally, if M is an m-manifold in Rn, then we define a k-tensor 
field on M to be a function w assigning to each p E M an element of 
_ck (Tp(M)). If in fact w(p) is alternating for each p, then w is called a 
differential form on M. 

If w is a tensor field defined on an open set of Rn containing M, then w 
of course restricts to a tensor field defined on M, since every tangent vector 
to M is also a tangent vector to Rn. Conversely, any tensor field on M can 
be extended to a tensor field defined on an open set of Rn containing M; 
the proof, however, is decidedly non-trivial. For simplicity, we shall restrict 
ourselves in this book to tensor fields that are defined on open sets of Rn. 

Definition. Let ei, ... , en be the usual basis for Rn. Then 1x; e1), ... , 
(x; en) is called the usual basis for Tx(Rn). We define a 1-form <Pi on Rn by 
the equation 

~ { 0 if i =/; j, 
<Pi(x)(x; e;) = . . . 

1 if i = J. 

~ 
The forms </>1, ... , <Pn are called the elementary 1-foi-ms on nn. Similarly, 
given an 3!cending k-tuple I= (ii, ... , it) from the set {1, ... , n}, we define 
a k-form 1/J1 on nn by the equation 

~ ~ ~ 
1/Jr(x) = <Pi, (x) A··· A </>;,.(x). 

~ 
The forms "Pl are called the elementary k-forms on Rn. 

~ ~ 
Note that for each x, the I-tensors </>1(x), ... , <Pn(x) constitute the basis 

for .C1{7x(Rn)) dual to the usual basis for Tx(R"), and the k-tensor -;/,1(x) is 
the corresponding_elemen!ary alternating tensor on Tx(Rn). 

The fact that</>; and "Pl are of class C00 follows at once from the equations 

~ 
</>;(x)(x; v) = V;, 

~1(x){(x;v1 ), ... , (x;vk)) = detX1, 

where X is the matrix X = (v1 • · · Vt). 
If w is a k-form defined on an open set A of Rn, then the k-tensor w(x) 

can be written uniquely in the form 

w(x) = E b1(x):;p1(x), 
[I) 

for some scalar functions b1(x). These functions are called the components 
of w relative to the standard elementary forms in Rn. 
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Lemma 29.2. Let w be a k-form on the open set A of Rn. Then 
w is of class er if and only if its component functions b1 are of class 
er on A. 

Proof. Given w, let us express it in terms of elementary forms by the 
equation 

W = E b/?11. 
(/) 

The functions ¢1 are of class C00 • Therefore, if the functions b1 are of 
class er, so is the function w. Conversely, if w is of class er as a func
tion of (x, v1, ... , VJ:), then in particular, given an ascending k-tuple J = 
(j1, ... , jJ:) from the set {1, ... , n}, the function 

w(x)((x; e;J, ... , (x; e;,.)) 

is of class Cr as a function of x. But this function equals b1(x). D 

Lemma 29.3. Let w and 11 be k-forms, and let 8 be an l-form, on 
the open set A of Rn. If w and 1J and 8 are of class er, so are aw + bf/ 
and w A 8. 

Proof. It is immediate that aw + b17 is of class er, since it is a linear 
combination of er functions. To show that w A 8 is of class er, one could 
use the formula for the wedge product given in the proof of Theorem 28.1. 
Alternatively, one can use the preceding theorem: Let us write 

w = L b1¢1 and 8 = E c1¢1, 
(fj µJ 

where / and J are ascending k- and l-tuples, respectively, from the set 
{1, ... , n}. Then 

wA8= L Eb1c1¢1A~1-
[1J [J] 

To write (w A 8)(x) in terms of elementary alternating tensors, we drop all 
terms with repeated indices, rewrite the remaining terms with indices in as
cending order, and collect like terms. We see thus that each component of 
w A 8 is the sum (with signs ±1) of functions of the form b1c1. Thus the 
component functions of w A 8 are of class er. □ 

Differential forms of order zero 

In what follows, we shall need to deal not only with tensor fields in Rn, but 
with scalar fields as well. It is convenient to treat scalar fields as differential 
forms of order O. 
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Definition. If A is open in Rn, and if / : A ~ R is a map of class er, 
then / is called a scalar field in A. We also call / a differential form of 
order 0. 

The sum of two such functions in another such, and so is the product by 
a scalar. We define the wedge product of two 0-forms / and g by the rule 
f I\ g = f • g, which is just the usual product of real-valued functions. More 
generally, we define the wedge product of the 0-form / and the k-form w by 
the rule 

(w A /)(x) = (/ A w)(x) = / (x) • w(x); 

this is just the usual product of the tensor w(x) and the scalar /(x). 
Note that all the formal algebraic properties of the wedge product hold. 

Associativity, homogeneity, and distributivity are immediate; and anticom
mutativity holds because scalar fields are forms of order 0: 

/ Ag = ( -1 )0 g A / and /Aw = (- l )0w A /. 

Convention. Henceforth, we shall use Roman letters such as f, g, h 
to denote 0-/orms, and Greek letters such as w, T/, 0 to denote k-forms 
fork> 0. 

EXERCISES 

1. Let 'Y : R - Rn be of class er. Show that the velocity vector of 'Y 
corresponding to the parameter value tis the vector -y.(t;e1). 

2. If A is open in Rk and o : A - Rn is of class er, show that o.(x; v) is the 
velocity vector of the curve -y(t) = o(x + tv) corresponding to pa.rameter 
value t = 0. 

3. Let M be a. k-manifold of class er in Rn. Let p E M. Show that the 
tangent space to M at pis well-defined, independent of the choice of the 
coordinate patch. 

4. Let M beak-manifold in Rn of class er. Let p e M - lJM. 

(a) Show that if {p; v) is a tangent vector to M, then there is a para
metrized-curve 'Y : (-€ 1 €) - Rn whose image set lies in M, such 
that (p; v) equals the velocity vector of 'Y corresponding to parameter 
value t = 0. See Figure 29.4. 

(b) Prove the converse. [Hint: Recall that for any coordinate patch a, 
the map a-1 is of class er. See Theorem 24.1.] 

5. Let M be a. k-manifold in Rn of class er. Let q e lJM. 

(a) Show that if (q; v) is a tangent vector to M at q, then there is a. 
parametrized-curve 'Y: (-E,E) - Rn, where 'Y ca.rries either (-E,0] 
or [O, E) in to M, such that ( q; v) equals the velocity vector of 'Y 
corresponding to parameter value t = 0. 
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Figure 29.4 

(b) Prove the converse. 

§30. THE DIFFERENTIAL OPERATOR 

We now introduce a certain operator d on differential forms. In general, the 
operator d, when applied to a k-form, gives a k+ 1 form. We begin by defining 
d for 0-forms. 

The differential of a 0-form 

A 0-form on an open set A of R" is a function / : A ____,. R. The differential 
df of/ is to be a I-form on A, that is, a linear transformation of Tx(R") into 
R, for each x EA. We studied such a linear transformation in Chapter 2. We 
called it the "derivative of/ at x with respect to the vector v ." We now look 
at this notion as defining a I-form on A. 

Definition. Let A be open in R"; let / A --+ R be a function of 
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class er. We define a 1-form df on A by the formula 

df(x)(x; v) = /'(x; v) = D f(x) • v. 

The I-form df is called the diffe1·ential off. It is of class cr-l as a function 
ofx and v. 

Theorem 30.1. The operator d is linear on 0-forms. 

Proof. Let f,g: A-+ R be of class er. Leth= af + bg. Then 

Dh(x) = a D f (x) + b Dg(x), 

so that 
dh(x)(x; v) = a df(x)(x; v) + b dg(x)(x; v). 

Thus dh = a(df) + b(dg), as desired. D 

Using the_ operator d, we can obtain a new way of expressing the elemen
tary I-forms </>i in R": 

~ ~ Lemma 30.2. Let </>1 , ... , <l>n be the elementary I-forms in R". 
Let 11"i : R" -+ R be the ith projection function, defined by the equation 

Proof. Since 'lri is a C00 function, d1ri is a I-form of class C00 • We 
compute 

= [O • • • 0 1 0 • • • O] [] = v;. 

~ 
Thus d1ri = ¢,. □ 

Now it is common in this subject to abuse notation slightly, denoting the 
ith projection function not by 7r; but by x,. Then in this notation, ¢, is equal 
to dx,. We shall use this notation henceforth: 

Convention. If x denotes the general point of R", we denote the z'th 

projection function mapping R" to R by the symbol x,. Then dxi equals 
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the elementary l-form ef>i in R". If I = {i1, ... , i1:) is an ascending 
k-tuple from the set { 1, ... , n}, then we introduce the notation 

for the elementary k-form ¢ 1 in Rn. The general k-form can then be 
written uniquely in the form 

for some scalar functions b 1. 

The forms dxi and dx 1 are of course characterized by the equations 

where X is the matrix X = (v1 • • • v1;]. 
For convenience, we extend this notation to an arbitrary k-tuple J 

(j1, ... , j1;) from the set {1, ... , n}, setting 

Note that whereas dxi is the differential of a 0-form, dxi does not denote the 
differential of a form, but rather a wedge product of elementary 1-forms. 

REMARK. Why do we call the use of Xi for 'Ki an abuse of notation? The 
reason is this: Normally, we use a single letter such as / to denote a function, 
and we use the symbol f(x) to denote the value of the function at the point x. 
That is, f stands for the rule defining the function, and /(x) denotes an 
element of the range off. It is an abuse of notation to confuse the function 
with the value of the function. 

However, this abuse is fairly common. We often speak of "the function 
x 3 + 2x + 1" when we should instead speak of "the function f defined by the 
equation f(x) = x 3 + 2x + 1," and we speak of "the function ex" when we 
should speak of "the exponential function." 

We are doing the same thing here. The value of the ith projection function 
at the point xis the number Xi; we abuse notation when we use x; to denote 
the function itself. This usage is standard, however, and we shall conform 
to it. 

If / is a 0-form, then df is a I-form, so it can be expressed as a linear 
combination of elementary 1-forms. The expression is a familiar one: 
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Theorem 30.3. Let A be open in Rn; let f : A -+ R be of class er. 
Then 

df = (D1f)dx1 + · · · + (Dnf)dxn. 

In particular, df = 0 if f is a constant function. 

In Leibnitz's notation, this equation takes the form 

This formula sometimes appears in calculus books, but its meaning is not 
explained there. 

Proof. We evaluate both sides of the equation on the tangent vector 
(x; v). We have 

d/(x)(x; v) = D f (x) • v 

by definition, whereas 

n n 

L Dif(x) dx,(x)(x; v) = L D,f(x)v,. 
i:1 

The theorem follows. D 

The fact that df is only of class cr-l if f is of class er is very inconve
nient. It means that we must keep track of how many degrees of differentia
bility are needed in any given argument. In order to avoid these difficulties, 
we make the following convention: 

Convention. Henceforth, we restrict ourselves to manifolds, maps, 
vector fields, and forms that are of class C00 • 

The differential of a k-form 

We now define the differential operator d in general. It is in some sense 
a generalized directional derivative. A formula that makes this fact explicit 
appears in the exercises. Rather than using this formula to define d, we shall 
instead characterize d by its formal properties, as given in the theorem that 
follows. 

Definition. If A is an open set in Rn, let nk (A) denote the set of all 
k-forms on A (of class C00 ). The sum of two such k-forms is another k-form, 
and so is the product of a k-form by a scalar. It is easy to see that nA:(A) 
satisfies the axioms for a vector space; we call it the linear space of k-forms 
on A. 
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Theorem 30.4. Let A be an open set in Rn. There exists a unique 
linear trans/ ormation 

defined fork> O, such that: 
(I) If f is a 0-form, then df is the I-form 

d/(x)(x; v) = D /(x) · v. 

(2) If w and 1J are forms of orders k and l, respectively, then 

(3) For every form w, 
d(dw) = o. 

We call d the differential operator, and we call dw the differential 
of w. 

Proof. Step 1. We verify uniqueness. First, we show that condi
tions (2) and (3) imply that for any forms W1, ... , WA:, we have 

If k = I, this equation is a consequence of (3). Supposing it true for k - 1, 
we set 1J = (dw2 A••• A dw1:) and use (2) to compute 

The first term vanishes by (3) and the second vanishes by the induction hy
pothesis. 

Now we show that for any k-form w, the form dw is entirely determined 
by the value of d on 0-forms, which is specified by (1). Since d is linear, it 
suffices to consider the case w = f dx J. We compute 

dw = d(f dx1) = d(/ A dx1) 

= df A dx1 + f A d(dx1) 

= df A dx1, 

by (2), 

by the result just proved. Thus dw is determined by the value of don the 
0-form J. 
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Step 2. We now define d. Its value for 0-forms is specified by (1). The 
computation just made tells us how to define it for forms of positive order: 
If A is an open set in Rn and if w is a k-form on A, we write w uniquely in 
the form 

and define 

w = L /1dx1, 
[/] 

dw= L d/1Adx1. 
[/] 

We check that dw is of class C00 • For this purpose, we first compute 

n 

dw = L [L (D; J)dx;] A dx1 • 

[/] j=l 

To express dw as a linear combination of elementary k + 1 forms, one proceeds 
as follows: First, delete all terms for which j is the same as one of the indices 
in the k-tuple /. Second, take the remaining terms and rearrange the dx, so 
the indices are in ascending order. Third, collect like terms. One sees in this 
way that each component of dw is a linear combination of the functions D; f, 
so that it is of class C 00 • Thus dw is of class C 00 • (Note that if w were only 
of class er, then dw would be of class cr- t . ) 

We show dis linear on k-forms with k > 0. Let 

w = L /1dx1 and 1J = L g1dx1 
[/) [/] 

be k-forms. Then 

d(aw + b11) = dL (a/1 + bg1)dx1 
[/] 

= L d(a/1 + bg1) I\ dx1 by definition, 
[I] 

= L ( a d/1 + b dg1) A dx 1 since d is linear on 0-forms, 
(/] 

= adw+ bdrJ. 

Step 3. We now show that if J is an arbitrary k-tuple of integers from 
the set {l, ... , n}, then 



258 Differential Forms Chapter 6 

Certainly this formula holds if two of the indices in J are the same, since 
dxi = 0 in this case. So suppose the indices in J are distinct. Let / be 
the k-tuple obtained by rearranging the indices in J in ascending order; let 
7i be the permutation involved. Anticommutativity of the wedge product 
implies that dx1 = (sgn 1i)dx1. Because dis linear and the wedge product is 
homogeneous, the formula d(/ A dx 1) = df I\ dx 1, which holds by definition, 
implies that 

Our desired result follows. 

Step 4. We verify property (2), in the case k - 0 and l = 0. We 
compute 

n 

d(f Ag) = E D;(/ • g)dx; 
i=l 

n n 

= E(D;/) • gdx; + E f • (D;g)dx; 
j=l j=l 

= (d/)Ag+/ A(dg). 

Step 5. We verify property (2) in general. First, we consider the case 
where both forms have positive order. Since both sides of our desired equation 
are linear in w and in r,, it suffices to consider the case 

w=fdx1 and r,=gdx1. 

We compute 

d(w A TJ) = d(f g dx1 A dx1) 

= d(fg) A dx1 A dxi by Step 3, 

= (df Ag+ f A dg) A dx1 A dx1 by Step 4, 

= (df A dx1) A (g A dxi) + (-1)1:(/ A dx1) A (dg I\ dxi) 

= dw I\ 1J + (-Ilw I\ dr,. 

The sign (-1 )A: comes from the fact that dx 1 is a k-form and dg is a I-form. 
Finally, the proof in the case where one of k or l is zero proceeds as in the 

argument just given. If k = 0, the term dx1 is missing from the equations, 
while if l = 0, the term dx1 is missing. We leave the details to you. 
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Step 6. We show that if / is a 0-form, then d( d/) = 0. We have 

n 

d(df) = dL D;/ dx;, 
j=l 

n 

= E d(D;/) A dx; by definition, 
j=l 

n n 

= E E DiD;/ dxi A dx;, 
J=l i=l 

To write this expression in standard form, we delete all terms for which i = j, 
and collect the remaining terms as follows: 

d(df) = L (DiD;J- D;Di/)dxi A dx;. 
i<j 

The equality of the mixed partial derivatives implies that d(df) = 0. 

Step 7. We show that if w is a k-form with k > 0, then d(dw) = O. 
Since d is linear, it suffices to consider the case w = f dx r. Then 

d(dw) = d(df A dxr) 

= d(df) A dxr - df A d(dx1 ), 

by property (2). Now d(df) = 0 by Step 6, and 

d(dx1) = d(I) A dx1 = 0 

by definition. Hence d(dw) = 0. D 

Definition. Let A be an open set in Rn. A 0-form / on A is said to be 
exact on A if it is constant on A; a k-form w on A with k > 0 is said to be 
exact on A if there is a k-1 form IJ on A such that w = dlJ. A k-form won 
A with k > 0 is said to be closed if dw = 0. 

Every exact form is closed; for if / is constant, then df = 0, while if 
w = d(), then dw = d(dO) = 0. Conversely, every closed form on A is exact 
on A if A equals all of Rn, or more generally, if A is a "star-convex" subset 
of Rn. (See Chapter 8.) But the converse does not holds in general, as we 
shall see. If every closed k-form on A is exact on A, then we say that A is 
homologically trivial in dimension k. We shall explore this notion further 
in Chapter 8. 
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EXAMPLE 1. Let A be the open set in R2 consisting of all points (x, y) for 
which x :f:. 0. Set f(x, y) = x/ lxl for (x, y) EA. Then/ is of class C00 on A, 
and df = 0 on A. But/ is not exact on A because / is not constant on A. 

EXAMPLE 2. Exactness is a notion you have seen before. In differential equa
tions, for example, the equation 

P(x, y) dx + Q(x, y) dy = O 

is said to be exact if there is a function / such that P = {)J /8x and Q = 
{) f / 8y. In our terminology, this means simply that the 1-form P dx + Q dy 
is the differential of the 0-form f, so that it is exact. 

Exactness is also related to the notion of conservative vector fields. In 
R3, for example, the vector field 

.... ➔ ..... ◄ 

F= Pi+Qj+Rk 

is said to be conservative if it is the gradient of a scalar field f, that is, if 

P=8f/8x and Q=8f/8y and R=8//8z. 

This is precisely the same as saying that the form P dx + Q dy + Rdz is the 
differential of the 0-form /. 

We shall explore further the connection between forms and vector fields 
in the next section. 

EXERCISES 

1. Let A be open in R". 

(a) Show that ft(A) is a vector space. 

(b) Show that the set of all C 00 vector fields on A is a vector space. 

2. Consider the forms 

w = xy dx + 3 dy - yz dz, 

1J = x dx - yz 2 dy + 2x dz, 

in R3. Verify by direct computation that 

d(dw) = 0 and d(w A 17) = (dw) A 1J - w A d17. 

3. Let w beak-form defined in an open set A of R". We say that w vanishes 
at x if w(x) is the 0-tensor. 

(a) Show that ifw vanishes at each x in a neighborhood of xo, then dw 
vanishes at xo. 
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(b) Give an example to show that if w vanishes at xo, then dw need not 
vanish at Xo. 

4. Let A= R2 - O; consider the I-form in A defined the equation 

w = (x dx + y dy)/(x2 + y2 ). 

(a) Show w is closed. 

(b) Show that w is exact on A. 

*5. Prove the following: 

Theorem. Let A = R2 - O; let 

w = (-y dx + x dy)/(x2 + y2 ) 

in A. Then w is closed, but not exact, in A. 

Proof. (a) Show w is closed. 

(b) Let B consist of R2 with the non-negative x-axis deleted. Show that 
for each (x,y) EB, there is a unique t with O < t < 2,r such that 

x = (x2 + y2 ) 112 cost and y = (x2 + y2)112 sin t; 

denote this value of t by <J,( x, y). 

(c) Show that ¢ is of class C 00 • [Hint: The inverse sine and inverse 
cosine functions are of class C 00 on the intervals (-,r /2, ,r /2) and 
(0, ,r), respectively.] 

(d) Show that w = d</J in B. [Hint: We have tan </J = y/x if x-::/; 0 and 
cot</J = x/y if y-::/; O.] 

(e) Show that if g is a closed 0-form in B, then g is constant in B. [Hint: 
Use the mean-value theorem to show that if a is the point (-1,0) of 
R2 , then g(x) = g(a) for all x E B.] 

(f) Show that w is not exact in A. [Hint: If w = df in A, then f - </J 
is constant in B. Evaluate the limit of / (1, y) as y approaches 0 
through positive and negative values.] 

6. Let A= Rn - 0. Let m be a fixed positive integer. Consider the following 
n - 1 form in A: 

n 

7] = L (-1)'-1 /, dx1 I\··· I\~ I\··· I\ dx 0 , 

i=l 

where /i(x) = xi/ Jlxllrn, and where hi means that the factor dxi is to 
be omitted. 

(a) Calculate d1J. 

(b) For what values of mis it true that d1J = O? (We show later that 77 
is not exact.) 
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*7. Prove the following, which expresses d as a generalized "directional deri va
ti ve": 

Theorem. Let A be open in Rn; let w be a k-1 form in A. Given 
V1, ... , v1i: E Rn, define 

h(x) = dw(x)((x;vi), ... , (x;v1i:)), 

g,(x) = w(x)((x; v1 ), ... , (~), ••• , (x; v1i:)), 

where a means that the component a is to be omitted. Then 

Ii: 

h(x) = L (-1)1 - 1 Dg,(x), v,. 
1=1 

Proof. ( a) Let X = [v1 • • • v1i:]. For each j, let Y, = [v1 • • • v, · • · v1i:]. 
Given {i, i1 , ... , i11:-i}, show that 

Ii: 

detX(i,i1, ... , i1i:-i} = L(-1)1 - 1 VijdetY,(i1, ... , i1i:-i}. 
j=l 

(b) Verify the theorem in the case w = f dx 1. 

( c) Complete the proof. 

*§31. APPLICATION TO VECTOR AND SCALAR FIELDS 

Finally, it is time to show that what we have been doing with tensor fields and 
forms and the differential operator is a true generalization to Rn of familiar 
facts about vector analysis in R3 . We will use these results in §38, when we 
prove the classical versions of Stokes' theorem and the divergence theorem. 

We know that if A is an open set in nn' then the set nk (A) of k-forms on A 
is a linear space. It is also easy to check that the set of all C00 vector fields 
on A is a linear space. We define here a sequence of linear transformations 
from scalar fields and vector fields to forms. These transformations act 
as operators that "translate" theorems written in the language of scalar and 
vector fields to theorems written in the language of forms, and conversely. 

We begin by defining the gradient and the divergence operators in R". 
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Definition. Let A be open in Rn. Let f : A--+ R be a scalar field in A. 
We define a corresponding vector field in A, called the gradient of J, by the 
equation 

If G(x) = (x; g(x)) is a vector field in A, where g : A --... Rn is given by the 
equation 

then we define a corresponding scalar field in A, called the divergence of G, 
by the equation 

These operators are of course familiar from calculus in the case n = 3. The 
following theorem shows how these operators correspond to the operator d: 

Theorem 31.1. Let A be an open set in Rn. There exist vector 
space isomorphisms ai and /3i as in the Jo/lowing diagram: 

such that 

Scalar fields in A 

l grad 

Vector fields in A 

Vector fields in A 

Scalar fields in A 

ao -

do ao = Ct1 o grad and do /3n-l = f3n o div. 

Proof. Let f and h be scalar fields in A; let 

F(x) = (x; L fi(x)ei) and G(x) = (x; L gi(x)ei) 
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be vector fields in A. We define the transformations ai and /3; by the equa
tions 

aof = f, 
n 

a1F = L fidxi, 
i=l 

n 

f3n-1G = L (-l)i-lgi dx1 A··· A dxi A··· A dxn, 
i=l 

(As usual, the notation a means that the factor a is to be omitted.) The fact 
that each ai and f3J is a linear isomorphism, and that the two equations hold, 
is left as an exercise. D 

This theorem is all that can be said about applications to vector fields in 
general. However, in the case of R3 , we have a "curl" operator, and something 
more can be said. 

Definition. Let A be open in R3 ; let 

be a vector field in A. We define another vector field in A, called the curl 
of F, by the equation 

A convenient trick for remembering the definition of the curl operator is 
to think of it as obtained by evaluation of the symbolic determinant 

For R3 , we have the following strengthened version of the preceding the
orem: 

Theorem 31.2. Let A be an open set in R3 . There exist vector 
space isomorphisms ai and /3i as in the following diagram: 
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Scalar fields in A Oo n°(A) -l grad ld 

Vector fields in A 0'1 0 1(A) -1 curl ld 

Vector fields in A /J2 02(A) -1 div ld 

Scalar fields in A /J3 n3(A) -
such that 

d o oo = a1 o grad and do a1 = /32 o curl and d o /32 = (33 o div. 

Proof. The maps a, and /3; are those defined in the proof of the pre
ceding theorem. Only the second equation needs checking; we leave it to 
you. □ 

EXERCISES 

1. Prove Theorems 31.1 and 31.2. 

2. Note that in the case n = 2, Theorem 31.1 gives us two maps a-1 and /31 
from vector fields to I-forms. Compare them. 

3. Let A be an open set in R3. 

(a.) Translate the equation d(dw) = 0 into two theorems a.bout vector 
and scalar fields in R3. 

(b) Translate the condition that A is homologically trivial in dimension k 
into a statement about vector and scalar fields in A. Consider the 
cases k = 0, 1, 2. 

4. For R4, there is a. way of translating theorems about forms into more 
familiar language, if one allows oneself to use matrix fields as well as vector 
fields and scalar fields. We outline it here. The complications involved 
may help you understand why the language of forms was invented to deal 
with Rn in general. 

A square matrix B is said to be skew-symmetric if B'r = -B. 
Let A be an open set in R4. Let S(A) be the set of all C°" functions H 
mapping A into the set of 4 by 4 skew-symmetric matrices. If hij(X) 
denotes the entry of H(x) in row i and column j, define ;2 : S(A) -
O2 (A) by the equation 

;2(H) = E h,,(x)dxi A dx,. 
i<j 

265 
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(a) Show r2 is a linear isomorphism. 

(b) Let no, 0:1, /33, /3• be defined as in Theorem 31.1. Define operators 
"twist" and "spin" as in the following diagram: 

Vector fields in A 

l twiaJI 

S(A) 

l•pin 

Vector fields in A 

such that 

OJ --

do 0'1 = "'/2 o twist and do 'Y2 = /33 o spin. 

(These operators are facetious analogues in R4 of the operator "curl" 
in R3 .) 

5. The operators grad, curl, and div, and the translation operators O.i and 
J3i, seem to depend on the choice of a basis in Rn, since the formulas 
defining them involve the components of the vectors involved relative to 
the basis e1, · • • 1 en in Rn. However, they in fact depend only on the 
inner product in Rn and the notion of right-handedness, as the following 
exercise shows. 

Recall that the k-volume function V(x1, ... , Xk) depends only on 
the inner product in Rn. (See the exercises of §21.) 

(a) Let F(x) = (x; f(x)) be a vector field defined in an open set of Rn. 
Show that a 1 F is the unique I-form such that 

a1 F(x)(x; v) = (/ (x), v). 

(b) Let G(x) = (x;g(x)) be a vector field defined in an open set of Rn. 
Show that /Jn-l G is the unique n - I form such that 

/3n-1G(x)((x;v1 ) 1 ••• , (x;vn_i)) =l•V(g(x),v1, ... , Vn-1), 

where£= +1 if the frame (g(x), V1 1 ••• , Yn-1) is right-handed, and 
l = -1 otherwise. 

( c) Let h be a scalar field defined in an open set of Rn. Show that /Jn h 
is the unique n-forrn such that 

/Jnh(x)((x; v1), ... , (x; vn)) = l • h(x) • V(v1, ... 1 Vn), 

where { = +1 if (v1, ... , vn) is right-handed, and { = -1 otherwise. 

(d) Conclude that the operators grad and div (and curl if n = 3) depend 
only on the inner product in Rn and the notion of right-handedness 
in R". (Hint: The operator d depends only on the vector space 
structure of Rn.] 
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§32. THE ACTION OF A DIFFERENTIABLE MAP 

If a : A --+ Rn is a C00 map, where A is open in Rk, then a gives rise 
to a linear transformation a. mapping the tangent space to Rk at x into 
the tangent space to Rn at a(x). Furthermore, we know that any linear 
transformation T : V --+ W of vector spaces gives rise to a dual transformation 
T* : Al(W) --+ A1(V) of alternating tensors. We combine these two facts to 
show how a C00 map a gives rise to a dual transformation of forms, which 
we denote by a•. The transformation a• preserves all the structure we have 
imposed on the space of forms-the vector space structure, the wedge product, 
and the differential operator. 

Definition. Let A be open in Rk; let a : A -+ R" be of class C00 ; let B 
be an open set of Rn containing a(A). We define a dual transformation of 
forms 

as follows: Given a 0-form J: B--+ R on B, we define a 0-form a• f on A by 
setting (a* /)(x) = J (a(x)) for each x E A. Then, given an £-form won B 
with f > 0, we define an l-form a*w on A by the equation 

Since / and w and a and Da are all of class C00 , so are the forms a• f 
and a*w. Note that if f and wand a were of class er I then a* f would be 
of class er but a*w would only be of class cr- 1. Here again it is convenient 
to have restricted ourselves to C00 maps. 

Note that if a is a constant map, then a* f is also constant, and a•w is 
the 0-tensor. 

The relation between a* and the dual of the linear transformation a. is 
the following: Given a : A --+ Rn of class C00 , with a(x) = y, it induces the 
linear transformation 

this transformation in turn gives rise to a dual transformation of alternating 
tensors, 

If w is an £-form on B, then w(y) is an alternating tensor on Ty(Rn), so that 
T* (w(y)) is an alternating tensor on Tx(Rk). It satisfies the equation 

r•(w(y)) = (a*w)(x); 
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for 

T• (w(y)) ((x; vi), ... , (x; Vt)) = w(a(x)) (a.(x; vi), ... , a.(x; vi)) 

== (o•w)(x) ((x;vi), ... , (x;vt)). 

This fact enables us to rewrite earlier results concerning the dual transforma
tion T• as results about forms: 

Theorem 32.1. Let A be open in RJ:; let a : A - Rm be a C00 

map. Let B be open in Rm and contain a(A); let /3: B - Rn be a C00 

map. Let w, T/, IJ be forms defined in an open set C of Rn containing 
{3(B); assume w and T/ have the same order. The transformations o• 
and f3• have the following properties: 

(1) (3•( aw + b11) = a(f3•w) + b(f3• 11). 

(2) f3•(w I\ 8) = f3*w I\ (3•8. 

(3) (/3 o atw = a*(f3*w). 

Proof. See Figure 32.1. In the ca.se of forms of positive order, proper
ties (1) and (3) are merely restatements, in the language of forms, of Theo
rem 26.5, and (2) is a restatement of (6) of Theorem 28.1. 

Checking the properties when some or all of the forms have order zero is 
a computation we leave to you. D 

C ----........ 

Rm R" 

Figure 32.1 
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This theorem shows that a* preserves the vector space structure and the 
wedge product. We now show it preserves the operator d. For this purpose 
(and later purposes as well), we obtain a formula for computing a"'w. If A is 
open in Rt and a : A - Rn, we derive this formula in two cases-when w is 
a 1-form and when w is a k-form. This is all we shall need. The general case 
is treated in the exercises. 

Since a* is linear and preserves wedge products, and since a• J equals 
f o a, it remains only to compute a* for elementary 1-forms and elementary 
k-forms. Here is the required formula: 

Theorem 32.2. Let A be open in Rt; let a : A - Rn be a C 00 

map. Let x denote the general point of Rk; let y denote the general 
point of Rn. Then dx; and dyi denote the elementary 1-forms in Rt 
and Rn, respectively. 

(a) a*(dyi) = dai. 

(b) If I = ( ii, ... , ik) is an ascending k-tuple from the set { 1, ... , n}, 
then 

where 
00/ a( Oi 1 , ••• , a;,.) 
QX = a(xi, ... , Xk) 0 

Proof. (a) Set y = a(x). We compute the value of a"'(dyi) on a typical 
tangent vector as follows: 

It follows that 

= ith component of (Da(x) · v) 

k 

= L D;ai(x) • v; 
j=l 

k 
~ oai = LJ -0 . (x) dx;(x)(x; v). 
j=l x, 

k 

a*(dyi) = E :a~ dx;. 
j=l x, 

By Theorem 30.3, the latter expression equals dai. 
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(b) The form a• ( dy1) is a k-form defined in an open set of Rk, so it has 
the form 

a*(dy1) = hdx1 I\••• I\ dxk 

for some scalar function h. If we evaluate the right side of this equation on 
the k-tuple (x; e1), ... , (x; ek), we obtain the function h(x). The theorem 
then follows from the following computation: 

h(x) = (a•(dy1 ))(x)((x; e1), ... , (x; e1:)) 

= dy1(y)(o.(x;e1), ... , a.(x;ek)) 

= dy1(y)((y; fJa/ fJx1), ... , (y; fJa/fJxk)) 

= det(Da(x)]I 

fJa1 = <let ox • □ 

It is easy to remember the formula (a); to compute a•(dyi), one simply 
takes the form dyi and makes the substitution Yi = Oi(x)! 

Note that one could compute a* ( dy1) by the formula 

but the computation of this wedge product is laborious if k > 2. 

Theorem 32.3. Let A be open in Rk; let a : A - Rn be of 
class C 00 • If w is an e-form defined in an ope,n set of Rn containing 
a(A), then 

a*(dw) = d(a*w). 

Proof. Let x denote the general point of Rk; let y denote the general 
point of Rn. 

Step 1. We verify the theorem first for a 0-form f. We compute the left 
side of the equation as follows: 

n 

a*(df) = a•(L (Di/) dyi) 
i=l 

n 

= "i.: ((Dif) o a) dai, 
i:l 
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Then we compute the right side of the equation. We have 

d(o:* f) = d(f o o:) 

k 

= L D;(J o o:) dx;. 
j=l 

We now apply the chain rule. Setting y = a(x), we have 

D(f o o:)(x) = D f(y) · Do:(x); 

since D(J o a) and DJ are row matrices, it follows that 

D;(J o o:)(x) = D f(y) · (jth column of Do:(x)) 

n 

= L Dif(y) • D;ai(x). 
i=l 

Thus 
n 

D;(J o a) = L ((D;f) o a) • D;o:i, 

Substituting this result in the equation ( **), we have 

k n 

d(o:* J) =LE ((Di/) o o:) • D;o:i dx; 
j=l i=l 

n 

= E ((D,f) o a) do:,. 
i:=l 

Comparing(*) and (* * *), we see that o:*(df) = d(a* J). 
Step 2. We prove the theorem for forms of positive order. Since a• and d 

are linear, it suffices to treat the case w = J dy,, where I= (i1, ... , it) is an 
ascending l-tuple from the set {1, ... , n }. We first compute 

(t) o:*(dw) = o:*(df A dyI) 

= a*(df) A a*(dy,). 

On the other hand, 

(tt) d(o:*w) = d[a*(f I\ dy, )] 

= d[(o:* /) A o:*(dyr)] 

= d(o:* f) I\ a*(dy,) + (a* f) A 0, 
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smce 
d(a•(dyJ)) = d(da;1 /\ • • • /\ dai,) = O. 

The theorem follows by comparing ( f) and (ft) and using the result of 
Step 1. □ 

We now have the algebra of differential forms at our disposal, along with 
differential operator d. The basic properties of this algebra and the operator d, 
as summarized in this section and §30, are all we shall need in the sequel. 

It is at this point, where one is dealing with the action of a differentiable 
map, that one begins to see that forms are in some sense more natural objects 
to deal with than are vector fields. A C00 map a : A - Rn, where A is open 
in Rk, gives rise to a linear transformation a. on tangent vectors. But there is 
no way to obtain from a a transformation that carries a vector field on A to a 
vector field on a(A). Suppose for instance that F(x) = (x; J(x)) is a vector 
field in A. If y is a point of the set B = a(A) such that y = a(x1 ) = a(x2) for 
two distinct points x 1 ,x2 of A, then a. gives rise to two (possibly different) 
tangent vectors a. {x1 ; f (xi)) and a. (x2; f (x2 )) at y! See Figure 32.2. 

a -----

Figure 32.2 

This problem does not occur if a : A - B is a diffeomorphism. In this 
case, one can obtain an induced map a. on vector fields. One assigns to the 
vector field Fon A, the vector field G =a.Fon B defined by the equation 

A scalar field h on A gives rise to a scalar field k = a.h on B defined by the 
equation k = hoa- 1 . The map a. is not however very natural, for it does not 
in general commute with the operators grad, curl, and div of vector calculus, 
nor with the "translation" operators ai and /3; of §31. See the exercises. 
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EXERCISES 

1. Prove Theorem 32.1 when wand T/ have order zero and when B has order 
zero. 

2. Let a : R3 - R6 be a C 00 map. Show directly that 

3. In R3, let 
w = xy dx + 2z dy - y dz. 

Let a : R2 - R3 be given by the equation 

o(u, v) = (uv, u2 , 3u + v). 

Calculate dw and a•w and a•(dw) and d(a•w) directly. 

4. Show that (a) of Theorem 32.2 is equivalent to the formula o•(dyi) = 
d(a•yi), where Yi : R" - R is the ith projection function in Rn. 

5. Prove the following formula for computing a•w in general: 

Theorem. Let A be open in Rk; let a: A - R" be of class C00 • Let x 
denote the general point of Rk; let y denote the general point of R". 
If I= (i1, ... , it) is an ascending l-tuple from the set {I, ... , n}, 
then 

a•(dy!) = L (det ~;1 ) dxJ. 
(J] J 

Here J =(ii, ... , it) is an ascending l-tuple from the set {I, ... , k} 
and 

{Jal {}( 0i 1 1 ., •, ll';,) 

8xi = 8(x,u ... , Xit )' 

*6. This exercise shows that the transformations o, and /3, of §31 do not 
in general behave well with respect to the maps induced by a diffeomor
phism a. 

Let a : A - B be a diffeomorphism of open sets in Rn. Let x denote 
the general point of A, and let y denote the general point of B. If 
F(x) = (x; /(x)) is a vector field in A, let G(y) = o.(F(o-1 (y))) be 
the corresponding vector field in B. 
( a) Show that the I-forms ll't G and 0'1 F do not in general correspond 

under the map a•. Specifically, show that a• ( a1 G) = 0'1 F for all F 
if and only if Do(x) is an orthogonal matrix for each x. [Hint: Show 
the equation o•(a1G) = o 1 F is equivalent to the equation 

Do(x)u • Do(x) • f (x) = f(x).] 

(b) Show that a• (/3n-1 G) = /3n-I F for all F if and only if det Do = + 1. 
[ Hint: Show the equation a• (/3n-t G) = f3n-l F is equivalent to the 
equation f(x) = (det Do(x)) • f(x).] 
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(c) If h is a scalar field in A, let k = h o 0-1 be the corresponding 
scalar field in B. Show that o.(/3nk) = f3nh for all h if and only if 
detDo = +1. 

7. Use Exercise 6 to show that if a is an orientation-preserving isornetry of 
Rn, then the operator a• on vector fields and scalar fields commutes with 
the operators grad and div, and with curl if n = 3. (Compare Exercise 5 
of §31.) 



Stokes' Theorem 

We saw in the last chapter how k-forms provide a generalization to R" of the 
notions of scalar and vector fields in R3 , and how the differential operator d 
provides a generalization of the operators grad, curl, and div. Now we define 
the integral of a k-form over a k-manifold; this concept provides a generaliza
tion to R" of the notions of line and surface integrals in R3 . Just as line and 
surface integrals are involved in the statements of the classical Stokes' theorem 
and divergence theorem in R3 , so are integrals of k-forms over k-manifolds 
involved in the generalized version of these theorems. 

We recall here our convention that all manifolds, forms, vector fields, and 
scalar fields are assumed to be of class C00 • 

§33. INTEGRATING FORMS OVER PARAMETRIZED-MANIFOLDS 

In Chapter 5, we defined the integral of a scalar function / over a manifold, 
with respect to volume. We follow a similar procedure here in defining the 
integral of a form of order k over a manifold of dimension k. We begin with 
parametrized-manifolds. 

First let us consider a special case. 

Definition. Let A be an open set in Rk; let r, beak-form defined in A. 
Then r, can be written uniquely in the form 

275 
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We define the integral of 7] over A by the equation 

provided the latter integral exists. 

This definition seems to be coordinate-dependent; in order to define JA 17, 
we expressed 17 in terms of the standard elementary 1-forms dxi, which depend 
on the choice of the standard basis e1, ... , ek in Rk. One can, however, 
formulate the definition in a coordinate-free fashion. Specifically, if a 1, ... , ak 

is any right-handed orthonormal basis for Rk, then it is an elementary exercise 
to show that 

Thus the integral of 17 does not depend on the choice of basis in Rk, although 
it does depend on the orientation of Rk. 

We now define the integral of a k-form over a parametrized-manifold of 
dimension k. 

Definition. Let A be open in Rk; let Q : A --+ nn be of class C00 • 

The set Y = a(A), together with the map a, constitute the parametrized
manifold Ya. If w is a k-form defined in an open set of Rn containing Y, we 
define the integral of w over Ya by the equation 

f w = f a"'w, 
}ya }A 

provided the latter integral exists. Since a* and JA are linear, so is this 
integral. 

We now show that the integral is invariant under reparametrization, up 
to sign. 

Theorem 33.1. Let g: A --+ B be a diffeomorphism of open sets 
in Rk. Assume <let Dg doe.c, not change sign on A. Let f3 : B --+ nn be 
a map of class C00 ; let Y = f3(B). Let a = /3 o g; then a : A --+ Rn and 
Y = a(A). If w is a k-form defined in an open set of Rn containing Y, 
then w is integrable over YJ3 if and only if it is integrable over Ya; in 

this case, 

I w = ± I w, 
}ya }yfJ 
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a ---------

B 

Figure 33.1 

where the sign agrees with the sign of <let Dg. 

Proof. Let x denote the general point of A; let y denote the general 
point of B. See Figure 33.1. We wish to show that 

L a•w = £ L /J*w, 

where E = ±1 and agrees with the sign of det Dg. If we set 'f/ = f3*w, then 
this equation is equivalent to the equation 

L g• 1/ = f L 1/ • 

Let us write 1J in the form 11 = f dy1 I\ • • • I\ dy1i;. Then 

9•11 = (f O g)g*(dy1 A ••• A dyk) 

=(fog) det(Dg) dx1 A··· A dx1i;. 

(Here we apply Theorem 32.2, in the case k = n.) Our equation then takes 
the form L (f o g) det Dg = £ L J. 
This equation follows at once from the change of variables theorem, smce 
det Dg = £ jdet Dgj. □ 

We remark that if A is connected (that is, if A cannot be written as the 
union of two disjoint nonempty open sets), then the hypothesis that det Dg 
does not change sign on A is automatically satisfied. For the set of points 
where det Dg is positive is open, and so is the set of points where it is negative. 

This integral is fairly easy to compute in practice. One has the following 
result: 
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Theorem 33.2. Let A be open in Rk; let a : A - Rn be of 
class C 00 ; let Y = a(A). Let x denote the general point of A; and 
let z denote the general point of nn. If 

w = J dz1 

is a k-f orm defined in an open set of nn containing Y, then 

f w= f (f oa)det(8a1/8x). 
}ya }A 

Proof. Applying Theorem 32.2, we have 

The theorem follows. D 

The notion of a k-form is a rather abstract one; the notion of its integral 
over a parametrized-manifold is even more abstract. In a later section (§36) 
we discuss a geometric interpretation of k-forms and of their integrals that 
gives some insight into their intuitive meaning. 

REMARK. We can now make sense of the "dx" notation commonly used in 
single-variable calculus. If 1] = f dx is a 1-forrn defined in the open interval 
A= (a, b) of the real line R, then 

by definition. That is, 

where the notation on the left denotes the integral of a form; and the notation 
on the right denotes the integral of a function! They are equal by definition. 
Thus the "d:r:" notation used in connection with single integrals in calculus 
makes perfect sense once one has studied differential forms. 

One can also make sense of the notation commonly used in calculus to 
denote a line integral. Given a 1-form P dx + Q dy + R dz, defined in an 
open set A of R3 , and given a parametrized-curve -y : (a, b) - A, one ha..'! by 
the preceding theorem the formula 

f P dx + Q dy + R dz 
le., 
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where C is the image set of -y. This is just the formula given in calculus 
for evaluating the line integral Jc P dx + Q dy + R dz. Thus the notation 
used for line integrals in calculus makes perfect sense once one has studied 
differential forms. 

It is considerably more difficult, however, to make sense of the "dx d'JI' 
notation commonly used in calculus when dealing with double integrals. If/ 
is a continuous bounded function defined on a subset A of R2 , it is common 
in calculus to denote the integral of/ over A by the symbol 

j 1 f(x,y) dx dy. 

Here the symbol "dx dy" has no independent meaning, since the only product 
operation we have defined for 1-forms is the wedge product. One justification 
for this notation is that it resembles the notation for the iterated integral. 
And indeed, if A is the interior of a rectangle [a, b] x [c, d], then we have the 
equation 

[[[ f(x,y) dx]dy = 1 I, 
by the Fubini theorem. Another justification for this notation is that it re
sembles the notation for the integral of a 2-form, and one has the equation 

1 J dxAdy= 1 f 
by definition. But a difficulty arises when one reverses the roles of x and y. 
For the iterated integral, one has the equation 

and for the integral of a 2-form, one has the equation 

1 f dy A dz = -1 f ! 

Which rule should one follow in dealing with the symbol 

j 1 f(x,y) dy dx? 

Which ever choice one makes, confusion is likely to occur. For this reason, the 
"dx dy" notation is one we shall not use. 

One could, however, use the "dV" notation introduced in Chapter 5 
without ambiguity. If A is open in Rk, then A can be considered to be a 
parametrized-manifold that is parametrized by the identity map a : A - A! 
Then 

I JdV= fuoa)V(D(a))= ff, 
}Ao }A }A 

since D(a) is the identity matrix. Of course, the symbol d used here bears 
no relation to the differential operator d. 



280 Stokes' Theorem 

EXERCISES 

1. Let A= (0, 1)2 . Let a: A-+ R3 be given by the equation 

a(u, v) = (u, v, u2 + v2 + 1). 

Chapter 7 

Let Y be the image set of a. Evaluate the integral over Yo of the 2-form 
.x2 dx2 A dx3 + X1X3 dx1 A dx3. 

2. Let A= (0, 1)3. Let a : A-+ R4 be given by the equation 

a(s, t, u) = (s, u, t, (2u - t)2). 

Let Y be the image set of et. Evaluate the integral over Yo of the 3-form 
x1 dx1 A dx,. A dx3 + 2x2X3 d.x1 A dx2 A dx3. 

3. (a) Let A be the open unit ball in R2 . Let a: A__. R3 be given by the 
equation 

Let Y be the image set of a. Evaluate the integral over Y0 of the 
form (1/ llxllm)(x1 dx2 A dx3 - X2 dx1 A dx3 + Xa dx1 A dx2). 

(b) Repeat (a) when 

4. If r, is a k-form in R1\ and if a 1, ... , ak is a basis for Rk, what is the 
relation between the integrals 

Show that if the frame (a1, ... , ak) is orthonormal and right-handed, 
they are equal. 
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§34. ORIENTABLE MANIFOLDS 

We shall define the integral of a k-form w over a k-manifold M in much the 
same way that we defined the integral of a scalar function over M. First, 
we treat the case where the support of w lies in a single coordinate patch 
a : U - V. In this case, we define 

!. w = f a*w. 
M lint U 

However, this integral is invariant under reparametrization only up to sign. 
Therefore, in order that the integral J M w be well-defined, we need an extra 
condition on M. That condition is called orientability. We discuss it in this 
section. 

Definition. Let g : A -+ B be a diffeomorphism of open sets in RI:. 
We say that g is orientation•preserving if det Dg > 0 on A. We say g is 
orientation-reversing if det Dg < 0 on A. 

This definition generalizes the one given in §20. Indeed, there is associated 
with g a linear transformation of tangent spaces, 

given by the equation g.(x;v) = (g(x); Dg(x) • v). Then g is orientation
preserving if and only if for each x, the linear transformation of Rk whose 
matrix is Dg is orientation-preserving in the sense previously defined. 

Definition. Let M be a k-manifold in Rn. Given coordinate patches 
ai : U; -+ ¼ on M for i = 0, 1, we say they overlap if Von V1 is non
empty. We say they overlap positively if the transition function a 11 o a 0 

is orientation-preserving. If M can be covered by a collection of coordinate 
patches each pair of which overlap positively (if they overlap at all), then M 
is said to be orientable. Otherwise, M is said to be non-orientable. 

Definition. Let M be a k-manifold in Rn. Suppose M is orientable. 
Given a collection of coordinate patches covering M that overlap positively, 
let us adjoin to this collection all other coordinate patches on M that overlap 
these patches positively. It is easy to see that the patches in this expanded 
collection overlap one another positively. This expanded collection is called 
an orientation on M. A manifold M together with an orientation of M is 
called an oriented manifold. 
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This discussion makes no sense for a 0-manifold, which is just a discrete 
collection of points. We will discuss later what one might mean by "orienta
tion" in this case. 

If V is a vector space of dimension k, then V is also a k-manifold. We 
thus have two different notions of what is meant by an orientation of V. An 
orientation of V was defined in §20 to be a collection of k-frames in V; it is 
defined here to be a collection of coordinate patches on V. The connection 
between these two notions is easy to describe. Given an orientation of V in the 
sense of §20, we specify a corresponding orientation of V in the present sense 
as follows: For each frame ( v 1, ... , Vt) belonging to the given orientation 
of V, the linear isomorphism a : Rk -+ V such that a(~) = vi for each i is 
a coordinate patch on V. Two such coordinate patches overlap positively, as 
you can check; the collection of all such specifies an orientation of V in the 
present sense. 

Oriented manifolds in Rn of dimensions 1 and n-1 and n 

In certain dimensions, the notion of orientation has a geometric interpre
tation that is easily described. This situation occurs when k equals 1 or n -1 
or n. In the case k = 1, we can picture an orientation in terms of a tangent 
vector field, as we now show. 

Definition. Let ]l,f be an oriented !-manifold in Rn. We define a corre
sponding unit tangent vector field T on M as follows: Given p E M, choose a 
coordinate patch a : U-+ Von M about p belonging to the given orientation. 
Define 

T(p) = (p; Da(to)/l!Da(to)II ), 

where to is the parameter value such that a(to) = p. Then T is called the 
unit tangent field corresponding to the orientation of M. 

Note that (p;Da(to)) is the velocity vector of the curve a corresponding 
to the parameter value t = to; then T(p) equals this vector divided by its 
length. 

We show T is well-defined. Let /3 be a second coordinate patch on M 
about p belonging to the orientation of M. Let p = /3(t1) and let g = t3- 1oa. 
Then g is a diffeomorphism of a neighborhood of t0 with a neighborhood of 
t1, and 

Da(to) = D(/3 o g) (to) 

= Df3(ti) • Dg(to). 

Now Dg(to) is a 1 by 1 matrix; since g is orientation-preserving, Dg(t0 ) > 0. 
Then 

Da(to)/ IIDa(to)II = D/3(ti)/ 11Df3(ti)II. 

It follows that the vector field T is of class C00 , since to = a-1(p) is a 
C00 function of p and Da(t) is a C00 function oft. 
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EXAMPLE 1. Given an oriented I-manifold M, with corresponding unit tan
gent field T, we often picture the direction of T by drawing an arrow on the 
curve M itself. Thus an oriented I-manifold gives rise to what is often called 
in calculus a directed curve. See Figure 34.1. 

Figure 3.4, 1 

A difficulty arises if M has non-empty boundary. The problem is in
dicated in Figure 34.2, where 8M consists of the two points p and q. If 
a : U - V is a coordinate patch about the boundary point p of M, the fact 
that U is open in H1 means that the corresponding unit tangent vector T(p) 
must point into M from p. Similarly, T( q) points into M from q. In the 
I-manifold indicated, there is no way to define a unit tangent field on M that 
points into M at both p and q. Thus it would seem that M is not orientable. 
Surely this is a.n anomaly. 

[ ) 
0 

[ 
0 

T(p) 

a ----- p 

{3 
..------..._ 

Figure 3,4.2 

q 

The problem disappears if we allow ourselves coordinate patches whose 
domains are open sets in R1 or H1 or in the left half-line L 1 = {x Ix < 0). 
With this extra degree of freedom, it is easy to cover the manifold of the 
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previous example by coordinate patches that overlap positively. Three such 
patches are indicated in Figure 34.3. 

Cl' --[ • ) 
0 

'Y ----( • ) 

/3 ------( 
0 

Figure 34.3 

In view of the preceding example, we henceforth make the following con
vention: 

Convention. In the case of a !-manifold M, we shall allow the 
domains of the coordinate patches on M to be open sets in R1 or in H1 

or in L 1 . 

It is the case that, with this extra degree of freedom, every !-manifold is 
orientable. We sha1l not prove this fact. 

Now we consider the case where M is an n - 1 manifold in Rn. In this 
case, we can picture an orientation of M in terms of a unit normal vector 
field to M. 

Definition. Let M be an n - 1 manifold in Rn. If p E M, let (p; n) be 
a unit vector in the n-dimensional vector space Tp(Rn) that is orthogonal to 
the n-1 dimensional linear subspace Tp(M). Then n is uniquely determined 
up to sign. Given an orientation of M, choose a coordinate patch a : U -+ V 
on M about p belonging to this orientation; let a(x) = p. Then the columns 
&a/8xi of the matrix Da(x) give a basis 

(p;8a/axi), ... , (p;8a/&xn-d 

for the tangent space to M at p. We specify the sign of n by requiring that 
the frame 
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be right-handed, that is, that the matrix [n Da(x)] have positive determi
nant. We shall show in a later section that n is well-defined, independent of 
the choice of a, and that the resulting function n(p) is of class C00 • The 
vector field N(p) = {p;n(p)) is called the unit normal field to M corre
sponding to the orientation of M. 

EXAMPLE 2. We can now give an example of a manifold that is not orientable. 
The 2-manifold in R3 that is pictured in Figure 34.4 has no continuous unit 
normal vector field. You can convince yourself of this fact. This manifold is 
called the Mobius band. 

Figure 34.4 

EXAMPLE 3. Another example of a non-orientable 2-manifold is the Klein 
bottle. It can be pictured in R3 as the self-intersecting surface of Figure 34.5. 
We think of K as the space swept out by a moving circle, as indicated in the 
figure. One can represent K as a 2-manifold without self-intersections in R4 

as follows: Let the circle begin at position Co, and move on to C1, C2, and so 
on. Begin with the circle lying in the subspace R3 x O of R4; as it moves from 
Co to C1, and on, let it remain in R3 x 0. However, as the circle approaches 
the crucial spot where it would have to cross a part of the surface already 
generated, let it gradually move "up" into R3 x Hi until it has passed the 
crucial spot, and then let it come back down gently into R3 x O and continue 
on its way! 

IC 

Figure 34.s Figure 34.6 
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To see that /( is not orientable, we need only note that K contains a 
copy of the Mobius band M. See Figure 34.6. If I( were orientable, then M 
would be orientable as well. (Take all coordinate patches on M that overlap 
positively the coordinate patches belonging to the orientation of K.) 

Finally, let us consider the case of an n-manifold M in Rn. In this case, 
not only is M orientable, but it in fact has a "natural" orientation: 

Definition. Let M be an n-manifold in Rn. If a : U - V is a co
ordinate patch on M, then Da is an n by n matrix. We define the natu
ral orientation of M to consist of all coordinate patches on M for which 
det Da > 0. It is easy to see that two such patches overlap positively. 

We must show M may be covered by such coordinate patches. Given 
p E M, let a : U - V be a coordinate patch about p. Now U is open in 
either Rn or Hn; by shrinking U if necessary, we can assume that U is either 
an open (-ball or the intersection with Hn of an open f-ball. In either case, 
U is connected, so det Da is either positive or negative on all of U. If the 
former, then a is our desired coordinate patch about p; if the latter, then 
a or is our desired coordinate patch about p, where r: Rn-+ Rn is the map 

Reversing the orientation of a manifold 

Let r: R1 - Rk be the reflection map 

it is its own inverse. The map r carries H1 to H1 if k > 1, and it carries H1 

to the left half-line L 1 if k = 1. 

Definition. Let Jv[ be an oriented k-manifold in Rn. If a, : Ui - ½ 
is a coordinate patch on M belonging to the orientation of M, let Pi be the 
coordinate patch 

f3i = ai o r : r( Ua) -+ ½. 

Then /Ji overlaps Oi negatively, so it does not belong to the orientation of M. 
The coordinate patches Pi overlap each other positively, however (as you can 
check), so they constitute an orientation of Z..1. It is called the reverse, or 
opposite, orientation to that specified by the coordinate patches Oi. 

It follows that every orientable k-manifold M has at least two orienta
tions, a given one and its opposite. If M is connected, it has only two (see 
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Figure 3,4. 7 

the exercises). Otherwise, it has more than two. The !-manifold pictured in 
Figure 34. 7, for example, has four orientations, as indicated. 

We remark that if Mis an oriented !-manifold with corresponding tangent 
field T, then reversing the orientation of M results in replacing T by -T. 
For if a : U - V is a coordinate patch belonging to the orientation of M, 
then a or belongs to the opposite orientation. Now (a o r)(t) = a(-t), so 
that d(a o r)/dt = -da/dt. 

Similarly, if M is an oriented n - 1 manifold in Rn with corresponding 
normal field N, reversing the orientation of M results in replacing N by -N. 
For if a : U -+ V belongs to the orientation of Al, then a o r belongs to the 
opposite orientation. Now 

8(a or) 8a 
8x1 = - 8x1 and 

8(a or) 8a 
OXi = OXi 

if i > 1. 

Furthermore, one of the frames 

8a aa 8a 8a 8a 8a 
(n - - • • • --) and (-n -- - • • • --) 

'OX1' 8x2' ' OXn-1 ' 8x1' OX2' ' OXn-1 

is right-handed if and only if the other one is. Thus if n corresponds to the 
coordinate patch a, then -n corresponds to the coordinate patch et or. 

The induced orientation of 8M 

Theorem 34.1. Let k > 1. If Mis an orientable k-manifold with 
non-empty boundary, then 8M is orientable. 

Proof. Let p E 8M; let et : U - V be a coordinate patch about p. 
There is a corresponding coordinate patch a 0 on 8M that is said to be ob
tained by restricting a. (See §24.) Formally, if we define b: nt-l - Rk by 
the equation 

then a 0 = a o b. 
We show that if a and /3 are coordinate patches about p that overlap 

positively, then so do their restrictions a 0 and f3o, Let g : W0 -+ W1 be the 
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g 

~ 

X 

Figure 3.,1.8 

transition function g = t3- 1 o a, where W 0 and W1 are open in Hk. Then 
det Dg > 0. See Figure 34.8. 

Now if x E 8Hk, then the derivative Dg of g at x ha.s the la.st row 

where 8gk / OXk > 0. For if one begins at the point x and gives one of the 
variables X1, ... , Xk-1 an increment, the value of 9k does not change, while 
if one gives the variable Xk a positive increment, the value of 9k increases; it 
follows that 8gk/8xj vanishes at x if j < k and is non-negative if j = k. 

Since <let Dg f 0, it follows that 891) 8xk > 0 at each point x of 8Hk. 
Then because <let Dg > 0, it follows that 

But this matrix is just the derivative of the transition function for the coor
dinate patches ao and /Jo on 8 M. □ 

The proof of the preceding theorem shows that, given an orientation of M, 
one can obtain an orientation of 8M by simply taking restrictions of coordi
nate patches that belong to the orientation of M. However, this orientation 
of 8M is not always the one we prefer. We make the following definition: 

Definition. Let M be an orientable k-manifold with non-empty bound
ary. Given an orientation of M, the corresponding induced orientation of 
8M is defined a.s follows: If k is even, it is the orientation obtained by simply 
restricting coordinate patches belonging to the orientation of M. If k is odd, 
it is the opposite of the orientation of 8A1 obtained in this way. 
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EXAMPLE 4. The 2-sphere S2 and the torus T are orientable 2-manifolds, 
since each is the boundary of a 3-manifold in R3 , which is orientable. In 
general, if Mis a 3-manifold in R3 , oriented naturally, what can we say about 
the induced orientation of 81\f? It turns out that it is the orientation of fJM 
that corresponds to the unit normal field to fJM pointing outwards from the 
3-manifold M. We give an informal argument here to justify this statement, 
reserving a formal proof until a later section. 

Given M, let a: U - V be a coordinate patch on M belonging to the 
natural orientation of M, about the point p of fJM. Then the map 

gives the restricted coordinate patch on fJM about p. Since dim M = 3, 
which is odd, the induced orientation of fJM is opposite to the one obtained 
by restricting coordinate patches on Af. Thus the normal field N = (p; n) 
to fJM corresponding to the induced orientation of M satisfies the condition 
that the frame (-n,fJa/fJx1,fJa/fJx2) is right-handed. 

On the other hand, since M is oriented naturally, det Da > 0. It follows 
that (fJa/ax3,fJa/8x1,8a/8x2) is right-handed. Thus -n and fJa/ax3 lie 
on the same side of the tangent plane to A1 at p. Since fJa/fJx3 points 
into M, the vector n points outwards from Al. See Figure 34.9. 

Figure 34.9 

EXAMPLE 5. Let M be a 2-manifold with non-empty boundary, in R3 . If 
M is oriented, let us give fJM the induced orientation. Let N be the unit 
normal field to M corresponding to the orientation of M; and let T be the 
unit tangent field to fJM corresponding to the induced orientation of fJM. 
What is the relationship between N and T? 
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Figure 3,4.10 

We assert the following: Given N and T, for each p E {JA,f let W(p) be 
the unit vector that is perpendicular to both N(p) and T(p), chosen so that 
the frame (N(p), T(p), W(p)) is right-handed. Then lV(p) is tangent to M 
at p and points into M from 8M. 

(This statement is a more precise way of formulating the description usu
ally given in the statement of Stokes' theorem in calculus: "The relation be
tween N and T is such that if you walk a.round 8M in the direction specified 
by T, with your head pointing in the direction specified by N, then the man
ifold Mis on your left." See Figure 34.10.) 

To verify this assertion, let a : U - V be a coordinate patch on M about 
the point p of {)}.,f, belonging to the orientation of M. Then the coordinate 
patch aob belongs to the induced orientation of 8M. (Note that dim M = 2, 
which is even.) The vector 8a/8x1 represents the velocity vector of the 
parametrized curve O:' ob; hence by definition it points in the same direction 
as the unit tangent vector T. 

The vector 80t/8x2, on the other hand, is the velocity of a parametrized 
curve that begins at a point p of 8M and moves into M as t increases. 
Thus, by definition, it points into M from p. Now 8a/8x2 need not be 
orthogonal to M. But we can choose a scalar A such that the vector w = 
8a/8x2 + A8a/8x1 is orthogonal to 8a/8x1 and hence to T. Then w also 
points into M; set W(p) = (p;w/ llwll ). 

Finally, the vector N(p) = (p; n) is, by definition, the unit vector normal 
to }.,f at p such that the frame (n, 8a/8x1, 8a/8x2) is right-handed. Now 

det[n 80t/ 8x1 8a/8x2] = det[n 80t/8x1 w], 

by direct computation. It follows that the frame (N, T, TV) is right-handed. 
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EXERCISES 

1. Let M be an n-manifold in Rn. Let Ot, /3 be coordinate patches on M 
such that det Da > 0 and det D/3 > 0. Show that Ot and /3 overlap 
positively if they overlap at all. 

2. Let M beak-manifold in Rn; let a, /3 be coordinate patches on M. Show 
that if a and /3 overlap positively, so do Oto r and /3 or. 

3. Let M be an oriented I-manifold in R2 , with corresponding unit tan
gent vector field T. Describe the unit normal field corresponding to the 
orientation of M. 

4. Let C be the cylinder in R3 given by 

Orient C by declaring the coordinate patch a : (0, 1 )2 - C given by 

a(u, v) = (cos 2,ru, sin 2,ru, v) 

to belong to the orientation. See Figure 34.11. Describe the unit normal 
field corresponding to this orientation of C. Describe the unit tangent 
field corresponding to the induced orientation of 8C. 

V 

C 

-+_ ....... __ ......_.~ ...... ---u 

Figure 34 .11 

5. Let M be the 2-manifold in R2 pictured in Figure 34.12, oriented nat
urally. The induced orientation of 8M corresponds to a unit tangent 
vector field; describe it. The induced orientation of 8M also corresponds 
to a unit normal field; describe it. 

6. Show that if M is a connected orientable k-manifold in Rn, then M 
has precisely two orientations, as follows: Choose an orientation of M; 
it consists of a collection of coordinate patches { 0/i }. Let {/3;} be an 
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M 

Figure 3,4.12 

arbitrary orientation of M. Given x E M, choose coordinate patches Cl!i 

and /3; about x and define .X(x) = 1 if they overlap positively a.t x, and 
.X(x) = -1 if they overlap negatively at x. 

(a) Show that .X(x) is well-defined, independent of the choice of Cl'i and 
/3,. 

(b) Show that A is continuous. 

( c) Show that A is constant. 

(d) Show that {,fl;} gives the opposite orientation to { Cl'i} if A is identi
cally -1, and the same orientation if A is identically 1. 

7. Let M be the 3-manifold in R3 consisting of all x with 1 5 Uxll 5 2. 
Orient M naturally. Describe the unit normal field corresponding to the 
induced orientation of {)M. 

8. Let Bn = Bn(l) be the unit ball in Rn, oriented naturally. Let the unit 
sphere sn-l = {)Bn have the induced orientation. Does the coordinate 
patch o: Int Bn-t - sn-t given by the equation 

belong to the orientation of sn-l? What about the coordinate patch 
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§35. INTEGRATING FORMS OVER ORIENTED MANIFOLDS 

Now we define the integral of a k-form w over an oriented k-manifold. The 
procedure is very similar to that of §25, where we defined the integral of a 
scalar function over a manifold. Therefore we abbreviate some of the details. 

We treat first the case where the support of w can be covered by a single 
coordinate patch. 

Definition. Let M be a compact oriented k-manifold in R". Let w be a 
k-form defined in an open set ofR" containing M. Let C = Mn(Support w); 
then C is compact. Suppose there is a coordinate patch a : U - V on M 
belonging to the orientation of lvf such that C C V. By replacing U by a 
smaller open set if necessary, we can assume that U is bounded. We define 
the integral of w over M by the equation 

f w = f a*w. 
Ju lint u 

Here Int U = U if U is open in Rk, and Int U =Un Hi if U is open in Hk 
but not in Rk. 

First, we note that this integral exists as an ordinary integral, and hence 
as an extended integral: Since a can be extended to a C00 map defined on 
a set U1 open in Rk, the form a*w can be extended to a C00 form on U1• 

This form can be written as h dx 1 I\••• I\ dx k for some C00 scalar function h 
on U'. Thus 

1. a*w = f h, 
Int U }Int U 

by definition. The function h is continuous on U and vanishes on U outside 
the compact set a- 1(C); hence his bounded on U. If U is open in Rk, then 
h vanishes near each point of Bd U. If U is not open in Rk, then h vanishes 
near each point of Bd U not in 8Hk, a set that has measure zero in Rk. In 
either case, h is integrable over U and hence over Int U. See Figure 35.1. 

Second, we note that the integral JM w is well-defined, independent of 
the choice of the coordinate patch a. The proof is very similar to that of 
Lemma 25.1; here one uses the additional fact that the transition function is 
orientation-preserving, so that the sign in the formula given in Theorem 33.1 
is "plus." 
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Figure 35.1 

Third, we note that this integral is linear. More precisely, if w and 1] have 
supports whose intersections with M can be covered by the single coordinate 
patch a : U ._ V belonging to the orientation of M, then 

f aw+ b17 
1/11 

b f 71. jM 

This result follows at once from the fact that a* and hnt u are linear. 
Finally, we note that if -M denotes the manifold M with the opposite 

orientation, then 

1 w = - f w. 
-M Ju 

This result follows from Theorem 33.1. 
To define f M w in general, we use a partition of unity. 

Definition. Let .Al be a compact oriented k-manifold in R". Let w be 
a k-form defined in an open set of R" containing M. Cover M by coordinate 
patches belonging to the orientation of .Al; then choose a partition of unity 
</>, ... , <Pt on M that is dominated by this collection of coordinate patches 
on M. See Lemma 25.2. \Ve define the integral ofw over M by the equation 

I, 

r w = I:t r </>iW l. 
jM i;;;l }Af 
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The fact that this definition agrees with the previous one when the support 
of w is covered by a single coordinate patch follows from linearity of the earlier 
integral and the fact that 

l 

w(x) = L ef>i(x)w(x) 
i=l 

for each x EM. The fact that the integral is independent of the choice of the 
partition of unity follows by the same argument that was used for the integral 
IM J dV. The following is also immediate: 

Theorem 35.1. Let M be a compact oriented k-manifold in R". 
Let w, 1J be k-forms defined in an open set of R" containing M. Then 

l(aw + br,) alw + bl1J· 

If - M denotes M with the opposite orientation, then 

This definition of the integral is satisfactory for theoretical purposes, but 
not for computational purposes. As in the case of the integral IM f dV, the 
practical way of evaluating IM w is to break M up into pieces, integrate over 
each piece separately, and add the results together. We state this fact formally 
as a theorem: 

*Theorem 35.2. Let M be a compact oriented k-manifold in Rn. 
Let w be a k-form defined in an open set of R" containing M. Suppose 
that oi : Ai - Mi, for i = 1, ... , N, is a coordinate patch on M be
longing to the orientation of M, such that A, is open in Rk and M is 
the disjoint union of the open sets A-11, ... , MN of M and a set K of 
measure zero in M. Then 

Proof. The proof is almost a copy of the proof of Theorem 25.4. Al
ternatively, it follows from Theorems 25.4 and 36.2. We leave the details 
to you. □ 
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EXERCISES 

1. Let M be a compact oriented k-manifold in Rn. Let w be a k-form defined 
in an open set of R" containing M. 
(a) Show that in the case where the set C =Mn (Support w) is covered 

by a single coordinate patch, the integral J M w is well-defined. 

(b) Show that the integral f M w is well-defined in general, independent of 
the choice of the partition of unity. 

2. Prove Theorem 35.2. 

3. Let sn-i be the unit sphere in Rn, oriented so that the coordinate patch 
a, : A -+ sn-i given by 

belongs to the orientation, where A= Int B"-1 . Let 1] be then -1 form 

i=l 

where /i(x) = xi/ llxllm. The form TJ is defined on Rn - 0. Show that 

1 .. -1 TJ t- o, 

as follows: 

(a) Let p: R" --+ R" be given by 

Let /3 = po a,. Show that /3 : A - sn-1 belongs to the opposite 
orientation of sn-1 . [Hint: The map p : Bn -+ B" is orientation
reversing.] 

(b) Show that 13•TJ = -a,*TJ; conclude that 

( c) Show that 
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*§36. A GEOMETRIC INTERPRETATION OF FORMS AND INTEGRALS 

The notion of the integral of a k-form over an oriented k-manifold seems 
remarkably abstract. Can one give it any intuitive meaning? We discuss here 
how it is related to the integral of a scalar function over a manifold, which is 
a notion closer to our geometric intuition. 

First, we explore the relationship between alternating tensors in R" and 
the volume function in R". 

Theorem 36.1. Let W be a k-dimensional linear subspace of Rn; 
let ( a1, ... , Bk) be an orthonormal k-frame in W, and let f be an al
ternating k-tensor on W. If (x1, ... , xk) is an arbitrary k-tuple in W, 
then 

f (x1, ... , xk) = f V(xi, ... , xk)f (a1, ... , Bk), 

where f = ± 1. If the Xi are independent, then f = + 1 if the frames 
(x1, ... , xk) and (a1, ... , Bk) belong to the same orientation of Wand 
f = -1 otherwise. 

If the Xi are dependent, then V(x1, ... , Xk) = 0 by Theorem 21.3 and 
the value off does not matter. 

Proof. Step 1. If W = Rk, then the theorem holds. In that case, the 
k-tensor f is a multiple of the determinant function, so there is a scalar c 
such that for all k-tuples (x1, ... , Xk) in Rk, 

f(x1, ... , Xk) = cdet(x1 • • • Xk]. 

If the Xi are dependent, it follows that / vanishes; then the theorem holds 
trivially. Otherwise, we have 

where f1 = +1 if (x1, ... , xk) is right-handed, and c1 = -1 otherwise. Simi
larly, 

f(a1, ... , Bk)= cc2V(a1, ... , Bk)= Cf2, 

where f2 +1 if (a1, ... , ak) is right-handed and f 2 = -1 otherwise. It 
follows that 

where f1/f2 = +1 if (x1, ... , Xk) and (a1, ... , Bk) belong to the same orien
tation of Rk, and f1 / f2 = -1 otherwise. 
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Step 2. The theorem holds in general. Given W, choose an orthogonal 
transformation h : Rn - Rn carrying W onto Rk x 0. Let k : Rl: x O - W 
be the inverse map. Since f is an alternating tensor on W, it is mapped to 
an alternating tensor k• f on Rl: x 0. Since (h(xt), ... , h(x1:)) is a k-tuple in 
Rl: XO, and {h(ai), ... , h(a1:)) is an orthonormal k-tuple in Rk x O, we have 
by Step 1, 

where € = ±1. Since V is unchanged by orthogonal transformations, we can 
rewrite this equation as 

as desired. Now suppose the Xi are independent. Then the h(xi) are inde
pendent, and by Step 1 we have€= +l if and only if (h(x1), ... , h(xk)) and 
{h(ai), ... , h(ak)) belong to the same orientation of Rk x 0. By definition, 
this occurs if and only if (xi, ... , Xk) and (ai, ... , a1:) belong to the same 
orientation of W. D 

Note that it follows from this theorem that if (a1, ... , a1:) and 
(b1, ... , bk) are two orthonormal frames in W, then 

the sign depending on whether they belong to the same orientation of W 
or not. 

Definition. Let M beak-manifold in Rn; let p EM. If Mis oriented, 
then the tangent space to Af at p has a natural induced orientation, defined as 
follows: Choose a coordinate patch a : U - V belonging to the orientation 
of M about p. Let a(x) = p. The collection of all k-frames in Tp( M) of 
the form 

(a.(x;ai), ... , a.(x;ak)) 

where ( a1, ... , ak) is a right-handed frame in Rl:, is called the natural orien
tation of Tp(M), induced by the orientation of M. It is easy to show it is 
well-defined, independent of the choice of a. 

Theorem 36.2. Let M be a compact oriented k-manifold in Rn; 
let w be a k-form defined in an open set of Rn containing M. Let A be 
the scalar function on M defined by the equation 

A(p) = w(p) ((p;ai), ... , (p; ad), 
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where ((p; a1), ... , (p; a1:)) is any orthonormal frame in the linear space 
Tp(M) belonging to its natural orientation. Then ,\ is continuous, and 

l w = l ,\ dV. 

Proof. By linearity, it suffices to consider the case where the support 
of w is covered by a single coordinate patch a : U -+ V belonging to the 
orientation of M. We have 

a* w = h dx 1 A • • • A dx 1 

for some scalar function h. Let a(x) = p. We compute h(x) as follows: 

h(x) = (a*w)(x){(x; ei), ... , (x; ek)) 

= w(a(x)) (a.(x; e1), ... , a.(x; e1:)) 

= w(p )((p; oaf 8xi), ... , (p; 8a/ 8x1c)) 

= ±V(Da(x)).\(p), 

by Theorem 36.1. The sign is "plus'' because the frame 

belongs to the natural orientation of Tp(M) by definition. Now V(Da) #:, 0 
because Da has rank k. Then since x = a-1(p) is a continuous function 
of p, so is 

.\(p) = h(x)/V (Da(x)). 

It follows that 

f .\dV= f (.\oa)V(Da)= f h. 
JM lint U lint U 

On the other hand, 

f w = f a*w = f h, 
JM J1nt U lint U 

by definition. The theorem follows. D 

This theorem tells us that, given a k-form w defined in an open set about 
the compact oriented k-manifold M in Rn, there exists a scalar function ,\ 
(which is in fact of class C00 ) such that 

l w = l). dV. 
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The reverse is also true, but the proof is a good deal harder: 
One first shows that there exists a k-form Wv, defined in an open set 

about M, such that the value of Wv (p) on any orthonormal basis for Tp( M) 
belonging to its natural orientation is 1. Then if..\ is any C 00 function on M, 
we have 

L..\dV= L..\w"; 

thus the integral of..\ over M can be interpreted as the integral over M of 
the form AWv. The form Wv is called a volume form for M, since 

L Wv = L dV = v(M). 

This argument applies, however, only if Af is orientable. If M is not 
orientable, the integral of a scalar function is defined, but the integral of a 
form is not. 

A remark on notation. Some mathematicians denote the volume form Wv 
by the symbol dV, or rather by the symbol dV. (See the remark on notation 
in §22.) While it makes the preceding equations tautologies, this practice can 
cause confusion to the unwary, since V is not a form, and d does not denote 
the differential operator in this context! 

EXERCISE 

1. Let M be a k-manifold in Rn; let p E M. Let ct and /3 be coordinate 
patches on Af about p; let ct(x) = p = /J(y). Let (a1, ... , ak) be a 
right-handed frame in Rk. If ct and /3 overlap positively, show that there 
is a right-handed frame (b1, ... , bk) iu Rk such that 

for each i. Conclude that if Af is oriented, then the natural orientation 
of Tp ( M) is well-defined. 
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§37. THE GENERALIZED STOKES' THEOREM 

Now, finally, we come to the theorem that is the culmination of all our labors. 
It is a general theorem about integrals of differential forms that includes the 
three basic theorems of vector integral calculus-Green's theorem, Stokes' 
theorem, and the divergence theorem-as special cases. 

We begin with a lemma that is in some sense a very special case of the 
theorem. Let ['c denote the unit k-cube in Rk; 

{" = [O, l]k = [O, 1] x .. · x [O, 1]. 

Then Int Jk is the open cube (O,l)k, and Bd Jk equals Jk -Int Jk. 

Lemma 37.1. Let k > 1. Let r, be a k-1 form defined in an open 
set U of Rk containing the unit k-cube p:. Assume that r, vanishes at 
all points of Bd Jk except possibly at points of the subset (Int p:-l) x O. 
Then 

where b : Jk- l --+ Jk is the map 

b(u1, ... , Ut-1) = (u1, ... , uk-1, 0). 

Proof. We use x to denote the general point of Rk, and u to denote the 
general point of Rk-l. See Figure 37.1. Given j with 1 < j < k, let I; denote 
the k - 1 tuple 

I; = (1, ... , J, ... , k). 

Then the typical elementary k - 1 form in Rk is the form 

-dx1; = dx 1 A••• A dx; A••• A dxk. 

Because the integrals involved are linear and the operators d and b• are 
linear, it suffices to prove the lemma in the special case 

so we assume this value of r, in the remainder of the proof. 

Step 1. We compute the integral 

I dr,. 
lint ,,. 
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We have 

• u 

1tc-1 

Then we compute 

Figure 31.1 

k 

= ( L Di/ dxi) A dx,; 
i=l 

l. d1J = (-1y- 1 l, D;J 
Int 1• Int 1• 

= (-1)i-1 /, D;J ,. 

Chapter 7 

Support 77 

by the Fubini theorem, where V = (xi, ... ' x;, ... ' Xk), Using the funda
mental theorem of calculus, we compute the inner integral as 

f D;f(x1, ... , x1:) = f(x 1, ... , 1, ... , xk) - f(x1, ... , 0, ... , xk), 
l1:;El 

where the 1 and the 0 appear in the Ph place. Now the form 1/, and hence 
the function f, vanish at all points of Bd [k except possibly at points of the 
open bottom face (Int Jk-l) x 0. If j < k, this means that the right side of 
this equation vanishes; while if j = k, it equals 

- /(xi, ... , Xk-1, 0). 
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We conclude the following: 

{
o 

dr,-1., r• - (-1)• J,._,(f ob) 

if j < k, 

if j = k. 

Step 2. Now we compute the other integral of our theorem. The map 
b : RI:- l -+ RI: has derivative 

[ J1:-1] Db= . 
0 

Therefore, by Theorem 32.2, we have 

b*(dx1;) = [det Db(l, ... , J, ... , k)] du1 A··· A du1:-1 

{ o if j < k, 

- du1 I\ • • • A duk-1 if j = k. 

We conclude that 

{
o 

b*r, -
int 1•-1 - r (fob) 

Jlnt 1•-1 

if j < k, 

if j = k. 

The theorem follows by comparing this equation with that at the end of 
Step 1. □ 

Theorem 37.2 (Stokes' theorem). Let k > l. Let M be a com
pact oriented k-manifold in R"; give 8M the induced orientation if 
{) M is not empty. Let w be a k - 1 form defined in an open set of 
R" containing M. Then 

L~=faMw 

if 8M is not empty; and f M ~ = 0 if 8M is empty. 

Proof. Step 1. We first cover M by carefully-chosen coordinate patches. 
As a first case, assume that p E M - 8 M. Choose a coordinate patch 
o : U ~ V belonging to the orientation of M, such that U is open in Rk 
and contains the unit cube JI:, and such that o carries a point of Int JI: to 
the point p. (If we begin with an arbitrary coordinate patch o : U -+ V 
about p belonging to the orientation of M, we can obtain one of the desired 
type by preceding o by a translation and a stretching in RI:.) Let W = Int JI:, 
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w 
Q 

w 

-

Figure 37.2 

and let Y = a(lV). Then the map a : W -+ Y is still a coordinate patch 
belonging to the orientation of M about p, with lV = Int Jk open in Rk. See 
Figure 37.2. We choose this special patch about p. 

As a second case, assume that p E 8}.1. Choose a coordinate patch 
a : U - V belonging to the orientation of A1, such that U is open in Hk 
and U contains Jk, and such that a carries a point of (Int Jk-l) x O to the 
point p. Let 

w = (Int / 1 )u ((Int 11:-1) x o), 

and let Y = a(W). Then the map a: : W -+ Y is still a coordinate patch 
belonging to the orientation of M about p, with W open in Hk but not open 
in R1c. 

We shall use the covering of M by the coordinate patches a : W -+ Y 

to compute the integrals involved in the theorem. Note that in each case, the 
map a: can be extended if necessary to a C00 function defined on an open set 
of Ric containing JI:. 

Step 2. Since the operator d and the integrals involved are linear, it 
suffices to prove the theorem in the special case where w is a k - 1 form such 
that the set 

C = Af n (Support w) 

can be covered by a single one of the coordinate patches a : W - Y. Since 
the support of dw is contained in the support of w, the set Mn (Support dw) 
is contained in C, so it is covered by the same coordinate patch. 

Let 1] denote the form a*w. The form 1] can be extended if necessary 
( without change of notation) to a C00 form on an open set of Rk containing Jk. 
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Furthermore, 'f/ vanishes at all points of Bd Jk except possibly at points of 
the bottom face (Int p:-l) x 0. Thus the hypotheses of the preceding lemma 
are satisfied. 

Step 3. We prove the theorem when C is covered by a coordinate patch 
a : W -+ Y of the type constructed in the first case. Here W = Int JI: and Y 
is disjoint from 8M. We compute the integrals involved. Since a•dw = 
da•w = d'f/, we have 

I. dw = f a•dw = f d'f/ = (-ll f b•11. 
M lint I" lint I" lint [lr- 1 

Here we use the preceding lemma. In this case, the form 77 vanishes outside 
Int JI:. In particular, 'f/ vanishes on Jk-l x0, so that b•r, = 0. Then JM dw = 0. 

The theorem follows. If 8M is empty, this is the equation we wished to 
prove. If 8M is non-empty, then the equation 

I. dw = I. w 
M 8M 

holds trivially; for since the support of w is disjoint from 8M, the integral 
of w over 8M vanishes. 

Step 4. Now we prove the theorem when C is covered by a coordinate 
patch a : W -+ Y of the type constructed in the second case. Here W is 
open in Hk but not in R·I:, and Y intersects 8.A1. We have Int W = Int [k. 
We compute as before 

f dw = f dr, = (-ll f b•r,. 
lM lint fir l1nt 11r-1 

We next compute the integral faM w. The set 8M n (Support w) 1s 
covered by the coordinate patch 

/3 = a ob: Int Jk-i -It Y n 8M 

on 8M, which is obtained by restricting a. Now /3 belongs to the induced 
orientation of 8M if k is even, and to the opposite orientation if k is odd. If 
we use /3 to compute the integral of w over 8.Af, we must reverse the sign of 
the integral when k is odd. Thus we have 

I. w = (-l)k f j3•w. 
8M lint /lr- 1 

Since fJ•w = b*(a*w) = b*r,, the theorem follows. 0 
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We have proved Stokes' theorem for manifolds of dimension k greater 
than 1. What happens if k = I? If 8 }.1 is empty, there is no problem; one 
proves readily that JM dw = O. However, if 8M is non-empty, we face the 
following questions: What does one mean by an "orientation" of a 0-manifold, 
and how does one "integrate'' a 0-form over an oriented 0-manifold? 

To see what form Stokes' theorem should take in this case, we consider 
first a special case. 

Definition. Let M be a I-manifold in Rn. Suppose there is a one-to-one 
map o:: [a,b] - M of class C00 , carrying [a,b] onto M, such that Da(t) =f: 0 
for all t. Then we call M a (smooth) arc in Rn. If }.f is oriented so that 
the coordinate patch al( a, b) belongs to the orientation, we say that p is the 
initial point of M and q is the final point of A1. See Figure 37.3. 

[ 
a 

] 
b 

Figure 31.3 

q 

*Theorem 37 .3. Let M be a I-manifold in Rn; let f be a 0-form 
defined in an open set about M. If NJ is an arc with initial point p and 
final point q, then 

l df = /(q) - f(p). 

Proof. Let o: : [a, b] - M be as in the preceding definition. Then 
a : (a, b) - M - p - q is a coordinate patch covering all of M except for a 
set of measure zero. By Theorem 35.2, 

!. df = 1 a*(df). 
M (a,b) 
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Now 
o:*(df) = d(f o o:) = D(f o o:) dt, 

where t denotes the general point of R. Then 

1 o:*(df) = 1 D(J o o:) = f(o:(b)) - f(a(a)), 
(a,b) (a,b) 

by the fundamental theorem of calculus. D 

This result provides a guide for formulating Stokes' theorem for I-mani
folds: 

Definition. A compact 0-manifold N in Rn is a finite collection of 
points { x1, ... , Xm} of R". We define an orientation of N to be a func
tion f mapping N into the two-point set {-1,1}. If f is a 0-form defined 
in an open set of R" containing N, we define the integral of / over the 
oriented manifold N by the equation 

Definition. If Mis an oriented I-manifold in Rn with non-empty bound
ary, we define the induced Ol'ientation of BM by setting e(p) = -1, for 
p E 8M, if there is a coordinate patch a : U - V on M about p belonging 
to the orientation of M, with U open in H1 . We set c(p) = +1 otherwise. 
See Figure 37.4. 

0 E: = -1 

Figure 31.-I 

With these definitions, Stokes' theorem takes the following form; the proof 
is left as an exercise. 
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Theorem 3 7.4 (Stokes' theorem in dimension 1). Let M be a 
compact oriented I-manifold in Rn; give 8M the induced orientation 
if 8M is not empty. Let f be a 0-form defined in an open set of Rn 
containing M. Then 

l df = f.Ml 

if 8M is not empty; and JM df = 0 if 8M is empty. □ 

EXERCISES 

I. Prove Stokes' theorem for I-manifolds. [Hint: Cover M by coordinate 
patches, belonging to the orientation of Af, of the form a : fV -+ Y, 
where Wis one of the intervals (0,1) or [0,1) or (-1,0]. Prove the theorem 
when the set /11[ n (Support /) is covered by one of these coordinate 
patches.} 

2. Suppose there is an n - 1 form 1] defined in Rn - 0 such that d17 = 0 and 

Show that 1] is not exact. (For the existence of such an 17, see the exercises 
of §30 and the exercises of either §35 or §38.) 

3. Prove the following: 

Theorem (Green's theorem). Let M be a compact 2-manifold 
in R2 , oriented naturally; give 8 AJ the induced orientation. Let 
P dx + Q dy be a I-form defined in an open set of R2 about M. 
Then 

4. Let M be the 2-manifold in R3 consisting of all points x such that 

Then 8/1,f is the circle consisting of all points such that 

See Figure 37.5. The map 

for u2 + v2 < 1, is a coordinate patch on M that covers M - fJM. 
Orient M so that a belongs to the orientation, and give 8M the induced 
orientation. 
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Figure 37.5 

(a) What normal vector corresponds to the orientation of M? What 
tangent vector corresponds to the induced orientation of oM? 

(b) Let w be the I-form w = X2 dx1 +3x1 dx3. Evaluate faM w directly. 

(c) Evaluate JJ.f dw directly, by expressing it as an integral over the unit 
disc in the l u, v) plane. 

5. The 3-ball B 3 (r) is a 3-manifold in R3; orient it naturally and give S2 (r) 
the induced orientation. Assume that w is a 2-form defined in R3 - 0 such 
that 

f w =a+ (b/r), 
lsi(r) 

for each r > 0. 

( a) Given 0 < c < d, let 1\1 be the 3-manifold in R3 consisting of all x 
with c::;: llxll ::;: d, oriented naturally. Evaluate J M dw. 

(b) If dw = 0, what can you say about a and b? 

(c) If w = d17 for some 17 in R3 - 0, what can you say about a and b? 

6. Let A,f be an oriented k + f + I manifold without boundary in Rn. Let w 
be a k-form and let T/ be an f-form, both defined in an open set of Rn 
about A1. Show that 

L w I\ a,,, = a L dw I\ 1J 

for some a, and determine a. 
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*§38. APPLICATIONS TO VECTOR ANALYSIS 

In general, we know from the discussion in §31 that differential forms of order k 
can be interpreted in nn in certain cases as scalar or vector fields, namely when 
k = 0, 1, n - 1, or n. We show here that integrals of forms can similarly be so 
interpreted; then Stokes' theorem can also in certain cases be interpreted in 
terms of scalar or vector fields. These versions of the general Stokes' theorem 
include the classical theorems of the vector integral calculus. 

We consider the various cases one-by-one. 

The gradient theorem for I-manifolds in nn 

First, we interpret the integral of a I-form in terms of vector fields. If F 
is a vector field defined in an open set of Rn, then F corresponds under the 
"translation map" a1 to a certain 1-formw. (See Theorem 31.1.) It turns out 
that the integral of w over an oriented I-manifold equals the integral, with 
respect to I-volume, of the tangential component of the vector field F. That 
is the substance of the folJowing lemma: 

Lemma 38.1. Let M be a compact oriented I-manifold in nn; 
let T be the unit tangent vector to M corresponding to the orientation. 
Let 

F(x) = (x; J(x)) = (x; Efi(x)ei) 

be a vector field defined in an open set of nn containing M; it corre
sponds to the I-form 

Then 

1 w = I. (F,T) ds. 
M Al 

Here we use the classical notation "ds" rather than "d V" to denote the 
integral with respect to I-volume (arc length), simply to make our theorems 
resemble more closely the classical theorems of vector integral calculus. 

Note that if one replaces M by - M 1 then the integral J M w changes 
sign. This replacement has the effect of replacing T by -T; thus the integral 
JM(F, T) ds also changes sign. 

Proof. We give two proofs of this lemma. The first relies on the results 
of §36; the second does not. 

First proof. By Theorem 36.2, we have 

/Mw= /M .,\ ds, 
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where .\(p) is the value of w(p) on an orthonormal basis for Tp(M) that 
belongs to the natural orientation of this tangent space. In the present case, 
the tangent space is I-dimensional, and T(p) is such an orthonormal basis. 
Let T(p) = (p;t). Since w = E/i dxi, 

w(p) (p;t) = Lfi(p)ti(P)

Thus 
.\(p) = (F(p), T(p)), 

and the lemma follows. 

Second proof. Since the integrals involved are linear in w and F, re
spectively, it suffices to prove the lemma in the case where the set 

C = Af n (Support w) 

lies in a single coordinate patch a : U --+ V belonging to the orientation of M. 
In that case, we simply compute both integrals. Let t denote the general point 
of R. Then 

It follows that 

On the other hand, 

n 

a•w= E<Jioa) dai 
i=l 

n 

= L(/i o a) (Dai) dt 
i=l 

= (f o a, Da) dt. 

f w = f a•w 
lM lint U 

= f (f o a, Da). 
lint u 

f (F,T)ds= [ (Foa,Toa)-V(Da) 
lM lint U 

smce 

= 1 (! o a, Da/ IIDaJI) • V(Da) 
Int U 

= [ (f o a, Da), 
lint u 

V(Da) = [det(Datr • Da)] 112 = IIDall. 

The lemma follows. D 
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Theorem 38.2 (The gradient theorem). Let M be a compact 
I-manifold in Rn; let T be a unit tangent vector field to M. Let f be a 
C 00 function defined in an open set about M. If 8M is empty, then 

L (grad f, T} ds = 0. 

If 8M consists of the points x1, ... , Xm, let £i = -1 if T points into M 
at Xi and £i = +1 otherwise. Then 

J. (grad f,T) ds = t •d(x;). 
M i:1 

Proof. The 1-form df corresponds to the vector field grad f, by Theo
rem 31.1. Therefore 

!. df = !. (grad f, T) ds, 
M M 

by the preceding lemma. Our theorem then follows from the I-dimensional 
version of Stokes' theorem. D 

The divergence theorem for n-1 manifolds in Rn 

Now we interpret the integral of an n - 1 form, over an oriented n - 1 
manifold M, in terms of vector fields. First, we must verify a result stated 
earlier, the fact that an orientation of M determines a unit normal vector 
field to M. Recall the following definition from §34: 

Definition. Let M be an oriented n - 1 manifold in Rn. Given p E M, 
let (p; n) be a unit vector in Tp(Rn) that is orthogonal to the n-1 dimensional 
linear subspace Tp(M). If a : U-+ V is a coordinate patch on M about p 
belonging to the orientation of M with a(x) = p, choose n so that 

8a oa 
(n, ~(x), • .. , 8 (x)) 

uX1 Xn-1 

is right-handed. The vector field N(p) = (p;n(p)) is called the unit normal 
field corresponding to the orientation of M. 

We show N (p) is well-defined, and of class C00 • To show it is well-defined, 
let /3 be another coordinate patch about p, belonging to the orientation of M. 
Let g = p- 1 oa be the transition function, and let g(x) = y, Since a= /Jog, 

Da(x) = D{1(y) • Dg(x). 
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Then for any v E Rn, we have the equation 

[v Da(x)] = [v Dj'.1(y)] [0
1 

(Here Da and D/3 have size n by n - I, so each of these three matrices has 
size n by n.) It follows that 

det[v Da(x)] = det[v DtJ(y)] • det Dg(x). 

Since det Dg > 0, we conclude that [v Da(x)] has positive determinant if 
and only if [v DtJ(y)] does. 

To show that N is of class C 00 , we obtain a formula for it. As motivation, 
let us consider the case n = 3: 

EXAMPLE 1. Given two vectors a and b in R3 , one learns in calculus that 
their cross product c = ax bis perpendicular to both, that the frame ( c, a, b) 
is right-handed, and that llcll equals V(a, b). The vector c is, of course, the 
vector with components 

It follows that if M is an oriented 2-manifold in R3 , and if a : U - V is a 
coordinate patch on A1 belonging to the orientation of A1, and if we set 

an- aa 
c = ~ x ~, 

uX1 uX2 

then the vector n = c/ llcll gives the corresponding unit normal to M. See 
Figure 38.1. 

X u 

Figure 38.1 
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There is a formula similar to the cross product formula for determining n 
in general, as we now show. 

Lemma 38.3. Given independent vectors x 1 , ... , Xn-l in Rn, 

let X be the n by n - 1 matrix X = [x1 • • • Xn-i], and let c be the vector 
c = Eciei, where 

Ci = (-l)i-t det X(l, ... , i, ... , n). 

The vector c has the following properties: 
(1) c is non-zero and orthogonal to each x;. 
(2) The frame ( c, Xi, ... , Xn-t) is right-handed. 
(3) llcll = V(X). 

Proof. We begin with a preliminary calculation. Let x 1 , ... , Xn-l be 
fixed. Given a E Rn, we compute the following determinant; expanding by 
cofactors of the first column, we have: 

n 

det[a X1 • • • Xn-1] = E ai(-l)i-l det X(l, ... , 'i, ... , n) 
i=l 

= (a, c). 

This equation contains all that is needed to prove the theorem. 

(1) Set a= Xi. Then the matrix [a x1 • • • Xn-1] has two identical columns, 
so its determinant vanishes. Thus (xi, c) = 0 for all i, so c is orthogonal to 
each x,. To show c f; O, we note that since the columns of X span a space 
of dimension n - 1, so do the rows of X. Hence some set consisting of n - 1 
rows of X is independent, say the set consisting of all rows but the i th . Then 
C; f; O; whence c f; 0. 

(2) Set a = c. Then 

det[c X1 ••• Xn-1] = (c,c) = llcll2 > O. 

Thus the frame ( c, x 1 , ... , Xn-1) is right-handed. 

(3) This equation follows at once from Theorem 21.4. Alternatively, one 
can compute the matrix product 

(c X1 ••• Xn-1]tr. [c X1 ••• Xn-1] = [11 colf 
O 

] 
Xtr. X • 

Taking determinants and using the formula in (2), we have 

llclr1 = llcll2V(X)2• 

Since llcll-:/; 0, we conclude that llcll = V(X). D 
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Corollary 38.4. If M is an oriented n - 1 manifold in Rn, then 
the unit normal vector N (p) corresponding to the orientation of M is 
a C00 function of p. 

Proof. If a : U -+ V is a coordinate patch on M about p, let 

Ci(x) = (-l)i-l <let Da(l, ... , i, ... , n)(x) 

for x EU, and let c(x) = Ec,(x)ei. Then for all p EV, we have 

N(p) = (p; c(x)/llc(x)II ), 

where x = a- 1(p ); this function is of class C00 as a function of p. 0 

Now we interpret the integral of an n - 1 form in terms of vector fields. 
If G is a vector field in R», then G corresponds under the "translation map" 
/3»-l to a certain n - 1 form win ff». (See Theorem 31.1.) It turns out that 
the integral of w over an oriented n-1 manifold M equals the integral over M, 
with respect to volume, of the normal component of the vector field G. That 
is the substance of the following lemma: 

Lemma 38.5. Let M be a compact oriented n - 1 manifold in Rn; 
let N be the corresponding unit normal vector field. Let G be a vector 
field defined in an open set U of ff» containing M. If we denote the 
geneml point of ff» by y, this vector field has the form 

G(y) = (y;g(y)) = (y; Eg,(y)e;); 

it corresponds to the n - 1 form 

n 

W = L (-l)i-lgi dy1 A··· A dyi A··· A dyn• 
i=l 

Then 

Note that if we replace M by -]YI, then the integral JM w changes sign. 
This replacement has the effect of replacing N by -N, so that the integral 
f M(G, N) dV also changes sign. 

Proof. We give two proofs of this theorem. The first relies on the results 
of §36 and the second does not. 
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First proof. By Theorem 36.2, we have 

where A(p) is the value of w(p) on an orthonormal basis for Tp(M) that 
belongs to the natural orientation of this tangent space. We show that A = 
(G, N}, and the proof is complete. 

Let (p;a1), ... , (p;a»-d be an orthonormal basis for Tp(M) that be
longs to its natural orientation. Let A be the matrix A= [a1 · · · an_i]; and 
let c be the vector c = Eciei, where 

By the preceding lemma, the vector c is orthogonal to each ai, and the frame 
( c, ai, ... , an- 1) is right-handed, and 

llcll = V(A) = [det{Atr • A)] 112 = (det I»-1]1/2 = 1. 

Then N = {p; c) is the unit normal to }.,fat p corresponding to the orientation 
of M. Now by Theorem 27.7, we have 

dy1 A··· A dyi A···/\ dyn({p;ai), ... , (p;a0 _t)) = det A(l, ... , z, ... , n). 

Then 
n 

,,\(p) = L(-l)i-Igi(p)det A(l, ... , z, ... , n) 
i=l 

n 

= L gi(P). Ci. 

i=l 

Thus ,,\ = (G, N), as desired. 

Second proof. Since the integrals involved in the statement of the the
orem are linear in w and G, respectively, it suffices to prove the theorem in 
the case where the set 

C =Mn (Support w) 

lies in a single coordinate patch a : U --+ V belonging to the orientation of M. 
We compute the first integral as follows: 

!. w = 1 a*w 
M Int U 

n 

= 1 [L(-l)i- 1 (gi oa)detDa(l, ... , z, ... , n)], 
Int U i=l 
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by Theorem 32.2. To compute the second integral, set c = Eciei, where 

ci = (-l)i-l det Da(l, ... , 'i', ... , n). 

If N is the unit normal corresponding to the orientation, then as in the pre
ceding corollary, N ( a(x)) = ( a(x); c(x)/ llc(x)II ). We compute 

!. {G,N) dV = { (Goa,N oa). V(Da) 
M lint U 

= f (go a,c) since llcll = V(Da), 
lint u 

= 1 ct (g; 0 a)(-l)'- 1 det Da(l, ... , I, ... ' n)]. 
Int U i=l 

The lemma follows. D 

Now we interpret the integral of an n-form in terms of scalar fields. The 
interpretation is just what one might expect: 

Le1nma 38.6. Let Af be a compact n-manifold in R", oriented 
naturally. Let w = h dx 1 A••• A dxn be an n-form defined in an open set 
of R" containing M. Then h is the corresponding scalar field, and 

{ w = I h dV. lM lM 

Proof. First proof. We use the results of §36. V-7e have 

l w = l). dV, 

where A is obtained by evaluating won an orthonormal basis for 'Tp(M) that 
belongs to its natural orientation. Now a belongs to the orientation of M 
if det Da > O; thus the natural orientation of 'Tp( M) consists of the right
handed frames. The usual basis for 'Tp(.1'1) = Tp(Rn) is one such frame, and 
the value of won this frame is h. 

Second proof. It suffices to consider the case where the set 
M n (Support w) is covered by a coordinate patch a : U -+ V belonging 
to the orientation of M. We have by definition 

!. w = [ a•w = [ (ho a) det Da, 
M lint U lint U 

!. h dV = [ (ho a) V(Da). 
M lint U 
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Now V (Da) = I det Dal = det Do., since a belongs to the natural orientation 
of M. □ 

We note that the integral JM h dV in fact equals the ordinary integral 
of h over the bounded subset M of Rn. For if A = M - 8 M, then A is open 
in Rn, and the identity map i : A -+ A is a coordinate patch on M, belonging 
to its natural orientation, that covers all of M except for a set of measure 
zero in M. By Theorem 25.4, 

l h dV = L (h O i)V(Di) = L h. 

The latter is an ordinary integral; it equals JM h because 8M has measure 
zero in nn. 

We now examinet for an n-manifold }.,f in Rn, naturally oriented, what 
the induced orientation of 8M looks like. We considered the case n = 3 in 
Example 4 of §34. A result similar to that one holds in general: 

Lemma 38. 7. Let M be an n-manifold in Rn. If M is oriented 
naturally, then the induced orientation of {)}.1 corresponds to the unit 
normal field N to 8 At/ that points outwards from M at each point of 8 M. 

The inward normal to {)J,.,f at p is the velocity vector of a curve that 
begins at p and moves into Mas the parameter value increases. The outward 
normal is its negative. 

Proof. Let a : U -+ V be a coordinate patch on Al about p belonging 
to the orientation of M. Then det Do. > 0. Let b: nn- 1 -+ Rn be the map 

b(xi, ... ' Xn-d = (xi, ... 'Xn-1, 0). 

The map ao = a ob is a coordinate patch on 81'.1 about p. It belongs to the 
induced orientation of 8M if n is even, and to its opposite if n is odd. Let N 
be the unit normal field to 8M corresponding to the induced orientation of 
8M; let N(p) = (p;n(p)). Then 

det[(-ltn Dao] > 0, 

which implies that 

det[Do.0 
oa n] = det[-8 X1 

On the other hand, we have 

8a 
OXn-1 

n] < 0. 

8a 
det Do.= det[-8 

X1 

Da 
OXn-1 

{)a, 
~] >0. 
UXn 
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The vector 8a./ 8xn is the velocity vector of a curve that begins at a point of 
f) M and moves into M as the parameter increases. Thus n is the outward 
normal to fJ M at p. D 

Theorem 38.8 (The divergence theorem). Let M be a compact 
n-manifold in Rn. Let N be the unit normal vector field to f) M that 
points outwards from M. If G is a vector field defined in an open set of 
Rn containing M, then 

f (div G) dV = f (G, N) dV. 
JM laM 

Here the left-hand integral involves integration with respect to n-volume, 
and the right-hand integral involves integration with respect to n - I volume. 

Proof. Given G, let w = f3n-iG be the corresponding n - I form. 
Orient M naturally and give {) M the induced orientation. Then the normal 
field N corresponds to the orientation of 8A1, by Lemma 38.7, so that 

!. w = !. (G, N) dV, 
&M 8M 

by Lemma 38.5. According to Theorem 31.1, the scalar field div G corresponds 
to then-form dw; that is, dw = (div G)dx 1 A••• A dxn. Then Lemma 38.6 
implies that 

I dw = r ( di V G) d V. 
jM jM 

The theorem follows from Stokes' theorem. D 

In R3 , the divergence theorem is sometimes called Gauss' theorem. 

Stokes' theorem for 2-manifolds in R3 

There is one more situation in which we can translate the general Stokes' 
theorem into a theorem about vector fields. It occurs when M is an oriented 
2-manifold in R3. 

Theore1n 38.9 (Stokes' theorem-classical version). Let M be 
a compact orientable 2-manifold in R3. Let N be a unit normal field 
to M. Let F be a C00 vector field defined in an open set about M. If f) M 
is empty, then 

JM (curl F, N} dV = 0. 
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If 8 M is non-empty, let T be the unit tangent vector field to 8 M chosen 
so that the vector W (p) = N (p) x T(p) points into M from 8 M. Then 

/. (curl F,N) dV = !. (F,T) ds. 
M 8Af 

Proof. Given F, let w = o:1 F be the corresponding 1-form. Then 
according to Theorem 31.2, the vector field curl F corresponds to the 2-form 
dw. Orient M so that N is the corresponding unit normal field. Then by 
Lemma 38.5, 

L dw = L (curl F, N) dV. 

On the other hand, if 8M is non-empty, its induced orientation corresponds to 
the unit tangent field T. (See Example 5 of §34.) It follows from Lemma 38.1 
that 

!. w = f (F,T) ds. 
BM laM 

The theorem now follows from Stokes' theorem. D 

EXERCISES 

1. Let G be a vector field in R3 - 0. Let S2 (r) be the sphere of radius r in 
R3 centered at 0. Let Nr be the unit normal to S 2 (r) that points away 
from the origin. If div G(x) = 1/llxlt, and if O < c < d, what can you 
say about the relation between the values of the integral 

for r = c and r = d? 

{ {G,Nr} dV 
} s'l(r) 

2. Let G be a vector field defined in A= Rn - 0 with div G = 0 in A. 

(a) Let M1 and M2 be compact n-manifolds in Rn, such that the origin 
is contained in both M1 - 8M1 and M2 -IJM2. Let Ni be the unit 
outward normal vector field to 8A1i, for i = 1, 2. Show that 

[Hint: Consider first the case where .Af2 = Bn(E) and is contained 
in M1 - 8M1. See Figure 38.2.] 
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Figure 38.2 

(b) Show that a.s A,[ ranges over all compact n-manifolds in Rn for which 
the origin is not in 8M, the integral 

1 (G,N)dV, 
8M 

where N is the unit normal to 8M pointing outwards from M, has 
only two possible values. 

3. Let G be a vector field in B = Rn - p - q with div G = 0 in B. As M 
ranges over all compact n-manifolds in Rn for which p and q are not in 
8M, how many possible values does the integral 

1 (G,N) dV 
BM 

have? (Here N is the unit normal to 8M pointing outwards from M.) 
4. Let 1/ be the n - 1 form in A = Rn - 0 defined by the equation 

i=l 

where /,(x) = Xi/llxllm. Orient the unit ball B" naturally, and give 
sn-1 = {}Bn the induced orientation. Show that 

1 1/ = v(sn-1 ). 
sra-1 

[Hint: If G is the vector field corresponding to 1/, and N is the unit 
outward normal field to sn-1 , then (G, N} = I.] 
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5. Let S be the subset of R3 consisting of the union of: 

(i) the z-axis, 

(ii) the unit circle x2 + y2 = 1, z = 0, 

(iii) the points (0, y, 0) with y > 1. 

Chapter 7 

Let A be the open set R3 - S of R3. Let C1, C2, D1, D2, D3 be the 
oriented I-manifolds in A that are pictured in Figure 38.3. Suppose that 
F is a vector field in A, with curl F = 0 in A, and that 

/ ( F, T) <ls = 3 and 
le. 

What can you say about the integral 

for i = 1, 2, 3? Justify your answers. 

Figure 38.3 

f (F, T) ds = 7. 
lc2 



Closed Forms and Exact Forms 

In the applications of vector analysis to physics, it is often important to know 
whether a given vector field F in R3 is the gradient of a scalar field /. If 
it is, F is said to be conservative, and the function f ( or sometimes its 
negative) is called a potential function for F. Translated into the language 
of forms, this question is just the question whether a given 1-form win R3 is 
the differential of a 0-form, that is, whether w is exact. 

In other applications to physics, one wishes to know whether a given 
vector field G in R3 is the curl of another vector field F. Translated into the 
language of forms, this is just the question whether a given 2-form w in R3 is 
the differential of a 1-form, that is, whether w is exact. 

We study here the analogous question in Rn. If w is a k-form defined 
in an open set A of Rn, then a necessary condition for w to be exact is the 
condition that w be closed, i.e., that dw = 0. This condition is not in general 
sufficient. We explore in this chapter what additional conditions, either on A 
or on both A and w, are needed in order to ensure that w is exact. 

323 
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§39. THE POINCARE LEMMA 

Let A be an open set in R". We show in this section that if A satisfies 
a certain condition called star-convexity, then any closed form w on A is 
automatically exact. This result is a famous one called the Poincare lemma. 

We begin with a preliminary result: 

Theorem 39.1 (Leibnitz's rule). Let Q be a rectangle in R"; let 
f: Q x [a,b]-. R be a continuous function. Denote f by f(x, t) for x E Q 
and t E [a, b]. Then the function 

t=b 

F(x) = !.=a /(x, t) 

is continuous on Q. Furthermore, if{) f / ox; is continuous on Q x [a, b], 
then 

{)F 1t=b {}f 
~(x) = ~(x, t). 
uX3 t=a uX3 

This formula is called Leibnitz's rule for differentiating under the 
integral sign. 

Proof. Step 1. We show that Fis continuous. The rectangle Q x [a,b] 
is compact; therefore f is uniformly continuous on Q x [a, b]. That is, given 
£ > 0, there is a 6 > 0 such that 

lf(x1, ti) - f(xo, to)I < £ whenever l(x1, ti) - (xo, to)I < 6. 

It follows that when lx1 - xol < C, 

JF(x1) - F(xo)I < 1.::• lf(xi,t) - f(xo, t)I < ,(b- a). 

Continuity of F follows. 

Step 2. In calculating the integral and derivatives involved in Leibnitz's 
rule, only the variables x; and t are involved; all others are held constant. 
Therefore it suffices to prove the theorem in the case where n = 1 and Q is 
an interval [c,d] in R. 

Let us set, for x E [c, d], 

G(x) = L:' D,f(x, t). 
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We wish to show that F'( x) exists and equals G( x ). For this purpose, we 
apply {of all things) the Fubini theorem. We are given that D 1f is continuous 
on [c,d] x [a,b]. Then 

1::r, G(x) = 1::r, L:• D,J(x, t) 

= L:• 1::r, D,J(x,t) 

= L:• [f(xo, t) - f(c, t)] 

= F(xo) - F(c); 

the second equation follows from the Fubini theorem, and the third from the 
fundamental theorem of calculus. Then for x E [c, d], we have 

Since G is continuous by Step 1, we may apply the fundamental theorem of 
calculus once more to conclude that 

G ( X) = F' ( X). □ 

We now obtain a criterion for determining when two closed forms dif
fer by an exact form. This criterion involves the notion of a differentiable 
homotopy. 

Definition. Let A and B be open sets in R" and Rm, respectively; 
let g, h : A - B be C00 maps. We say that g and h are differentiably 
homotopic if there is a C00 map H : A x I - B such that 

H(x, 0) = g(x) and H(x, 1) = h(x) 

for x E A. The map H is called a differentiable homotopy between g 
and h. 

For each t, the map x - H(x, t) is a C00 map of A into B; if we think 
of t as "time," then H gives us a way of "deforming" the map g into the 
map h, as t goes from Oto 1. 
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Theorem 39.2. Let A and B be open sets in R" and nm, respec-
tively. Let g, h : A -+ B be C00 maps that are differentiably homotopic. 
Then there is a linear trans! ormation 

1' : gk+l (B) -+ gk(A), 

defined fork> 0, such that for any form 1J of order k > 0, 

d'P17 + 1'd17 = h*17- g•17, 

while for a form f of order O, 

Pd/= h* f - g• f. 

This theorem implies that if 1] is a closed form of positive order, then h•17 
and g•17 differ by an exact form, since h*17 - g•17 = dP17 if T/ is closed. On 
the other hand, if J is a closed 0-form, then h• J - g• J = 0. 

Note that d raises the order of a form by 1, and 1' lowers it by 1. Thus 
if 1J has order k > 0, all the forms in the first equation have order k; and all 
the forms in the second equation have order 0. Of course, 1' f is not defined 
if J is a 0-form. 

Proof. Step 1. We consider first a very special case. Given an open 
set A in Rn, let U be a neighborhood of Ax I in R"+1, and let a, /3 : A -+ U 
be the maps given by the equations 

a(x) = (x, 0) and fJ(x) = (x, 1). 

(Then O'. and /3 are differentiably homotopic.) We define, for any k + I form 1J 
defined in U, a k-form P17 defined in A, such that 

dP17 + Pdr, = /3*17 - a•r, if order 1] > 0, 

Pdf = /3* f - a• f if order f = 0. 

To begin, let x denote the general point of R", and let t denote the general 
point of R. Then dxi, ... , dxn, dt are the elementary I-forms in nn+l. If g 
is any continuous scalar function in Ax I, we define a scalar function Ig on A 
by the formula 

(Ig)(x) = L:• g(x,t). 

Then we define P as follows: If k > 0, the general k + 1 form 1J in nn+l can 
be written uniquely as 

1]= L !1 dx1+ LYi dx1Adt. 
(/ 1 [J] 
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Here I denotes an ascending k + I tuple, and J denotes an ascending k-tuple, 
from the set { 1, ... , n}. We define P by the equation 

Pr,= I: P(f1 dx1) + L P(g, dx 1 A dt), 
[I) (J] 

where 

Then Pr, is a k-form defined on the subset A of R". 
Linearity of P follows at once from the uniqueness of the representation 

of r, and linearity of the integral operator I. 
To show that Pr, is of class C 00 , we need only show that the function I g 

is of class C00 ; and this result follows at once from Leibnitz's rule, since g is 
of class C 00 • 

Note that in the special case k = 0, the form r, is a I-form and is written 
as 

n 

T/ = L Ji dxi + g dt; 
i=l 

in this case, the tuple J is empty, and we have 

Pr,= 0 + P(g dt) = Ig. 

Although the operator P may seem rather artificial, it is in fact a rather 
natural one. Just as d is in some sense a "differentiation operator," the 
operator P is in some sense an "integration operator," one that "integrates r, 
in the direction of the last coordinate." An alternate definition of P that 
makes this fact clear is given in the exercises. 

Step 2. We show that the formulas 

P(f dx1) = 0 and P(g dx, A dt) = (-Il(Ig) dx, 

hold even when I is an arbitrary k + I tuple, and J is an arbitrary k-tuple, 
from the set { 1, ... , n}. The proof is easy. If the indices are not distinct, then 
these formulas hold trivialiy, since dx1 = 0 and dx, = 0 in this case. If the 
indices are distinct and in ascending order, these formulas hold by definition. 
Then they hold for any sets of distinct indices, since rearranging the indices 
changes the values of dx1 and dx, only by a sign. 
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Step 3. We verify formula ( *) of Step 1 in the case k = 0. We have 

P(df) = P(t :~ dxi) + P(°a{ dt) 

= 0 + (-1)0I(~{) 

=/0/3-/00. 

= /3* I - o.• /, 

where the third equation follows from the fundamental theorem of calculus. 

Step 4. We verify formula(*) in the case k > 0. Note that because o. 
is the map o.(x) = (x, 0), then 

a*(dxi) = do.i = dxi for i = 1, ... , n, 

o.*(dt) = do.n+l = 0. 

A similar remark holds for /3*. 
Now because d and P and o.• and /3* are linear, it suffices to verify our 

formula for the forms / dx1 and g dx1 I\ dt. We first consider the case 
1] = J dx1. Let us compute both sides of the equation. The left side is 

dP11 + Pd11 = d(O) + P(d1J) 

n 8/ 8/ 
= [ L P(ax- dx; I\ dx1)] + P( at dt I\ dx1) 

i=l J 

= 0 + (-l)k+l P( ~{ dx1 I\ dt) by Step 2, 

= I(~{ )dx1 

= [/ o /3 - f o o.] dx 1 • 

The right side of our equation is 

/3*1]- o.•11 = (/ o {3){3*(dx1)- (/ o o.)a*(dx1) 

= [/ o /3 - Jo o.]dx1. 

Thus our result holds in this case. 
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We now consider the case when f/ = g dx1 I\ dt. Again, we compute both 
sides of the equation. We have 

n 

= (-l)l: L D;(Ig) dx; I\ dxJ. 
j:l 

On the other hand, 

n 

d11 = L (D;g) dx; I\ dx1 I\ dt + (Dn+1U) dt I\ dx1 I\ dt, 
j:l 

so that by Step 2, 

n 

P(dTJ) = (-1l+1 L I(D;g) dx; A dx1. 
j=l 

Adding ( **) and ( * * *) and applying Leibnitz's rule, we see that 

d(P11) + P(d11) = 0. 

On the other hand, the right side of the equation is 

/3*(g dx1 I\ dt) - o.*(g dx1 I\ dt) = o, 

since /3*(dt) = 0 and o.*(dt) = 0. This completes the proof of the special case 
of the theorem. 

Step 5. We now prove the theorem in general. We are given C 00 maps 
g, h : A -+ B, and a differentiable homotopy H : A x I -+ B between 
them. Let a, /3 : A -+ A x I be the maps of Step 1, and let P be the linear 
transformation of forms whose properties are stated in Step 1. We then define 
our desired linear transformation P: nl:+1 (B)--+ flk(A) by the equation 

P11 = P(H*11). 

See Figure 39.1. Since H*11 is a k + 1 form defined in a neighborhood of Ax I, 
then P( H * 11) is a k-form defined in A. 

Note that since H is a differentiable homotopy between g and h, 

Ho a = g and H o /3 = h. 
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-------.... ~- ..... 
/ ' \ 

Axl 

Figure 39.1 

Then if k > 0, we compute 

dP'f/ + Pd'f/ = dP(H.'f/) + P(H•d'f/) 

= dP(H"'rJ) + P(dH"'rJ) 

= {J"'(H"''TJ) - o:(H.'TJ) by Step 1, 

-----

as desired. An entirely similar computation applies if k = 0. □ 

Now we can prove the Poincare lemma. First, a definition: 

Chapter 8 

--

Definition. Let A be an open set in Rn. We say that A is star-convex 
with respect to the point p of A if for each x EA, the line segment joining x 
and p lies in A. 
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Figure 39.2 

EXAMPLE 1. In Figure 39.2, the set A is star-convex with respect to the 
point p, but not with respect to the point q. The set B is star-convex with 
respect to each of its points; that is, it is convex. The set C is not star-convex 
with respect to any of its points. 

Theorem 39.3 (The Poincare lemma). Let A be a star-convex 
open set in Rn. If w is a closed k-form on A, then w is exact on A. 

Proof. We apply the preceding theorem. Let p be a point with respect 
to which A is star-convex. Let h : A --+ A be the identity map and let 
g : A --+ A be the constant map carrying each point to the point p. Then g 
and h are differentiably homotopic; indeed, the map 

H(x, t) = th(x) + (1 - t)g(x) 

carries A x I into A and is the desired differentiable homotopy. (For each t, 
the point H(x, t) lies on the line segment between h(x) = x and g(x) = p, so 
that it lies in A.) We call H the straight.line homotopy between g and h. 

Let 'P be the transformation given by the preceding theorem. If / is a 
0-form on A, we have 

P(df) = h* f - g• f = f oh - fog. 

Then if df = 0, we have for all x EA, 

0 = J(h(x)) - J (g(x)) = /(x)- /(p), 
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so that J is constant on A. 
If w is a k-form with k > 0, we have 

Now h*w = w because h is the identity map, and g*w = 0 because g is a 
constant map. Then if dw = 0, we have 

d'Pw =w, 

so that w is exact on A. □ 

Theorem 39.4. Let A be a star-convex open set in Rn. Let w be 
a closed k-form on A. If k > 1, and if 1J and 170 are two k - 1 forms 
on A with d17 = w = d170 , then 

1J = 110 + d0 

for some k - 2 form 0 on A. If k = 1, and if f and / 0 are two O-forms 
on A with df = w = d/0 , then f = Jo + c for some constant c. 

Proof. Since d(17-170) = 0, the form 'f]-1]0 is a closed form on A. By the 
Poincare lemma, it is exact. A similar comment applies to the form J- fo. □ 

EXERCISES 

1. (a) Translate the Poincare lemma fork-forms into theorems about scalar 
and vector fields in R3 . Consider the cases k = 0, 1, 2, 3. 

(b) Do the same for Theorem 39.4. Consider the cases k = 1, 2, 3. 

2. (a) Let g: A - B be a diffeomorphism of open sets in R", of class C 00 • 

Show that if A is homologically trivial in dimension k, so is B. 

(b) Find a.n open set in R2 that is not star-convex but is homologically 
trivial in every dimension. 

3. Let A be an open set in R". Show that A is homologically trivial in 
dimension O if and only if A is connected. [Hint: Let p E A. Show that 
if df = O, and if x can be joined by a broken-line pa.th in A to p, then 
/(x) = /(p). Show that the set of all x that can be joined top by a 
broken-line path in A is open in A.] 

4. Prove the following theorem; it shows that Pis in some sense an operator 
that integrates in the direction of the last coordinate: 

Theorem. Let A be open in R"; let T/ be a k + 1 form defined in an 
open set U of Rn+i containing A x I. Given t E I, let Oc : A -+ U 
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be the "slice" map defined by o,(x) = (x, t). Given fixed vectors 
(x;vi), ... , (x;vk) in Tx(Rn), let 

(y; w;) = (ot).(x; v;), 

for each t. Then (y; wi) belongs to 7;,(Rn+i ); and y = (x,t) is a 
function oft, but w; ::::: (vi, o) is not. (See Figure 39.3.) Then 

(P77)(x)((x;v1), ... , (x;vk))::::: 

(-1 )' 1~:1 
'l(Y) ((y; w1 ), ••• , (y; w.), (y; e.41 )). 

AX I 

Figure 39.3 
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§40. THE DeRHAM GROUPS OF PUNCTURED EUCLIDEAN SPACE 

We have shown that an open set A of Rn is homologically trivial in all di
mensions if it is star-convex. We now consider some situations in which A 
is not homologically trivial in all dimensions. The simplest such situation 
occurs when A is the punctured euclidean space R" - 0. Earlier exercises 
demonstrated the existence of a closed n - l form in Rn - 0 that is not exact. 
Now we analyze the situation further, giving a definitive criterion for deciding 
whether or not a given closed form in Rn - 0 is exact. 

A convenient way to deal with this question is to define, for an open set A 
in R", certain vector spaces Hk(A) that are called the deRham groups of A. 
The condition that A be homologically trivial in dimension k is equivalent to 
the condition that Hk(A) be the trivial vector space. We shall determine the 
dimensions of these spaces in the case A = R" - 0. 

To begin, we consider what is meant by the quotient of a vector space by 
a subspace. 

Definition. If V is a vector space, and if W is a linear subspace of V, 
we denote by V /W the set whose elements are the subsets of V of the form 

v+ W = {v+wlw E W}. 

Each such set is called a coset of V, determined by W. One shows readily 
that if Vt - v2 E W, then the cosets Vt + W and v2 + W are equal, while 
if Vt - v2 ' W, then they are disjoint. Thus V /W is a collection of disjoint 
subsets of V whose union is V. (Such a collection is called a partition of V .) 
We define vector space operations in V /W by the equations 

(vt + W) + (v2 + W) = (v1 + v2) + W, 

c( v + W) = ( cv) + W. 

With these operations, V /W becomes a vector space. It is called the quotient 
space of V by W. 

We must show these operations are well-defined. Suppose Vt + W = 
Vi+ Wand v2 + W = v2 + W. Then Vt -vi and v2 -v2 are in W, so that 
their sum, which equals (vt + v2) - (vi + v2), is in W. Then 

Thus vector addition is well-defined. A similar proof shows that multiplication 
by a scalar is well-defined. The vector space properties are easy to check; we 
leave the details to you. 
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Now if V is finite-dimensional, then so is V/W; we shall not however 
need this result. On the other hand, V /W may be finite-dimensional even in 
cases where V and W are not. 

Definition. Suppose V and V' are vector spaces, and suppose Wand 
W' are linear subspaces of V and V', respectively. If T : V - V' is a linear 
transformation that carries W into W', then there is a linear transformation 

T; V/W - V'/W' 

~ 
defined by the equation T(v + __!1') = T(v) + W'; it is said to be induced 
by T. One checks readily that T is well-defined and linear. 

Now we can define deRham groups. 

Definition. Let A be an open set in Rn. The set QA: (A) of all k-forms 
on A is a vector space. The set Ck(A) of closed k-forms on A and the set 
Ek(A) of exact k-forms on A are linear subspaces of Qk(A). Since every 
exact form is closed, Ek(A) is contained in Ck(A). We define the deRham 
group of A in dimension k to be the quotient vector space 

If w is a closed k-form on A (i.e., an element of Ck(A)), we often denote its 
coset w + Ek(A) simply by {w}. 

It is immediate that Hk(A) is the trivial vector space, consisting of the 
zero vector alone, if and only if A is homologically trivial in dimension k. 

Now if A and Bare open sets in R" and Rm, respectively, and if g : A - B 
is a C 00 map, then g induces a linear transformation g• : Ok(B) - Qk(A) of 
forms, for all k. Because g• commutes with d, it carries closed forms to closed 
forms and exact forms to exact forms; thus g• induces a linear transformation 

of deRham groups. (For convenience, we denote this induced transformation 
also by g• , rather than by lt . ) 

Studying closed forms and exact forms on a given set A now reduces to 
calculating the deRham groups of A. There are several tools that are used 
in computing these groups. We consider two of then here. One involves the 
notion of a homotopy equivalence. The other is a special case of a general 
theorem called the Mayer- Vietoris theorem. Both are standard tools in 
algebraic topology. 
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Theorem 40.l (Homotopy equivalence theorem). Let A and B 
be open sets in R" and Rm, respectively. Let g : A - B and h : B --+ A 
be C00 maps. If go h : B - B is diff erentiably homotopic to the identity 
map iB of B, and if h o g : A --+ A is differentiably homotopic to the 
identity map iA of A, then g* and h* are linear isomorphisms of the 
deRham groups. 

If g o h equals i B and h o g equals i A, then of course g and h are 
diffeomorphisms. If g and h satisfy the hypotheses of this theorem, then they 
are called ( differentiable) homotopy equivalences. 

Proof. If 17 is a closed k-form on A, for k > 0, then Theorem 39.2 
implies that 

is exact. Then the induced maps of the deRham groups satisfy the equation 

g* ( h • ( { 11}) = { 11}' 

so that g* oh• is the identity map of Hk(A) with itself. A similar argument 
shows that h* og• is the identity map of Hk(B). The first fact implies that g* 
maps H"(B) onto H"(A), since given {11} in Hk(A), it equals g*(h*{TJ}). 
The second fact implies that g• is one-to-one, since the equation g*{w} = 0 
implies that h*(g* {w}) = 0, whence {w} = 0. 

By symmetry, h* is also a linear isomorphism. D 

In order to prove our other major theorem, we need a technical lemma: 

Lemma 40.2. Let U and V be open sets in Rn; let X = U U V; 
and suppose A = Un V is non-empty. Then there exists a C00 function 
</> : X --+ [0, 1] such that </> is identically 0 in a neighborhood of U - A 
and</> is identically 1 in a neighborhood of V - A. 

Proof. See Figure 40.1. Let { </>i} be a partition of unity on X dominated 
by the open covering {U, V}. Let Si = Support </>; for each i. Divide the 
index set of the collection { </>i} into two disjoint subsets J and /(, so that for 
every i E J, the set S; is contained in U, and for every i E I(, the set Si 
is contained in V. (For example, one could let J consist of all i such that 
Si C U, and let 1( consist of the remaining i.) Then let 

</>(x) = I,: <Pi(x). 
iEK 
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u V 

Figure ,40.1 

The local finiteness condition guarantees that </> is of class C00 on X, since 
each x E X has a neighborhood on which </> equals a finite sum of C00 

functions. 
Let a E U - A; we show</> is identically O in a neighborhood of a. First, 

we choose a neighborhood W of a that intersects only finitely many sets Si. 
From among these sets Si, take those whose indices belong to I(, and let D 
be their union. Then D is closed, and D does not contain the point a. The 
set W - D is thus a neighborhood of a, and for each i E K, the function </>i 
vanishes on W - D. It follows that </>( x) = 0 for x E W - D. 

Since 
1 - <f>(x) = L </>i(x), 

iEJ 

symmetry implies that the function 1 - q, is identically 0 in a neighborhood 
of V-A. □ 

Theorem 40.3 (Mayer-Vietoris-special case). Let U and V be 
open sets in R" with U and V homologically trivial in all dimensions. 
Let X = U u V; suppose A = Un V is non-empty. Then H 0(X) is 
trivial, and fork > 0, the space Hk+1(X) is linearly isomorphic to the 
space Hk(A). 

Proof. We introduce some notation that will be convenient. If B, C 
are open sets of R" with B C C, and if 'f] is a k-form on C, we denote by 
'f'JIB the restriction of 1/ to B. That is, 11IB = j*'f], where j is the inclusion 
map j : B - C. Since j* commutes with d, it follows that the restriction of 
a closed or exact form is closed or exact, respectively. It also follows that if 
AC BC C, then ('f'JIB)IA = 'f'JIA. 
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Step 1. We first show that H 0(X) is trivial. Let J be a closed 0-
form on X. Then JIU and /IV are closed forms on U and V, respectively. 
Because U and V are homologically trivial in dimension 0, there are constant 
functions c1 and C2 such that JIU = C1 and /IV = C2. Since U n V is 
non-empty, c 1 = C2; thus / is constant on X. 

Step 2. Let</>: X-+ [O, 1] be a C00 function such that</> vanishes in a 
neighborhood U' of U - A and 1- cp vanishes in a neighborhood V' of V - A. 
Fork> 0, we define 

by the equation 

{ 
dcp A. w on A, 

6(w) = 
0 on U' UV'. 

Since d</> = 0 on the set U' UV', the form 6(w) is well-defined; since A and 
U' U V' are open and their union is X, it is of class C00 on X. The map 6 is 
clearly linear. It commutes with the differential operator d, up to sign, since 

{ 
(-l)d</>A. dw on 

d(6(w)) = 
0 on 

A } = -D(dw). 
U'uV' 

Then 6 carries closed forms to closed forms, and exact forms to exact forms, 
so it induces a linear transformation 

~ 
We show that 6 is an isomorphism. 

Step 3. We first show that 6 is one-to-one. For this purpose, it suffices 
to show that if w is a closed k-form in A such that D(w) is exact, then w is 
itself exact. 

So suppose 6(w) = d(} for some k-form (} on X. We define k-forms W1 

and w2 on U and V, respectively, by the equations 

{
¢w on A, 

W1 = 
0 on U', 

and w2 = { 
0
( 1 - <I> )w on A, 

on V'. 

Then W1 and W2 are well-defined and of class C00 • See Figure 40.2. 

We compute 

on A, 

on U'; 
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Figure ,40.2 

the first equation follows from the fact that dw = 0. Then 

dw1 = b"(w)IU = dOIU. 

It follows that W1 - 81 U is a closed k-form on U. An entirely similar proof 
shows that 

dw2 = -dlJIV, 

so that w2 + OIV is a closed k-form on V. 
Now U and V are homologically trivial in all dimensions. If k > 0, this 

implies that there are k - 1 forms 771 and 772 on U and V, respectively, such 
that 

W1 - 61U = d171 and W2 + OIV = d772. 

Restricting to A and adding, we have 

which implies that 

Thus w is exact on A. 
If k = 0, then there are constants C1 and C2 such that 

Then 
<pw + (1-</>)w = w1IA +w2IA = c1 + c2, 

Step 4. We show 6 maps Hk(A) onto Hk+1(X). For this purpose, it 
suffices to show that if 77 is a closed k + 1 form in X, then there is a closed 
k-form win A such that 77- b"(w) is exact. 



340 Closed Forms and Exact Forms Chapter 8 

......__...., ____ __,'V' ✓ 

~,, 

Figure ,40.3 

Given 'T], the forms 1JIU and 7Jlll are closed; hence there are k-forms 81 
and 02 on U and V respectively, such that 

Let w be the k-form on A defined by the equation 

w = 01IA - 0~dA; 

then w is closed because dw = dBi IA - d82IA = 7JIA - 111A = 0. \Ve define a 
k-form 8 on X by the equation 

{ 
(1 - 4>)81 + 4,82 on A, 

8 = 81 on U', 

82 on V'. 

Then 8 is well-defined and of class C00 . See Figure 40.3. We show that 

'T/ - 8(w) = dB; 

this completes the proof. 
We compute d0 on A and U' and V' separately. Restricting to A, we 

have 

d0JA = [-d<f> A (81 IA)+ (1 - ¢)(d01 IA)]+ [dq, A (02IA) + <f>(d82IA)] 

= 4>11IA + (I - 4> )TJIA + d<f> A [82 IA - 01 IA] 

= 111A + d<f> A (-w) 

= 111A - i(w)IA. 
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Restricting to U' and to V', we compute 

d81U' = d81IU' = 11IU' = 11IU' - 6(w)IU', 

d81V' = d82IV' = 11IV' = 11IV' - 6(w)IV', 

since 8(w)IU' = 0 and 6(w)IV' = 0 by definition. It follows that 

d8 = 17 - 6(w), 

as desired. □ 

Now we can calculate the deRham groups of punctured euclidean space. 

Theorem 40.4. Let n > 1. Then 

{ 
0 for k -:# n - 1, 

dimHi:(R" - 0) = l 
fork= n -1. 

Proof. Step 1. We prove the theorem for n = 1. Let A = R1 - O; 
write A = Ao U A1, where Ao consists of the negative reals and A1 consists 
of the positive reals. If w is a closed k-form in A, with k > 0, then wlAo and 
wlA1 are closed. Since Ao and A1 are star-convex, there are k - l forms '70 

and 171 on Ao and A1 , respectively, such that d1J, = wlAi for i = O, 1. Define 
17 = '70 on Ao and 17 = 7]1 on A1. Then 77 is well-defined and of class C00 , and 
d77 = w. 

Now let /o be the 0-form in A defined by setting fo(x) = 0 for x E Ao 
and /o(x) = 1 for x E A1 . Then fo is a closed form, and /o is not exact. 
We show the coset {/0} forms a basis for H 0(A). Given a closed 0-form / 
on A, the forms / I Ao and f IA1 are closed and thus exact. Then there are 
constants Co and C1 such that /IAo = Co and /IA1 = C1. It follows that 

for x EA. Then {/} = ci{/o}, as desired. 

Step 2. If B is open in nn, then B x R is open in nn+l. We show that 
for all k, 

We use the homotopy equivalence theorem. Define g : B --+ B x R by 
the equation g(x) = (x, 0), and define h : B x R --+ B by the equation 
h(x, s) = x. Then hog equals the identity map of B with itself. On the 
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other hand, go h is differentiably homotopic to the identity map of B x R 
with itself; the straight-line homotopy will suffice. It is given by the equation 

H ((x, s), t) = t(x, s) + (1 - t)(x, 0) = (x, st). 

Step 3. Let n > 1. We assume the theorem true for n and prove it 
for n + 1. 

Let U and V be the open sets in nn+ 1 defined by the equations 

u = nn+l - {(0, ... ' o, t)lt > 0}, 

V = nn+l - {(0, ... ' o, t)lt < 0}. 

Thus U consists of all of nn+l except for points on the half-line Ox H1, and V 
consists of all of R"+ 1 except for points on the half-line O x L 1. Figure 40.4 
illustrates the case n = 3. The set A = Un V is non-empty; indeed, A 
consists of all points of R"+1 = R" x R not on the line O x R; that is, 

A = (R" - 0) x R. 

Figure 40.-4 

If we set X = U U V, then 

X = nn+l - 0. 

The set U is star-convex relative to the point p = (0, ... , 0, -1) of R"+1, and 
the set V is star-convex relative to the point q = (0, ... , 0, 1), as you can 
readily check. It follows from the preceding theorem that H 0(X) is trivial, 
and that 

dim Hk+l (X) = dim Hk(A) for k > 0. 

Now Step 2 tells us that Hk(A) has the same dimension as Hk(R" - 0), and 
the induction hypothesis implies that the latter has dimension 0 if k 'I n - 1, 
and dimension 1 if k = n - 1. The theorem follows. D 

Let us restate this theorem in terms of forms. 
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Theorem 40.5. Let A = R" - o, with n > 1. 

(a) If k ;# n - 1, then every closed k-form on A is exact on A. 
(b) There is a closed n - 1 form rJo on A that is not exact. If rJ is any 
closed n - 1 form on A, then there is a unique scalar c such that 1J- C'TJo 
is exact. □ 

This theorem guarantees the existence of a closed n - 1 form in R" - 0 
that is not exact, but it does not give us a formula for such a form. In the 
exercises of the last chapter, however, we obtained such a formula. If 'TJo is 
the n - 1 form in R" - 0 given by the equation 

n 

'TJo = L (-1)'- 1 fi dx1 A··· A dxi A··· A dxn, 
i=l 

where fi(x) = xd llxll", then it is easy to show by direct computation that 
rJo is closed, and only somewhat more difficult to show that the integral of 'TJo 
over sn-l is non-zero, so that by Stokes' theorem it cannot be exact. (See 
the exercises of §35 or §38.) Using this result, we now derive the following 
criterion for a closed n - 1 form in R" - 0 to be exact: 

Theorem 40.6. Let A= R" - o, with n > 1. If 1J is a closed n -1 
form in A, then 1J is exact in A if and only if 

J. ,,, = 0. 
sn-1 

Proof. If 1J is exact, then its integral over sn- 1 is 0, by Stokes' theorem. 
On the other hand, suppose this integral is zero. Let T/0 be the form just 
defined. The preceding theorem tells us that there is a unique scalar c such 
that 1J - C'TJo is exact. Then 

J. 'TJ = CJ. 'TJO, 
sn-1 sn-1 

by Stokes' theorem. Since the integral of 'TJo over sn-l is not 0, we must have 
c = 0. Thus 1J is exact. D 
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EXERCISES 

1. (a) Show that V /Wis a vector space. 

(b) Show that the transformation T induced by a linear transformation T 
is well-defined and linear. 

2. Suppose a1, .... an is a ha.sis for V whose first k elements from a basis 
for the linear subspace W. Show that the cosets ak+t + W, ... , an+ W 
form a ha.sis for VJ W. 

3. (a) Translate Theorems 40.5 and 40.6 into theorems about vector and 
scalar fields in Rn - O, in the case n = 2. 

(b) Repeat for the case n = 3. 

4. Let U and V be open sets in Rn; let X = U UV; assume that A = 
Un V is non-empty. Let 6: Hk(A) -+ Hk+l (X) be the transformation 
constructed in the proof of Theorem 40.3. What hypotheses on Hi(U) 
and Hi(V) are needed to ensure that: 

(a) 6 is one-to-one? 

(b) The image of 6 is all of Hk+ 1(X)? 

(c) H 0 (X) is trivial? 

5. Prove the following: 

Theorem. Let p and q be two points of Rn; let n 2: 1. Then 

k { 0 dim H (Rn - p - q) = 2 
if k ::/= n - 1, 

if k = n - 1. 

Proof. Let S = {p,q}. Use Theorem 40.3 to show that the open set 
Rn+l - S x H1 of R"+ 1 is homologically trivial in all dimensions. Then 
proceed by induction, as in the proof of Theorem 40.4. 

6. Restate the theorem of Exercise 5 in terms of forms. 

7. Derive a criterion analogous to that in Theorem 40.6 for a closed n - 1 
form in R" - p - q to be exact. 

8. Translate results of Exercises 6 and 7 into theorems about vector and 
scalar fields in R" - p - q in the cases n = 2 and n = 3. 



Epilogue-Life Outside Rn 

§41. DIFFERENTIABLE MANIFOLDS AND RIEMANNIAN MANIFOLDS 

Throughout this book, we have dealt with submanifolds of euclidean space 
and with forms defined in open sets of euclidean space. This approach has 
the advantage of conceptual simplicity; one tends to be more comfortable 
dealing with subspaces of R" than with arbitrary metric spaces. It has the 
disadvantage, however, that important ideas are sometimes obscured by the 
familiar surroundings. That is the case here. 

Furthermore, it is true that, in higher mathematics as well as in other sub
jects such as mathematical physics, manifolds often occur as abstract spaces 
rather than as subspaces of euclidean space. To treat them with the proper 
degree of generality requires that one move outside R". 

In this section, we describe briefly how this can be accomplished, and 
indicate how mathematicians really look at manifolds and forms. 

Differentiable manifolds 

D~nition. Let M be a metric space. Suppose there is a collection of 
homeomorphisms ai : ui - ¼' where ui is open in Hk or Rk' and ¼ is open 
in M, such that the sets ¼ cover M. (To say that O'.i is a homeomorphism 
is to say that O'.i carries Ui onto½ in a one-to-one fashion, and that both O'.i 

and a; 1 are continuous.) Suppose that the maps O'.i overlap with class C00 ; 

345 
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this means that the transition function Qi 1 o Q; is of class C00 whenever 
½ n ½ is nonempty. The maps Qi are called coordinate patches on M, 
and so is any other homeomorphism Q : U --+ V, where U is open in Hk 

or Rk, and V is open in M, that overlaps the Qi with class C00 • The metric 
space M, together with this collection of coordinate patches on M, is called 
a differentiable k-manifold (of class C00 ). 

In the case k = 1, we make the special convention that the domains of 
the coordinate patches may be open sets in L 1 as well as R1 or H1, just as we 
did before. 

If there is a coordinate patch a : U --+ V about the point p of M such 
that U is open in Rk, then pis called an interior point of M. Otherwise, pis 
called a boundary point of A1. The set of boundary points of Mis denoted 
8M. If O:' : U --+ V is a coordinate patch on M about p, then p belongs to 
{)M if and only if U is open in Hk and p = a(x) for some x E Rk-l x 0. The 
proof is the same as that of Lemma 24.2. 

Throughout this section, M will denote a differentiable k-manifold. 

Definition. Given coordinate patches Qo,Q1 on M, we say they over
lap positively if det D(Q11 o Qo) > 0. If M can be covered by coordinate 
patches that overlap positively, then M is said to be orientable. An orien
tation of M consists of such a covering of M, along with all other coordinate 
patches that overlap these positively. An oriented manifold consists of a 
manifold M together with an orientation of A1. 

Given an orientation {Qi} of A/, the collection { Qi or}, where r : Rk --+ 

Rk is the reflection map, gives a different orientation of M; it is called the 
orientation opposite to the given one. 

Suppose Mis a differentiable k-manifold with non-empty boundary. Then 
8M is a differentiable k - l manifold without boundary. The maps Q o b, 
where Q is a coordinate patch on M about p E 8.A1 and b: Rk-l--+ Rk is the 
map 

b( X 1 ' •.• ' X k- 1) = (XI, ••• ' X k- 1, 0)' 

are coordinate patches on 8M. The proof is the same as that of Theorem 24.3. 
If the patches a:0 and o 1 on M overlap positively, so do the coordinate 

patches O:oob and a:1 ob on 81'1; the proof is that of Theorem 34.1. Thus if M 
is oriented and 8M is nonempty, then 8M can be oriented simply by taking 
coordinate patches on M belonging to the orientation of M about points of 
8M, and composing them with the map b. If k is even, the orientation of 
8M obtained in this way is called the induced orientation of 8M; if k is 
odd, the opposite of this orientation is so called. 

Now let us define differentiability for maps between two differentiable 
manifolds. 
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Definition. Let M and N be differentiable manifolds of dimensions k 
and n, respectively. Suppose A is a subset of M; and suppose / : A - N. 
We say that / is of class C00 if for each x E A, there is a coordinate patch 
a : U - V on M about x, and a coordinate patch /3 : W - Y on N about 
y = f(x), such that the composite {3-1 o / o a is of class C00 , as a map of 
a subset of Rk into R". Because the transition functions are of class C00 , 

this condition is independent of the choice of the coordinate patches. See 
Figure 41.1. 

( 

Figure -41.1 

Of course, if M or N equals euclidean space, this definition simplifies, 
since one can take one of the coordinate patches to be the identity map of 
that euclidean space. 

A one-to-one map / : M --+ N carrying 1'1 onto N is called a diffeo
morphism if both / and J-1 are of class C00 • 

Now we define what we mean by a tangent vector to M. Since we have 
here no surrounding euclidean space to work with, it is not obvious what a 
tangent vector should be. 

Our usual picture of a tangent vector to a manifold Min R" at a point p 
of Mis that it is the velocity vector of a C00 curve 1 : [a,b] - M that passes 
through p. This vector is just the pair (p; D,(t0)) where p = 1 (t0) and D, 
is the derivative of 1 . 

Let us try to generalize this notion. If M is an arbitrary differentiable 
manifold, and I is a C00 curve in M, what does one mean by the "derivative" 
of the function 1? Certainly one cannot speak of derivatives in the ordinary 
sense, since M does not lie in euclidean space. However, if a : U - V is a 
coordinate patch in M about the point p, then the composite function a-1 o1 
is a map from a subset of R1 into RA:, so we can speak of its derivative. We 
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Figure ,41.2 

can thus think of the "derivative" of; at t 0 as the function v that assigns, to 
each coordinate patch a about the point p, the matrix 

v(a) = D(a- 1 o -y)(t0 ), 

where p = a(to ). 
Of course, the matrix D(a-1 o ;) depends on the particular coordinate 

patch chosen; if a 0 and a1 are two coordinate patches about p, the chain rule 
implies that these matrices are related by the equation 

v(ai) = Dg(x0 ) • v(ao), 

where g is the transition function g = a 11 o a 0 , and x0 

Figure 41.2. 

The pattern of this example suggests to us how to define a tangent vector 
to Min general. 

Definition. Given p E M, a tangent vector to M at pis a function v 
that assigns, to each coordinate patch a : U-+ Vin M about p, a column 
matrix of size k by 1 which we denote v(a). If a 0 and a 1 are two coordinate 
patches about p, we require that 

v(ai) = Dg(xo) • v(ao), 
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where 9 = a1 1 0 ao is the transition function and Xo = ao' 1(p). The entries 
of the matrix v( a) are called the components of v with respect to the 
coordinate patch a. 

It follows from ( *) that a tangent vector v to M at pis entirely determined 
once its components are given with respect to a single coordinate system. It 
also follows from ( *) that if v and w are tangent vectors to M at p, then we 
can define av + bw unambiguously by setting 

(av+ bw)(a) = av(a) + bw(a) 

for each a. That is, we add tangent vectors by adding their components in 
the usual way in each coordinate patch. And we multiply a vector v by a 
scalar similarly. 

The set of tangent vectors M at p is denoted 1j,(M); it is called the 
tangent space to M at p. It is easy to see that it is a k-dimensional space; 
indeed, if a is a coordinate patch about p with a(x) = p, one checks readily 
that the map v -+ {x;v(a)), which carries Tp(M) onto Tx(RI:), is a linear 
isomorphism. The inverse of this map is denoted by 

It satisfies the equation a. (x; v(a)) = v. 
Given a C 00 curve 'Y : [a, b] -+ M in llf, with 1(t0) = p, we define the 

velocity vector v of this curve corresponding to the parameter value t0 by 
the equation 

v(a) = D(a- 1 o 'Y)(t0 ); 

then vis a tangent vector to M at p. One readily shows that every tangent 
vector to M at p is the velocity vector of some such curve. 

REMARK. There is an alternate approach to defining tangent vectors that is 
quite common. We describe it here. 

Suppose v is a tangent vector to Al at the point p of M. There is 
associated with v a certain operator Xv on real-valued C 00 functions defined 
near p. This operator is called the derivative with respect to v; it arises 
from the following considerations: 

Suppose/ is a C00 function on M defined in a neighborhood of p, and 
suppose v is the velocity vector of the curve 'Y : [a, b] - M corresponding 
to the para.meter value t0 , where -y(t0) = p. Then the derivative d(f o -y)/dt 
measures the rate of change of / with respect to the parameter t of the curve. 
If a: U - Vis a coordinate patch about p, with o(x) = p, we can express 
this derivative as follows: We write f o 'Y = (/ o o) o (0-1 o -y), and compute 

d(/d: 'Y) (to)= D(f o o)(x) • D(o-1 o -y)(to), 

= D(f o o)(x) • v(o). 



350 Epilogue-Life Outside Rn Chapter 9 

f 

R 

Figure 41.3 

See Figure 41.3. Note that this derivative depends only on f and the velocity 
vector v, not on the particular curve r. 

This formula leads us to define the operator Xv as follows: 
If vis a tangent vector to M at p, and if f is a C 00 real-valued function 

defined near p, choose a coordinate patch a: U - V about p with a(x) = p, 
and define the derivative off with respect to v by the equation 

Xv(/) = D(f o a)(x) • v(a). 

One checks readily that this number is independent of the choice of a. One 
checks also that Xv+w =Xv+ Xw and Xcv = cX.v. Thus the sum of vectors 
corresponds to the sum of the corresponding operations, and similarly for a 
scalar multiple of a. vector. 

Note that if M = Rk, then the operator Xv is just the directional deriva
tive of f with respect to the vector v. 

The operator Xv satisfies the following properties, which are easy to 
check; 

(1) (Locality). If f and g agree in a neighborhood of p, then Xv(/)= Xv(g). 
(2) (Linearity). Xv(a/ + bg) = aXv(f) + bXv(g). 

(3) (Product rule). Xv(/· g) = Xv(f)g(p) + f(p)Xv(g). 

These properties in fact characterize the operator Xv. One has the fol
lowing theorem: Let X be an operator that assigns to each C 00 real-valued 
function f defined near pa number denoted X(/), such that X satisfies con
ditions (1)-(3). Then there is a unique tangent vector v to M at p such that 
X = Xv. The proof requires some effort; it is outlined in the exercises. 

This theorem suggests an alternative approach to defining tangent vectors. 
One could define a tangent vector to M at p to be simply an operator X 
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satisfying conditions (1)-(3). The set of these operators is a linear space if we 
add operators in the usual way and multiply by scalars in the usual way, and 
thus it can be identified with the tangent space to M at p. 

Many authors prefer to use this definition of tangent vector. It has the 
appeal that it is "intrinsic"; that is, it does not involve coordinate patches 
explicitly. 

Now we define forms on M. 

Definition. An £-form on lvf is a function w assigning to each p E M, 
an alternating £-tensor on the vector space Tp(Af). That is, 

for each p EM. 

We require w to be of class C00 in the following sense: If a : U - V 
is a coordinate patch on M about p, with a(x) = p, one has the linear 
transformation 

and the dual transformation 

If w is an l-form on M, then the l-form a*w is defined as usual by setting 

(a*w)(x) = T*(w(p)). 

We say that w is of class C 00 near p if a"' w is of class C00 near x in the 
usual sense. This condition is independent of the choice of coordinate patch. 
Thus w is of class C00 if for every coordinate patch a on M, the form a* w 
is of class C00 in the sense defined earlier. 

Henceforth, we assume all our our forms are of class C00 • 

Let nt(M) denote the space of l-forms on M. Note that there are no 
elementary forms on M that would enable us to write w in canonical form, 
as there were in Rn. However, one can write a*w in canonical form as 

where the dx1 are the elementary forms in Rk. We call the functions / 1 the 
components of w with respect to the coordinate patch a. They are of course 
of class C00 • 
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Definition. If w is an l-form on M, we define the differential of w as 
follows: Given p E M, and given tangent vectors v1, ... , Vt+1 to M at p, 
choose a coordinate patch a: U-+ Von M about p with a(x) = p. Then 
define 

That is, we define dw by choosing a coordinate patch a, pulling w back 
to a form a*w in Rl:, pulling v1, ... , Vt+i back to tangent vectors in Rl:, 
and then applying the operator d in Rk. One checks that this definition is 
independent of the choice of the patch a. Then dw is of cl~ C00 • 

We can rewrite this equation as follows: Let Si = vi(a). The preceding 
equation can be written in the form 

This equation says simply that a*(dw) = d(a*w). Thus one has an alternate 
version of the preceding definition: 

Definition. If w is an £-form on M, then dw is defined to be the unique 
l + 1 form on M such that for every coordinate patch a on M, 

a*(dw) = d(a*w). 

Here the "d'' on the right side of the equation is the usual differential opera
tor d in Rl:, and the "d" on the left is our new differential operator in M. 

Now we define the integral of a k-form over M. We need first to discuss 
partitions of unity. Because we assume M is compact, matters are especially 
simple. 

Theorem 41.1. Let M be a compact differentiable manifold. Given 
a covering of M by coordinate patches, there exist functions </>i : M -+ R 
of class C00 , for i = 1, ... , l, such that: 

(1) </>i(P) > 0 for each p e M. 

(2) For each i, the set Support </>i is covered by one of the given 
coordinate patches. 

(3) E </>,(p) = 1 for each p EM. 

Proof. Given p E M, choose a coordinate patch a : U -+ V about p. 
Let a(x) = p; choose a non-negative C00 function f: U-+ R whose support 
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is compact a.nd is contained in U, such that f is positive at the point x. 
Define ,Pp : M -+ R by setting 

if y EV, 

otherwise. 

Because f ( o-1 (y)) vanishes outside a compact subset of V, the function ,Pp 
is of class C00 on M. 

Now ,Pp is positive on an open set U,, about p. Cover M by finitely many 
of the open sets Up, say for p = P1, ... , Pt. Then set 

t 

A= L ,Pp; and </>i = (1/ .X)-,J,Pi. D 
j=l 

Definition. Let M be a compact, oriented differentiable k-manifold. 
Let w be a k-form on M. If the support of w lies in a single coordinate patch 
a : U -+ V belonging to the orientation of M, define 

In general, choose ¢1 , ... , <f>t in the preceding theorem and define 

The usual argument shows this integral is well-defined and linear. 

Finally, we have: 

Theorem 41.2 (Stokes' theorem). Let M be a compact, oriented 
differentiable k-manifold. Let w be a k - 1 form on M. If fJM is non
empty, give 8M the induced orientation; then 

f dw = !. w. 
jM 8M 

If 8M is empty, then fM dw = 0. 

Proof. The proof given earlier goes through verbatim. Since all the 
computations were carried out by working within coordinate patches, no 
changes are necessary. The special conventions involved when k = 1 and 
8M is a 0-manifold are handled exactly as before. □ 
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Not only does Stokes' theorem generalize to abstract differentiable man
ifolds, but the results in Chapter 8 concerning closed forms and exact forms 
generalize as well. Given M, one defines the deRham group Hk(M) of Min 
dimension k to be the quotient of the space of closed k-forms on M by the 
space of exact k-forms. One has various methods for computing the dimen
sions of these spaces, including a general Mayer- Vietoris theorem. If Mis 
written as the union of the two open sets U and V in M, it gives relations 
between the deRham groups of M and U and V and U n V. These topics 
are explored in [B-T]. 

The vector space Hk(M) is obviously a diffeomorphism invariant of M. 
It is an unexpected and striking fact that it is also a topological invariant 
of M. This means that if there is a homeomorphism of M with N, then 
the vector spaces Hk(M) and Hk(N) are linearly isomorphic. This fact is a 
consequence of a celebrated theorem called deRham 's theorem, which states 
that the algebra of closed forms on l,,f modulo exact forms is isomorphic to 
a certain algebra, defined in algebraic topology for an arbitrary topological 
space, called the "cohomology algebra of }.,f with real coefficients." 

Riemannian manifolds 

We have indicated how Stokes' theorem and the deRhamgroups generalize 
to abstract differentiable manifolds. Now we consider some of the other topics 
we have treated. Surprisingly, many of these do not generalize as readily. 

Consider for instance the notions of the volume of a manifold M, and of 
the integral JM f dV of a scalar function over }.,f with respect to volume. 
These notions do not generalize to abstract differentiable manifolds. 

Why should this be so? One way of answering this question is to note that, 
according to the discussion in §36, one can define the volume of a compact 
oriented k-manifold Min Rn by the formula 

v(M) = L Wv, 

where Wv is a "volume form" for J,.,f, that is, Wv is a k-form whose value is 1 on 
any orthonormal basis for Tp( M) belonging to the natural orientation of this 
tangent space. In this case, Tp(M) is a linear subspace of Tp(Rn) = p x Rn, so 
Tp(M) has a natural inner product derived from the dot product in Rn. This 
notion of a volume form cannot be generalized to an arbitrary differentiable 
manifold M because we have no inner product on T,,(M) in general, so we do 
not know what it means for a set of vectors to be orthonormal. 

In order to generalize our definition of volume to a differentiable mani
fold M, we need to have an inner product on each tangent space T,,(M): 

Definition. Let M be a differentiable k-manifold. A Riemannian 
metric on Mis an inner product (v, w) defined on each tangent space T,,(M); 
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it is required to be of class C 00 as a 2-tensor field on M. A Riemannian 
manifold consists of a differentiable manifold M along with a Riemannian 
metric on M. 

(Note that the word "metric" in this context has nothing to do with the 
use of the same word in the phrase "metric space.") 

Now it is true that for any differentiable manifold M, there exists a Rie
mannian metric on M. The proof is not particularly difficult; one uses a 
partition of unity. But the Riemannian metric is certainly not unique. 

Given a Riemannian metric on M, one has a corresponding volume func
tion V(v1, ... , Vt) defined fork-tuples of vectors of'Tp(Af). (See the exercises 
of §21.) Then one can define the integral of a scalar function just as before: 

Definition. Let Af be a compact Riemannian manifold of dimension k. 
Let /: M-+ R be a continuous function. If the support of/ is covered by a 
single coordinate patch a : U -+ V, we define the integral of f over M by 
the equation 

The integral of/ over M is defined in general by using a partition of unity, 
just as in §25. The volume of Al is defined by the equation 

v(M) = 1 dV. 
M 

If M is a compact oriented Riemannian manifold, one can interpret the 
integral JM w of a k-form over Mas the integral JM A dV of a certain scalar 
function, just as we did before, where A(p) is the value of w(p) on an or
thonormal k-tuple of tangent vectors to Al at p that belongs to the natural 
orientation of Tp(M) (derived from the orientation of M). If A(p) is identi
cally 1, then w is called the volume form of the Riemannian manifold M, 
and is denoted by W 11 • Then 

v(M) = L w11 • 

For a Riemannian manifold Af, a host of interesting questions arise. 
For instance, one can define what one means by the length of a smooth 
parametrized curve 1 : [a, b] -+ Al; it is just the integral 
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The integrand is the norm of the velocity vector of the curve 1, defined of 
course by using the inner product on T,,(M). Then one can discuss "geo
desics," which are "curves of minimal length" joining two points of M. One 
goes on to discuss such matters as "curvature." All this is dealt with in a sub
ject called Riemannian geometry, which I hope you are tempted to investigate! 

One final comment. As we have indicated, most of what is done in this 
book can be generalized, either to abstract differentiable manifolds or to Rie
mannian manifolds. One aspect that does not generalize is the interpretation 
of Stokes' theorem in terms of scalar and vector fields given in §38. The reason 
is clear. The "tran~lation functions" of §31, which interpret k-forms in nn as 
scalar fields or vector fields in nn for certain values of k, depend crucially 
on having forms that are defined in Rn, not on some abstract manifold M. 
Furthermore, the operators grad and div apply only to scalar and vector fields 
in Rn; and curl applies only in R3. Even the notion of a "normal vector" to a 
manifold M depends on the surrounding space, not just on M. 

~aid differently, while manifolds and differential forms and Stokes' theo
rem ·have meaning outside euclidean space, classical vector analysis does not. 

EXERCISES 

1. Show that if v E Tp(M), then vis the velocity vector of some C 00 curve r 
in M passing through p. 

2. (a) Let v E Tp(M). Show that the operator Xv is well-defined. 

(b) Verify properties {1)-(3) of the operator Xv. 

3. If w is an l-form on M, show that dw is well-defined (independent of the 
choice of the coordinate patch o ). 

4. Verify that the proof of Stokes' theorem holds for an arbitrary differen
tiable manifold. 

5. Show that any compact differentiable manifold has a Riemannian metric. 
*6. Let M be a differentiable k-manifold; let p EM. Let X be an operator 

on C 00 real-valued functions defined near p, satisfying locality, linearity, 
and the product rule. Show there is exactly one tangent vector v to M 
at p such that X = Xv, as follows: 

(a) Let F be a C 00 function defined on the open cube U in Rk consisting 
of all x with lxl < E. Show there are C 00 functions g1, ... , 9k defined 
on U such that 

F(x) - F(0) = L x,g,(x) 
j 

for x EU. [Hint: Set 

/.
u=l 

g.,(x) = D1F(x1, ... , x,-1, ux,, O, ... , 0). 
u=O 
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Then g, is of class C00 and 

z,g,(x) = ' D,F(z1, ... , z;-1, t, 0, ... , O).] 1t=z· 

a:O 

(b) If F and 9i are as in (a), show that 

D,F(O) = g,(o). 

(c) Show that if c is a constant function, then X(c) = 0. [Hint: Show 
that X(l • l) = O.] 

(d) Given X, show there is at most one v such that X = Xv, [Hint: 
Leto be a coordinate patch about p; let h = 0-1 . If X = Xv, show 
that the components of v(o) are the numbers X(hi),) 

(e) Given X, show there exists a v such that X = Xv, [Hint: Let o 
be a coordinate patch with o(O) = p; let h = 0-1. Set Vi = X(hi), 
and let v be the tangent vector at p such that v(o) has components 
Vi, ... , v1r. Given / defined near p, set F = f o o. Then 

Xv(f) = L D;F(O) • v;. 
, 

Write F(x) = E,z;g;(x) + F(O) for x near O, as in (a). Then 

j = L h, · (g, 0 h) + F(O) 
j 

in a neighborhood of p. Calculate X(f) using the three properties 
of X.] 
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Addition, 
of matrices, 4 
of vectors, 1 

Additivity, 
of integral, 106, 109 
of integral (extended), 125 
of volume, 112 

A"(V), alternating tensors, 229 
basis for, 232 

a., induced transformation of vectors, 
246 

a•, dual transforma.tion of forms, 267 
Alternating tensor, 229 

elementary, 232 
Antiderivative, 99 
Approaches as a limit, 28 
Area, 179 

of 2-sphere, 216-217 
of torus, 217 
of parametrized-surface, 191 

Arc, 306 
Ascending k-tuple, 184 

Ball, Bn(a), seen-ball 
Ball, open, 26 
Basis, 2, 10 

for Rn, 3 
usual, for tangent space, 249 

Bn(a), see n-ball 
Bd A, 29 
Boundary, 

of manifold, 205, 346 
induced orientation, 288, 346 

of set, 29 
&M, see boundary of manifold 
Bounded set, 32 

Cauchy-Schwarz inequality, 9 
Centroid, 

of bounded set, 168 
of cone, 168 
of E+, 218 
of half-ball, 169 
of manifold, 218 
of parametrized-manifold, 193 

Chain rule, 56 
Change of variables, 147 

Index 

Change of variables theorem, 148 
proof, 161 

Class C 00 , 52 
Class C 1 , 50 
Class er, 

form, 250, 351 
function, 52, 144, 199 
manifold, 196, 200, 347 
manifold-boundary, 206 
tensor field, 248 
vector field, 24 7 

Closed cube, 30 
Closed form, 259 

not exact, 261, 308, 343 
Closed set, 26 
Closure, 26 
Cofactors, 19 

expansion by, 23 
Column index, 4 
Column matrix, 6 
Column rank, 7 
Column space, 7 
Common refinement, 82 
Compact, 32 

vs. closed and bounded, 33, 38 
Compactness, 

of interval, 32 
of rectangle, 37 

Compact support, 139 
Comparison property, 

of integral, 106 
of integral (extended), 125 

Component function, 28 
Component interval, 81 
Components, 

of alternating tensor, 233 
of form, 249 

Composite function, 
differentiability, 56 
class er, 58 

C 1 , see class C 1 

Cone, 168 
Connected, 38 
Connectedness, 

of convex set, 39 
of interval, 38 

Conservative vector field, 323 

361 



362 Index 

Content, 113 
Continuity, 

of algebraic operations, 28 
of composites, 27 
of projection, 28 
of restriction, 27 

Continuous, 27 
Continuously differentiable, 50 
Convex, 39 
Coordinate patch, 196, 201, 346 
Coset, 334 
Covering, 32 
C", see class er 
Cramer's rule, 21 
Cross product, 183, 313 
Cross-section, 121 
Cube, 30 

open, 26 
Curl, 264 
Cylindrical coordinates, 151 

Darboux integral, 89 
deRham group, 335 

of R" - o, 341 
of R" - p - q, 344 

deRham's theorem, 354 
Derivative, 41, 43 

of composite, 56 
vs. directional derivative, 44 
of inverse, 60 

Determinant, 
axioms, 15 
definition, 234 
formula, 234 
geometric interpretation, 169 
of product, 18 
properties, 16 
vs. rank, 16 
of transpose, 19 

d/, differential, 253, 255 
Df, derivative, 43 
Diagonal, 36 
Diffeomorphism, 147 

of manifolds, 347 
preserves rectifiability, 154 
primitive, 156 

Differentiable, 41-43 
vs. continuous, 45 

Differentiable homotopy, 325 
Differentiable manifold, 346 
Differentiably homotopic, 325 
Differential, 

of k-form, 256 
of 0-form, 253 

Differential form, 
on manifold, 351 
on open set in R", 248 
of order 0, 251 

Differential operator, 256 
as directional deriva.tive, 262 
in manifold, 352 

Dimension of vector space, 2 
Directional derivative, 42 

vs. continuity, 44 
vs. derivative, 44 
in manifold, 349 

Distance from point to set, 34 
Divergence, 263 
Divergence theorem, 319 
Dominated by, 139 
Dot product, 3 
dw, differential, 256 
d(x,C), 34 
dx,, elementary 1-form, 253 
dx1, elementary k-form, 254 
Dual basis, 222 
Dual space v•, 220 
Dual transformation, 

of forms, 267 
calculation, 269, 273 
properties, 268 

of tensors, 224 

Echelon form, 8 
Elementary alternating tensor, 232 

as wedge product, 237 
Elementary k-form, 249, 254 
Elementary k-tensor, 221 
Elementary matrix, 11 
Elementary I-form, 249, 253 
Elementary permutation, 227 
Elementary row operation, 8 
Entry of matrix, 4 
!-neighborhood, 

of point, 26 
of set, 34 

Exact form, 259 
Extended integral, 121 

as limit of integrals, 123, 130 
as limit of series, 141 
vs. ordinary integral, 127, 129, 140 
properties, 125 

Expansion by cofactors, 23 
Ext A, 29 



Exterior, 29 
Extreme-value theorem, 34 
Euclidean metric, 25 
Euclidean norm, 4 
Euclidean space, 25 
Even parametrization, 228 

Face of rectangle, 92 
Final point of arc, 306 
Form, see differential form 
Frame, 171 
fq, 229 
f ® g, tensor product, 223 
Fubini's theorem, 

for rectangles, 100 
for simple regions, 116 

Fundamental theorem of calculus, 98 
/ I\ g, wedge product, 238 

Gauss' theorem, 319 
Gauss-Jordan reduction, 7 
Gradient, 48, 263 
Gradient theorem, 312 
Graph, 97, 114 
Gram-Schmidt process, 180 
Green's theorem, 308 

Half-ball, 169 
Hemisfhere, 192 
Hk, H+, 200 
Hk(A), deRham group, 335 
Homeomorphism, 345 
Homologically trivial, 259 
Homotopy, 

differentiable, 325 
straight-line, 331 

Homotopy equivalence, 336 
Homotopy equivalence theorem, 336 

Identity matrix, 5 
Ik, identity matrix, 5 
Implicit differentiation, 71, 73 
Implicit function theorem, 74 
Improper integral, 121 
Increasing function, 90 
Independent, 2, 10 
Induced orientation of boundary, 288, 

307, 346 
Induced transformation, 

of deRham group, 335 
of quotient space, 335 
of tangent vectors, 246 

Initial point of arc, 306 
Inner product, 3 
Inner product space, 3 
Integrable, 85 

extended sense, 121 
Integral, 

of constant, 87 
of max, min, 105 
over bounded set, 104 

existence, 109, 111 
properties, 106 

Index 363 

extended, see extended integral 
over interval, 89 
over rectangle, 85 

evaluation, 102 
existence, 93 

over rectifiable set, 112 
over simple region, 116 

Integral of form, 
on differentiable manifold, 353 
on manifold in Rn, 293-294 
on parametrized-manifold, 276 
on open set in Rk, 276 
on 0-manifold, 307 

integral of scalar function, 
vs. integral of form, 299 
over manifold, 210, 212 
over parametrized-manifold, 189 
over Riemannian manifold, 355 

Int A, 29 
Interior, 

of manifold, 205, 346 
of set, 29 

Intermediate-value theorem, 38 
Invariance of doma.in, 67 
Inverse function, 

derivative, 60 
differentiability, 65 

Inverse function theorem, 69 
In verse matrix, 13 

formula, 22 
Inversion, in a permutation, 228 
Invertible matrix, 13 
Inward normal, 318 
Isolated point, 27 
lsometry, 120, 174 

preserves volume, 176 
Isomorphism, linear, 6 
Iterated integrals, 103 

Jacobian matrix, 47 
Jordan content, 113 
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Jordan-measurable, 113 

k-form, see form 
Klein bottle, 285 

Left ha.If-line, 283 
Left-handed, 171 
Left inverse, 12 
Leibnitz notation, 60 
Leibnitz's rule, 324 
Length, 179 

of interval, 81 
of parametrized-curve, 191 
of vector, 4 

Lie group, 209 
Limit, 28 

of composite, 30 
vs. continuity, 29 

Limit point, 26 
Line integral, 278 
Line segment, 39 
Linear in i'h variable, 220 
Linear combination, 2 
Linear isomorphism, 6 
Linear space, 1 

of k-forms, 255 
Linear subspace, 2 
Linear transformation, 6 
Linearity of integral 

extended, 125 
of form, 295 
ordinary, 106 
of scalar function, 213 

Lipschitz condition, 160 
£.11:(V), k-tensors on V, 220 

basis for, 221 
Locally bounded, 133 
Locally of class er, 199 
L 1 , left ha.If-line, 283 
Lower integral, 85 
Lower sum, 82 

Manifold, 200 
of dimension 0, 201 
without boundary, 196 

Matrix, 4 
column, 6 
elementary, 11 
invertible, 13 
non-singular, 14 
row, 6 
singular, 14 

Matrix addition, 4 
Matrix cofactors, 22 
Matrix multiplication, 5 
Mayer-Vietoris theorem, 337 
Mean-value theorem, 

in R, 49 
in Rm, 59 
second-order, 52 

Measure zero, 
in manifold, 213 
inRn,91 

Mesh, 82 
Metric, 25 

euclidean, 25 
Riemannian, 354 
sup, 25 

Metric space, 25 
Minor, 19 
Mixed partials, 52, 103 
Mobius band, 285 
Monotonicity, 

of integral, 106 
of integral (extended), 125 
of volume, 112 

Multilinear, 220 
Multi plication, 

of matrices, 5 
by scalar, 1, 4 

Natura.I orientation, 
of n-manifold, 286 
of tangent space, 298 

n-ba.11, Bn(a), 207 
as manifold, 208 
volume, 168 

Neighborhood 26, see also 
€-neighborhood 

n-manifold, see manifold 
n - 1 sphere, 207 

a.s manifold, 208 
volume, 218 

Non-orientable manifold, 281 
Non-singular matrix, 14 
Norm, 4 
Norma.I field ton - 1 manifold, 

formula, 314 
vs. orientation, 285, 312 

Odd permutation, 228 . 
n.11:, linear space of k-forms, 255, 351 
O(n), orthogonal group, 209 
Open ba.11, 26 



Open covering, 32 
Open cube, 26 
Open rectangle, 30 
Open set, 26 
Opposite orientation, 

of manifold, 286, 346 
of vector space, 171 

Order (of a. form), 248 
Orientable, 281, 346 
Oriented manifold, 281, 346 
Orientation, 

for boundary, 288 
for manifold, 281, 346 
for n - 1 manifold, 285, 312 
for n-manifold, 286 
for I-manifold, 282 
for vector space, 171, 282 
for 0-manifold, 307 

Orientation-preserving, 
diffeomorphism, 281 
linear transformation, 172 

Orientation-reversing, 
diffeomorphism, 281 
linear transformation, 172 

Orthogonal group, 209 
Orthogonal matrix, 173 
Orthogonal set, 173 
Orthogonal transformation, 174 
Orthonormal set, 173 
Oscillation, 95 
Outward normal, 318 
Overlap positively, 281, 346 

Parallelopiped, 170 
volume, 170, 182 

Parametrized-curve, 48, 191 
Parametrized-manifold, 188 

volume, 188 
Parametrized-surface, 191 
Partial derivatives, 46 

equality of mixed, 52, 103 
second-order, 52 

Partition, 
of interval, 81 
of rectangle, 82 

Partition of unity, 139 
on manifold, 211, 352 

Peano curve, 154 
Permutation, 227 
Permutation group, 227 
~i, elementary 1-form, 249 
t/,1, elementary tensor, 221 

Index 365 

Poincare lemma, 331 
Polar coordinate transformation, 54, 

148 
Potential function, 323 
Preserves iih coordinate, 156 
Primitive diffeomorphism, 156 
Product, 

matrix, 5 
tensor, see.tensor product 
wedge, see wedge product 

Projection map, 167 
t/)1, elementary alternating tensor, 232 
':J',1, elementary k-form, 249 
Pythagorean theorem for volume, 184 

Quotient space V /W, 334 

Rank of matrix, 7 
Rectangle, 29 

open, 30 
Rectifiable set, 112 
Reduced echelon form, 8 
Refinement of partition, 82 
Restriction, 

of coordinate patch, 207 
of form, 337 

Reverse orientation, see 
opposite orientation 

Riemann condition, 86 
Riemann integral, 89 
Riemannian manifold, 355 
Riemannian metric, 354 
Right-hand rule, 172 
Right-handed, 171 
Right inverse, 12 
R" 

' as metric space, 25 
as vector space, 2 

Row index, 4 
Row matrix, 6 
Row operations, 8 
Row rank, 7 
Row space, 7 

Scalar field, 48, 251 
sgn <1, 228 
E[JJ, 184 
E,, 222 
Sign of permutation, 228 
Simple region, 114 
Singular matrix, 14 
Size of matrix, 4 
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S1c, symmetric group, 227 
Skew-symmetric, 265 
sn- 1(a), seen - 1 sphere 
Solid torus, 151 

as manifold, 208 
volume, 151 

Span, 2, 10 
Sphere, see n - 1 sphere 
Spherical coordinate transformation, 

55, 150 
Stairstep form, 8 
Standard basis, 3 
Star-con vex, 330 
Stokes' theorem, 

for arc, 306 
for differentiable manifold, 353 
for k-manifold in Rn, 303 
for 1-manifold, 308 
for surface in R3 , 319 

Straight-line homotopy, 331 
Subinterval determined by partition, 82 
Subrectangle determined by partition, 

82 
Subspace, 

linear, 2 
of metric space, 25 

Substitution rule, 144 
Sup metric, 25 
Sup norm, 

for vectors, 4 
for matrices, 5 

Support, 139 
Symmetric group, 227 
Symmetric set, 168 
Symmetric tensor, 229 

Tangent bundle, 248 
Tangent space, 

to manifold, 247, 349 
to Rn, 245 

Tangent vector, 
to manifold, 247, 348, 351 
to Rn, 245 

Tangent vector field, 
to manifold, 248 
to Rn, 247 

Tensor, 220 
Tensor field, 

on manifold, 249 
in Rn, 248 

Tensor product, 223 
properties, 224 

Topological property, 27 
Torus, 151 

area, 217 
as manifold, 208 

Total volume of rectangles, 91 
Tp(M), see tangent spa.ce 
T(M), see tangent bundle 
Transition function, 203, 346 
Transpose, 9 
Triangle, 193 
Triangle inequality, 4 
r•, see dual transformation of tensors 

Uniform continuity, 36 
Upper half-space, 200 
Upper integral, 85 
Upper sum, 82 
Usual basis for tangent space, 249 

Vector, 1 
Vector addition, 1 
Vector space, 1 
Velocity vector, 48, 245, 349 
Volume, 

of bounded set, 112 
of cone, 168 
of manifold, 212 
of M x N, 218 
of n-ball, 168 
of n-sphere, 218 
of parallelopiped, 182 
of parametrized-manifold, 188 
of rectangle, 81 
of Riemannian manifold, 355 
of solid torus, 151 

Volume form, 300 
for Riemannian manifold, 355 

v•, dual space, 220 
V /W, quotient space, 334 
V(X), volume function, 181 

Wedge product, 
definition, 238 
properties, 237 

Width, 81 

X1, submatrix, 184 

Yo:, see parametrized-manifold 






