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PREFACE 

The theory of differential equations is distinguished for the wealth of its ideas 
and methods. Although this richness makes the subject attractive as a field of 
research, the inevitably hasty presentation of its many methods in elementary 
courses leaves many students confused. One of the chief aims of the present 
text is to provide a smooth transition from memorized formulas to the critical 
understanding of basic theorems and their proofs. 

We have tried to present a balanced account of the most important key ideas 
of the subject in their simplest context, often that of second-order equations. 
We have deliberately avoided the systematic elaboration of these key ideas, feel
ing that this is often best done by the students themselves. After they have 
grasped the underlying methods, they can often best develop mastery by gen
eralizing them (say, to higher-order equations or to systems) by their own 
efforts. 

Our exposition presupposes primarily the calculus and some experience with 
the formal manipulation of elementary differential equations. Beyond this 
requirement, only an acquaintance with vectors, matrices, and elementary com
plex functions is assumed throughout most of the book. 

In this fourth edition, the first eight chapters have again been carefully 
revised. Thus simple numerical methods, which provide convincing empirical 
evidence for the well-posedness of initial value problems, are already introduced 
in the first chapter. Without compromising our emphasis on advanced ideas and 
proofs, we have supplied detailed reviews of elementary facts for convenient 
reference. Valuable criticisms and suggestions by Calvin Wilcox have helped to 
eliminate many obscurities and troublesome errors. 

The book falls broadly into three parts. Chapters 1 through 4 constitute a 
review of material to which, presumably, the student has already been exposed 
in elementary courses. The review serves two purposes: first, to fill the inevitable 
gaps in the student's mastery of the elements of the subject, and, second, to give 
a rigorous presentation of the material, which is motivated by simple examples. 
This part covers elementary methods of integration of first-order, second-order 
linear, and nth-order linear constant-coefficient, differential equations. Besides 
reviewing elementary methods, Chapter 3 introduces the concepts of transfer 
function and the Nyquist diagram with their relation to Green's functions. 
Although widely used in communications engineering for many years, these con
cepts are ignored in most textbooks on differential equations. Finally, Chapter 
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vi Preface 

4 provides rigorous discussions of solution by power series and the method of 
majorants. 

Chapters 5 through 8 deal with systems of nonlinear differential equations. 
Chapter 5 discusses plane autonomous systems, including the classification of 
nondegenerate critical points, and introduces the important notion of stability 
and Liapunov's method, which is then applied to some of the simpler types of 
nonlinear oscillations. Chapter 6 includes theorems of existence, uniqueness, 
and continuity, both in the small and in the large, and introduces the pertur
bation equations. 

Chapter 7 gives rigorous error bounds for the methods introduced in Chap
ter 1, analyzing their rates of convergence. Chapter 8 then motivates and ana
lyzes more sophisticated methods having higher orders of accuracy. 

Finally, Chapters 9 through 11 are devoted to the study of second-order lin
ear differential equations. Chapter 9 develops the theory of regular singular 
points in the complex domain, with applications to some important special func
tions. In this discussion, we assume familiarity with the concepts of pole and 
branch point. Chapter 10 is devoted to Sturm-Liouville theory and related 
asymptotic formulas, for both finite and infinite intervals. Chapter 11 establishes 
the completeness of the eigenfunctions of regular Sturm-Liouville systems, 
assuming knowledge of only the basic properties of Euclidean vector spaces 
(inner product spaces). 

Throughout our book, the properties of various important special func
tions-notably Bessel functions, hypergeometric functions, and the more com
mon orthogonal polynomials-are derived from their defining differential 
equations and boundary conditions. In this way we illustrate the theory of ordi
nary differential equations and show its power. 

This textbook also contains several hundred exercises of varying difficulty, 
which form an important part of the course. The most difficult exercises are 
starred. 

It is a pleasure to thank John Barrett, Fred Brauer, Thomas Brown, Nathaniel 
Chafee, Lamberto Cesari, Abol Ghaffari, Andrew Gleason, Erwin Kreyszig, Carl 
Langenhop, Norman Levinson, Robert Lynch, Lawrence Markus, Frank Stew
art, Feodor Theilheimer, J. L. Walsh, and Henry Wente for their comments, 
criticisms, and help in eliminating errors. 

Garrett Birkhoff 
Gian-Carlo Rota 

Cambridge, Massachusetts 
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I INTRODUCTION 

CHAPTER 1 

FIRST-ORDER 
DIFFERENTIAL 

EQUATIONS 

A differential equation is an equation between specified derivatives of an 
unknown function, its values, and known quantities and functions. Many phys
ical laws are most simply and naturally formulated as differential equations (or 
DEs, as we will write for short). For this reason, DEs have been studied by the 
greatest mathematicians and mathematical physicists since the time of Newton. 

Ordinary differential equations are DEs whose unknowns are functions of a 
single variable; they arise most commonly in the study of dynamical systems and 
electrical networks. They are much easier to treat than partial differential equa
tions, whose unknown functions depend on two or more independent variables. 

Ordinary DEs are classified according to their order. The order of a DE is 
defined as the largest positive integer, n, for which an nth derivative occurs in 
the equation. Thus, an equation of the form 

ct,(x,y,y') = 0 

is said to be of the first order. 
This chapter will deal with first-order DEs of the special form 

(1) M(x,y) + N(x,y)y' = 0 

A DE of the form (1) is often said to be of the first degree. This is because, con
sidered as a polynomial in the derivative of highest order, y', it is of the first 
degree. 

One might think that it would therefore be called "linear," but this name is 
reserved (within the class of first-order DEs) for DEs of the much more special 
form a(x)y' + b(x)y + c(x) = 0, which are linear in y and its derivatives. Such 
"linear" DEs will be taken up in §3, and we shall call first-order DEs of the more 
general form (1) quasilinear. 

A primary aim of the study of differential equations is to find their solutions
that is, functions y = f(x) which satisfy them. In this chapter, we will deal with 
the following special case of the problem of "solving" given DEs. 

DEFINITION. A solution of (1) is a function f (x) such that M(xJ(x)) + 
N(xJ(x))f'(x) = 0 for all x in the interval where f(x) is defined. 

1 



2 CHAPTER 1 First-Order Differential Equations 

The problem of solving (1) for given functions M(x,y) and N(x,y) is thus to 
determine all real functions y = J(x) which satisfy (1), that is, all its solutions. 

Example 1. Consider the first-order quasilinear DE 

(2) X + yy' = 0 

The solutions of (2) can be found by considering the formula d(x2 + y2)/dx = 
2(x + yy'). Clearly, y = J(x) is a solution of (2) if and only if x2 + y2 = C is a 
constant. 

The equation x2 + y2 = C defines y implicitly as a two-valued function of x, 
for any positive constant C. Solving for y, we get for each positive constant C 
two solutions, the (single-valued)t functions y = ± V C - x2. The graphs of these 
solutions, the so-called solution curves, form two families of semicircles. These 
fill the upper half-plane y > 0 and the lower half-plane y < 0, respectively, in 
that there is one and only one such semicircle through each point in each half
plane. 

Caution. Note that the functions y = ± V C - x2 are defined only in the 
interval - VC < x < VC , and that since y' does not exist (is "infinite") when 
x = ± VC, these functions are solutions of (1) only on -VC < x < VC. 
Therefore, although the pairs of semicircles in Figure 1.1 appear to join together 
to form the full circle x2 + y2 = C, the latter is not a "solution curve" of (1). In 
fact, no solution curve of (2) can cross the x-axis (except possibly at the origin), 
because on the x-axis y = 0 the DE (2) implies x = 0 for any finite y'. 

The preceding difficulty also arises if one tries to solve the DE (2) for y'. Divid
ing through by y, one gets y' = -x/y, an equation which cannot be satisfied if 
y = 0. The preceding difficulty is thus avoided if one restricts attention to 
regions where the DE (1) is normal, in the following sense. 

DEFINITION. A normal first-order DE is one of the form 

(3) y' = F(x,y) 

In the normal formy' = -x/y of the DE (2), the function F(x,y) is continuous 
in the upper half-plane y > 0 and in the lower half-plane where y < 0; it is 
undefined on the x-axis. 

2 FUNDAMENTAL THEOREM OF THE CALCULUS 

Although the importance of the theory of (ordinary) DEs stems primarily 
from its many applications to geometry, science, and engineering, a clear under-

t In this book, the word "function" will always mean single-valued function, unless the contrary is 
expressly specified. 



2 Fundamental Theorem of the Calculus 3 

y 

Figure 1.1 Integral curves of x + yy' = 0. 

standing of its capabilities can only be achieved if its definitions and results are 
formulated precisely. Some of its most difficult results concern the existence and 
uniqueness of solutions. The nature of such existence and uniqueness theorems 
is well illustrated by the most familiar (and simplest!) class of ordinary DEs. 
These are the first-order DEs of the very special form 

(4) y' = g(x) 

Such DEs are normal; their solutions are described by the fundamental theorem 
of the calculus, which reads as follows. 

FUNDAMENTAL THEOREM OF THE CALCULUS. Let the function g(x) in the 
DE (4) be continuous in the interval a < x < b. Given a number c, there is one and 
only one solutionf(x) of the DE (4) in the interval such thatf(a) = c. This solution is 
given l,y the de.finite integral 

(5) J(x) = C + ix g(t) dt, C = f(a) 

This basic result serves as a model of rigorous formulation in several respects. 
First, it specifies the region under consideration, as a vertical strip a < x < b 
in the xy-plane. Second, it describes in precise terms the class of functions g(x) 
considered. And third, it asserts the existence and uniqueness of a solution, given 
the "initial condition" /(a) = c. 

We recall that the definite integral 

(5') 

is defined for each fixed x as a limit of Riemann sums; it is not necessary to find 
a formal expression for the indefinite integral J g(x) dx to give meaning to the 
definite integral J: g(t) dt, provided only that g(t) is continuous. Such functions 



4 CHAPTER 1 First-Order Differential Equations 

as the error Junction erf x = (2/y;;.) JO e-12 dt and the sine integral Junction 
Si (x) = Jo [(sin t)/t] dt are indeed commonly de.fined as definite integrals; cf. 
Ch. 4, §1. 

Quadrature. The preceding considerations enable one to solve DEs of the 
special form y' = g(x) by inspection: for any a, one solution is the function 
J; g(t) dt; the others are obtained by adding an arbitrary constant C to this 
"particular" solution. Thus, the solutions of y' = e-x2 are the functions y = 
J e-x2 dx = ( y;;. /2) erf x + C; those of xy' = sin x are the functions y = 
Si (x) + C; and so on. Note that from any one solution curve of y' = g(x), 
the others are obtained by the vertical translations (x,y) I-+ (x,y + C).t Thus, 
they form a one-parameter family of curves, one for each value of the parameter 
C. This important geometrical fact is illustrated in Figure 1.2. 

After y' = J(x), the simplest type of DE is y' = g(y). Any such DE is invariant 
under horizontal translation (x,y) I-+ (x + c,y). Hence, any horizontal line is cut 
by all solution curves at the same angle (such lines are called "isoclines"), and 
any horizontal translate y = cf>(x + c) of any solution curve y = cf>(x) is again a 
solution curve. 

The DE y' = y is the most familiar DE of this form. It can be solved by rewrit
ing it as dy/y = dx; integrating, we get x = In lyl + c, or y = ±c-c, where c 
is an arbitrary constant. Setting k = ± e-c, we get the general solution y = kc
but the solution y = 0 is "lost" until the last step. 

Example 2. A similar procedure can be applied to any DE of the form y' = 
g(y). Thus consider 

(6) y'=y2-l 

Since y2 - 1 = (y + l)(y - 1), the constant functions y = - l and y = l are 
particular solutions of (6). Since y2 > 1 if ly I > 1 whereas y2 < 1 if -1 < y 

y 

Figure 1.2 Solution curves of y' = e-•2_ 

t The symbol I- is to be read as "goes into". 
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< 1, all solutions are decreasing functions in the strip I y I < 1 and increasing 
functions outside it; see Figure 1.3. 

Using the partial fraction decomposition 2/(y2 - 1) = 1/(y - 1) - 1/(y + 
1), one can rewrite (6) as 2 dx = dy/(y - 1) - dy/(y + 1) from which we obtain, 
by integrating, 2(x - c) = In I (y - 1)/(y + 1) I- Exponentiating both sides, we 
get ±e2<x-c) = (y - 1)/(y + 1), which reduces after some manipulation to 

(6') 
1 ± e2<x-c> { tanh} 

y = l + e2<x-c) = coth (c - x) 

This procedure "loses" the special solutions y = l and y = - l, but gives all 
others. Note that if y = J(x) is a solution of (6), then so is 1/y = 1/J(x), as can 
be directly verified from (6) (provided y 'F 0). 

Example 3. A more complicated DE tractable by the same methods is y' = 
y3 - y. Since y3 - y = y(y + l)(y - 1), the constant functions y = - l, y = 0, 
and y = l are particular solutions. Since y3 > y if -1 < y < 0 or 1 < y, whereas 
y3 < y if y < - l or O < y < l, all solutions are increasing functions in the 
strips - 1 < y < 0 and y > l, and decreasing in the complementary strips. 

To find the other solutions, we replace the DE y' = dy/dx = y3 - y by its 
reciprocal, dx/dy = l/(y3 - y). We then use partial fractions to obtain the DE 

(6") dx l 1 { 1 1 2} 
dy - y3 - y - 2 y + l + y - l y 

The DE (6") can be integrated termwise to give, after some manipulation, 
X =¼In 11 - y-2 1 + C, or y = ± [l + exp (2x - k)r 112, k = 2c. 

Symmetry. The labor of drawing solution curves of the preceding DEs is 
reduced not only by their invariance under horizontal translation, but by the 
use of other symmetries as well. Thus, the DEs y' = y and y' = y3 - y are invar
iant under reflection in the x-axis [i.e., under (x,y) 1--+ (x, -y)]; hence, so are 
their solution curves. Likewise, the DEs y' = 1 + y2 and y' = y2 - 1 (and their 
solution curves) are invariant under (x,y) 1--+ (-x, -y)-i.e., under rotation 
through 180° about the origin. These symmetries are visible in Figures 1.3 and 
1.4. 

EXERCISES A 

I. (a) Show that if f(x) satisfies (6), then so do 1 /f(x) and - /(- x). 
(b) Explain how these facts relate to Figure 1.2. 

2. Show that every solution curve (6') of (6) is equivalent under horizontal translation 
and/or reflection in the x-axis toy = (I + e2")/(l - e2") or toy = (I - e2")/(l + 
e2"). 

3. (a) Show that if y' = y2 + I, then y is an increasing function and x = arctan y + c. 
(b) Infer that no solution of y' = y2 + I can be defined on an interval of length 

exceeding 'If. 
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y 

Figure 1.3 Solution curves of y' = y2 - l. 

(c) Show that a nonhorizontal solution curve of y' = y2 ± l has a point of inflection 
on the x-axis and nowhere else. 

4. Show that the solution curves of y' = y2 are the x-axis and rectangular hyperbolas 
having this for one asymptote. [HINT: Rewrite y' = y2 as dy/y2 = dx.] 

5. Sketch sample solution curves to indicate the qualitative behavior of the solutions of 
the following DEs: (a) y' = l - y3, (b) y' = sin 1ry, (c) y' = sin2 y. 

6. Show that the solutions of y' = g(y), for any continuous function g, are either all 
increasing functions or all decreasing functions in any strip y,_ 1 < y < y1 between 
successive zeros of g(y) [i.e., values yl' such that g(y) = 0]. 

7. Show that the solutions of y' = g(y) are convex up or convex down for given y accord
ing as I g I is an increasing or decreasing function of y there. 

y 

i :Jl,., 
~~~~~~~· 

\ \\ ,--, 

Figure 1.4 Solution curves of y' = y3 - y. 
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*8. (a) Prove in detail that any nonconstant solution of (6) must satisfy 

x = c +½In I (y - 1)/(y + 1) I 

(b) Solve (6") in detail, discussing the case k = 0 and the limiting case k = oo (y = 
0). 

*9. (a) Show that the choice k < 0 in (6') gives solutions in the strip -1 < y < 1. 
(b) Show that the choice k = 1 gives two solutions having the positive and negative 

y-axes for asymptotes, respectively. 

3 FIRST-ORDER LINEAR EQUATIONS 

In the next five sections, we will recall some very elementary, but extremely 
useful methods for solving important special families of first-order DEs. We 
begin with the first-order linear DE 

(7) a(x)y' + b(x)y + c(x) = 0 

It is called homogeneous if c(x) = 0, and inhomogeneous otherwise. 
Let the coefficient functions a, b, c be continuous. In any interval I where a(x) 

does not vanish, the linear DE (7) can be reduced to the normal form 

(8) y' = -p(x)y - q(x) 

with continuous coefficient functions p = b/a and q = c/a. 
The homogeneous linear case y' = -p(x)y of (8) is solved easily, if not rig

orously, as follows. We separate variables, dy/y = ,p(x) dx; then we integrate 
(by quadratures), In ly I = - J p(x) dx + C. Exponentiating both sides, we obtain 
lyl = Ke-fp(x)dx, where K = ec and any indefinite integral P(x) = fp(x) dx may 
be used. 

This heuristic reasoning suggests that, if P'(x) = p(x), then yt!'<x> is a constant. 
Though this result was derived heuristically, it is easily verified rigorously: 

if and (since eP(x) 'F 0) only if y satisfies (8). This proves the following result. 

THEOREM 1. If P(x) = f p(x) dx is an indefinite integral of the continuous func
tion p, then the function ce-P(x) = ce-fp(x)dx is a solution of the DE y'+p(x)y =0 for 

any constant c, and all solutions of the DE are of this form. 

* The more difficult exercises in this book are starred. 
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We can treat the general case of (8) similarly. Differentiating the function 
eP<x>y, where P(x) is as before, we get 

It follows that, for some constant y0, we must have l'(x)y = y~ - J: e1'<1>q(t) dt, 
whence 

(8') 

Conversely, formula (8') defines a solution of (8) with y(a) = y0 for every y0, by 
the Fundamental Theorem of the Calculus. This proves 

THEOREM 2. If P(x) is as in Theorem l, then the general solution of the DE (8) 
is given by (8'). Moreover, y0 = y(a) if and only if P(x) = J: p(x)dx. 

Quadrature. In the Fundamental Theorem of the Calculus, if the function 
g is nonnegative, the definite integral in (5) is the area under the curve y = g(x) 
in the vertical strip between a and x. For this reason, the integration of (4) is 
called a quadrature. Formula (8') reduces the solution of any first-order linear 
DE to the performance of a sequence of quadratures. Using Tables of Indefinite 
Integrals,t the solutions can therefore often be expressed explicitly, in terms of 
"elementary" functions whose numerical values have been tabulated ("tabulated 
functions"). 

Initial Value Problem. In general, the "initial value problem" for a first
order DE y' = F(x,y) consists in finding a solution y = g(x) that satisfies an initial 
condition y(a) = y0, where a and y0 are given constants. Theorem 2 states that 
the initial value problem always has one and only one solution for a linear DE 
(8), on any interval a ~ x ~ b where p(x) and q(x) are defined and continuous. 

Remark. There are often easier ways to solve linear DEs than substitution in 
(8'). This fact is illustrated by the following example. 

Example 4. Consider the inhomogeneous linear DE 

(9) y' + y = X + 3 

Trying y = ax + b, one easily verifies that x + 2 is one solution of (9). On the 
other hand, if y = f(x) is any other solution, then z = y - (x + 2) must satisfy 
z' + z = (y' + y) - (x + 3) = 0, whence z = ce-x by Theorem 1. It follows 
that the general solution of (9) is the sum ce-x + x + 2. 

t See the book by Dwight listed in the Bibliography. Kamke's book listed there contains an extremely 
useful catalog of solutions of DEs not of the form y' = g(x). For a bibliography of function tables, 
see Fletcher, Miller, and Rosenhead. 
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4 SEPARABLE EQUATIONS 

A differential equation that can be written in the form 

(10) y' = g(x)h(y) 

is said to be separable. Thus, the DEs y' = y2 - 1 and y' = y3 - y of Examples 
2 and 3 are obviously separable, with g(x) = 1. The DE x + yy' = 0 of Example 
1, rewritten as y' = (-x)(l /y) is separable except on the x-axis, where 1 /y 
becomes infinite. As we have seen, the solutions y = ± V C - x2 of this DE 
cannot be expressed as single-valued functions of x on the x-axis, essentially for 
this reason. 

A similar difficulty arises in general for DEs of the form 

(11) M(x) + N(y)y' = 0 

These can also be rewritten as 

(11') M(x) dx + N(y) dy = 0 

or as y' = - M(x)/N(y) and are therefore also said to be "separable." Whenever 
N(y) vanishes, it is difficult or impossible to express y as a function of x. 

It is easy to solve separable DEs formally. If cp(x) = f M(x) dx and 1/t(y) = 
f N(y) dy are any antiderivatives ("indefinite integrals") of M(x) and N(y), respec
tively, then the level curves 

cp(x) + 1/t(y) = C 

of the function U(x,y) = cp(x) + 1/t(y) are solution curves of the DEs (11) and 
(11'). Moreover, the Fundamental Theorem of the Calculus assures us of the 
existence of such antiderivatives. Likewise, for any indefinite integrals G(x) = 
fg(x) dx and H(y) = f dy/h(y), the level curves of 

G(x) - H(y) = C 

may be expected to define solutions of (10), of the form 

(11") 

However, the solutions defined in this way are only local. They are defined by 
the Inverse Function Theorem,t but only in intervals of monotonicity of H(y) 
where h(y) and hence H(y) = 1/h(y) has constant sign. Moreover, the range 
of H(y) may be bounded, as in the case of the DE y' = 1 + y2. In this case, 

t This theorem states that if H(y) is a strictly monotonic map of [c,d] onto [a,b], then H- 1(y) is single
valued and monotonic from [a,b] to [c,d]. 
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f ~00 dy/(1 + y2) = 1r. Therefore, no solution of the DE y' = 1 + y2 can be 
continuously defined over an interval (a,b) of length exceeding 1r. 

Example 5. Consider the DE y' = (1 + y2)e-x2• Separating variables, we get 
J dy/(1 + y2) = J e-x2 dx, whose general solution is arctan y = (\.{;-/2) erf x + 
C, or y = tan {(yl; /2) erf (x) + C}. 

The formal transformations (10') and (10") can be rigorously justified when
ever g(x) and h(y) are continuous functions, in any interval in which 'h(y) does not 
vanish. This is because the Fundamental Theorem of the Calculus again assures 
us that cJ>(x) = J g(x) dx exists and is differentiable on any interval where g(x) is 
defined and continuous, while 1/t(y) = J dy/h(y) exists and is strictly monotonic in 
any interval (yi,y2) between successive zeros y1 and y2 of h(y), which we also 
assume to be continuous. Hence, as in Example 2, the equation 

1/t(y) - cJ>(x) = f dy - f h(x) dx = c 
g(y) 

gives for each c a solution of y' = g(x)h(y) in the strip y1 < y < y2. Near any x 
with y1 - c < cJ>(x) < y2 - c, this solution is defined by the inverse function 
theorem, by the formula y = t/t- 1(cJ>(x) + c). 

Orthogonal Trajectories. An orthogonal trajectory to a family of curves is a 
curve that cuts all the given curves at right angles. For example, consider the 
family of geometrically similar, coaxial ellipses x2 + my2 = C. These are integral 
curves of the DE x + myy' = 0, whose normal form y' = -x/my has separable 
variables. The orthogonal trajectories of these ellipses have at each point a slope 
y' = my/x, which is the negative reciprocal of -x/my. Separating variables, we 
get dy/y = m dx/x, or ln lyl = m ln lxl, whence the orthogonal trajectories 
are given by y = ± lxlm. 

More generally, the solution curves of any separable DE y' = g(x)h(y) have 
as orthogonal trajectories the solution curves of the separable DE y' = 
-1/g(x)h(y). 

Critical Points. Points where au;ax = au;ay = 0 are called critical points 
of the function u(x,y). Note that the directions of level lines and gradient lines 
may be very irregular near critical points; consider those of the functions x2 ± 
y2 near their critical point (0,0). 

As will be explained in §5, the level curves of any function u E ~ 1(D) satisfy 
the DE au;ax + y'au;ay = 0 in D, except at critical points of u. Clearly, their 
orthogonal trajectories are the solution curves of au/ay = y'au;ax, and so are 
everywhere tangent to the direction of Vu = grad u = (au;ax, au/ay). Curves 
having this property are called gradient curves of u. Hence the gradient curves 
of u are orthogonal trajectories of its level curves, except perhaps at critical 
points. 
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EXERCISESB 

1. Find the solution of the DE xy' + 3y = 0 that satisfies the initial condition 
J(l) = 1. 

2. Find equations describing all solutions of y' = (x + y)2. [HINT: Set u = x + y.] 

3. (a) Find all solutions of the DE xy' + (1 - x)y = 0 
(b) Same question for xy' + (1 - x)y = 1. 

4. (a) Solve the DEs of Exercise 3 for the initial conditions y(l) = 1, y(l) = 2. 
(b) Do the same for y(0) = 0 and y(0) = 1, or prove that no solution exists. 

5. (a) Find the general solution of the DE y' + y = sin 2t. 
(b) For arbitrary (real) constants a, b, and k =fa 0, find a particular solution of 

(*) y' = ay + b sin kt 

(c) What is the general solution of(*)? 

6. (a) Find a polynomial solution of the DE 

(**) y' + 2y = x2 + 4x + 7 

(b) Find a solution of the DE (*) that satisfies the initial condition y(0) = 0. 

7. Show that if k is a nonzero constant and q(x) a polynomial of degree n, then the DE 
xy' + y = q(x) has exactly one polynomial solution of degree n. 

In Exs. 8 and 9, solve the DE shown and discuss its solutions qualitatively. 

8. dr/dfJ = r2 sin 1/r (polar coordinates). 

9. dr/dfJ = 2/log r. 

10. (a) Show that the ellipses 5x2 + 6xy + 5y2 = C are integral curves of the DE 

(5x + 3y) + (3x + 5y)y' = 0 

(b) What are its solution curves? 

5 QUASILINEAR EQUATIONS; IMPLICIT SOLUTIONS 

In this section and the next, we consider the general problem of solving 
quasilinear DEs (1), which we rewrite as 

(12) M(x,y) dx + N(x,y) dy = 0 

to bring out the latent symmetry between the roles of x and y. Such DEs arise 
naturally ifwe consider the level curves of functions. If G(x,y) is any continuously 
differentiable function, then the DE 

(12') 
ac ac 
ax (x,y) + ay (x,y) y' = 0 
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is satisfied on any level curve G(x,y) = C, at all points where oG/oy =I=- 0. This 
DE is of the form (1), with M(x,y) = oG/ox and N(x,y) = oG/oy. 

For this reason, any function G which is related in the foregoing way to a 
quasilinear DE (1) or (12), or to a nonzero multiple of (12) of the form 

(12") µ(x,y)[M(x,y) dx + N(x,y) dy] = 0, 

is called an implicit solution of (12). Slightly more generally, an integral of (1) or 
(12) is defined as a function G(x,y) of two variables that is constant on every 
solution curve of (1). 

For example, the equation x4 - 6x2y2 + y4 = C is an implicit solution of the 
quasilinear DE 

or 

(x3 - 3xy2) + (y3 - 3x2y)y' = 0 
(x3 - 3xy2) 

y' = (3x2y - y3) 

The level curves of x4 - 6x2y2 + y4 have vertical tangents on the x-axis and the 
lines y = ± \/'3x. Elsewhere, the DE displayed above is of the normal form 
y' = F(x,y). 

Critical Points. At points where ocJ>/ox = ocJ>/oy = 0, the directions of the 
gradient and level curves are undefined; such points are called "critical points" 
of cJ>. Thus, the function x2 + y2 has the origin for its only critical point, and the 
same is true of the function x4 - 6x2y2 + y4. (Can you prove it?) On the other 
hand, the function sin (x2 + y2) also has circles of critical points, occurring wher
ever r2 is an odd integral multiple of 1r /2. Most functions have only isolated crit
ical points, however, and in general we shall confine our attention to such 
functions. 

We will now examine more carefully the connection between quasilinear DEs 
and level curves of functions, illustrated by the two preceding examples. To 
describe it accurately, we will need two more definitions. We first define a 
domaint as a nonempty open connected set. We call a function c/> = cJ>(x1, ... , x,) 
of class rJn in a domain D when all its derivatives ocJ>/ox., o2cJ>/ox,oxl' . .. of orders 
1, ... , n exist and are continuous in D. We will write this condition in symbols 
as cJ> E (Jn or cJ> E fJn(D). When cJ> is merely assumed to be continuous, we will write 
c/> E fJ or cJ> E fJ(D). 

To make the connection between level curves and quasilinear DEs rigorous, 
we will also need to assume the following basic theorem. 

t See Apostol, Vol. 1, p. 252. Here and later, page references to authors refer to the books listed in 
the selected bibliography. 
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IMPLICIT FUNCTION THEOREM,t Let u(x,y) be a function of class &n (n > 
1) in a domain containing (x

0
,y

0
); let u

0 
denote u(x

0
,y

0
), and let uy(x

0
,y

0
) *0. Then 

there exists positive numbers E and 71 such that for each x E (x0 - E,x0 + E) and C E 

(u
0 

- E,u0 + E), the equation u(x,y) = Chas a unique solution y = f(x,C) in the 
interval (y0 - 71, Yo + 71). Moreover, the function f so de.fined is also of class &n. 

It follows that if u E (§) n(D), n > 1, the level curves of u are graphs of func
tions y = f(x,c), also of class <rn, except where au;ay = 0. In Example 1, u = 
x2 + y2 and there is one such curve, the x-axis y = O; this divides the plane into 
two subdomains, the half-planes y > 0 and y < 0. Moreover, the locus (set) where 
au;ay = 0 consists of the points where the circles u = const have vertical tan
gents and the "critical point" (0,0) where au;ax = au;ay = 0-that is, where 
the surface z = u(x,y) has a horizontal tangent plane. 

This situation is typical: for most functions u(x,y), the partial derivative au;a 
y vanishes on isolated curves that divide the (x,y)-plane into a number of regions 
where au;ay * 0 has constant sign, and hence in which the Implicit Function 
Theorem applies. 

THEOREM 3. In any domain where au;ay * 0, the level curves of any function 
u E &1 are solution curves of the quasilinear DE 

(13) ct,(x,y,y') = M(x,y) + N(x,y)y' = 0 

where M(x,y) = au;ax and N(x,y) = au/iJy. 

Proof By the Chain Rule, du/dx = au;ax + (au;ay)y' along any curve y = 
f(x). Hence, such a curve is a level curve of u if and only if 

du au au, 
-=-+-y =O 
dx ax ay 

By the Implicit Function Theorem, the level curves of u, being graphs of func
tions y = f(x) in domains where af;ay * 0, are therefore solution curves of the 
quasilinear DE (13). In the normal formy' = F(x,y) of this DE, therefore, F(x,y) 
= -(au;ax)/(au;ay) becomes infinite precisely when au;ay = 0. 

To describe the relationship between the DE (13) and the function u, we need 
a new notion. 

DEFINITION. An integral of a first-order quasilinear DE (1) is a function 
of two variables, u(x,y), which is constant on every solution curve of (1). 

Thus, the function u(x,y) = x2 + y2 is an integral of the DE x + yy' = 0 

tCourant andjohn, Vol. 2, p. 218. We will reconsider the Implicit Function Theorem in greater 
depth in §12. 
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because, upon replacing the variable y by any function ± V C - x2 , we obtain 
u(x,y) = C. This integral is most easily found by rewriting x + y dy/dx = 0 in 
differential form, as x dx + y dy = 0, and recognizing that x dx + y dy = ½d(x2 

+ y2) is an "exact" differential (see §6). 
Level curves of an integral of a quasilinear DE are called integral curves of the 

DE; thus, the circles x2 + y2 = C are integral curves of the DE x + yy' = 0, 
although not solution curves. 

Example 6. From the DE yy' = x, rewritten as y dy/dx = x, we get the equa
tion y dy - x dx = 0. Since y dy - x dx = ½d(y2 - x2), we see that the integral 
curves of the DE are the branches of the hyperbolas y2 = x2 + C and the asymp
totes y = ±x, as shown in Figure 1.5. The branches y = ± Vx2 + k2 are solu
tion curves, but each level curve y = ± V x2 - k2 has four branches separated 
by the x-axis (the line where the integral curves have vertical tangents). 

Note that, where the level curves y = x and y = -x of y2 - x2 cross, 
the gradient (aFJax, aF/ay) of the integral F(x,y) = y2 - x2 vanishes: (aFJax, 
aF/ax) = (0,0). 

y 

Figure 1.5 Level curves c = O, ± 1, ±2, ±3, ±4, ±6, ±9, ± 12 of y2 - x'-. 
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6 EXACT DIFFERENTIALS; INTEGRATING FACTORS 

A considerably larger class of "implicit solutions" of quasinormal DEs can be 
found by examining more closely the condition that M(x,y) dx + N(x,y) dy be an 
"exact differential" dU, and by looking for an "integrating factor" µ(x,y) that 
will convert the equation 

(14) M(x,y) dx + N(x,y) dy = 0 

into one involving a "total" or "exact" differential 

µdU = µ(x,y)[M(x,y) dx + N(x,y) dy] = 0 

whose (implicit) solutions are the level curves of U. 
In general, the quasinormal DE (1) or 

(14') M(x,y) + N(x,y)y' = 0 

is said to be exact when there exists a function U(x,y) of which it is the 'total 
differential', so that au;ax = M(x,y) and au;ay = N(x,y), or equivalently 

(14") 
au au 

dU = ax dx + ay dy = M(x,y) dx + N(x,y) dy 

Since dU = 0 on any solution curve of the DE (14), we see that solution curves 
of (14) must lie on level curves of U, just as in the "separable variable" case. 

Since a2U/axay = a2U/ayax, clearly a necessary condition for (14') to be an 
exact differential is that aN;ax = aM;ay. It is shown in the calculus that the 
converse is also true locally. More precisely, the following result is true. 

THEOREM 4. If M(x,y) and N(x,y) are continuously differentiable Junctions 
in a simply connected domain, then (14') is an exact differential if and only if 
aN/ax = aM/ay. 

The function U = U (P) for (14) is constructed as the line integral g [M(x,y)dx 
+ N (x,y) dy] from a fixed point 0 in the domain [perhaps 0 = (0,0)] to a variable 
point P = (x,y). Thus, for the DE x + yy' = 0 of Example 1, this procedure 
gives J~ (x dx + y dy) = (x2 + y2) /2, showing again that the solution curves of 
x + yy' = 0 lie on the circles x2 + y2 = C with center (0,0). More generally, in 
the separable equation case of g(x) dx + dy/h(y), we have a[g(x)] ;ay = 0 = 
a[l/h(y)] ;ax, giving G(x) + H(y) = C as in §5. 

Even when the differential M dx + N dy is not exact, one can often find a 
function µ (x,y) such that the product 

(µM) dx + (µN) dy = du 
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is an exact differential. The contour lines u(x,y) = C will then again be integral 
curves of the DE M(x,y) + N (x,y)y' = 0 because du/dx = µ(M + Ny') = 0; and 
segments of these contour lines between points of vertical tangency will be solu
tion curves. Such a function µ is called an integrating factor. 

DEFINITION. An integratingja,ctor for a differential M(x,y) dx + N(x,y) dy is 
a nonvanishing function µ(x,y) such that the product (µM) dx + (µN) dy is an 
exact differential. 

Thus, as we saw in §3, for any indefinite integral P(x) = f p(x) dx of p(x), the 
function exp {P(x)} is an integrating factor for the linear DE (8). Likewise, the 
function l/h(x) is an integrating factor for the separable DE (11). 

The differential x dy - y dx furnishes another interesting example. It has an 
integrating factor in the right half-plane x > 0 of the form µ(x) = l/x2, since 
dy/x - y dx/x2 = d(y/x); cf. Ex. Cl 1. A more interesting integrating factor is 
l/(x2 + y2). Indeed, the function 

f (x,y) (x dy - y dx) 
fJ(x,y) = 

(I,O) (x2 + y2) 

is the angle made with the positive x-axis by the vector (x,y). That is, it is just the 
polar angle fJ when the point (x,y) is expressed in polar coordinates. Therefore, 
the integral curves of xy' = y in the domain x > 0 are the radii fJ = C, where 
-1r /2 < fJ < 1r /2; the solution curves are the same. 

Note that the differential (x dy - y dx)/(x2 + y2) is not exact in the punctured 
plane, consisting of the x,y-plane with the origin deleted. For fJ changes by 21r 
in going around the origin. This is possible, even though a[x/(x2 + y2)]/ax = a 
[-y/(x2 + y2)]/ay, because the punctured plane is not a simply connected 
domain. 

Still another integrating factor of x dy - y dx is l/xy, which-replaces x dy -
y dx = 0 by dy/y = dx/x, or ln ly I = ln Ix I + C in the interior of each of the 
four quadrants into which the coordinate axes divide the (x,y)-plane. Exponen
tiating both sides, we get y = kx. 

A less simple example concerns the DE x(x3 - 2y3)y' = (2x3 - y3)y. Here an 
integrating factor is l/x2y2. Ifwe divide the given DE by x2y2, we get 

.!!:__ (x2 + y2) = 2x3y - x4y' - y4 + 2xy3y' 
dxy x x2y2 

Hence the solution curves of the DE are (x2/y) + (y2jx) = C, or x3 + y3 = Cxy. 

Parametric Solutions. Besides "explicit" solutions y = J(x) and "implicit" 
solutions U(x,y) = C, quasinormal DEs (14) can have "parametric" solutions. 
Here by a parametric solution is meant a parametric curve x = g(t), y = h(t) along 
which the line integral f M(x,y) dx + N(x,y) dy, defined as 

(15) f[M(g(t),h(t))g'(t) + N(g(t),h(t))h'(t)] dt 
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vanishes. Thus, the curves x = A cos t, y = A sin t are parametric solutions of 
x + yy' = 0. They are also solutions of the system of two first-order DEs dx/dt 
= -y, dy/dt = x, and will be studied from this standpoint in Chapter 5. 

EXERCISESC 

1. Find an integral of the DE y' = y2/ x2, and plot its integral curves. Locate its critical 
points, if any. 

2. Sketch the level curves and gradient lines of the function x3 + 3x2y + y3. What are 
its critical points? 

3. Same question as Exercise 2 for xs _ 3x2y + y3. 

4. Find equations describing all solutions of 

1 
y2=---

2x + y 

5. For what pairs of positive integers n,r is the function Ix In of class @'? 

6. Solve the DE xy' + y = 0 by the method of separation of variables. Discuss its 
solution curves, integral curves, and critical points. 

7. (a) Reduce the Bernoulli DE y' + p(x)y = q(x)yn, n -=fa 1, to a linear first-order DE 
by the substitution u = y1-n. 

(b) Express its general solution in terms of indefinite integrals. 

In Exs. 8 and 9, solve the DE exhibited, sketch its solution curves, and describe them 
qualitatively:· 

8. y' = y/x - x2. 
1 

9. y' = y/x - - 1- 1 . 
In x 

10. Find all solutions of the DE !xi + lyly' = 0. In which regions of the plane is the 
differential on the left side exact? 

*11. Show that the reciprocal of any homogeneous quadratic function Q(x) = Ax2 + 
2Bxy + Cy2 is an integrating factor of x dy - y dx. 

*12. Show that if u and v are both integrals of the DE M(x,y) + N(x,y)y' = 0, then so 
are u + v, uv except where v = 0, ;\u + µv for any constants ;\ and µ, and g(u) 
for any single-valued function g. 

*13. (a) What are the level lines and critical points of sin (x + y)? 
(b) Show that for u = sin (x + y), (x0,y0) = (0,0), and r, = E = ¼,J(x,c) in the Implicit 

Function Theorem need not exist if 11 < ¼ while it may not be unique if n > 4. 

7 LINEAR FRACTIONAL EQUATIONS 

An important first-order DE is the linear fradional equation 

(16) 
dy ex+ dy 
dx=ax+by' 

ad 'F- be 
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which is the normal fonn of 

(16') (ax + by)y' - (ex + dy) = 0 

It is understood that the coefficients a, b, c, d are constants. 
The integration of the DE (16) can be reduced to a quadrature by the sub

stitution y = vx. This substitution replaces (16) by the DE 

c + dv 
xv'+ v = --

a+ bv 

in which the variables x and v can be separated. Transposing v, we are led to 
the separation of variables 

_____,,--(a_+_b_v_)_d_v __ + dx = 0 
bv2 + (a - d)v - c x 

Since the integrands are rational functions, this can be integrated in terms of 
elementary functions. Thus, x can be expressed as a function of v = y/x: we 
have x = kG(y/x), where 

More generally, any DE of the form y' = F(y/x) can be treated similarly. Set
ting v = y/x and differentiating y = xv, we get xv' + v = F(v). This is clearly 
equivalent to the separable DE 

dv dx 
--- = - = d (ln x) 
F(v) - v x 

whence x = K exp {Jdv/[F(v) - v]}. 
Alternatively, we can introduce polar coordinates, setting x = r cos 8 and 

y = r sin 8. If 1/t = 'Y - 8 is the angle between the tangent direction 'Y and 
the radial direction 8, then 

.!_ dr = cot 1/t = cot 'Y cot 8 + l 
r d8 cot 8 - cot 'Y 

Since tan 'Y = y' = F(y/x) = F(tan 8), we have 

(17) 
l dr 
--= 
r d8 

1 + tan 'Y tan 8 l + (tan 8)F(tan 8) II\ 
= ----- - Q(v1 

tan 'Y - tan 8 F(tan 8) - tan 8 
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This can evidently be integrated by a quadrature: 

(17') r((/) = r(O) exp lo Q(O) d8 (17') 

The function on the right is well-defined, by the Fundamental Theorem of the 
Calculus, as long as tan 'Y 'F tan 8, that is, as long as y' 'F y/x. 

Invariant Radii. The radii along which the denominator of Q(8) vanishes 
are those where (16) is equivalent to d8/dr = 0. Hence, these radii are particular 
solution curves of (16); they are called invariant radii. They are the solutions 
y = TX, for constant T = tan 8. Therefore, they are the radii y = TX for which 
y' = T = (c + dT)/(a + br), by (16), and so their slopes Tare the roots of the 
quadratic equation 

(18) bT2 + (a - d)T = c 

If b 'F 0, Eq. (18) has zero, one, or two real roots according as its discriminant 
is negative, zero, or positive. This discriminant is 

(18') d = (a - d)2 + 4bc = (a + d)2 - 4(ad - be) 

In the sectors between adjacent invariant radii, d8 /dr has constant sign; this fact 
facilitates the sketching of solution curves. Together with the invariant radii, the 
solution curves (17') form a regular curve family in the punctured plane, consist
ing of the xy-plane with the origin deleted. 

Similarity Property. Each solution of the linear fractional DE (16) is trans
formed into another solution when x and y are both multiplied by the same 
nonzero constant k. The reason is, that bothy' = dy/dx and y/x are unchanged 
by the transformation (x,y)-+ (kx,ky). In polar coordinates, if r = f(8) is a solu
tion of (17), then so is r = kf(8). Since the transformation (x,y) -+ (kx,ky) is a 
similarity transformation of the xy-plane for any fixed k, it follows that the solu
tion curves in the sector between any two adjacent invariant radii are all geo
metrically similar (and similarly placed). This fact is apparent in the drawings of 
Figure 1.6. 

Note also that the hyperbolas in Figure 1.6a are the orthogonal trajectories 
of those of Figure 1.5. This is because they are integral curves of yy' = x and 
xy' = -y, respectively, and x/y is the negative reciprocal of -y/x. 

EXERCISESD 

1. Sketch the integral curves of the DEs in Exs. CB and C9 in the neighborhood of the 
origin of coordinates. 

2. Express in closed form all solutions of the following DEs: 
(a) y' = (x2 - y2)/(x2 + y2) (b) y' = sin (y/x) 
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y 
y y 

(a) xy' + y = 0 (b) xy' = 2y 

Figure 1.6 Integral curves. 

(c) y' = (3x + y)/(x - 3y) 

3. (a) Show that the inhomogeneous linear fractional DE 

(ex + dy + e) dx - (ax + by + J) dy = 0, 

can be reduced to the form (16) by a translation of coordinates. 
(b) Using this idea, integrate (x + y + 1) dx = (2x - y - 1) dy. 
(c) For what sets of constants a, b, e, d, e, J, is the displayed DE exact? 

4. Find all integral curves of (xn + yn)y' - xn-Iy = 0. [HINT: Set u = y/x.] 

5. Prove in detail that the solutions of any homogeneous DE y' = g(y/x) have the 
Similarity Property described in §7. 

6. Show that the solution curves of y' = G(x,y) cut those of y' = F(x,y) at a constant 
angle fl if and only if G = (r + F)/(1 - rF), where r = tan fl. 

7. Let A, B, C be constants, and K a parameter. Show that the coaxial conics 
Ax2 + 2Bxy + Cy2 = K, satisfy the DE y' = -(Ax+ By)/(Bx + Cy). 

8. (a) Show that the differential (ax + by) dy - (ex + dy) dx is exact if and only if a + 
d = 0, and that in this case the integral curves form a family of coaxial conics. 

(b) Using Exs. 6 and 7, show that if tan fl = (a + d)/(e - b), the curves cutting the 
solution curves of the linear fractional DE y' = (ex + dy)/(ax + by) at an angle 
fl form a family of coaxial conics. 

9. For the linear fractional DE (16) show that 

y" = (ad - be)[ex2 - (a - d)xy - by2]/(ax + by)3 

Discuss the domains of convexity and concavity of solutions. 

10. Find an integrating factor for y' + (2y/x) = a, and integrate the DE by quadratures. 

8 GRAPHICAL AND NUMERICAL INTEGRATION 

The simplest way to sketch approximate solution curves of a given first-order 
normal DE y' = F(x,y) proceeds as follows. Draw a short segment with slope ;\, 
= F(x.,y;) = tan 0; through each point (x;,y,) of a set of sample points sprinkled 
fairly densely over the domain of interest. Then draw smooth curves so as to 
have at every point a slope y' approximately equal to the average of the F(x,,yJ 
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at nearby points, weighting the nearest points most heavily (i.e., using graphical 
interpolation). Methods of doing this systematically are called schemes of graph
ical integration. 

The preceding construction also gives a graphical representation of the direc
tion field associated with a given normal first-order DE. This is defined as 
follows. 

DEFINITION. A direction field in a region D of the plane is a function that 
assigns to every point (x,y) in D a direction. Two directions are considered the 
same if they differ by an integral multiple of 180°, or 1r radians. 

With every quasinormal DE M(x,y) + N(x,y)y' = 0, there is associated a direc
tion field. This associates with each point (xk,yk) not a critical point where M = 
N = 0, a short segment parallel to the vector (N(xk,yJ, - M(xk,yk)). Such seg
ments can be vertical whereas this is impossible for normal DEs. 

It is very easy to integrate graphically the linear fractional equation (16) 
because solution curves have the same slope along each radius y = vx, v = 
constant: each radius y = kx is an isocline. We need only draw segments having 
the right direction fairly densely on radii spaced at intervals of, say, 30°. After 
tracing one approximate integral curve through the direction field by the graph
ical method described above, we can construct others by taking advantage of the 
Similarity Property stated in §7. 

Numerical Integration. With modem computers, it is easy to construct 
accurate numerical tables of the solutions of initial value problems, where they 
exist, for most reasonably well-behaved functions F(x,y). Solutions may exist 
only locally. Thus, to solve the initial value problem for y' = 1 + y2 for the initial 
value y(O) = 0 on [0,1.6] is impossible, since the solution tan x becomes infinite 
when y = 1r /2 = 1. 5 7086 .... We will now describe three very simple methods 
(or "algorithms") for computing such tables; the numerical solution of ordinary 
DEs will be taken up systematically in Chapters 7 and 8. 

Simplest is the so-called Euler method, whose convergence to the exact solu
tion (for FE <§1 1) was first proved by Cauchy around 1840 (see Chapter 7, §2). 
One starts with the given initial value, y(a) = y0 = c, setting X0 = a and Y0 = 
y0, and then for a suitable step-size h computes recursively 

(19) 

A reasonably accurate table can usually be obtained in this way, by letting h = 
.001 (say), and printing out every tenth value of Yn. 

If greater accuracy is desired, one can reduce h to .0001, printing out 
Y0,Y100,Y200 ,Y:100, . .. , and "formatting" the results so that values are easy to look 
up. 

Improved Euler Method. The preceding algorithm, however, is very waste
ful, as Euler realized. As he observed, one can obtain much more accurate 
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results with roughly the same computational effort by replacing (19) with the 
following "improved" Euler algorithm 

(20) 

With h = .001, this "improved" Euler method gives 5-digit accuracy in most 
cases, while requiring only about twice as much arithmetic per time step. 
Whereas with Euler's method, to use 10 times as many mesh points ordinarily 
gives only one more digit of accuracy, the same mesh refinement typically gives 
two more digits of accuracy with the improved Euler method. 

As will be explained in Chapter 8, when truly accurate results are wanted, it 
is better to use other, more sophisticated methods that give four additional digits 
of accuracy each time h is divided by 10. In the special case of quadrature-that 
is, of DEs of the form y' = g(x) (see §2)-to do this is simple. It suffices to 
replace (I 9) by Simpson's Rule. 

(21) h (xn + h) Yn+I = Yn + 6 [g(xJ + 4g - 2- + g(xn + h)] 

For example, one can compute the natural logarithm of 2, 

y(2) = ln 2 = 12 
dx/x = .69314718 ... 

with 8-digit accuracy by choosing n = 25 and using the formula 

1 25 [ 50 50 50 ] 
ln 2 = 150 ~ 48 + 2k + 49 + 2k + 50 + 2k 

Caution. To achieve 8-digit accuracy in summing 25 terms, one must use a 
computer arithmetic having at least 9-digit accuracy. Many computers have only 
7-digit accuracy! 

Taylor Series Method. A third scheme of numerical integration is obtained 
by truncating the Taylor series formula after the term in y!, and writing 

For the DE y' = y, since y~ = y! = Ym this method gives Yn+I = (1 + h + h2/ 
2) Ym and so it is equivalent to the improved Euler method. 

For the DE y' = 1 + y2, since y" = 2yy' = 2y(l + y2), the method gives 
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This differs from the result given by Euler's improved method. In general, since 
d[F(x,y)]/dx = aF/ax + (aF/ay) dy/dx, Y: = (Fx + FF)n· This makes the 
method easy to apply. 

The error per step, like that of the improved Euler method, is roughly pro
portional to the cube of h. Since the number of steps is proportional to h- 1, the 
cumulative error of both methods is roughly proportional to h2. Thus, one can 
obtain two more digits of accuracy with it by using 10 times as many mesh 
points. 

As will be explained in Chapter 8, when truly accurate results are wanted, 
one should use other, more sophisticated methods that give four additional digits 
of accuracy when 10 times as many mesh points are used. 

Constructing Function Tables. Many functions are most simply defined as 
solutions of initial value problems. Thus ex is the solution of y' = y that satisfies 
the initial condition e0 = 1, and tan x is the solution of y' = 1 + y2 that satisfies 
tan O = 0. Reciprocally, ln xis the solution of y' = l/y that satisfies ln O = 1, 
while arctan xis the solution of y' = 1/(1 + y2) that satisfies arctan O = 0. 

It is instructive and enjoyable (using modern computers) to try to construct 
tables of numerical values of such functions, using the methods described in this 
section, and other methods to be discussed in Chapters 7 and 8. The accuracy 
of the computer output, for different methods and choices of the mesh length 
h, can be determined by comparison with standard tables.t One can often use 
simple recursion formulas instead, like 

tanx+tanh 

1- tanxtanh' 

after evaluating i = 1.0100516'7, and also by its Taylor series tan x = x + 
x3/3 + 2x5/15 + · · · tan (.01) = 0.0100003335 .... Such comparisons will 
often reveal the limited accuracy of machine computations (perhaps six digits). 

EXERCISESE 

1. For each of the following initial value problems, make a table of the approximate 
numerical solution computed by the Euler method, over the interval and for the 
mesh lengths specified: 
(a) y' = y withy(0) = 1, on [0,1], for h = 0.1 and 0.02. 
(b) y' = 1 + y2 with y(0) = 0, on [0, 1.6], for h = 0.1, 0.05, and 0.02. 

2. Knowing that the exact solutions of the preceding initial value problems are e" and 
tan x: 
(a) Evaluate the errors En = Yn - y(Xn) for the examples of Exercise 1. 
(b) Tabulate the ratios E.jhx, verifying when it is true that they are roughly indepen

dent of h and x. 

t See for example Abramowitz and Stegun, which contains also a wealth of relevant material. 



24 CHAPTER 1 First-Order Differential Equations 

3. Compute approximate solutions of the initial value problems of Exercise 1 by the 
improved Euler method. 

4. Find the errors of the approximate values computed in Exercise 3, and analyze the 
ratios Y,/h2x (cf. Ex. 2). 

5. Use Simpson's Rule to compute a table of approximate values of the natural log-a-

rithm function In x = lx dt/t, on the interval [1,2]. 

6. Construct a table of the function arctan x = lx dt/(I + t2) on the interval [0,1] by 

Simpson's Rule, and compare the computed value of arctan 1 with 1r /4. 

*7. In selected cases, test how well your tables agree with the identities arctan (tan x) = 
x and In ·(ej = x. 

*8. Let en be the approximate value of e obtained using Euler's method to solve y' = y 
for the initial conditiony(0) = 1 on [0,1], on a uniform mesh with mesh length h = 
1/n. 
(a) Show that In en = n ln (1 + h). 
(b) Infer that In en = 1 - h/2 + h2/3 -
(c) From this, derive the formula 

(*) 

(d) From formula(*) show that, ash J. 0, e - en = (he/2)[1 - (h/6) + O(h3)]. 

9 THE INITIAL VALUE PROBLEM 

For any normal first-order differential equation y' = F(x,y) and any "initial" 
x 0 (think of x as time), the initial value problem consists in finding the solution 
or solutions of the DE, for x > x 0, which also satisfy f(x0) = c. In geometric 
language, this amounts to finding the solution curve or curves that issue from 
the point (x0,c) to the right in the (x,y)-plane. As we have just seen, most initial 
value problems are easy to solve on modern computers, if one is satisfied with 
approximate solutions accurate to (say) 3-5 decimal digits. 

However, there is also a basic theoretical problem of proving the uniqueness of 
this solution. 

When F(x,y) = g(x) depends on x alone, this theoretical problem is solved by 
the Fundamental Theorem of the Calculus (§2). Given x0 = a and y0 = c, the 
initial value problem for the DE y' = g(x) has one and only one solution, given 
by the definite integral (5'). 

The initial value problem is said to be well-posed in a domain D when there is 
one and only one solution y = J(x,c) in D of the given DE for each given (x0,c) 
E D, and when this solution varies continuously with c. To show that the initial 
value problem is well-posed, therefore, requires proving theorems of existence 
(there is a solution), uniqueness (there is only one solution), and continuity (the 
solution depends continuously on the initial value). The concept of a well-posed 
initial value problem gives a precise mathematical interpretation of the physical 
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concept of determinism (cf. Ch. 6, §5). As was pointed out by Hadamard, solu
tions which do not have the properties specified are useless physically because 
no physical measurement is exact. 

It is fairly easy to show that the initial value problems discussed so far are 
well-posed. Thus, using formula (8'), one can show that the initial value problem 
is well-posed for the linear DE y' + p(x)y = q(x) in any vertical strip a < x < b 
where p and q are continuous. The initial value problem is also well-posed for 
the linear fractional DE (16) in each of the half-planes ax + by > 0 and 
ax+ by< 0. 

Actually, for the initial value problem for y' = F(x,y) to be well-posed in a 
domain D, it is sufficient that F E (§1 1 in D. But it is not sufficient that F e <r: 
though the continuity of F implies the existence of at least one solution through 
every point (cf. Ch. 6,§13), it does not necessarily imply uniqueness, as the fol
lowing example shows. 

Example 7. Consider the curve family y = (x - C)3, sketched in Figure 1.7. 
For fixed C, we have 

(22) y' = ay = 3(x - c)2 = 3y213 
ax 

a DE whose right side is a continuous function of position (x,y). Through every 
point (x0,c) of the plane passes just one curve y = (x - C)3 of the family, for 
which C = x0 - c1!3 depends continuously on (x0,c). Hence, the initial value 
problem for the DE (22) always has one and only one solution of the form 
y = (x - C)3. But there are also other solutions. 

Thus, the function y = 0 also satisfies (22). Its graph is the envelope of the 
curves y = (x - C)3 . In addition, for any a < fJ, the function defined by the 
three equations 

(22') { 
(x - a)3, 

y = 0 
(x - fJ)3 

x<a 
a<x<fJ 
X > fJ 

Figure 1. 7 Solution curves of y' = 3y213• 
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is a solution of (22). Hence, the first-order DE y' = 3y213 has a two-parameter 
family of solutions, depending on the parameters a and {3. 

*IO UNIQUENESS AND CONTINUITY 

The rest of this chapter will discuss existence, uniqueness, and continuity 
theorems for initial value problems concerning normal first-order DEs 
y' = F(x,y). Readers who are primarily interested in applications are advised to 
skip to Chapter 2. 

Example 9 shows that the mere continuity of F(x,y) does not suffice to ensure 
the uniqueness of solutions y = f(x) of y' = F(x,y) with given f(a) = c. However, 
it is sufficient that FE ~ 1 -(D). We shall prove this and continuity at the same 
time, using for much of the proof the following generalization of the standard 
Lipschitz condition. 

DEFINITION. A function F(x,y) satisfies a one-sided Lipschitz condition in a 
domain D when, for some finite constant L 

(23) implies 

identically in D. It satisfies a Lipschitz conditiont in D when, for some nonnegative 
constant L (Lipschitz constant), it satisfies the inequality 

(23') IF(x,y) - F(x,z)I < Lly - zl 

for all point pairs (x,y) and (x,z) in D having the same x-coordinate. 

The same function F may satisfy Lipschitz conditions with different Lipschitz 
constants, or no Lipschitz conditions at all, as the domain D under consideration 
varies. For example, the function F(x,y) = 3y213 of the DE in Example 9 satisfies 
a Lipschitz condition in any half-plane y > E, E > 0, with L = 2E- 113, but no 
Lipschitz condition in the half-plane y > 0. More generally, one can prove the 
following. 

LEMMA 1. Let F be continuously differentiable in a bounded closed convext 
domain D. Then it satisfies a Lipschitz condition there, with L = supv I oF joy 1-

* In this book, starred sections may be omitted without loss of continuity. 

t R. Lipschitz, Bull. Sci. Math. 10 (1876), p. 149; the idea of the proof is due to Cauchy (1839). See 
Ince, p. 76, for a historical discussion. 

t A set of points is called convex when it contains, with any two points, the line segment joining them. 
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Proof The domain being convex, it contains the entire vertical segment join
ing (x,y) with (x,z). Applying the Law of the Mean to F(x;q) on this segment, 
considered as a function of 77, we have 

l
aF(x,11) I 

IF(x,y) - F(x,z)I = ly - zl -a:;-

for some 11 between y and z. The inequality (23'), with L = supn I aF ;ay I, follows. 
A similar argument shows that (23) holds with L = maxn aF;ay. 

The case F(x,y) = g(x) of ordinary integration, or "quadrature," is easily 
identified as the case when L = 0 in (23'). A Lipschitz condition is satisfied even 
if g(x) is discontinuous. 

LEMMA 2. Let u be a differentiable Junction satisfying the differential inequality 

(24) u'(x) < Ku(x), a<x<b 

where K is a constant. Then 

(24') u(x) < u(a)eK(x-a>, for a < x < b 

Proof Multiply both sides of (24) by e-Kx and transpose, getting 

The function u(x)e-Kx thus has a negative or zero derivative and so is nonincreas
ing for a < x < b. Therefore, u(x)e-Kx < u(a)e-Ka, q.e.d. 

LEMMA 3. The one-sided Lipschitz condition (23) implies that 

[g(x) - f(x)] [g'(x) - f'(x)] < L[g(x) - f(x)] 2 

for any two solutions J(x) and g(x)of y' = F(x,y). 

Proof Settingf(x) = yi, g(x) = y2, we have 

from the DE. If y2 > yi, then, by (23'), the right side of this equation has the 
upper bound L(y2 - y1)2. Since all expressions are unaltered when y1 and y2 are 
interchanged, we see that the inequality of Lemma 3 is true in any case. 

We now prove that solutions of y' = F(x,y) depend continuously (and hence 
uniquely) on their initial values, provided that a one-sided Lipschitz condition 
holds. 
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THEOREM 5. Let f(x)and g(x) be any two solutions of the first-order normal DE 
y' = F(x,y)in a domain D where F satisfies the one-sided Lipschitz condition (23). Then 

(25) IJ(x) - g(x) I < eL<x-a) IJ(a) - g(a) I if x>a 

Proof Consider the function 

u(x) = [g(x) - J(x)] 2 

Computing the derivative by elementary formulas, we have 

u'(x) = 2[g(x) - f(x)] • [g'(x) - J'(x)] 

By Lemma 3, this implies that u'(x) < 2Lu(x); and by Lemma 2, this implies 
u(x) < e2L<x-a>u(a). Taking the square root of both sides of this inequality (which 
are nonnegative), we get (25), completing the proof. 

As the special case J(a) = g(a) of Theorem 5, we get uniqueness for the initial 
value problem: in any domain where F satisfies the one-sided Lipschitz condition 
(23), at most one solution of y' = F(x,y) for x > a, satisfies f(a) = c. However, 
we do not get uniqueness or continuity for decreasing x. We now prove that we 
have uniqueness and continuity in both directions when the Lipschitz condition 
(23') holds. 

THEOREM 6. If (23') holds in Theorem 5, then 

(26) IJ(x) - g(x) I < eLlx-al IJ(a) - g(a) I 

In particular, the DE y' = F(x,y) has at most one solution curve passing through any 
point (a,c) ED. 

Proof Since (23') implies (23), we know that the inequality (23) holds; from 
Theorem 5, this gives (26) for x > a. Since (23') also implies (23) when x goes 
to -x, we also have by Theorem 5 

IJ(x) - g(x) I < ~(a-x) IJ(a) - g(a) I = eLlx-al IJ(a) - g(a) I 

giving (26) also for x < a, and completing the proof. 

EXERCISES F 

1. In which domains do the following functions satisfy a Lipschitz condition? 
(a) F(x,y) = I + x2 (b) F(x,y) = I + y2 
(c) F(x,y) = y/(I + x2) (d) F(x,y) = xj(I + y2) 

2. Find all solutions of y' = I xy I . 
3. Show that the DE xu' - 2u + x = 0 has a two-parameter family of solutions. 

[HINT: Join together solutions satisfying u(O) = 0 in each half-plane separately.] 
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4. Let f and g be solutions of y' = F(x,y), where Fis a continuous function. Show that 
the functions m and M, defined as m(x) = min (f(x), g(x)) and M(x) = max (f(x), 
g(x)), satisfy the same DE. [HINT: Discuss separately the cases f(x) = g(x), J(x) < 
g(x), andf(x) > g(x).] 

5. Let u(t), positive and of class l!' 1 for a .:5 t .:5 a + E, satisfy the differential inequality 
u'(t) .::5 Ku(t) log u(t). Show that u(t) .::5 u(a) exp [K(t - a)]. 

6. Let F(x,y) = y log (1/y) for 0 < y < l, F(y) = 0 for y = 0. Show that y' = F(x,y) 
has at most one solution satisfying /(0) = c, even though F does not satisfy a 
Lipschitz condition. 

7. (Peano uniqueness theorem). For each fixed x, let F(x,y) be a nonincreasing function 
of y. Show that, if /(x) and g(x) are two solutions of y ' = F(x,y), and b > a, then 
1/(b) - g(b) I .::5 1/(a) - g(a) I, Infer a uniqueness theorem. 

8. Discuss uniqueness and nonuniqueness for solutions of the DE y' = -y113• [HINT: 
Use Ex. 7.] 

9. (a) Prove a uniqueness theorem for y' = xy on -oo < x,y < +oo. 
*(b) Prove the same result for y' = y213 + 1. 

10. (Generalized Lipschitz condition.) Let F E e' satisfy 

I F(x,y) - F(x,z) I .::5 k(x) ly - z I 

identically on the strip 0 < x < a. Show that, if the improper integral JO k(x) dx is 
finite, then y' = F(x,y) has at most one solution satisfying y(O) = 0. 

* 11. Let F be continuous and satisfy 

IF(x,y) - F(x,z)I .::5 Kly - zl log (ly - zl-1), , for 

Show that the solutions of y' = F(x,y) are unique. 

*11 A COMPARISON THEOREM 

ly - zl < 1 

Since most DEs cannot be solved in terms of elementary functions, it is 
important to be able to compare the unknown solutions of one DE with the 
known solutions of another. It is also often useful to compare functions satis
fying the differential inequality 

(27) f '(x) < F(xJ(x)) 

with exact solutions of the DE (3). The following theorem gives such a 
comparison. 

THEOREM 7. Let F satisfy a Lipschitz condition for x > a. If the function f sat
isfies the differential inequality (27) for x > a, and if g is a solution of y' = F(x,y) 
satisfying the initial condition g (a) = f(a), then f(x) < g(x) for all x > a. 

Proof Suppose that f(x 1) > g(x1) for some x1 in the given interval, and define 
x0 to be the largest x in the interval a < x < x1 such that f(x) < g(x). Then 
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f(x 0 ) = g(x0). Letting u(x) = f(x) - g(x), we have u(x) > 0 for x 0 < x < x 1 ; and, 
also for x0 < x < xi, 

u'(x) = f '(x) - g'(x) < F(xJ(x)) - F(x,g(x)) < L(J(x) - g(x)) = Lu(x) 

where L is the Lipschitz constant for the function F. That is, the function u 
satisfies the hypothesis of Lemma 2 of §10 on x0 < x < xi, with K = L. Hence 
u(x) < u(x0 )eL<x-xol = 0 and so u, being nonnegative, vanishes identically. But 
this contradicts the hypothesis f(x 1 ) > g(x1). We conclude that f(x) < g(x) for 
all x in the given interval, q.e.d. 

THEOREM 8 (Comparison Theorem). Let f and g be solutions of the DEs 

(28) y' = F(x,y), z' = G(x,z) 

respectively, where F(x,y) < G(x,y) in the strip a < x < b and F or G satisfies a 
Lipschitz condition. Let also f(a) = g(a). Then f(x) < g(x) for all x E [a,b]. 

Proof. Let G satisfy a Lipschitz condition. Since y' = F(x,y) < G(x,y), the 
functions f and g satisfy the conditions of Theorem 7 with Gin place of F. There
fore, the inequality f(x) < g(x) for x > a follows immediately. 

If F satisfies a Lipschitz condition, the functions u = - f(x) and v = - g(x) 
satisfy the DEs u' = - F(x, -u) and 

v' = -G(x, -v) < -F(x, -v) 

Theorem 6, applied to the functions v, u and H(u,v) = -F(x, -v) now yields 
the inequality v(x) < u(x) for x > a, or g(x) > f(x), as asserted. 

The inequality f(x) < g(x) in this Comparison Theorem can often be replaced 
by a strict inequality. Either f and g are identically equal for a < x < Xi, or else 
f(x 0 ) < g(x0) for some x 0 in the interval (a, x1). By the Comparison Theorem, 
the function u 1 (x) = g(x) - f(x) is nonnegative for a < x < Xi, and moreover 
u 1 (x0) > 0. Much as in the preceding proof 

uHx) = G(x,g(x)) - F(xJ(x)) > G(x,g(x)) - G(xJ(x)) > - Lu1 

Hence [eLxu 1 (x)]' = eLx[u1 + Lu1 ] > 0; from this expression ~xu1(x) is a non
decreasing function on a < x < x 1 • Consequently, we have 

which gives a strict inequality. This proves 

COROLLARY 1. In Theorem 6, for any x 1 > a, either f(x 1 ) < g(x1), or f(x) = 
g(x)for all x E [a,x 1]. 

Theorem 7 can also be sharpened in another way, as follows. 
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COROLLARY 2. In Theorem 7, assume that F, as well as G, satisfies a Lipschitz 
condition and, instead of f(a) = g(a), that f(a) < g(a). Then f(x) < g(x) for x > a. 

Proof The proof will be by contradiction. If we had f(x) > g(x) for some 
x > a, there would be a first x = x 1 > a where f(x) > g(x). The two functions 
y = cf>(x) = f(-x) and z = if;(x) = g(-x) satisfy the DEs y' = -F(-x,y) and 
z' = -G(-x,z) as well as the respective initial conditions </>(-x1) = if;(-x1). 

Since -F(-x,y) > -G(-x,y), we can apply Theorem 7 in the interval 
[ -x1, -a], knowing that the function -F(-x,y) satisfies a Lipschitz condition. 
We conclude that <b(-a) > if;(-a), that is, thatf(a) > g(a), a contradiction. 

*12 REGULAR AND NORMAL CURVE FAMILIES 

In this chapter, we have analyzed many methods for solving first-order DEs 
of the related forms y' = F(x,y),M(x,y) + N(x,y)y' = 0, and M(x,y) dx + N(x,y) 
dy = 0, describing conditions under which their "solution curves" and/or "inte
gral curves" constitute "one-parameter families" filling up appropriate domains 
of the (x,y)-plane. In this concluding section, we will try to clarify further the 
relationship between such first-order DEs and one-parameter curve families. 

A key role is played by the Implicit Function Theorem, which showst that the 
level curves u = C of any function u E (jl 1(D) have the following properties in 
any domain D not containing any critical point: (i) one and only one curve of 
the family passes through each point of D, (ii) each curve of the family has a 
tangent at every point, and (iii) the tangent direction is a continuous function 
of position. Thus, they constitute a regular curve family in the sense of the fol
lowing definition. 

DEFINITION. A regular curve family is a curve family that satisfies condi
tions (i) through (iii). 

Thus, the circles x2 + y2 = C (C > 0) form a regular curve family; they are 
the integral curves of x + yy' = 0, the DE of Example 1. Concerning the DE 
y' = y3 - y of Example 2, even though it is harder to integrate, we can say 
more: its solution curves form a normal curve family in the following sense. 

DEFINITION. A regular curve family is normal when no curve of the family 
has a vertical tangent anywhere. 

Almost by definition, the curves of any normal curve family are solution 
curves of the normal DE y' = F(x,y), where F(x,y) is the slope at (x,y) of the 
curve passing through it. Moreover, by Theorem 5', if FE (jl 1, there are no other 
solution curves. 

The question naturally arises: do the solution curves of y ' = F(x,y) always 
form a normal curve family in any domain where FE (jl 1? They always do locally, 
but the precise formulation and proof of a theorem to this effect are very dif-

t Where iJu/iJy = 0 but iJu/iJx ,;, 0, we can set x = g(y) locally on the curve; see below. 
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ficult, and will be deferred to Chapter 6. There we will establish the simpler 
result that the initial value problem is locally well-posed for such DEs, after treat
ing (in Chapter 4) the case that Fis analytic (i.e., the sum of a convergent power 
series). 

In the remaining paragraphs of this chapter, we will simply try to clarify fur
ther what the Implicit Function theorem does and does not assert about "level 
curves." 

Parametrizing Curve Families. Although the name "level curve" suggests 
that for each C the set of points where F(x,y) = C is always a single curve, this 
is not so. Thus, consider the level curves of the function F(x,y) = (x2 + y2)2 -

2x2 + 2y2• The level curve F = 0 is the lemniscate r2 = 2 cos 20, and is divided 
by the critical point at the origin into two pieces. Inside each lobe of this lem
niscate is one piece of the level curve F = C for -1 < C < 0, while the "level 
curve" F = -1 consists of the other two critical points ( ± 1, 0). 

Similarly, in the infinite horizontal strip -1 < y < 1, every solution curve y 
= sin x + C of the DE y ' = cos x consists of an infinite number of pieces. The 
same is true of the interval curves of the DE cos x dx = sin x dy, which are the 
level curves of e-Y sin x. (These can also be viewed as the graphs of the functions 
y = y = In I sin x I + C and the vertical lines y = ± n-ir.) In general, one cannot 
parametrize the level curves of F(x,y) globally by the parameter C. 

However, one can parametrize the level curves of any function u E ~ 1 locally, 
in some neighborhood of any point (x0,y0) where ou/oy ¥= 0. For, by the Implicit 
Function Theorem, there exist positive E and 77 such that for all x E (x0 - E, x0 

+ E) and c E (u0 - E, u0 + E), there is exactly one y E (y0 - 17, y0 + 77) such that 
u(x,y) = c. This defines a function y(x,c) locally, in a rectangle of the (x,u)-plane. 
The parameter c parametrizes the level curves of u(x,y) in the corresponding 
neighborhood of (x0,y0) in the (x,y)-plane; cf. Figure 1.8. 

x= x0 -E X:Xo+E 

Figure 1.8 
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EXERCISES G 

1. Let J(u) be continuous and a + bf(u) =fa 0 for p .:5 u .:5 q. Show that the DE 
y' = J(ax + by + c) (a,b,c are constants) has a solution passing through every 
point of the strip p < ax + by + c < q. 

2. Find all solutions of the DE y' = I x3y3 I. 
3. Show that, if Mand N are homogeneous functions of the same degree, then (l') 

has the integrating factor (xM + yN)- 1 in any simply connected domain where 
xM + yN does not vanish. 

4. Show that if g(y) satisfies a Lipschitz condition, the solutions of y' = g(y) form a 
normal curve family in the (x,y)-plane. [HINT: Apply the Inverse Function Theorem 
to x = J dy/g(y) + C.] 

5. Let g(x) be continuous for 0 .:5 x < oo, lim,_00 g(x) = b and a > 0. Show that, for 
every solution y = f(x) of y' + ay = g(x), we have lim,-oo/(x) = b/a. 

6. Show that if a < 0 in Ex. 5, then there exists one and only one solution of the DE 
such that lim,-oo/(x) = b/a. 

*7. (Osgood's Uniqueness Theorem.) Suppose that <f,(u) is a continuous increasing function 
defined and positive for u > 0, such that JJ du/<f,(u) -- oo as t -- 0. If IF(x,y) -
F(x,z) I < </)( ly - z I), then the solutions of the DE (3) are unique. [HINT: Use Ex. 
E4.] 

8. Let F, G, f, g be as in Theorem 8, and F(x,y) < G(x,y). Show that /(x) < g(x) for x 
> a, without assuming that For G satisfies a Lipschitz condition. 

9. Show that the conditions dx/dt = Ix I 1/2 and x(0) = -1 define a well-posed initial 
value problem on [0,a) if a ~ l, but not if a > l. 

10. (a) Find the critical points of the DE x dy = y dx. 
(b) Show that in the punctured plane (the x,y-plane with the ongm deleted), 

the integral curves of xy' = y are the lines (J = c, where (J is a periodic angular 
variable only determined up to integral multiples of 21r. 

(c) What are its solution curves? 
(d) Show that the real variables x/r = cos (J and y/r = sin (J are integrals of 

xy' = y, and describe carefully their level curves. 

*11. (a) Prove that there is no real-valued function u E (§>1 in the punctured plane of 
Ex. 10 whose level curves are the integral curves of xy' = y. 

(b) Show that the integral curves of y' = (x + y) /(x - y) are the equiangular spirals 
r = ki = e<fJ-c>, k =fa 0. 

(b) Prove that there is no real-valued function u E l§l 1 whose level curves are these 
spirals. 



CHAPTER 2 

SECOND-ORDER 
LINEAR 

EQUATIONS 

I BASES OF SOLUTIONS 

The most intensively studied class of ordinary differential equations is that of 
second-order linear DEs of the form 

(1) 

The coefficient-functions p,(x) [i = 0, 1, 2, 3] are assumed continuous and real
valued on an interval I of the real axis, which may be finite or infinite. The inter
val / may include one or both of its endpoints, or neither of them. The central 
problem is to find and describe the unknown functions u = J(x) on I satisfying 
this equation, the solutions of the DE. The present chapter will be devoted to 
second-order linear DEs and the behavior of their solutions. 

Dividing (1) through by the leading coefficient p0(x), one obtains the normal 
form 

d2u du 
- 2 + p(x) - + q(x)u = r(x) 
dx dx 

P = P1 
Po' 

r = p3 
Po 

This DE is equivalent to (1) so long as p0(x) ¥= O; if p0(x0) = 0 at some point x 
= x0 , then the functions p and q are not defined at the point x0 . One therefore 
says that the DE (1) has a singular point, or singularity at the point x0 , when p0(x0) 

= 0. 
For example, the Legendre DE 

(*) .!!:_ [ (1 - x2) du] + AU = 0 
dx dx 

has singular points at x = ± l. This is evident since when rewritten in the form 
(1) it becomes (1 - x2)u" = 2xu' + AU = 0. Although it has polynomial solu-
34 
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tions when A = n(n + 1), as we shall see in Ch. 4, §1, all its other nontrivial 
solutions have a singularity at either x = l or x = -1. 

Likewise, the Bessel DE 

(**) 

has a singular point at x = 0, and nowhere else. More commonly written in the 
normal form 

1 ( n2) u" + - u' + 1 - - u = 0, 
X x2 

its important Bessel function solution ] 0(x) will be discussed in Ch. 4, §8. 
Linear DEs of the form (1) or (1') are called homogeneous when their right

hand sides are zero, so that p3(x) = 0 in (1)-or, equivalently, r(x) = 0 in (1'). 
The homogeneous linear DE 

(2) 

obtained by dropping the forcing term p3(x) from a given inhomogeneous linear 
DE (1) is called the reduced equation of (1). Evidently, the normal form of the 
reduced equation (2) of (1) is the reduced equation 

(2') 
d2u du 
- 2 + p(x) - + q(x)u = 0 
dx dx 

of the normal form (l ') of (1). 
A fundamental property of linear homogeneous DEs is the following Super

position Principle. Given any two solutions Ji (x) and h(x) of the linear homoge
neous DE (2), and any two constants c1 and c2, the function 

(3) 

is also a solution of (2). This property is characteristic of homogeneous linear 
equations; the function f is called a linear combination of the functions Ji and f2. 

Bases of Solutions. It is a fundamental theorem, to be proved in §5, that if 
f 1 (x) and h(x) are two solutions of (2'), and if neither is a multiple of the other, 
then every solution of (2') can be expressed in the form (3). A pair of functions 
with this property is called a basis of solutions. 

Example 1. The trigonometric DE is u" + k2u = 0; its solutions include 
cos kx and sin kx. Hence, all linear combinations a cos kx + b sin kx of these 
basic solutions are likewise solutions. 

Evidently, the zero function u(x) == 0 is a trivial solution of any homogeneous 
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linear DE. Letting A = Va2 + b2, and expressing (a,b) = (A cos 'Y, A sin -y) in 
polar coordinates, we can also write 

a cos kx + b sin kx = A cos(kx - -y) 

for any nontrivial solution of u" + k2u = 0. The constant A in (2) is called the 
amplitude of the solution; 'Y its initial phase, and k its wave number; k/21r is called 
its frequency, and 21r /k its period. 

Constant-coefficient DEs. We next show how to construct a basis of solu
tions of any second-order constant-coefficient homogeneous linear DE 

u" + pu' + qu = 0, (p,q constants) (5) 

The trick is to set u = e-pxf2v(x), so that u' = e-pxf2[v' - pv/2] and u" = 
e-pxf2[v" - pv' + p2v/4], whence (5) is equivalent to 

(5') v" + (q - p2/4)v = 0, 

There are three cases, depending on whether the discriminant d = p2 - 4q is 
positive, negative, or zero. 

Case 1. If d > 0, then (5') reduces. to v" = k2v, where k = ~/2. This DE 
has the functions v = ix, e-kx as a basis of solutions whence 

(6a) u = e<-vA-pJx/2 

are a basis of solutions of (5). Actually, it is even simpler to make the "exponen
tial substitution" u = lx in this case. Then (5) is equivalent to (X2 + pX + 
q)lx = O; the roots of the quadratic equation X2 + pX + q = 0 are the coeffi
cients of the exponents in (6a). 

Case 2. If d < 0, then (5') reduces to v" + k2v = 0, where k = ....;-::::&;2. 
This DE has cos kx, sin kx as a basis of solutions, whence 

(6b) u = e-px/2 cos(....;-:::;&x/2, u = e-px/2 sin(....;-:::;&x/2) 

form a basis of solutions of (5) when d < 0. 

Case 3. When d = 0, (5') reduces to v" = 0, which has 1 and x as a basis of 
solutions. Hence the pair 

(6c)' u = xe-px/2 

is a basis of solutions of (5) when p2 = 4q. 
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2 INITIAL VALUE PROBLEMS 

With differential equations arising from physical problems, one is often inter
ested in particular solutions satisfying additional initial or boundary conditions. 
Thus, in Example 1, one may wish to find a solution satisfying u(0) = u0 and 
u'(0) = Uo, An easy way to find a solution satisfying these initial conditions is to 
use Eq. (4) with a = Uo and b = Uo/k. In general, given a second-order linear 
DE such as (1) or (1'), the problem of finding a solution u(x) that satisfies given 
initial conditions u(a) = Uo and u'(a) = Uo is called the initial value problem. 

Example 2. Suppose we supplement the normal DE of Example 1 with the 
"forcing function" r(x) = 3 sin 2x, and wish to find the solution of the resulting 
DE u" + u = 3 sin 2x satisfying the initial conditions u(0) = u'(0) = 0. 

To solve this initial value problem, we first construct a particular solution of 
this DE, trying u = A sin 2x, where A is an unknown coefficient to be deter
mined. Substituting into the DE, we get (-4A + A) sin 2x = 3 sin 2x, or A = 
-1. Since a cos x + b sin x satisfies u" + u = 0 for any constants a and b, it 
follows that any function of the form 

u = a cos x + b sin x - sin 2x 

satisfies the original DE u" + u = 3 sin 2x. Such a function will satisfy u(0) = 
0 if and only if a = 0, so that 

u'(x) = b cos x - 2 cos 2x 

In particular, therefore, u'(0) = b - 2 = 0. Hence the function u = 2 sin x -
sin 2x solves the stated initial value problem. 

Particular solutions of constant-coefficient DEs with polynomial forcing 
terms can be treated similarly. Thus, to solve 

u" + pu' + qu = ex + d (p, q, c, d constants) 

it is simplest to look first for a particular solution of the form ax + b. Substi
tuting into the DE, we obtain the equations qa = c and pa + qb = 0. Unless q 
= 0, these give the particular solution 

c qd-pc 
u=-x+ 2 

q q 

When q = 0 but p 'F 0, we look for a quadratic solution; thus u" + u' = x has 
the solution 

x2 
--x 
2 
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Finally, u" = ex + d has the cubic solution u = cx3 /6 + dx2/2. 
The procedure just followed can be used to solve initial value problems for 

many other second-order linear DEs of the form (1) and (1'). It requires four 
steps. 

STEP 1. Find a particular solution up(x) of the DE. 

STEP 2. Find the general solution of the reduced equation obtained by setting 
p3(x) = 0 in (1), or r(x) = 0 in (1'). It suffices to find two solutions cf>(x) 
and 1/l(x) of the reduced DE, neither of which is a multiple of the other. 

STEP 3. Recognize u = a<f>(x) + btft(x) + up(x), where a and b are constants to 
be determined from the initial conditions, as the general solution of the 
inhomogeneous DE. 

STEP 4. Solve for a and b the equations 

</>(0)a + 1/l(0)b = u0 - up(0) 

</>'(0)a + 1/l'(b) = u6 - u11(0) 

For these equations to be uniquely solvable, the condition 

I </>(O) 1/l(O) I = </>(0)1/1'(0) - 1/1(0)</>(0) -:/= 0 
</>'(0) 1/1'(0) 

is clearly necessary and sufficient-the expression (4') is called the Wronskian of 
cf> and 1/1; we will discuss it in §5. 

EXERCISES A 

1. (a) Find the general solution of u" + 3u' + 2u = K, where K is an arbitrary constant. 
(b) Same question for u" + 3u' = K. 

2. Solve the initial value problem for u" + 3u' + 2u = 0, and the following initial 
conditions: 
(a) u(0) = 1, u'(0) = 0 (b) u(0) = 0, u'(0) = 1. 

3. Answer the same questions for u" + 2u' + 2u = 0. 

4. Find a particular solution of each of the following DEs: 
(a) u" + 3u' + 2u = ex (b) u" + 3u' + 2u = sin x 
(c) u" + 3u' + 2u = e-x *(d) u" + 2u' + u = e-x 

5. Find the general solution of each of the DEs of Ex. 4. 

6. Solve the initial value problem for each of the DEs of Exercise 4, with the initial con
ditions u(0) = u'(0) = 4. 

7. Find a particular solution of: (a) u" + 2u' + 2u = e-x, 
(b) u" + 2u' + 2u = sin x, *(c) u" + 2u' + 2u = e-x sin x. 

8. Solve the initial value problem for each of the DEs of Exercise 7, and the initial con
ditions u(0) = u'(0) = 0. 

9. Show that any second-order linear homogeneous DE satisfied by x sin x must have a 
singular point at x = 0. 
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3 QUALITATIVE BEHAVIOR; STABILITY 

Note that when d < 0 (i.e., in Case 2), all nontrivial solutions of (5) reverse 
sign each time that x increases by 1r/k. Qualitatively speaking, they are oscillatory 
in the sense of changing sign infinitely often. These facts become evident if we 
rewrite (6b) in the form (4), as 

(7) u(x) = Ae-P"/2 cos[k(x - ef,)] 

Contrastingly, when d > 0, a nontrivial solution of (6) can vanish only when 
aeax = -b/1". This implies that e<a-fJ)x = -b/a, so that (i) a and b must have 
opposite signs, and (ii) x = lnlb/al/(.8 - a). Hence, a nontrivial solution can 
change sign at most once: it is nonoscillatory. Likewise, in Case 3, a nontrivial 
solution can vanish only where a + bx = 0, or x = (-a/b), giving the same 
result. We conclude: 

THEOREM 1. If d ~ 0, then a nontrivial solution of(5) can vanish at most once. 
If d < 0, however, it vanishes periodically with period 1r/~. 

Stability. Even more important than being oscillatory or nonoscillatory is 
the property of being stable or unstable, in the sense of the following definitions. 

DEFINITION. The homogeneous linear DE (2) is strictly stable when every 
solution tends to zero as x - oo; it is stable when every solution remains bounded 
as x - oo. When not stable, it is called unstable. 

THEOREM 2. The constant-coefficient DE (5) is strictly stable when p > 0 and q 
> 0; it is stable when p = 0 but q > 0. It is unstable in all other cases. 

Proof This result can be proved very simply if complex exponents are used 
freely (see Chapter 3, §3). In the real domain, however, one must distinguish 
several possibilities, viz.: 

(A) 

(B) 

(C) 

(D) 

If q < 0, then a > 0 and -X2 + p-X + q = 0 must have two real roots of 
opposite sign. Instability is therefore obvious. 

If p < 0, instability is obvious from (6a)-(6b), if one keeps in mind the sign 
of pin each case. 

If p = 0 and q > 0, then we have Example 2: the DE (5) is stable but not 
strictly stable. 

If p > 0 and q > 0, there are two possibilities: (i) d ~ 0, in which case we 
have strict stability by (6b) and (6c); (ii) d > 0, in which case vii< p since 
a = p2 - q < p2, and strict stability follows from (6a). 

Second-order linear DEs with constant coefficients have so many applications 
that it is convenient to summarize their qualitative properties in a diagram; we 
have done this in Figure 2.1. (The words "focal," "nodal," and "saddle" point 
will be explained in §7; to have a focal point is equivalent to having oscillatory 
solutions.) 
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q=1N4 

Unstable 
focal point 

Unstable 
nodal point 
>-t<Aa<O 

q 

Saddle point (unstable) 
' >-1<0<>-t 
I 

Stable 
focal point 

Stable 
nodal point 
O<Aa<>-t 

Figure 2.1 Stability Diagram for ;,; + pu + qu = 0. 

4 UNIQUENESS THEOREM 

p 

We are now ready to treat rigorously the initial value problem stated in §I. 
The first basic concept involved is very general and applies to any normal sec
ond-order DE u 0 = F(x,u,u'), whether linear or not. 

Think of x as time, and of the possible pairs (u,u') as states of a physical system, 
which is governed (or modeled mathematically) by the given DE. Since u' 
expresses the rate of change of u at any "time" x, while u" = du' /dx gives the 
rate of change of u', it is natural to surmise that the present state of any such 
system uniquely determines its state at all future times. Indeed, the theoretical 
initial value problem is to prove this result as generally as possible. 

In this section, we will prove it for second-order linear DEs of the form (1) 
having continuous coefficient-functions p/x) and no singular points. Since p0(x) 
,t= 0, it suffices to consider the normal form (1'). 

One would like to prove also that there always exists a solution for any initial 
(u0,u0); this will be proved for second-order linear DEs having analytic coeffi
cient-functions in Chapter 4, and (locally) for linear DEs having continuously 
differentiable coefficient-functions in Chapter 6. For the present, we will have to 
construct "particular" solutions and bases of solutions for homogeneous DEs 
u" + p(x)u' + q(x)u = 0 by other methods. 

Linear Operators. We begin by discussing carefully the general concept of 
a "linear operator." Clearly, the operation of transforming a given function J 
into a new function g by the rule 
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(for continuous p;) is a transformation from one family of functions [in our case, 
the family (jl2(/) of continuously twice-differentiable functions on a given inter
val J] to another family of functions [in our case, (jl(/)]. Such a functional trans
formation is called an operator, and is written in operator notation 

L[f] =Pol"+ PJ' + Pd 

In our case, the operator L is linear; that is, it satisfies 

L[cf + dg] = cL[f] + dL[g] 

for any constants c and d. 
As a special case (setting c = l, d = -1), if u and v are any two solutions of 

the inhomogeneous linear DE (1), then their difference u - v satisfies 

That is, their difference is a solution of the homogeneous second-order linear DE 
(2). 

The preceding simple observations, whose proofs are immediate, have the 
following result as a direct consequence. 

LEMMA 1. If the function v(x) is any particular solutiont of the inhomogeneous 
DE (1), then the general solution of (l) is obtained iJ,y adding to v(x) the general solu
tion of the corresponding homogeneous linear DE (2). 

For, if u(x) is any other solution of (1), then u(x) = v(x) + [u(x) - v(x)], 
where L[u(x) - v(x)] = 0 as before. More generally, the following lemma holds. 

LEMMA 2. If u(x) is a solution of L[u] = r(x), if v(x) is a solution of L[u] = 
s(x), and if c,d are constants, then w = cu(x) + dv(x) is a solution of the DE L[u] = 
cr(x) + ds(x). 

The proof is trivial, but the result describes the fundamental property of lin
ear operators. Its use greatly simplifies the solution of inhomogeneous linear 
DEs. 

Main Theorem. Having established these preliminary results, it is easy to 
prove a strong uniqueness theory for second-order linear DEs. 

THEOREM 3. (Uniqueness Theorem). If p and q are continuous, then at most one 
solution of(l') can satisfy given initial conditionsf(a) = c0 andf'(a) = c1. 

Proof Let v and w be any two solutions of (l') that satisfy these initial con
ditions; we shall show that their differences u = v - w vanishes identically. 

t The phrase "particular solution" is used to emphasize that only one solution of (1) need be found, 
thus reducing the problem of solving it to the case p3(x) = 0. 
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Indeed, u satisfies (8) by Lemma 1. It also satisfies the initial conditions u = u' 
= 0 when x = a. Now consider the nonnegative function u(x) = u2 + u' 2. By 
definition, u(a) = 0. Differentiating, we have, since r(x) = 0, 

u'(x) = 2u'(u + u") = 2u'[u - p(x)u' - q(x)u] 

= -2p(x)u'2 + 2[1 - q(x)]uu' 

Since (u ± u')2 > 0, it follows that I 2uu' I < u2 + u'2. Hence 

2[1 - q(x)]uu' < (1 + lq(x) l)(u2 + u'2) 

and 

u'(x) < [l + I q(x) I ]u2 + [l + I q(x) I + I 2p(x) I ]u'2 

Therefore, if K = l + max [ I q(x) I + 21 p(x) I], the maximum being taken over 
any finite closed interval [a, b], we obtain 

u'(x) < Ku(x), K< +oo 

By Lemma 2 of Ch. 1, §10, it follows that u(x) = 0 for all x E [a, b]. Hence 
u(x) = 0 and v(x) = w(x) on the interval, as claimed. 

The Uniqueness Theorem just proved implies an important extension of the 
Superposition Principle stated in § 1. 

THEOREM 4. Let f and g be two solutions of the homogeneous second-order linear 
DE 

(8) u" + p(x)u' + q(x)u = 0, . p,q E ~ 

For some x = x0, let (f(x0), J'(x0)) and (g(x0), g'(x0)) be linearly independent 
vectors. Then every solution of this DE is equal to some linear combination 
h(x) = cf(x) + dg(x) off and g with constant coefficients c,d. 

In other words, the general solution of the given homogeneous DE (8) is cj(x) 
+ dg(x), where c and d are arbitrary constants. 

Proof. By the Superposition Principle, any such h(x) satisfies (8). Conversely, 
suppose the function h(x) satisfies the given DE (8). Then, at the given point x0, 

constants c and d can be found such that 

cj(xo) + dg(x0) = h(x0), cf '(xo) + dg'(xo) = h'(xo) 
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In fact, the constants c and d are given by Cramer's Rule, as 

C = (hogo - goh6)/(fogo - gJo) 

d = (Joh' - hJo)/(fogo - gJo) 

where we have used the abbreviations/0 = .f(x0),/0 = f'(x0), and so on. For this 
choice of c and d, the function 

u(x) = h(x) - cf(x) - dg(x) 

. 
satisfies the given homogeneous DE by the Superposition Principle and the 
initial conditions u(x0) = u'(x0) = 0. Hence by the Uniqueness Theorem, 
u(x) is the trivial solution, u(x) = 0, of the given homogeneous DE; therefore 
h =cf+ dg. 

Two solutions, f and g, of a homogeneous linear second-order DE (8) with 
the property that every other solution can be expressed as a linear combination 
of them are said to be a basis of solutions of the DE. 

5 THE WRONSKIAN 

The question of whether two solutions of a homogeneous linear DE form a 
basis of solutions is easily settled by examining their Wronskian, a concept that 
we now define. 

DEFINITION. The Wronskian of any two differentiable functions f(x) and 
g(x) is 

(9) W(f, g· x) = J(x)g'(x) - g(x)J'(x) = I .f(x) f '(x) I 
' ' g(x) g'(x) 

THEOREM 5. The Wronskian (9) of any two solutions of (8) satisfies the identity 

(10) W(f, g; x) = W(f, g; a) exp ( - lx p(t) dt) 

Proof If we differentiage (9) and write W(f, g; x) = W(x) for short, a direct 
computation gives W = Jg" - gf ". Substituting for g" and f" from (8) and 
cancelling, we have the linear homogeneous first-order DE 

(11) W'(x) + p(x) W(x) = 0 

Equation (10) follows from the first-order homogeneous linear DE (11) by Theo
rem 4 of Ch. 1, §6. 
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COROLLARY. The Wronskian of any two solutions of the homogeneous linear DE 
(8) is identically positive, identically negative, or identically zero. 

We now relate the Wronskian of two functions to the concept of linear inde
pendence. In general, a collection of functions f 1, f 2 ... , fn is called linearly 
independent on the interval a < x < b when no linear combination cif1 (x) + 
c2f 2(x) + ... + cnfn (x) of these functions gives the identically zero function for 
a < x < b, except the trivial linear combination where all coefficients vanish. 
Functions that are not linearly independent are called linearly dependent. If f 
and g are any two linearly dependent functions, then cf + dg = 0 for suitable 
constants c and d, not both zero. Hence g = -(d/d)J or f = -(c/c)g; the func
tions f and g are proportional. 

LEMMA. If f and g are linearly dependent differentiable functions, then their 
Wronskian vanishes identically. 

Proof Suppose that f and g are linearly dependent. Then there are two con
stants c and d, not both zero, which satisfy the two linear equations 

cj(x) + dg(x) = 0, cf '(x) + dg'(x) = 0 

identically on the interval of interest. Therefore, the determinant of the two 
equations, which is the Wronskian W(J, g; x), vanishes identically. 

The interesting fact is that when f and g are both solutions of a second-order 
linear DE, a strong converse of this lemma is also true. 

THEOREM 6. If f and g are two linearly independent solutions of the nonsingular 
second-order linear DE (8), then their Wronskian never vanishes. 

Proof Suppose that the Wronskian W(J, g; x) vanished at some point x 1. 

Then the vectors [J(x1), J'(x1)] and [g(x1), g'(x1)] would be linearly dependent 
and, therefore, proportional: g(x1) = kf(x1) and g'(x1) = kf '(x1) for some con
stant k. Consider now the function h(x) = g(x) - kf(x). This function is a solu
tion of the DE (8), since it is a linear combination of solutions. It also satisfies 
the initial conditions h(x1) = h'(x1) = 0. By the Uniqueness Theorem, this func
tion must vanish identically. Therefore, g(x) = k fix) for all x, contradicting the 
hypothesis of linear independence off and g. 

Remark 1. The fact that the DE (8) is nonsingular is essential in Theorem 6. 
For example, the Wronskian x4 of the two linearly independent solutions x2 and 
x3 of the DE x2u" - 4xu' + 6u = 0 vanishes at x = 0. This is possible because 
the leading coefficient p0(x) of the DE vanishes there. 

Remark 2. There is an obvious connection between the formula for the 
Wronskian of two functions and the formula for the derivative of their quotient: 

(~)' = (jg I - gf ') = W(J, g) 

f ! 2 ! 2 
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This suggests that the ratio of two functions is a constant if and only if their 
Wronskian vanishes identically. However, this need not be true iffvanishes: the 
ratio of the two functions x3 and Ix 13 is not a constant, yet their Wronskian 
W(x 3, / x / 3) = 0. (Note also that both functions satisfy the DEs xu' = 3u and 
3xu" - 2u' = 0.) 

Nevertheless, the connection between W(J,g) and g/Jis a useful one. Thus, 
it allows one to construct a second solution g(x) of (8) if one nontrivial solution 
is known. Namely, if P(x) = f p(x)dx is any indefinite integral of p(x), then the 
function 

(12) I [ -P(x)] 

g(x) = f(x) ; 2(x) dx 

is a second, linearly independent solution of (8) in any interval where f(x) is 
nonvanishing. This is evident, since (g/j)' = W(J,g)/J 2, whence 

For example, knowing that e3x is one nontrivial solution of u" - 6u' + 9 = 
0, since P(x) = -6x = fpdx, setting e-P(x) = e6x, we obtain the second solution 

g(x) = e3x f [ (::~2 ] dx = e3x f dx = xe3x 

Riccati Equation. Finally, consider the formula for the derivative of the 
ratio v = u'/u,t where u is any nontrivial solution of (8): 

(13) (u')' u" u'2 
v' = - = - - - = -p(x)v - q(x) - v2 

u u u2 

The quadratic first-order DE (13) is called the Riccati equation associated with 
(8); its solutions form a one-parameter family. Conversely, if v(x) is any solution 
of the Riccati equation (13) and if u' = v(x)u, then u satisfies (8). Hence, every 
solution u(x) of (8) can be written in any interval where u does not vanish, in 
the form, 

(14) u(x) = C exp f v(x)dx 

where v(x) is some solution of the associated Riccati equation (13). 
The Riccati substitution v = u' /u thus reduces the problem of solving (8) to 

the integration of a first-order quadratic DE and a quadrature. For instance, 

t Since v = u' /u = d(ln u)/dx, this is called the logarithmic derivative of u. 
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the Riccati equation associated with the trigonometric equation u" + k 2u = 0 
is v' + v2 + k2 = 0, whose general solution is v = k tan k(x 1 - x). 

EXERCISESB 

1. Show that all solutions of (8) have continuous second derivatives. Show also that 
this is not true for (1). 

2. Find a formula expressing the fourth derivative u'v of any solution u of (8) in terms 
of u, u', and the derivatives of p and q. What differentiability conditions must be 
assumed on the coefficients of (8) to justify this formula? 

For the solution pairs of the DEs specified in Exs. 3-5 to follow, (a) calculate the 
Wronskian, and (b) solve the initial-value problem for the DE specified with each of the 
initial conditions u(0) = 2, u'(0) = 1, and u(0) = 1, u'(0) = -1 (or explain why there is 
no solution). 

3. fix) = cos x, g(x) = sin x (solutions of u" + u = 0). 

4. fix) = e-x, g(x) = e-3x (solutions of u" + 4u' + 3u = 0). 

5. fix) = x + 1, g(x) = e" (solutions of xu" - (1 + x)u' + u = 0). 

6. Let fix), g(x), and h(x) be any three solutions of (8). Show that 

f J' J" 
gg'g" ==0 
h h' h" 

7. (a) Prove the Corollary of Theorem 5. 
(b) Prove that if fix) and g(x) satisfy the hypotheses of Theorem 6, then 

p(x) = (gf" - fg")/W and q(x) = (f'g" - g 'f ")/W. 

8. What is wrong with the following "proof" of Theorem 5: "Let w(x) = log W(x); 
then w'(x) = -p(x). Hence, w(x) = w(a) - f':,p(x) dx, from which (10) follows." 

9. Construct second-order linear homogeneous DEs having the following bases of 
solutions; you may assume the result of Ex. 7: 
(a) x, sin x, (b) xm, xn, (c) sinh x, sin x, (d) tan x, cot x. 
For each of the examples of Ex. 9, determine the singular points of the resulting 
DE. 

10. (a) Show that if p,q E @n, then every solution of (8) is of class @n+2. 

(b) Show that if every solution of (8) is of class @n+2, then p E @" and q E @n. 

11. Let fix), g(x), h(x) be three solutions of the linear third-order DE 

Derive a first-order DE satisfied by the determinant 

w(x) = f J' f" 
g g' g" 
h h' h" 
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*12. Let yu + q(x)y = 0, where g(x) is "piecewise continuous" (i.e., continuous except 
for a finite number of finite jumps). Define a "solution" of such a DE as a function 
y = J(x) E e'1 that satisfies the DE except at these jumps. 
(a) Show that any such solution has left- and right-derivatives at every point of 

discontinuity. 
(b) Describe explicitly a basis of solutions for the DE yu + q(x)y = 0, if 

{ +1 
q(x) = -1 

whenx > 0 
whenx < 0 

[N.B. The preceding function q(x) is commonly denoted sgn x,.] 

6 SEPARATION AND COMPARISON THEOREMS 

The Wronskian can also be used to derive properties of the graphs of solu
tions of the DE (8). The following result, the celebrated Sturm Separation Theo
rem, states that all nontrivial solutions of (8) have essentially the same number 
of oscillations, or zeros. (A "zero" of a function is a point where its value is zero; 
functions have two zeros in each complete oscillation.) 

THEOREM 7. If f(x) and g(x) are linearly independent solutions of the DE (8), 
then j(x) must vanish at one point between any two successive zeros of g(x). In other 
words, the zeros of j(x) and g(x) occur alternately. 

Proof If g(x) vanishes at x = x., then the Wronskian 

W(f, g; x,) = f(x,)g'(x,) ,f= 0 

since f and g are linearly independent; hence, f(x,) ¥= 0 and g '(x,) ,f= 0 if g(x,) 
= 0. If x1 and x2 are two successive zeros of g(x), then g'(x1), g'(x2), f(x 1), and 

f(x2) are all nonzero. Moreover, the nonzero numbers g'(x1) and g'(x2) cannot 
have the same sign, because if the function is increasing at x = Xi, then it must 
be decreasing at x = x 2, and vice-versa. Since W(J, g; x) has constant sign by 
the Corollary of Theorem 4, it follows thatj(x1) andf(x2) must also have opposite 
signs. Therefore j(x) must vanish somewhere between x 1 and x2. 

For instance, applied to the trigonometric DE u" + k2u = 0, the Sturm Sep
aration Theorem yields the well-known fact that the zeros of sin kx and cos kx 
must alternate, simply because these functions are two linearly independent 
solutions of the same linear homogeneous DE. 

A slight refinement of the same reasoning can be used to prove an even more 
useful Comparison Theorem, also due to Sturm. 

THEOREM 8. Let f(x) and g(x) be nontrivial solutions of the DEs u" + p(x)u = 0 
and v" + q(x)v = 0, respectively, where p(x) > q(x). Then j(x) vanishes at least once 
between any two zeros of g(x), unless p(x) == q(x) and f is a constant multiple of g. 
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Proof Let x 1 and x2 be two successive zeros of g(x), so that g(x1) = g(x2) = 
0. Suppose that.fix) failed to vanish in x1 < x < x2. Replacingf and/or g by 
their negative, if necessary, we could find solutions J and g positive on x1 < x 
< x2. This would make 

and 

On the other hand, since J > 0, g > 0, and p > q on x1 < x < x2, we have 

d 
- [W(f, g; x)] =Jg" - gf' = (p - q)Jg > 0 
dx 

on 

Hence, Wis nondecreasing, giving a contradiction unless 

p - q = W(f, g; x) = 0 

In this event,J= kg for some constant k by Theorem 4, completing the proof. 

COROLLARY 1. If q(x) < 0, then no nontrivial solution of u" + q(x) u = 0 
can have more than one zero. 

The proof is by contradiction. By the Sturm Comparison Theorem, the solu
tion v = l of the DE v" = 0 would have to vanish at least once between any 
two zeros of any nontrivial solution of the DE u" + q(x)u = 0. 

The preceding results show that the oscillations of the solutions of u" + q(x)u 
= 0 are largely determined by the sign and magnitude of q(x). When q(x) < 0, 
oscillations are impossible: no solution can change sign more than once. On the 
other hand, if q(x) > k2 > 0, then any solution of u" + q(x)u = 0 must vanish 
between any two successive zeros of any given solution A cos k(x - x1) of the 
trigonometric DE u" + k2u = 0, hence in any interval of length 1r /k. 

This result can be applied to solutions of the Bessel DE(**) of §1 (i.e., to the 
Bessel function of order n; see Ch. 4, §4). Substituting u = v/VX into(**), we 
obtain the equivalent DE 

(15) [ 4n2 - 1] 
v" + l - 4x2 v = 0 

whose solutions vanish when u does (for x 'F 0). Applying the Comparison Theo
rem to (15) and u" + u = 0, we obtain the following. 

COROLLARY 2. Each interval of length 1r of the positive x-axis contains at least 
one zero of any solution of the Bessel DE of order zero, and at most one zero of any 
nontrivial solution of the Bessel DE of order n if n > ½-

The fact that the oscillations of the solutions of u" + q(x)u = 0 depend on 
the sign of q(x) is illustrated by Figures 2.2 and 2.3, which depict sample solution 
curves for the cases q(x) = 1 and q(x) = -1, respectively. 
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11 

X 

Figure 2.2 Solution curves of u" + u = 0. 

7 THE PHASE PLANE 

In the theory of normal second-order DEs u" = F(x,u,u'), linear or nonlin
ear, the two-dimensional space of all vectors (u,u') is called the phase plane. As 
was noted in §5, the points of this phase plane correspond to the states of any 
physical system whose behavior is modeled by such a DE. 

Clearly, any solution u(x) of the given DE determines a parametric curve or 
trajectory in this phase plane, which consists of all [u(x),u'(x)] associated with this 
solution. [A trivial exception arises at equilibrium states at which F(x,c,O) = 0, so 
that u'(x) = 0 and u(x) = c. Clearly, any such equilibrium point is necessarily 
on the u-axis, where u' = O.] 

Figure 2.3 Solution curves of u" - u = O. 
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The trajectories just defined have some important general geometrical prop
erties. For example, since u is increasing when u' > 0 and decreasing when u' 
< 0, the paths of solutions must go to the right in the upper half-plane and to 
the left in the lower half-plane. Furthermore, paths of solutions ("trajectories") 
must cut the u-axis u' = 0 orthogonally, except where F = 0. 

We will treat in this chapter only homogeneous second-order linear DEs (8), 
deferring discussion of the nonlinear case to Chapter 5. Using the letter v to 
signifly u', this DE is obviously equivalent to the system 

(16) 
du 
-= V 
dx ' 

dv 
- = -p(x)v - q(x)u 
dx 

which can also be written in vector form as 

Note that if q(x) < 0, then du'/dx = -q(x)u has the same sign as u on the u
axis. It follows that if q(x) is negative, then any trajectory once trapped in the 
first quadrant can never leave it, because it can neither cross the u-axis into the 
fourth quadrant nor recross the u' -axis into the second quadrant. The same is 
true, for similar reasons, of trajectories trapped in the third quadrant. 

Even more important, two nontrivial solutions of (8) are linearly dependent if 
and only if they are on the same straight line through the origin in the (u,v)
plane. It follows that each straight line through the origin moves as a unit. The 
preceding facts also become evident analytically, if we introduce clockwise polar 
coordinates in the phase plane, by the formulas 

(17) u'(x) = r cos 8(x), u(x) = r sin 8(x) 

(We adopt this clockwise orientation so that 8 will be an increasing function on 
the u'-axis.) Differentiating the relation cot 8 = u' ju, we then have the formulas 

-(csc2 8)8' = (u"/u) - (u'/u) 2 = -p(u'/u) - q - (u'/u)2 

= -p cot 8 - q - cot2 8 

If we multiply through by -sin2 8, this equation gives 

(18) d8/dx = cos2 8 + p(x) cos 8 sin 8 + q(x) sin2 8 

This first-order DE gives much information about the oscillations of u. 
Differentiating r 2(x) = u2(x) + u'2(x) as in the proof of Theorem 1, where 

u(x) = r2(x), we get 

rr' = uu' + u'u" = u'(u - pu' - qu) 

= r 2 cos 8[(1 - q(x)) sin 8 - p(x) cos 8] 
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Dividing through by r 2 and simplifying, we obtain 

(19) 
1 dr . - - = -p(x) cos2 0 + (1 - q(x)) cos 0 sm 0 
r dx 

As in Theorem 1, it follows that the magnitude I d(ln r)/dx I of the logarithmic 
derivative ofr(x) is bounded by IPlmax + (1 + lqlmax)/2. 

Now, consider the graph of the multiple-valued function 0(x) in the (x, 0)
plane. Since cot 0 is periodic with period 1r, the graph at 0 = arc cot(u' /u) for 
any solution of (8) consists of an infinite family of congruent curves, all obtained 
from any one by vertical translation through integral multiples of 1r. The curves 
that form the graphs of 01 (x) and 02(x), for any two linearly independent solu
tions ui, u2 of (8), occur alternately. Moreover, by the uniqueness theorem of 
Ch. 1, they can never cross. 

In (17), u = 0 precisely when sin 0 = 0, that is, when 0 = 0 (mod 1r). Inspect
ing (18), we also see that 

(20a) 

(20b) 

When 

When 

0 = 0 (mod 1r), that is, u = 0, then d0/dx > 0 -

0 = 1r/2 (mod 1r), d0/dx has the sign of q 

From (20a) it follows that, after the graph of any 0(x) has crossed the line 0 = 
n1r, it can never recross it backwards. Where u(x) next vanishes (if it does), we 
must have 0 = (n + l)1r; in other words, successive zeros of u(x) occur precisely 
where 0 increases from one integral multiple of 1r to the next! 

After verifying that the right side of (18) satisfies a Lipschitz condition, we 
see that this inequality can never cease to hold; hence, in any interval where 
01 (x) increases from n1r to n1r + 1r, 02(x) must cross the line 0 = n1r + 1r and so 
u2 must vanish there. Sturm's Comparison Theorem follows similarly: if q(x) is 
increased and p(x) is left constant, the Comparison Theorem of Ch. 1, applied 
to (19), yields it as a corollary. 

Oscillatory Solutions. The preceding considerations also enable one to 
extend some of the results stated in §3 for constant-coefficient DEs to second
order linear DEs with variable coefficients. When q(x) > p2(x)/4, the quadratic 
form on the right side of (18) is positive de.finite; hence d0/dx is identically posi
tive. Unless q(x) gets very near to p2(x)/4, the zero-crossings of solutions occur 
with roughly uniform frequency, and so the DE (8) may be said to be of oscil
latory type. 

When q(x) < 0, the DE (8) is said to be of positive type. One can also say by 
(20a) and (20b), that once 0(x) has entered the first or third quadrant, it can 
never escape from this quadrant; it is trapped in it. Therefore, a given solution 
u(x) of (8) can have at most one zero if q(x) < O; solutions are nonoscillatory. 
Moreover, since uu' > 0 in the first and third quadrants, u2(x) and hence I u(x) I 
are perpetually increasing after a solution has been trapped in one of these 
quadrants. 

Using more care, one can show that when q(x) < 0 the limit as a! - oo of 
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the solutions ua(x) satisfying ua(0). = 1 and ua(a) = 0 is an everywhere increasing 
positive solution. Moreover, replacing x by - x, which reverses the sign of u'(x), 
one can construct similarly an everywhere decreasing positive solution. These two 
monotonic solutions (ex and e-x for u" - u = 0) are usually unique, up to con
stant positive factors, and provide a natural basis of solutions. 

Focal, Nodal, and Saddle Points. Even more interesting than Sturm's theo
rems are the qualitative differences between the behavior of solutions of differ
ent second-order DEs that become apparent when we look at the corresponding 
trajectories in the phase plane (their so-called phase portraits). We shall discuss 
these for nonlinear DEs in Chapter 5; here we shall discuss only the linear, con
stant-coefficient case. We have already discussed this case briefly in §§2-3, pri
marily from an algebraic standpoint. 

In the linear constant-coefficient case, using the letter v to signify u', we obvi
ously have 

(21) 
du dv - = V - = -pv - qu. 
dx 'dx 

Deferring to Chapter 5, §5, the discussion of the possibilities q = 0 and 
Ll = p2 - 4q = 0, the original DE u" + pu' + qu = 0 has a basis of solutions 
of one of the following three main kinds: A) if p2 < 4q, eax cos kx and eax sin kx, 
B) if p2 > 4q > 0, functions eax and eftx, where a and {3 have the same sign, 
C) if p2 > 0 > 4q, functions eax and efJx where a and {3 have opposite signs. 
These three cases give very different-looking configurations of trajectories 
in the phase plane. 

Note that Cases B and C are subcases of the "Case l" discussed in § 1, while 
Case A coincides with "Case 2" discussed there. As will be explained in Chapter 
5, §5, most of the qualitative differences to be pointed out below have analogues 

. dv . 
for nonlinear DEs of the general form - = F(u,v), of which the form 

du 

(21') 
dv 
-= 

-pv - qu 

du V 

of (21) is a special case. 

Case A. By (18), writmg 'Y = cot 8, we have 

8' = d8/dx = (sin28)(-y2 + p-y + q) > 0 for all 8. 

Hence, 8 increases monotonically. In each half-turn around the ongm, r 
is amplified or damped by a factor e1a1..-, according as a > 0 or a < 0. In 
either case there are no invariant lines; the critical point at (0,0) is said to be 
a focal point. Figure 2.4a shows the resulting phase portrait for u" + 0.2u' + 
4.0lu = 0. 
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V 

u u 

(a) u" + 0.2u' + 4.0lu = 0. (b) 2u" - 5u' + 2u = 0. 

Figure 2.4 Two phase portraits. 

When p2 > 4q (i.e., in Cases Band C), the two lines u' = au and u' = {:Ju in 
the phase plane are invariant lines (Ch. 1, §7). These lines, which correspond to 
the solutions eax and efJX, divide the uu'-plane up into four sectors, in each of 
which 8' is of constant sign and so 8 is monotonic. If q = a{:J > 0, the two invar
iant lines lie in the same quadrant; if q < 0, they lie in adjacent quadrants. 

Case B. In this case, the trajectories in each sector are all tangent at the 
origin to the same invariant line, and have an asymptotic direction parallel to 
the other invariant line at oo. Fig. 2.4b depicts the phase portrait for 2u0 - 5u' 
+ 2u = 0. The lines v = 2u and u = 2v are the invariant lines of the corre
sponding linear fractional DE, dv/du = (5v - u)/v. In Case B, the origin is said 
to be a nodal point. 

Case C. In the saddle point case that p2 > 0 > 4q, the two invariant lines lie 
in different quadrants, and all trajectories are asymptotic to one of them as they 
come in from infinity, and to the other as they recede to it. Figure 1.5 depicts 
the phase portrait for the case u" = u, with hyperbolic trajectories u2 - v2 = 
4AB in the phase plane given parametrically by u = Ac + Be-x, v = u' = Ac 
- Be-x. The invariant lines are the asymptotes v = ± u. 

EXERCISES C 

1. (a) Show that if g(x) = f'(x), then g(x) vanishes at least once between any two zeros 
of fix). 

(b) Show how to construct, for any n, a function fix) satisfying fi0) = fil) = 0, 
fix) -=fa 0 on (0,1), yet for whichf'(x) vanishes n times on (0,1). 
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2. Show that there is a zero ofJ1(x) between any two successive zeros ofJ0(x). 

3. Show that every solution of u" + (1 + e')u = 0 vanishes infinitely often on (-oo 
,0), and also infinitely often on (0;oo). 

4. Show that no nontrivial solution of u" + (1 - x2)u = 0 vanishes infinitely often. 

*5. The Legendre polynomial Pn(x) satisfies the DE (1 - x2)u" - 2xu' + n(n + l)u = 
0. Show that Pn(x) must vanish O(n) times on [-1,l]. 

6. Apply numerical methods (Ch. 1, §8) to (18), to determine about how many times 
any solution of u" + xu = 0 must vanish on (0,100). 

7. Same question for the Mathieu DE u" + [1r2 + 4 cos 2x]u = 0. 

8. (a) Show that no normal second-order linear homogeneous DE can be satisfied by 
both some cos kx with k * 0, and some e=. [HINT: Consider the Wronskian.] 

(b) Find a normal third-order homogeneous linear DE that has as solutions both the 
oscillatory functions sin x, cos x, and the nonoscillatory function e'. 

8 ADJOINT OPERATORS; LAGRANGE IDENTITY 

Early studies of differential equations concentrated on formal manipulations 
yielding solutions expressible in terms of familiar functions. Out of these studies 
emerged many useful concepts, including those of integrating factor and exact 
differential discussed in Ch. 1, §6. We will now extend these concepts to second
order linear DEs, and derive from them the extremely important notions of 
adjoint and self-adjoint equations. 

DEFINITION. The second-order homogeneous linear DE 

(22) L[u] = p0(x)u"(x) + pi(x)u'(x) + p2(x)u(x) = 0 

is said to be exact if and only if, for some A(x),B(x) E ~ 1, 

(22') 
d 

p0(x)u" + p1(x)u' + p2(x)u = - [A(x)u' + B(x)u] 
dx 

for all functions u E ~ 2. An integrating factor for the DE (22) is a function v(x) 
such that vL[u] is exact. [Here and later, it will be assumed that Po E ~ 2 and that 
pi,p0 E ~ 1 in discussing the DEs (22) and (22').] 

If an integrating factor v for (22) can be found, then clearly 

d 
v(x)[p0(x)u" + pi(x)u' + p2(x)u] = - [A(x)u' + B(x)u] 

dx 

Hence, the solutions of the homogeneous DE (22) are those of the first-order 
inhomogeneous linear DE 

(23) A(x)u' + B(x)u = C 
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where C is an arbitrary constant. Also, the solutions of the inhomogeneous DE 
L[u] = r(x) are those of the first-order DE 

(23') A(x)u' + B(x)u = J v(x)r(x) dx + C 

The DEs (23) and (23') can be solved by a quadrature (Ch. 1, §6). Hence, if an 
integrating factor of (22) can be found, we can reduce the solution L[u] = r(x) 
to a sequence of quadratures. 

Evidently, L[u] = 0 is exact in (22) if and only if Po = A, p1 = A' + B, and 
p2 = B'. Hence (22) is exact if and only if 

P2 = B' = {P1 - A')' = pf - (pfi)' 

This simple calculation proves the following important result. 

LEMMA. The DE (22) is exad if and only if its coefficient functions satisfy 

COROLLARY. A Junction v E (j2is an integrating factor for the DE (22) if and 
only if it is a solution of the second-order homogeneous linear DE 

(24) M[v] = [p0(x)v]" - [pi(x)v]' + p2(x)v = 0 

DEFINITION. The operator Min (24) is called the adjoint of the linear oper
ator L. The DE (24), expanded to the DE 

(24') 

is called the adjoint of the DE (22). 

Clearly, whenever a nontrivial solution of the adjoint DE (24) or (24') 
of a given second-order linear DE (22) can be found, every solution of any DE 
L[u] = r(x) can be obtained by quadratures, using (23'). 

Lagrange Identity. The concept of the adjoint of a linear operator, which 
originated historically in the search for integrating factors, is of major impor
tance because of the role which it plays in the theory of orthogonal and bior
thogonal expansions. We now lay the foundations for this theory. 

Substituting into (24), we find that the adjoint of the adjoint of a given sec
ond-order linear DE (20) is again the original DE (20). Another consequence of 
(24) is the identity, valid whenever Po E {y2, p, E {j 1, 
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Since wu" - uw' = (wu' - uw')' and (uw)' = uw' + wu', this can be simplified 
to give the Lagrange identity 

(25) 
d 

vL[u] - uM[v] = - [p0(u'v - uv') - (Po - P1)uv] 
dx 

The left side of (25) is thus always an exact differential of a homogeneous bilin
ear expression in u,v, and their derivatives. 

Self-Adjoint Equations. Homogeneous linear DEs that coincide with their 
adjoint are of great importance; they are called self-adjoint. For instance, the 
Legendre DE of Example 2, §1, is self-adjoint. The condition for (22) to be self
adjoint is easily derived. It is necessary by (24') that 2p0 - p1 = p1, that is, 
Po = p1. Since this relation implies pi - p~ = 0, it is also sufficient. Moreover, 
in this self-adjoint case, the last term in (25) vanishes. This proves the first 
statement of the following theorem. 

THEOREM 9. The second-order linear DE (22) is self-adjoint if and only if it has 
the form 

(26) d [ du] - p(x) - + q(x)u = 0 
dx dx 

The DE (22) can be made self-adjoint by multiplying through b-y 

(26') h(x) = [ exp J (P1/Po) dx] /Po• 

To prove the second statement, first reduce (22) to normal form by dividing 
through by Po, and then observe that the DE 

hu" + (ph)u' + (qh)u = 0 

is self-adjoint if and only if h' = ph, or h = exp (J p dx). 
For example, the self-adjoint form of the Bessel DE of Example 1 is 

(xu')' + [x - (n2/x)]u = 0 

For self-adjoint DEs (26), the Lagrange identity simplifies to 

(26") 
d 

vL[u] - uL[v] = - [p(x)(u'v - uv')] 
dx 
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EXERCISESD 

1. Show that if u(x) and v(x) are solutions of the self-adjoint DE 

(fru')' + q(x)u = 0 

then p(x)[uv' - vu'] is a constant (Abel's identity). 

2. Reduce the following DEs to self-adjoint form: 
(a) (1 - x2)u" - xu' + Xu = 0 (Chebyshev DE) 
(b) x2u" + xu' + u = 0 (c) u" + u' tan x = 0 

3. For each of the following DEs, y = x3 is one solution; use (12) to find a second, 
linearly independent solution by quadratures. 
(a) x2y" - 4xy' + 6y = 0 (b) xy" + (x - 2)y' - 3y = 0 

4. Show that the substitution y = t!fHl•l2u replaces (8) by 

y" + l(x)y = 0, 
p2 

I(x) = q - 4 - P'/2 

*5. Show that two DEs of the form (8) can be transformed into each other by a change 
of dependent variable of the form y = v(x)u,v * 0, if and only if the function 
/(x) = q(x) - p2(x)/4 - p'(x)/2 is the same for both DEs [/ (x) is called the invariant 
of the DE]. 

6. Reduce the self-adjoint DE (pu')' + qu = 0 to normal form, and show that, in the 
notation of Ex. 5, /(x) = (p'2 - 2pp" + 4pq)/4p2• 

7. (a) Show that, for the normal form of the Legendre DE [(1 - x2)u']' + Xu = 0 

(Use Ex. 6.) 

(b) Show that, if X = n(n + 1), then every solution of the Legendre equation has 
at least (2n + l)/1r zeros on (-1, 1). 

8. Let u(x) be a solution of u" = q(x)u, q(x) > 0 such that u(0) and u'(0) are positive. 
Show that uu' and u(x) are increasing for x > 0. 

9. Let h(x) be a nonnegative function of class @1. Show that the change of independent 
variable t = J; h(s) ds, u(x) = v(t), changes (8) into v" + p1(t)v' + q1(t)v = 0, where 
p1(t) = [p(x)h(x) + h'(x)]/h(x)2 and q1(t) = q(x)/h(x)2• 

10. (a) Show that a change of independent variable t = ± J I q(x) I 112 dx, q * 0, 
q e @1 changes the DE (8) into one whose normal form is 

(*) d2u + (q' + 2pq) du + u = 0 
dt2 2 I q I 312 dt -

(b) Show that no other change of independent variable makes I q I = 1 

*11. Using Ex. 10, show that Eq. (8) is equivalent to a DE with constant coefficients 
under a change of independent variable if and only if (q' + 2pq)/q312 is a constant. 

12. Making appropriate definitions, show that p0u'" + p1u" + p2u' + p3u = 0 is an 
exact DE if and only if pi - pf + p~ - p3 = 0. 
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9 GREEN'S FUNCTIONS 

The inhomogeneous linear second-order DE in normal form, 

(27) 
d2u du 

L[u] = dx2 + p(x) dx + q(x)u = r(x) 

differs from the homogeneous linear DE 

(27') 
d2u du 

L[u] = dx2 + p(x) dx + q(x)u = 0 

by the nonzero function r(x) on the right side. In applications to electrical and 
dynamical systems, the function r(x) is called the forcing term or input function. 
By the Uniqueness Theorem of §4 and Lemma 2 of §4, it is clear that the solu
tion u(x) of L[u] = r(x) for given homogeneous initial conditions such as u(O) 
= u'(O) = 0 depends linearly on the forcing term. We will now determine the 
exact nature of this linear dependence. 

Given the inhomogeneous linear DE (27), we will show that there exists an 
integral operator G, 

(28) 

such that G[r] = u. In fact, one can always find a function G that makes G[r] 
satisfy given homogeneous boundary condition~, provided that the latter define 
a well-set problem. 

The kernel G(x, ~) of Eq. (28) is then called the Green's Junctiont associated 
with the given boundary value problem. In operator notation, it is defined by 
the identity L[G[r]] = r (G is a "right-inverse" of the linear operator L) and 
the given boundary conditions. 

Green's functions can be defined for linear differential operators of any 
order, as we will show in Ch. 3, §9. To provide an intuitive basis for this very 
general concept, we begin with the simplest, first-order case. In this example, 
the independent variable will be denoted by t and should be thought of as rep
resenting time. 

Example 3. Suppose that money is deposited continuously in a bank account, 
at a continuously varying rate r(t), and that interest is compounded continuously 
at a constant rate p ( = 100p% per annum). As a function of time, the amount 

t To honor the British mathematician George Green (1793-1841), who was the first to use formulas 
like (28) to solve boundary value problems. Cauchy and Fourier used similar formulas earlier to solve 
DEs in infinite domains. 



u(t) in the account satisfies the DE 

du 
- = pu + r(t) 
dt 
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If the account is opened when t = 0 and initially has no money: u(0) = 0, then 
one can calculate u(1) at any later time T > 0 as follows. Each infinitesimal 
deposit r(t) dt, made in the time interval (t, t + dt), increases through compound 
interest accrued during the time interval from t to T by a factor ef'(T-t) to the 
amount eP<T-t>r(t) dt. Hence the account should amount, at time T, to the integral 
(limit of sums) 

(29) 

This plausible argument is easily made rigorous. It is obvious that u(0) = 0 in 
(29). Differentiating the product in the final expression of (29), we obtain 

where the derivative of the integral is evaluated by ·the Fundamental Theorem 
of the Calculus. 

Example 4. Consider next the motion of a mass m on an elastic spring, which 
we model by the DE u" + pu' + qu = r(t). Here p signifies the damping coef
ficient and q the restoring force; r(t) is the forcing function; we will assume that 
q > p2j4. Finally, suppose that the mass is at rest up to time t0, and is then given 
an impulsive (that is, instantaneous) velocity v 0 at time t0 . 

The function J describing the position of the mass m as a function of time 
under such conditions is continuous, but its derivative J' is not defined at t0, 

because of the sudden jump in the velocity. However, the left-hand derivative 
of J at the point t0 exists and is equal to zero, and the right-hand derivative also 
exists and is equal to v 0, the impulsive velocity. For t > t0 , the function J is 
obtained by solving the constant-coefficient DE u" + pu' + qu = 0. Since 
q > p2j4, the roots of the characteristic equation are complex conjugate, and 
we obtain an oscillatory solution 

u(t) = { ~v0/v)e-,.(t-tol sin v(t - t0) 

whereµ = p/2 and v = Vq - p2/4. 
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Now suppose the mass is given a sequence of small velocity impulses t:..vk = 
r(tk) t:..t, at successive instants t0, t1 = t0 + t:..t, ... , tk = t0 + k t:..t, . ... Summing 
the effects of these over the time interval t0 < t < T, and passing to the limit 
as t:..t--+ 0, we are led to conjecture the formula 

(30) l Tl 
-u(T) = - e-,.(T-() sin v(T - t)r(t) dt 

to " 

This represents the forced oscillation associated with the DE 

(31) u" + pu' + qu = r(t), q> p2j4 

having the forcing term r(t). 

Variation of Parameters. The conjecture just stated can be verified as a 
special case of the following general result, valid for all linear second-order DEs 
with continuous coefficients. 

THEOREM 10. Let the function G(t, r) be defined as follows: 
(i) G(t, r) = 0, for a < t < r, 

(ii) for each fixed T >a and all t > T, G(t, r) is that particular solution of the DE 
L[G] = G11 + p(t)G1 + q(t)G = 0 which satisfies the initial conditions G = 0 
and G1 = l at t = r. 

Then G is the Green's Junction of the operator L for the initial value problem on 
t < a. 

Proof We must prove that, for any continuous function r, the definite 
integral 

(32) u(t) = l' G(t, r)r(r) dr = 100 
G(t, r)r(r) dr [by (i)] 

is a solution of the second-order inhomogeneous linear DE (27), which satisfies 
the initial conditions u(a) = u'(a) = 0. 

The proof is based on Leibniz' Rule for differentiating definite integrals.t 
This rule is: For any continuous function g(t, r) whose derivative ag;at is piece
wise continuous, we have 

df' f'a - g(t, r) dT = g(t, t) + ag (t, T) dr 
dt a a t 

t Kaplan, Advanced Calculus, p. 219. In our applications, iJg/iJt has, at worst, a simple jump across 
t = T. 
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Applying this rule twice to the right side of formula (32), we obtain successively, 
since G(t, t) = 0, 

u'(t) = G(t, t)r(t) + l' G,(t, r)r(r) dr = l' G,(t, r)r(r) dr 

u"(t) = G1(t, t)r(t) + l' G11(t, r)r(r) dr 

By assumption (ii), the last equation simplifies to 

u"(t) = r(t) + l' G11(t, r)r(r) dr 

Here the subscripts indicate partial differentiation with respect tot. Thus 

L[u] = u"(t) + p(t)u'(t) + q(t)u(t) 

= r(t) + l' [G11(t, r) + p(t)G,(t, r) + q(t)G(t, r)]r(r) dr = r(t) 

completing the proof. 
The reader can easily verify that the function v- 1e-µ(t-rl sin v(t - r) in (30) 

satisfies the conditions of Theorem 10, in the special case of Example 4. 
To construct the Green's function G(t, r) of Theorem 9 explicitly, it suffices 

to know two linearly independent solutions f(t) and g(t) of the reduced equation 
L[u] = 0. Namely, to compute G(t, r) for t > r write G(t, r) = c(r)f(t) + 
d(r)g(t), by Theorem 3. Solving the simultaneous linear equations G = 0, G, = 
1, at t = r specified in condition (ii) of Theorem 10 

we get the formulas 

c(r) = - g(r)/W(f, g; r), d(r) = f(r)/W(f, g; r) 

where W(f, g; r) = f(r)g'(r) - g(r)f'(r) is the Wronskian. This gives for the 
Green's function the formula 

G(t, r) = [f(r)g(t) - g(r)f(t)]/[J(r)g'(r) - g(r)J'(r)] 

Substituting into (32), we obtain our final result. 

COROLLARY. Let f(t) and g(t) be any two linearly independent solutions of the 
linear homogeneous DE (27'). Then the solution of L[u] = r(t) for the initial conditions 
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u(a) = u'(a) = 0 is the .function 

(33) u(t) = (' j(r)g(t) - g(r)j(t) r(r) dr 
J a W[f(r),g(r)] 

Consequently, if we define the Junctions <b(t) and 1/t(t) as the following definite 
integrals: 

(' f(r) 
<J>(t) = J a W(f,g) r(r) dr, l t g(r) 

1/t(t) = - -- r(r) dr 
a W(f,g) 

we can write the solution of L[u] = r(t), in the form 

(33') u(t) = <b(t)g(t) + 1/t(t)J(t) 

In textbooks on the elementary theory of DEs, formula (33) is often derived 
formally by posing the question: What must c(r) and d(r) be in order that the 
function 

G(t, r) = c(r)f (t) + d(r)g(t) 

when substituted into (28), will give a solution of the inhomogeneous DE L[u] 
= r(t)? Since c(r) and d(r) may be regarded as "variable parameters," which vary 
with T, formula (33) is said to be obtained by the method of variation of 
parameters. 

EXERCISESE 

1. Integrate the following DEs by using formula (33): 
(a) y" - y = xn (b) y" + y = e' 
(c) y" - qy' + y = 2xe' (d) y" + IOy' + 25y = sin x 

2. Show that the general solution of the inhomogeneous DE y" + k2y = R(x) is given by 
y = (Ijk)[f~ sin k(x - t)R(t) dt] + c1 sin kx + c2 cos kx. 

3. Solve y" + 3y' + 2y = x3 for the initial conditions y(O) = y'(O) = (0). 

4. Show that any second-order inhomogeneous linear DE which is satisifed by both x2 

and sin2 x must have a singular point at the origin. 

5. Construct Green's functions for the initial-value problem, for the following DEs: 
(a) u" = 0 (b) u" = u (c) u" + u = 0 
(d) x2u" + (x2 + 2x)u' + (x + 2)u = 0 [HINT: x is a solution.] 

6. Find the general solutions of the following inhomogeneous Euler DEs: 
(a) x2y" - 2xy' + 2y = x2 + px + q (b) x2y" + 3xy' + y = R(x) 
[HINT: Any homogeneous Euler DE has a solution of the form x'.] 

7. (a) Construct a Green's function for the inhomogeneous first-order DE 

du/dt = p(t)u + r(t) 
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(b) Interpret in terms of compound interest (cf. Example 3). 
(c) Relate to formula (8') of Ch. 1. 

8. Show that, if q(t) < 0, then the Green's function G(t, T) of Uu + q(t)u = 0 for the 
initial-value problem is positive and convex upward for t > T. 

*10 TWO-ENDPOINT PROBLEMS 

So far, we have considered only "initial conditions." That is, in considering 
solutions of second-order DEs such as y" = -p(x)y' - q(x)y, we have supposed 
y and y' both given at the same point a. That is natural in many dynamical prob
lems. One is given the initial position and velocity, and a general law relating 
the acceleration to the instantaneous position and velocity, and then one wishes 
to determine the subsequent motion from this data, as in Example 4. 

In other problems, two-endpoint conditions, at points x = a and x = b, are 
more natural. For instance, the DE y" = 0 characterizes straight lines in 
the plane, and one may be interested in determining the straight line joining 
two given points (a, c) and (b, d). That is, the problem is to find the solution 
y = j(x) of the DE y" = 0 which satisfies the two endpoint conditions j(a) = c 
andf(b) = d. 

Many two-endpoint problems for second-order DEs arise in the calculus of 
variations. Here a standard problem is to find, for a given function F(x,y,y'), the 
curve y = J(x) which minimizes the integral 

(34) /(J) = lb F(x,y,y') dx 

By a classical result of Euler,t the line integral (34) is an extremum (maximum, 
minimum, or minimax), relative to all curves y = f(x) of class fJ2 satisfying 
f(a) = c and f(b) = d, if and only if J(x) satisfies the Euler-Lagrange variational 
equation 

(34') fx (~) = (!;) 
For example, if F(x,y,y') = \!I + y'2 so that /(J) is the length of the curve, Eq. 
(34') gives zero curvature: 

t See for example Courant and John, Vol. 2, p. 743. 
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as the condition for the length to be an extremum. This is equivalent toy" = 0, 
whose solutions are the straight lines y = ex + d. 

It is natural to ask: Under what circumstances does a second-order DE have 
a unique solution, assuming given values j(a) = c and J(b) = d at two given 
endpoints a and b > a? When this is so, the resulting two-endpoint problem is 
Galled well-set. Clearly, the two-endpoint problem is always well-set for y" = 0. 

Example 5. Now consider, for given p, q, r E C1, the curves that minimize the 
integral (34) for F = ½[p(x)y'2 + 2q(x)yy' + r(x)y2]. For this F, the Euler
Lagrange DE is the second-order linear self-adjoint DE (py')' + (q' - r)y = 0. 
The question of when the two-endpoint problem is well-set in this example is 
partially answered by the following result. 

THEOREM 10. Let the second-order linear homogeneous DE 

(35) p0 (x) =i'- 0 

with continuous coefficient-Junctions have two linearly independent solutions. t Then the 
two-endpoint problem de.fined by (35) and the endpoint conditions u(a) = c, u(b) = d 
is well-set if and only if no nontrivial solution satisfies the endpoint conditions 

(36) u(a) = u(b) = 0 

Proof By Theorem 2, the general solution of the DE (35) is the function u 
= af(x) + f)g(x), where f and g are a basis of solutions of the DE (35), and a, f) 
are arbitrary constants. By the elementary theory of linear equations, the 
equations 

af(a) + f)g(a) = c af(b) + f)g(b) = d 

have one and only one solution vector (a, f)) if and only if the determinant 
j(a)g(b) - g(a)J(b) =i'- 0. The alternative j(a)g(b) = f(b)g(a) is, however, the con
dition that the homogeneous simultaneous linear equations 

(37) af(a) + f)g(a) = af(b) + f)g(b) = 0 

have a nontrivial solution (a, f)) =f,. (0, 0). This proves Theorem 11. 

When the DE (35) has a nontrivial solution satisfying the homogeneous end
point conditions u(a) = u(b) = 0, the point (b, 0) on the x-axis is called a con
jugate point of the point (a, 0) for the given homogeneous linear DE (35) or for 
a variational problem leading to this DE. In general, such conjugate points exist 

t In Ch. 6, it will be shown that this hypothesis is unnecessary; a basis of solutions always exists for 
continuous p,(x). 
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for DEs whose solutions oscillate but not for those of nonoscillatory type, such 
as u" = q(x)u, q(x) > 0. 

Thus, in Example 5, let p = 1, q = 0, and r = - k2 < 0. Then the general 
solution of (35) for the initial condition u(a) = 0 is u = A sin [k(x - a)]. For 
u(b) = 0 to be compatible with A =I= 0, it is necessary and sufficient that b = a 
+ (n-,r /k). The conjugate points of a are spaced periodically. On the other hand, 
the DE y" - l\y = 0, corresponding to the choice p = 1, q = 0, r = l\ in 
Example 5, admits no conjugate points if ll. = r is positive. 

*11 GREEN'S FUNCTIONS, II 

We now show that, except in the case that a and bare conjugate points for 
the reduced equation L[u] = 0, the inhomogeneous linear DE (27) can be 
solved for the boundary conditions u(a) = u(b) = 0 by constructing an appro
priate Green's function G(x, ~) on the square a < x, ~ < b and setting 

(38) u(x) = lb G(x, ~)r(~) d~ = G[r] 

Note that G is an integral operator whose kernel is the Green's function G(x, ~
The existence of a Green's function for a typical two-endpoint problem is 

suggested by simple physical considerations, as follows. 

Example 6. Consider a nearly horizontal taut string under constant tension 
T, supporting a continuously distributed load w(x) per unit length. If y(x) 
denotes the vertical displacement of the string, then the load w(x) Llx supported 
by the string in the interval (x0, x0 + Llx) is in equilibrium with the net vertical 
component of tension forces, which is 

in the nearly horizontal ("small amplitude") approximation.t Dividing through 
by Llx and letting Llx l 0, we get Ty"(x) = w(x). 

The displacement y(x) depends linearly on the load, by Lemma 2 of §4. This 
suggests that we consider the load as the sum of a large number of point-con
centrated loads w, = w(t) Llt at isolated points ~;- For each individual such load, 
the taut string consists of two straight segments, the slope jumping by w.fT at 
t. Thus, if the string extends from O to 1, the vertical displacement is 

O<x:St 
t:Sx:51 

t For a more thorough discussion, see J. L. Synge and B. A. Griffith, Principles of Mechanics, McGraw
Hill, 1949, p. 99. 
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where E, is set equal to w,/T in order to give a jump in slope of w,IT at the point 
x = t. Passing to the limit as the Llt ~ 0, we are led to guess that 

where 

_ {<~ - l)x/T 
G(x, ~) - ~(x - 1)/T 

0<x<~ 
~<x<l 

These heuristic considerations suggest that, in general, the Green's function 
G(x, ~) for the two-endpoint problem is determined for each fixed ~ by the fol
lowing four conditions: 

(i) L[G] = 0 in each of the intervals a < x <~and~< x < b. 

(ii) G(a, ~ = G(b, ~) = 0. 

(iii) G(x, ~ is continuous across the diagonal x = ~ of the square a < x, ~ < b 
over which G(x, ~ is defined. 

(iv) The derivative ac;ax jumps by l/p0(x) across this diagonal. To fulfill these 
conditions for any given t let J(x) and g(x) be any nontrivial solutions of 
L[u] = 0 that satisfy J(a) = 0 and g(b) = 0, respectively. Then for any factor 
E(~), the function 

G(x, ~ = {E(~f(x)g(~ 
E(~j(~g(x) 

a<x<~ 
~<x<b 

will satisfy L[ G] = 0 in the required intervals because L[/] = L[g] = O; it will 
satisfy (ii) because J(a) = g(b) = 0; and it approaches the same limit E(~)J(~)g(~) 
from both sides of the diagonal x = ~; hence it is continuous there. For the 
factor E(~) to give ac;ax a jump of l/p0(x) across x = ta direct computation 
gives the condition 

We are therefore led to try the kernel 

(39') G(x, ~) = {f(x)gm/Po(~)W(~) 
f(~)g(x)/Po(~) W(~) 

a<x<~ 
~<x<b 

where W = Jg' - gf' is the Wronskian of J and g. Observe again that since J(a) 
= g(b) = 0, G(a, ~) = G(b, ~) = 0 for all~ E [a, b]. 
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THEOREM 11 '. For any continuous Junction r(x)on [a, b], the Junction u(x) E 

fJ2 de.fined by (39) and (39') is the solution of p0u" + p 1u' + p2u = r that satisfies 
the boundary conditions of u(a) = u(b) = 0, provided that W(f, g) =f,. 0, i.e., that 
there is no nontrivial solution of (35) satisfying the same boundary conditions. 

The proof is similar to that of Theorem 1 0; the existence of two linearly inde
pendent solutions of (35) is again assumed. Rewriting (38) in the form 

and differentiating by Leibniz' Rule, we have 

The endpoint contributions cancel since G(x, 0 is continuous for x = f Differ
entiating again, we obtain 

u"(x) = lx GxxCx, ~)r(~) d~ + Gx(x, x-)r(x-) 

+ ib GxxCx, 0r(~) d~ - Gx(x, x+)r(x+) 

where f(x+) signifies the limit off(~) as ~ approaches x from above, and f(x-) 
the limit as ~ approaches x from below. The two terms corresponding to the 
contributions from the endpoints come from the sides ~ < x and ~ > x of the 
diagonal; since ris continuous, r(x-) = r(x+). Hence their difference is [Gx(x+,x) 
- Gx(x-, x)]r(x), which equals r(x/p0(x) by (39). Simplifying, we obtain 

l b r(x) 
u"(x) = GxxCx, 0rm d~ + -() 

a Po X 

From this identity, we can calculate L[u]. It is 

L[u] = lb L[G(x, ~)]r(0 d~ + r(x) = r(x) 

since L[G(x, m = 0 except at x = f Here the operator L acts on the variable 
x in G(x, 0; though G is not in fJ2, the expression L[G] is meaningful for one
sided derivatives and the above can be justified. This gives the identity (38). 

Since G(x, 0, considered as a function of x for fixed~. satisfies the boundary 
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conditions G(a, ~) = G(b, ~) = 0, it follows from (38) that u(a) = u(b) = 0, 
completing the proof of the theorem. 

Delta-Function Interpretation. The ideas underlying the intuitive discus
sion for Examples 4 and 5 can be given the following heuristic interpretation. 
Let the symbolic function o(x) stand for the limit of nonnegative "density" func
tions p(x) concentrated in a narrow interval (-E, E) near x = 0, with total mass 
J:.E p(x) dx = l, as E ! 0. Likewise, o(x - ~) stands for the density of a unit mass 
(or charge) concentrated at x = ~-

For any JE C[a, b] a < 0 < band any such p with support (-E, E) C [a, b], 
we will have by the Second Law of the Mean for integrals 

lb J(x)p(x) dx = f ~J(x)p(x) dx = J(x1) f ~E p(x) dx = J(x1) 

where -E < x1 < E. Letting E approach zero, we get in the limit 

(40) lb J(x)o(x) dx = J(0) 

Translating through t we have similarly 

(40') ~ E (a, b) 

In particular, setting/(x) equal to one, we get 

(41) 
if~ E (a, b) 
if~ ft [a, b] 

Finally, the Green's function of a differential operator L and given horrwge
neous linear initial or boundary conditions satisfies the symbolic equation 

(42) L"G(x, ~) = o(x - ~ 

and the same initial or boundary conditions (in x). Now consider the function 

(43) u(x) = I G(x, ~)r(~) d~ 

Extending heuristically the Superposition Principle to integrals (considered as 
limits of sums), we are led to the good guess that u(x) satisfies the same initial 
(resp. boundary) conditions and also 

(44) L[u] = L"[ I G(x, ~r(~) d~] = I o(x - ~)r(~) d~ = r(x) 
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EXERCISESF 

In Exs. 1-3, (a) construct Green's functions for the two-endpoint problem defined by the 
DE sp~cified and the boundary conditions u(O) = u(l) = 0, and (b) solve for r(x) = x2: 

I. u" - u = r(x) 2. u" + 4u = r(x) 

4x 4 
3. u" - ---u' +---u = r(x) 

2x - 1 2x - 1 

In Exs. 4-5, find the conjugate points nearest to x = 0 for the DE specified. 

4. u" + 2u' + lOu = 0 

5. (x2 - x + l)u" + (1 - 2x)u' + 2u = 0 [HINT: Look for polynomial solutions.] 

*6. u11 - u, + e21u = 0 

7. (a) Show that, for two-endpoint problems containing no pairs of conjugate points, 
Green's function is always negative. 

(b) Show that, if q(x) < 0, then the Green's function for u" + q(x)u = 0 in the two
endpoint problem is always negative and convex (concave downward), with neg
ative slope where x < ~ and positive slope where x > ~-

*8. Set F(x, y, y') = y'2(1 - y')2 in (34), and find the curves joining (0, 0) and (1, ½) which 
minimize /(/). 

9. Show that the Euler-Lagrange DE for F(x, y, y') = gp(x)y + ½ Ty'2 (g, T constants) is 
Ty" = gp(x). Relate to the sag of a loaded string under tension T. 

ADDITIONAL EXERCISES 

1. Show that the ratio v = fl g of any two linearly independent solutions of the DE u" 
+ q(x)u = 0 is a solution of the third-order nonlinear DE 

(*) S[v] = v" - ~ (v")2 
= 2q(x) 

v' 2 v' 

2. The Schwarzian S[v] of a function v(x) being defined by the middle term of(*), show 
that S[(av + b)j(cv + d)] = S[oo] for any four constants, a, b, c, d with ad =I= be. 

*3. Prove that, if v0 , v 1, v2 , v3 are any four distinct solutions of the Riccati DE, their 
cross ratio is constant: (v0 - v 1)(v3 - v2)/(v0 - v2)(v3 - v1) = c. 

4. Find the general solutions of the following inhomogeneous Euler DEs: 
(a) x2y" - 2xy' + 2y = x2 + px + q (b) x2y" + 3xy' + y = R(x) 

5. (a) Show that, if/ and g satisfy u" + q(x)u = 0, the product Jg = y satisfies the DE 
2yy" = (y')2 - 4y2g(x) + c for some constant c. 

(b) As an application, solve 2yy" = (y')2 - (x + l)-2y2. 
6. Show that, if u is the general solution of the DE (1) of the text, and Wy = p,p1 -

p~p,, then v = u' is the general solution of 

7. (a) Show that the Riccati equation y' = 1 + x2 + y2 has no solution on the interval 
(0, 11"). 

(b) Show that the Riccati equation y' = 1 + y2 - x2 has a solution on the interval 
(-oo, +oo). 
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l d 
8. Let 0k(x) = - - (arctan kx = k/11'(1 + k2x2). Show that, if J(x) is any continuous 

11' dx 
function bounded on (-oo, oo), then limktoo J~oo 0h - c)J(x) dx = J(c). 

9. For the DE u" + (B/x2)u = 0, show that every solution has infinitely many zeros 
on (1, +oo) if B > ¼and a finite number if B < ~- [HINT: The DE is an Euler DE.] 

10. For the DE u" + q(x)u = 0, show that every solution has a finite number of zeros 
on (1, +oo) if q(x) < ¼x2, and infinitely many if q(x) > B/x2, B > ¼, 

*11. For the DE u" + q(x)u = 0, show that every solution has infinitely many zeros on 
(1, +oo) if 

f 00 

[ xq(x) - :J dx = +oo. 

*12. Show that, if p, q E <J2, we can transform the DE (8) to the form d2z/de = 0 
in some neighborhood of the y-axis by transformations of the form z = J(x)y and 
d~ = h(x) dx. [HINT: Transform a basis of solutions to y1 = 1, y2 = ~.] 



CHAPTER 3 

LINEAR EQUATIONS 
WITH CONSTANT 

COEFFICIENTS 

1 THE CHARACTERISTIC POLYNOMIAL 

So far, we have discussed only first- and second-order DEs, primarily because 
so few DEs of higher order can be solved explicitly in terms of familiar func
tions. However, general algebraic techniques make it possible to solve constant
coefficient linear DEs of arbitrary order and to predict many properties of their 
solutions, including especially their stability or instability. 

This chapter will be devoted to explaining and exploiting these techniques. 
In particular, it will exploit complex algebra and the properties of the complex 
exponential function, which will be reviewed in this section. It will also apply 
polynomial algebra to linear differential operators with constant coefficients, 
using principles to be explained in §2. 

The nth order linear DE with constant coefficients is 

Here u<kl stands for the kth derivative dku/dxk of the unknown function u(x); 
a1, ... , an are arbitrary constants; and r(x) can be any continuous function. As 
in Ch. 2, §1, the letter Lin (1) stands for a (homogeneous) linear operator. That 
is, L[au + /jv] = aL[u] + {jL[v] for any functions u and v of class ~n and any 
constant a and /j. 

As in the second-order case treated in Chapter 2, the solution of linear DEs 
of the form (1) is best achieved by expressing its general solution as the sum u 
= Up + uh of some particular solution up(x) of (2), and the general solution uh(x) 
of the "reduced" (homogeneous) equation 

(2) 

obtained by setting the right-hand side of (1) equal to 0. 
Solutions of (2) can be found by trying the exponential substitution u = tr, 

where A is a real or complex number to be determined. Since ~(i")/dxn = 
Antr, this substitution reduces (2) to the identity 

71 
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This is satisfied if and only if A is a (real or complex) root of the characteristic 

polynomial of the DE (1), defined as 

(3) 

For the second-order DE u" + pu' + qu = 0, the roots of the characteristic 
polynomial are A = ½(-p ± Vp2 - 4q). In Ch. 2, §2, it was shown by a special 
method that, when p 2 < 4q so that the characteristic polynomial has complex 

roots A= -p/2 ± iv (v = Y4q - p2), the real functions e-px/2 {~:} vx form 

a basis of solutions. We will now show how to apply the exponential substitution 
u = e""x to solve the general DE (2), beginning with the second-order case. 

Loosely speaking, when the characteristic polynomial p(A) has n distinct roots 
A1, ... , A,., the functions ct>i(x) =: / 1x form a basis of complex solutions of the 
DE (2). By this we mean that for any "initial" x = x0 and specified (complex) 

b ' Cn- 1> th • • b h th num ers u 0, u 0 , . • • , u 0 , ere exist unique num ers c1, . . . , en sue at 
the solution fix) = uh(x) = E;=i c1<b/x) satisfies f(.x0) = u0 , f'(x0) = u0, ... , 
J<n-l)(x) = u&n-1)_ 

Moreover, the complex roots A1 of p(A) occur in pairs µ1 ± iv1, just as in the 
second-order case treated in Ch. 2. Therefore, the real functions rl'1x cos v1x, 
eµ1x sin v1x together with the / 1x corresponding to real roots of p(A) = 0, form a 
basis of real solutions of (2). 

Initial Value Problem. By the "initial value problem" for the nth order DE 
(1) is meant finding, for specified x0 and numbers u0, u6, ... , u&n-1>, a solution 
u(x) of (1) that satisfies u(x0) = u 0, and u(l\x0) = uW for j = 1, ... , n - 1. 
If a basis of solutions <bix) of the "reduced" DE (2) is known, together with 
one "particular" solution up(x) of the inhomogeneous DE (1), then the sum 
u(x) = up(x) + Ec1<bJ<x), with the ci chosen to make uh(x) = Ec1<bix) satisfy 

( ) _ ( ) '( ) _ , '( ) (n-1)( ) _ (n-1) (n-1)( ) uh Xo - Uo - Up Xo ' uh Xo - Uo - Up Xo ' ••• ' uh Xo - Uo - Up Xo ' 
constitutes one solution of the stated initial value problem. In §4, we will prove 
that this is the only solution (a uniqueness theorem), so that the stated initial 
value problem is "well-posed." 

2 COMPLEX EXPONENTIAL FUNCTIONS 

When the characteristic polynomial of u" + pu' + qu = 0 has complex roots 
A = -p/2 ± iv, as before, the exponential substitution gives two complex expo

nential Junctions as formal solutions, namely 

e-px/2±ivx = e-px/2 {cos vx ± i sin vx} 

From these complex solutions, the real solutions e-px/'J. { ~:} vx obtained by a 

special method in Ch. 2 can easily be constructed as linear combinations. The 
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present section will be devoted to explaining how similar constructions can be 
applied to arbitrary homogeneous linear constant-coefficient DEs (2). 

The first consideration that must be invoked is the so-called Fundamental 
Theorem of Algebra.t To apply this theorem effectively, one must also be famil
iar with the basic properties of the complex exponential function. We shall now 
take these up in tum. 

The Fundamental Theorem of Algebra states that any real or complex poly
nomial p(X) can be uniquely factored into a product of powers of distinct linear 
factors (A - A): 

(4) 

Clearly, the roots of the equation p(A) = 0 are the Ar The exponent k1 in (4) is 
called the multiplicity of the root A1; evidently the sum of the k1 is the degree of 
p. When all Ai are distinct (i.e., all k1 = 1 so that m = n), the DE has a basis of 
complex exponential solutions <f>ix) = i'-1", j = 1, 2, ... , n; see §4 for details. 

Example 1. For the fourth-order DE uiv = u, the characteristic polynomial 
is A 4 = 1, with roots ± 1, ± i. Therefore, a basis of complex solutions is provided 
bye", e-", e"', and e-"'. From these we can construct a basis of four real solutions 

Complex Exponentials. In this chapter and in Ch. 9, properties of the 
complex exponential function e' will be used freely, and so we recall some of 
them. The exponent z = x + iy is to be thought of as a point in the (x,y)-plane, 
which is also referred to as the complex z-plane. The complex "value" w = e' 
of the exponential function is evidently a vector in the complex w-plane with 
magnitude I e' I = e", which makes an angle y with the u-axis. (Here w = u + 
iv, so that u = e" cosy and v = e" sin y if w = e•.) 

Because e'8 = cos 8 + i sin 8, one also often writes z = x + iy as z = re'8, 

where r = V x2 + y2 and 8 = arctan(y/x) are polar coordinates in the (x,y)-plane. 
In this notation, the inverse of the complex exponential function e' is the com
plex "natural logarithm" function 

ln z = ln(x + iy) = ln r + i8 

Since 8 is defined only modulo 211', ln z is evidently a multiple-valued function. 
In the problems treated in this chapter, the coefficients a1 of the polynomial 

(2) will usually all be real. Its roots A1 will then all be either real or complex 
conjugate in pairs, A = µ ± iv. Thus, for the second-order DE u" + pu' + qu 
= O discussed in Chapter 2, the roots are A = ½(-p ± yp2 - 4q). They are 
real when p2 > 4q, and complex conjugate when p2 < 4q. 

t Birkhoff and MacLane, p. 113. 
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In this chapter, the independent variable x will also be considered as real. 
Now recall that if;\ = µ + iv, where µ,v are real, then we have for real x 

(5) ;.x = eµx+ivx = ~(cos vx + i sin vx) 

Hence, if A = µ + iv and A* = µ - iv are both roots of PL(A) = 0 in (3), the 
functions eµx(cos vx ± i sin vx) are both solutions of (2). Since I eivx I = 1 for all 
real v,x, it also follows that, where ;.xis considered as a complex-valued function 
of the real independent variable x 

(5') 

Example 1 '. For the DE uw + 4u = 0, the characteristic polynomial A 4 + 4 
has the roots ± 1 ± i. Hence it has a basis of real solutions ex cos x, ex sin x, 
e-xcos x, e-xsin x. (An equivalent basis is provided by the functions cosh x cos x, 
cosh x sin x, sinh x cos x, sinh x sin x.) 

Euler's Homogeneous DE. The homogeneous linear DE 

(6) 

is called Euler's homogeneous differential equation. It can be reduced to the 
form (2) on the positive semi-axis x > 0, by making the substitutions 

t = ln x, 
d d 
-= x-
dt dx' 

Corresponding to the real solutions lit, trl"-1', ••• of (2), we have real solutions 
x""-1, x""-1 ln x, of (6). 

Moreover, these can easily be found by substituting x""- for u in (6). This sub
stitution yields an equation of the form l(A)x""- = 0, where /(A) is a polynomial 
of degree n, called the indicial equation. Any A for which /(A) = 0 gives a so
lution x""- of (6); if A is a double root, then x""- and x""- ln x are both solutions, and 
so on. 

For example, when n = 2, Euler's homogeneous DE is 

(7) x2u" + pxu' + qu = 0, p,q real constants 

Trying u = x\ we get the indicial equation of (8): 

(7') 

Alternatively, making the change of variable x = e1, we get 

(8) 
d2u du 
- + <P - 1) - + qu = o 
dt2 dt ' 

t = ln x 
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since 

If (p - 1 )2 > 4q, the indicial equation has two distinct real roots A = a and 
A = (:3, and so the DE (7) has the two linearly independent real solutions xa and 
xfJ, defined for positive x. For positive or negative x, we have the solutions Ix I a 

and Ix I fJ since the substitution of - x for x does not affect (7). Note that the 
DE (7) has a singular point at x = 0 and that Ix I has discontinuous slope there 
if a~ I. 

When the discriminant (p - 1)2 - 4q is negative, the indicial equation has 
two conjugate complex roots A = µ ± iv, whereµ = (1 - p)/2 and v = [4q -
(p - 1)2] 112;2. A basis of real solutions of (8) is then~ cos vt and~ sin vt; the 
corresponding solutions of the second order Euler homogeneous DE (7) are 
xµ cos(v ln x) and xµ sin(v ln x). These are, for x > 0, the real and imaginary 
parts of the complex power function 

as in (5). For x < 0, we can get real solutions by using Ix I in place of x. But for 
x < 0, the resulting real solutions of (7) are no longer the real and imaginary 
parts ofx\ because ln(-x) = ln x ± i1r; cf. Ch. 9, §I. 

General Case. The general nth-order case can be treated in the same way. 
We can again make the change of independent variable 

X = e1, t = ln x, 
d d 

x-=-
dx dt 

This reduces (6) to a DE of the form (2), whose solutions ti'-1 give a basis of 
solutions for (6) of the form (ln x)'x>-. 

EXERCISES A 

In Exs. 1-4, find a basis of real solutions of the DE specified. 

I. u" + 5u' + 4u = 0 

3. u'" = u 

2. u'" = u 

*4. u'" + u = 0 

In Exs. 5-6, find a basis of complex exponential solutions of the DE specified. 

5. u" + 2iu' + 3u = 0 6. u" - 2u' + 2u = 0 

In Exs. 7-10, find the solution of the initial value problem specified. 

7. u" + 5u' + 4u = 0, u(O) = 1, u'(O) = 0 

u(O) = u"(O) = 0, u'(O) = 1 

*9. u'" = u, u(O) = u"(O) = 0, u'(O) = u"'(O) = 1 

*IO. u" - 2u' + 2u = 0, u(O) = 1, u'(O) = 0 
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In Exs. 11 and 12, find a basis of solutions of the Euler DE. 

11. x2u" + 5xu' + 3u = 0 12. x2u" + 2ixu - 3u = 0 

13. Describe the behavior of the function z' of the complex variable z = x + iy as z 
traces the unit circle z = e'8 around the origin. 

14. Do the same as in Ex. 13 for the function z'e ... 

3 THE OPERATIONAL CALCULUS 

We have already explained the general notion of a linear operator in Ch. 2, 
§2. Obviously, any linear combination M = c1L 1 + c2L2 of linear operators L 1 and 
L2, defined by the formula M[u] = c1L 1 [u] + c2L2 [u], is itself a linear operator, 
in the sense that M[au + bv] = aM[u] + bM[v] for all u,v to which L 1 and L2 

are applicable. Moreover the same is true of the (left-) composite L 2L 1 of L 1 and 
L 2, defined by the formula L 2 [L1[u]]. 

For linear operators with constant coefficients, one can say much more. In 
the first place, they are permutable, in the sense of the following lemma. 

LEMMA. Linear operators with constant coefficients are permutable: for any con
stants a1,b,,, if p(D) = Ea1D1 and q(D) = EbkDk, then p(D)q(D) = q(D)p(D) = 
Eaikn1+k. 

Proof Iterate the formula D[bkD[u]] = bkD2[u]. It follows that, for any two 
constants a1 and bk and any two positive integers j and k, we have a1D1bkDk = 
ab n 1+k = b Dka D1 

J k k J • 
This is not true of linear differential operators with variable coefficients. 

Thus, since 

Dxf = (xf)' + xf' + J = (xD + l)f, for 

we have Dx = xD + I. This shows that the differentiation operator D is not 
permutable with the operator "multiply by x." Likewise (x2D)(xD) = x3 D2 + 
x2D, whereas (xD)(x2D} = x3 D2 + 2x2D. 

Because constant-coefficient linear differential operators are permutable, we 
can fruitfully apply polynomial algebra to them. As an immediate application, we 
have 

THEOREM 1. If;\ is a root of multiplicity k of the characteristic polynomial (3), 
then the Junctions x'lx (r = 0, ... , k -1) are solutions of the linear DE (2). 

Proof An elementary calculation gives, after cancelation, (D - X)[tFfix)] 
= e Xxf'(x) for any differentiable function fix). By induction; this implies 
(D - Xl[ftx)i'x] = lxj<k>(x) for any JE (J k_ Since the kth derivative of x' is zero 
when k > r, it follows that 

if k > r 
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Moreover, the operators (D - X/• being permutable, we can write, for any i 

L[u] = q,(D)(D - Xi', where q,(D) = II (D - x/1 
1+• 

Hence L[x'/•1 = 0 for each A, and r = 0, 1, ... , k, - 1, as stated. 

Real and Complex Solutions. Theorem I holds whether the coefficients ak 
of the DE (2) are real or complex. Indeed, although the independent variable x 
will be interpreted as real in this chapter (especially in discussing stability), the 
operational calculus just discussed above, and the solutions constructed with it, 
are equally applicable to functions of the complex variable z = x + iy. 

However, when all the coefficients ak are real numbers, more detailed infor
mation can be obtained about the solutions, as follows. 

LEMMA. Let the complex-valued function w(x) = u(x) + iv(x) satisfy a homo
geneous linear DE (1) with real coefficients. Then the functions u(x) and v(x) [the real 
and imaginary parts of w(x)] both satisfy the DE. 

Proof The complex conjugatet w*(x) = u(x) - iv(x) of w(x) satisfies the 
complex conjugate of the given DE (2), obtained by replacing every coefficient 
ak by its complex conjugate a'f, because L*[w*] = {L[w]}* = 0. If the ak are real, 
then a'f = a,., and so w*(x) also satisfies (2). Hence, the linear combinations 

[w(x) + w*(x)] 
u(x) = 2 and 

[w(x) - w*(x)] 
v(x) = 2i 

also satisfy (2), as stated. 
This result is also valid for DEs with variable coefficients ak(x). 

COROLLARY 1. If the DE (2) has real coefficients and /x satisfies (2), then so 
does /*x. The nonreal roots of the characteristic polynomial (3) thus occur in conjugate 
pairs ;\1 = µ1 ± ivj, having the same multiplicity kr 

Now, using formula (5), we obtain the following. 

COROLLARY 2, Each pair of complex conjugate roots ;\J';\ f of (3) of multiplicity 
k1 gives real solutions of (2) of the form 

(9) r = 0, ... , k1 - 1 

These solutions differ from the solutions /x with real A in that they have infi
nitely many zeros in any infinite interval of the real axis: that is, they are oscil
latory. This proves the following result. 

t The complex conjugate w* of a complex number w = u + iv is u - iv. Some authors use w instead 
of w* to denote the complex conjugate of w. 
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THEOREM 2. If the characteristic polynomial (3) with real coefficients has 2r non
real roots, then the DE (2) has 2r distinct oscillatory real solutions of the form (9). 

4 SOLUTION BASES 

We now show that all solutions of the real homogeneous linear DE (2) are 
linear combinations of the special solutions described in Corollary 2 above. The 
proof will appeal to the concept of a basis of solutions of a general nth order 
linear homogeneous DE 

(10) 

The coefficient-functions pk(x) in (10) may be variable, but they must be real and 
continuous. 

DEFINITION. A basis of solutions of the DE (10) is a set of solutions uk(x) 
of (10) such that every solution of (10) can be uniquely expressed as a linear 
combination c1u 1(x) + · · · + cnun(x). 

The aim of this section is to prove that the special solutions described in Cor
ollary 2 form a basis of real solutions of the DE (2). The fact that every nth order 
homogeneous linear DE has a basis of n solutions is, of course, a theorem to be 
proved. 

First, as in Ch. 2, §2, we define a set of n real or complex functions Ji, 
h, ... , fn defined on an interval (a,b) to be linearly independent when no linear 
combination of the functions with constant coefficients not all zero can vanish 
identically: that is, when Ei:=I c,Ji.(x) = 0 implies c1 = c2 = • • • = cn = 0. A 
set of functions that is not linearly independent is said to be linearly dependent. 

There are two notions oflinear independence, according as we allow the coef
ficients ck to assume only real values, or also complex values. In the first case, one 
says that the functions are linearly independent over the real field; in the second 
case, that they are linearly independent over the complex field. 

LEMMA 1. A set of real-valued Junctions on an interval (a,b) is linearly indepen
dent over the complex field if and only if it is linearly independent over the real field. 

Proof. Linear dependence over the real field implies linear dependence over 
the complex field, a fortiori. Conversely, the Ji(x) being real, suppose that Ec1fi (x) 
== 0 for a< x < b. Then [Ec1Ji(x)]* = 0, and hence Ecjfi(x) == 0. Subtracting, 
we obtain E[(c1 - cj)/i]fi(x) == 0. If all c1 are real, there is nothing to prove. If 
some c1 is not real, some real number (c1 - cj)/i will not vanish, and we still have 
a vanishing linear combination with real coefficients. 

A set of functions that is linearly dependent on a given domain may become 
linearly independent when the functions are extended to a larger domain. How
ever, a linearly independent set of functions clearly remains linearly indepen
dent when the functions are so extended. 
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LEMMA 2. Any set of Junctions of the form 

(11) j = 1, ... , n 

where the r are nonnegative integers and the X1 complex numbers, is linearly indepen
dent on any nonvoid open interval, unless two or more of the Junctions are identical. 

Proof. Suppose that "E.cTJJTJ(x) = 0. For any given Al' choose R to be the larg
est r such that cTJ 1= 0. Form the operator 

q(D) = (D - x1t II (D - xl•+1 

l'F') 

where for each i 1= j, k, is the largest r such that x'i·•" is a member of the 
set of functions in (11). It follows that q(D)[fnl = 0 unless i = j, and that 
q(D)[fry] = 0 for r < R. Hence, we have 

On the other hand, as in the proof of Theorem 1, we see that 

q(D)[xR/•"] = (R!) II (X1 - A,)k,+I/.,x 1= 0 
l'F'} 

Therefore, substituting back, we find that cR1 = 0. Since we assumed that cR1 1= 
0, this gives a contradiction unless all cTJ = 0, proving linear independence. 

From Theorem 1 we obtain the following corollary. 

COROLLARY 1. The DE (2) has at least n linearly independent, real or complex 
solutions of the form x' I". 

The analogous result for real solutions of DE of the form (2) with real coef
ficients can be proved as follows. For any two conjugate complex roots A = µ 
+ iv and X* = µ - iv of the characteristic equation of (2), the real solutions 
x'eµx cos vx and x'eµx sin vx are complex linear combinations of x'e"llx and x'/*x, 
and conversely. Hence, they can be substituted for x'I" and x'i·*" in any set of 
solutions without affecting their linear independence. Since linear indepen
dence over the complex field implies linear independence over the real field, 
this proves the following. 

COROLLARY 2. A linear DE (2) with constant real coefficients ak has a set of n 
solutions of the form x'eµx or (9), which is linearly independent over the real field in 
any nonvoid interval. 

We now show that all solutions of the real homogeneous linear DE (2) are 
linear combinations of the special solutions described in Corollary 2. (The proof 
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will be extended to the case of complex coefficient-functions in Ch. 6, §11.) To 
this end, we first prove a special uniqueness lemma for the more general homo
geneous linear DE (10), 

with real and continuous coefficient-functions pk(x). 

LEMMA 3. Let J(x) be any real or complex solution of the nth order homogeneous 
linear DE (10) with continuous real coefficient-functions in the closed interval [a,b]. If 
j(a) = J'(a) = • • • = J<n-Il (a) = 0, thenj(x) == 0 on [a,b]. 

Proof. We first suppose j(x) real. The function 

satisfies the initial condition u(a) = 0. Differentiating u(x), we find, since u(x) is 
real, that 

u'(x) = 2[J(x)f'(x) + J'(x)J"(x) + · · · + J(n-l)(x)fn>(x)] 

Using the inequality I 2a{:J I < a2 + {:12 repeatedly n - 1 times, we have 

Since L[f] = 0, it follows thatfnl = -Ei:=i p,J<n-kl_ Hence, the last term can 
be rewritten in the form 

n 

J(n-I>_J(n) = _ L Pd(n-I>_J(n-k) 
k=I 

Applying the inequality I 2a{:J I < a2 + {:1 2 again, we obtain 
n 

2 IJ(n-I>_t(n) I .:$ L I Pk I ([j(n-k)]2 + u<n-1)]2) 
k=I 

Substituting and rearranging terms, we obtain 

u'(x) < (1 + 1Pnl)J2 + (2 + 1Pn-il)f'2 + (2 + IPn-2l)J"2 

+ ... + (2 + IP2 I )[fn-2>]2 + ( 1 + IPil + t I Pk I) u<n-!)] 2 

Now let K = 2 + max IP1 (x) I + maxa::.x;ab Ei:=1 lpix) I - Then it follows from the 
last inequality that u'(x) < Ku(x). From this inequality and the initial condition 
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u(a) = 0, the identity u(x) = 0 follows by Lemma 2 of Ch. 1, §11. Hence, we 
have j(x) = 0. 

If h(x) = j(x) + ig(x) (f,g real) is a compl,ex solution of (10), thenj(x) and g(x) 
satisfy (10) by Lemma 2 of §3. Moreover, h(a) = h'(a) = • • • = h(n-Il(a) = 0 
implies the corresponding equalities on f and g. Hence, by the preceding para
graph, we have h = f + ig == 0 + 0 = 0, completing the proof. 

We now show that any n linearly independent solutions of (10) form a basis 
of solutions. 

THEOREM 3. Let u1, ... , un be n linearly independent real solutions of the nth 
order linear homogeneous DE (10) with real coefficient1unctions. Then, given arbitrary 
real numbers a, Uo, Uo, ... , u&n-l>, there exist unique constants C1, ... , en such that 
u(x) = Eckuix) is a solution of (l 0) satisfying 

(12') 

The Junctions uk(x) are a basis of solutions of (l 0). 

Theorem 3 follows readily from the lemma. Suppose that, for some a, u0 , u6, 
... , u&n-ll, there were no linear combination Eckuix) satisfying the given initial 
conditions (12'). That is, suppose the n vectors 

k = l, ... , n 

were linearly dependent. Then there would exist constants y1, • .. , Yw not all zero, 
such that 

n 

L 'Ykuia) = 0, 
k=I 

n 

L 'Yku~(a) = 0, ... , 
k=I 

n 

L 'YkU(n-l)(a) = 0 
k=I 

That is, the function <f>(x) = -y1u 1(x) + + 'Ynun(x) would satisfy 

From this it would follow, from the lemma, that ¢(x) = 0. 
Recapitulating, we can find either c1, ••• , en not all zero such that 

satisfies (12'), or -y1, ... , 'Yn not all zero such that 
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The second alternative contradicts the hypothesis of linear independence in 
Theorem 3, which proves the first conclusion there. 

To prove the second conclusion, let v(x) be any solution of (10). By the first 
conclusion, constants c1, .•• , en can be found such that 

satisfies u(a) = v(a), u'(a) = v'(a), ... , u<n- 1>(a) = v<n- 1>(a). Hence the difference 
f(x) = u(x) - v(x) satisfies the hypotheses of Lemma 3. Using the lemma, we 
obtain u(x) = v(x) and v(x) = I:.ckuk(x), proving the second conclusion of Theo
rem 3. 

COROLLARY 1. Let X1, ... , Am be the roots of the characteristic polynomial of the 
realt DE (2) with multiplicities k1, ... , km. Then the Junctions x'/1", r = 0, ... , k1 

- 1, are a basis of complex solutions of (2). 

Referring back to Theorem 2, we have also the following. 

COROLLARY 2. If the coefficients of the DE (2) are real, then it has a basis of real 
solutions of the form x' rfx, x' eP"' cos vx, and x' e"'x sin vx, where A, µ, and v are real 
constants. 

EXERCISESB 

1. Solve the following initial-value problems: 
(a) u'" - u = 0, u(0) = u'(0) = um(0) = 0, u"(0) = 1 
(b) u'" = 0, u'(0) = u"'(0) = 0, u(0) = 1, u"(0) = -2 
(c) u'" + u" = 0, u"(0) = um(0) = 0, u(0) = u'(0) = 1 

2. (a) Find a DE L[u] = 0 of the form (2) having e-1, te-1, and e1 as a basis of solutions. 
(b) For this linear operator L, find a basis of solutions of the sixth-order DE 

L 2[u] = 0 and the ninth-order DE L3[u] = 0. 

3. Find bases of solutions for the following DEs: 
(a) u"' = u (b) u'" - 3u" + 2u = 0 
(c) u'" + 6u" + l 2u' + Bu = 0 
(d) u"' + 6u" + 12u' + (8 + z)u = 0 

4. Knowing bases of solutions L 1 [u] = 0 and L 2[u] = 0 of the form given by Theorem 
1, find a basis of solutions of L 1 [L2[u]] = 0. 

5. Show that in every real DE of the form (2), L can be factored as L = L 1L2 ..• L,,, 
where L1 = D1 + b1 or L1 = D2 + pp + q1, with all b1, p1, <Ji real. 

6. Extend Lemma 2 of §4 to the case where the r are arbitrary complex numbers. 

*7. State an analog of Corollary 2 of §4 for Euler's homogeneous DE, and prove your 
statement without assuming Corollary 2. 

8. Prove that the DE of Ex. A5 has no nontrivial real solution. 

t The preceding result can be proved more generally for linear DEs with constant complex coeffi
cients, by similar methods; see Ch. 6, § 11. 
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5 INHOMOGENEOUS EQUATIONS 

We now return to the nth order inhomogeneous linear DE with constant 
coefficients, 

(13) 

already introduced in § 1. As in the second-order case of Ch. 2, §8, the function 
r(t) in (13) may be thought of as an "input" or "source" term, and u(t) as the 
"output" due to r(t). We first describe a simple method for finding a particular 
solution of the DE (13) in closed form, in the special case that r(t) = 'Epk(t)i'k1 

is a linear combination of products of polynomials and exponentials. 
We recall that, by Lemma 2 of §3, • 

(D - A)[i"fit)] = i'1f '(t) 

As a corollary, since every polynomial of degrees is the derivative r(t) = q'(t) of 
a suitable polynomial q(t) of degree s + 1, we obtain the following result. 

LEMMA 1. If r(t) is a polynomial of degree s, then (D - A)[u] = l 1r(t) 
has a solution of the form u = i'q(t), where q(t) is a polynomial of degrees + 1. 

More generally, one easily verifies the identity 

If A -=fo A 1, and f (t) is a polynomial of degree s, then the right side of the preceding 
identity is a polynomial of degree s times i'-1• This proves another useful alge
braic fact: 

LEMMA 2. If r(t) is a polynomial of degree s and A -=fo Ai, then 

has a solution of the form u = i'q(t), where q(t) is a polynomial of degrees. 

Applying the two preceding lemmas repeatedly to the factors of the operator 

we get the following result. 

THEOREM 4. The DE L[u] = /'1r(t), here r(t) is a polynomial, has a particular 
solution of the form l 1q(t),where q(t) is also a polynomial. The degree of q(t) equals that 
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of r(t) unless ;\ = ;\1 is a root of the characteristic polynomial pL(>..) = I:.(;\ - ;\/i of L. 
If;\ = ;\1 is a k-Jold root ofpL(;\), then the degree of q(t) exceeds that ofr(t) l,y k. 

Knowing the form of the answer, we can solve for the coefficients bk of the 
unknown polynomial q(t) = I:.b/ by the method of undetermined coefficients. 
Namely, applying p(D) to u(t) = e.,_1(I:.bkf), one can compute the numbers Pk1 in 
the formula 

using formulas for differentiating elementary functions. One does not need to 
factor Pv The simultaneous linear equations I:.Pk1b1 = ck can then be solved for 
the bk, given r(t) = I:.ckr, by elementary algebra. Theorem 4 simply states how 
many unknowns bk must be u11ed to get a compatible system of linear equations. 

Example 2. Find the solution of the DE 

L[u] = u'" + 3u" + 2u' = 12te' 

that satisfies the initial conditions u(O) = -17 /3, u'(O) = u"(O) = 1/3. First, 
since the two-dimensional subspace of functions of the form (a + {:Jt)e' is 
mapped into itself by differentiation, the constant-coefficient DE (*) may be 
expected to have a particular solution of this form. And indeed, substituting u 
= (a + {:Jt)e' into (*) and evaluating, we get 

(*) L[u] = [(6a + 11{:J) + 6{:Jt]e1 = 12te' 

Comparing coefficients, we find a particular solution u = (-11/3 + 2t)e-1 

of(*). 
Second, the reduced DE u"' + 3u" + 2u' = 0 of(*) has 1, e-1, and e- 21 as a 

basis of solutions. The general solution of(*) is therefore 

u = a + be-1 + ce- 21 + (-11/3 + 2t)e' 

The initial conditions yield three simultaneous linear equations in a, b, c whose 
solution is a = 1, b = -4, c = 1. Hence the solution of the specified initial 
value problem is 

(**) u = 1 - 4e-1 + e- 21 + (-11/3 + 2t)e' 

EXERCISES C 

In Exs. 1-4, find a particular solution of the DE specified. In Exs. 1-3, find the solutions 
satisfying (a) u(0) = 0, u'(0) = 1 and (b) u(0) = 0, u'(0) = 1. 

I. u" = tt! 2. u" + u = tt! 
3. u" - u = tt! 



6 Stability 85 

In each of Exs. 5-8, find a particular solution of the DE specified. 

5. u"' + 4u = sin t 6. um + 2u8 + 3u' + 6u = cos t 

7. u'" + 5u8 + 4u = e' 8. u8 + iu = sin 2t, i = \/-I 
In each of Exs. 9-12, find (a) the general solution of the DE specified four exercises 
earlier, and (b) the particular solution satisfying the initial condition specified. 

9. u(v)(O) = 0 for 11 = 0, 1, 2, 3, 4 u"(0) = 1 
10. u(0) = u'(0), u8 (0) = 1 

11. u(0) = 10, u'(0) = U 8 (0) = um(0) = 0 

12. u(0) = 0, u'(0) = i 

6 STABILITY 

An important physical concept is that of the stability of equilibrium. An equi
librium state of a physical system is said to be stable when small departures from 
equilibrium remain small with the lapse of time, and unstable when arbitrarily 
small initial deviations from equilibrium can ultimately become quite large. 

In considering the stability of equilibrium, it is suggestive to think of the inde
pendent variable as standing for the time t. Accordingly, one rewrites the DE 
(2) as 

(14) 

For such constant-coefficient homogeneous linear DEs, the trivial solution u == 0 
represents an equilibrium state, and the possibilities for stable and unstable 
behavior are relatively few. They are adequately described by the following def
inition (cf. Ch. 5, §7 for the nonlinear case). 

DEFINITION. The homogeneous linear DE (14) is strictly stable when every 
solution tends to zero as t-+ oo; it is stable when every solution remains bounded 
as t -+ oo; when not stable, it is called unstable. 

Evidently, a homogeneous linear DE is strictly stable if and only if it has a 
finite basis of solutions tending to zero, and stable if and only if it has a basis of 
bounded solutions. The reason for this is that every finite linear combination of 
bounded functions is bounded, as is easily shown. Hence Theorem 3, Corollary 
6 gives algebraic tests for stability and strict stability of the DE (14). Take a basis 
of solutions of the form t'e"", t'eµ1 sin vt, t'~1 cos vt. Such a solution tends to zero 
if and only ifµ < 0 and remains bounded as t -+ oo if and only ifµ < O or µ = 
r = 0. This gives the following result. 

THEOREM 5. A given DE (14) is strictly stable if and only if every root of its 
characteristic polynomial has a negative real part. It is stable if and only if every mul-



86 CHAPTER 3 Linear Equations with Constant Coefficients 

tiple root;\, [with k, > 1 in (4)] has a negative real part, and no simp!,e root (with 
k, = 1) has a positive real part. 

Polynomials all of whose roots have negative real parts are said to be of stab/,e 
type. t There are algebraic inequalities, called the Routh-Hurwitz conditions, on 
the coefficients of a real polynomial, which are necessary and sufficient for it to 
be of stable type. Thus, consider the quadratic characteristic polynomial of the 
DE of the second-order DE (5) of Ch. 2, § 1. An examination of the three cases 
discussed in §2 above shows that the real DE 

du u=
dt 

is strictly stable if and only if a1 and a2 are both positive (positive damping and 
positive restoring force). That is, when n = 2, the Routh-Hurwitz conditions 
are a1 > 0 and a2 > 0. 

To make it easier to correlate the preceding results with the more informal 
discussion of stability and oscillation found in Ch. 2, §2, we can rewrite the DE 
discussed there as ii+ pu + qu = 0. We have just recalled that this DE is strictly 
stable if and only if p > 0 and q > 0. It is oscillatory if and only if q > p2/4, 
so that its characteristic polynomial ;\ 2 + p;\ + q has complex roots 
-(p ± yp2 - 4q)/2. 

In the case of a third-order DE (n = 3), the test for strict stability is provided 
by the inequalities a1 > 0 (j = 1, 2, 3) and a1a2 > a3. When n = 4, the condi
tions for strict stability are a1 > 0 (j = 1, 2, 3, 4), a1a2 > a3, and a1a2a3 > a?a4 

+ a~. 
When n > 2, there are no equally simple conditions for solutions to be oscil

latory or nonoscillatory. Thus, the characteristic polynomial of the DE u + ii + 
u + u = 0 is (A + l)(;\2 + l); hence its general solution is 

a cos t + b sin t + ce-1 

Unless a = b = 0, this solution will become oscillatory for large positive t, but 
will be nonoscillatory for large negative t. Other illustrative examples are given 
in Exercises C. 

7 THE TRANSFER FUNCTION 

Inhomogeneous linear DEs (13) are widely used to represent electric alter
nating current networks or filters. Such a filter may be thought of as a "black 

t See Birkhoff and MacLane, p. 122. For polynomials of stable type of higher degree, see F. R. 
Gantmacher, Applications of Matnces, Wiley-Interscience, New York, 1959. 
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box" into which an electric current or a voltage is fed as an input r~t) and out of 
which comes a resulting output u(t). 

Mathematically, this amounts to considering an operator transforming the 
function r into a function u, which is the solution of the inhomogeneous linear 
DE (13). Writing this operator as u = F[r], we easily see that L[F[r]] = r. Thus, 
such an input-output operator is a right-inverse of the operator L. 

Since there are many solutions of the inhomogeneous DE (13) for a given 
input r(t), the preceding definition of Fis incomplete: the preceding equations 
do not define F = L -I unambiguously. 

For input-output problems that are unbounded in time, this difficulty can 
often be resolved by insisting that F[r] be in the class B(-oo, +oo) of bounded 
functions; in §§7-8, we will make this restriction. For, in this case, for any two 
solutions u1 and u2 of the inhomogeneous DE L[u] = r, the difference v = u 1 

- u2 would have to satisfy L[v] = 0. Unless the characteristic polynomial PL(X) 
= 0 has pure imaginary roots, this implies v = 0. Hence, in particular, the DE 
L[u] = r has at most one bounded solution if the DE L[u] = 0 is strictly stable
an assumption which corresponds in electrical engineering to a passive electrical 
network with dissipation. Moreover, the effect of initial conditions is "tran
sient": it dies out exponentially. 

For initial value problems and their Green's functions, it is more appropriate 
to define F by restricting its values to functions that satisfy u(0) = u'(0) 
= • • • = u<n-I)(0) = 0; this also defines F unambiguously, by Theorem 3. 

We now consider bounded solutions of (13) for various input functions, with
out necessarily assuming that the homogeneous DE is strictly stable. 

Sinusoidal input functions are of the greatest importance; they represent 
alternating currents and simple musical notes of constant pitch. These are func
tions of the form 

A cos (kt + a) = Re {ce'1u}, A= lcl, x = argc 

A is called the amplitude, k/21r the .freqi:ency, and a the phase constant. The fre
quency k/21r is the reciprocal of the period 21r /k. 

Except in the case PL(ik) = 0 of perfect resonance, there always exists a 
unique periodic solution of the DE (13), having the same period as the given input 
function r(t) = ce'1u. This output function u(t) can be found by making the sub
stitution u = C(k)ce'1u, where C(k) is to be determined. Substituting into the inho
mogeneous DE (14), we see that L [ C(k )ce'kt] = ce•kt if and only if 

(15) 

where PL(X) is the characteristic polynomial defined by (3). 

DEFINITION. The complex-valued function C(k) of the real variable k 
defined by (15) is called the transfer Junction associated with the linear, time
independent operator L. If C(k) = p(k)e-if<k), then p = I C(k) I is the gain Junction, 
and -y(k) = -arg C(k) = arg PL(ik) is the phase lag associated with k. 
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The reason for this terminology lies in the relationship between the real part 
of u(t) and that of the input r(t). Clearly, 

Re {u(t)} = Re {C(k)ce'kt} = IC(k)I • lcl cos (kt+ a - -y) 

This shows that the amplitude of the output is p(k) times the amplitude of the 
input, and the phase of the output lags 'Y = -arg C behind that of the input at 
all times. 

In the strictly stable case, the particular solution of the inhomogeneous linear 
DE L[u] = ce•kt found by the preceding method is the only bounded solution; 
hence F[ce'k1] = C(k)ce'kt describes the effect of the input-output operator Fon 
sinusoidal inputs. Furthermore, since every solution of the homogeneous DE 
(14) tends to zero as t-+ +oo, every solution of L[u] = ce•kt approaches C(k)ce'kt 
exponentially. 

Example 3. Consider the forced vibrations of a lightly damped harmonic 
oscillator: 

(*) [L[u] = u" + w' + p2u = sin kt, E « I] 

The transfer function of (*) is easily found using the complex exponential trial 
function e'kt. Since 

we have C(k) = l/[(p2 - k2) + Eik]. De Moivre's formulas give from this the 
gain function p = 1/[(p2 - k2)2 + e2k2] 112 and the phase lag 

-y=arctan[ 2 ek 2 ] 
(P - k) 

The solution of (*) is therefore p sin (kt - -y), where p and 'Y are as stated. 
One can also solve (*) in real form. Since differentiation carries functions of 

the form u = a cos kt + b sin kt into functions of the same form, we look for a 
periodic solution of (*) of this form. An elementary computation gives for u as 
before: 

L[u] = [(p2 - k2)a + ekb] cos kt + [(p2 - k2)b - eka] sin kt 

To make the coefficient of cos kt in (*) vanish, it is necessary and sufficient that 
a/b = ek/(k2 - p2), the tangent of the phase advance (negative phase lag). The 
gain can be computed similarly; we omit the tedious details. 

Finally, note that the characteristic polynomial of any real DE (2) can be fac-
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tored into real linear and quadratic factors 

r 

P1-(A) = II (A + b,) II (A2 + P1A + q1), r+2s=n 
1=I I=! 

and since all b1, p1, and q1 are positive in the strictly stable case that all roots of 
P1-(A) = 0 have negative parts. Therefore 

r g 

j(k) = L arg (bj + ik) + L arg (q1 + ikp1 - k2) 
1-I !=I 

increases monotonically from O to mr /2 as k increases from O to oo. This is evident 
since each arg (b1 + ik) increases from O to 1r /2, while arg (q1 + ikp1 - k2) 

increases from O to 1r, as one easily sees by visualizing the relevant parametric 
curves (straight line or parabola). Theorem 6 below will prove a corresponding 
result for complex constant-coefficient DEs. 

Resonance. The preceding method fails when the characteristic polynomial 
p1,{A) has one or more purely imaginary roots A = ik1 (in electrical engineering, 
this occurs in a "lossless passive network"). 

Thus, suppose that ik is a root of the equation faL(X) = 0 and that we wish to 
solve the inhomogeneous DE L[u] = e'k1• From the identity (cf. §6) 

we obtain, setting A = ik, 

L[te'""] = p[(ik)e'"' 

If ik is a simple root of the characteristic equation, then p[(ik) =i'- 0. Hence a 
solution of L[u] = eikt is u(t) = [1/p[(ik)]te'"'. The amplitude of this solution is 
[1/IPHik) l]t, and it increases to infinity as t-+ oo. This is the phenomenon of 
resonance, which arises when a nondissipative physical system E is excited by a 
force whose period equals one of the periods of free vibration of E. 

A similar computation can be made when ik is a root of multiplicity n of the 
characteristic polynomial, using the identity L[tnei"'] = p'£>(ik)e'k1, which is proved 
in much the same way. In this case the amplitude of the solution again increases 
to infinity. 

Periodic Inputs. The transfer function gives a simple way for determining 
periodic outputs from any periodic input function r(t) in (13). Changing the time 
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unit, we can write r(t + 21r) = r(t). We can then expand r(t) in a Fourier series, 
getting 

(16) ao ~ . 
L[u] = - + L.., (ak cos kt + bk sm kt) 

2 k=l 

or, in complex form, 

00 

(16') 2L[u] = L cki"'; co = ao, 
k=-oo 

summed over all integers k. 
Applying the superposition principle to the Fourier components of eke'"' of 

r(t) in (16'), we obtain, as at least a formal solution, 

(17) 

provided that no PL(ik) vanishes. The series (17) is absolutely and uniformly con
vergent, since PL(ik) = O(k-n) for an nth-order DE. We leave to the reader the 
proof and the determination of sufficient conditions for term-by-term 
differentiability. 

EXERCISES D 

In Exs. 1-4, test the DE specified for stability and strict stability. 

I. u" + 5u' + 4u = 0 2. u'" + 6u" + 12u' + 8t = 0 

3. um+6u"+IIu'+6u=0 4. u'"+4u"'+4u"=0 

5. For which n is the DE u<n> + u = 0 stable? 

In Exs. 6-9, plot the gain and transfer functions of the operator specified (/ denotes the 
identity operator): 

6. D2 + 4D + 41 7. n3 + 6D2 + 12D + 8/ 

8. D2 + 2D + 101/ 9. D4 - I 

10. For a strictly stable L[u] = u" + au' + bu = r(t), calculate the outputs (the responses) 
to the inputs r(t) = 1 and r(t) = t for a2 > 4b and a2 < 4b. 

*8 THE NYQUIST DIAGRAM 

The transfer function C(k) = l/pL(ik) of a linear differential equation with 
constant coefficients L[u] = 0 is of great help in the study of the inhomoge
neous DE (13). To visualize the transfer function, one graphs the logarithmic 
gain ln p(k) and phase lag -y(k) as functions of the frequency k/21r. If Ai, ••• , 
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An are the roots of the characteristic polynomial, we have 
n 

(18a) ln p(k) = - L ln I ik - A1 I = -½ E ln [ (k - v/ + µ12] 

rI 

(18b) 'Y(k) = t arg (ik - Aj) = E arctan [ (k - v,) ] 
i=I µJ 

from which these graphs are easily plotted. Figure 3.1 a depicts the gain function 
and phase lag of the DE 

uiv + 0.Su'" + 5.22u" + l.424u' + 4.1309u = 0 

whose characteristic polynomial has the roots Aj = -0.1 ± i, - 0.3 ± 2i. 
We now compute how the phase lag 'Y(k) changes as the frequency k/21r 

increases from -oo to +oo. By (18b), it suffices to add the changes in the func
tions arg (ik - A) for each A1. If Re {A1} is negative, then the vertical straight line 
ik - A1 (-oo < k < oo) lies in the right half of the complex plane; hence, arg 
(ik - A1) increases by 1r ask increases from -oo to +oo. If Re {A1} is positive, 
then arg (ik - A) decreases by 1r for a similar reason. Hence, if there are no 
roots with zero real part, the change in 'Y(k) is (m - p)1r, where mis the number 
of A1 with negative real part, and p is the number with positive real part. t If there 
are no purely imaginary roots, then m + p = n, and we obtain a useful test for 
strict stability. 

THEOREM 6. The DEL [u] = r(t) of order n is strictly stable if and only if the 
phase lag 'Y = - arg C (k) increases uy n1r as k increases from - oo to + oo. In this 
case, the phase lag increases monotonically with k. 

If the differential operator L has real coefficients, then 'Y(-k) = -'Y(k) and 
p(- k) = p(k), since the complex roots A1 occur in conjugate pairs µ1 ± ivl' In 
particular, we have 'Y(0) = 0, and the change in 'Y(k) as k increases from 0 to 
oo is (m - p)1r/2. This proves the following specialization of Theorem 6. 

COROLLARY 1. A linear DE of order n with constant real coefficients is strictly 
stable if and only if the phase lag increases from O to n1r /2 as k increases from O to 
00, 

If all roots A1 of the characteristic polynomial are real, then one easily verifies 
that all ln I ik - A1 I increase monotonically as k increases from 0 to oo. Hence, 

t For purely imaginary roots, the change of argument of A is undefined (it could be 1r or -1r). In 
this case, we make the convention that the change in the argument is zero. The following theorem 
is true with the proviso that, whenever the argument is undefined, the change is taken to be zero. 
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-y(k) 1---t----:r---+---+-----b--==I 2 
p(k) 

l----+----''-+-+--+------.1~--=-..;..i..--~ l.O 

k•-l 

k=-0.8 

k•-1.2 

k=0.8 

k=l 
(b) 

Figure 3.1 (a) Phase-lag and gain functions, (b) Nyquist diagram. 

in this case, the gain p(k) is a monotonically decreasing function of the fre
quency. In the case of complex roots 'X1 = µ1 ± iv1 with µ1 very small, the gain 
function p(k) is very large near k = v1; this is due to near resonance, as in Example 
3 above. 

Another useful way to visualize the transfer function is to plot the curve 
z = C(k) in the complex plane as k ranges through all real values. The curve thus 
obtained is called the Nyquist diagram of DE (14). Figure 3.lb depicts the Nyquist 
diagram of the DE below (18b). 
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Since C(k) is the inverse of a polynomial, it tends to the origin as k -+ ± oo, 
that is, it "starts" and "ends" at the origin. It is a continuous curve except when 
the characteristic equation has one or more imaginary roots "Xi = ik1. From 
Theorem 6 we obtain the following Nyquist Stability Criterion. 

COROLLARY 2. The equation L[u] = 0 is strictly stable if and only if the Nyquist 
diagram for C(k) turns through -mr radians ask increases from -oo to +oo. 

If L is real, then C(- k) = C*(k), and it suffices to plot half of the Nyquist 
diagram. The operator L is strictly stable if and only if the Nyquist diagram turns 
through mr /2 radians as k increases from 0 to oo. 

*9 THE GREEN'S FUNCTION 

The concept of the Green's function for initial value problems was intro
duced in Ch. 2, §9. For any inhomogeneous linear DE L[u] = r(t), it is a func
tion G(t, r) such that 

(19) u = j(t) = i' G(t, r)r(r)dr 

satisfies L[u] = r(t) if t > a, for any continuous function r. We now state a 
generalization of Theorem 10 of Ch. 2, §9, which describes the Green's function 
of a linear operator of arbitrary order. 

THEOREM 7. The Green's function for the initial value problem of the nth order 
real linear differential operator with continuous coefficients 

a<t<b 

is zero if t < T. Fort> T, it is that solution of the DE L[G] = 0 (for .fixed T and 
variable t) which satisfies the initial conditions 

for t = T 

In the case p;(t) = a, of linear DEs with constant real coefficients, the exis
tence of such a solution follows from the results of §3. Green's function is easily 
computed as a sum of polynomials times exponentials. Thus, if (20) is u"' + 3u" 
+ 3u' + u, the Green's function is 

if t < T 

if t > T 
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For variable coefficient-functions, existence will follow from the results of the 
next chapter. 

We omit the proof of Theorem 7. It follows exactly the proof for second
order differential operators, given in Ch. 2, §9. This can be easily extended to 
the present case: one simply applies Leibniz's rule for differentiation under the 
integral sign n times instead of twice. 

The computation of Green's functions for linear DEs with constant coeffi
cients is most easily performed and its significance best understood by using the 
following result. 

THEOREM 8. The Green's Junction for the initial value problem of any linear 
differential operator with constant coefficients is a Junction G(t, r) = I'(t - r) depend
ing only on the difference t - r. 

Proof. Let I'(t) = G(t, 0); then I'(t) = 0 if t < 0. If t > 0, the function I'(t) 
is the solution of the DE L[I'] = 0, which satisfies the initial conditions 

I'(0) = I''(0) = • • • = r<n-2>(0) = 0, 

We now remark that, if u(t) is a solution of the DE L[u] = 0, for each fixed 
r the function u(t + r) of the variable tis also a solution of the DE. It follows 
that the function F(t) = G(t + r, r) (for fixed r) is a solution of the DE. This 
function satisfies the same initial conditions as the function r, because of the 
way Green's functions are defined. By the uniqueness theorem (Theorem 3), 
it follows that I'(t) = G(t + r, r). Hence, settings = t + r, we obtain I'(s - r) 
= G(s, r), q.e.d. 

Referring to Theorems 1 and 3, we obtain the next corollary. 

COROLLARY 1. In Theorem 8, the Junction I'(t - r) is of class & n-2. It satisfies 
I'(s) = 0 for s < 0, while I'(s) is a linear combination of Junctions s'e''j' for s > 0.t 

Changing variables in (19), we have also the following corollary. 

COROLLARY 2. If r(t) vanishes for t < a, and is bounded and continuous for a 
< t, then the Junction 

(21 a) f(t) = J_: I'(t - r)r(r) dr = J_: I'(s)r(t - s) ds 

is a solution of the inhomogeneous linear DE with constant coefficients (13) on [a, oo], 
which satisfies j(a) = f (a) = • • • = J<n-Il(a) = 0. (Note that, unless r(a) = 0, 
fn>(a) does not exist.) 

t The function f(s) is, of course, also expressible for s > 0 as a real linear combination of functions 
of the form (9). 
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Indeed, since r(r) vanishes for r < a and r(t - r) vanishes for r > t, the 
integral (21a) can be written as 

(21b) 

and is equal to (19), by Theorem 8. 

THEOREM 9. If Lis strictly stable, formulas (21a) remain valid for any bounded 
continuous function r(t) defined for -oo <t < oo; for such a Junction, J (t) is the only 
solution of the DE (13) which is bounded for -oo < t < oo. 

Proof By Corollary 1 above, r(s) is equal (for s > 0) to a linear combination 
of the form 

n 

(22) r<s> = I: c;'li·1", s>0 
i=I 

If the equation L[u] = 0 is strictly stable, then the real parts of all 71.1 are nega
tive. Let -m be the largest of these real parts. Then -m < 0, and 

n 

I e""f2r(s) I < L I c;'J/>-1+(m/2))s I 

1-1 

Since Re {Xi}+ (m/2) < 0 for 1 < j < n, the right side remains bounded for 0 
< s < oo. Let M be an upper bound for the right side. Then we obtain 

0<s<oo 

We next show that the integrals in (21a) are well-defined for any bounded 
continuous function r. The first integral can be rewritten in the form 

since r(t - r) = 0 fort< r. Using the foregoing bound for r(s), and letting R 
be an upper bound for I r(r) I on - oo < T < oo, we obtain 

Ii 2RM 
< RM e-m(t-T)/2 dr = -- < +oo 

-oo m 

for all t. Hence the integral is well-defined and defines a bounded function J(t). 
To show that/is a solution of the DE, we can argue as in Theorem 10 of Ch. 2, 
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provided we can carry out the differentiation under the integral sign. This can 
indeed be justifiedt; instead, however, we shall give a direct argument. 

Consider the sequence of functions rk(t) defined by the formulas 

(23) 

Then the functions 

if t > -k 
if t < -k k = l, 2, ... 

(23') J,.(t) = I~k r(t - r)rir) dr = J_: r(t - r)rir) dT 

are solutions of the DE (14). We shall show that, fort ranging over any interval 
a < t < b, the functions fit), as well as their derivatives of orders up to n, 
converge uniformly to the derivatives of the function f(t). This will also prove 
thatf(t) is a solution of the DE (14). 

From the expression (22) for r(s) as a linear combination of functions of the 
form s'i/l, we see that all derivatives of r(s) are also linear combinations.of func
tions of the same form, for different r1, but with the same sequence of exponents 
"XJ' That is, for the derivative of order t, we have 

n 

r<ll(s) = L PJ(s)/i', 
j•l 

where the p1 are polynomials in the variable s, depending on the order of differ
entiation t.t It follows, as before, that 

e = 1, 2, ... 

Now, from the expression 

we find, for sufficiently large k and j, where k > j 

11r>(t) - Jy>(t)I < J_: 1r<1>(t - r)llrir) - ri<r)I dT 

< f_~ I r<ll(t - T) 11 rir) I dT 

t Courant, Vol. 2, p. 312. 
t This can be easily seen by applying Leibniz's rule; cf. Courant and John, p. 203. 
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and the last integral clearly tends to zero as j, k - oo, uniformly for a < t < b. 
Ther,efore, IJf>(t) - Jj'>(t) I < E for sufficiently large k, j, uniformly for 
a < t ::::::b. This completes the proof of the fact that f is a solution of the DE. 

Lastly, one can easily see, by the following argument, that f thus defined is 
the only bounded solution. If Ji were another bounded solution, then J - J1 

would be a bounded solution of the homogeneous DE. But, since the DE is 
strictly stable as t - oo, no nontrivial solution of the homogeneous DE can 
remain bounded as t - -oo (cf. Theorem 4). Hence,J- f 1 = 0, and the proof 
is complete. 

Convolution. The preceding results have very simple interpretations in 
terms of the important notion of convolution. The convolution of two functions 
fit) and g(t) defined for all real t is defined by the formula 

(24) h(x) = J_: f(x - t)g(t) dt 

whenever the integral is finite. If the functions f and g are identically zero for 
t < 0, this formula simplifies to 

(24') h(x) = _rg(x) = ~c j(t)g(x - t) dx 

In many ways this operation is analogous to the multiplication of two infinite 
series. It is commutative and associative, as can easily be seen. 

Corollary 2 of Theorem 8 states that the solution of the DE L[u] = r(t) for 
the initial conditions u(0) = u'(0) = · · · = u<n-l)(0) = 0 is the convolution 
r * r of r and the Green's function r for the same initial conditions, provided 
that r == 0 for t < 0. 

Theorem 9 can also be i11;terpreted in terms of the convolution operation. It 
asserts that, for strictly stable L, the solution of the "input-output" problem 
L[u] = r(t) is r * r for any uniformly bounded "input" r(t). 

EXERCISES E 

In Exs. 1-6, construct the Green's function for the initial value problem of the DE 
indicated. 

I. d3u/dt3 = r(t) 2. ~u/dtn = r(t) 

3. uw - u = r(t) 4. u"' + u = r(t) 

5. uw + u = r(t) *6. u'" - u = r(t) 

7. Find Green's function of the DE dnu/dtn = r(t). 
8. Carry out in detail the proof of Theorem 7 for n = 3, performing all differentia

tions under the integral sign explicitly. 

*9. Show that, if (19) is defined for all t and the Green's function G(t, T) = r(t - T), 
then all coefficients P•(t) are constant. 

*10. Show that, if u(t + T) is a solution of (19) with r(t) = 0 whenever u(t) is, then the 
coefficients p.(t) are all constants. 
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11. (a) Show that in Ex. DI, the values of PI,(ik) traverse the parabola x = 4 - (y/5)2. 

(b) Verify Theorem 6 in this case. 

12. For u" + au' + bu = ce'k', make graphs of the gain function versus the dimension
less frequency k/Vb for the values 77 = 0, 77 = 1/2, 77 = 1/\/2, 77 = 2 of the param
eter 77 = a/2 Vb (b > 0). 

13. Show that, if PI,(ik) = p;.(ik) = • • • = pi~- 1>(ik) = 0 but pt>(ik) =fa 0, then a solution 
of L[u] = ~ 1 is u(t) = (1/pi~>(ik)tne,k'. 

14. A DE (13) is stable at t---+ -oo when all solutions of the DE remain bounded as t 
---+ -oo. Find necessary and sufficient conditions for stability at -oo. 

15. In Ex. 14, find necessary and sufficient conditions for strict stability at -oo. 

16. Show that no DE (13) can be strictly stable at both oo and -oo. 

17. Show that a DE (13) is stable at both oo and -oo if and only if every root of the 
characteristic equation is simple and a purely imaginary number. 



1 INTRODUCTION 

CHAPTER 4 

POWER SERIES 
SOLUTIONS 

In the preceding chapters, we have constructed many explicit solutions of 
DEs and initial value problems in terms of the so-called elementary functions. 
These are functions that can be built up using the four rational operations (addi
tion, subtraction, multiplication, and division) from the exponential and trigo
nometric functions and their inverses (e.g., the inverse In x of th~ exponential 
function x). Since xv = ev 10"', fractional powers and nth roots Vx = x 1fn of 
positive (real) elementary functions can also be considered as "elementary." 

In these earlier chapters, functions like P(x) = f p(t) dt defined symbolically 
as indefinite integrals were also used freely. Indeed, accurate tables of such func
tions are easily computed using Simpson's rule (Ch. 1, §8). However, one should 
also realize that the indefinite integrals of most "elementary" functions are not 
themselves "elementary" in the sense defined above. This basic fact explains why 
formulas for such expressions as 

I sinx 
--dx 

X 
and I yl 

are conspicuously missing from tables of integrals. t 

d0 

- k2 sin2 0 

This chapter will introduce a much more powerful method for constructing 
solutions of DEs. This method consists in admitting sums of infinite power series 
as defining Junctions in any domain where they converge. Such functions are 
called "analytic." All sums, differences, products, and (except where the denom
inator vanishes) quotients of analytic functions are analytic. Moreover, as is 
almost evident, since 

any indefinite integral of any analytic function is also expressible as an analytic 
function. For example, since (sin x)/x = l - (x2/3!) + (x4/5!) + ... , termwise 

t Cf. Dwight. A valuable collection of analogous explicit solutions of ordinary DEs may be found in 
Kamke, pp. 293-660. 

99 
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integration gives the sine integral function 

(2) l x sin~ x3 x5 
Si(x) = -- d~ = x - - + -

o ~ 18 600 

Joo -t 
(Since E1(x) = x T d~ is logarithmically infinite near x = 0, to express it as 

an analytic function is, however, more involved; cf. §3.) 
Although most of the techniques introduced in this chapter are applicable 

with little change to complex analytic functions, we shall defer the discussion of 
these to Chapter 9. Instead, this chapter will introduce a second and even more 
fundamental idea than that of considering functions as defined by power series. 
This is the idea of considering Junctions as de.fined by differential equations and 
appropriate initial or boundary conditions, by using the defining DE itself to 
determine the properties of the function. 

This approach is especially easy to carry out for first-order linear DEs. For 
example, we can use it to derive the key properties of the exponential function 
E(x) (or ej as the (unique) solution of the DE E'(x) = E(x) that satisfies the 
initial condition E(0) = 1. For any a, f(x) = E(a + x) must satisfy J(0) = E(a) 
and J '(x) = E'(a + x) = E(a + x) = j(x). Since J(x) and E(x) are solutions of 
the same first-order linear homogeneous DE, it follows that J(x) = j(0)E(x) = 
E(a)E(x), giving the formula ea+x = e"ex. In particular, E(a) can never vanish and 
is always positive, together with E'(a) = E(a), E"(a) = E(a), ... , which shows 
that E(x) is increasing and convex. Finally, its Maclaurin series is 

(3) E(0) + E'(0)x + (E"(0)x2/2!) + (E'"(0)x3/3!) + 
00 

giving the exponential series~ = L xk/(k!). 
k=O 

In Ch. 2, §§6-7, we have seen how one can derive many oscillation and non
oscillation properties of solutions of linear second-order DEs 

(4) u" + p(x)u' + q(x)u = 0 

When the coefficient-functions 

can be expressed as sums of convergent power series, we will show in this chap
ter how to find a basis of solutions of the DE (4) having the same form. The 
functions so constructed include many of the special functions most commonly 
used in applied mathematics. ' 

Namely, by substituting a formal power series 

(4') 
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into the DE (4), and using Cauchy's product formula (18'), 

00 

(4") p(x)u(x) = L ckxk, 
k=O 

00 

ck= LPPk-1 
1=0 

we shall first show how to compute the unknown coefficients akin (4'). We shall 
then show that the radius of convergence of the resulting formal power series 
(4') is at least as great as the lesser of the radii of convergence of the series for 
p(x) and q(x). 

We will then give a similar construction for the solutions of normal first-order 
DEs of the form y' = F(x,y), where 

is also assumed to be analytic. Finally, we will estimate the radius of convergence 
of this series. 

2 METHOD OF UNDETERMINED COEFFICIENTS 

The class .:A(D) of functions analytic in a domain D is defined as the class of 
those functions that can be expanded in a power series around any point of D, 
which is convergent in some neighborhood of that point. By a translation of coor
dinates, one can reduce the consideration of such power series to power series 
having the origin as the center of expansion. 

Many of the special functions commonly used in applied mathematics have 
simple power series expansions. This is especially true of functions defined as 
definite integrals of functions with known power series expansions: one simply 
integrates termwise! Thus, from (2), we obtain 

rx 00 fk d~ 00 x2k+I 

Si(x) = Jo ~ (- ll (2k + l)! = ~ (-l)k (2k + 1)2(2k)! 

Expanding the integrand in power series, we can obtain similarly the first few 
terms of the series expansion for the elliptic integral of the first kind, 

F(k,sin- 1x) = ix (1 - f) 1f2(1 - k2f)- 112 d~ 

1 + k2 3 + 2k2 + 3k3 
= x + --- x3 + ------ x5 -

6 40 

with a little more effort. 
Likewise, consider the exponential function eX, defined as the solution of 

y' = y and the initial condition y(O) = 1. Differentiating this DE n times, we 
get y<n+I) = y(n). Substitution into Taylor's formula then gives the familiar expo
nential series~ = Ek=O xk/(k!). 
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We now give some other applications of the same principle to some special 
functions familiar in applied mathematics, defined as solutions of second-order 
linear homogeneous DEs (4) with analytic coefficient-functions. 

Example 1. The Legendre DE (Ch. 2, §1) is usually written 

(6) d [ du] - (1 - x2) - + Xu = 0 
dx dx 

where A is a parameter. 
Substituting the series (4') into the linear DE (6), and equating to zero the 

coefficients of 1 = x0 , x, x2, ... , we get an infinite system of linear equations 

The kth equation of this system is the recurrence relation 

(6') 
k(k + 1) - X 

ak+2 = (k + l)(k + 2) ak 

This relation defines for each A two linearly independent solutions, one consist
ing of even powers of x, and the other of odd powers of x. These solutions are 
power series whose radius of convergence is unity by the Ratio Test, t unless A = 
n(n + 1) for some nonnegative integer n. When A = n(n + 1), the Legendre 
DE has a polynomial solution which is an even function if n is even and an odd 
function if n is odd. These polynomial solutions are the Legendre polynomials 
Pn(x). 

Graphs of the Legendre polynomials P0(x), ... , P4(x) are shown in Figure 
4.1. Note how the number of their oscillations increases with A = n(n + 1), as 
predicted by the Sturm Comparison Theorem. 

In general, to construct a solution of an ordinary DE in the form of a power 
series, one first writes down a symbolic power series with letters as coefficients, 
u = a0 + a1x + a2x2 + .... To determine the ak numerically, one substitutes 
this series for u in the DE, differentiating it term by term. One then collects the 
coefficients of xk that results, for each k, and equates their sum to zero. 

This is called the Method of Undetermined Coefficients. For it to be applic
able to the second-order linear DE u" + p(x)u' + q(x)u = 0, p and q must be 
analytic near the origin. That is (cf. §1), they can be expanded into power series 

(7) p(x) =Po+ P1X + P2x2 + · · · 
q(x) = qo + q1x + q2x2 + 

convergent for sufficiently small x. 

t Courant and John, p. 520; Widder, p. 288. 
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Figure 4.1 Graphs of Pn(x); Legendre polynomials. 

To compute the solution, one assumes that 

(7') 

Term-by-term differentiation gives 

u" = 2a2 + 6a3x + l 2a4x2 + · · · + (n + l)(n + 2)an+2xn + · · · 

pu' = Poa1 + (2Poa2 + P1a1)x + • • • + [t (n + 1 - k)pkan+l-k] xn + 

qu = qoao + (qoa1 + q1ao)x + • · · + [ t qkan-k] xn + · · · 
k-1 

Substituting into (4) and equating the coefficients of 1, x, ... , xn- 1, ... to zero, 
we get successively 

and so on. The general equation is 

(8) 
n(n + 1) 

Given a0 = J(O) and a1 = J'(O), a unique power series is determined by (8), 
which formally satisfies the DE (4). We have proved the following theorem. 
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THEOREM 1. Given a linear homogeneous second-order DE (4) with analytic coef 
ficient functions (5), there exists a unique power series (6) that formally satisfies the DE, 
for each choice of a0 and a1• 

Example 2. The Hermite DE is 

(9) u" - 2xu' + J\u = 0 

Applying the Method of Undetermined Coefficients to (9), we obtain the recur
sion formula 

(9') 
2k - A 

which again gives, for each A, one power series in the even powers x2k of x and 
another in the odd powers x2k+I. These power series are convergent for all x; if 
A = 2n is a nonnegative even integer, one series is a polynomial of degree n, 
the Hermite polynomial Hn(x). 

Caution. We have not stated or proved that the formal power series (7') con
verges or that it represents an analytic function. To see the need for proving 
this, consider the DE x2u' = u - x, which has the everywhere divergent formal 
power series solution 

x + x2 + (2!)x3 + (3!)x4 + · · · + (n - l)!xn + · · · 

For normal second-order linear DEs (4), the convergence of the power series 
defined by (7') to an analytic solution will be proved in §6. First we treat some 
more special cases, in which convergence is easily verified. 

EXERCISES A 
1. (a) Prove that the Legendre DE has a polynomial solution if and only if 

>. = n(n + 1). 
(b) Prove that the radius of convergence of every nonpolynomial solution of the 

Legendre DE is one. 

2. Find a recurrence relation like (8') for the DE (1 + x2)y" = y, and compute expan
sions through terms in x10 for a basis of solutions. 

3. (a) Find power series expansions for a basis of solutions of Airy's DE u" + xu = 0. 
(b) Prove that the radius of convergence of both solutions is infinite. 
(c) Show that any solution of Airy's DE vanishes infinitely often on (0,oo), but at 

most once on (-oo,0). 
(d) Reduce u" + (ax + b)u = 0 to d2u/dt2 + tu = 0 by a suitable change of inde

pendent variable. 

4. Show that u(x) satisfies the Hermite DE (9) if and only if v = e-•212u satisfies 
v" + (>. + 1 - x2)v = 0. 

5. (a) Find a basis of power series solutions for the DE u" + x2u = 0. 
(b) Do the same for u'" + xu = 0. 
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6. In spherical coordinates, the Laplacian of a function F(r,fJ) is 

2 1 
V2F = F,., + - F, + 2 [Foo + (cos 8) F 0]. 

r r 

Show that F(r,fJ) = rnP(cos fJ) satisfies V2F = 0 if and only if P(x) satisfies the 
Legendre DE with;\. = n(n + 1). 

7. (a) Show that in spherical coordinates, U(r,fJ) = (1 - 2r cos (J + r2)- 112 satisfies 
V2U = 0. [HINT: Consider the potential of a charge at (I ,0,0).] 

(b) Infer that (1 - 2r cos (J + r 2)-112 = E0 r"Pn(cos fJ), where Pn(x) is a solution of 
the Legendre equation (8) with;\. = n(n + 1). 

*8. Show that, for any positive integer n, the polynomial dn[(x2 - lt]/dxn is a solution 
of the Legendre DE with;\. = n(n + 1). (This is Rodrigues' formula.) 

3 MORE EXAMPLES 

Many other famous "higher transcendental functions" of classical analysis are 
best defined as solutions of linear homogeneous second-order DEs. Among 
these the Bessel functions have probably been most exhaustively studied. t 

Example 3. The Bessel function ]n(x) of order n can be defined, for n = 0, 
1, 2, ... , as an (analytic) solution of the Bessel DE of order n,t 

1 ( n2
) u" + - u' + 1 - - u = 0 

X x2 

The coefficients of this DE have a singular point x = 0, but are analytic at all 
other points (see §5). 

Though the Bessel DE (10) of integral order n has a singular point at the 
origin, it has a nontrivial analytic solution there. The power series expression 
(or this solution can be computed by the Method of Undetermined Coefficients. 
For example, when n = 0, the DE (10) reduces to 

(10') (xu')' + xu = 0 

Substituting u = Eakxk into (10'), we get the recursion relation k2ak = -ak_2. 

For a0 = 1, a1 = 0, (1 0') has the analytic solution 

(11) 
x2r 

+ (- l)' [2'(r!)]2 + 

t See G. N. Watson, A Treatise on Bessel Functions, Cambridge University Press, 1926. 

t Note that the Bessel DE of "order" n is still a "second-order" DE. 
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This series defines the Bessel function of order zero. It is convergent for all x 
(by the Ratio Test), and converges rapidly if Ix I < 2. 

Similar calculations give, for general n, the solution 

whose coefficients bk = ak+n satisfy the relation (n2 - k2)bk = bk_2. The series 
(12) is also everywhere convergent. Hence, the Bessel function ]n(x) of any inte
gral order n is an entire function, analytic for all finite x. Graphs of ] 0(x) and 
] 1 (x) are shown as Figure 4.2. 

By comparing coefficients, one can easily verify the relations 

For general n, one can verify, in the same way, the recursion formula 

(13) xfn+I = n]n - xj~ = 2n]n - X]n-1 

Clearly, formula (13) definesj1,]2,]s, ... recursively fromj0. 

Example 4. A special case of the Jacobi DE is the following 

(14) 

where;\ is a parameter. 
If we set u = Ek=o akxk, substitute into Eq. (14), and collect the terms in xn, 

we get 

(14') (n + l)(n + 2)an+2 - (n2 - X)an = 0 

Figure 4.2 Bessel functionsJ0(x) andJ1(x) = - J~(x). 
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For most values of X, this leads to two solutions of (10), one an even function 
and the other odd. However, when ;\ = n2 is a square, we have instead a poly
nomial solution. 

Even simpler to solve by power series is the Airy DE 

(15) u" +XU= 0 

One easily derives from (15) the recursion relation n(n - l)an + an_3 for the 
coefficients. A basis of power series solutions therefore consists of the functions 

x3 x6 x9 

Ai(x) = l - 6 + 180 - 12960 + 

and 

x4 x7 x10 

Bi(x) = x - 12 + 504 + 45360 + 

4 THREE FIRST-ORDER DEs 

The three homogeneous, linear, second-order DEsjust treated were quite sim
ilar to each other. In this section, we will derive power series expansions for 
three first-order DEs having much less in common. 

Example 5. To obtain a useful power series expansion for the "exponential 
integral" function E1 (x) defined by (2), one must supplement simple substitution 
into the exponential series, which gives only 

e-x x x2 x3 
- = x- 1 - 1 + - - - + - -

X 2! 3! 4! 

from which termwise integration yields 

(16) 

where 'Y is an unknown constant of integration. The fact that 'Y = .5772156649, 
discovered by Euler, requires additional analysis. 

Moreover, to evaluate E1(x) when x ~ 10, one should replace (16) by the 
asymptotic formula 

-x Joo e-1 dt 
(16') E1(x) = 7 x 1 + (t/x) 



108 CHAPTER 4 Power Series Solutions 

The final series of negative powers is divergent for all x: it is a so-called asymptotic 
series (cf. Ch. 7, §7). However, the partial sum of the first n terms has a relative 
error ofless than 1 %, and an absolute error less than 10-5-5 for x ~ 10. 

Example 6. Pearson's DE is 

(*) (A + Bx + Cx2)y' = (D + Ex)y, A =I=- 0 

Its solution by power series is straightforward, after dividing the equation 
through by A. 

Setting A = l, clearly y = Ef=o a,,xk implies 

(1 + Bx + Cx2)y' = a1 + (2a2 + Ba1)x + 

and 

00 

L [(k - 2)ak-2C + (k - l)ak_1B + ka,Jxk-Y 
k=3 

00 

(D + Ex)y = Da0 + L (Dak + Eak_1)xk 
k=I 

The two sides of the preceding equations are equal if and only if 

[Ea0 + (D - Ba1)] 

2 

kak = [D - (k - l)B]ak-I + [E - (k - 2)C]ak-2 

For given numerical values of A, B, C, D, E, one thus obtains a basic solution 
of (*) in the form of the power series 

[E + D(l - B)]x2 ~ k 
y = l + Dx + 2 + L. akx 

k-3 

where the ak (k ~ 3) are computed recursively from the last previously displayed 
formula. 

Example 7. We will next consider the function y = tan x as the solution of 
the nonlinear DE y' = 1 + y2 for the initial value y(O) = 0. 

By successive differentiation of this DE, we easily obtain formulas for the sec
ond and third derivatives: 

y" = (1 + y2)' = 2yy' = 2y(l + y2) 

y"' = 2y' + 6y2y' = 2(1 + 3y2)(1 + y2) 
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Since (1 + 3y2)(1 + y2) = 1 + 4y2 + 3y4, we have further 

y'° = 2(8y + l 2y3)y' = 8y(2 + 3y2)(1 + y2) 

In particular, setting x = y = 0, we get y'(0) = 1, y"(0) = 0, y'"(0) = 2, and 
y'°(0) = 0, whence tan x = x + x3 /3 + O(x5). 

Note that since 1 + y2 is positive, the function tan x is always increasing. Also, 
since y" has the same sign as y, the graph of y = tan x is concave upward in the 
upper half-plane and concave downward in the lower half-plane. Likewise, y"' is 
always positive, and soy" is increasing. 

Again, setting t = -x and z = -y, we obtain the formulas 

dz = dy = l + y2 = 1 + z2 
dt dx 

and z(0) = 0 

Hence z(t) is also a solution of the initial-value problem of Example 7. There
fore, by the uniqueness theorem (Ch. 1, Theorem 6') for first-order DEs, 
z = tan t. This proves that -tan(-x) = tan x: tan xis an odd function. 

Consequently, the Taylor series expansion of tan x contains only terms of odd 
order: 

Substituting into the defining DE, we obtain 

1 + 3a3x2 + 5a5x4 + 7 a7x6 + 9agx8 + . . . 
= 1 + x2 + 2a3x4 + (2a5 + a~)x6 + 2(a7 + a3a5)x8 + 

Equating coefficients of like powers of x, we get 

3a3 = 1, 

and so on. Solving recursively, we get the first few terms of the power series 
expansion for tan x, 

(**) 
x3 2x5 17 62 

tan x = x + 3 + 15 + 315 x7 + 2835 x9 + 

The radius of convergence of this power series is 1r /2; this follows from the for
mula tan x = sin x/cos x and the results of §3. 

By differentiating the DE y' = 1 + y2 repeatedly, one obtains similarly 
y" = 2yy', y'" = (2 + 3y2)(1 + y2), lv = 2(5y + 6y2)(1 + y2), and so on. The 
Taylor series expansion for Yn+ 1 = tan(xn + h) through terms in h4 for given 
Yn = tan Xn is therefore 

(*) 
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where 

By neglecting the O(h5) term in (*), one obtains a formula 

(**) 

for computing a table of approximate values Yn of Yn = tan (nh) from the initial 
value Y0 = y0 = 0, which is much more accurate than that given by the "Taylor 
series method" of Ch. 1, §8. 

Order of Accuracy. We have used in (*) the convenient notation O(h5) to 
signify the fact that the remainder is bounded by Mfi5, where M is independent 
of h. As a result, one expects that the error per step h will be roughly propor
tional to h5. Since the number of steps is proportional to h- 1, one therefore 
expects the cumulative error to be proportional to h4. This contrasts with the 
simpler Taylor series method of Ch. 1, §8, which has only O(h2) cumulative 
accuracy. 

EXERCISESB 

1. Derive formula (13) by comparing the coefficients of the appropriate power series. 

2. (a) Show that the function (sin r)/r satisfies the DE u" + (2/r)ur + u = 0 and the 
initial conditions u(0) = 1, u'(0) = 0. 

(b) Find another, linearly independent solution of this DE. 

3. Show that the DE (Ax2 + B)u" + Cxu' + Du = 0 has a solution that is a polynomial 
of degree n if and only if An2 + (C - A)n + D = 0. 

4. Show that the change of independent variable x = cos (J transforms the Legendre 
DE (8) of the text into uoo + (cos 0)uo + >..u = 0. What is the self-adjoint form of 
this equation? 

*5. Find conditions on the constants A, ... , F necessary and sufficient for the DE (Ax2 

+ Bx + C)u" + (Dx + E)u' + Fu = 0 to have a polynomial solution of degree n. 

6. Show that if y' = 1 + y2, then y" = 2y(l + y2), y"' = 2(1 + y2)(1 + 3y2), and 
y'" = 8y(l + y2)(2 + 3y2). 

7. Show that any function that satisfies y' = 1 + y2 is an increasing function, and that 
its graph is convex upward in the upper half-plane. [HINT: Use Ex. 6.) 

8. Derive the coefficients 1 /3, 2/15, 1 7 /315, and 62/2835 of the series (**) of the text. 

9. Show that, if y' = 1 + y2, y" = 8y(2 + 15y2 + 15y4)(1 + y2). 

5 ANALYTIC FUNCTIONS 

A function is called analytic in a domain D when, near any point of D, it can 
be expanded in a power series that is convergent in some neighborhood of 
that point. For instance, a real function p(x) of one real variable is analytic 
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in the open interval (x 1,x2) when, given any x0 in this interval (i.e., satisfying 
x 1 < x0 < x2), there exist coefficients p0,pi,p2, ••• and a positive number o 
such that 

00 

(17) p(x) = L pk(x - xol if o>O 
k=O 

The numerical values of o and the coefficients pk will, of course, depend on x0 . 

Likewise, a real function F(x,y) is analytic in a domain of D of the real 
xy-plane when, given (x0,y0) E D, there exist constants b1k (j,k = 0, 1, 2, ... ) 
and o > 0 such that 

00 00 

F(x,y) = L L b1k(x - xoY(y - Yol if Ix - Xo I + I Y - Yo I < o 
i=O k=O 

An example of such a series expansion is the double geometric series 

(18) 
M oo oo M 

G(x,y) = ( ) ( ) = ~ L H'Kkx1l X J 1=0 k=O 1-- 1--
H k 

This series converges in the rectangle I x I < H, I y I < K and defines an analytic 
function in this rectangle. 

Analytic functions of three and more variables are defined similarly. 

Domain of Convergence. Crucial for work with any power series is an 
understanding of its domain of convergence. Within this domain, any power 
series is absolutely convergent, and it can be differentiated or integrated term
wise any number of times. It follows that each coefficient of any power series is 
uniquely determined by the analytic function which the power series defines. 
This is because, if u = F(x,y) = E1,k b1k(x - x0)j(y - y0)k is convergent in some 
neighborhood of (x0 ,y0), then 

bk = (j!~(k!)aj+kF 
1 ax1ay\x0,y0) 

If F and G(x,y) = E1k c1k(x - x0Y(y - y0)k a:re any two power series expansions 
about the same "center" (x0 ,y0), moreover, then their power series can be 
added, subtracted, and multiplied termwise within the intersection of their 
domains of convergence. Worth noting is Cauchy's formula for the product h(x) 
= J(x)g(x) of two analytic functions f(x) = Ef=o akxk and g(x) = Er..0 bkxk. This 
formula is 

00 

(18') h(x) = L ckxk, 
k=O 

where 
k 

ck= L aik-1 
1=0 
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By a well-known theorem of the calculus, this will be absolutely convergent to 
f(x)g(x) whenever the series for f(x) and g(x) are both absolutely convergent.t 

In dealing with linear differential equations such as (4), it is sufficient to con
sider analytic functions of one variable. For these, the key concept is that of the 
radius of convergence. The radius of convergenc~ R of the power series (17) is the 
largest o such that the series converges whenever I x - x0 I < o. The radius of 
convergence of any power series can be determined from its coefficients by Cau
chy's formula 

(19) 
1 .n r,:-; ,k r,;-, 
- = lim sup V IPnl = lim {sup V IPkl } 
R n-oo n-oo k>n 

The series diverges for all x with Ix - x0 I > R. The interval of convergence of 
(1 7) is the interval (x0 - R, x0 + R). 

For functions of a complex variable, the radius of convergence of the series 
(1 7) is still determined by Eq. (19). The series is convergent in the circle of con
vergence Ix - x0 I < R and divergent if Ix - x0 I > R; it defines a single-valued 
analytic (or holomorphic) complex function inside its circle of convergence. When 
R = oo, the power series (17) defines an analytic function for all x, real or com
plex; such functions are called entire functions. 

Example 8. The substitution~ = C - x reduces the DE 

(20) 
A B 

u" +---u' +---u = 0 
C - x (C - x)2 ' 

C>O 

to Euler's homogeneous DE 

(20') 

already discussed in Ch. 3, §2. 
To solve (20), try the function u = ~v = (C - xt. This satisfies (20) if and 

only if v is a root of the indicial equation of (20'), 

11(11 - 1) - Av + B = 0 

When B < 0, this indicial equation has one positive root and one negative root 
- µ. Hence, (20) has two linearly independent real solutions, given by the bino
mial series 

(21) lxl < c 

t Courant and John, pp. 542-544, 555; Widder, pp. 303-306 and 318-320. For a more complete 
discussion, see K. Knopp, Theory and Application of Infinite Series, Dover, 1956. 



6 Method of Majorants 113 

and a like series with v replaced by - µ. When v is a nonnegative integer, a poly
nomial solution is obtained. Otherwise, the radius of convergence of the series 
is C, the same as that of the power series expansions of the coefficient-functions 

p(x) = A = (~) [ 1 + f (-=-)k] 
(C - x) C k=I C 

and q(x) = B/(C - x)2 of the DE (20). 

6 METHOD OF MAJORANTS 

If one keeps in mind the results of §4, one can show quite easily that the 
formal power series solutions of (4), obtained by the Method of Undetermined 
Coefficients of §2, have for all choices of a0 and a1 radii of convergence at least 
as large as the smaller of the radii of convergence of the coefficient functions. 
To prove this, one uses an ingenious method due to Cauchy, the so-called 
Method of Majorants. 

A power series Eakxk is said to be majorized by the series EAkxk if and only if 
I ak I < Ak for all k = 0, 1, 2, 3, .... By the Comparison Test, the radius of 
convergence of Eakxk is then at least as large as that of EAkxk, and all Ak are 
positive or zero. Therefore, we say that the DE 

(22) u" = P(x)u' + Q(x)u, 

majorizes the DE (4) if and oniy if Pk > I Pk I and ~ > I qk I, for all k. 
In particular, the choice of coefficient-functions 

(22') and 

in (22) gives a DE that majorizes (4). Moreover, by (19) the coefficient-functions 
(22') have the same radius of convergence as p(x) and q(x), respectively. 

LEMMA 1. Let the DE (22) majorize the DE (4), and let Ek=O ckxk be the formal 
power series solution of (22) whose .first two coefficients are I a0 I and I a 1 1. Then ck > 
I ak/ for all k. 

This lemma may be thought of as a generalized comparison test. 

Proof. For the DE (22), the coefficients of formal power series solutions sat
isfy, by (8) with pk = - Pk, qk = - Qk: 

(*) n>l 

Hence, ifco > laol, C1 > la1I, ... , Cn > lanl, it follows that Cn+l > lan+II, as 
stated. This is because an+I is given for n > 1 by the display (8), like (*) above, 
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with each (positive) term replaced by one having at most as great an absolute 
value. The lemma follows by induction on n. 

Now let x1 be any number whose absolute value I x1 I = C is less than the 
smaller of the radii of convergence of the two series (7). Then PJtXt and qkxt are 
uniformly boundedt in magnitude for all k, by some finite constant M. Hence 
we have 

k = 0,1,2, ... 

This implies that the power series for p(x) and q(x) are both majorized by the 
geometric series 

M f (=--)k = 
k=O C 

MC 

(C - x)' 
forsomeM> 0, C> 0 

This series being majorized in turn by 

MC2 00 ( )k 
(C _ x)2 = M ~ (k + 1) ~ 

the DE (4) is majorized by the DE 

(23) 
MC I MC2 

u" = --- u + ---.,,-u 
(C - x) (C - x)2 

But, as in Example 8, one solution of this DE is the function 

where - µ is the negative root of the quadratic indicial equation of (23). Again 
as in Example 3, this equation is 

v(v - 1) - MCv - MC2 = 0, where - MC2 < 0 

This function <J>(x) has a power series expansion 

(24) 
µx µ(µ + l)x2 

1 + c + 2c2 + 

convergent for lxl < C, as in (21). 

t This is because, if a series is convergent, its n-th term tends to zero as n ---+ oo. 
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Now apply the foregoing lemma. Each solution of (4) is majorized by K times 
the solution <J>(x) of (23), provided that 

(24') K = max { laol, la:CI} 

But K<J>(x) has the radius of convergence C. Hence, by the preceding lemma, the 
radius of convergence of the series (6) is at least C = I x1 I - This proves the 
following result. 

THEOREM 2. For any choice of a0 and a1, the radius of convergence of any power 
series solution defined by the recursion formula (8) is at least as large as the smaller of 
the radii of convergence for the series defining the coefficient functions in (4). 

We now recall (§5) that power series can be added, multiplied together, and 
differentiated term-by-term within their intervals (circles) of convergence. It fol
lows from Theorem 2 that when applied to power series defined by (8), the three 
equations displayed in §2 between formulas (7) and (8) are identities in the com
mon interval of convergence specified. Hence, the power series defined by (8) 
are solutions of (4), and we have proved the following local existence theorem. 

THEOREM 3. Any initial value problem defined by a normal second-order 
linear homogeneous DE (4) with analytic coefficient Junctions and initial conditions 
/) = ao, JW) = a1 has an analytic solution near x = 0, given by (8). 

EXERCISESC 

1. Let "E.a.xk have the radius of convergence R. Show that, for any r < R, the series is 
majorized by "E.(m/rixk for some m > 0. 

2. Using Ex. 1, prove Cauchy's formula (19). 

3. Prove that, unless v is a nonnegative integer, the radius of convergence of the bino
mial series (21) is C. 

4. Using the symbols A, B, C to denote the series "E.a.x\ "E.b.x\ "E.c.x\ and writing 
A « B to express the statement that series A is majorized by series B, prove the 
following results: 
(a) A « B and B « C imply A « C. 
(b) A « B and B « A imply A = B. 
(c) If A « B, then the derivative series A': "E.kakx• and B': "E.kb.xk satisfy A' « B'. 
(d) If A « Band C « D, then A + C « B + D and AC « BD. 

5. Prove that the radius of convergence of "E.a•x• is unaffected by term-by-term differ
entiation or integration. 

6. (a) Obtain a recursion relation on the coefficients ak of power series solutions "E.a•xk 
of Pearson's DE y' = (D + Ex)y/(A + Bx + Cx2), A =fa 0. 

(b) What is the radius of convergence of the solution? 
(c) Integrate this solution by quadratures, and compare. 

*7. Extend the Method of Majorants of §6 to prove the convergence of the power series 
solutions of the inhomogeneous DE u" + p(x)u' + q(x)u = r(x), when the functions 
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p, q, rare all analytic. [HINT: Show that the DE is majorized by setting p(x) = - MC/ 
(C - x), q(x) = -MC2/(C - x)2, r(x) = M/(C - x), for some finite M > 0, C > 0.) 

*8. Let the coefficients of u = Eairi satisfy a recursion relation of the form 
ak+ 1/a• = P(k)/Q(k + 1), where P and Qare polynomials without common factors 
and Q(0) =fa 0. Show also that u must satisfy a DE of the form 

and conversely. 

*7 SINE AND COSINE FUNCTIONS 

To illustrate the fact that properties of solutions of DEs can often be derived 
from the DEs themselves, we will now study the trigonometric DE 

(25) y" + y = 0 

The general solution of this DE is y = a cos x + b sin x, where a and b are 
arbitrary constants, and the functions cos x and sin x are defined geometrically. 

We will pretend that we do not know this, and deduce properties of the trig
onometric functions sin x and cos x from general theoretical principles, assum
ing only the trigonometric DE (25) and the initial conditions that they satisfy. In 
this spirit, we define the functions C(x) and S(x) as the solutions of this DE that 
satisfy the initial conditions C(0) = 1, C'(0) = 0, and S(0) = 0, and S'(0) = 1, 
respectively. Applying the Method of Undetermined Coefficients to (25) with 
these initial conditions, we get easily the familiar power series expansions 

(25') C(x) 
x2 x4 

= l --+--
2! 4! 

x3 x5 
S(x) = x - - + - -

31 5! 

whose convergence for all x follows by the Ratio Test. 
Differentiation of (25) gives the DE y"' + y' = 0. Therefore, the function 

C'(x) is also a solution of the DE (25); moreover, since the function satisfies 
the initial conditions C' (0) = 0 and C" (0) = - C(0) = - 1, it follows from 
the Uniqueness Theorem (Ch. 2, Theorem 1) that C'(x) = -S(x). This 
proves the differentiation rule for the cosine function. A similar computation 
gives S'(x) = C(x). 

The Wronskian of the functions C(x) and S(x) can be computed from these 
two formulas; it is W(C,S;x) = C(x)2 + S(x)2. From Theorem 3 of Ch. 2, 
W(C,S;x) = C(0)2 + S(0)2 = 1 follows. This proves the familiar trigonometric 
formula cos2 x + sin2 x = 1. 

Again, by Theorem 2 of Ch. 2, every solution of the DE (25) is a linear com
bination of the functions Sand C. We now use this fact to derive the addition 
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formula for the sine function: 

sin(a + x) = cos a sin x + sin a cos x 

First, by the chain rule for differentiating composite functions, the function 
S(a + x) is also a solution of the DE (25). Therefore (Ch. 2, Theorem 2), this 
function must be a linear combination of S(x) and C(x): 

(26) S(a + x) = AS(x) + BC(x) 

Furthermore, if we write J(x) = S(a + x), then /(0) = S(a) and J'(0) = C(a). 
But if we differentiate the right side of (26) and set x = 0, we find that 
/(0) = B andf'(0) = A, whence S(a + x) = C(a)S(x) + S(a)C(x). This proves 
the addition formula for the sine function. The addition formula for C(x) 

C(a + x) = C(a)C(x) - S(a)S(x) 

can be derived similarly. 
Finally, the fact that the functions S and C are periodic can be proved from 

the addition formulas. Define 1r/4 as the least positive x such that S(1r/4) = 1/ 
V2. Since S' = C = v'l - S2 > l/V2 on any interval [0, b] where S(x) < 1/ 
V2, we see that S(x) is increasing and satisfies S(x) > x/V2 there. Hence, S(x) 
< l/V2 on [0, l] is impossible, which shows that 1r/4 exists in [0, l]. Moreover, 
1r/4 = s-1(1/V2), where s-1 is the inverse function of S. Since the derivative 
of s- 1 is given by 1/S'(x) = 1/v'l - S2 , this makes 

11' I l/v'2 dt 

4 = 0 VI=7 

Moreov~r, C cannot change sign until S2 = 1 - C2 = 1. Hence, cos 
(1r/4) = l/V2 = sin (1r/4). Consequently, by the addition formulas proved 
above 

sin ( i + x) = ~ (sin x + cos x) = cos ( i - x) 

In particular, sin (1r/2) = (2/V2)/V2 = 1 and, therefore, cos (1r/2) = 0. Using 
the addition formulas again, we get the formulas sin (1r /2 + x) = sin (1r /2 -
x), cos (1r/2 + x) = -cos (1r/2 - x), sin (1r + x) = -sin x, cos (1r + x) = 
-cos x and, finally, the periodicity relations cos (21r + x) = cos x, sin (21r + x) 
= sin x. 

*8 BESSEL FUNCTIONS 

The Bessel functions of integral order n and half-integer order n + ½ are 
among the most important functions of mathematical physics (see Exercises D 
below). In §3, we defined]n(x) as Example 3, and derived a basic recursion for-
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mula (13) expressing ]n(x) algebraically in terms of ] 0(x) and its derivatives. In 
this section, we shall derive many other useful facts and formulas involving Bes
sel functions from the results proved in §3. We emphasize that all of these for
mulas can be derived from their defining DEs (10), the fact that]n(x) is analytic 
at 0, and the choice ofleading coefficient in formula (12). 

Specifically, one can prove all the properties of the Bessel functions of inte
gral order from (10) and the recursion relations (13). For example, one can 
obtain such useful formulas as 

f xj0 dx = x]i, Jxj1 dx = -xj0 + f]o dx 

x2 x2 
f xJi dx = - <Ji + ]i) = - <Ji + ][/) 

2 2 

More generally, we can obtain useful expressions representing, in closed form, 
integrals of arbitrary polynomial functions times Bessel functions and products 
of Bessel functions. The basic formulas are (13) and 

(27a) 

(27b) 

(27c) 

(27d) 

(27e) 

Jxkj1 dx = -x"Jo + kf xk- 1] 0 dx 

Jx"fo dx = xkj1 - (k - l)J xk- 1] 1 dx 

2f x"Joj1 dx = -x"Ji + kJxk-IJi dx 

f x\Ji - ]i) dx = x"Joj1 - (k - l)J xk- 1] 0 ] 1 dx 

Jxk[(k + l)]i + (k - l)]i] dx = xk+ 1(]i + ]i) 

Equation (27a) follows fromj1 = -]0, integrating by parts. To derive formula 
(27b), note that since (x]0) = -xJ0 , it follows that 

To derive (27c)-(27e), differentiate x"J~, x"fo]o, and xk+1(J~ + ]02), respectively, 
and use (10) to eliminate Ji. The integral f]o dx cannot be reduced further, and 
so it has been calculated (by numerical integration) and tabulated.t 

Important qualitative information can also be obtained from a study of the 
DE (10) which the Bessel functions satisfy. Substituting u = v/VX into (10), we 
obtain the equivalent DE 

(28) 

t G. N. Watson, Bessel Functions, Chapter 8. Cambridge University Press 1926; A. N. Lowan et al., 
]. Math and Phys. 22 (1943). 
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The oscillatory behavior of nontrivial solutions of the Bessel DE (10), for large 
x, can now be shown, using the Sturm Comparison Theorem (Ch. 2, §4). When 
applied to (28), this result shows that, for large x, the distance between succes
sive zeros of ] 0(x) is inferior to 1r by a small quantity (at most 1r /8x2), while that 
between successive zeros x, and x,+1 of ]n(x) exceeds 1r by about n21r /2x; if n > 
1. Also, since ] 1 = - ] 0, there is a zero of ] 1 between any two successive zeros 
ofj0. 

Setting u(x) = v2 + v'2 = x(]! + ]~2> + ]n]~ + J!/4x, it also follows from 
(28) that u'(x) = (4n2 - l)vv' /2x2. Since I 2vv' I < v2 + v'2 = u(x), there follows 

(281 I u'(x) I < Knu?) ' 
X 

K = ln2 - .!.I 
n 4 ' u(x) > 0 

Using the Comparison Theorem of Ch. 1, §11, we get from (28') 

where Kn = I n2 - ¼I, For large x, therefore, u(x) must approach a constant A. 
Clearly, 1/VX is the asymptotic amplitude of the oscillations of the Bessel func
tions for large x, since J; vanishes at maxima and minima of ]n(x), so that u(x) = 
xJ!(x) there. Much more precise asymptotic results about the oscillations of Bes
sel functions will be proved in Ch. 10. 

The General Solution. The general solution of the Bessel DE of zero order 
is, setting W(x) = e-fdx/x = l/x in formula (13) of Ch. 2, 

(29) 

But a straightforward computation with power series gives 

From this formula, substituting back into (19) and integrating the resulting 
series term-by-term, we see that the general solution Z0(x) of the Bessel DE of 
zero order is 

(30) Z0(x) = j 0(x) [ A + B ( ln x + :2 + :;; + . . . ) ] 

It follows that every solution not a constant multiple of ] 0(x) becomes logarith
mically infinite as x ! 0, since B =f,. 0. For further information, see Ch. 9, §7. 
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Generating Functions. Given a sequence {an} of constants a0,a1 ,a2, ... , the 
power series 

00 

g(x) = aO + a1x + a2x2 + · · · = L anxn 
n=O 

is called its generating function. When the series on the right converges in an 
interval, this defines a function g(x) there; otherwise, the infinite series is just a 
formal power series. In many cases, useful information can be obtained about a 
sequence {an} by studying its generating function. 

Likewise, given a sequence of functions Fn(r), the function defined by the 
power series EtnFn(r) is also called the "generating function" of the sequence. 
Thus, the generating function of the sequence of Legendre polynomials is 

00 

(*) L r'Pn(0) = (1 - 2r COS 0 + r2)- 112. 

n=O 

The same phrase is used when the sum is taken over all integc,::rs; for example, 
the Bessel functions of integral order have the generating function 

00 

(31) L tnfn<r> = er(t-,-1i12 
-oo 

See Ex. D13. 

EXERCISESD 

I. Define E(x) as in § 1, by the DE E' = E and the initial condition E(0) = 1. Prove in 
turn, justifying your arguments by referring to theorems, that 

(a) E(x) = Ef=o x*/(k!) (b) E(a + x) = E(a)E(x) 
(c) E(-x) = l/E(x) [Suggestion: Show that for any a, E(a + x)/E(a) satisfies the 

conditions defining E(x).] 

2. Define sinh x and cosh x as the solutions of the DE u8 = u that satisfy the initial 
conditions u(0) = 0, u'(0) = 1 and u(0) = 1, u'(0) = 0, respectively. Show that sinh 
x has only one real zero and cosh x has no real zeros. Relate this to the Sturm 
Comparison Theorem. 

3. Using methods like those of §7, establish the following formulas (cf. Ex. 4): 
(a) cosh2 x - sinh2 x = l (b) cosh (-x) = cosh x 
(c) sinh (-x) = -sinh x (d) sinh (x + y) = sinh x coshy + cosh x sinhy 

4. (a) Show that sinh x + cosh x satisfies the conditions used to define E(x) in Ex. 1. 
*(b) Using this result, and the formulas of Ex. 3, show sinh- 1(x) = ln(x + 

U+l). 

5. Prove formulas (27a) and (27b) in detail, expanding on the remarks in the text. 

6. Prove formulas (27c)-(27e) similarly. 
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Establish the identities for Bessel functions of integral order in Exs. 7-10. 
k 

7. ]n(-x) = (-1)'1n(x) *8. (-;-:x) (Xjn(x)) = Xn-*.Jn-k(x) 

*9. ]n-1(x) + fn+h) = 2nx- 1]n(x) 

*10. ]n-1(x) - fn+h) = 2J~(x) 

11. 

12. 

In polar coordinates, V2u = u" + r- 1u, + r-2U()8. 

(a) {cos} Show that ]n(r) . n8 satisfies V 2u + u = 0. 
sm 

*(b) 
Show that conversely, if J(r) {c?s} n8 satisfies V 2u + u = 0 and is bounded 

sm 
near r = 0, then](r) is a constant multiple of ]n(r). 

Show that (sin r)/Yr = Yr j 0(r) is a constant multiple of J112(r). (Cf. Ex. A.) 

*13. (a) Show that the real and imaginary parts cos(r sin 8) and sin(r sin 8) of 
e'Y = eirsinB satisfy '\72u + U = 0. 

(b) Show that e'1 = e,1,-,-I)/2, t = e18, y = r sin 8. 

(c) Show that the functions Fn(r) in the Laurent series expansion 

satisfy the Bessel equation of order n. [Use (a) and (b).] 
(d) Comparing the coefficients of tnr", prove the identity e'1t-H)/l = E~00 tT(r) 

where]-n(x) = ]n(-x) = (-)'1n(x). 

*14. (a) Show that Kummer's confluent hypergeometric function 

a a(a + 1) x2 

M(a,b;x) = 1 +bx + b(b + 1) 21 

a(a + 1) • • (a + n) xn 
+ ••• +-b(~b-+~1)-----~-+ 

• (b + n) nl 

is a solution of the DE xF0 + (b - x)F - aF = 0. 
(b) Show that the preceding function is an entire function. 

*15. (a) Show that u(r,8,a) = cos [r cos (8 - a)] satisfies V 2u + u = 0 for all a, and 

1 r2• 
hence so does its average 2'11" Jo u(r,8;a) da = U(r) 

(b) Prove that J0(r) = ...!_ f • cos[r cos a] da = .!:. J.0 cos[r cos a] da 
2'11" -x 'Ir X 

9 FIRST-ORDER NONLINEAR DEs 

The Method of Undetermined Coefficients and the Method of Majorants can 
also be applied to any normal analytic first-order DE. For any function F(x,y) 



122 CHAPTER 4 Power Series Solutions 

analytic near (0,0), consider the DE 

(32) 

The DE y' = l + y2 of Example 7 is one of the simplest nonlinear such DEs; we 
refer the reader back to §4 for a preliminary discussion of how to solve this 
particular DE. 

In this section we will explain how to solve a general DE of the form (32) by 
the same method. Namely, we substitute into the DE (32) the formal power 
series 

(33) 

assuming that we are looking for the solution of (32) satisfying the initial con
dition y(O) = 0, which we can always do by a translation of coordinates. Accord
ingly, setting 

(33') 

and substituting into (32), we obtain successively 

(34) a1 = boo, 

and so on. The expression on the right side of each of these equations is a poly
nomial with positive integral coefficients. Equations (34) can be solved recur
sively, giving the formulas 

a1 = boo, 

and so on. When we substitute the series (33) for y into the series (32) for F(x,y), 
the coefficient of xh is a sum of products of factors b1k (with j + k < h) times 
polynomials of degree k in the a, obtained by raising the series (33) to the kth 
power. The coefficient of xh on the left side of (32) is, however, (h + l)ah+1' by 
(33'). Equating coefficients of like powers of x, we have, therefore, 

where the coefficients of qh are positive integers. Substituting for a1, ... , ah 

already available formulas, we obtain 

(34") 
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The polynomial functions ph have positive, rational numbers as coefficients. They 
are the same, no matter which function F(x,y) is used in (32). 

Solving the resulting equation at x = 0 for an+I = y<n+I)/(n + l)!, we get the 
following result. 

THEOREM 4. There exists a power series (33) which formally satisfies any analytic 
.first-order DE (32). The coefficients of this formal power series are polynomial Junctions 
of the bhk with positive rational coefficients. 

The preceding formulas can also be obtained in another way. Let y = f(x) be 
the graph in the (x,y)-plane of any solution of the DE y' = F(x,y), and let u(x,y) 
be any analytic function in a domain containing this graph. Differentiating with 
respect to x along the graph, we get the formula 

This formula can be differentiated repeatedly, giving the operator identity 

(35) d:' ( a a )n - = - + F(x,y)
dxn ax ay 

Applying this identity to the function F(x,y) = y', we get, in succession, 

and so on. The general formula is 

(35') Y(n+I) = __ y = - + F- [F(x,y)] d:'+1 ( a a )n 
dxn+I ax ay 

The right side of (35'), evaluated at x = y = 0, is a polynomial in the variables 
b1k with positive integers as coefficients. This is because the operations used in 
evaluating this expression are addition, multiplication, and differentiation. 

EXERCISES E 
In Exs. 1-7, calculate the first four nonzero terms·of the power series expansion of the 
solutions of the DE indicated, for the initial value y(O) = 0. 

I. y' = x + y 2. y' = I + x2y2 
3. y' = g(x) = Ebkxk 4. y' = g(y) = Ebky* 

5. y' = xy2 + yx2 + I 6. y' = I + y2 

7, y' = cos Vy + 1 

8. Calculate explicitly the polynomial p3 = a4 of Theorem 4. 

9. Compute the first five polynomials Pn of Theorem 4 when F(x,y) = b(x)y + c(x) in 
(30). 
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10. Apply the same question for the Riccati DE y' + y2 = b(x)y + c(x). 

11. Show that the DE y' = x2 + y2 has a solution of the form Ej akx4k-l with all ak > 0. 
For a1 = 1, compute a2, a3 , a4 . 

12. (a) From the DE y' = 1 + y2, prove that the coefficient an+i in the expansion tan x 
= Eakx*, a0 = 0, satisfies (n + l)an+I = E;;;;f akan-l· [HINT: Differentiate y2 using 
the binomial expansion of (uv)Cn>.] 

(b) Compute the first five nonzero coefficients, and compare with those obtained by 
solving for y recursively from x = y - y3 /3 + y5 /5 - . . . , the series for x = 
arctan y. 

13. Show that if y' = F(x,y), where Fe ~3, then 

14. For the DE y' = 2y/x and the initial condition y(l) = 1, calculate the first four terms 
of the Taylor series of the solution. 

10 RADIUS OF CONVERGENCE 

The DE y' = 1 + y2 of Example 7 shows that the radius of convergence of 
power series solutions of a nonlinear DE y' = F(x,y) can be much less than that 
of the function F(x,y). For, the radius of convergence of the solution tan (x + 
c) of the DE y' = 1 + y2 which satisfies y(O) = tan c = 'Y is only 1r /2 - c, the 
distance to the nearest singular point of the solution. This can be made arbi
trarily small by making 'Y large enough, even though the radius of convergence 
of F(x,y) = I + y2 is infinite. 

The preceding situation is typical of nonlinear DEs and shows that we cannot 
hope to establish an existence theorem for nonlinear DEs as strong as Theorem 
3. The contrast with the situation for nonlinear DEs is further illustrated by the 
Riccati equation of Ch. 2, §5, (*). 

Example 5. The Riccati equation 

(36) dv/dx = -v2 - p(x)v - q(x) 

is satisfied by the ratio v(x) = u'(x)/u(x), if u(x) is any nontrivial solution of the 
second-order linear DE (4). Conversely, if v(x) is any solution of the Riccati DE 
(36), then the function u = exp (J v(x) dx) satisfies the linear DE (4). 

Now, let p, q be analytic and a, c given constants. Using Theorem 2 to find a 
solution u of (4) satisfying the initial conditions u(a) = I and u'(a) = c, we obtain 
an analytic solution v = uj'u of the Riccati equation (36) which satisfies v(a) = 
c. This gives a local existence theorem for the nonlinear Riccati DE (36). 

However, this solution becomes infinite when u = O; hence the radius of 
convergence of its power series can be made arbitrarily small by choosing c suf
ficiently large. Also, the location of the singular points of solutions of (36) is 
variable, depending on the zeros of u. 
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The Riccati equation also serves to illustrate Theorem 4. A simple computa
tion gives, for v = Ej akx\ the formula 

h-1 

+ L a,ah_,xh + 
,=l 

Substituting back into (36), we get the recursion relation 

h-1 h 

(h + l)ah+l = - L a;ah-, - L a,Ph-, - qh 
,-1 ,-1 

This is, of course, just the special case of formula (34') corresponding to setting 
F(x,y) = -y2 - Ege' pkxky - Ege' qkxk. 

We shall now return to the general case. Let F be any function of x and y 
analytic in some neighborhood of (0,0). This means that F can be expanded into 
a double power series 

where b1k are given real numbers, and the series is convergent for sufficiently 
small x and y. We shall show that the series (33) referred to in Theorem 4, and 
defined by formulas (34)-(34')-(34") has a positive radius of convergence. 

Analytic Functions of Two Variables. To prove this, we shall need a few 
facts about analytic functions of two variables and the convergence of double 
power series like (37). The terms of any absolutely convergent series can be rear
ranged in any order without destroying the convergence of the series or chang
ing the value of the sum. If we substitute into a double power series like (37) 
convergent near (0,0) any power series y = Ef=o akxk having a positive radius of 
convergence, we will obtain an analytic function F(x, f(x)) which itself has a pos
itive radius of convergence. 

Finally, let the double power series (37) be convergent at (H,K), where 
H > 0 and K > 0. Then the terms of the series Eb1,,ll5~ are bounded in 
magnitude by some finite constant M = max lb1kl/P~. This gives the bound 

M< +oo, 

to the terms of the series (37). Comparing with the double geometric series men
tioned in §6 

(38) M 
00 00 (M) 

G(x,y) = ( ) ( ) = L L HJ~ x1l. 
X y 1•0 k=O 

1-- 1--
H K 
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and applying the Comparison Test, we see that the series (37) is absolutely con
vergent in the open rectangle Ix I < H, ly I < K, and can be differentiated 
there, term-by-term, any number of times. 

The preceding remarks have the following immediate consequence. 

COROLLARY. If the power series (33) of Theorem 4 has a positive radius of con
vergence, then the Junction which it de.fines is an analytic solution of the DE (30) for 
the initial condition y(0) = 0. 

11 * METHOD OF MAJORANTS, II 

We will now complete the proof of an existence theorem for analytic (normal) 
first-order DEs by showing that the series (33) has a positive radius of conver
gence. Th.is is again shown by the Method of Majorants, which we now extend 
to functions of two variables. 

Consider the power series 

y: a1 x - a2x2 + a3x3 + 

F: boo - b10x + bo1Y + b20X2 + buxy + 

as infinite arrays of real or complex numbers, irrespective of any questions of 
convergence. Such power series can be added, subtracted, and multiplied using 
Cauchy's product formula (18') algebraically as infinite polynomials, without 
ever being evaluated as functions of x and y. Such expressions are called formal 
power series. It is possible to substitute one formal power series into another; 
after rearranging terms, another formal power series is obtained. Two formal 
power series are considered identical when all their coefficients coincide. 

Comparing F with the formal power series 

one says that the formal power series G majorizes the formal power series F when 

for all j, k = 0, 1, 2, • • 

In symbols, one writes 

(39) F« G. 

This implies that all coefficients c1k are nonnegative. 
The following lemma is immediate. 

LEMMA 1. Let F, G, H be any three formal power series. Then F « G and G « 
F imply F =G, and F « G and G « H imply F « H. 
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It is not true, however, that F « F if F has any negative coefficient. 
The relation (39) of majorization between formal power series is useful in 

estimating the radius of convergence of such series. From the Comparison Test 
for convergence, we obtain the following directly. 

LEMMA 2. If F and G are formal power series and if F « G, then F converges 
absolutely at any point (x,y) if G converges at (Ix I, ly I). 

The crucial result for the proof of convergence of the formal power series 
(33), obtained from Theorem 4, is the following. 

LEMMA 3. Let F « G, and let f and g be the formal power series (without constant 
terms) obtained iJ,y solving y' = F (x,y) and y' = G (x,y) formally, as in Theorem 4, 
for the initial condition y(O) = 0. Then g majorizes f (that is, f « g). 

Proof The polynomials ph in Theorem 4 have nonnegative coefficients. It fol
lows that 

for all h; hence, the absolute value of each coefficient ah is less than or equal to 
the corresponding coefficient of the formal power series g, q.e.d. 

It is now a straightforward matter to prove our main result. 

THEOREM 5. Let F (x,y) be analytic in the closed rectangle Ix I < H, ly I < K, 
where Hand Kare positive. Then the formal power series solution (33) of the DE (32) 
has a positive radius of convergence. 

Proof The power series for the function Fis convergent at (H,J(); as in §9, 
it follows that for some finite M = max I b1,,.EflK' I, 

whence 

That is, the formal power series F is majorized by the double geometric series 
(38): 

G(x,y) = M /[(1 - =-) (1 -1.)] = f ~ x1l. 
H K J,k=O H7 K' 

This series is the product of two geometric series, each absolutely convergent if 
Ix I < H, ly I < K. Therefore, it is also absolutely convergent in this rectangular 
domain, and defines an analytic function there. 

Furthermore, the DE y' = G(x,y) can be solved in closed form by separation 
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of variables. The solution satisfying y(O) = 0 is 

(40) y = K[l - \II + (2MH/K) In (1 - (x/H))] , 

where the principal values of the logarithmic and square root functions are 
taken, corresponding to the usual expansions of the functions YI+t and 
In (1 + t) in power series with center at t = 0. The radius of convergence is 
given by the equation (2MH/K) In [I - x/HJ = -1, or 

(41) 

since the binomial series for the radicand in (40) converges so long as 
(2MH/K) lln [I - (x/H)] I < 1. Th_is completes the proof. 

By Theorem 6 of Ch. 1, whose hypotheses are satisfied since Fis continuously 
differentiable, the solution satisfying the initial condition J(O) is unique. This 
proves the following result. 

COROLLARY. Every solution of the analytic DE (30) is analytic. The solution 
satisfying the initial condition f(O) = 0 is unique, and given iJ,y the power series (33). 

12* COMPLEX SOLUTIONS 

Up to now, we have been assuming tacitly that all variables x, y, u, etc. 
referred to were real. However, the discussion in this chapter also applies, with 
very minor changes to complex power series. In particular (see Theorems 2-3), 
any solution of the DE (4) obtained by power series methods defined a complex 
analytic function within a circle of convergence I z I < C whose radius is the 
smaller of the radii of convergence, of the series in (5). For instance, from the 
DE w" + w = 0, we obtain the complex sine and cosine functions sin z = z -
z3 /3! + z5 /5! - • • • , and cos z = I - z2/2! + z4/4! - • • • , where as usual 
w = u + iv and z = x + iy refer to dependent and independent complex 
variables. 

Similarly, let 
/ 

(42) dw/dz = F(z,w) = L b1k7lwk 
J,k 

\ 
be any analytic first-order DE, whose right side is a complex analytic function. 
(For F to be analytic, it is sufficient for the function F to be differentiable, since 
differentiability implies analyticity in any complex domain. t) Then all the for
mulas of §9 remain valid; so do the lemmas concerning majorants of §IO. 

For complex z, w, the domain D: I z I < H, I w I < K of Theorem 5 is not a 

t Ahlfors, pp. 24-25; Hille, pp. 72, 196. 
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rectangle, but the four-dimensional product of two discs. Though this domain 
is harder to visualize than a rectangle, it has the advantage that Cauchy's integral 
formulas hold on it: the constant Min (41) is given explicitly byt 

M = sup I F(z,w) 1-

These remarks cover the extension of Theorem 5 to complex DEs. 

Dependence on Initial Value. We now consider the dependence of the 
solutions of real or complex analytic first-order DEs (32) or (42) on their initial 
values. We will prove that this dependence is analytic; it will follow that the solu
tion curves of any real, normal first-order DE form a normal curve family. 

THEOREM 6. Let f(x,c) be the solution of the first-order analytic DE y' = F(x,y) 
which satisfies the initial condition f(a) = c. Then f(x, c) is an analytic Junction of the 
independent variable x and the initial value c. 

Proof By a translation of coordinates, we can reduce to the case a = 0, and 
consider f(x,c) in the neighborhood of (0,0). But clearly for small fixed c, the 
function 11(x, c) = f(x, c) - c is the solution of 

satisfying the initial condition 71(0) = 0. Here each {!1k = {31k(c) is an analytic 
function of c, the coefficients of whose power series expansion in c are positive 
multiples ct) b1h of some b1h. By Theorems 4 and 5, the solution 11(x, c) of (43) is 
E~0 anxn, where each coefficient an = an(c) is a polynomial in the {31k with positive 
rational coefficients. Hence, the doubly infinite formal power series 

obtained has coefficients 'Ymn which are polynomials in the b1h (because each b1h 

only affects the {31k with k < h) with positive coefficients. This series formally 
satisfies (43). 

As in the proof of Theorem 5, this series is majorized by the power series 
solution without constant term of the DE 

dz/dx = G(x, c + z) = M/[(l - x/H)(l - (c + z)/.K)]. 

Integrating, we get 

(44) 

t See, for example, Picard, Vol. 2, p. 259. 
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Elementary algebraic manipulation now gives 

[(z + c) - K] 2 = (c - K)2 + 2MHK In ( 1 - ;) . 

The branch of th_e function z(x, c) which makes z(O, 0) = 0 is given by the 
formula 

z = K - c - { (c - K)2 + 2MHK In ( 1 - ; ) } 

1/2 

The resulting function (as one sees by expanding the functions ~ and In 
[l - (x/H)] into power series) is analytic for x and c sufficiently small. That is, 
the power series solution of (44), g(x, c) = Eclmnc"'xn (in which all clmn > 0 as 
shown above) is also convergent. But this majorizes f(x, c), whose power series 
expansion is therefore also convergent, completing the proof. 

EXERCISESF 

For the power series expansion of each function defined in Exs. 1-4, determine the 
domain of convergence: 

1. ] 0(x + y). 

3. 1/[1 - (x2 + y2)]. 

2. Vo - x)(l - y). 

4. 1/[1 + (x2 + y2)]. 

5. Show that the solution of y' = G(x, y), where G is the geometric series (38), is the 
function (40). 

6. Find the value of :E;'...0 x1/j(H1K"). 

7. Find the value of :E;'..= 0 jkx1/ j(H1K"). 

In Exs. 8-11, establish the properties of the relation "«" [P = P(x, y), Q = Q(x, y), 
p = p(x), and q = q(x) are formal power series]. 

8. If F « G and P « Q, then F + P « G + Q. 
9. If F « G and P « Q, then FP « GQ. 

10. If F « G and p « q, then F[x, p(x)] « G[x, q(x)]. 

11. If F « G, then iJF/iJx « iJG/iJx (interpret the derivatives formally). Is the converse 
true? 

12. Obtain even and odd power series solutions of the DE w" + iw = 0, and interpret 
the solutions. 

13. Obtain an even power series solution of the DEB" + z- 1B' + iB = 0, and show 
that it defines an entire function. 

14. Do the results of Exs. 8-11 hold for complex power series? Justify your answer. 



CHAPTER 5 

PLANE AUTONOMOUS 
SYSTEMS 

1 AUTONOMOUS SYSTEMS 

This and the next three chapters will be concerned with systems of first-order 
ordinary DEs in normal form. By this is meant a set of equations 

(1) 

The X, are given functions of the n + 1 real variables x1, ... , Xn, t. We want to 
find solutions of (1), that is, sets of n functions x1(t), ... , xn(t) of class 61 1 which 
satisfy (1). We shall assume the functions X, to be continuous and real-valued in 
a given region R of the (n + !)-dimensional space of the independent variables 
Xi, X2, ..• , Xn, t. 

The simplicity of the concept of a first-order normal system becomes appar
ent when (1) is written in vector notation. A vector is an n-tuple x = (x1, ... ,xn) 
of real (or complex) numbers. Thus, the functions X,(x 1, ..• ,xn;t) = X,(x, t), in 
(1) define X = (X1, ... ,Xn) as a vector-valued function of the vector variable x 
and the real variable t. Even more simply, we can define a vector field as a vector
valued function X(x) of the vector variable x (ranging over a suitably defined 
domain in /Rn), visualizing this as attaching a small arrow X(x) to each point x. 

In vector notation, the system (1) assumes the very concise form 

(2) 
dx 
- = X(xt) 
dt ' 

A solution of (2) is a vector-valued function x(t) of a real (scalar) variable t, such 
that x'(t) = X(x(t),t). The analogy between (2) and the normal first-order DE 
y' = F(x,y) studied in Ch. I is obvious; the only difference is that the dependent 
variable in (2) is a vector and not a number (or "scalar"). Hence, one can call 
(2) a normal first-order vector DE. 
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A solution of a normal system (1) or (2), defined by the functions x1(t), 
... ,xn(t), can be visualized as a curve in the (n + !)-dimensional region R. When 
n = l, this specializes to the concept of a solution curve defined in Ch. 1; when 
n = 2, it is a curve in (xi,x2,t)-space. For this reason, the curve in R defined by 
any solution of (1) is called a solution curve of (1). 

Chapter 6 will contain proofs of existence, uniqueness, continuity, and dif
ferentiability theorems for solutions of first-order systems (1). In the present 
chapter, attention will be confined to autonomous first-order systems. By defini
tion, these are systems of the form 

(3) z = 1, ... ,n 

The characteristic property of autonomous systems is the fact that the functions 
X, do not depend on the independent variable t. When this variable is thought 
of as representing time, autonomous systems are thus time-independent or 
stationary. 

(3') 

In vector notation, the autonomous system (3) reduces to 

dx - = X(x) 
dt 

To every autonomous system (3) there thus corresponds a unique vector field 
X(x) in Euclidean n-space, and conversely. Throughout this chapter, we will con
sider only vector fields that are of class <§11, and hence satisfy a Lipschitz condi
tion in every compact domain. As will be shown in Chapter 6, this implies that 
one and only one solution x(t,c) of the autonomous system (3) satisfies the initial 
condition x(O) = c, and that this solution depends continuously on c. 

When n = 3, the autonomous system (3) can be imagined as representing the 
steady flow of a fluid in space: at each point x in a region of space, the vector 
X(x) expresses the velocity of the fluid at that point in magnitude and direction. 
The flow is called steady because its velocity depends only on position and does 
not vary with time. The solution x(t,c) of the autonomous system (3) for the 
initial "value" c then has a simple physical interpretation: it is the trajectory (path, 
orbit, or streamline) of a moving fluid particle, whose position (initially at c) is 
given as a function of the time t. 

When the preceding path x(t,c) is considered as a set of points (that is, as a 
geometric curve), without reference to its parametric representation, it is also 
called a solution curve of the autonomous system (3), or of the associated vector 
field X(x). If x(t,c) is a solution of the autonomous system (3), then so is 
x(t + a,c) for any constant a; this can also be interpreted as the path of a particle 
that passed through the point c at time t = a. 

Plane Autonomous Systems. This chapter will be largely concerned with 
the case n = 2 of (3). In this case, we can omit subscripts and rewrite (3) in 
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simpler notation as 

dx 
- = X(xy) 
dt ' ' 

it = Y(x,y) 

The connection of such a "plane autonomous system" with the first-order DE 
y' = X(x,y)/Y(x,y) will be discussed in §2 below. 

(4) 

Example 1. The solutions of the autonomous system 

dx 
-= 
dt 

mx, dy = ny 
dt 

are evidently x = c1emi, y = c2e"' where ci,c2 are arbitrary constants. The corre
sponding solution curves are the loci ym = kxn. Figure 5.1 depicts sample curves 
for the case m = 2, n = 3. 

Note that the solution curves ("trajectories") of any autonomous system are 
endowed with a natural sense or orientation, the direction of increasing t. This is 
indicated in drawings of solution curves by marking on them arrowheads point
ing in this direction. See Fig. 5.1, which depicts sample (oriented) solution 
curves of the system (4). 

In Fig. 5.1, the origin (0,0) is evidently a very special point: integral curves 
emanate from it both horizontally and vertically. This is possible only because 
the vector field (X,Y) = (mx,ny) reduces there to the null vector O = (0,0), whose 
direction is indeterminate. Such points are of particular importance for the 
study of autonomous systems; they are called critical points. 

DEFINITION. A point x = (xi, ... ,xn) where all the functions X, are equal 
to zero is called a critical point of the autonomous system (3) and of the associ
ated vector field X(x). 

If x = c is a critical point of (3), then the functions x,(t) = c, define a trivial 
solution x(t) = c of (3), which describes not a curve but just a point. In the 

Figure 5.1 Integral curves of x = 2x, y = 3j. 
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terminology of hydrodynamics, c is called a stagnation point of the velocity field 
X(x). 

Every normal system (1) of (n - 1) first-order DEs 

i = 1, ... , n - l 

is equivalent to an autonomous system inn variables. To see this, introduce an 
additional variable xn = t, and rewrite (1) as 

i = 1, ... , n - l, 

Evidently, the system so constructed has no critical points. 

2 PLANE AUTONOMOUS SYSTEMS 

When n = 2 in (3), it is convenient to write (3) without subscripts as 

(5) 
dx - = X(xy) 
dt ' ' 

it = Y(x,y) 

We then speak of a plane autonomous system. The plane autonomous system (5) 
is evidently equivalent to the first-order DE 

(5') 
dy Y(x,y) 
-=--
dx X(x,y) 

wherever X(x,y) =I= 0. The main advantage of the parametric form (5) is that 
points X(x,y) = 0 of vertical tangency of the solutions of the DE (5') are no 
longer singular points of the corresponding plane autonomous system (5). Like
wise, the solution curves of (5) are just the integral curves of the quasilinear DE 

(5") Y(x,y) = X(x,y)y' 

and the two have the same critical points. 
The advantage of the parametric viewpoint is apparent in the following exam

ple, already discussed in Ch. 1, §2. 

(6) 

Example 2. Consider the autonomous system 

dx 
-= 
dt 

-y, dy = X 

dt 

whose solutions are the function-pairs x = r cos(t + c), y = r sin(t + c), where 
r and c are arbitrary constants. The graphs of these solutions are concentric 
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circles, with center at the origin. The solutions of the corresponding first-order 
DE 

(6') 
dy 
-= 

X 

dx y 

are the functions y = ± \/ r 2 - x2, which are defined only for Ix I < Ir I. 
Whereas the function -x/y is undefined where y = 0, the functions X(x,y) = 
-y and Y(x,y) = x in the system (6) are defined throughout the plane. This gives 
the system (6) an obvious advantage over the DE (6'). 

Referring to the definition of Ch. 1, § 12, we see that the circles x2 + y2 = r2 
form a regularf- curve family in the "punctured" xy-plane, the critical point of 
(6) at the origin (0,0) being deleted. In Ch. 6, §11, it will be shown that this is 
true of plane autonomous systems in general. 

Plane autonomous systems have the following interesting relation to level 
curves (cf. Ch. 1, §5). 

THEOREM 1. For any continuously differentiable function V(x,y), each integral 
curve of the plane autonomous system 

(7) 
dx av 
dt = ay (x,y), 

dy av 
dt = - dx (x,y) 

lies on some level curve V(x,y) = constant. 

The proof is immediate: along any solution curve we have 

dV av dx av dy av av av av - - - . -+-. - - - . --- . - - 0 
dt ax dt ay dt ax av av ax 

and so V[x(t),y(t)] = constant. Observe that the associated steady flow is diver
gence-free or area conserving, because 

In fluid mechanics, such a steady flow (7) is called incompressible, and Vis called 
its stream function. 

The representation (7) also reveals the level curves of Vas the solution curves 
of dx/dt = av;ax1, j = 1, ... ,n-that is, in vector notation, of dx/dt = grad 
V. 

t Note that this regular curve family is not normal in the plane, whereas the graphs of the function 
y = ~ form a normal curve family in the upper half-plane y > 0. 
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The main advantage of the parametric representation (7) over the normal 
form 

(7') dy 
-= 
dx 

considered in Ch. 1, §6, is the following. Whereas the solution curves of (7') 
terminate wherever av;ay vanishes, those of (7) terminate only where the func
tion V has a critical point (maximum, minimum, or saddle-point) in the sense that 
grad V = 0. This happens exactly where the autonomous system (7) has critical 
points. 

If we set V = - (x2 + y2) /2 in Theorem 1, we get the system (6) of Example 
2, having circular streamlines. If µ(x,y) is nonvanishing, then the system dx/dt 
= -yµ, dy/dt = xµ also has circles for solution curves, and we can construct a 
wide variety of autonomous systems having the same solution curves in this way, 
as has been noted before. 

Another illustration of Theorem 1 is obtained by setting 

(x3 + y3) r(cos30 + sin30) 
V(x,y) = xy = cos 0 sin 0 

and letting µ(x,y) = x2y2. Evaluating (7), we get the following example. 

(8) 

Example 3. The plane autonomous system 

dy = -y(2x3 - y3) 
dt 

has as solution curves the curves x3 + y3 - 3cxy = 0, where c is an arbitrary 
constant. Each such solution curve is a folium of Descartes, as in Figure 5.2. 
The coordinate axes are also solution curves. The origin is the only critical point 
of (8); correspondingly, the folia of Descartes in Figure 5.2 form with the axes 
a curve family that is regular, except at the origin. 

Note that the curves of Figure 5.2 form a family of similar curves, all similar 
to x3 + y3 = 3xy under a transformation x - kx, y - ky, t - t/c3, where k is a 
constant. The reason is that the DE 

dy -y(2x3 - y3) (y) 
dx = x(2y3 - x3) = F ; 

is homogeneous of degree zero (see the end of Ch. 1, §7). 

3 THE PHASE PLANE, II 

We have already defined the "phase plane" in Ch. 2, §7, as a way of visual
izing the behavior of solutions of (normal) second-order DEs x = F(x,x). By 
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Figure 5.2 Folia of Descartes. 

treating x = u as a second dependent variable, any such DE is transformed into 
a (first-order) "plane autonomous system" of the special form x = u, u = 
F(x,u). 

Plane autonomous systems of this special form arise naturally from dynamical 
systems with one degree of freedom. Let a particle be constrained to move on a 
straight line (or other curve) and let its acceleration x be determined by New
ton's Second Law of Motion as a function of its instantaneous position x and 
velocity x. Then 

(9) x = F(x,x) 

where we have adopted Newton's notation, representing time-derivatives by 
dots placed over the variable differentiated. 

It is usual in dynamics to denote x = dx/dt by the letter v, and to call the 
xv-plane the phase plane. Since the variables x and mv are conjugate position and 
momentum variables, the phase plane is a special instance of the more general 
concept of phase space in classical dynamics. 

Since (9) is time-independent, it is called an autonomous second-order DE. In 
the xv-plane, the second-order autonomous DE (9) is equivalent to the first
order plane autonomous system 

(9') 
dx - = V 
dt ' 

dv dv 
dt = v dx = F(x,v) 

The integral curves of this autonomous system in the Poincare phase plane 
depict graphically the types of motions determined by the DE (9). Note that the 
solution curves point to the right, to the left, or are vertical according as x > 0 
(upper half-plane), x < 0 (lower half-plane), or x = 0 (x-axis). This is because 
xis increasing, decreasing, or stationary in these three cases, respectively. 
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Example 4. Consider the damped linear oscillator defined by the second-order 
linear DE with constant coefficients 

(10) x + px + qx = 0, p, q constant 

discussed in Ch. 2, §2. The associated autonomous system in the Poincare phase 
plane is 

(10') 
dx 
- = V 
dt ' 

dv 
-= 
dt 

-pv - qx 

The direction field of this system is easily plotted for any p, q. 

For example, let p = l, q = l. The resulting DE x - x + x = 0 describes 
the free oscillations of a negatively damped particle in an attractive force-field. 
Sample solution curves in the Poincare phase plane are sketched in Figure 5.3. 

Or again, let p = 4, q = 3. The resulting DE x + 4:x + 3x = 0 describes 
heavily damped stable motion; the functions x = e-1 and x = e-31 constitute a 
basis of solutions (the exponential substitution of Ch. 3, §1 gives 'X2 + 4-X + 3 
= 0). The graphs of these solutions in the (x,x)-plane are the radii whose slopes 
- 1 and - 3 are the roots of this polynomial; they represent solutions of the 

.first-order DEs x = -x and x = -3x. 

Example 5. The DE of a simple pendulum of length f is 

(11) 

Figure 5.3 Damped linear oscillations. 
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Here 8 is the (counterclockwise) angle made by the pendulum with the vertical. 
The corresponding plane autonomous system in the phase plane (the v8-plane) 
is 

(11') iJ = v, 

Since the function sin 8 is periodic, the trajectories form a periodic pattern in 
the sense that, if [v(t),8(t)] is a solution of (11 '), so is [v(t),8(t) + 21r]. The case 
k2 = 1 is sketched in Figure 5.4. 

The solutions of (11 ') correspond to the states of constant energy E: v2 - 2 
cos 8 = 2E (when k2 = 1). There are two "critical points" in the v8-plane: the 
points (0,0) and (0,1r), corresponding to stable and unstable equilibrium, respec
tively. Near the "vortex point" (0,0), the pendulum oscillates back and forth; 
the corresponding trajectories are closed curves, roughly elliptical in shape. 

The point (0,1r) is a saddle-point; the trajectories v2 = 2(1 + cos 8) or v = 
± 2 cos(8/2) that terminate there are called "separatrices," because they sepa
rate the closed trajectories from the wavy trajectories v2 = 2(E + cos 8) with E 
> 1, which correspond to whirling the pendulum in circles. 

When the amplitude is small, the DE (11) can be approximated well by~ + 8 
= 0. In this case, the period of oscillation is independent of the amplitude. For 
exact solutions, the period increases with the amplitude. We will discuss this 
phenomenon in §IO below. 

EXERCISES A 

1. Find and describe geometrically the solution curves of the following vector fields: 
(a) (x, y, z) (b) (ax, by, cz) (c) (y, -x, 1) (d) (y, z, x) 

2. Show that the solution curves of the autonomous system 

dx x 
- = e - 1 
dt ' 

are the curves y = c(ex - 1), and the y-axis x = 0. 

II 

8 

Figure 5.4 Simple pendulum. 
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3. Show that the functions xyz and x2 + y2 are integrals of the system 

dx 
dt = xy2, 

dz 
- = z(x2 - y2) 
dt 

Describe the loci xyz = constant, and sketch typical solution curves. 

4. (a) Show that the orthogonal trajectories of the level curves of V = x/(x2 + y2) are 
another family of circles. Draw a sketch that displays both families of circles. 

(b) Same question for V = [(x - 1)2 + y2]/[(x + 1)2 + y2]. 

The gradient field of a scalar function V(x) is defined as the vector field 

grad V = (oV/oxi, ... , oV/ox,J 

The gradient lines of V are the solution curves of the autonomous system dx,ldt = 
av;ax,. 
In Exs. 5-7, find the gradient lines of the following functions: 

5. V = xy 6. V = x2 + y2 - 2z2 7. V = In [(x - a)2 + y2/[(x + a)2 + y2]] 

8. Show that a function cp(x1, .•. , x,J of class ~ 1 is an integral of the system (3) if and 
only if it satisfies the partial DE X1 ocp/ox1 + · · · + Xn ocp/oxn = 0. 

9. Show that if oX/ox = o-y/oy and oX/oy = -o-y/ox, the plane autonomous system 
(5) is the real form of a single first-order complex analytic DE, and conversely. 

*10. Let e1, • .. , en and a1, ••• , an be real constants, and let 

Show that, if V = "E.eifr1, the functions 

and fJ = arctan (z/y) 

are integrals of x = oV/ox, y = oV/oy, i = oV/oz. Express the integral curves as 
intersections of the surfaces defined by the preceding equations. 

Exercises 11-14 derive some of the main properties of elliptic functions by the methods 
of Ch. 4, §7, and give an application to Example 5. 

11. The elliptic functions u = sn t, v = en t, w = dn t, may be defined as the solutions 
of the autonomous system 

(*) 
du 
-= 
dt 

vw, 
dv 

dt 
= -wu, 

having the initial values u(0) = 0, v(0) = w(0) = 1. 

dw 
-= 
dt 

(a) Establish the identities (sn t}2 + (en t)2 = 1, k2 (sn t}2 + (dn t}2 = 1. 
(b) Using (a), show that the three functions specified are defined and analytic for 

all real t. 
(c) Expand their solutions in power series through terms in t5• 

*12. (a) Show that, in Ex. 11, if k2 < I, the function en t vanishes at 
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(b) Prove the following addition formulas, valid with k' = ~: sn(t + .K) = 
en t/dn t, cn(t + .K) = -k' sn t/dn t, dn(t + .K) = k'/dn t. [HINT: Show that the 
vector-valued function v/w, -k'u/w, k'/w satisfies (*), and that this vector 
reduces at t = K to (1,O,k').) 

(c) Prove that sn(- t) = - sn t, en(-t) = en t, sn(t + 2.K) = -sn t, en(t + 2.K) = 
-en t, dn(t + 2.K) = dn t. 

(d) Show that sn t and en t have infinitely many zeros, and that the zeros of sn t 
separate those of en t. 

13. (a) From the assumptions of Ex. 11, show that the function u = sn t satisfies the 
second-order DE 

(**) 

(b) Infer from (**) that u2 + (1 + k2)u2 - k2u4 = constant. 
(c) Sketch the integral curves of the DE (**) in the phase plane, marking the special 

curve (sn t, en t, dn t) and any critical points. 
(d) Determine the nature of the other critical points, if any. 

14. (a) Show that a one-parameter family of solutions of 8 + k2 sin fJ = 0 is given by 
sin (8/2) = sin (a/2)sn[k(t - t0)], where a is the amplitude of oscillation. 

(b) Show that 8 = 2k sin (a/2)en[k(t - t0)]. 

4 LINEAR AUTONOMOUS SYSTEMS 

An autonomous system (3) is called linear when all the functions X, are linear 
homogeneous functions of the xk so that 

(12) z = 1, ... , n 

Hence, a linear autonomous system is just another name for a (homogeneous) 
linear system of DEs with constant coefficients. Such a system is determined 
by the square matrix A = 11 aij 11 of its coefficients, and its vector field satisfies 
X(x) = Ax. 

Initial Value Problems. For any autonomous system x'(t) = X(x), the "ini
tial value problem" consists in determining, for each c in the domain of the 
vector field X(x), the solution x(t) of the DE that satisfies the "initial condition" 
x(0) = c. We will now show how to solve this problem for any linear plane auton
omous system (i.e., in the case n = 2). 

Any such system has the form 

(13) 
dx 
-=ax+b"' dt ✓• 

dy =ex+ dy 
dt 

where a, b, e, d are constants. The coefficient matrix A = (; ! ) of constants is 

nonsingular unless its determinant is ad - be = 0. The origin (0,0) is always a 
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critical point of the system (13). Since the simultaneous linear equations ax + 
by = ex + dy = 0 have no solution except x = y = 0 unless A is singular, we 
see that the origin is the only critical point of the system (13), unless ad = be 
(the degenerate case I A I = 0). 

To solve the initial value problem for the system (13), it is convenient to intro
duce a new concept. 

DEFINITION. The secular equation of (13) is 

(14) ii - (a + d)u + (ad - bc)u = 0 

THEOREM 2. If (x(t), y(t)) is any solution of the plane autonomous system (13), 
then x(t) and y(t) are solutions of the secular equation (14) of (13). 

Proof We shall prove that x(t) is a solution of (14); the proof for y(t) is the 
same, replacing a with d and b with c. The first equation (13) implies x - ax = 
by, which implies x - ax = by. From the second equation it follows that 

x - ax = bcx + bdy = bcx + d(x + ax) 

Transposing, we see that x(t) satisfies (14). 
Conversely, the secular equation (14) can also be used to solve the linear sys

tem (13) as follows. First, find a basis of solutions u(t) and v(t) of (14) by the 
methods of Ch. 2. Then, if b =fo O in (13), set 

(15) x = bu and y = 1l - au 

The first equation of (13) will be automatically satisfied, whereas the second will 
be equivalent to 

by= ex+ dy or bii - abu = bcu + du - au 

which holds by (14). In the same way, if b = 0 but c =fo 0 in (13), set x = u -
du and y = cu; (13) follows similarly. In both cases, a second solution can be 
constructed from v(t). 

In the remaining case that b = c = 0, the obvious formula 

(15') 

solves (13) for any initial x(0) = x0 and y(0) = y0, as in Example 1. 

The preceding recipes are effective computationally. Thus, to solve the initial 
value problem 

X = X - y, y = X + y, x(0) =· 1, y(0) = 0 

we can use (14) to obtain x - 2x + 2x = 0. Since the roots of the characteristic 
polynomial I A - Ml = ;\ 2 - 2X + 2 are ;\ = 1 ± i, the system has the general 
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solution 

x = e1(A cos t + B sin t) y = e1(A sin t - B cos t) 

Moreover, the initial condition x(O) = 1 implies that A = l, while y(O) = x(O) 
- x(O) implies that B = 0. The solution of the initial value problem stated is 
therefore x = e' cos t, y = e1 sin t. 

Systems inn Variables. Most of the preceding results have straightforward 
generalizations to (homogeneous) linear autonomous systems (12) inn variables. 
In vector and matrix notation, the system (12) simplifies to dx/dt = Ax. We can 
define its "secular equation," for any matrix A, to be 

(16) 

where PA(ll.) = IA - All = c0 + c1ll. + · · ± 71.n is the characteristic polyno
mial of the matrix A, and D = d/dt. We then have the following. 

THEOREM 3. If x(t) is any solution of (12), then every component x,(t) of x(t) 
satisfies the secular equation (16) of (12). 

The proof of this result depends on theorems about matrices and so will be 
deferred until Appendix A. 

Eigensolutions. By an "eigensolution" of the (constant-coefficient) linear 
autonomous system x = Ax is meant a solution of the form x(t) = c(t)t/,, where 
q, is a nonzero vector. Since this implies x = c'(t)t/, = Ac(t)t/,, there follows At/, 
= ll.t/, with A = c'(t)/c(t), whence c(t) = Ki-1• Conversely, if q, is any eigenvector 
of the matrix A with eigenvalue 71., then x(t) = / 1,J, is evidently an eigensolution, 
since x = Xx = Ax. 

Eigensolutions (and generalized eigensolutions) of complex linear constant
coefficient systems z = Cz provide a general canonical basis in the "solution 
space." But for real linear plane autonomous systems, they arise only when O is 
a saddle-point. For example, since 

and 

the vector-valued functions t/,(t) = e-2'( i) and 1/l(t) = e'( ~) form a basis of 

eigensolutions of the system x'(t) = ( =~ : )x. They clearly correspond to the 

invariant lines of the linear fractional DE y' = (-2x + 2y)/(-3x + 2y) (cf. 
Ch. 1, §7). 

When the matrix A has a basis of eigenvectors t/,1, there is an especially elegant 
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way to solve the initial value problem x'(t) = Ax. Namely, expand the initial data 
x(O) = c into a linear combination of eigenvectors of A: c = Ea/Pr Then the 
solution of the system x'(t) = Ax for these initial data is 

(17) 
n 

x(t) = L a1i-1'q,1 
j=I 

where ll.1 is the eigenvalue of tf,j" 

5 LINEAR EQUIVALENCE 

The secular equation (14) of a linear plane autonomous system (13) estab
lishes a clear connection between its solutions and those of an associated (linear) 
constant-coejficient second-order DE. As we shall now show, it also throws light on 
the rough classification, made in Ch. 2, §7, into "focal," "nodal" and "saddle" 
points of the critical points of such DEs. 

Consider first the case of focal points. Anticipating what will soon be proved, 
we begin by considering system of the special form 

(18) x = ax - by, j =bx+ ay 

Substituting into (14), we find that its secular equation is 

(18') ii - 2au + (a2 + b2) u = 0 

Here -2a is clearly arbitrary, while the discriminant a = 4a2 

- 4(a2 + b2

) = 
-4b2 can be any negative number. Hence (cf. Ch. 2, §7, Case A), all secular 
equations of focal point type can be obtained from linear plane autonomous 
systems of the special form (18). 

In polar coordinates, on the other hand, one easily verifies that (18) reduces to 

(19) t = ar, (j = b, a= - 2a 

Hence the orbits (trajectories) of (18) are equiangular spirals 0 = 00 +- bt, 
r = r0e 'Y8, 'Y = - 2a/b, except in two degenerate cases: 

(i) 

(ii) x = r0 cos(bt - {:J), 

when 

y = r0 sin(bt - {:J) 

b = 0 

when a=O 

In the first case, the origin is said to be a star point of (18); in the second, it is 
said to be a vortex point of (18). It should be noted that these two "degenerate" 
cases (occurring when q = 0 resp. d = 0) were explicitly omitted in the discus
sion of Ch. 2, §7. 

Clearly the phase-plane representation of (18), which is 

(19') x = y, 
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is less attractive than (18); cf. Ex. 1. Yet the two are linearly equivalent in the 
following sense. 

DEFINITION. Two first-order (linear homogeneous) autonomous systems, 
x'(t) = Ax and u'(t) = Bu are called linearly equivalent when there exists a non
singular matrix K such that B = KAK- 1, that is, when 

(20) i = l, • • ·,n 

where as usual K denotes the matrix [k9]. 

The reason for this definition is that, ifwe write u = Kx and x = K- 1u, then 
x'(t) = Ax is transformed into 

(21) 
du dx 
- = K- = KAx = (KAK- 1)u 
dt dt 

under the change of basis associated with the nonsingular matrix K. Thus, in alge
braic language, linearly equivalent linear autonomous systems are associated 
with similarj- matrices A and KAK- 1. 

Therefore, the reduction of linear autonomous systems to a standard simpli
fied (or "canonical") form under linear equivalence amounts to reducing matri
ces to canonical form under "similarity." We will treat this problem here only 
for linear plane autonomous systems 

(22) 
dx 
-=ax+by 
dt ' 

dy =ex+ dy 
dt 

Its solution will throw considerable light onto the classification of critical points 
of linear and nonlinear plane autonomous systems into those of focal, nodal, 
and saddle-point type. 

LEMMA. Linearly equivalent linear plane autonomous systems have the same sec
ular equation. 

Proof This result follows immediately from (14'), (21), and general identities 
of linear algebra. If B = KAK- 1, thent 

IB - Ml = IKAK- 1 - Ml = IK(A - Al)K-1 I 

= IKI • IA - Ml· IK- 1 I = IA - Ml 

t Birkhoff and MacLane, p. 264. 

l Birkhoff and MacLane, p. 264. For reduction to diagonal form and Jordan canonical form, see 

ibid., pp. 294, 354. For the companion matrix form ( O 1 ), see ibid., p. 338. -p -q 
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(The lemma is also a corollary of Theorem 3 unless there are two linearly inde
pendent equations ii + pu + qu = 0 satisfied by both components of all solu
tions of dx/dt = Ax.) 

THEOREM 4. Unless a = d and b = c = 0, the linear plane autonomous system 
(22) is linearly equivalent to the phase plane representation 

(23) 
du 
-= V 
dt ' 

dv 
dt = -qu - pv, 

of its secular equation (14). 

p = - (a+ d), q = (ad - be) 

(22) Proof If b =fo 0, let u = x, v = ax + by; that i~, let K = ( ! ~). Then 

reduces to 

(24) U = V, iJ = ax + by = (a2 + bc)x + (ab + bd)y 

The last expression in (24) is equal to 

(a2 + ad)x + (ab + bd)y - (ad - bc)x = (a + d)v - (ad - bc)u 

by definition of u, v; hence (22) is equivalent to 

U = V, iJ = (a + d)v - (ad - bc)u = -pv - qu 

that is, to (23). This shows, in particular, that 

KAK- 1 = ( 0 1) 
-q -p 

is the companion matrix of the secular equation of (22). 
This proves Theorem 4 for the case b =fo 0. The case c =fo 0 can be treated in 

the same way, letting u = y and v = ex + dy. 
When b = c = 0, let u = x + y, v = ax + dy; if a =f,. d, we can set x = (du 

- v)/(d - a), y = (au - v)/(a - d). By (22) with b = c = 0, we have 'll = x + 
y = ax + dy = v. Similarly, 

Comparing this with the expression 

(a + d)v - (ad)u = [(a2 + ad)x + (ad + d2)y - adx - ady] 

we also verify (23)_ in this case. 
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Exceptional Case. The case a = d, b = c = 0 of a scalar matrix, 

(25) x = ax, y = ay 

is genuinely exceptional. The secular equation of (25) is i - 2ax + a2x = 0, 
just as it is for the system 

(25') x = ax, j = X + ay 

but (25) and (25') are not linearly equivalent. Every component of every solution 
of (25) satisfies u = au, but this is not true of the solution (ea1, tea~ of (25'). 

The exceptional case arises when the characteristic polynomial of the secular 
equation (14) has equal roots, that is, when its discriminant ~ = p2 - 4q = 
(a - d)2 + 4bc vanishes. This gives us the following corollary of Theorem 4. 

COROLLARY. Unless the discriminant (a - d)2 + 4bc vanishes, two linear plane 
autonomous systems are linearly equivalent if and only if they have the same secular 
equation. 

Complete Classification. We now use Theorem 4 to provide a complete 
classification of linear plane autonomous systems, giving for each type a simple 
canonical form. This classification is based on a study of the possible root-pairs 
;\1,X2 of the characteristic equation (14), which we renumber as 

(26) X 2 - (a + d)X + (ad - be) = ;\ 2 + pX + q = 0 

By Theorem 4, unless a = d and b = c = 0, it suffices to display one autonomous 
system for each such root pair. We now enumerate the different possibilities, 
which depend largely on the sign of the discriminant 

(26') ~ = p2 - 4q = (a - d)2 + 4bc 

of the characteristic equation (26). We begin with the case ~ =t,. 0, q =t,. 0 of 
distinct nonzero roots ;\1 =fo X2. 

A. Focal Points. Suppose~ < 0, so that the characteristic equation (26) has 
distinct complex roots ;\1 = µ ± iv (v =fo 0). This is the case q = (µ 2 + v2) > 0 
and 0 < p2 = 4µ 2 < 4q of a harmonic oscillator. We choose the canonical form 
(see the Corollary of Theorem 4 and Exs. Bl-B3) 

(26a) dx/dt = µx - vy, dy/dt = vx + µy 

for (26), whose solutions are the equiangular spirals r = peu1, 8 = vt + r in polar 
coordinates, where p > 0 and rare arbitrary constants. When p > 0, the spirals 
approach the origin (stable focal point); when p < 0, they diverge from it (unsta-



148 CHAPTER 5 Plane Autonomous Systems 

ble focal point); when p = 0, they are closed curves representing periodic oscil
lations (neutrally stable vortex points). See Figures 5.5a and 5.5b. 

B. Nodal Points. Suppose that d > 0 and q > 0, so that the roots;\ = µ1, 

µ2 of the characteristic equation (26) are real, distinct, and of the same sign. We 
choose, as the linearly equivalent canonical form, 

(26b) dy/dt = µ'}J, 

whose general solution is (ae"11, be"2'). The system is stable when µ1 and µ2 are 
negative and unstable when they are positive (the two subcases are related by 
the transformation t-+ -t of time reversal). Geometrically, the integral curves 
y = cxm, m = µ2f µ 1, look like a sheaf of parabolas, tangent at the origin, as in 
Figure 5.5c. 

C. Saddle-Points. Suppose that d > 0 but q < 0, so that the roots of the 
characteristic equation (26) are real and of opposite sign. We again have the 
canonical form (26b). But since µ1 and µ2 have opposite signs, the integral curves 
xmy = c, m = - µ 2/µ 1 > 0 look like a family of similar hyperbolas having given 
asymptotes, as in Figure 5.5d. A saddle-point is always unstable. 

There remain various degenerate cases and subcases, in which d = 0 or 
q = 0. The simplest such case is the exceptional case (25), in which d = 0, 
q = a2 > 0. The integral curves consist of the straight lines through the origin, 
and the configuration formed by them is called a star, as in Figure 5. 7e. In the 
nonexceptional subcase, we have the canonical form of (25') 

(26c) dx/dt = ax, dy/dt = x + ay, 

whose integral curves have the appeamce of Figure 5.5f. Such a point is also 
called a nodal point, and it is stable or unstable according as a < 0 or a > 0. 

The case q = 0, d =fo 0 corresponds to the phase plane representation of the 
second-order DE x + px = 0, p =fo 0. This corresponds to a rowboat "coasting" 
on a lake, with no wind and its oars shipped. The boat comes to rest at a finite 
distance, in infinite time. The integral curves form a family of parallel straight 
lines x + px = constant, as in Figure 5.5g. The origin is a stable (but not strictly 
stable) critical point if p > 0, unstable if p < 0. 

Finally, the case q = d = 0 reduces to x = j = 0 in the exceptional case 
(25) and to the phase plane representation of x = 0 otherwise. The former case 
is (neutrally) stable; the latter case is unstable. 

EXERCISESB 

I. Show that the secular equation of the system 

x = ax - fJy, 

has the complex roots X = a ± i{:1. 

y = fJx + ay (a, fJ real) 



'Y 

(a) Focal point 

(c) Nodal point 

(e) Star point 

(g) Degenerate case 

Figure 5.5 
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'Y 

(b) Vortex point 

(d) Saddle point 

'Y 

(f) Nodal point 
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2. Show that the solution curves of the system 

x = ax, j = by, a =fa 0, are y = Clxl\ 
b 

'Y = -a 

3. Solve the following initial value problems: 

(a) *' (;) = (; =!) (; ). [x(O),y(0)] = (1,0) 

(b) *' (;) = (! -n (;). x(O) = 1, y(O) = 0 

4. (a) Solve the initial value problem for the DE 

for general ( x(O)) = (a) 
y(0) b 

(b) Show that the trajectories are hyperbolas or straight lines through the origin. 

5. (a) Show that the characteristic equation of the system 

(*) x = µx - vj, j = vx + µy (µ,v real) 

has the complex roots X = µ ± iv. 
(b) Infer that any linear plane autonomous system (13) with discriminant f:i. < 0 is 

linearly equivalent to (*), for some µ,v. 
(c) Show that, in polar coordinates, the system (*) defines the flow r - e"'1r, (J - (J 

+ vt. 
(d) Show that(*) is the real form of the first-order complex linear DE i = Xz, z = x 

+ iy. 

6. Consider the system dx/dt = ax, dy/dt = {Jy for a =fa 0. 
(a) Show that its solution curves are y = Cl x IP, p = {J/a. 
(b) Prove that any linear plane autonomous system (13) with positive discriminant is 

linearly equivalent to a DE of the foregoing form under a suitable change of 
basis. 

*(c) Show that, in the punctured plane x2 + y2 > 0, the system dx/dt = ax, dy/dt = 
{Jt and dx/dt = kax, dy/dt = k{Jy are equivalent if k =fa 0, but that they are not 
equivalent on any domain that contains the origin unless k = 1. 

7. Show that any linear plane autonomous system (13) with zero discriminant is equiva
lent to dx/dt = ax, dy/dt = ay, or to dx/dt = ax, dy/dt = x + ay. Describe the asso
ciated flows geometrically. 

8. (a) Show that, if ad =fa be, the linear fractional DE 

dy =ex+ dy + f 
dx ax+by+e 

is equivalent by an (affine) transformation to one of the canonical forms of Exs. 
5-7. 

(b) Derive a set of canonical forms for the exceptional case ad = be. 



6 Equivalence under Diffeomorphisms 151 

6 EQUIVALENCE UNDER DIFFEOMORPHISMS 

In the preceding sections, we have analyzed properties of linear autonomous 
systems that are preserved under linear transformations; in the rest of this chap
ter we will study properties that are preserved under the far more general class 
of continuously differentiable transformations. 

Such transformations often enable one to greatly simplify the form of a DE 
or system of DEs. For instance, consider the system 

(27) 

dx 3x4 - 12x2y2 + y4 
dt = (x2 + y2)3/2 

dy 6x3y - 1 Oxy3 
dt = (x2 + y23/2 

In polar coordinates r = (x2 + y2)112, 8 = arctan (y/x) with inverse functions x 
= r cos 8, y = r sin 8, this system reduces to 

(27') 
dr - = 3rcos 38 
dt ' 

d8 . 
- = SID 38 
dt 

In this form, one sees at a glance that the rays 8 = mr /3 are integral curves, 
for n = 0, ... ,5. Other integral curves are sketched in Figure 5.6. 

We shall study below how far we can simplify linear autonomous systems by 
such coordinate transformations. Our study will be based on a general concept 
of equivalence under diffeomorphism, which we now define precisely. Let 

(28) i = 1, ... ,n 

be continuously differentiable functions with inverse functions 

(28') j = 1, ... ,n 

so that f(g(u)) = u and g(f(x)) = x. For such inverse functions to exist locally 
and be continuously differentiable, it is necessary and sufficient (by the Implicit 

Figure 5.6 Solution curves at (18). 
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Function Theoremt) that the Jacobian of (28) be nonvanishing: that I a1,;ax1 I + 
0. 

If x(t) is any solution of the autonomous system 

(29) j = 1, ... ,n 

then the functions 

(30) i = I, ... ,n 

satisfy the autonomous system 

(31) 
du-
-'= U-(u) 
dt I ' 

and conversely. In this sense, the autonomous systems (29) and (31) are equiv
alent. We formalize the preceding discussion in a definition. 

DEFINITION. Let dx/dt = X(x) and du/dt = U(u) be autonomous systems, 
defined in regions R and R' of n-dimensional space, respectively. The two sys
tems are equivalent if and only if there exists a one-one transformation u = f(x) 
of coordinates, of class <J 1 and with nonvanishing Jacobian, which maps R onto 
R' and carries dx/dt = X(x) into du/dt = U(u). 

Under these circumstances, the inverse transformation is also of class <J 1 with 
nonvanishing Jacobian. Note that the relation of equivalence is symmetric, 
reflexive, and transitive: it is an equivalence relation.t It follows from the pre
ceding discussion that equivalent autonomous systems have solution curves 
obtainable from each other by a coordinate transformation. If the systems (29) 
and (31) are equivalent under the change of coordinates (30), and if V(u) is an 
integral of (31), then V[f(x)] is an integral of (29). 

However, two autonomous systems may have the same solution curves with
out being equivalent. Thus, the solution curves of 

(32) 

are concentric circles, as in Example 2 (x = -y, j = x). Yet the two systems are 
not equivalent: all solutions of x = -y, j = x are periodic with the same period 

t See Ch. I, §5. The Jacobian of (28) is the determinant of the square matrix lliJJ,/iJx1 11 of first partial 
derivatives. See Widder, p. 28 ff. Transformations with the properties stated are called 
''diffeomorphisms.'' 

t Birkhoff and Mac Lane, p. 34. 
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21r, whereas the periods of the solutions of (32) vary like I /r 2 with distance from 
the origin. 

7 STABILITY 

The concepts of stability and strict stability, already defined for linear DEs 
with constant coefficients in Ch. 2, §3, apply to the critical points of any auto
nomous system. Loosely speaking, a critical point P is stable when the solution 
curves originating near P stay uniformly near it at all later times; P is strictly 
stable if, in addition, each such individual solution curve gets and stays arbitrar
ily near P as t increases without limit. In vector notation, the precise definitions 
are as follows. 

DEFINITION. Let a be a critical point of the autonomous system 
x'(t) = X(x), so that X(a) = 0. The critical point a is called: 

(i) stable when, given E > 0, there exists a o > 0 so small that, if lx(0) - al < 
o, then lx(t) - al < E for all t > 0 

(ii) attractive when, for some o > 0, 

(33) lx(0) - al < o implies lim lx(t) - al = 0 
,-co 

(iii) strictly stable when it is stable and attractive. A stable critical point which is 
not attractive is called neutrally stable; a critical point which is not stable is 
called unstable. 

Evidently, the preceding definitions are invariant under diffeomorphisms 
(§5); thus, they describe important qualitative distinctions between the kinds 
of critical points. For first-order autonom~us DEs, being "attractive" has a sim
ple interpretation. 

THEOREM 5. The critical point O of the one-dimensional autonomous DE x'(t) = 
X(x) is attractroe if and only if (ii'). For some o > 0, 0 < Ix I < o implies xX(x) < 
0. In this case, the DE is strictly stable. 

Explanation. In other words, in the first-order case (ii) is equivalent to (ii') 
while either condition implies (iii). 

Proof If X(x1) = 0 for some x1 with 0 < I x1 I < o, then x(t) = x 1 is a solu
tion, violating (ii') above. In the same way, if x1X(x 1) > 0 [that is, if x1 and X(x1) 
have the same sign], then the solution with initial value x(0) = (x1 + o sgn x1)/ 
2 could never cross x 1; hence it would also violate (ii). Therefore, condition (ii') 
is necessary for being "attractive." It is sufficient since, if 0 < x(0) < o, then 
sup1~i.x(O))X(x) = -a1 < 0 for all o1 E [0,x(0)]. Hence, we have 0 < x(t) < o1 for 
all t > x(0)/a1, proving (30); we omit the details. A similar argument covers the 
case -o < x(0) < 0. 
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In both cases, stability is immediate; indeed, stability follows if O is a limit 
point of x with xX(x) < 0. 

Attractiveness also implies strict stability for linear autonomous systems in n 
dimensions, that is, for linear DEs with constant coefficients. We now prove this 
important result, which goes back to Lagrange. 

THEOREM 5'. The critu:al point O of the constant-coefficient linear autonomous 
system x'(t) = Ax is attractive if and only if every eigenvalue of A has a negative real 
part. In this case, the system is also strictly stable. 

Proof If some eigenvalue ;\ of A has a nonnegative real part, then (12) has a 
solution of the form x(t) = i-1£ (an "eigensolution" or "normal mode"), where 
the initial eigenvector x(0) = f can have arbitrarily small length. Conversely, 
note that by Theorem 3, every component x;(t) of every solution x(t) of (12) 
satisfies the secular equation PA(D)x,(t) = 0, where the roots of the polynomial 
equation PA(;\) = 0 are just the eigenvalues ;\1 of A. From Theorem 4 of Ch. 3, 
we know that every x,(t) I-+ 0 if these ;\, all have negative real parts, which implies 
(33). This proves the first statement of Theorem 5'. 

To prove the second statement, we extend the concept of solution basis to 
vector DEs with constant coefficients. If x(0) = 0 and x'(t) = Ax, then by 
repeated differentiations, we have x<n>(0) = 0 for all n. Hence, in Theorem 2, 
every x\k>(0) = 0 and, by the crucial Lemma of Ch. 3, §4, every x,(t) = 0. It 
follows from this that the vector form x(t) = Ax of (12) can have, at most n 
linearly independent solutions (it will be proved in Ch. 6 that it has exactly n of 
them). Calling them u1(t), ... , un(t), we see that the general solution of (12) is 
x(t) = Ec1u 1(t) - 0, where I x(t) I < E for all sufficiently large t, uniformly, pro
vided only that Ec1 < ~. some sufficiently small number. The stability condition 
(i) above follows. 

It follows from Ch. 3, §5, that the conditions for strict stability of the second
order system dx/dt = ax + by, dy/dt = ex + dy, are p = - (a + d) > 0, 
q = ad - be > 0 or equivalently a + d < 0, ad > be. 

Caution. One should not conclude from Theorems 5 and 5' 9?,at attractive
ness implies strict stability for all autonomous systems. Indeed, we now con
struct an attractive critical point of a nonlinear plane autonomous system that 
is unstable.t Figure 5. 7 depicts sample solution curves. 

Example 6. Let D1 be the lower half-plane y < O; let D2 be the locus 
x2 + y2 < 21 x I , consisting of the discs (x ± 1 )2 + y2 < 1; let D3 be the half
strip Ix I < 2, y > 0, exterior to D2; let D4 be the locus Ix I > 2, y > 2, all as 

t The authors are indebted to Dr. Thomas Brown for constructing Example 6. 
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y 

Figure 5. 7 Unstable critical point. 

depicted in Figure 5.7. The system 

x = { 2xy on D 1 U D2 U D3 

2xy/[3 - (41xl)] on D4 

{
y2 - x2 on D 1 U D2 

y = 4 Ix I - y2 - 3x2 on D3 

(41xl - y2 - 3x2 )/[3 - 4/lxl] on 

is unstable, yet lim,-00 I x(t) I = 0 for all orbits x(t). 

Dynamical Systems. If the DEs for an autonomous dynamical system are 
written in normal form, as 

(34) d2q, ( dq) dt2 = F, q, dt = F, (q, p), i = I, ... ,m 

and conjugate velocity variables p, = dq.jdt are introduced, then (34) defines an 
autonomous system of first-order DEs 

(34') 
dq, dt = p,, 

dp, dt = F,(q, p) 

in an associated 2m-dimensional phase space. A given point (q, p) of phase space 
is a critical point for the system (34') if and only if p = 0 and F(q, 0) = 0, so 
that q is an equilibrium point of the dynamical system (34). 
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The dynamical system (34) is called conservative when F;(q, q) = -av;aq, for 
a suitable potential energy function V(q). For any conservative system, the total 
energy function E(q, p) = (E m;pV2) + V(q) is an integral of the system (34). 
Moreover, the point (a,O) is a critical point of (34') if and only if the gradient 
v'V(a) = 0, so that the potential energy function has a stationary value.t The 
point is neutrally stable if the potential energy has a (strict) local minimum at 
q = a; it is never strictly stable. 

Thus, consider the simple pendulum of Example 5, §3, with k = 1. For c = 
-2, the "solution curve" reduces to a set of isolated critical points v = 0, 0 = 
± 2mr. If lei < 2, then 10 - 2mrl < 00, where 00 < 1r is the smallest positive 
angle such that cos 00 = -c/2. Therefore, the solution curves for -2 < c < 2 
are closed curves (loops) surrounding the origin or any one of the critical points 
for 0 = ±2n1r. As c - -2, these loops tend to the origin. Consequently, the 
origin and its translates 0 = ± 2n1r, v = 0 are neutrally stable. For c = 2, we 
have the separatrix curve defined by v = ± 2 cos (0/2). From the first of equa
tions (11'), it is seen that the direction of the motion is from -1r to 1r for v > 
0 and from 1r to -1r for v < 0. Therefore, the critical points v = 0, 0 = ± (2n 
+ I )1r are unstable. These unstable critical points occur when the pendulum is 
balanced vertically above the point of support. 

EXERCISES C 

1. For the following DEs, determine the stability and type of the solution curves in the 
phase -plane, sketching typical curves in each case: 
(a) ii + u = 0 (b) ii + u + u = 0 
(d) ii + u - u = o (c) ii + 2u + u = 0 

(c) ii - u + u = 0 
(£) ii + 4u + u = o. 

2. For which of the following is x = 0 a stable critical point: 

x = -x3 

3. Determine conditions on the coefficients a, b, c, d of (13) necessary and sufficient 
for neutral stability. 

4. Show that x = X(x) has a strictly stable critical point at x = 0 if X(0) = 0 and X'(0) 
< 0. [ HINT: x2 is a Liapunov function.] 

5. Show that the plane autonomous system x = " - y, j = 4x2 + 2y2 - 6 has critical 
points at (1, 1) and (-1, -1), both of them unstable. 

6. Show that the system dx/dt = In (1 + x + 2y), dy/dt = (x/2) - y + (x2/2) has an 
unstable critical point at the origin. 

*7. Is the system(*) of Ex. B5 strictly stable, neutrally stable, or unstable at (0, 0, 0)? 

t Courant and John, Vol. 2, p. 326. Points where the value of a function is stationary are also often 
called "critical points." 
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8. Show that the autonomous system 

dx (1) - = - e2' sin 3y + 2 sin x cos x + rf - 1 
dt 2 
dy dz 
-d = sin (2x + 3y), - = tan (2x + z) 

t dt 

has an unstable ~ritical point at x = y = z = 0. 

9. Show that the DE x + x sin (1/x) = 0 is neutrally stable at x = 0. 

*10. Let S = S(x) be a function of class (§) 1 in some neighborhood of the origin, such 
that S(O) = 0, while S(x) > 0 if0 < lxl < t for some t > 0. 
(a) Prove that the system dx/dt = X(x) is unstable at the origin if E X,iJS/iJx, > 0 

there and is strictly stable if E X,iJS/iJx, < 0 there. 
(b) Derive from (a) a stability criterion for the autonomous nth order DE 

11. Show that the integral curves in Example 6 are the semicircles 

x2 + y2 = ±2ax in 

and of the form x(x2 - 2 Ix I + y2) = constant in D3 U D4• 

8 METHOD OF LIAPUNOV 

In studying a critical point of an autonomous system (3), we can assume with
out loss of generality that it is at the origin. For X(x) of class @2, we can there
fore rewrite the system as 

n 

xW) = L aijx1 + R;(x), 
j•I 

i = 1, ... ,n 

where the R; are infinitesimals of the second order. This suggests that the behav
ior of solutions near the critical point will be like that of solutions of the asso
ciated linearized system (12). We now show, at least for n = 2, that this is indeed 
true as regards strict stability. 

THEOREM 6. If the critical point (0, 0) of the linear plane autonomous system 
(12) is strictly stable, then so is that of the perturbed system 

(35) x = ax + by + ~(x,y), j = ex + dy + 71(x,y) 

providedt that I ~(x,y) I + I 11(x,y) I = O(x2 + y2). 

t The symbol O(x2 + y2) stands for a function bounded by M(x2 + y2) for some constant M and all 
sufficiently small x,y. 
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Idea of Proof The proof is based on a simple geometrical idea due to Liapu
nov. Let E(x,y) be any function having a strict local minimum at the origin. For 
a small positive C, the level curves E(x,y) = E(0, 0) + C constitute a family of 
small concentric closed loops, roughly elliptical in shape, enclosing the origin. 
Now, examine the direction of the vector field defined by (35) on these small 
loops. Intuition suggests that the critical point will be strictly stable whenever, 
for all small enough loops, the vector field points inward. For this implies that 
any trajectory which once crosses a loop is forever trapped inside it, because, to 
get outside, the trajectory would have to cross the loop in an outward direction. 
At such a crossing point, the vector could not point inward, giving a 
contradiction. 

To make the preceding intuitive argument precise, we define a Liapunov .func
tion for a critical point a of an autonomous system x'(t) = X(x) to be a function 
E(x) that assumes its minimum value at a and satisfies 

L X,(x) aE;ax, < 0 for all 

Since E = dE/dt = E x:(t) aE/ax = EX,(x) aE/ax, for any solution x(t), this 
implies that Eis decreasing along any trajectory x(t). 

To construct a Liapunov function for the critical point (0, 0) under the 
hypotheses of Theorem 6, we consider, in tum, each of the three canonical 
forms (26a) through (26c) derived in §5. Since the definition of stability is invar
iant under linear transformations of coordinates, it suffices to consider these 
three cases. 

For the linear terms in (27), the necessary calculations are simple. The Lia
punov function can be taken as a positive definite quadratic function E = ax2 

+ 2{3xy + -yy2, a > 0, a-y > {32, whose level curves are a family of concentric 
coaxial ellipses. We will show, by considering cases separately, that E < -kE 
for some positive constant k. 

In (26a), the Liapunov function E = x2 + y2 satisfies 

E = 2(xx + yj) = 2µE 

In the strictly stable case,µ < 0. In (26b), the same Liapunov function satisfies 
E = 2(xx + yj) = 2µ 1x2 + 2µ2y2 < 2µ1E, in the strictly stable case 0 > µ1 > 
µ 2. (By allowing equality, we also take care of the exceptional case of a star 
point.) In (26c), the Liapunov function E = x2 + a2y2 satisfies, in the strictly 
stable case a < 0 

E = 2(xx + a2yj) = 2(ax2 + a2xy + a3y2) = aE + a(x + ay)2 < aE 

Hence, in the three possible cases of strict linear stability, we have E = 2µE, E 
:s; 2µ1E, or E < aE, where the coefficient on the right side is negative. It follows 
that E < - kE for some k > 0, in every case. Since the quadratic function E(x, 
y) is positive definite, we conclude that E(x, y) > K(x2 + y2) for some constant 
K> 0. 
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We now consider the nonlinear system (27). Since Ex = oE/o x and Ey = 
oE/iJy are linear functions of x and y, we have 

Hence, for some E > 0, E(x, y) < E implies IE~+ Ey11I < kE(x, y)/2. 
Now let [x(t), y(t)] be a trajectory of (27) such that E(x(t0), y(t0)) < E. Along 

this trajectory, for t > t0, E(t) = E[x(t), y(t)] will satisfy 

E(t) < -kE + IEx~ + E,111 < -kE(t)/2 

By Theorem 7 of Ch. 1, it follows that E(t) < E(t0)exp[ -k(t-t0)/2]. Hence, E(t) 
approaches zero exponentially. Since E(x, y) > K(x2 + y2), it follows at once 
that the trajectory tends to the origin. 

Using similar arguments, we can prove the following classic generalization of 
Theorem 6, which we state without proof. 

POINCARE-LIAPUNOV THEOREM. If the critical point O of the linear autono
mous system x'(t) = Ax is strictly stable, then so is that of the perturbed system 

x:(t) = L a'lx1 + ~(x) 

provided that I ~(x) I = 0( Ix I 2). 

9 UNDAMPED NONLINEAR OSCILLATIONS 

The classification made in §5 covers linear oscillators near equilibrium points, 
which correspond to critical points in the phase plane. We will now study the 
nonlinear oscillations of a particle with one degree of freedom, about a position 
of stable equilibrium. The case of undamped (i.e., frictionless) oscillations will 
be treated first. This case is described by the second-order DE 

(36) x + q(x) = 0 

which can be imagined as describing the motion of a particle in a conservative 
force field. This DE is equivalent (for v = x) to the first-order quasilinear DE 
v dv/dx + q(x) = 0, or, in the phase plane, to the plane autonomous system 

(37) dx/dt = v, dv/dt = -q(x) 

By a translation of coordinates, we can move any position of equilibrium to 
x = 0; hence we can let q(O) = 0. If equilibrium is stable, then the "restoring 
force" q(x) must act in a direction opposite to the displacement x, at least for 
small displacements. Therefore we assume that xq(x) > 0 for x 'F 0 sufficiently 
small. This will make the system (37) have an isolated critical point at x = v = 
0, as in the case of the simple pendulum (Example 5, §3). 
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The key to the analysis of systems (36) is the potential energy integral 

(38) 

Since xq(x) > 0, the function V(x) is increasing when xis positive and decreasing 
when xis negative; it has a local minimum V(0) = 0 at x = 0. Differentiating 
the total energy 

v2 
(39) E(x,v) = 2 + V(x) 

with respect to t, we get E = x[x + q(x)] = 0; hence E(x, v) is a constant along 
any trajectory in the phase plane. Therefore E(x, v) is an integral of the system 
(37), and of its first-order equivalent dv/dx = -q(x)/v. Although the energy 
integral E(x,v) has a strict local minimum at (0, 0), the following result is of more 
interest to us now. 

THEOREM 7. If q E <§1 1 and if xq(x) > 0 for small nonzero x, then the critical 
point (0, 0) of the system (36) is a vortex point. t 

Proof. For any given positive constant E, the locus v2/2 + V(x) = E is an 
integral curve, where V(0) = 0 and V(x) increases with Ix I, on both sides of x 
= 0. These curves are symmetric under reflection (x, v) I-+ (x, -v) in the x-axis; 
they slope down with slope -q(x)/v in the first and third quadrants and up in 
the second and fourth quadrants. For any given small value of E, the function 
E - V(x) has a maximum at x = 0 and decreases monotonically on both sides, 
crossing zero at poihts x = - B and x = A, where B and A are small and posi
tive. Hence each locus v2 = 2[E - V(x)] is a simple closed curve, symmetric 
about the x-axis. 

As the energy parameter E decreases, so does Iv I = Y2[E - V(x)]; thus, the 
simple closed curves defined by the trajectories of (32) shrink monotonically 
toward the.Jrigin as E i 0. In fact, consider the new coordinates (u, v), defined 
by u = ± 2V(x), according as xis positive or negative. The transformation (x, 
v) ---+ (u, v) is of class <§1 1 with a nonvanishing Jacobian near (0, 0), if q'(0) exists 
and is positive. Hence the integral curves of (37) resemble a distorted family of 
circles u2 + v2 = 2E. 

IO SOFT AND HARD SPRINGS 

The most familiar special case of (36) is the undamped linear oscillator 

(40) x + qx = 0, q = k2 > 0 

t As in the linear case, a critical point of a plane autonomous system is called a vortex point when 
nearby solution curves are concentric simple closed curves. 
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for which q(x) = k2x. The general solution of (40) is the function x = A cos [k(t 
- t0)], representing an oscillation of amplitude A, frequency k/21r (period 21r/k), 
and phase t0• 

In other cases, the DE (36) can be imagined as determining the motion of a 
unit mass, attached to an elastic spring that opposes a displacement x by a force 
q(x), independent of the velocity x. The ratio h(x) = q(x)/x is called the stiffness 
of the spring; it is bounded for bounded x if q E <§1 1 and q(O) = 0. The case (40) 
of a linear spring is the case of constant stiffness (Hooke's Law). For linear 
springs, the formulas of the last paragraph show that the frequency f = k/21r is 
proportional to the square root of the stiffness k2 and is independent of the 
amplitude. We will now show that, for nonlinear springs, the frequency f still 
increases with the stiffness but is amplitude-dependent in general. 

Indeed, the force law (36) implies that x = v = v'2[E - V(x)]. Hence, if the 
limits of oscillation [i.e., the smallest negative and positive roots of the equation 
V(x) = E] are x = - B and x = A, the period T of the complete oscillation is 

(41) T=2 IA dx 

-B v'2[E - V(x)] 

The integral (41) is improper, but it converges, provided that q(x) does not van
ish at - B or A; hence it converges for all sufficiently small amplitudes if q e (§1 1 

in the stable case h(0) > 0. 
We now compare the periods T and T1 of the oscillation of two springs, hav

ing stiffness h(x) and h1 (x) > h(x), and the same limits of oscillation - B and A. 
By (39), E = J~ q(u) du = V(A); hence, E - V(x) = f 1 q(u) du. From the stiffness 
inequality h1 (x) > h(x) assumed, therefore, we obtain, 

E - V(x) = lA q(u) du< lA q1(u) du = E - V1(x), 0<x<A 

Reversing the sign of x, we get the same inequality for - B < x < 0. Substitut
ing into (41), we obtain T> T1. We thus get the following comparison theorem. 

THEOREM 8. For any two oscillations having the same span [ - B, A], the period 
becomes shorter and the frequency greater as the stiffness q(x)x increases in (36). 

Springs for which h(x) = h(- x) are called symmetric; this makes q(- x) = 
-q(x) and V(-x) = V(x), so that B = A in the preceding formulas: symmetric 
springs oscillate symmetrically about their equilibrium position. Hence, for sym
metric springs, the phrase "span [-B, A]" in Theorem 8 can be replaced by 
"amplitude A." 

For any symmetric spring, h'(0) = 0; if h"(0) is positive, so that h(x) increases 
with Ix I, the spring is said to be "hard"; if h"(0) is negative, so that h(x) 
decreases as I x I increases, it is said to be "soft." Thus the simple pendulum of 
Example 5, §3, acts as a "soft" spring. We now show that the period of oscilla
tion is amplitude-dependent, at least for symmetric hard and soft springs. 
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THEOREM 9. The period of a hard symmetric spring decreases, whereas the period 
of a soft symmetric spring increases as the amplitude of oscillation increases. 

Proof The period is given by (41); it suffices to compare the periods of quar
ter-oscillations, say from O to A and from Oto A 1, with A 1 > A. We write A 1 = 
cA, with c > l. To study the period p 1 of the quarter-oscillation from O to cA = 
A 1, we let x = cy in (36). The equivalent DE for y is 

(42) d2y/dt2 + yh(cy) = 0 

where h(x) = q(x)/x. The oscillation of amplitude cA for (36) corresponds to the 
oscillation of amplitude A for (42); and, since the independent variable t is 
unchanged, the periods of oscillation are the same for both. Therefore, it suf
fices to compare the quarter periods p and p1 for amplitude A for the two 
springs (36) and (42), respectively. Using Theorem 8, we find that, for y > 0, if 
yh(cy) > q(y) = yh(y), that is, if h(cy) > h(y) for c > l (hard spring), then we 
have p1 < p, and so the period decreases as the amplitude increases. Soft springs 
can be treated similarly. 

EXERCISES D 

1. (a) Show that the integral curves of x - x + x3 = 0 in the phase plane are the 
curves v2 - x2 + x4/2 = C. 

(b) Sketch these curves. 
(c) Show that the autonomous system defining these curves has a saddle point at 

(0, 0) and vortex points at(± 1, 0). 

2. Duffing's equation without forcing term is x + qx + rx3 = 0. Show that, for oscil
lations of small but finite half-amplitude L, the period Tis 

T = 4 V2 f..-;2 --;::===d:;.:0==== 
Jo Y2q + rL2(1 + sin20) 

Verify Theorem 9 in this special case as a corollary. 

3. (a) Draw sample trajectories of the DE x = 2x3 in the phase plane, including x = 
±x2. 

(b) Show that x = 0 is the only solution of this DE defined for all t E (-oo, oo). 

*4. Show that if q(0) = 0 and q'(0) < 0 in (36), the origin is a saddle-point in the phase 
plane. 

5. Discuss the dependence on the sign of the constantµ, of the critical point at the 
origin of the system 

u = -v + µu3, 

6. (a) Show that the trajectories of x + q(x) = 0 in the phase plane are convex closed 
curves if q(x) is an increasing function with q(0) = 0. 

(b) Is the converse true? 

7. Show that, if x = ax + by, y = ex + dy is unstable at the origin, and if 

X(x, y) = ax + by + O(x2 + y2), Y(x, y) = ex + dy + O(x2 + y2) 
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where ad =fa be and~ =fa 0, then the system x = X(x, y), j = Y(x, y) is also unstable 
there. 

8. The equation of a falling stone in air satisfies approximately the DE 

.. gxlxl 
x=g-~ 

where the constant v is the "terminal velocity." Sketch the integral curves of this 
DE in the phase plane, and interpret them physically. 

9. Show that the plane autonomous system x = y - x3, j = -x3 is stable, though its 
linearization is unstable. [HINT: Show that x4 + 2y2 is a Liapunov function.] 

*10. Show that for the analytic plane autonomous system 

the origin is an unstable critical point that is asymptotically stable. [HINT: Study 
Example 6. To prove instability, show that the ellipse 4y2 = x - x2 cannot be 
crossed from the left in the first quadrant.] 

11 DAMPED NONLINEAR OSCILLATIONS 

The equation of motion for a particle of mass m having an equilibrium point 
at x = 0, in the presence of a restoring force mq(x) and a friction force equal 
to f(x, v) = mvp(x, v), is 

(43) x + p(x, x)x + q(x) = 0, q(x) = xh(x), hE ~I 

When h(0) is positive, the equilibrium point is called statically stable, because the 
restoring force tends to restore equilibrium under static conditions (when 
v = 0). The conservative system (36) obtained from any statically stable system 
(43) by omitting the friction term xp(x, x), is neutrally stable by Theorem 7. 

The differential equation (43) has a very simple interpretation in the phase 
plane, as 

(44) 
dx 
-=v 
dt ' 

dv 
dt = -vp(x, v) - q(x) 

The critical points of the system (44) are all on the x-axis, where x = v = 0; 
they are the equilibrium points (x, 0) where q(x) = 0 in (43). Since in (43), q(0) 
= 0h(0) = 0 the origin is always a critical point of (44); unless h(0) changes sign, 
there is no other. 

We shall consider only the case h(x) > 0 of static stability in the large, which 
is the case of greatest interest for applications. For simplicity, we will also 
assume that p(O, 0) =fa 0. 

Under these assumptions, the origin is the only critical point of (44). More-
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over the direction field, whose slope is 

dv q(x) 
dx = T(x, v) = -p(x, v) - -:;;-

points to the right in the upper half-plane, where x = v > 0, and to the left in 
the lower half-plane. On the x-axis, the solution curves have finite curvature 
q(x); they cut it vertically downward on the positive x-axis and vertically upward 
on the negative x-axis. Thus, the solution curves have a general clockwise 
orientation. 

Conversely, any continuous oriented direction field with the properties spec
ified represents a DE of the form (43) in the phase plane. From this it is clear 
that the behavior of the solutions of the DEs of the form (43) can be extremely 
varied in the large (see §13). However, the local possibilities are limited. 

THEOREM 10. If p and h are of class &1 in (43), and if p (0, 0) and h(0) are 
positive, then the origin is a strictly stable critical point of (44). 

Proof Under the hypotheses of Theorem 10, we have that p > 0 near the 
critical point (0, 0), and we can write (44) as 

dx/dt = v, dv/dt = -h(0)x - p0v + O(x2 + y2), Po = p(0, 0) 

An easy computation shows that the linearization of the system (44) has the sec
ular equation A 2 + p0X + h(0) = 0. Since this quadratic polynomial has positive 
coefficients, it is of stable type (Ch. 3, §5). Hence, by Theorem 6, the origin is a 
strictly stable critical point of (43) when the damping factor p(0, 0) is positive. 
The equilibrium point x = 0 of (43) is then said to be dynamically stable: the 
solution curves tend to the origin in the vicinity of the origin. 

When p(0, 0) is negative, the system is said to be negatively damped, and the 
equilibrium point to be dynamically unstable. Since (43) can be rewritten as 

(45) d2x ( -dx) -dx 
d(-t)2 + p x, d(-t) d(-t) + xh(x) = 0 

we see that the substitutions t - -t, x - x, v - -v, of time reversal, reverse 
the sign of p(x, x) but do not affect (43) otherwise. Hence, if p(0, 0) < 0, all 
solution curves of (44) spiral outward near the origin. 

*12 LIMIT CYCLES 

We now come to a major difference between nonlinear oscillations and linear 
oscillations. When a linear oscillator is negatively damped, the amplitude of 
oscillation always increases exponentially without limit. In contrast the ampli
tude of oscillation of a negatively damped, statically stable, nonlinear oscillator 
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commonly tends to a finite limit. The limiting periodic oscillation of finite ampli
tude so approached is called a limit cycle. 

The simplest DE that gives rise to a limit cycle is the Rayleigh equation, 

(46) µ>0 

The characteristic feature of this DE is the fact that the damping is negative for 
small x and positive for large x. Hence it tends to increase the amplitude of small 
oscillations and to decrease the amplitude of large oscillations. Between these 
two types of motions, there is an oscillation of contant amplitude, a limit cycle. 

If we differentiate the Rayleigh equation (46) and set y = x\/3, we obtain 
the van der Pol equation 

(47) y' - µ(l - y2)y + y = 0, µ>0 

This DE arises in the study of vacuum tubes. The sign of the damping term 
depends on the magnitude of the displacement y. The remarks about the Ray
leigh equation made above apply also to the van der Pol equation. 

As stated in § 11, negatively damped nonlinear oscillators can give rise to a 
great variety of qualitatively different solution curve configurations in the phase 
plane. For any particular DE of the form (43), such as the Rayleigh or van der 
Pol equation with given µ, one can usually determine the qualitative behavior of 
solutions by integrating the DE 

v dv + [vp(x,v) + q(x)] dx = 0 

graphically (Ch. 1, §8). More accurate results can be had by use of numerical 
integration. With modern computing machines, using the techniques to be 
described in Ch. 8, it is a routine operation to obtain such a family of solution 
curves. Figure 5.8 depicts sample integral curves for the van der Pol equation 
withµ = 0.l, µ = l, andµ = 10 so obtained. 

Lienard Equation. General criteria are also available which determine the 
qualitative behavior of the oscillations directly from that of the coefficient-func
tions. Such criteria are especially useful for DEs depending on parameters, 
because graphical integration then becomes very tedious. They are available for 
DEs of the form 

x + J(x)x + q(x) = 0 (Lienard equation) (48) 

The van der Pol equation is a Lienard equation; moreover, it is symmetric in the 
sense that -x(t) is a solution if x(t) is a solution. This holds whenever q(- x) = 
-q(x) is odd andf(-x) = f(x) is even. 

One can prove the existence of limit cycles for a wide class of Lienard equa
tions; we can even prove that every nontrivial solution is either a limit cycle, or 
a spiral that tends toward a limit cycle as t--+ +oo. This is true if: (i) xq(x) > O 
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Figure 5.8 Van der Pol equation. 
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for x =fo 0; (ii) f(x) in (48) is negative in an interval a < x < b containing the 
origin and positive outside this interval, and 

(49) l 00 

f(x) dx = J:
00

/(x) dx = +oo 

We sketch the proof. t 
In the xv-plane, solution curves satisfy 

(50) 
dv q(x) - + f(x) + - = 0 
dx v 

if v=fo0 

It follows, since xq(x) > 0, that they can cross the x-axis only downward if 
x > 0, and upward if x < 0. Also by (50), between successive crossings of 
the x-axis, v(x) is a bounded single-valued function, decreasing in magnitude if 
x >bin the upper half-plane, and if x < a in the lower half-plane. 

Now, consider the Lienard function 

(51) 
E(x, v) = ½[v + F(x)] 2 + U(x) 

U(x) = lx q(x) dx > 0 

F(x) = lx f(x) dx 

A straightforward calculation gives dE/dt = -q(x)F(x), where, by (49), IF(x) I 
becomes positively infinite as Ix I --+ oo. For sufficiently large Ix I, since xq(x) > 
0, dE/dt is identically negative. Since the set of all (x, v) for which E(x, v) < E0, 

t For a complete proof, see Lefschetz, p. 267, or Stoker, Appendices III and IV. 
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any finite constant, is contained in the bounded strip Iv + F(x) I < V2E0, it 
also follows that solution curves can stay in one half-plane (v > 0 or v < 0) for 
only a finite distance (and time); if nontrivial, they must cut the x-axis infinitely 
often. 

Let x0, x1, x2, ... be successive zero-crossings; we can assume that x2n > 0 
and x2n+I < 0 without loss of generality. If x2 = x0, then (by uniqueness) x2n = 
Xo and x2n+I = x1 for all n > 0; the solution curve is a limit cycle. Likewise, if 
X2 > Xo, then we find that X2n > X2n-2 and X2n+ I < X2n- I for all n > 0 and 
the solution curve spirals outward as t increases. Similarly, if x2 < x0, then the 
solution curve must spiral inward. 

Finally, since J(.0) < 0, Theorem 6 applies if f, g E <§1 1: solution curves near 
the origin must spiral outward. Also, we know that 

f x2. q(x)F(x) 
E(x2n, 0) - E(X2n- i, 0) = - ( dx 

X2n-l r X) 

and the definite integral is negative for sufficiently large oscillations since xq(x) 
> 0 and F(±oo) = ±oo, by (49). Hence, every solution curve sufficiently far 
from the origin must spiral inward. Therefore, every oscillation of sufficiently 
large initial amplitude must spiral inward toward a limit cycle of maximum 
amplitude. Similarly, every oscillation of sufficiently small initial amplitude must 
spiral outward to a smallest limit cycle. 

For the Rayleigh and van der Pol equations, these limit cycles are the same. 
Therefore, every nontrivial solution tends to a unique limit circle, which is sta
ble. The preceding result holds under much more general conditions. We quote 
one set of such conditions without proof. 

LEVINSON-SMITH THEOREM. In (48), let q(x) = xh (x), where h(x) > 0 and 
let J(x) be negative in an interval (a, b) containing the origin and positive outside this 
interval. Let q(-x) = -q(x), J(-x) = fix), and let (49) hold. Then (48) has a 
unique stable limit cycle in the phase plane, toward which every nontrivial integral 
curve tends. 

EXERCISESE 
1. Show that any DE 

x + (px2 - q)x + rx = 0 

where q and rare positive constants, can be reduced to the van der Pol DE by a change 
of dependent and independent variables. 

2. (a) Show that the autonomous plane system 

u = u - v - u3 - uv2, ti = u + v - v3 - u 2v 

has a unique critical point, which is unstable, and a unique limit cycle. 
(b) Discuss the stability of the related system 

u = -u - v + u3 + uv2, ti = u - v + v3 + u 2v 

with special reference to oscillations of very small and very large amplitude. 
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3. In the DE x + q(x) = 0, let V(x) = Jo q(u) du, and let q be a continuous function 
satisfying a Lipschitz condition. Show that, if V(x1) = V(x2) and V(x) < V(x1) for 
x 1 < x < x2, the equivalent autonomous system (44) has a periodic solution passing 
through the points (xi, 0) and (x2, 0). 

4. Show that the plane autonomous system 

(r3 - r) 
1'=---

100 ' 

has just one limit cycle. 

b = 1 

5. Discuss the limit cycles of the systei:n 

(polar coordinates) 

b = 1 

6. Prove in detail that, for µ, = 1 and the initial condition x(0) = 10, x(0) 
amplitude of successive oscillations decreases in the Rayleigh DE (46). 

7. Answer the same question for the van der Pol DE, if y(0) = 10, y(0) = 0. 

0, the 

8. Sketch the integral curves of the van der Pol DE in the phase plane forµ, = 100. 
[HINT: Most of the time, the integral curves are "relaxation oscillations," near y = 0 
OT J = l.] 

9. Do the same for the Rayleigh DE. 

ADDITIONAL EXERCISES 

1. Locate the critical points of the DE x = x(I - x)(a - x), and discuss how their 
stability or instability varies with a. 

2. Do the same for x = x(I - x)(x - a). 

3. Show that, in the complex domain, every system x = ax + by, y = ex + dy is linearly 
equivalent to either x = ;\x, 'j = µ,y or x = ;\x, 'j = ;\y + x, for suitable ;\, µ,. 

4. Show that, in the punctured plane x2 + y2 > 0, two linear systems (13) are equivalent, 
provided that their discriminants ~. ~, are not zero, and they both have either (a) 
stable focal points, (b) unstable focal points, (c) vortex points, (d) stable nodal points, 
(e) unstable nodal points, or (f) saddle-points. 

5. Consider the linear autonomous system 

(a) Show that the x-component of any solution satisfies 

(a) 

d3x 
dt3 = Pix - P2i + p3x, where 

p2 = a
1
b

2 
- a

2
b

1 
+ b2c3 - b3c2 + c

3
a

1 
- c

1
a

3
, 

a1 a2 a3 

p3 = b1 b2 b3 

C1 C2 C3 
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(b) Show that the secular equation (u) is invariant under any nonsingular linear trans
formation of the variables x, y, z. 

(c) Conversely, show that, if the polynomial ;\3 = p1X2 - p2X + p3 has distinct real 
roots ;\1, X2, ;\3, then the given DE is linearly equivalent to ~j = ·>.i/j = 1,2,3). 

*(d) Work out a set of real canonical forms for the given DE, with respect to linear 
equivalence, in the general case. 

6. Let 'i/U = X, U = U(x, Vy2 + z~ be any axially symmetric gradient field of 
class 61 1• Show that the DE x = 'i/U admits as an integral the "stream function" V = 
J r[(iJU/ox) dr + (iJU/or) dx], the integral being independent of the path. 

7. Sketch the integral curves in the phase plane for 
A 

(a) x + x + -- = 0 (b) x + x/lxl = 0 (Coulomb friction) 
x-a 

(c) x + x Ix I + k sin x = 0 

8. Let q(x) be an increasing function, with q(O) = 0 and q(-L) = -q(L); let Q(x) = 
[q(x) - q(-x)]/2. Show that the period of oscillation of half-amplitude L for x + 
Q(x) = 0 is less than that for x + q(x) = 0 unless q(-x) = -q(x) for all x E [O, L]. 

9. Show that the DEs x = 2x + sin x and x = 2x are equivalent on (-oo, +oo) but 
that x = x + x3 is not equivalent to x = x. [HINT: Consider the escape time.] 

10. Show that, if a1 < a2 < • • • < an and b1 < b2 < • · • < bn, the DEs x = Il(x -
a,) and x = Il(x - b,) are equivalent. 



1 INTRODUCTION 

CHAPTER 6 

EXISTENCE 
AND UNIQUENESS 

THEOREMS 

In the earlier chapters of this book, we have proved a number of theorems 
establishing the existence of solutions of DEs and the well-posedness of initial value 
problems, but always under special hypotheses. In this chapter, we shall study 
these questions systematically, in the general context of normal systems of first
order DEs, of the form 

(1) 

For the most part, we shall restrict attention to the existence and uniqueness of 
such solutions. But in the later sections, we shall consider more sophisticated 
questions, such as the analyticity of solutions and their dependence on the initial 
value vector c = (c1, ... , en). We shall prove that, as one might expect, this 
dependence is differentiable and shall derive perturbation formulas that express 
the relevant partial derivatives explicitly. 

The theorems proved in this chapter will include as special cases a}l the exis
tence, uniqueness, and continuity theorems proved in earlier chapters. In Chap
ters 7 and 8 to follow, we shall describe and analyze algorithms for effectively 
computing the solutions whose existence is established in this chapter. Those who 
are willing to assume plausible results, and who are mainly interested in appli
cations, may wish to skip to Chapter 8. 

We will continue to make the assumptions of Ch. 5, §1: that the X, are con
tinuous, real-valued functions of the independent variables x1, x2, ••• , Xm tin 
some region 1l, of interest in (x1, ..• , Xm t)-space. We shall also use the vector 
notation introduced there, rewriting (1) as 

(2) 

170 

dx/ dt = X(x, t) or x'(t) = X(x, t) 
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The curve x(t) in R defined by any solution of (1) will be called a solution curve 
of the system (1). 

Note that we can trivially inflate any normal system (1) of n first-order DEs 
to a normal autonomous system of n + l DEs by the simple device of writing 
t = Xn+ 1• This gives the equivalent system 

j = 1, ... , n + l 

where Xn+I is the function 1. However, this does not help to prove the theorems 
of major interest. 

As in Chapter 5, §1, one can view any autonomous system x'(t) = X(x) as 
defining a steady flow in the appropriate region R of x-space. Although this 
does not help to prove the theorems of major interest, it does make it easier to 
visualize their meaning. 

Thus, a continuously differentiable function U(x) is called an invariant of the 
autonomous system x'(t) = X(x) when U(x(t)) is constant for every solution x(t) 
of this vector DE-i.e., when E }S(x) au;axj = 0. This means that each solution 
curve of (2') stays on a single level surface U = const., and thus generalizes the 
concept of "integral" defined in Chapter 1. 

Example 1. Consider the autonomous system 

dx 
- = xz 
dt ' 

dy 
-= 
dt 

-yz, 
dz 
- = x2 - y2 
dt 

It is easy to verify that, when x = x(t) and y = y(t) are solutions, the two 
functions 

V(x, y, z) = xy and W(x, y, z) = x2 + y2 - z2 

satisfy dV/dt = x dy/dt + y dx/dt = 0 and dW/dt = 0. Therefore, V and Ware 
integrals of the system. The intersection of two surfaces V = c1 and W = c2 is a 
solution curve of the system. Thus, every solution curve lies on the intersection 
of a hyperbolic cylinder xy = c1 and a hyperboloid (or cone) x2 + y2 - z2 = c2. 

As a familiar special case, consider also the plane autonomous system dx/dt 
= N(x,y), dy/dt = -M(x,y) associated with the DE M(x,y) + N(x,y)y' = 0, The 
function U(x,y) is an integral of this system, associated as in Ch. l, §5, with the 
integrating factor µ(x,y), if and only if au;ax = µMand au;ay = µN. 

First-order normal systems (1) provide a standard form to which all normal 
ordinary DEs and normal systems of DEs can be reduced. For example, one can 
reduce the solution of a normal nth-order DE to the solution of a system of n 
first-order normal DEs as follows. Let u(t) be any solution of the given nth order 
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DE, 

Then then functions x1(t) = u, x2(t) = du/dt, ... , xnCt) = d"- 1u/dtn-l satisfy 
the normal first-order system 

k = I, ... , n - I; 

Conversely, given any solution of the preceding first-order system, the first com
ponent x1 (t) will have the other components x2, ... , xn as its derivatives of 
orders I, ... , n - I. Hence, substituting back, x1 (t) will satisfy the given nth
order equation. 

In the present chapter, we shall use this standard form to develop a unified 
theory for the existence and uniqueness of solutions of DEs and systems of DEs 
of all orders. 

2 LIPSCHITZ CONDITION 

In order to make use of vector notation for systems of DEs, we recall a few 
facts about vectors in n-dimensional Euclidean spaces. Addition of two vectors 
and multiplication of vectors by scalars are defined component-wise, as in the 
plane and in space. The length of a vector x = (x 1, x2, ... , xn) is defined as 

Length satisfies the triangle inequality 

Ix+ yl < lxl + lyl 

The dot product or inner product of two vectors is defined as 

X • Y = X1Y1 + • • • + X,,:Yn 

and satisfies the Schwarz inequality Ix • y I < Ix I • I y I -
We shall integrate, differentiate, and take limits of vector functions x(t) of a 

scalar (real) variable t. All these operations can be carried out component by 
component, as in vector addition. 

For example, the derivative of a vector function 
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is the vector function x'(t) = M(t), x~(t), ... , x~(t)). The integral J! x(t) dt is the 
vector with components J! x1 t) dt, J! x2(t) dt, ... , J! xn(t) dt. We shall often make 
use of the fundamental inequalityt 

(3) I lb x(t) dt I < lb I x(t) I dt 

A vector field X(x) is said to be continuous when each component X, of X is a 
continuous function of the n variables Xi, ... , xm the components of the vector 
independent variable x. This is equivalent to the following statement: The vector 
field X(x) is continuous at the point (vector) c whenever, given E > 0, there 
exists~> 0 such that, if Ix - cl <~.then IX(x) - X(c)I < E. We leave it as 
an exercise to verify that these definitions are equivalent. 

There is no such thing as "the" derivative of a vector field X(x), but only a 
"Jacobian matrix" of partial derivatives aX;/axj relative to the different com
ponents X1,, , , , Xn. 

The reader who is not accustomed to working with functions of vectors 
should note the differences between the following types of functions: vector
valued functions of a scalar variable, such as x(t) = (x1 (t), x2(t), ... , xn(t)); sca
lar-valued functions of a vector variable, such as Ix I = V xj + · · · + x;; vec
tor-valued functions of a vector variable such as 

vector-valued function of a vector variable x and a parameter t, such as X(x, t). 
A vector-valued function X(x) of a vector variable is said to be of class (Jn in 

a given region when each of the component functions X;(x1, ... , xn) is of class 
fJn there. One can easily extend the definition of a Lipschitz condition to vector
valued functions; as we shall see, this provides a simple sufficient condition for 
the uniqueness and existence of solutions for normal systems. 

DEFINITION. A family of vector fields X(x, t) satisfies a Lipschitz condition 
in a region 1l, of (x, t)-space if and only if, for some Lipschitz constant L, 

(4) IX(x, t) - X(y, t)I < Llx - yl if (x, t) E 1l, (y, t) E 1l, 

Note that both terms on the left side of (4) involve the same value oft. 

t This inequality is the continuous analog of the triangle inequality 

It can be obtained from this inequality by recalling the definition of the integral J: x(t) dt as a limit 
of Riemann sums, using the triangle inequality for each of the Riemann sums, and passing to the 
limit on both sides. 
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LEMMA. If X(x, t) is of class 61 1 in a bounded closed ("compact') convext 
domain D, then it satisfies a Lipschitz condition there. 

Proof Let M be the maximum of all partial derivatives I ax,1ax1 I in the closed 
domain D. For each component X, we have, for fixed x, y, t and for variable s 

d n ax 
- [X,(x + sy, t)] = L -a' (x + sy, t)yk 
ds k•I Xk 

Hence, by the mean-value theorem applied to the function X,(x + sy, t) of the 
variable s on the interval O < s < I, we have 

n ax 
X,(x + y, t) - X,(x, t) = L -a' (x + u,y, t)yk 

k=I Xk 

for some u, between O and 1. Squaring, and applying the Schwarz inequality to 
the right side, we obtain 

Consequently, summing over all components i, we have 

IX(x + y, t) - X(x, t)l 2 < n2M21yl 2 

Taking square roots, the Lipschitz condition follows with Lipschitz constant nM. 

3 WELL-POSED PROBLEMS 

For DEs to be useful in predicting the future behavior of a physical system 
from its present state, their solutions must exist, be unique, and depend contin
uously on their initial values. As stated in Ch. I, §9, an initial-value problem is 
said to be well-posed when these conditions are satisfied. We now show that, ifX 
satisfies a Lipschitz condition, the vector DE (2) defines a well-posed (or "well
set") initial-value problem. 

We begin by proving uniqueness. 

THEOREM 1 (UNIQUENESS THEOREM). If the vector .fields X(x, t) satisfy a 
Lipschitz condition (4) in a domain :R, there is at most one solution x(t) of the vector 
DE (2) that satisfies a given initial condition x(a) = c in :R. 

t A set Sin n-space is convex when the segment joining any two points of the set S lies entirely within 
S. This definition applies both to closed domains D and open regions YI.. 
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The proof of this theorem parallels that of Theorem 5 of Ch. 1. We show 
that, if x(t) and y(t) are both solutions of (2) and if they are equal for one value 
of t, say t = a, it follows that x(t) = y(t) in any domain in which a Lipschitz 
condition is satisfied. 

Consider the square of the n-dimensional distance between the two vectors 
x(t) and y(t). By definition, this is 

Differentiating u(t), and using the fact that x and y are solutions of the normal 
system (2), we get 

CT'(t) = 2 E [xk(t) - yk(t)] [Xk(x(t), t) - Xi.y(t), t)] 

= 2[x(t) - y(t)] • [X(x(t), t) - X(y(t), t)] 

By the Schwarz inequality, therefore, we have 

CT'(t) < I u'(t) I = 21 (x - y) • (X(x, t) - X(y, t)) I 
< 2lx - yl • IX(x, t) - X(y, t)I < 2Llx - yl 2 = 2Lu(t) 

By the result of Lemma 2 of Ch. 1, §10, it follows that ifx (a) = y(a), that is, if 
u(a) = 0, then u(t) = 0 [that is, I x(t) - y(t) I 2 = 0] for all t > a. 

A similar argument works fort< a: replacing t by -t, as in proving Theorem 
6 of Ch. 1, we obtain 

du 
-- < I u'(t) I < 2Lu(t) 
d(-t) 

again using the preceding inequality. 
We shall prove next that the solutions of a normal first-order system (2) 

depend continuously on their initial values. 

THEOREM 2 (CONTINUITY THEOREM). Let x(t) and y(t) be any two solutions 
of the vector DE (2), where X(x, t) is continuous and satisfies the Lipschitz condition 
(4). Then 

(5) lx(a + h) - y(a + h) I < eLlhl lx(a) - y(a) I 

Proof Replacing a + t by a - t, we can always reduce to the case h 2':: 0. 
Consider again u(t) = I x(t) - y(t) 12. As in the proof of Theorem 1, 

CT'(t) = 2[x(t) - y(t)] • [X(x(t), t) - X(y(t), t)] < 2Llx - yl 2 = 2Lu(t) 

Applying Lemma 2 of Ch. 1, §10 to u(t), we get u(a + h) < u(a)e2Lh. Taking the 
square root of both sides, we get the desired result. 
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From Theorem 2 we can easily infer the following important property of the 
solutions of the DE (2). 

COROLLARY. Let x(t, c) be the solution of the DE (2) satisfying the initial con
dition x(a, c) = c. Let the hypotheses of Theorem 2 be satisfied, and let the functions 
x(t, c) be de.fined for le - c0 1 <Kand It - al < T. Then: 
(a) x(t, c) is a continuous function of both variables: 
(b) if c - c0, then x(t, c) - x(t, c0) uniformly for It - a I < T. 

Both properties follow from the inequality (5). 
In view of the preceding results, it remains only to prove an existence theorem, 

in order to show that the initial value problem is well-set for normal first-order 
systems (1). This will be done in Theorems 6-8 later. 

EXERCISES A 
1. Show that u = x + y + z and v = x2 + y2 + z2 are integrals of the linear system 

dx/dt = y - z, dy/dt = z - x, dz/dt = x - y. Check that the solution curves are 
circles having the line (t, t, t) as the axis of symmetry. 

2. Reduce each of the following DEs to an equivalent first-order system, and determine 
in which domain or domains (e.g., entire plane, any bounded region, a half-plane, 
etc.) the resulting system satisfies a Lipschitz condition: 
(a) d3x/dt3 + x2 = 1 (b) d2x/dt2 = x- 112, (c) d3x/dt3 = [l + (d2x/del!)2] 112 

3. Reduce the following system to normal form, and determine in which domains a 
Lipschitz condition is satisfied: 

du dv - + - = u2 + v2 
dt dt ' 

2du 3dv -+- = 2uv 
dt dt 

4. Show that the vector-valued function (t + be"', -e"' /ab) satisfies the DE (2) with 
X = [l - (l/x2), l/(x1 - t)], for any nonzero constants a, b. 

5. State and prove a uniqueness theorem for the DE yn = F(x, y, y'), with FE l!' 1• [HINT: 
Reduce to a first-order system, and use Theorem 1.) 

6. (a) Show that any solution of the linear system dx/dt = y, dy/dt = z, dz/dt = x 
satisfies the vector DE d3x/dt3 = x, where x = (x, y, z). 

(b) Show that every solution of the preceding system can be written x = ea + 
e-112[b cos Y3t/2 + c sin Y3t/2], for suitable constant vectors a, b, and c. 

(c) Express a, b, and c in terms ofx(O), x'(O), and X 8 (0). 

7. Show that the general solution of the system dx/dt = x2/y, dy/dt = x/2 is 
x = l/(at + b)2, y = - l/[2a(at + b)]. 

8. Show that the curves defined parametrically as solutions of the system dx/dt = iJF/ 
ox, dy/dt = iJF/iJy, dz/dt = iJF/iJz are orthogonal to the surfaces F(x, y, z) = con
stant. What differentiability condition on F must be assumed to make this system 
satisfy a Lipschitz condition? 

9. (a) Find a system of first-order DEs satisfied by all curves orthogonal to the spheres 
x2 + y2 + z2 = 2ax - a2• 

(b) By integrating the preceding system, find the orthogonal trajectories in question. 
Describe the solution curves geometrically. 

10. (a) In what sense is the following statment inexact? "The general solution of the DE 
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cy" = (1 + y'2) 312 is the circle (x - a )2 + (y - b)2 = c2, where a and b are 
arbitrary constants." 

(b) Correct the preceding statement, distinguishing carefully between explicit, 
implicit, and multiple-valued functions. 

11. (a) Given x = a(t)x + b(t)y and j = c(t)x + d(t)y, prove that, if b =fa 0 

X - [ (a + d) + !] X + [ (ad - be) - a + 7] X = 0 

(b) Given that x + p(t)x + q(t)x = r(t), prove that, if q =fa 0, v = x satisfies 

ii + [ p - ; ] v + [ p + q - ~] v = r - riJ/ q 

12. For which values of a, fJ does the function xa/ satisfy a Lipschitz condition: (a) in 
the open square O < x, y < 1, (b) in the quadrant O < x, y < +oo, (c) in the part 
of the quadrant of (b) exterior to the square of (a)? 

13. For each of the following scalar-valued functions of a vector x and each of the fol
lowing domains, state whether a Lipschitz condition is satisfied or not: 
(a) X1 + X2 + · · · + Xn (b) X1X2 • • • Xn (c) y/(x2 + y2) (d) IX I in (i) 
lxl < I, (ii) -oo < xk < oo, (iii) -oo < x 1 < oo, Ix.I< 1, k ===: 2. 

14. Let X(x, t) = (X1 (x, t), ... , Xn(x, t)) be a one-parameter family of vector fields. Show 
that X satisfies a Lipschitz condition if and only if each scalar-valued component X, 
satisfies a Lipschitz condition, and relate the Lipschitz constant of X to those of the 
x,. 

4 CONTINUITY 

We shall now prove a much stronger continuity property of the solutions of 
systems of DEs, namely that the solutions of (2) vary continuously when the 
function X varies continuously. Loosely speaking, the solution of a DE depends 
continuously upon the DE for given initial values. 

THEOREM 3. Let x(t) and y(t) satisfy the DEs 

dx/dt = X(x, t) and dy/dt = Y(y, t) 

respectively, on a S t < b. Further, let the Junctions X and Y be defined and continuous 
in a common domain D, and let 

(6) I X(z, t) - Y(z, t) I S e, a< t < b, zED 

Finally, let X(x, t) satisfy the Lipschitz condition (4). Then 

(7) I x(t) - y(t) I < I x(a) - y(a) I eLlt-al + ~ [eLlt-al - 1] 
- L 

The function Y is not required to satisfy a Lipschitz condition. 
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Proof Consider the real-valued function u(t), defined for a < t < b by 

n 

u(t) = I x(t) - y(t) 12 = L [xk(t) - yit)] 2 

k=I 

From the last expression we see that u is differentiable. Its derivative can be 
written in the form 

u'(t) = 2[X(x(t), t) - Y(y(t), t)] • [x(t) - y(t)] 

= 2{[X(x(t), t) - X(y(t), t)] • [x(t) - y(t)]} 

+ 2{[X(y(t), t) - Y(y(t), t)] • [x(t) - y(t)]} 

We now apply the triangle inequality to the right side, and then the Schwarz 
inequality to each of the two terms of the last expression. This gives the 
inequality 

I u'(t) I < 2 I X(x(t), t) - X(y(t), t) I I x(t) - y(t) I 
+ 21 X(y(t), t) - Y(y(t), t) 11 x(t) - y(t) I 

To the first term on the right side we now apply the Lipschitz condition that X 
satisfies; to the second term, we apply (6). This gives the following differential 
inequality for u: 

(8) u'(t) < 2Lu(t) + 2E"VU{t} 

The theorem is now an immediate consequence of the following lemma. 

LEMMA. Let u(t) > 0, a < t < b be a differentiable Junction satisfying the dif
ferential inequality (8). Then 

2 

u(t) < [ Vu(aj eL(t-a) + 'i (eL(t-a) - 1)] ,. (9) a<t<b 

Proof We shall apply Theorem 7 of Ch. 1, §11, on differential inequalities 
to (8). The right side of (8), the function F(u, t) = 2Lu + 2EVu, satisfies a Lip
schitz condition in any half plane u > u0 that does not include the line u = 0. 
Therefore, Theorem 7 of Ch. 1 applies when u(a) > 0. For, if u(a) > 0, then 
the solution of the DE 

(9') du .r 
- = 2EVU + 2Lu, 
dt 

u>O 

which satisfies the initial condition u(a) = u(a), will have a nonnegative deriva
tive, and therefore will remain, for t > a, within the half-plane u > u(a). 

The DE (9') is a Bernoulli DE (Ch. 1, Ex. C7). To find the solution satisfying 
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u(a) = u(a), make the substitution v(t) = ....r;;{i}. (The square root is well-defined 
because u(t) > u(a) > 0.) This gives the equivalent DE 

2vv' = 2w + 2Lv2 

If u(a) > 0, it follows that u(t) > 0 for all later t, since the derivative of u is 
positive. This gives v(t) > 0, and so we can divide both sides of this DE by v. 
The resulting DE is v' - Lv = E, an inhomogeneous linear DE whose solution 
satisfying the initial condition v(a) = 'i:;;J;i, is the function 

....r;;{i) = v(t) = 'i:;;J;i, eL(t-a) + (E/L)(eL(t-a) - 1) 

On applying Theorem 7 of Ch. 1, we obtain the inequality (9). 
We must now consider the case u(a) = 0 when this theorem does not apply 

directly. In this case, we consider the solution un(t) of the differential equation 
(9') that satisfies the initial condition un(a) = l/n. Since the right side of (9') is 
positive, un(t) is an increasing function oft. We shall prove that un(t) > u(t). 
Suppose that at some point t1 > a we had un(t1) < u(t1). Then among all num
bers t with a < t < t1 such that un(t) > u(t) there would be a largest, say t0 . 

Hence, we would have un<to) = u(t
0

) > 0 and un(t) < u(t) for t
0 

< t < t
1

. But 
this is impossible by what we have already proved, since in the interval t0 < t < 
t1, the functions u(t) and u(t) stay away from 0. Therefore a Lipschitz condition 
is satisfied for (9'). We infer that 

for all n > 0. Letting n - oo, we obtain the inequality (9) also in this case. 

The following corollary follows immediately from Theorem 3. 

COROLLARY. Let X(x, t; E) be a set of continuous functions of x and t, defined 
in the domain D: I t - a I < T, Ix - c I < K for all sufficiently small values of a 
parameter E. Suppose that, as E - 0, the functions converge uniformly in D to a function 
X(x, t) that satisfies a Lipschitz condition. For each E > 0, let x(t, E) be a solution of 
dx/ dt = X(x, t; E) satisfying the initial condition x(a; E) = c. Then the x(t; E) converge 
to the solution of dx/dt = X(x, t) satisfying x(a) = c, uniformly in any closed sub
interval I t - a I < T1 < T where all functions are defined. 

EXERCISESB 

1. Let X and Y be as in Theorem 3, and let x(a) - y(a). Show that I x(t) - y(t) I/ It -
a I remains bounded as t ---+ a. 

2. Show that if I oF/iJy I :::5 L(x), then any two solutions of u' = F(x, u) and v' = F(x, v) 
satisfy I u(x) - v(x) I :::5 I u(O) - v(O) I ef L(x)dx. 

For the pairs of DEs in Exs. 3-5, bound the differences on [O, 1) between solutions hav
ing the same initial value y(O) = c. 

' Yn 
3. y' = e1 andy' = 1 + y + · · · + -. 

n! 
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d2(J d2(J 
4. - =-(}and-= -sinfJ. 

dt2 dt2 

x3y3 x5y5 xy2n+I 
5. y' = sinxy andy' = xy - 3! + 5! +···+(-It (2n + l)!' 

6. To what explicit formulas does formula (7) specialize for the system dx/dt = X(t)? 
For the DE dx/dt = bx + c? 

*7. Show that the conclusion of Theorem 3 holds if only a one-sided Lipschitz condition 
(x - y) • (X(x, t) - X(y, t)) :::5 LI x - y I 2 is assumed for X. 

8. Let X(x, t, s) be continuous for Ix - cl :::5 K, It - al :::5 T, and Is - sol :::5 S, and 
let it satisfy I X(x, t, s) - X(y, t, s) I :::5 LI x - y I- Show that the solution x(t, s) of x' 
= X(x, t, s) satisfying x(a, s) = c is a continuous function of s. 

*5 NORMAL SYSTEMS 

Many important mathematical problems have normal systems of DEs of order 
m > 1 as their natural formulation. We now give two examples and show how 
to reduce every normal system of ordinary DEs to a first-order system. 

DEFINITION. A normal system or ordinary DE's for the unknown functions 
~ 1 (t), ~2(t), ... , ~m(t) is any system of the form 

k = 1, ... , m, in which for each k only derivatives <1'~/df of any ~1 of orders 
p < n(j) occur on the right side. 

In other words, the requirement is that the derivative ~(k)~k/ dtn(k) of highest 
order of each ~k constitutes the left-hand side of one equation and occurs 
nowhere else. 

THEOREM 4. Every normal system (10) of ordinary DEs is equivalent to a first
order normal system (1) (with n > m). 

Proof Each function Fk appearing on the right side of (10) is a function of 
several real variables. To reduce the system (11) to the first-order form (1), it is 
convenient notationally to rewite n(i) as n,, and to define new variables x1, ... , 
xn, where 

n = n1 + ... + nm = n(l) + ... + n(m) 

by the formulas 

d~1 d2~1 ~1-l~I 

X1 = ~), X2 = dt • X3 = dt2 •' '' • Xn1 = dtn1-I' 

d~2 ~2-1~2 

Xni+I = ~2• Xn1+2 = dt • ' • • • Xni+n2 = dtni-1 



5 Normal Systems 181 

In terms of these new variables, the system (1) assumes the form 

It is clear that this system satisfies the requirements of the theorem. 
The initial value problem for the normal system (10) is the problem of finding 

a solution for which the variables 

assume given values at t = a. 
It is easily seen from the proof of Theorem 4 that, if the functions Fk, con

sidered as functions of the vector variables x = (x1, ... , x,J and t, satisfy Lip
schitz conditions, then so do the functions Xix, t) in the associated first-order 
systems (1). This gives the following corollary. 

COROLLARY. If the Junctions Fk of the normal system (l 0) satisfy Lipschitz con
ditions in a domain D, then the system has at most one solution in D satisfying given 
initial conditions. 

Example 2 (then-body problem). Let n mass points with masses m1 attract each 
other according to an inverse ath power law of attraction. Then, in suitable 
units, their position coordinates satisfy a normal system of 3n second-order dif
ferential equations of the form 

d2x; _ °'""' mj(XJ - x,) 
2 - L.., +I 

dt J+, rf1 

and the same is true for d2y;jdt2 and d2z,/dt2, where 

riJ = [(x; - x/ + (y; - y/ + (z, - z/] 112 = r1 ,. 

Then Theorem 1 asserts that the initial positions [x;(0), y,(0), z,(0)] and velocities 
(x:(0), y1(0), zH0)) of the mass points uniquely determine their subsequent motion 
(if any motion is possible). That is, the uniqueness theorem asserts the determi
nacy of the n-body problem. This theorem, taken with the continuity theorem, and 
Theorem 8 to follow, asserts that the n-body problem is well-posed, provided 
that there are no collisions. 

To see this, let f = (~1, ... , ~6n) be the vector with components defined as 
follows, for k = l, ... , n. 

~3n+k = X~, ~4n+k = y~, 
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In this notation, the system (10) is equivalent to a first order normal system of 
the form (1): 

h = l, ... , 3n 

h = 3n + l, ... ,6n 

where k(J) is the remainder of j when divided by n, and summation is extended 
to those n - l values of j such that (h - 1)/n and (j - 1)/n are distinct and 
have the same integral part. So long as no rh1 = 0, that is, so long as there are 
no collisions, a Lipschitz condition is evidently satisfied by the functions Fh. When 
one or more rh1 vanish, however, some of the functions Fh become singular (they 
are undefined) and Theorem 1 is inapplicable. 

Example 3. The Frenet-Serret Jormulast comprise the following normal system 
of first-order DEs: 

d{J 
-= 
ds 

a 'Y ---+--, 
R(s) T(s) 

d-y 
-= 
ds 

fJ 
T(s) 

where a, {J, and 'Y = a X fJ are three-dimensionalt vectors: the unit tangent, 
normal, and binormal vectors to a space curve. The curvature K(s) = l/R(s) and 
torsion r(s) = l/T(s) are functions of the arc lengths; a = dx/ds is the deriva
tive of vector position with respect to arc length. 

If we let 17(s) be the nine-dimensional vector (a1, a 2 , a 3 , {:31, (:32 , (:33 , 'Yi, 'Y2, -y3), 

the system can be written as the first-order vector DE 

d11/ds = Y(17; s) 

Here Y(11; s) is obtained by setting 

h = l, 2, 3 
h = 4, 5, 6 
h = 7,8,9 

If K(s) and r(s) are bounded, the vector fields Y(11; s) satisfy a Lipschitz condition 
( 4) with L = sup{ I K(s) I + I r(s) I}; hence, for given initial tangent direction a(0), 

normal direction {J(0) perpendicular to a(0), and binormal direction -y(0) = a(0) 
X {J(0), there is only one set of directions satisfying the Frenet-Serret formulas. 
This proves that a curve with nonvanishing curvature is determined up to a rigid 
motion by its curvature and torsion. tt 

t Widder, p. 101. 

ta X fJ denotes the cross product of the vectors a and {J. 

tt This theorem of differential geometry can fail when K(s) is zero, because fJ = x"(s)/1 x"(s) I is then 
geometrically undefined, so that the Frenet-Serret formulas do not necessarily hold. 
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EXERCISES C 

1. Find all solutions of the system 

d2x d2y 
-+-+x+y=0 
dt2 dt2 

2. Show that, if a,hJt = -akh" then~ x~ is an integral of the system 

3. The one-body problem is defined in space by the system 

x = - xf(r), y· = -yf(r), i = -zf(r), r2 = x2 + y2 + z2 

(a) Show that the components L = yi. - zy, M = zx - xi, and N = xy - yx of the 
angular momentum vector (L, M, N) are integrals of this system. 

(b) Show that any solution of the system lies in a plane Ax + By + Cz = 0. 
(c) Construct an energy integral for the system. 

4. Let a = 2 in then-body problem (Newton's law of gravitation), and define the poten
tial energy as V = - ~,<, m,mif r,r 
(a) Show that the n-body problem is defined by the system 

(b) Show that the total energy~ m,x~/2 + V(x) is an integral of the system. 
(c) Show that the components ~ m,x,, etc., of linear momentum are integrals. 
(d) Do the same as in (c) for the components ~ m,(y,i. - z:y,), etc., of angular 

momentum. 

5. Show that the general solution of the vector DE d3x/dt3 = dx/dt is a + be' + ce-1, 

where a, b, c are arbitrary vectors. 

Exercises 6-9 refer to the Frenet -Serret formulas. 

6. Show that, if a(s), {J(s) , 'Y(s) are orthogonal vectors of length one whens = 0, this is 
true for all s, provided they satisfy the Frenet-Serret formulas. 

7. Show that if 1 /T(s) == 0, and dx/ds = a, the curve x(s) lies in a plane. [HINT: Consider 
the dot product 'Y • x.] 

*8. Show that, if T = kR (k constant), the curve x(s) lies on a cylinder. 

*9. Show that, if R/T + (TR')' = 0, the curve x(s) lies on a sphere. 

6 EQUIVALENT INTEGRAL EQUATION 

We now establish the existence of a local solution of any normal first-order 
system of DEs for arbitrary initial values. To this end, it is convenient to reduce 
the given initial value problem to an equivalent integral equation. One reason 
why this restatement of the problem makes it easier to treat is that we do not 
have to deal with differentiable functions directly, but only with continuous 
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functions and their integrals. Every continuous function has an integral, 
whereas many continuous functions are not differentiable. 

THEOREM 5. Let X(x; t) be a continuous vector Junction of the variables x and 
t. Then any solution X(t) of the vector integral equation 

(11) x(t) = c + l' X(x(s), s) ds 

is a solution of the vector DE (2) that satisfies the initial condition x (a) = c, and 
conversely. 

The vector integral equation (11) is a system of integral equations for r 
unknown scalar functions x1 (t), ... , x,(t), the components of the vector function 
x(t). That is, 

xk(t) = ck + l' Xix 1 (s), x2(s), ... , x,(s), s) ds, l:Sk<r 

(In §§6-7, we will deal with r-dimensional vectors.) 

Proof If x(t) satisfies the integral equation (11), then x(a) = c and, by the 
Fundamental Theorem of the Calculus, x((t) = Xk(x(t); t) fork = 1, ... , r, so 
that x(t) also satisfies the system (2). Conversely, the Fundamental Theorem of 
the Calculus shows that xk(t) = xk(a) + J~ x((s) ds for all continuously differen
tiable functions x(t). If x(t) satisfies the normal system of DEs (2), then 
x(t) = x(a) + J~ X(x(s); s) ds; if, in addition, x(a) = c, the integral equation 
(11) is obtained, q.e.d. 

Example 4. Consider the DE dx/dt = ex for the initial condition x(O) = 0. 
Separating variables, we see that this initial-value problem has the (unique) solu
tion 1 - e-x = t, x = -ln (1 - t). Theorem 5 shows that it is equivalent to the 
integral equation x(t) = J~ e*> ds, which therefore has the same (unique) solu
tion. Since the solution is defined only in the interval -oo < t < 1, we see again 
that only a local existence theorem can be proved. 

Operator Interpretation. The problem of finding a solution to the integral 
equation (11) can be rephrased in terms of operators on vector-valued functions 
as follows. We define an operator y = U[x] = Ux, transforming vector-valued 
functions x into vector-valued functions y by the identity 

(12) y(t) = U[x(t)] = c + l' X(x(s), s) ds 

If X(x, t) is defined for all x in the slab I t - a I < T and is continuous, the 
domain of this operator can be taken to be the family of continuous vector func-
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tions defined in the interval I t - a I < T its range consists of all continuously 
differentiable vector-valued functions defined in this interval, satisfying y(a) = 
c. In this case, Theorem 5 has the following corollary. 

COROLLARY. The DE (2) has a solution satisfying x(a) = c if and only if the 
mapping U of (12) has a.fixpoint in lr[a, b]. 

However, if X(x, t) is not defined for all x, the domain of the operator Uhas 
to be determined with care. This will be done in Theorem 8 below. 

7 SUCCESSIVE APPROXIMATION 

Picard had the idea of iterating the integral operator U defined by (12), and 
proving that, for any initial trial function x0, the successive integral transforms 
(Picard approximations) 

x 1 = Ux0 , 

converge to a solution. This idea works under various sets of hypotheses; one 
such set is the following. 

THEOREM 6. Let the vector Junction X(x; t) be continuous and satisfy the Lip
schitz condition (4) on the interval It - a I < T for all x, y. Then, for any constant 
vector c, the vector DE x'(t) = X(x; t) has a solution de.fined on the interval It - a I 
< T, which satisfies the initial condition x(a) = c. 

Proof As remarked at the end of the preceding section, the operator U is 
defined by (12) for all functions x(t) continuous for It - a I < T. In particular, 
since Ux is again a continuous function of It - a I < T, the function x2 = U2[x] 
= U2x is well-defined. Similarly, the iterates U3x, U4x, etc., are well-defined. 
These iterates will always converge; a typical case is depicted in Figure 6.1. 

X 

1.0 

0.5 ..... --....... -
xoe l 

0.5 1.0 

Figure 6.1 Picard approximation for dx/dt = x, x(0) = 1/2. 
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LEMMA. If x°(t) = c, the sequence of Junctions defined recursively iJ,y x 1 = U[x0], 
x2 = U[x1] = U2[x0], ... , xn = U[xn-l] = if[x0], ... converges uniformly for 
lt-al<T. 

Proof. Let M = sup1t-a/;.T IX(c; t) I; the number Mis finite because contin
uous functions are bounded on a closed interval. Without loss of generality we 
can assume that a = 0 and t > a, that is, that the interval is O < t < T; the 
proof for general a and for t < a can be deduced from this case by the substi
tutions t -+ t + a and t -+ a - t. 

By the basic inequality (3) for vector-valued functions, the function x 1(t) sat
isfies the inequality 

I x 1 (t) - x0(t) I = Ii' X(x0(s), s) ds I 
(13) < i' jx(x0, s)lds <Mi' ds = Mt 

Again, by (3), the function x2 = U[x1] satisfies the inequality 

I x2(t) - x 1(t) I = Ii' [X(x1(s), s) - X(x0(s), s)] ds I 
< i' I X(x1(s), s) - X(x0(s), s) I ds 

We now use the assumption that the function X satisfies a Lipschitz condition 
with Lipschitz constant L. This gives, by (13), the inequality 

l , l' LM.t2 < Llx1(s) - x 0(s)I ds < L Ms ds = --
o O 2 

Similarly, for any n = 1, 2, 3, ... , 

lxn+l(t) - xn(t)I < i' IX(xn(s), s) - X(xn-l(s), s)I ds 

< L l' lxn(s) - xn-l(s) I ds 

We now proceed by induction. Assuming that 
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we infer that 

(14) 

Next, we show that the sequence of functions xn(t) (n = 0, 1, 2, ... ) is uni
formly convergent for O < t < T. Indeed, the infinite series 

of positive terms is convergent to (M/ L)(I'' - 1 ), and uniformly convergent for 
0 < t < T. Hence, by the Comparison Test,t the series x0(t) + Ek=o [xk+ 1(t) -
x"(t)] is uniformly convergent for O < t < T. The nth partial sum of this series 
is the function xn(t). It follows that the sequence of functions xn(t) is uniformly 
convergent. This completes the proof of the lemma. 

To complete the proof of Theorem 6, let x00(t) denote the limit function of 
the sequence xn(t); it suffices by Theorem 5 to show that x 00(t) is a solution of 
the integral equation (11). To this end, we consider the limit of the equations 
xn+ 1 = U[xn], namely the equations 

The left side converges uniformly, by the preceding lemma. By the Lipschitz 
condition, [X(xm(s), s) - X(xn(s), s) I < LI xm(s) - xn(s) I, and so the integrals on 
the right side also converge uniformly. It follows that they have a continuous 
limit X(x00(t); t).t Passing to the limit, we have 

This demonstrates (11) and completes the proof ~f Theorem 6. 

EXERCISESD 

In Exs. 1-5, solve the integral equations specified. 

1. u(t) = 1 + Jh su(s) ds 2. u(t) = 1 + Jh su2(s) ds 

3. u(t) + e' = Jh su(s) ds 4. u(t) = 1 - Jh u(s) tan s ds 

5. u(t) = Jh [u(s) + v(s)] ds v(t) = 1 - J8 u(s) ds 

t Courant andJohn, p. 535; see also Widder, p. 285. 

t Courant andJohn, p. 537; Widder, p. 304. 
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6. Show that the nth iterate for the solution of y' = yx such that y(0) = 1 is the sum 
of the first n + 1 terms of the power series expansion of e•212• 

For the initial value problems in Exs. 7-10, obtain an expression for the nth function of 
the sequence of Picard approximations xn = un[x0] to the exact solutions. 

7. dx/dt = x, x(0) = 1 9. dx/dt = tx, x(0) = 1 

8. dx/dt = y, dy/dt = -4x 10. dx/dt = ty, dy/dt = -tx 

x(0) = 0, y(0) = 1 x(0) = 0, y(0) = 1 

For the initial value problems of Exs. 11-13, compute the functions x1, x2, x3 of the 
sequences of Picard approximations. 

11. dx/dt = x2 + t2, x(0) = 0 

12. dx/dt = y2 + t2, dy/dt=x2 + t2, x(0) = y(0) = 0 

13. dx/dt = x(l - 2t), x(0) = 1 

*14. Show that, in Ex. 13, the sequence of Picard approximations converge for all t, but 
that this is not so in Ex. 11. In Ex. 13, is the convergence uniform? 

15. Let X(x, t) = Ax, where A is a constant matrix. Show that each component of the 
nth Picard approximation to any solution is a polynomial function of degree at 
most n. 

16. Establish the following inequalities for the sequence of Picard approximations: 

8 LINEAR SYSTEMS 

A first-order system of DEs (1) is said to be linear when it is of the form 

(15) 1 < i < n 

In this case, we have X;(x, t) = Ej. 1 aij(t)x1 + b,(t). In vector notation, the linear 
system (15) is written in the form 

(16) dx/dt = A(t)x + b(t) 

where A(t)x stands for the matrix llaij(t) II applied to the vector x, and b stands 
for the vector (b1, ... , bn). 

When b(t) = 0, the system (16) is said to be homogeneous. Otherwise, it is 
called inhomogeneous. The homogeneous system obtained from a given inho
mogeneous system (15) by setting the b1 equal to zero is called the reduced system 
associated with (15). 

A basic property of a linear system of DEs (16) is that the difference x - y 
of any two solutions of (16) is a solution of the reduced system. It can be imme
diately verified that any linear combination ax(t) + by(t) of solutions x(t) and 
y(t) of a homogeneous linear system is again a solution. 
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We shall now establish the existence of solutions of linear systems and 
describe the set of all solutions. 

LEMMA. Any linear system (15) with continuous coefficient functions on a closed 
interval I satisfies a Lipschitz condition (4) with 

(17) L ~ L sup la;/t)l 
. . IE/ 
'•l 

Proof. Since X(x, t) - X(y, t) is the vector sum of n2 vectors z,j, with ith 
component aj(x;j - yj) and other components zero, repeated use of the triangle 
inequality gives 

i,j i,1 

< L sup la;j(t)I • Ix - YI 
• • tel 1,J 

The functions a;p), being continuous on a closed interval, are bounded.t 
Hence, the Lipschitz constant L of (1 7) is finite. This completes the proof of the 
lemma. 

We can now state the existence theorem for linear systems. 

THEOREM 7. The initial value problem defined by a linear system (15), with the 
a,it) and b;(t) defined and continuous for It - a I < T, and the initial condition x(a) 
= c, has a unique solution on I t - a I < T. 

Proof. The preceding lemma shows that such a system satisfies the hypothesis 
of Theorem 6. This gives the existence of the solution. The uniqueness follows 
from Theorem 1, again by the preceding lemma. 

For homogeneous systems, we can construct a basis of solutions, as follows. 

COROLLARY 1. Let x;(t) be the solution of a homogeneous linear system dx/dt = 
A(t)x that satisfies the initial condition xi(a) = 0, i =f,. k, xi (a) = 1. Then the solution 
satisfying the initial condition x(a) = c = (c1, •.. , c,J is equal to the linear combi
nation x(t) = c1x1(t) + c2x 2(t) + · · · + cnxn(t). 

Proof. The vector-valued function y(t) = x(t) - EJ: 1 CJ,J(t) is a solution of 
the linear system, since it is a linear combination of solutions. This function 
satisfies the initial condition y(a) = (0, 0, ... , 0) because of the way in which 
the initial conditions for the solutions x' have been chosen. Since the identically 
zero function is also a solution of the linear system, it follows from the unique
ness in Theorem 7 that y(t) == 0, q.e.d.t 

t Courant and John, p. 101. 

t In algebraic terms, Corollary 1 states that the solutions of a homogeneous linear system of dimen
sion n form an n-dimensional vector space of functions. Therefore, any n + l solutions of such a 
system are always linearly dependent. 
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The reduction of an nth order normal DE to a first-order system sketched in 
in §1, when applied to a linear nth order DE in normal form 

transforms the DE into a homogeneous linear system dx/dt = A(t)x, where the 
matrix II a,it) 11 = A(t) is defined as follows: a,p) = 0 if 1 < i < n - l and 
j =fo i + l; a,,1+1(t) = 1 ifl < i < n - l; anit) = Pn-1+1(t). 

We therefore obtain the following result. 

COROLLARY 2. An nth order DE in normal form, with coeificients pp) contin
uous for It - a I < T, has a basis of solutions up) (1 < j < n) satisfying the initialt 
conditions uJ'>(O) =o;+1, 0 < i < n - l. 

More results about solutions of linear systems of DEs will be established in 
Appendix A. 

9 LOCAL EXISTENCE THEOREM 

In Theorem 6, it was assumed that X(x, t) was defined for all x and satisfied 
a Lipschitz condition (4) for all x. But often this is not the case. For instance, 
this assumption does not hold for the DE dx/dt = ex of Example 4. The ratio 

I X(x, t) - X(O, t) I 

Ix - 01 

is unbounded if the domain of ex is unrestricted.t 

X 

Correspondingly, the conclusion of Theorem 6 fails for this DE: the solution 
which takes the value cat t = 0 is the function x(t) = -ln (e-c - t), and this 
function is defined only in the interval -oo < t < e-c. Hence, there is no e > 0 
such that the DE dx/dt = ex has a solution defined on all of ltl < e for every 
initial value: the interval of definition of a solution changes with the initial value. 

To cover this situation, and also cases where the function X is defined only 
in a small region of (x 1, ... , xn)-space, we now prove a local existence theorem, 
whose assumptions and conclusions refer only to neighborhoods of a given 
point. 

THEOREM 8. Suppose that the Junction X(x, t) in (2) is de.fined and continuous 
in the closed domain I x - c I < K, I t - a I < T and satisfies a Lipschitz condition 

t a; is the Kronecker delta function: a; = 0 if i #,- j and 6J = 1. For the concept of a basis of solutions 
of nth order DEs, see Ch. 3, §4. 

t The same complications arise with the DE y' = 1 + y2. 
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(4) there. Let M = sup I X(x, t) I in this domain. Then the DE (2) has a unique solution 
satisfying x(a) = c and de.fined on the interval It - a I < min (T, K/M). 

Proof All steps in the proof of Theorem 6 can be carried out, provided we 
know that the functions xn(t) referred to there take their values within the 
domain D1: Ix - c I < K, It - a I < min (T, K/ M), in which x(t) is surely 
defined. In particular, note that since D1 C D, the bound Mand Lipschitz con
stant L of Theorem 6 can be used in D1• Therefore, the proof is a corollary of 
the following lemma. 

LEMMA. Under the hypotheses of Theorem 8, the operator Ude.fined by (12) carries 
Junctions x(t) satisfying the conditions: (i) x(t) is de.fined and continuous on It - a I 
< min (T, K/ M); (ii) x(a) = c; (iii) I x(t) - c I < Kon the interval It - a I < min 
(T, K/M), into Junctions satisfying the same conditions. 

Proof In (12), suppose that x(s) satisfies conditions (i), (ii), (iii). We must 
show that y(t) satisfies the same conditions. Oearly (i) and (ii) are satisfied by y(t). 
By the inequality (3) we have (taking again t > a for simplicity) 

I y(t) - c I = I l' X(x(s), s) ds I < l' I X(x(s), s) I ds 

If M is the maximum of X and if It - a I < K/ M, this gives 

MK 
I y(t) - CI < - = K 

M 

Therefore, (iii) is satisfied and y(t) is defined for It - a I < min (T, K/ M), com
pleting the proof. 

Using the reduction of § 1, taking an nth-order normal DE 

(18) u<n) = F(u, u', u", ... , u<n- 1>, t) 

into an equivalent first-order normal system (1), we obtain the following. 

COROLLARY. Let the Junction F (x1, x2, ... , xn, t) be continuous in the cylinder 
It - a I < T, Ix - c I < K. Let (x/ + x/ + · · · + x/ + E'2)112 < M, and let 
F satisfy a Lipschitz condition there. Then, on the interval It - a I < min (T, K/M), 
the DE (18) has one and only one solution that satisfies the initial conditions uh>(a) = 
C,+1' 0 < i < n - 1. 

*10 THE PEANO EXISTENCE THEOREM 

The existence theorems for normal systems (1) proved so far have assumed 
that the functions X, satisfy Lipschitz conditions. We shall now derive an exis-
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tence theorem, assuming only continuity. As shown in Ch. 1, solutions of such 
systems need not be uniquely determined by their initial values. 

THEOREM 9 (PEANO EXISTENCE THEOREM). If the function X(x, t) is con
tinuous for Ix - c I < K, It - a I ~ T, and if I X(x, t) I < M there, then the vector 
DE (2)has at least one solution x(t), defined for 

It - al < min (T, K/M) 

satisfying the initial condition x(a) = c. 

Proof Using an elegant method due to Tonelli, we shall consider the equiv
alent integral equation (11) of Theorem 5, 

(19) x(t) = c + l' X(x(s), s) ds 

and prove that this has a solution. Let T1 = min (T, K/M). We may assume that 
a = 0 and that the interval is 0 < t < T1• In this interval we construct a 
sequence of functions xn(t) as follows. For 0 < t < T1/n, set xn(t) = c. For 
T1/n < t < T1 define xn(t) by the formula 

(20) 

This formula defines the value of xn(t) in terms of the previous values of xn(s) 
for 0 < s < t - Tif n. 

It follows, as in the lemma of §9, that the functions xn(t) are defined for 0 < 
t < T1• Also, we have 

Hence, the sequence of functions I xn(t) I (n = 1, 2, ... ) is uniformly bounded. 
Next, we prove that the sequence xn is equicontinuous in the following sense. 

DEFINITION. A family CJ of vector-valued functions x(t), defined on an 
interval /: It - a I < T, is said to be equicontinuous when, given E > 0, a number 
o > 0 exists such that 

lt-sl<o implies I x(t) - x(s) I < E 

for all functions x E CJ, provided that s, t E /. 
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Indeed, using the inequality (3), we have 

from which it is evident that the xn(t) are equicontinuous. 

We now apply to the sequence xn the Theorem of Arzela-Ascoli, which is 
stated below without proof.t 

ARZELA-ASCOLI THEOREM. Let xn(t) (n = 1, 2, 3, ... ) be a bounded equi
continuous sequence of scalar or vector functions, defined for a < t < b. Then there 
exists a subsequence x0 '(t) (i = 1, 2, ... ) that is uniformly convergent in the interval. 

Applying this result to the sequence xn(t), we see that it must contain a uni
formly convergent subsequence xn'(t), converging to a continuous function x 00(t) 
as n, - oo. 

It is now easy to verify that this limit function x 00(t) satisfies the integral equa
tion (19). Indeed, (20) can be written in the form 

As n, - oo, f~ X(xn'(s), s) ds - f~ X(x00(s), s) ds because X(x, t) is uniformly 
continuous; and the last term of (21) tends to zero, because, by the inequality 
(3) 

1ft I f' T1 Xds < Mds=M--0 
t-T1/n, t-T1/n, n; 

Therefore, taking limits on both sides of (21) as n; - oo, we find that x00 satisfies 
the integral equation (19), q.e.d. 

*11 ANALYTIC EQUATIONS 

We shall now consider the vector DE (2) under the assumption that X (x, t) 
is an analytic function of all variables Xi, .•. , x0 , t. The essential principle to be 
established is that all solutions of analytic DEs are analytic functions. :t 

The result is true whether the variables are real or complex; we shall first 
consider the complex case. To emphasize that we are dealing with complex vari-

t Rudin, p. 164 ff. The proof given there is for real-valued functions, but the method applies to 
vector-valued functions. 

t This section requires a knowledge of elementary complex function theory such as is found in the 
books by Hille (Vol. 1) and Ahlfors. 
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ables, we rewrite the vector DE (2) as 

(22) dz/dt = 'l!(t) = Z(z,t), t=r+is 

where z1 = x1 + iy1 and Z1 = JS + i½ are complex-valued functions. 
We assume that the Zizi, ... , z,,, t) are analytic functions of the variables zi, 

z2, ... , zn and t in the closed cylindrical domain C: I t - a I < T, I z - c I < K, 
with maximum M there. By the lemma of §2, this implies that a Lipschitz con
dition holds in C, for some constant L. 

Vector notation can be adapted to complex vectors with the following 
changes. The length (or norm) of a vector z = (zi, z2, ... , Zn) with complex 
components zk is defined as 

The Hermitian inner product of two complex vectors z and 

is defined as 

Note that z • w = (w • z)*: the dot product operation is not commutative for 
complex vectors. (The set of complex n-vectors with the above inner product is 
called a unitary space.) 

Now let 'Y be any path in the complex t-plane, defined parametrically by the 
equation t = t(u) = r(u) + is(u), where r, s E ~ 1 and u is a real parameter. On 
the path 'Y, (22) is equivalent to the system of real DEs 

(22') x'(u) = X(x, y, u)r'(u) - Y(x, y, u)s'(u) 

y'(u) = X(x, y, u)s'(u) + Y(x, y, u)r'(u) 

Theorems 1 through 8 apply to this system, which satisfies a Lipschitz condition. 
Using the complex vector notation described before, we can also prove ana

logs of these theorems directly, since the DE z'(u) = Z(z, t(u))t'(u) is equivalent 
to (22'), and hence to (22), on the path 'Y· 

The analog of the operator U of formula (12) is the operator W, defined by 
the line integral 

(23) w(t) = W[z(t)] = C + l' Z(z(!), n df 

Since each component function Z1 is analytic, the line integral defining the 
operator Wis independent of the path from O to t in the complex t-plane, pro-
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vided that this path stays within the domain C where the function Z is defined.t 
By Morera's theorem, the function w is therefore also analytic, in the sense that 
each component wiz) is. Thus, the operator W transforms analytic functions 
into analytic functions. Moreover, the lemma of §9 still holds, because the inte
grals in (23) can be taken along straight line segments in the complex f-plane. 
This gives the following lemma. 

LEMMA. For It - a I < min (T, K/M), the operator W de.fined by (23) takes anal
ytic complex-valued vector Junctions z(t) with I z(t)- c I < K into analytic vector func
tions w(t) with I w(t)- c I < K. 

By repeated applications of this lemma, it follows that the functions Wn[w0] 

= wn(t) defined by the Picard process of iterated quadrature, in the domain 
It - a I < min (T, K/M) of the complex t-plane, are all analytic. 

We now apply the following resultt from function theory. 

Weierstrass Convergence Theorem. If a sequence {f,.(t)} of complex ana
lytic functions converges uniformly to f(t) in a domain D of the complex t-plane, 
the j(t) is analytic in D. 

By this theorem, the sequence of functions wn(t) converges uniformly for 
It - a I < min (T, K/M) to an analytic solution w00(t) of the integral equation 

(24) z(t) = C + l' Z(z(n, n df = W[z(t)] 

and hence of the complex DE (22). Applying the Existence Theorem of §8 for 
real DEs to the system (22'), we infer the next theorem. 

THEOREM 10. In Theorem 8, replace the real variables t, x1, JS with complex 
variables t, z;, ½. Under the same hypotheses, if the ½(z, t) are complex analytic Junc
tions, the vector DE (22) has a unique complex analytic solution z(t) for given initial 
conditions. 

From this result and the uniqueness theorem, again for real DEs, we obtain 
the following corollary. 

COROLLARY 1. Let Z(z, t) be analytic in any simply-connected domain of z, t
space, and let z (t) be any solution of the DE (22). Then z(t) is analytic.tt 

t This is true because the disk It - a I :$ T where Z is defined is simply connected. 

i Ahlfors, p. 173. The result contrasts sharply with the case of functions of a real variable. By the 
Weierstrass approximation theorem, every continuous function on a real interval a 5 x 5 b is a 
uniform limit of polynomial (hence analytic) functions. 

tt An alternative proof can be based directly on (22). If the zit) satisfy (22), they are continuously 
differentiable. Hence, they are analytic (Ahlfors, pp. 24, 105; Hille, Vol. I, pp. 72, 88). 
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Real Analytic DEs. A real function X(x, t) of real variables X1, ..• , xn and 
tis said to be analytic at (c, a) when it can be expanded into a power series with 
real coefficients in the variables (xk - ck) and (t - a), convergent in the cylinder 
Ix - c I < 7/, It - a I < E, for sufficiently small positive 7/ and E. When X(x, t) 
is analytic, its power series is convergent also in the complex cylinder I z - c I < 
7/, It - a I < E (t complex), and defines a complex-valued analytic function there. 

Now, let a normal system of real DEs (1) be given, the ~(x, t) being analytic. 
From Theorem 10, it follows that the resulting complex DE dx/dt = X(x, t) has 
a unique complex analytic solution for given real initial values. On the other 
hand, it also has a unique (local) real solution by Theorems 1 and 8. Hence the 
two solutions must coincide, proving Corollary 2. 

COROLLARY 2. If X(x, t) is an analytic real .function of the real variables 
X1, ••. , xn and t, then every solution of (1) is analytic. 

EXERCISESE 

1. (a) Obtain an equivalent first-order system for d2x/dt2 = t2x. Find the nth term of 
the Picard sequence of iterates for the initial values x(0) = 1, x'(0) = 0. 

(b) Prove that this initial-value problem has one and only one solution on (-oo, 
oo). 

2. (a) Obtain an equivalent first-order system for the DE d2x/dt2 = x2 + t2, and find 
the Lipschitz constant for the resulting system in the domain It I ::S A, Ix I ::S B, 
I x'I ::s c. 

(b) State and prove a local existence theorem for solutions of this DE, for the initial 
conditions x(0) = b, x'(0) = c. Estimate the largest T, U such that a solution is 
defined on - U ::S t ::S T. 

3. Show that, if F(y) is continuous for ly I ::S K, and I F(y) I ::S M, every solution of y' = 
F(y) can be uniformly approximated arbitrarily closely for Ix I ::S K/M by a solution 
of a DE y' = P(y), where Pis a polynomial. 

4. Compute the nth Picard approximation to the solution of the complex system dw/dt 
= iz, dz/dt = w, which satisfies the initial conditions w(0) = 1, z(0) = i. 

5. In the complex t-plane, determine a domain in which the system dw/dt = tz2, dz/dt 
= tw2 has an analytic solution satisfying given initial conditions w(0) = Wo, z(0) = z0• 

6. Show that the solution of the complex analytic DE 

(lzl < K> 

which satisfies the initial condition w(0) = 0, is the function 

[ )
n/(n-1) ] 

w(z) = K ( 1 + ; - 1 , 
2 1/nKx 

c= 
(n - l)M 

*7 .. Using the result of Ex. 6, show that the bound given by Theorem 8 for the domain 
of existence of a solution is "best possible" for analytic functions of a complex 
variable. 
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*12 CONTINUATION OF SOLUTIONS 

Even when the functiont X(x, t) is of class <§11 and is defined for all x and t, 
Theorem 8 establishes the existence of solutions only in the neighborhood of a 
given initial value. In other words, it establishes only the local existence of solu
tions. We shall now study how such local solutions can be joined together to give 
a global solution defined up to the boundary of the domain of definition of the 
function X. 

THEOREM 11. Let X(x, t) be de.fined and of class &1 in an open region fl of (x, 
t) -space. For any point (c, a) in the region fl, the DE (2) has a unique solution x(t) 
satisfying the initial condition x(a) = c and de.fined for an interval a < t < b (b < 
oo) such that, if b < oo, either x(t) approaches the boundary of the region, or x(t) is 
unbounded as t--+ b. 

Proof. Consider the set S of all local solutions of the system (2) that satisfy 
the given initial condition x(a) = c. These are defined on intervals of varying 
lengths of the form [a, 1). Given two solutions x and yin this set, defined on 
intervals I and I' respectively, the function z, defined to be equal to x or toy 
wherever either is defined, and hence also where both are defined, is also a solu
tion defined on their union I U I'. 

We now construct a single solution x, called the maximal solution, defined on 
the union of all the intervals in which some local solution is defined, by letting 
x(t) be equal to the value of any of the solutions of S defined at the point t. This 
maximal solution x(t) is a well-defined function of class <§11, by the Uniqueness 
Theorem. Furthermore, the interval of definition of this solution is the union 
of all the intervals of definition and, therefore, is itself an interval of the form 
a< t < b. 

Consider the limiting behavior of x(t), as t t b. By the Bolzano-Weierstrass 
Theorem,t any infinite bounded set of points (x(t,J, t,J in xt-space must contain 
a limit point. Hence either b = +oo, or lim,tb lx(t)I = +oo, or at least one 
finite point (d, b) is approached by at least one sequence of points [x(tn), tn] on 
the above solution curve. In the first case, t is unbounded. In the second case, 
x(t) is unbounded and the maximal solution may be said to "recede to infinity." 

It remains to consider the third case. A typical example is provided by choos
ing the region 1l, as the left half-plane t < 0 and x'(t) = r 2 cos t- 1, with general 
solution x = C - sin r 1• 

We shall now prove that, in the third case above, every limit point (d, b) on 
t = b of the maximal solution curve must lie on the boundary of 11,. Indeed, 
suppose that it is in the interior; there would then exist a closed neighborhood 

t In this section we consider only real vectors and functions. The results can, however, be extended 
to complex-valued and analytic functions, by methods similar to those used in § I. The continuation 
so defined is then the analytic continuation in the sense of complex function theory, by Theorem 9 
(cf. Ch. 9, § 1). 

i Cf. Courant, Vol. 2, pp. 95 ff., where the Bolzano--Weierstrass Theorem is proved in Rn. 
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D: Ix - di < E, It - bl < E of (d, b) also in :R. Let M = maxn IXI. Take 
o < min (E, E/2M), and let G C D be the open rectangle Ix - d I < E, 
It - b I < o. Finally, choose k so that [x(t,J, tk] E G. Then, applying Theorem 8 
(in G) to the solution through [x(t,J, tk], we see that it stays in G until t = b. Since 
this is true for any E > 0, limt---i,X(t) = d. Hence, x(t) would have to coincide with 
the unique (by Theorem 1) local solution of (2) through (d, b). Therefore, x(t) 
would not be maximal, a contradiction. 

The maximum length b - a of definition of the solution x is called the escape 
time of the solution for t > a. There is a similar notion of the escape time for t 
<a. 

A solution with a finite escape time is one for which I x(t) I becomes 
unbounded or reaches the boundary of :R as t - b < oo. On the other hand, a 
solution with an infinite escape time is one that remains within the domain of 
definition of X for all t > a. For example, every solution of the DE dx/dt = x 
has infinite escape time, whereas every nonzero solution of the DE dx/dt = x2, 

namely every function x = l/(c - t), has finite escape time. 

*13 THE PERTURBATION EQUATION 

It is easy to derive a formula for the dependence on c of the solution x = f(t, 
c) of the initial-value problem defined by the system x'(t) = X(x, t) and the initial 
condition x(a) = c. For simplicity, consider first the case n = l of a single first
order DE. Assuming thatf(t, c) is analytic, that is, thatfhas a convergent Taylor 
series expansion, we have 

(25) 
o (of) o (of) o - - = - - = -[X(f(t, c), t)] ot oc oc_ ot oc 

= [ !:(f(t, c), t)] • [Z(t, c)] 

When we expand around c = 0, this gives formally 

(26) 

where, by (25), f 1 (t) = of/oc(t, 0) satisfies the linear perturbation equation 

(27) 

Hence, if we know f 0(t), we can compute f 1 (t) in closed form by quadrature (Ch. 
1). Illustrations of this "perturbation method" are given in Exs. F5 and F6 
below. 

As simple examples show (see Exs. F7-Fl0 below), the approximate solutions 
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obtained by linear perturbation are accurate near stable exact solutions of initial 
value problems, but they can be misleading near unstable solutions. 

We now drop the assumption that Xis a one-dimensional vector, as well as 
the assumption that the solution has a convergent Taylor expansion, and we 
derive analogous results. We show that the solutions of a normal first-order sys
tem (1) depend differentiably on the initial values, thus proving (at long last!) 
that the solution curves of any normal first-order DE or system form a normal 
curve family. 

THEOREM 12. Let the vector Junction X be of class &1, and let x(t, c) be the 
solution of the normal system (2), taking the initial value c at t = a. Then x(t, c) is a 
continuously differentiable Junction of each of the components c1 of c. 

The proof is subdivided into three steps. 
A. Consider the system of DEs for the unknown functions h,, the components 

of the vector h = (h 1, • . • , h,J: 

(28) dh, = ~ aX,(x(t, c), t) h + H (h ) 
dt L., a k ' ' t, C, 111 

1.-1 x,, 

where x(t, c) is the solution of the normal system (2) for which x(t, a) = c. We 
assume that the functions H; are bounded for I t - a I < T and I h - 81 I < 
K, where 81 is the vector whose components are the Kronecker deltas o{. We also 
assume that H, tends to zero as 111 - 0, uniformly for It - a I < T and 
I h - o1 I < K. We define hj = h(t, c, 11) as the solution of (28) that satisfied the 
initial condition h/(a) = o{. Applying the Corollary of Theorem 3, with E = 111' 
we find that h1 tends, as 111 - 0, to the solutionf1 of the linear system 

(29) df, = t ax,(x(t,c), t) . f, 
dt k•I axk ' 

satisfying the same initial conditions, namely,J; (a) = iv,. 
In addition, we infer from the same Corollary that the vector functions hi 

remain bounded as 111 - 0. 
B. Set 

We next find a differential equation satisfied by the vector partial difference 
gl = (g11, g,j, · · · , gi), 

By definition, 

dg{(t, c, 11) _ -I 1 dt - 111 [X,(x(t, c) + 77jg (t, c), t) - X,(t,x(t, c))] 
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We now use the assumption that X, is <§1 1. By Taylor's theorem for functions of 
several variables, we infer that the right side equals 

where E; is a function of t, c, and 11j that tends to zero as 71j --+ 0, uniformly as 
the variables t and c range over closed intervals. Setting H;(h, t, c, 11) = E, I h(t, 
c) I, we find that the vector function gi is a solution gi = h of a system (28). The 
function H satisfies the conditions stated under Step A. 

C. The initial conditions satisfied by the g; are, by definition, 

if i =f,. j 

if i = j 

Combining: with the results of steJ>S A and B, we conclude that, as 71j --+ 0, the 
function g1 tends to the solution h1 of (25') satisfying the same initial condition. 
But we know that 

lim g1(t, C, 11) = ax(t, c)/acj 
n1-0 

We have, therefore, shown that the derivative ax;ac1 exists and is indeed a solu
tion of (29), q.e.d. 

The linear DE (27) is called the perturbation equation or variational equation of 
the normal system (2), because it describes approximately the perturbation of 
the solution caused by a small perturbation of the initial conditions. 

In the course of the preceding argument we have also proved the following 
result. 

COROLLARY. Ifx(t, c) is a solution of the normal system (2) satisfying the initial 
condition x(a) = c for each c, and if each component of the Junction X is of class &1, 

then for each j the partial derivative ax(t, c)/ac1 is a solution of the perturbation equa
tion (28) of the system. 

In the case of linear systems dx/dt = A(t)x + b(t), the perturbation equation 
is the reduced equation dh/dt = A(t)h of the given system and is the same for 
all solutions. But in nonlinear systems, the perturbation equations (27) and (28) 
depend on the particular solution x(t, c) whose initial value is being varied. 
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Plane Autonomous Systems. We now apply the preceding results to the 
trajectories of autonomous systems. The main result is that, near any noncritical 
point, the trajectories of an autonomous system look like a regular family of 
parallel straight lines. We give the proof for the case n = 2. Recall that a plane 
autonomous system is one of the form 

(30) 
dx 
- = X(xy) 
dt ' ' 

it = Y(x,y) 

THEOREM 13. Any plane autonomous system where X and Y are of class &1 is 
equivalent under a diffeomorphism, in some neighborhood of any point that is not a 
critical point, to the system du/dt = I, dv/dt = 0. 

Proof Let the point be (a, b); without loss of generality, we may assume that 
X(a, b) 'F 0. Let the solution of the system for the initial values x(0) = a, y(0) = 
c be x = ~(t, c), y = 11(t, c), so that a~/at = X, a11/at = Y. Then by Theorem 12, 
the transformation (t, c) 1--+ (Ut, c), 11(t, c)) is of class 61 1. Moreover, since x(0) does 
not vary with c, the Jacobian 

a(~. 11> a~ a,,, a~ a,,, 
-- = - • - - - • - = X(a, b) • 1 - 0 • Y(a, b) = X(a, b) 
a(t, c) at ac ac at 

is nonvanishing at (a, b). Hence, by the Implicit Function Theorem, the inverse 
transformation u = t(x, y), v = c(x, y) is of class 61 1. In the (u, v)-coordinates, 
the solutions reduce to u = t, v = c = constant; hence, the DE assumes the 
form stated, q.e.d. 

COROLLARY 1. Any two plane autonomous systems are locally equivalent under 
a diffeomorphism, except near critical points. 

The system u = 1, ti = 0 is, therefore, locally a canonical form for plane 
autonomous systems near noncritical points. In hydrodynamics, the velocity 
field associated with this system is called a uniform flow. 

COROLLARY 2. If the Junctions X and Y of the plane autonomous system (30) 
satisfy local Lipschitz conditions, then its integral curves form a regular curve family 
in any domain that contains no critical points. 

Proof By Theorem 1, there is a unique integral curve of (26) passing through 
each point c, not a critical point. As shown in §12, each such integral curve goes 
all the way to the boundary. Finally, since Lipschitz conditions imply continuity, 
the directions of the vectors (X(x, y), Y(x, y)) vary continuously with position, 
except near a critical point, which completes the proof. 

EXERCISESF 
1. Let F(x, y) be continuous for Ix - al .:5 T, ly - cl .:5 K. Show that the set of all 

solutions of y' = F(x,y), satisfying the same initial condition /(a) = c, is 
equicontinuous. 
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2. Show that, if X(x, t) is continuous and satisfies a Lipschitz condition for a ::5 t ::5 b, 
every solution of the DE (2) satisfying x(a) = c is bounded for a ::5 t ::5 b. Show that 
the corresponding result is not true for open intervals a < t < b. 

3. Let xX(x,y) + y3Y(x,y) = 0, where X and Yare of class 61 1. Show that the system x' 
= X(x,y), y' = Y(x,y) has infinite escape time. [HINT: Show that 2x2 + y4 is an integral 
of the system.] 

4. Let the function X(x, t) be defined for 0 :::5 t < oo and for all x, and let 

I X(x, t) - X(y, t) I :::5 L(t) Ix - y I 
where Jo L(t) dt < oo. Show that the DE dx/dt = X(x, t) has a solution on 0 :::5 t < 
+ oo for every initial condition x(a) = c. Show that, if one solution is bounded, then 
all are. 

5. Let X(x, t, s) be of class 61 1 for Ix - c I :::5 K, It - a I :::5 T, Is - s0 I :::5 S. Let x(t, s) 
be the solution of x' = X(x, t, s) satisfying x(a) = c. Show that x is a differentiable 
function of s. 

*6. Under the assumptions of Ex. 5, suppose that X(x, t, s) is of class &n. Show that 
x(t, s) has n continuous partial derivatives relative to s. 

*7. Show that if there are two distinct solutionsJand g of y' = F(x, y) satisfying the same 
initial condition c = fia) = g(a) (F continuous in Ix - a I :::5 T, ly - cl :::5 K), there 
are infinitely many of them. 

*8. Show that there is a maximal and a minimal solution JM(x) and Jm(x) of the DE in Ex. 
7, such that Jm(x) :::5 fix) :::5 JM(x) for any other solution J such that fia) = JM(a) = 
Jm(a). [HINT: See Ch. 1, Ex. F4.] 

*9. Let F(x, y) and G(x, y) be continuous for a ::5 x ::5 T, ly - cl :::5 K, and F(x, y) ::5 G(x, 
y). LetJbe a solution of y' = F(x, y), and let g be the maximal solution of y' = G(x, 
y). Show that, if ft.a) :::5 g(a), then fix) :::5 g(x) for x > a. 

ADDITIONAL EXERCISES 

*1. Let dx/dt = X(x, y, t) and dy/dt = Y(x, y, t), where 

(x - x')[X(x, y, t) - X(x', y', t)] + (y - y')[Y(x, y, t) - Y(x', y', t)] 

is everywhere negative or zero. Show that, fort> 0, the above system has at most 
one solution satisfying a given initial condition at t = 0. 

In Exs. 2-4, Ji means the right-derivative; prove the implication specified. You may 
assume the existence of Ji and gi freely. 

2. If Ji (x) :::5 gi (x), then fix) - fly) :::5 g(x) - g(y) for x 2:: y. 

3. If IJHx) I :::5 Klfl.x) I then lfix) I :::5 lfia) I eKlx-al for x 2:: a. 

4. If IJHx) I :::5 Klfix) I + E, then lfl.x) I :::5 lfia) I eKlx-ai + (EjK)(eKlr-al - l). 

5. Let dz/dt = Q,(z1, •.. , z,;), where the Q, are quadratic polynomials. Show that, 
for any initial condition, the nth Picard approximation to the solution is a polyno
mial in t of degree at most 2n - 1. 

6. (a) Prove that, if there is a normal kth-order ordinary DE satisfied by two functions 
u and v and if n > k, there is a normal nth-order DE satisfied by both functions. 
State your differentiability assumptions. 

(b) Prove that, if the given kth-order DE is linear, then the nth-order DE can also 
be chosen to be linear. 
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(c) Prove that there is no fourth-order normal DE u'v = F(u, u', u", u"', t) satisfied 
by both u = t4 and v = t6 for all real t. 

(d) Prove that u = t6 satisfies no normal linear homogeneous DE of order six or 
less with continuous coefficients. 

7. Show that, if X1, ... , Xn satisfy Lipschitz conditions on a compact domain, so does 
any polynomial function of the X,. 

8. Show that, if X(t) = //x!J(t)/1 is a matrix whose columns are solutions of the homo
geneous linear system X' = A(t)X, then det X(t) = [det X(a)] exp J! I: akk(s) ds. 

9. A matrix X(t) is a fundamental matrix for a :::5 t :5 a + Tof a homogeneous linear 
system X' = A(t)X if its columns are solutions of the system and det (X(t)) =fa 0. Show 
that, if the columns of X are solutions of the system and if det X(a) =fa 0, then Xis 
a fundamental matrix. 

*10. Show that, if X(t) is a fundamental matrix of the reduced linear system, the function 
x(t) = X(t) J!x- 1 (s)b(s) ds is the solution of the inhomogeneous system such that x(a) 
= 0 (X- 1 is the matrix inverse of X). 



CHAPTER 7 

APPROXIMATE 
SOLUTIONS 

1 INTRODUCTION 

During the past 40 years, the accurate numerical solution of initial value 
problems for ordinary DEs has become routine, because of the availability of 
high-speed programmable computers. Even fairly large systems of DEs can be 
treated similarly in many cases, although "stiff" systems involving time scales of 
different orders of magnitude can be troublesome. 

This development has not only made the study of classical numerical methods 
(e.g., Runge-Kutta methods) more important, as practical substitutes for 
involved analytical considerations, it has also increased interest in numerical 
mathematics from a theoretical standpoint. In particular, the power series methods 
explained in Chapter 4, together with techniques of numerical linear algebra, 
have provided the basis for a new field of research. 

Because of this changed emphasis, a few simple numerical methods for solv
ing DEs were already described in Chapter 1, §8. In this chapter and the next, 
we will treat the numerical solution of ordinary DEs and systems of DEs more 
carefully. This chapter will concentrate on the underlying ideas, while the effec
tive technical implementation of these ideas will be the subject of Chapter 8. 

Since these ideas are applicable to systems of first-order DEs, we will adopt 
throughout Chapters 7 and 8 the vector notation introduced in Chapter 5. 
Thus, we will consider vector DEs of the form 

(1) x'(t) = X(x, t), 

However, since writing and "debugging" computer programs for systems of 
DEs can be very time-consuming, most students will probably find it more satis
factory to interpret all statements and formulas in the conceptually simpler 
context of y' = F(x,y), the case of a single ordinary first-order DE discussed in 
Chapter 1. 

The basic idea involved, that one can use simple arithmetic to compute 
approximate solutions of DEs, is a very natural one. Indeed, the simple methods 
to be analyzed in this chapter were mostly known to Euler. However, their rig
orous error analysis is more recent, having achieved a definitive form only 
around 1900. 
204 
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Approximate Function Tables. The most effective methods for obtaining 
approximate solutions of DEs compute in each case [i.e., for each DE (1) and 
initial value x(a) = c] an approximate function table. Given any partition 

(2) 

of an interval [a, a + TJ of interest by a sequence of mesh points t,,, it produces 
a sequence of approximate values X,r(t,J, nearly equal to the "true" values x(t,J of 
the exact solution, whose existence and uniqueness was proved in Chapter 6. 

The difference e1r(tk) = X1r(tk) - x(t,,) is the error (or "discretization error") of 
the method, and this chapter will be mainly concerned with the error analysis of 
the methods discussed. 

2 ERROR BOUNDS 

Cauchy Polygon Method. The simplest way to construct an approximate 
function table for the solution of the DE (1) satisfying the initial condition 
x(a) = c, on a given set of mesh points t,,, is the Euler method of Ch. 1, §8. This 
constructs from x0 = x(a) = c the sequence of values 

(3) Xo = C, k = l, ... , m' 

This formula is recursive; each value xk can be computed knowing xk- I alone. 
From the approximate function table just defined, one can also construct an 

approximate solution by linear interpolation. This approximate solution is defined 
by the formula 

(3') on 

Evidently, the graph of the approximate solution (3') consists of m segments of 
straight lines; it is a polygon in the (n + 1)-dimensional (t, x)-space. The function 
defined by (3) and (3') for each partition 1r and initial value c is called the Cauchy 
polygon approximation to the solution, for that partition.t 

Example 1. When the DE (1) is of the special form x' = J(t), the preceding 
method reduces to the Riemann sum formula of Ch. 1, (5'): 

(4) t0 = a, 

where the symbol = is to be read "is approximately equal to." The proof of 
convergence to the exact solution, in this case, is the essence of Riemann's the
ory of integration. 

t It was Cauchy who first proved their convergence to exact solutions, though Euler had used "Cau
chy polygons" a century earlier. 
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Figure 7.1 Cauchy polygons for dx/dt = x, x(0) = 1/2. 

An error bound for the Euler-Cauchy polygon approximation can be derived 
in any closed bounded domain D, for any vector DE (1) whose right-hand side 
X(x,t) is continuous and satisfies a Lipschitz condition 

(5) IX(x,t) - X(y,t) I ~ Llx - YI 

This bound also depends on the norm of the partition 1r, 

(5') I 1r I = max(dt1, .•• , dt,,J = max (tk - tk- 1) 
k•I, ... ,m 

and on the maximum M of I X(x,t I in D. As the following theorem states, this 
bound is roughly proportional to L, I 1r I , M, and the length T = t - a of the 
interval of integration. 

THEOREM I. Let Xe &1 satisfy IX I ~ M, I ax;at I ~ C, and (5) in the cylinder 
a ~ t ~ a + T, Ix - c I ~ MT. Then the Cauchy polygon approximation X,r(t) 
differs from the true solution x(t) by at most 

(6) 

The proof of Theorem 1 will be presented and its significance explained in 
§3. Here we emphasize that the inequality (6) only provides an upper bound to 
the error. Because I 1r I is multiplied by a bounded factor, Theorem 1 asserts that 
the error is 0( I 1r I); hence it is O(h) in the case of a uniform mesh with constant 
step size dtk = h. 
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However, as examples described in Exercises A show, the magnitude of the 
true error may be very much smaller than the bound (6). Therefore, in most 
practical computation, one relies on less general formulas. The basic fact is that, 
in the important case tk = a + kh of a uniform mesh with mesh length h, the 
error committed in using the Euler-Cauchy polygon approximation is usually 
nearly proportional to h; see Figure 7 .1. 

Example 2. Consider the DE y' = yon [0,1], for the initial value y(O) = 1. 
The exact solution is eX, with final value e = 2. 71828182853 • • • . 

As was stated in Ex. E8 of Ch. 1, the final value of x,..(l) computed by Euler's 
method, 

(*) (n - l)h2 (n) h3 
e = (1 + ht = l + nh + n ...;.__ _ _;__ + - + · · · 

n 2 h 3! 

is asymptotically e - (h - f½h2 + · · · ) e/2. This fact can also be deduced 
from formula(*) (cf. Ex. A2 below). 

Note that, in Examples 1 and 2, the error made in each individual step is only 
O(h2). Since the number of steps is proportional to 1/h, the cumulative error is 
still O(h). More generally, the order of magnitude of the cumulative error made 
in integrating a first-order DE or system is an infinitesimal of order one less than 
that of the error per step. It is the same as that of the relative error per step, 
defined as the error divided by the length of the step. 

*3 DEVIATION AND ERROR 

This section will be devoted to proving Theorem 1, that Euler's method has 
O(h) accuracy. The proof will be based on a new concept: the deviation of a func
tion from a DE. This concept is of theoretical interest in its own right. 

DEFINITION. A vector-valued function y(t) is an approximate solution of the 
vector DE (1), with error at most r,, when ly(t) - x(t) I < r, for all t E [a, a + T]. 
Its deviation is at most E when y(t) is continuous, and satisfies the differential 
inequality 

(7) ly'(t) - X(.y(t), t) I < E 

for all except a finite number of points t of the interval [a, a + T]. 

Note that the definition requires the function y to be differentiable, except 
at a finite, possibly empty, set of points. Such a function is said to be of class 
1Y. 

The following example shows that an approximate solution can have a small 
deviation without having a small error. It is essentially Example 8 of Ch. 1, §9; 
note that the DE involved does not satisfy a Lipschitz condition. 
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Example 3. The function y(t) = 10-5 is an approximate solution of the DE 
dx/dt = 3x213 on the interval [0, oo), with deviation 0.0003. The exact solution 
to this DE for the initial value x(0) = 10-5 is x = (t + 0.01)3. At t = l, it 
assumes the value x(l) = 1.030301 instead of y(l) = 0.000001. 

Theorem 1 asserts, among other things, that the preceding phenomenon can
not arise if X(x;t) satisfies a Lipschitz condition (5). For such functions, we can 
always make the deviation arbitrarily small by making the norm of the partition 
sufficiently small. This resul.t is contained in the following theorem. 

THEOREM 2. Let XE &1 satisfy IX I< M, I ax;at I< C, and (5) in the cylinder 
D: Ix - c I < K, a < t < a + T. Then any Cauchy polygon in D is an approximate 
solution of x' (t) = X(x,t) with deviation at most ( C + LM) I 1r I -

In proving this theorem, we will use the fact that any Cauchy polygon approx
imation is continuous in [a, a + T], and is differentiable at all points not mesh 
points. At these, it still has a left and a right derivative. 

Proof. On each subinterval (t;,t,+ 1) of 1r, it is clear, by (5), that IX(x(t),t) -
X(x,,t) I < LI x(t) - x, I ; 

IX(x(t),t) - X(x,,t)I < LMlt - t,I < LMl1rl 

since lx(t) - x,I = I r' X(x(s),s) d.sl < Mlt - t,l, Also J,, 

Adding together the two inequalities just obtained, and using the triangle 
inequality, we get the desired conclusion: 

(8) I X(x(t),t) - X(x,,t,) I < (LM + C) I 1r I 

We now prove a theorem that yields as a corollary an easily computed a priori 
error bound for the Cauchy polygon method in terms of I 1r I , IX I max, the Lip
schitz constant, and the deviation. 

THEOREM 3. Let x(t) be an exact solution and y(t) an approximate solution with 
deviation E, of the DE x'(t) = X(x,t). Let X satisfy the Lipschitz condition (5). Then, 
for t ~ a, we have 

(9) lx(t) - y(t)I < lx(a) - y(a)leL(i-a) + (±) (eL<i-a) - 1) 

Proof. Consider u(t) = I x(t) - y(t) 12. Differentiating, 

u'(t) = 2[X(x(t),t) - X(y(t),t)] • [x(t) - y(t)] 
+ 2[X(y(t),t) - y'(t)] • [x(t) - y(t)] 



3 Deviation and Error 209 

Hence, adding inequalities, we obtain 

u'(t) < 2Lu(t) + 2E"Voit) 

Now, set u = v2; the foregoing gives v' < Lv + E (for u > 0). Applying Theorem 
7 of Ch. 1, § 12, we get the desired inequality (9), much as in proving the lemma 
of Ch. 6, §4. 

A slight variant of the analysis leading to Theorem 3 yields a closely related 
bound to the cumulative error of the Cauchy polygon approximation, as follows. 

Define the directional derivative oX/o~ of the vector function X(x,t) in the 
direction ~ = (~0.~1, ••. , ~n) in t,x-space, for any vector ~ of unit length, as the 
sum fo oX/ot + Ei:=i ~k ax;axk. It follows as in the proof of the lemma of Ch. 
6, §2, that 

I X(t,x) - X(u,y) I < I ax;af I . I (t,x) - (u,y) I 

where f is the unit vector in (t,x)-space pointing in the direction (t - u, x - y). 
This inequality gives a bound on the change in X(x,t) along any side of a Cauchy 
polygon, which we now use to complete the proof of Theorem 1. 

Proof of Theorem 1. The inequality (6) of Theorem 1 is an immediate corollary 
of Theorems 2 and 3. Under the hypotheses of Theorem 1, the deviation of 
x,..(t) is by Theorem 2 at most E = (C+ LM) I 11' I - Since x,..(a) = x(a), the first 
term of the inequality (9) vanishes if we let y(t) be the Cauchy polygon approx
imation for the initial value x(a) in Theorem 3, and so (9) simplifies to 

(*) lx(t) - x,..(t)I ~ [ (C + LM)l11'1] [eL<t-a) - l] 

This yields (6) by elementary algebra. 
In particular, by setting 

N = [ f + M] [exp LT - l] 

we obtain the following simple corollary of (6). 

COROLLARY. Under the hypotheses of Theorems l and 2, let the interval [a, a 
+ T] be divided into n equal parts of length h = T/n. Then the error of the Cauchy 
polygon approximation is bounded by Nh, where N is a constant independent of h. 

EXERCISES A 
1. (a) What is the deviation of the approximate solution x = t2/2 - t4/24 of the initial 

value problem defined by dx/dt = sin t, x(O) = 0 on the interval O :;:;; t ::5 1? 
(b) Compare the difference 1 - (cos 1) - ½¼ with the bound given by formula(*), 

for the deviation computed in (a). 
(c) For the initial value x(O) = 1, bound the difference between the solutions of 

dx/dt = sin t and dx/dt = t - (t3/6). 
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In Exs. 2-5, for the initial value problem specified: (a) use the Cauchy polygon method 
to compute an approximate function table for tk = 0.1, 0.2, ... , 1.0; (b) find the devia
tion of the approximate solution obtained from this table by linear interpolation; (c) find 
the exact solution; (d) find the error. 

2. x = x, x(0) = 1 3. x = 1 - 2x, x(0) = 0 

4. x = y, j = -x, x(0) = 0, y(0) = 1 5. x = y, j = x, x(0) = 1, y(0) = 0 

6. (a) Find the deviation of the approximate solution y = 10-10 of the DE x'(t) = 
5x4/5_ 

(b) What is the exact solution of this DE on [0, oo) for the initial value x(0) = 10-10 

= y(0)? 
(c) Prove in detail the uniqueness of this solution. 

7. On the interval [0, 1], for any t > 0, construct an approximate solution with devia
tion t to a suitable first-order DE, for which the exact solution with the same initial 
value is unbounded. 

*8. For the DE x'(t) = J(t) - x, show that 

where c = sup IJ'(t) I 

*9. (a) Sharpen (9) and (*) in the stable case [X(x, t) - Y(x, t)] • [x - y] ::5 0. Compare 
with the limiting case L = 0 of these formulas. 

(b) When X(x, t) satisfies the one-sided Lipschitz condition [X(x, t) - X(y, t)] 
[x - y] ::5 L Ix - yl 2, how can (9) and(*) be sharpened? [HINT: See Ex. 8.) 

4 MESH-HALVING; RICHARDSON EXTRAPOLATION 

In practical computation, one can often reduce the error by a large factor by 
accepting as a working hypothesis, the theoretical result that, in a wide variety of 
situations, the truncation errort under repeated mesh-halvings is of the form 

As has just been emphasized, the order of accuracy v = l for the Euler-Cauchy 
polygon method. For the modified and improved Euler's methods to be dis
cussed later in this chapter, v = 2. For other methods to be discussed in Chapter 
8, V = 4. 

If one knows v a priori, as one does for the methods of Euler just mentioned, 
one can determine the unknown constant C in (10) with fair accuracy, by com
paring the computed value Y0 for a given partition 1r0, with the corresponding 
value Y1 for the partition 1r1 obtained from it by mesh-halving. 

This is because formula (10) implies that 

(11) 

t The truncation (or "discretization") error is the error that would occur if computer floating point 
arithmetic were exact. See the discussion of roundoff error at the end of this section. 
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Comparing with (10), we obtain, 

(12) 

The approximate value of Yk = y(xk) obtained by suppressing the O(hv+i) term 
in (12) is said to be obtained by Richardson extrapolation. This name is given to 
honor the inventor of the method, L. F. Richardson, who called it "deferred 
approach to the limit." 

Note that formula (12) corrects each computed value Yh by adding 
(Yh - Y2h)/(2v - 1) to it. Thus, suppose we compute ex as the solution of y' = y 
for the initial value y(0) = 1 by the Euler-Cauchy polygon method for h = rm 

(m = 0,1,2,3,4). Then v = l, so that the corrected value is 

(13a) 

The resulting approximate values of e1 = (1 + h)2m are tabulated in Table 7.1, 
together with their errors and the better approximations obtained using (13a). 

For the improved Euler method (Heun's method), the approximate value 
Yh = (l + h + h2/2)2m has 0(h2) accuracy. Since v = 2, the corrected value is 

(13b) 
1 1 

y = yh + 3 (Yh - Y2h) = 3 (4Yh - 3Y2h) 

The improvement made by applying Richardson extrapolation to this method is 
shown in Table 7.2. 

The final error is reduced by a factor of nearly 8 = 23 each time that the 
mesh-length is halved. 

Checking v. A good practical check on the reliability of Richardson approx
imation consists in verifying that Y4h - Y2h is indeed about 2v times Y2h - Yh. 
When v is unknown, one can also estimate it by assuming this same formula, for 
all h. Summing the geometric series E,;"= 2-v = l/(2v - 1), we obtain after some 
algebraic manipulation the following extrapolated approximation Y to the lim
iting value y of the series Yh, Yh/2,Yh/4, ... 

(Yh - Y2h>2 y = yh - ---~~-
y4h - 2Y2h + yh 

(14) 

Table 7.1. Richardson Extrapolation of Euler's Method 

h= l I l ..l. 
2 4 8 16 

yh 2.25 2.44141 2.56574 2.63793 
Error .46828 .27687 .15254 .08035 
2Yh - Y2h 2.5 2.63282 2.69007 2.71072 
Error .21828 .08645 .02821 .00816 
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Table 7.2. Richardson Extrapolation of Heun's Method 

h= 
l ¼ i -h 2 

yh 2.640625 2.694856 2.711841 2.716593 
Error .077657 .023426 .006441 .001689 
(4Yh - 3Y2h)/3 2.6875 2.712933 2.717503 2.718177 
Error .030782 .005349 .000799 .000105 

Caution. Although valid for sufficiently small h, formula (14) with h = ¼ 
overcorrects the computed value 2.694856 in Table 7.2, and overcorrects 
2.44141 very badly in Table 7.1. 

Roundoff Errors. The preceding discussion has set no limits to the fineness 
of the mesh used in solving DEs numerically, and it has been tacitly assumed 
that all arithmetric operations and function evaluations are exact. Actually, 
however, the floatin~-point arithmetic on many computers has an accuracy 
of only around 10- . On such computers, the dominant source of error 
when h = l /1024 (say) may well be due to so-called "roundoff errors" in 
floating-point arithmetic. This is especially likely if values of the xk that are 
not exact "binary decimals" are used-e.g. if h = .001 is used instead of 
h = 1/1024. 

Roundoff errors will be discussed again in Chapter 8, §6. 

5 MIDPOINT QUADRATURE 

As we have observed (Example 2 above), the relative error made in computing 
e by solving y' = yon [0, l] for the initial condition y(0) = 1 by the improved 
Euler method of Ch. 1, §8, is -h2/3 + h4/4 + O(h4). In this section, we shall 
derive some much more accurate error formulas for evaluating definite integrals 
by the midpoint and trapezoidal formulas (i.e., for solving the DE y' = F(x)). 
This can be viewed as lending further credence to the Richardson extrapolation 
method of §4. 

The simplest formula for numerical quadrature having a higher order of 
accuracy than the Cauchy polygon formula (4) is the muipoint quadrature formula 

n 

(15) f F(x) dx !:::.! M,r[.FJ = L F(m,) Llx., 
,-1 

m = ' 
(x,_ 1 + x,) 

2 

Given the partition 1r of the interval of integration [a, b] by points of subdivision 
a = x0 < x 1 < · · · < xn = b, the midpoint approximation M,r[.FJ is easily 
computed; it takes its name from the fact that m, is the midpoint of the ith inter
val of subdivision. We now derive an error bound for the midpoint quadrature 
formula (15). 
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THEOREM 4. If FE @2, then 

(16) I lb F(x) dx - t F(m,) flx, I 

Proof On each interval [x,-1,x,] = [m, - flx,/2, m, + flx,/2], Taylor's for
mula implies that 

t2F"(m- + r) 
F(m, + t) - F(m,) - tF'(m,) = 2• 

where r is between O and t. But F" (m, + r) is bounded below by the minimum 
F::i;n of F"(x) on [a, b] and above by its maximum value F::iax· Therefore, we 
have 

F"· t2 F" t2 
---1!!!!L.. < F,(m + t) - Fi(m ) - tF'(m ) < ....E!!!...._ 2 - J I J - 2 

Integration of this inequality over - flx,/2 < t < flx;/2 gives 

min , < F,( ) d _ F,( ) A < max X, F" dx3 f "' F" fl 3 

24 _ x x m, ~x, _ 
x,-1 24 

Summing over i and noting that O < dx~ ::S I 1r 12, we get (16). 
Theorem 4 shows that the midpoint quadrature formula (15) has order of 

accuracy 0(h2), one order higher than the Cauchy polygon method. 

Error Estimate. In the case of subdivisions into intervals of constant length 
h, we can obtain a much more accurate estimate of the error in the midpoint 
quadrature formula by considering the higher-order terms in Taylor's formula. 

THEOREM 5. Any function for F E @6 on a uniform mesh with constant mesh 
length flx, = 2k = h, 

(17) 

rb h2 
M,r[FJ = J a F(x) dx - 24 [F'(b) - F'_(a)] 

7h4 
+ 5760 [F"(b) - F"(a)] + 0(h6) 

Proof By Taylor's formula with remainder, since FE @6, we have 

5 Ji<'>(m,)t' ]i<6)(~)t6 

F(m, + t) = L ( I) + 720 
r=O r 
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where~ is some number between m, and m, + t. On each ith interval (x,-i, x,), 
the final term ("remainder") is bounded in magnitude by Mk6 /720, where M = 
max I p 5>m I, the maximum being taken on the entire interval a < ~ < b. Inte
grating over - k < t < k, we get 

f "'1 k3F"(m) k5F"(m) 
x,-i F(x) dx = 2kF(m,) + 3 ' + 60 ' + O(k6) Ax, 

where the factor O(k6) is bounded in magnitude by Mk6/720. When we sum over 
i, there results the estimate 

(18) n lb (k2) n L F(m,) dx, = F(x) dx - - L F"(m,) dx, 
,=1 a 6 ,=1 

( 
k4 ) n 

- 120 ~ F"(m,) Ax, + O(k6) 

An application of (18) to the function F"(x) E ~ 4 gives similarly (one term being 
dropped because of the loss in differentiability), 

n (b (k2) n 
(18') ~ F"(m,) dx, = Ja F"(x) dx - 6 ~ F"(m,) ax,+ O(k4) 

Applied to F"(x) E ~2, this gives 

(18") 
n lb ~ F"(m,) Ax, = a F"(x) dx + O(k2) 

Substituting from (18') and (18") back into (18), and combining terms, we get 

n rb k2 rb 7k4 lb 
~ F(m,) dx, = Ja F(x) dx - 6 Ja F"(x) dx + 360 a F"(x) dx + O(k6) 

When we set k = h/2, formula (17) follows immediately. 
Note that the error estimate (1 7) implies the very accurate corrected midpoint 

formula 

(19) l b n h2[F'(b) F'(a)] 
F(x) dx = L F(m;) dx, + -

a ,=1 24 

7h4 [F"(b) - F"(a)] 6 
5760 + O(h) 
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EXERCISESB 

In each of Exs. 1-4, a numerical quadrature formula is specified for approximately eval
uating Jh_hj(x) dx. In each case: (a) compute the truncation error for J(x) = xn, n = 0, 
1, 2, 3, ... , and (b) find the order of accuracy of the formula, using Taylor's formula 
with remainder, assumingf(x) to be analytic. 

. h 
1. Simpson's rule: S[f] = 3 [f(-h) + 4f(0) + J(h)]. 

2. Cotes' rule: C[f] = ~ [J(-h) = 3f( ~h) + 3f [ ~] + f(h)]. 

3. Weddle's rule: 

h2 
4. Hermite rule: H[J] = h[f(h) + J(-h)] - 3 [f'(h) - j'(-h)]. 

*5. In Ex. 3, find weighting coefficients wk such that the approximation 

to Jh_hf(x) dx has a maximum order of accuracy. Compare with Weddle's rule. 

6. (a) Show that if F(x) = 1/x, then (F'(2) - F'(l)]/24 = * and [Fm(2) - F'"(l)]/ 
5760 = 1/1024. 

(b) Infer that In 2 = M1r(J) + h2/32 - 7h4/1024 + O(h6). 

(c) Knowing that In 2 = .69317408, compare with numerical experiments. 

7. (a) Show that all odd-ordered derivatives F<2n+ 1>(0) of F(x) = 1/(1 + x2) vanish when 
X = 0. 

(b) Show that F'(l) = -½ and F'"(l) = ¾. 
(c) Knowing that 1f/4 = arctan 1 = JJ dx/(1 + x2), derive the formula 

h2 7h4 
1fj4 = MAF] + 48 - 7680 + O(h6) 

*8. Derive formulas similar to those of Exs. 6-7 for 

(a) Jb \l'I+7 dx, and (b) JA sin (x2) dx. 

6 TRAPEZOIDAL QUADRATURE 

The formula for trapezoidal quadrature is 

(20) Jb n 

a F(x) dx ~ T1r[F] = ~ [F(x,_1) + F(x;)] dx;j2. 
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We will now use the concept of the Green's function for a two-endpoint prob
lem, as defined in Ch. 2, §11, to obtain an exact expression for the error in 
trapezoidal quadrature over a single interval. Consider the linear function 

(21) L(x) = F(a) + (x - a)[F(b) - F(a)]/h, h = b - a, 

defined by linear interpolation between the values F(a) and F(b), and let R(x) = 
F(x) - L(x). Then R"(x) = F''(x), and R(a) = R(b) = 0. 

Now consider a single interval of length h, = x, - x,_ 1 = 2k, and translate 
coordinates so that (X,-1t x,) becomes the interval (-k, k). As in Ch. 2, §11, we 
have 

(22) 

in which R(x), defined as above to be the difference between the function F(x) 
and its trapezoidal approximation L(x), vanishes at the endpoints and satisfies 
R" = F". The Green's function G(x, ~) for F" = r(x) is given by 

(23) G(x ~) = {<~x/k + ~ - x - k)/2, 
' (~x/k - ~ + x - k)/2, 

The error in trapezoidal quadrature over (-k, k) is 

T,..[FJ - f~k F(x) dx = f~k [L(x) - F(x)] dx = f~k R(x) dx. 

Substituting for R(x) the integral expression displayed above and interchanging 
the order of integration in the resulting double integral, we get 

T,..[FJ - f~k F(x) dx = - f~k { f~k G(x, ~) dx} F"(~) d~. 

But by direct calculation, f~k G(x, ~) dx = -(k2 - e)/2. Hence 

THEOREM 6. The error in trapezoidal quadrature over a single interval (-k, k) 

is exactly f~k (k2 - e)F"m d~/2. 

Furthermore, since G(x, ~) < 0 for all x, ~ E (-k, k), we can use the Second 
Mean Value Theorem of the Calculus to obtain as a corollary that the error is 

for some ~E(-k,k) 

The integral is easily evaluated as 2k3/3 = h~/12. 
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COROLLARY. The error in trapezoidal quadrature over a single interval of 
length h, is h/ F"(~,)/12,for some tin the interval. 

Since h, 3 < / 1r / 2h., summation over i now gives our final result. 

THEOREM 7. The error bound for trapezoidal quadrature is given by the 
inequality 

(24) 

We shall next obtain an analog of Theorem 5 for trapezoidal quadrature in the 
case that all the intervals of subdivision have the same length, Llx, = 2k = h. 
For any FE ~ 6, Taylor's formula with remainder gives, much as in the proof of 
Theorem 5, 

Multiplication by Llx,/2, followed by summation over i, now gives the further 
estimate 

(25) 

The right side of (25) can be evaluated by repeated use of the midpoint quad
rature formula error estimate (1 7). The conclusion is the truncated Euler
Maclaurin formula. 

THEOREM 8. For FE ~ 6, let all intervals of subdivision have the same length 
Llx; = 2k = h. Then 

(26) T,..[FJ = lb F(x) dx + :; [F'(b) - F'(a)] 

h4 
- - [F'"(b) - F"'(a)] + O(h6) 

720 

Proof Replacing h by 2k in (17) and then substituting from (17) into (25), 
we obtain, as the contribution from the first term on the right-hand side of (25), 

Jb k2 7k4 
F(x) dx - - [F'(b) - F'(a)] + - [F"'(b) - F"'(a)] + O(k6) 

a 6 360 
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From the second tenn we obtain 

(~
2
) { lb F"(x) dx - (!2) [F"'(b) - F"'(a)] + O(k4)} 

while the third term gives (k4/24)[F"'(b) - F"'(a)] + O(k6). Adding these three 
contributions together, simplifying, and writing k = h/2, we get (26). 

Simpson's Rule. Comparing the error estimates (1 7) and (26) for midpoint 
and trapezoidal quadrature, we are led to an error estimate for Simpson's rule. 
For a given partition 1r, this is defined as 

(28) 
2 1 1 n 

S,r[FJ = 3 M1r[FJ + 3 T,r[FJ = 6 L [F(x,_1) + 4F(m;) + F(x;) Llx, 
,=I 

Forming the linear combination indicated for subdivision into double steps of 
constant length 2k = h, we obtain 

rb k4 
(29) S1r[FJ = Ja F(x) dx + 180 [F"'(b) - F'"(a)] + O(k6) 

Simpson's rule will be studied further in Ch. 8, §9. 

EXERCISESC 

1. Use (26) to estimate the difference 

In Exs. 2-5, use (26) with h = 0.2 to evaluate the following numbers approximately: 

2. In 2 = fl dx/x 3. arctan 1 = IA dx/(1 + x2) 

4. JA vf+7 dx 5. IA sin (x2) dx 

In Exs. 6-9, use Simpson's rule (28) with double step 2k = h = 0.2 to evaluate approx
imately the numbers defined in Exs. 2-5, respectively. 

10. For a subdivision into 2n intervals of length h = (b - a)/2n, Simpson's approxima
tion to I:J(x) dx is I::_ 1 (h/3)(f(x2,- 1) + 4flx2,_ 1) + J(x2,)]. Show that the truncation 
error is (h5 /90) I::= if '"(x2,- 1) + O(h6). 

11. Show that I':h F(x) dx = 2hF(0) + a [J':h (lhl - lxl)3F"(x) dx]. [HINT: Construct 
the Green's function for the initial value problem defined by u" = F"(x) and F(0) = 
F'(0) = 0, and study the proof of Theorem 6.) 

*7 TRAPEZOIDAL INTEGRATION 

The rest of this chapter will be devoted to the theoretical analysis of three 
classical methods for integrating first-order ordinary DEs (and systems of DEs). 
Like (uncorrected) midpoint and trapezoidal quadrature, these methods have 
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only O(h2) accuracy. Since Runge-Kutta and other algorithms having at least 
O(h4) accuracy are readily available and easy to use, readers who are primarily 
interested in appUcations of numerical methods may wish to proceed directly to 
Chapter 8, which will take up such more efficient methods. 

For various reasons, the errors arising from the use of these more efficient 
methods cannot in practice be predicted purely theoretically. Therefore, the dis
cussion to follow will have no parallel in Chapter 8. 

Our theoretical analysis will first take up trapezoidal integration. For any sys
tem dx/dt = X(x, t) of first-order DEs, this is defined implicitlyt by the recursion 
formula (difference equation) 

(30) 

where !l.tk = tk - tk-l• From a given initial value y0 = c and partition 1r, 

formula (30) defines a sequence of values Yk = y,..(tk), that is, a function table 
describing approximately the solution of the DE x = X(x, t) satisfying the initial 
value x(a) = c. 

Note that when X = X(t), formula (30) is equivalent to the trapezoidal quad
rature formula (20). Also note that, as in Ch. 6, §5, formula (30) can be 
extended to DEs and systems of arbitrary order.t Last and most important, note 
that if X(x, t) = A(t)x + b(t) is linear, then (30) is equivalent to 

(30') 

where Ok = !l.tk/2, A1 = A(ti>, and b1 = b(9. Hence, for !l.tk small enough, the 
system (30') can be solved for Yk> given Yk-h by Gaussian elimination. 

Example 4. 

(31) 

Consider the solution of the linear DE 

dx - + 2tx = 1 
dt 

taking the initial value x(O) = 0. By the formula of Ch. 1, §6, the solution is 
the function x = e-12 f~ e'2 ds. Looking up values of the definite integral in a 
table,tt we get the first row of entries in the following display. 

0.1 

X 0.0993 
y 0.0990 
z 0.099 

0.2 

0.1948 
0.1941 
0.194 

0.3 

0.2826 
0.2818 
0.282 

0.4 

0.3599 
0.3590 
0.3586 

0.5 

0.4244 
0.4235 
0.424 

0.6 0.7 

0.4748 0.5105 
0.4739 0.5097 
0.4739 0.509 

0.8 

0.5321 
0.5315 
0.531 

0.9 

0.5407 
0.5404 
0.5383 

t For large 11tk, Eq. (30) may have more than one solution. But usually, Yk can be computed by 
iterating (30) two or three times. 

t This does not mean that reduction to a first-order system is recommended in numerical 
integration. 

tt E. Jahnke and F. Emde, Tahles of Functions, Dover, 1943, p. 32; W. L. Miller and A. R. Gordon, 
]. Phys. Chem. 35 (1931), p. 2878. 
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The second row of entries gives values Yk of the approximate function table 
constructed using the trapezoidal integration formula (30), with x(0) = 0 and 
constant mesh length h = O. l. With this value of h, the formula in Example 4 
reduces to 

The entries tabulated in the second row were calculated from the preceding 
formula, rounding off all numbers to six decimal digits and then rounding off 
the final values to four decimals. The last row of the table gives values zk com
puted by the "improved Euler method" of §8 below. 

Above, we used a table of H e'2 ds; we next ask: How should one construct 
this table? For large t, numerical quadrature formulas tend to be inefficient, 
because the integrand e'2 varies so rapidly (by more than 10% between 5 and 
5.01, for example). For this reason, rather than computing x(t) as we did, it is 
more efficient to solve the DE (31), for the initial value x(0) = 0, by an accurate 
numerical method (see Ch. 8), and then to compute f ~ e"2 ds = e'2x(t) as a prod
uct, than to compute x(t) as we did. 

The preceding discussion illustrates an important principle. Reductions to 
quadratures and substitutions in special formulas do not necessarily help one to 
obtain accurate numerical values for solutions of DEs. 

Asymptotic Expansion. On the other hand, asymptotic expansions and 
other analytical devices may be very helpful for analyzing the singularities of 
solutions in DEs, their behavior for very large values of the independent vari
ables, and their dependence on parameters. Thus, to evaluate the function of 
Example 4 for very large t (say, t > 25), it is best to sets = t - r in Example 4 
and to expand erl- in a Taylor's series. We then obtain 

e-12 e'2 ds = e-2tr 1 + r2 + - + - + l t l' ( r4 r6 

0 0 2! 3! • • ·) dr 

For large t, the kth term gives the integral 

t-2k-I 1212 (2k)!t-2k-l 
e-p P2k dp ~ ----

(kl)22k+ I O (k!)22k+ I ' 
p = 2tr 

Moreover, by truncating the series at the kth term, an asymptotic error estimate 
can be obtained. 

Knowing (or having guessed) the form of the asymptotic series x(t) ~ E;:"=0 

a,,Jt2k+ 1, we also can derive from (31) purely formally, by the method of unde
termined coefficients, that a0 = 1/2 and ak+ 1 = (2k + l)ak/2, from which 
(asymptotically) we obtain 

1 1 3 15 
X ~ 2t + 4t3 + 8t5 + l 6t7 + as 
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Though the series is (ultimately) divergent, the first few terms give an extremely 
accurate approximation to x(t) fort > 25, which is much more accurate than 
could be obtained by general numerical methods. 

Error Bound. Finally, we derive a bound on the cumulative error of the 
function table constructed by the trapezoidal integration formula (30), in terms 
of the properties of X(x, t). To do this, we first construct an approximate solution 
of the DE x'(t) = X(x, t) from the approximate function table of points (yk, tk) 
defined by (30). Since !:,.yk/dt in (30) is the arithmetic mean of the slopes y; = 
JS = X(y1, '1) for j = k - l, k, the quadratic function 

(y' ' ) 2 _ , k - Yk-1 T 
y(t) - Yk-1 + Yk-JT + 2 !:,.t ' 

interpolates not only to Yk-I and yk, but also to Yk-I and Yk at tk-I and tk> respec
tively.t This gives us a piecewise quadratic approximate solution of class @1, which 
satisfies-the given DE exactly at all points tk. 

We next bound the deviation (§1) ly'(t) - X(t, y(t)) I of this approximate solu
tion. Since the deviation is zero at tk-I and tk, while y'(t) is linear in the interval 
[tk-I, t,J, it follows (by Theorem 1 of Ch. 8) that the deviation there is at most 
r(h -r)IXlmax, where h = tk - tk-h and I XI max signifies the maximum absolute 
value of the second time derivative of X(t). On the other hand, we have 

(32) 

In Example 4, this gives X = -4 + l2xt + 4t2 - 8xt3• 

As in the proof of Theorem 3, we now set u(t) = I x(t) - y(t) 12 and differen
tiate, to get in any interval of length h, 

(32') u'(t) < 2Lu(t) + 2E(t) VU(t) 

where, in any subinterval [tk-h t,J of length h or less IE(r)I ;;;;: ½r(h - r)IXlmax• 
T = t - tk- I· A more careful repetition of the proof of Theorem 3 shows that, 
since J~ t(h - t) dt = h3 /6 and I x(a) - y(a) I = 0, the cumulative (truncation) 
error must satisfy 

(33) lx(b) - y(b)I < ! IXlmax{eL(b - a) - l} 

As a corollary, the order of accuracy (§4) of trapezoidal integration is O(h2). 

t It is actually the "cubic" Hermite interpolant to the y1 and y; (to be discussed in Ch. 8), but this 
happens to be quadratic in the present case. 
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EXERCISES D 

In Exs. 1-4, compute the trapezoidal approximations to the solutions of the initial value 
problems specified, over the range 0 ::;; t ::;; 1 with h = 0.1. 

I. x = -tx, x(O) = 1 2. x = I + x2, x(O) = 0 

3. x = y, y = 0, x(O) = 0, y(O) = 1 

4. x = y, J = X + y, x(O) = 0, y(O) = 1 • 

5. For the DE y' = F(x, y), show that the truncation error of the Cauchy polygon 
method, in one step 0 ::;; x ::;; h, is 

h2 [ iJF iJF ] 3 2 ox (0, y0) + F(0, y0) iJy (0, y0) + O(h ), Yo = y(O) 

In Exs. 6-9, compute the truncation error for trapezoidal integration over one interval 
of length h, in terms of the Taylor series expansions of the functions involved: 

6. x = p(t)x, p analytic 7. x = I + x2 

8. X = y, j = 0 9. X = y, j = x + y 

10. For the DE yn = F(x, y), what is the order of accuracy of the formula 

Yn+I = Yn-1 + 2hF(xn, yJ 

if all t::..xk = h? 

8 THE IMPROVED EULER METHOD 

The trapezoidal method is very convenient for getting approximate solutions 
to linear DEs, because one can solve algebraically for Yk· Thus in Example 4, 
formula (30) is equivalent to the recursive formula Yk = [l + (10 - tk-I)yk-Il/ 

[10 + tk]. 
But the trapezoidal method is awkward when it comes to nonlinear DEs 

because of the difficulty of solving (30) for Yk· In general, formula (30) does not 
define the vectors Yk recursively but only implicitly. To determine each yk, we 
have to solve an equationt (30) where Yk is the unknown, Yk-I having been pre
viously determined. 

For small t::..tk> we can do this by iteration: start with a trial value ofyk [say, Yk-l 
+ X(yk-l• tk_ 1) !::..tk], substitute this trial value y2 into the right-hand side of (30) 
to get a better approximation yl, and then repeat the process 

(33) 

until (30) is satisfied up to the error tolerated. 

t The vector equation (30) is, of course, equivalent to a system of n simultaneous equations in the 
components. For linear systems, these equations can be solved by Gauss elimination, instead of 
iteration. 
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Instead of solving the implicit equation (30) precisely by using many itera
tions, one usually gets greater accuracy for the same amount of work by using 
a finer mesh and stopping after one or two iterations. If one stops after a single 
interation, one has the improved Euler method, which is adequate for many non
linear engineering problems requiring moderate accuracy (say, two significant 
decimal digits). 

Predictor-corrector Methods. The improved Euler method typifies an 
important class of so-called predictor-corrector methods, whose underlying phi
losophy is as follows. 

First, by extrapolation or otherwise, one tries to make a reasonably good first 
guess yi0> as to what Yk should be; in the present case, this guess is provided by 
the Cauchy polygon construction applied to Yk-I: 

(34) 

This guess is called the predictor. 
One then considers the implicit equation to be solved, for example, Eq. (30), 

as a corrector: 

(34') 

to be solved iteratively if necessary. In most cases, the full order of accuracy of 
the implicit equation [O(h2) in the present instance] is achieved after one 
iteration! 

The improved Euler method consists in computing the sequence of zk by per
forming these two substitutions in alternation. In the case X(x, t) = F(t) of quad
rature, it is equivalent to the trapezoidal method. 

Applied to the initial value problem of Example 4, the improved Euler 
method gives the approximate solution tabulated in the last row of the table of 
§7; in this example, the work was carried to three decimal places to reduce the 
cumulative error to 0.01. 

To apply the improved Euler method to first-order systems, simply substitute 
vectors for scalars in formulas (34), (34'). We illustrate the procedure by an 
example. 

Example 5. Consider the initial value problem defined by the nonlinear 
system 

(35) 
dx _ = x2 + y2 
dt ' 

dy = l + x2 - y2 
dt ' 

x(0) = y(0) = 0 

There is little hope that formal methods of integration will help in the compu
tation, but a straightforward application of the improved Euler method enables 
one to calculate an approximate solution. 
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The calculations to be performed give, for this example, the double sequence 
of numbers xk, Yk defined by x0 = y0 = 0 and by the formulas 

pk = Xk-I + (Xi-I + Yi-I) t:..tk 
(36) 

qk = Yk-I + (1 + Xi-I - Yi-I) t:..tk 

and 

xk = xk-I + (xi-I + Yi-I + Pi + qi) t:..tk/2 
(36') 

Yk = Yk-I + (2 + Xi-I - Yi-I + Pi - qi) t:..tk/2 

Each step requires squaring four numbers and performing 14 additions and 
subtractions and four multiplications. 

For a subdivision into intervals of constant length h, the relative error com
mitted in using the improved Euler method is O(h2), provided that the function 
X(x, t) is of class &2. For, expanding the exact solution x(t) of dx/dt = X(x, t) by 
Taylor's Theorem with remainder, we have 

(37) h2 [ ax ax] 3 xk = x(tJ = Xk-I + hXk-I + - x-a + -a + O(h) 
2 X t k-I 

where Xk-I denotes X(xk-h tk-I) = Xx(tk-I), tk-I) and the subscript k - I on the 
term in square brackets has a similar meaning. The improved Euler method of 
(34)-(34') gives 

(38) h2 [ ay ay] 3 
Yk = Yk-I + hYk-I + 2 y ax + at k-I + O(h) 

where Yk-I denotes X(yk-h tk-I), and so on. The relative error committed in sub
stituting (38) for (37) is thus O(h2). 

A more explicit error bound is deduced in §IO. 

*9 THE MODIFIED EULER METHOD 

The improved Euler method has the advantage over the trapezoidal method 
of being explicit. Various other explicit methods about as accurate as the 
improved Euler and trapezoidal methods can also be constructed. For instance, 
one can use the following adaptation of the midpoint quadrature formula: 

(39) 

This midpoint or modified Euler method is about twice as accurate as the trape
zoidal and improved Euler methods in the special case dx/dt = F(t) of quadra-
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ture, as a comparison of formulas (1 7) and (26) shows. (In this case, the 
improved Euler method is the trapezoidal method.) 

But for first-order DEs generally, no such simple error comparison holds. To 
see this, let X = Eb1kt1xk be expanded into a double power series, and let x(t) 
satisfy x = X(x, t). Then, just as in Ch. 4, §2, we have x = X1 + XXx, and 

We now introduce the abbreviations 

Expanding out to infinitesimals of the fourth order, we find that the exact solu
tion of the DE dx/dt = X(x, t) for the initial condition x(0) = 0 has the 
expansion 

(40) 

With the trapezoidal approximation (30), we obtain 

(41) 
h2C h3(2B + B*) 

(h) = hb + - + ---- + O(h4) y 00 2 4 

giving a truncation error h3(B/3 + B*/12) + O(h4). With the improved Euler 
approximation (34)-(34'), we get 

(42) 

with error h3(2B - B*)/6 + O(h4). With the midpoint approximation (39), we 
finally obtain 

(43) 

so that the error is h3(2B* - B)/12 + O(h4) 

Corrected Trapezoidal Method. Theorem 8, when combined with Theo
rem 5 of Ch. 6, shows that the exact solution x(t) of the first-order DE dx/dt = 
X(x, t) satisfies 

(44) 
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where Xk denotes X(xk, t,J and X denotes ax;at + X ax;ax. Dropping the last 
cerm, we get a corrected trapezoidal integration formula, which may be expected 
to have a cumulative error of only 0( I 1r 13). 

For instance, when applied to the inhomogeneous linear DE x = I - 2tx of 
Example 4, in which X = -2x - 2t + 4xt2, this formula gives the approximate 
recursion formula 

with absolute error O(t::..tk4) and relative error O (t::..t/). 

EXERCISES E 

In Exs. 1-4, compute approximate function tables on [0, 1), with t:,Jk 0.1, by the 
improved Euler method for the following initial value problems: 

I. x = -tx, x(0) = 1 2. x = (1 + x2), x(0) = 0 

3. x = y, j = 0, x(0) = 0, y(0) = 1 4. x = y, j = x + y, x(0) = 0, y(0) = 1 

In Exs. 5-8, compute approximate function tables for the data of Exs. 1-4, using the 
midpoint (or modified Euler) method, instead of the improved Euler method. 

9. Obtain an expression through terms in h5 for the error committed in applying 
(a) the improved Euler method and (b) the midpoint method to the DE x = p(t)x, 
p(t) analytic. 

10. For the analytic DE y' = F(x, y) and one interval O .::5 x .:5 h, let the exact solution 
be given by y(h) = a0 + a1h + a2h2 + a3h3 + O(h4) and let 

y = co + c1h + c2h2 + c3h3 + O(h4) 

be the approximate value given by trapezoidal formula. Show that c
0 

= a
0

, c
1 

= a
1

, 

c2 = a2, and c3 = 3a3/2. 

11. Show that through the terms computed in Ex. 10, the improved Euler method gives 
the same result as trapezoidal integration for c0, c1, c2• 

*IO CUMULATIVE ERROR BOUND 

All the methods for constructing approximate function tables that have been 
described in this chapter have had one feature in common. Namely, the kth 
entry in the table has been constructed from the immediately preceding entry 
alone, the (k - l)st entry, without reference to the earlier entries. Such methods 
are called one-step (or "two level") methods. 

Given a one-step method for numerically integrating the DE dx/dt = X(x, t), 
that is, for constructing an approximate function table with entries Yk = y(t,J, 
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we can express the preceding property by writing 

(45) 

Here ct, is the function expressing Yk in terms of Yk-I and the data of the problem. 
Bounds for the errors associated with one-step methods can be obtained by 
using the following general theorem, which applies equally to the Cauchy poly
gon method, the trapezoidal method, and the improved Euler and midpoint 
methods. 

THEOREM 9. In any one-step method for numerical integration of dx/dt = 
X(x, t), where X satisfies the Lipschitz condition 

IX(x, t) - X(y, t)I < Llx - yl 

let the relative error at each step be at most E. Then, over an interval of length T, the 
cumulative error is at most (E/L)(eLT - I). 

Proof For any partition 1r, let Ek denote the error introduced at the kth step. 
That is, if ik(t) is that exact solution of the given DE satisfying the initial condi
tion iitJ = yk, where Yk is the value of the computed approximate solution at 
tk, let 

By the definition of "relative error," we have Ek < E t::..tk. The magnitude of the 
cumulative error is, by definition, 

I Ym - x(tJ I = I Xm(tm) - Xo(tJ I = I t [ik(tJ - Xk-1 (tm)] I 
k=I 

m 

< L lik(tm) - Xk-1(tm)I 
k=I 

But I iitm) - ik- I (tJ I is the magnitude of the difference, at t = tm, of two solu
tions of the given DE that differ by Ek at t = tk. By Theorem 2 of Ch. 6, this is 
at most 

since Ek < E t::..tk. Here E is an upper bound to the relative error. Summing over 
k, we' get the following upper bound to the cumulative error: 

m m 

lyitJ - x(tJ I < EL [eL(tm-t~) !::..tk] < E eLtm L [e-Lt~ !::..tk] 
k=I k=I 
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But the final sum is the Riemann lower sum approximation to the definite inte
gral J:~ exp (-Lt) dt = [exp (-Lt0) - exp (-Ltm)]/L. Hence 

E[eLT - 1] 
I y.,,(tm) - x(tm} I < L 

and Theorem 9 follows. 

Trapezoidal Integration. For trapezoidal integration, the discussion of §7 
shows that the truncation error Ek at the kth step is bounded by 

(l1rl 2 1XlmaiJ t:..tk 
12[1 - (Lt:..tk/2)] 

Therefore, in this case, an error bound is given by the following corollary. 

COROLLARY. The error in the approximate Junction table constructed by the trap
ezoidal formula (30) is at most 

(46) 
l1rl 2 1XlmaxCeLt - 1) 
12L[l - Ll1rl/2] 

if 
1 

l1rl <- L 

Similar error bounds can be found for the midpoint and improved Euler 
approximate integration methods. 

Approximate Solutions. The error bound (46) refers to the approximate 
function table constructed by the trapezoidal integration formula (30). Using 
linear interpolation between successive values, we can obtain from this function 
table a continuous approximate solution to the DE dx/dt = X(x, t). Since the 
error in linear interpolation is bounded by Ix I max I 1r I 2/2, where x = X = 
ax;at + X ax;ax, we see that the order of accuracy of this approximate solution 
is also 0( I 1r I 2). 

EXERCISES F 
1. Let x(t) and y(t) be approximate solutions of the system (1) with deviations E1 and 

e2, defined for a .:5 t .::5 b. Show that (7) implies that 

E1 + E2 
I x(t) - y(t) I < I x(a) - y(a) I /-11-al + -- [(/•It-al _ 1)) - L 

2. Let F(x, y) and G(x, y) be everywhere continuous; let F satisfy a Lipschitz condition 
with Lipschitz constant L, and let I F(x, y) - G(x, y) I .:5 K. Show that if J(x) and 
g(x) are approximate solutions of the DEs y' = F(x, y) and z' = G(x, z) with devia
tions E and 7/, then 

IJ(x) - g(x) I < IJ(a) - g(a) i/•l•-al + K + E + 7/ [(/•l•-al _ 1)) 
- L 



10 Cumulative Error Bound 229 

*3. Assume that, for equally spaced subdivisions of mesh length h, the truncation error 
of a given approximate method lh[f] is Mhn + O(hn+ 1), where Mis independent of 
h. Prove that the extrapolated estimate 

has a truncation error O(hn+ 1). 

*4. (a) Show that the extrapolation of Ex. 3 gives the trapezoidal approximation from 
the Cauchy polygon approximation, and Simpson's rule from the trapezoidal 
approximation. 

(b) Show that Simpson's rule satisfies the hypotheses of Ex. 3 with n = 4. Derive 
an extrapolation estimate for Simpson's rule. 

*5. For the DE dx/dt + tx = 0 and the mesh length hn = l/(lOltnl + 1), show that 
the truncation error of the trapezoidal method tends to zero as t -+ oo, regardless 
of the initial value x(0). What is the limiting truncation error as t-+ -oo? 

*6. Letf(t) be an analytic function, and/(t + 1) = /(t). Show that trapezoidal integra
tion of nJ(t) dt for h = l/n has an infinite order of accuracy as n-+ oo. [HINT: 
Expand/(t) in Fourier series.] 

7. Show that the error is O(h7) in the extended Simpson's rule 

l x+h h 
F(x) dx = -9 {114F(x) + 34[F(x + h) + F(x - h)] 

-h 0 
- [F(x + 2h) + F(x - 2h)J} 

8. (a) Let zk = z0 + t-1h, i = v'=T. Show that, if F(z) is any complex polynomial 
of degree five or less, then we have 

(*) 

(b) Infer that, if F(z) is a complex analytic function, (*) holds with an error that is 
O(h7). 

*9. Let F(x, y) be bounded and continuous on the strip 0 .::5 x .:5 1, -oo < y < +oo; 
let {1rn} be any sequence of partitions of [0, 1) with I 11"n I -+ 0; and let J,.(x) be the 
Cauchy polygon approximate solution defined by 11"n for the initial value y(O) = 0. 
(a) Show that, if the fn(x) converge to a limit function J(x), then j(x) is a solution of 

y' = F(x, y). 
(b) Show that, in any case, a uniformly convergent subsequence {J,.co(x)} can be 

found, n(z) < n(i + 1). [HINT: See Ch. 6, §13.) 

*10. Jn Ex. 9, show that, if the DE y' = F(x, y) admits only one solution for the initial 
value y(O) = 0, any sequence of Cauchy polygon approximations defined for y(O) 
= 0 by partitions whose norms tend to zero must converge to the exact solution. 



CHAPTER 8 

EFFICIENT NUMERICAL 
INTEGRATION 

1 DIFFERENCE OPERATORS 

In Ch. 7, we analyzed theoretically a number of simple methods for comput
ing approximate solutions for normal first-order systems 

(1) 
dx 
-=X(xt) 
dt ' 

of ordinary DEs. The simplicity of the methods considered, all due to Euler, 
facilitated a rigorous theoretical analysis of their errors. In general, they had 
O(h2) accuracy for XE @2. 

In this chapter, we will describe some more efficient methods having higher 
order accuracy, usually O(h4) for XE @4. We will explain the guiding ideas that 
motivated the construction of the algorithms used but will not push the analysis 
to the point of getting rigorous error bounds. This is partly to avoid lengthy 
discussions of complicated formulas, but mostly because errors are usually esti
mated in practice by studying the numerical output. 

Such higher order methods are almost always used in practice when more 
than two or three significant digits are wanted. If their errors are accurately and 
reliably known, the errors should be subtracted to obtain improved results, as 
in Richardson extrapolation (Ch. 7, §5). 

Like the schemes already analyzed in Ch. 7, many of the schemes for numer
ical integration to be studied later will refer to an assumed partition 1r of the 
interval [a, b] of integration by a finite number of points (the mesh), 

(2) 1r: a = t0 < t1 < t2 < • · • < tn = b = a + T 

Typically, the partition is made into steps t:..tk = tk - tk-I of constant length h, 
so that t, = a + rh; we then speak of a uniform mesh. 

On the mesh (2), the DE (1) is approximated by a suitable difference equation. 
This difference equation is then solved step by step in hand computations, using 
ordinary arithmetic supplemented by readings from available function tables. In 
machine computations, however, function tables are usually replaced by simple 
subroutines that give accurate approximations by rational functions. 

230 
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Using Taylor's formula with remainder, it is easy to derive higher order 
approximations to derivatives by difference quotients (see §2). Thus for JE @5, 

we have 

For tn+k = a + kh and x1 = J(t}, this gives 

This suggests trying to solve x'(t) = X(x, t) by simply substituting the difference 
quotient of (3) for the left side of the DE. 

Unfortunately, as will be shown in §4, this procedure is highly unstable. Sta
bility is only one of several ideas and techniques, few of which were known in 
Euler's time, that must be learned before one can understand, even superfi
cially, the efficient schemes of numerical integration that are most commonly 
used today. The object of §§2-7 to follow will be to explain some of these ideas 
and techniques; the remainder of the chapter will be devoted to deriving some 
truly efficient schemes of numerical integration. 

Much of our preliminary discussion will be concerned with difference oper
ators ~d difference equations (or LlEs, as we will write for short). Basic to these 
are the forward difference operator Ll, the backward difference operator V, and 
the central difference operator cl, defined by the formulas 

(4a) 

(4b) 

(4c) 

Llf(x) = J(x + h) - j(x) 

VJ(x) = J(x) - J(x - h) 

clf(x) = J(x + ½h) - J(x - ½h) 

In the preceding formulas, the symbols a, V, cl stand for linear operators that 
transform functions into functions. Unlike the linear differential operators of 
Ch. 2, §5, they apply to all functions. 

These operations are useful in obtaining approximate solutions because they 
yield approximations to the derivative J' (x). If J E @1, the derivative J' (x) is the 
limit of the difference quotients: 

J'(x) = lim Llf = lim VJ = lim §[ 
h-0 h h-0 h h-0 h 

For obvious reasons, these are called the forward, backward, and central divided 
difference approximations to J'(x). 

The difference operators (4a)-(4c) can be applied to any function table defined 
on a uniform mesh with step h, consisting of the equally spaced points 

(5) x, = x0 + rh, r = 0, ± 1, ± 2, ... ; h>O 
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Using the standard abbreviations y, = J,. = J(a + rh), we obtain the identity 

Ji - Jo = f(a + h) - f(a) = t:.fo = "il/1 = l'J/1;2 

This shows that the usual difference notation is highly redundant. t 
This redundancy is also apparent when we iterate the difference operators 

(4a)-(4c) to define the second differences 

(6a) t:.2j(x) = t:.(t:.(fx)) = t:.(J(x + h) - /(x)) = f(x + 2h) - 2/(x + h) + f( 

(6b) V2j(x) = V(VJ(x)) = V(f(x) - f(x - h)) = f(x) - 2f(x - h) + J(x - 2 

(6c) l'J2j(x) = f(x + h) - 2f(x) + f(x - h) 

We easily verify the identities l'J2j(x) = t:.(VJ(x)) = V(t:.J(x)). 
In formulas (6a)-(6c), the exponent 2 describes the effect of applying the 

operators of formulas (4a)-(4c) twice, or "squaring" them. More generally, we 
can form polynomials (with constant coefficients) of difference operators, like 
t:.2 - 3t:. + 2. Such linear difference operators with constant coefficients com
mute (are permutable); those with variable coefficients do not commute (cf. Ex. 
A4 below). 

2. POLYNOMIAL INTERPOLATION 

The difference notation of § 1 permits us to write down simple formulas for 
the polynomials of least degree interpolated through given values on any uni
form mesh. These interpolation formulas make it possible to construct accurate 
approximating functions from accurate function tables. 

Simplest is the linear interpolation formula (for fixed h and variable k) 

(7) 
k 

p(xo + k) = Yo + h (y1 - Yo), O<k<h 

Next simplest is the formula for quadratic or parabolic interpolation. Using 
the second central difference notation of formula (6c), 

l'J2y, = Yi+I - 2y; + Yi-I 

we obtain the quadratic interpolation formula 

(8) 

t It is also inconsistent with the usual notation flt, = t, - t,_1 employed in writing Riemann sums, 
used in Ch. 7. 
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If second differences are tabulated, as they are in many tables, to use this for
mula requires only two multiplications and three additions.t 

In a similar way, we can derive the quartic (fourth order) interpolation formula 

Here o4y2 = o2(o2y2) = y4 - 4y3 + 6y2 - 4y1 + Yo• 
The preceding formulas are based on central differences. For polynomial 

interpolation between n + l successive values on a uniform mesh, one often 
uses the Gregory-Newton interpolation formula, 

(10) 
n fif( ) [ k-1 ] 

p(x) = f(x0) + ~ h\:i; I] (x - x0 - jh) 

where n = (xn - x0)/h, and where !l.k is the iterated forward difference operator. 
This formula gives an approximation to f(x) in terms of the differences of n 
equally spaced values off This formula is a difference analog of Taylor's for
mula, without a remainder term. 

Lagrange Interpolation Formula. The Gregory-Newton formula, in tum, 
can be regarded as a special case of a very general interpolation formula due to 
Lagrange. Given the numbers x0 < x1 < · · · < Xn and y0 , y1, ... , Ym one can 
showt that there exists a unique polynomial p(x) of degree n or less which sat
isfies p(xk) = Yk for k = 0, 1, ... , n, that is, which assumes the n + l given 
values at the points specified. Let 

Then the polynomial 

(11) 

t We do not count the division required to calculate k/h, since this requires only a decimal-point 
shift in most tabulations. 

t Birkhoff and MacLane, p. 60. 
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takes exactly the values p(xk) = yk, 0 < k < n. Indeed, pk(x} = 0 for j =f,. k, so 
that substituting x = x1 into (11), we have 

Formula (11) is the Lagrange interpolation formula. Since the polynomial p(x) 
is (11) is unique, (11) is equivalent to (10) if x1 = a+ jh,j = 0, 1, ... , n. Hence 
as interpolants to a function tabulated at equal intervals, (10) and (11) have the 
same error. 

Hermite Interpolation. The limiting case of Lagrange interpolation of 
order 2m, obtained by letting x0, ... , Xm-I approach a and xm, ... , x2m-I 

approach b, is called osculatory interpolation of order m on [a, b]. The limit exists 
if/E &m- 1 [a, b], and is that polynomial p(x) of degree 2m - 1 that satisfies pv>(a) 
= JV>(a) and pV>(b) = pv>(b) for j = 0, ... , m - l. Hermite interpolation of 
order m means, for any partition 1r of [a, b], just osculatory interpolation of 
order m on each subinterval. 

The case m = 2 of cubic Hermite interpolation is especially useful. On [0, l], 
[writing/(0) = y0,/'(0) = y0,f(l) = yi,/'(l) = y1], this gives 

The preceding formula is easily applied to the solutions of first-order DEs y' = 
F(x, y) (and of first-order systems), because the y;, = F(xk, yJ are then known 
and usually already computed. 

Spline Interpolation. In problems whose formulation uses empirical data, 
or whose solution will only be found on a coarse mesh, Lagrange and Hermite 
interpolation can often be advantageously replaced by cubic spline interpola
tion. This interpolates a piecewise cubic polynomial with continuous first and sec
ond derivatives through any set of mesh points (xk, yJ; see Exs. A9-Al 1. 

The concepts defined above are fundamental to the understanding of two
step and multistep methods for solving ordinary DEs and systems (see §9). 

Moreover, the study of their properties is very attractive from a theoretical 
standpoint. However, the one-step Runge-Kutta methods to be explained in 
§8 are based on power series considerations, which are very different. There
fore, some readers may wish to postpone the study of these properties until they 
have become familiar with Runge-Kutta methods. 

EXERCISES A 

1. (a) Show that, if the function /(x) = E akxk is a polynomial of degree m, then limf = 
,rJ = lrJ = hmj<m>, wherej<m> denotes the mth derivative off 

(b) Show that, if y E @', then lYy = O(h') and li'y = O(h'). 

2. Define the divided differences [u0, ui] and [u0, ui, u2] as (u 1 - u 0 )/(x 1 - x0 ) and ([u1 , 

u2] - [u0, ui])/(x2 - x0), respectively. Show that lim,21,1,,01,1 [u0, u 1, u2] = u"(x1). 
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3. Show that 

r I 
{f '°' )k r. 

Y, = L., (- 1 kl( - k)I Yrk+r/2 
k-0 • T • 

4. Show that, if/(x) = x 2

, then x(D.J) = 2hx2 + h2 x, yet D.(xf) = 3x2 h + 3xh2 + h3

. 

5. Solve the D.E Un+ 1 = 2un - Un-I• for the initial conditions u0 = 1, u1 = - 1. 

6. The nth Fibonacci number Fn is the value at n of the solution of the D.E 

for the initial conditions F0 = 0, F1 = 1. 

(a) Show that Fn = (pn - un)V5, where p = (V5 + 1)/2, u = (1 - V5)/2. 
(b) What is the solution Gn of the Fibonacci D.E for the initial conditions G0 = 2, 

G1 = l? 

7. Estimate the largest h such that parabolic interpolation in a six-place table of log10 x 
on 2 ;:s; x .:5 3, with mesh length h, will yield five-place accuracy. 

8. Show that, with parabolic interpolation between y(-h), y(0), and y(h), the maximum 
error is normally near x = ± h/ V3 and is about h3 IJ" (x) I /9 V3 there. 

9. Show that the cubic Hermite interpolants to given values off(.x) andf'(x) at the end
points of the intervals (a-h,a) and (a,a+h) define a "cubic spline" function ft <Y2 

[a-h,a+h] if and only if 

(*) (*) h[f(a-h) + 4J'(a) + J(.a+h)] = 3llf(.a) 

*10. Leth = (b - a)/n and x, = a+ih. Prove that, given y,[i = 0, ... ,n] and y0,y~. there 
is one and only one cubic spline function s(x) t <Y2(a,b) which satisfies: (i) the inter-
polation conditions s(x,) = y, for i = 0, ... ,n; (ii) s(a) = y0, s(b) = y~; and (iii) is a 
cubic polynomial in [x,_ 1,x,] for i = 1, ... ,n. 
(HINT: Use Ex. 9.] • 

*11. (a) Show that if s(x) is the (piecewise) spline interpolant to given y, and y0, y~ specified 
in Ex. 10, and fix) = s(x) + v(x) t<Y 2(a,b) is any other interpolant with the same 
properties, then 

l\r(x)]2dx = l\s"(x)] 2dx + l\v"(x)]2dx 

(b) Infer that the cubic spline interpolant minimizes the mean square value of the 
second derivative on (a,b), among all interpolants J t<Y2(a,b). 

(HINT: Show that lb s"(x)v"(x)dx = 0 for all continuous piecewise linear func

tions v"(x).) 

*3 INTERPOLATION ERRORS 

Among the many interesting properties of interpolation schemes, their errors 
are clearly most basic. We therefore take them up first. The order of magnitude 

of such errors can often be determined algebraically, by simply finding the poly
nomial of least degree for which the formula ceases to be exact. 
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In this section, we shall do much better, by giving explicit expressions for the 
magnitude of the error, by formulas involving an appropriate derivative of the 
function. More precisely, let a function f(x) be tabulated at n + 1 points x

0 
< 

x1 < · · · < x"' and let p(x) be the unique interpolation polynomial, of degree 
n or less, which satisfies p(x,J = f(xk), k = 0, 1 ... , n. How big is the error of 
p(x), considered as an approximation to j(x)? An answer to this question, when 
f(x) is sufficiently smooth, is provided by the following result. 

THEOREM 1. Let p(x) = a
0 
+ a

1
x + · · · + anxn be the polynomial satisfying 

p(x
1

) = f(x
1
),Jor Xo < x

1 
< · · · < Xn. IJJE &"+ 1[xo, xn], then for every x in [x

0
, 

xn] = I there exists ~ in I, such that 

(12) j(x) - p(x) = (x - Xo) • • • (x - xJ j(n+l)m 
(n + l)! 

Proof Let e(x) = j(x) - p(x) denote the error function. Since p(x) is a poly
nomial of degree n, p<n+ 1>(x) = 0. Therefore 

for all x, and e(x0) = e(x1) = • • • = e(xn) = 0. Consider now the function 

(13) <f>(t) = Q(x)e(t) - Q(t)e(x) 

where Q is the polynomial Q(x) = (x - x0)(x - x1) • • • (x - xn). We consider 
¢ as a function oft on I, for x fixed. Clearly¢ E @n+I; moreover, <f>(x,J = 0, k = 
0, 1, ... , n, and in addition ¢(x) = 0. By Rolle's Theorem, between any two 
points where ¢ vanishes there is at least one point where ¢' vanishes. Since the 
function¢ vanishes at n + 2 points (if x =i'- :x:k for all k), the function¢' vanishes 
for at least n + 1 points. Repeating the same argument for higher derivatives, 
we eventually conclude that ¢<n+ 1>(t) vanishes for at least one point~ in the inter
val /. Differentiating (13) relative to t, n + 1 times, we obtain 

O = </>(n+l)(~) = Q(x)e(n+l)m - (n + l)le(x) 

Since e<n+l)m = f (n+l)m and e(x) = J(x) - p(x), this gives 

Q(x) 
j(x) - p(x) = e(x) = ~~-j (n + l)m 

(n + l)! ' 
q.e.d. 

COROLLARY. If p is the Lagrange interpolation polynomial of a Junction J(x) of 
class &"+ 1 in the interval [x0, xn] and x0 < x1 < · · · < x,., the error at any point 
x E [x

0
, xn] is at most 
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When the mesh points are equally spaced, we can compute Nn explicitly. 
Thus, we have N1 = h2/4; if x1 < x < x2, N 3 = 9h4/16, and so on. Moreover, 
similar arguments show that for k < n, the error in the kth derivative of the 
Lagrangian interpolant is O(hn-k+I). It follows (though we shall not prove it) that 
one can develop multipoint dEs that approximate DEs to an arbitrarily high 
order of accuracy. 

Applications. For example, if x = x1 + k, 0 < k < h, the magnitude of the 
error in linear interpolation is lk(h - k)J"(~)l/2 < h2 1J"(~)l/8, for some 
~ E [xl' x1 + h]. Likewise, parabolic interpolation through f(x1 - h), f(x1), and 
f(x1 + h) gives an approximate value differing from f(x1 + k) by I k(h2 - k2)j'0 

m I /6. For I k I < h/2, the error is therefore bounded by h3 If"' I maJl 6. Since 
we would naturally choose j to minimize I x - xj I , this bounds the error in par
abolic interpolation. The maximum error in the interval (x1 - h, x1 + h) is 
slightly larger; see Ex. 8. 

Ordinarily, parabolic interpolation is sufficiently accurate. For example, with 
sin x, If"' I max = 1; hence the error is bounded by h3 /16 in radian units. There
fort, parabolic interpolation give four-place accuracy in a table at 6° intervals! 
More generally, unless If'" I max > 10, six-place tables can be extended by par
abolic interpolation to all x if h = 0.01, without an appreciable loss of accuracy. 
The same is true of nine-place tables if h = 0.001 (and of three-place tables if 
h = 0.1). 

For these reasons, higher order interpolation is unnecessary for most tables 
in common use. 

Caution. The approximations to a given function f(x) on a fixed interval, 
defined by polynomial interpolation over that interval, are not necessarily good 
approximations to f(x), e~en if f(x) is analytic. Thus, the approximations to the 
analytic functionf(x) = 1/(1 + x2), obtained by the Gregory-Newton interpo
lation formula (10), do not converget to f(x) on the interval - 5 < x < 5, but 
oscillate more and more wildly as the step length h tends to zero. 

This shows that Newtonian interpolation cannot be used to define the 
approximating polynomials referred to in the Weierstrass Approximation Theo
rem. To get the best such uniform polynomial approximations, one must use a 
very different method due to Chebyshev (see Ch. 11, §7) and Remez. 

4 STABILITY 

The accurate numerical solution of initial value problems for ordinary DEs 
(and systems) involves much more than interpolation error bounds and esti
mates. For one thing, the relative error involves stability considerations. These 
are most easily explained in the special case of linear DEs with constant coeffi
cients, previously discussed in Ch. 3. 

t See J. F. Steffensen, Interpolation, Williams & Wilkins, Baltimore, 1927, pp. 35-38 and the refer
ences given there. 
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A linear dE with constant coefficients is one of the form 

(14) 

where ak are given constants. The solutions of such a dE can be obtained by a 
substitution similar to the exponential substitution of Ch. 3, § 1. Try the 
sequence Yr = pr, where p is a number to be determined. This gives from (14) 
the characteristic equation 

tl5) 

For each root Pk of this characteristic equation, the sequence Yr = p{ is the 
solution of the linear dE (14), which satisfies the initial conditions y0 = 1, y1 = 

m-1 
Pk, • • • , Ym-1 = Pk • 

Midpoint Method. The midpoint method for solving y' = F(x, y) consists 
in first computing y1 (perhaps by Taylor series) and then using the formula 

(16) 

For example, consider again the DE y' = y for the initial condition y(0) = 1, 
whose exact solution is y = e". In this case (16) reduces to 

(16') Yn+I = Yn-1 + 2hyn 

For h = 0. l and y0 = y(0) = 1, the exponential series truncated after five terms 
gives y1 = 1.1052, rounded off to four decimal places. Substituting into (16') 
we can compute the approximate function table for Yr = exp (r/10): 

x 0.I 0.2 0.3 0.4 0.5 0.6 0.7 

y 1.1052 1.2210 1.3494 1.4909 1.6476 1.8204 2.0117 

and so on. After 10 steps, this gives the approximate value e = 2.714, whose 
error is about -0.0043. 

In (16), the characteristic equation is p2 = 1 + 2hp, with distinct roots 

h2 h4 
p, = h ± \t'l + h2 

= ± 1 + h ± 2 + S ± 

For h = 0.l, this gives p1 = 1.10499, p2 = -0.90499 when rounded off to five 
decimal places. The first root differs from the growth factor e0•1 = 1.105171 of 
the exact solution by about 0.00018. This is about 0.27% of 0.105, which 
explains why the O(h2) approximation (16) gives only two-digit accuracy for 
h = 0.1. 
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Stability. By analogy with Ch. 3, §4, we will say that the homogeneous linear 
nth order LlE with constant coefficients (14) is stable when all solutions y, are 
bounded sequences and are strictly stable when all solutions are sequences tending 
to zero, as r - oo. 

Since we can obtain a basis of solutions of (14) of the form rip/, the LlE (14) 
is strictly stable if and only if all roots of the characteristic equation (15) are less 
than one is absolute value. This condition is obviously necessary; it is sufficient 
because lim,_, r1 p' = 0 whenever Ip I < 1. 

The concept of stability brings out a significant aspect of the effectiveness of 
the central difference approximation (16) for integrating numerically the DE 
y' = y. The general solution of (16) is Ap1' + Bp{, where p, = h ± (l + h2) 112 

as above, and A, B are arbitrary constants. The positive root pi, which is approx
imately equal to e0• 1, is dominant in the sense that I Pil > I p2 I . Therefore, the 
term Bp2 can be neglected in comparison with Ap1 for large r, provided that 
A =f,. 0. 

Example 1. For the DE y' = -y, the situation is reversed: the (central) dif
ference approximationyk+1 - Yk-I = -2hy, to the stable DEy' = -y is unstable. 

Thus for h = 0.l, we have p1 = 0.904988, p2 = -1.10499. Although p1 

approximates the exact growth factor p = 0.90584 reasonably well, it is domi
nated by the "extraneous root" p2 which is introduced in approximating a first
order DE by a second-order LlE. As a result, the "approximate solution" will 
ultimately grow like e", whereas the true solution decays like e-". 

Example 2. Consider the difference approximation (16) to the initial value 
problem defined by the DE y' = 2x and initial y(0) = 0. For the true solution y 
= x2, (16) is exact, but it still gives very bad results because of roundoff errors. 

This will be explained in §5; here we simply consider the characteristic poly
nomial of the LlE specified: 

(17) 

The characteristic polynomial of this LlE is 

(18) p4 - 8p3 + 8p - 1 = (µ2 - l)(p2 - 8p + 1) 

whose roots are ± 1 and 4 ± yl5 . One of these is near 8, so that errors tend 
to grow by a factor 8 per time step. The LlE is thus very unstable! 

EXERCISESB . 
In Exs. 1-4, verify the formulas indicated for f E {y4, a uniform mesh with step h, 
0 < 8 < I, and 8 = (I - 0). 

l. J(xo + 0h) = Yo + 8 dyo - (88/2) d 2y0 + O(h2) (Newton) 

2. f(xo + Bh) = Yo + 8!Jy1;2 - (88/4)(!J2y0 + !J2y1) + O(h3) (Bessel) 
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3. J(x0 + 8h) = (8y0 + 8y1) + [(lP - 8)o 2 y
0 
+ (8 3 

- fJ)o 2 y
1
]/6 + O(h 4

) (Everett) 

4. J(xo + 8h) = ½(Yo + Yi) + (8 - ½)oyl/2 - (88/4)(o2yo + o2yo) 
- [88(28 - 1)/12) o3y112 + O(h4) (Bessel) 

5. Find the truncation errors of the formulas of Exs. 1-3, for quartic polynomials 
q(x) = a + bx + cx2 + dx3 + ex4. 

6. (a) Find the cubic polynomial c(x) that satisfies c(O) = y0, c'(O) = y0, c(h) = yi, 

c'(h) = y~. 
(b) Derive your formula as a limiting case of the four-point Lagrange interpolation 

formula. 

7. Test the following t::..Es for stability or instability, by calculating the roots of their 
characteristic equations: 
(a) Un+I = 2un - Un+I (b) Un+I = Un + Un-I 

(c) Un+I - 5un + 6un+I = 0 (d) Un+I = -un-1 

*8. Show in detail that I a + ab I + b2 < 1 is a necessary and sufficient condition for the 
strict stability of the ilE Yn+2 = ayn+1 + byn. 

9. Derive necessary and sufficient conditions for the strict stability of a general linear 
third-order t::..E with constant coefficients. 

*5 NUMERICAL DIFFERENTIATION; ROUNDOFF 

Using Taylor series with remainder, one can in principle obtain approxima
tions to the derivatives of tabulated functions having arbitrarily high orders of 
accuracy, from suitably designed difference quotient and divided difference 
formulas. 

For example, whereas the usual forward difference quotient formula ilf/h has 
only O(h) accuracy, and even the central difference quotient formula l'Jf/h has 
only O(h2) accuracy, formula (3) of §I has O(h4) accuracy. Likewise, we have the 
truncation error estimates 

(19a) 

(19b) 

ilf J" (x)h f "' (x)h2 fv(~)h3 
- - J'(x) = -- + ~- + --
h 2 6 24 

l'Jf J"' (x)h2 r<~)h4 
h - f'<x) = 24 + 1920 

where ~ is in the interval over which the difference is being taken. This illustrates 
the general principle that central difference quotients give more accurate 
approximations to derivatives than forward or backward difference quotients of 
the same order. We can obtain truncation error bounds similarly: 

(19c) I [f(x + h) - J(x - h)] _ J'(x) I 
2h 

IJ'" I maxh 2 
<-=-----'-'=-

6 
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Note that the interval in (19c) is twice as long as in (19b); hence, the truncation 
error is multiplied by about four. 

Similar approximations can be made to f"(x), using second difference quo
tients. For JE @2, we have 

03/(x) = f(x + h) - 2f(x) + j(x - h) 

h2 
= [f(x) + hf'(x) + 21"(~1)] - 2J(x) + ½ (f(x) - hf'(x) + h3/"(~2)] 

= h2[f"(~1) + J"(~2)J 
2 

for some numbers ~1 and ~2 in the intervals [x, x + h] and [x - h, x], respec
tively. Hence o3//h2 lies between the minimum and maximum values off"(~) for 
~ in the interval x - h < ~ < x + h. Since a continuous function assumes all 
values between its minimum and maximum, and sincef"(x) is continuous in the 
interval, we conclude that 03/ = h3/"(~) for some~ in [x - h, x + h]. This shows 
that the difference quotient o3//h2 is a good approximation to the derivative J" 
for small h. Since o3//h2 can be computed by consulting a numerical table of 
f(x), the preceding formula may again be regarded as one for approximate numer
ical differentiation. This is written in the formf"(x) = o3/(x)/h2, where the symbol 
= means "is approximately equal to," as in Ch. 7, §2. 

For J E @4, the preceding analysis can be refined to give an estimate of the 
truncation error. Taylor's formula with remainder gives 

where x - h < ~ < x + h. Since f 0(~) assumes all values between its minimum 
and maximum values on this interval, we can write 

(20) 03/- h3/"(x) = h:fw(~)/12, 

This formula gives the truncation error estimate 

in the formula J"(x) = o3/(x)/h2 for numerical differentiation. This formula 
shows that the truncation error is of the order of h2, and tends to zero fairly 
rapidly when the step h is taken smaller and smaller. 

Higher-order Derivatives. The preceding truncation error estimates and 
bounds are spe,cial cases of a general result, namely: 
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THEOREM 2. Iffe@<n+2> on I= [x - nh/2, x + nh/2], then 

(21) 

Proof. The cases n = l, 2 have been treated above. Proceeding by induction, 
we get 

f h/2 
of(x) = f'(x + t) dt, 

-h/2 
f

h/2 fh/2 
02/(x) = dt J"(x + t + u) du, • 

-h/2 -h/2 

f
h/2 fh/2 

onf(x) = dt1 dt2 • 
-h/2 -h/2 

f
h/2 

• • f (n)(x + t1 + · · · + tJ dtn 
-h/2 

This is a multiple integral over an n-dimensional domain D with center t = 0 
and volume kn, symmetric under the reflection t1 --+ -t1 (j = l, ... , n). The 
arithmetic mean of the integrands at symmetrically placed points x - T and 
x + Tis, by Taylor's formula, 

for some 0, -1 < 0 < l. Hence, setting T = t1 + · · · + tn and integrating 
over D, we have 

where m and Mare the least and greatest values off<n+2>m for~ in the given 
interval. Since 

and 

and since f (n+2>(~), being continuous, assumes all values between its extreme 
values m and M, formula (21) follows. 

COROLLARY. Under the hypothesis of Theorem 2, we have the truncation error 
bound 

(22) 

where M is the maximum of IJ<n+2>(~) I as ~ ranges over the given interval. 
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Roundoff Errors. In the preceding discussion, as in the error estimates and 
error bounds derived in Ch. 7, it has been tacitly assumed that all arithmetic 
operations and readings from function tables were exact, to an unlimited num
ber of decimal places. In reality, however, only a finite number of significant 
digits are used. This leads to a source of error called the roundoff error, which 
has been ignored previously in this book. The errors discussed previously are 
referred to technically as truncation errors, or discretization errors. 

In polynomial interpolation of low order, the roundoff error is not a serious 
problem. For I k I < h, formulas (12)-(14) show that the roundoff error affects 
only the last decimal place tabulated. For instance, writing k/h = r, parabolic 
interpolation gives J(x1 + rh) = w0y0 + W1Yr + W2Y2, where Wo = (r 2 - r)/2, 
w1 = 1 - r2, w2 = (r + r 2)/2, and I rl <½,if the three nearest tabulated values 
are used. Since 

(23) 

and tabulated values are correct to½ in the last decimal place, the roundoff error 
is at most one in the last decimal place. 

In numerical quadrature formulas, which also have the form Ewlv'k per step 
with Ewk equal to the mesh length, the maximum roundoff error is similarly 
bounded by the length of the interval multiplied by the maximum tabulation 
error (ordinarily½ in the last decimal place). 

However, the effect of roundoff can be dramatic in other cases, as Example 
2 of §4 demonstrates. The truncation error is zero in this example; hence if 
h = k or some other binary fraction, the computer printout will also be exact. 
But if h = O.l (which is not binary), the small initial roundoff error is amplified 
by a factor 8 at each step, and dwarfs the true solution after 10 or 20 steps. 

Empirically, roundoff errors are nearly independent, and randomly distrib
uted in the first untabulated dedmal place with a mean nearly zero. Hence,t the 
cumulative roundoff error has a roughly normal distribution on a Gaussian 
curve, and the probable cumulative roundoff error with n equal subdivisions is 
only 0(1/Vn) times the maximum cumulative roundoff error. 

Similar results hold for the numerical integration formulas to be considered. 
The roundoff errors may be thought of as "noise," superimposed on the system
atic truncation error. Both are amplified in the course of the calculation by a 
factor of at most eL(h-a>, where L = sup oF/ox is the one-sided Lipschitz con
stant, and (b - a) is the interval of integration.! The reason for this is that, for 
Las defined above, 

(24) [y(x) - z(x)]' = F(x, y) - F(x, z) < L(y - z) if y>z 

see also Ch. 1, Theorem 5. 

t By the central limit theorem of probability theory. 

::: For a careful analysis of the cumulative roundoff error, see Henrici. 
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It is interesting to compare the truncation error bound (19c) with the cor
responding roundoff error bound, which is 1 o-m /2h if an m-place table is used. 
When h < (3/lOmlf'" I maJ113, therefore, the roundoff error exceeds the trun
cation error. To minimize the sum ( If"' I maxh2/6) + (1 o-m /2h), which is the max
imum total error if both terms have the same sign, set 2h3 = 3 /1 om If'" I max· This 
shows that the maximum total error with parabolic interpolation into an m-place 
table cannot be reduced below 

and that one loses accuracy if lf~xl < 2, by choosing h smaller than 0.04, if a 
four-place table is used to approximate f'(x) by a central difference quotient. 

For example, for the function f(x) = sii;i x, where f 0 (x) = sin x, since f 0 (x) 
ranges between - 1 and l, the maximum truncation error is approximately h2/ 
12, and the maximum roundoff error is 2 X 10-5 jh2, using five-place tables. To 
minimize the greater of the truncation error (which tends to zero with h) and 
the maximum roundoff error, we must make h2/24 = 10-5 jh. Hence, we min
imize the maximum total error off"= o2jjh2 near h4 = 2.4 X 10-4 or h = 
0.13 radian = 8°, roughly, a surprisingly large interval! 

Roundoff errors are not considered further in this chapter. This is partly 
because, with high-speed computing machines, truncation errors are usually big
ger unless h is very small (most modern machines carry at least ten decimal dig
its), and partly because the analysis of roundoff errors involves difficult statistical 
considerations. 

EXERCISESC 

1. Show that the effect of roundoff errors on tenth differences is bounded by about 500 
X 10-n in n-place tables. 

2. Show that hf'(x0 + h/2) = oy 112 - (l/24)o3y112 + O(h5). 

3. Show that hf'(x0 + h/2) = oy 112 - o3y112/24 + o5y1!2fl920 + O(h7). 

4. Given a six-place table of sin x (x in radians), show that the approximate formula 
Ji ~ o2.fo/h2 has a combined truncation and roundoff error bounded by 2/106 h2 + 
h2/12, and that this expression has a minimum of about 0.0008, assumed for h 
about 0.07. 

5. (a) Show that h2j" = o2J- 01//12 + O(h6). 

*(b) Show that h2f" = 03/- 01//12 + o6J/90 + O(h8

). 

6. Show that for y E {y8

, we have o2 y
0 

= h2[yi + 02 yi;12 - o4 yi/240] + O(h8

). 

7. Show that, for small h, the ~E (10) provides a strictly stable approximation. 

*6 HIGHER ORDER QUADRATURE 

As we have emphasized repeatedly, it is especially easy to derive accurate 
numerical formulas for solving DEs of the form u' = u(x)-that is, for numer-
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ical quadrature. In this section, we will derive a rigorous error bound for Simp
son's Rule (Ch. 1, §8), by a method which is applicable to a wide variety of 
numerical quadrature formulas. In the next section, we will discuss two other 
remarkable quadrature formulas, which seem to have no analogs for other DEs. 

Let 0 < r0 < r1 < rn < l be given, and let X; = a+ r;h, h > 0, so that 

(25) 

For any function f e @n+2, let p(x) be the Lagrange polynomial interpolant of 
degree n to the y; = fix;) at the x;, Then the approximation of f(x) !::::! p(x) is 
associated with a formula for numerical quadrature, namely 

(25') 
rb rb n n 

J a f(x) dx !::::! J a p(x) dx = ~ w;y, = ~ w;f(x;) 

The coefficients w, are the integrals of the polynomials p,(x)/p,(x,) in (5); 
. 

(26) 
l rb 

w, = P,(x;) J a p,(x) dx, P,(x) = IT (x - x} 
j'l'i 

Formula (25') is exact for all polynomials for degree < n, since thenf(x) = p(x). 
For other functions, the error in (25') is - J! e(x) dx, where -e(x) = p(x) -
f(x). Hence, by Theorem 1, the error in (26) for any given n is of the order of 
hn+2 at most. We have proved the following theorem. 

THEOREM 3. For any choice of real numbers r; with O < r0 < r1 < · · · < rn 
< 1 and weights w, de.fined by formula (26), we have, for all f E @n+2 [a, b]; 

rb n 
Ja f(x) dx - L wJ(a + r;h) = O(hn+2) 

a i=l 

Setting n = l and r0 = 0, r 1 = 1 in the preceding formulas, we obtain p0(x) 
= x - Xi, p 1 (x) = x - x0• Therefore 

W1 = f x1 (x - Xo) dx = X1 - Xo = !!:. 
xo X1 - Xo 2 2 

A similar calculation gives w0 = h /2, so that the formula for trapezoidal quad
rature (Ch. 7, §6), 

(27) 
ra+h h h 

Ja f(x) dx !::::! 2 [J(a) + f(a + h)] = 2 (y0 + y1) 
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is obtained as a special case of (25') and (26). In this special case, the error e(x) 
satisfies by Theorem 1, applied to the linear interpolant L(x) to f(x) 

e(x) = L(x) - f(x) = ½(x - x0)(x1 - x)J"(~) 

for some~ = ~(x), in the interval x0 < ~ < x0 + h = x1. Since 

f x1 L(x) dx = h(yo + Yi) 
XO 2 

the error J;~ e(x) dx = J~ e(x0 + t) dt in trapezoidal quadrature satisfies 

l lh JXJ l lh - J:Oin t(h - t) dt < e(x) dx < -2 J:Oax t(h - t) dt 
2 0 Xo 0 

Since J~ t(h - t) dt = h3 /6, we obtain formula (24) of Ch. 7: 

(28) 

Applying (28) to each component of any vector-valued function x(t) E @2, we 
have 

for some Tin the interval [t0, t0 + h], and for each component xk. By choosing 
one axis parallel to the error vector J:~ x(t) dt - h(x0 + x 1)/2, we obtain, as a 
special case of the preceding result, the inequality 

I I.II h I h3 
x(t) dt - - (x0 + x 1) < - !sup x"(T) I, 

to 2 12 

The relative truncation error is thus O(h2), as is to be expected from a formula 
that neglects quadratic terms. 

Note that the vector analogs of the Mean Value Theorem and of (28) are 
false. For example, let x(t) = (t3, t4), t0 = 0, and t1 = 1. Then 

(
1 1 (1 3 ) Jo x(t) dt - 2 (x0 + X1) = - 4, 10 

is not equal to -x"(T)/12 = -(6T, 12T2)/12 = -(T, 2T2)/2 for any Tin [0, l]. 
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Simpson's Rule. Formula (8) for parabolic interpolation leads similarly to 
Simpson's rule: 

h = x2 - x1 = x1 - x0. This formula is exact for quadratic polynomials. Since 
f~h x3 dx = 0, Simpson's rule also is exact for cubic polynomials; this coinci
dence makes Simpson's rule especially practical. 

The error estimate for Simpson's rule (29) will now be derived for any JE&4. 
Consider the cubic polynomial 

satisfying p(x0) = Yo, p(x1) = y1, P'(x1) = y{ = J'(x1), p(x2) = y2, with x0 = x1 -
h, x2 = x1 + h. These conditions amount to a0 = y1, a1 = y~. a2 = l'>2y1/2h2, 

and a
3 

= -a1/h2 + (y
2 

- y
0
)/2h 3

• Hence they can be satisfied for any y0, y1, y2. 

To estimate the error e(x) = p(x) - J(x), translate coordinates so that x0 = 
- h, x1 = 0, x2 = h. Consider the function oft for fixed x 

(30) 

analogous to the function (13) used in proving Theorem 1. We have </>(0) = 
<J>(±h) = </>(x) = 0, and further, </>'(0) = 0, since e'(0) = 0. By Rolle's Theorem, 
the function <l>'(t) vanishes at three places besides t = 0 in the interval - h < t 
< h. Hence <l>"(t) vanishes at least three times in -h < t < h, <J>'"(t) vanishes 
twice, and </>'"(t) vanishes once, at some point t = ~- We thus have, much as in 
(27), 

(31) 

Since p(x) is a cubic polynomial, p'"(x) = 0; therefore -ivm = J'vm. Substi
tuting in (31) and solving for e(x), we get the error estimate 

(32) 

Integrating (32) with respect to x, since x2(h2 - x2) > 0, it follows that the 
truncation error in using Simpson's rule for quadrature over -h < x < h lies 
between m = minf'v(~) and M = maxf'v(~) times the definite integral 

h5 
=-

90 
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Since f E @4, f '"(~) assumes every value between m and M, which gives the fol
lowing theorem. 

THEOREM 4. If f(x) E @iv, the truncation error for Simpson's rule on the interval 
-h < x < his equal to h5f'"(~)/90 for some~ in the interval [-h, h]. 

The relative truncation error is therefore h4J'vm/180. For example, to 
achieve five decimal places of accuracy in computing In 2 = n dx/x, about 104 

points must be taken if Riemann sums are used, about 100 with trapezoidal 
quadrature, whereas 10 are sufficient using Simpson's rule! 

*7 GAUSSIAN QUADRATURE 

In formulas (25) and (26) for numerical quadrature, with the x, as free param
eters, we have 2n + 2 adjustable constants in all. This suggests the hope that by 
properly locating the x,, we can get a formula which is exact for all polynomials 
of degree 2n + 1 or less, since these form a (2n + 1)-parameter family. 

Such a formula was obtained by Gauss; in deriving it, it is convenient to 
renormalize to the interval (-1, 1) and to label the points ~1, ... , ~m, so that 
m = n + l. The formula uses two properties of the Legendre polynomials P m(x) 
defined in Ch. 4, §2, which will be proved in Ch. 11, §6. These properties 
are: 

(i) P m(x) has m distinct zeros x = ~1 < ~2 < · · · < ~m in the interval (-1, 1 ), 
whence Pm(x) = cm(x - ~1)(x - ~2) • • • (x - ~m) for some constant cm. 

(ii) Pm(x) is orthogonal to any polynomial oflower degree: 

if n<m 

We shall assume these results, and also the following definition. 

DEFINITION. The Gaussian quadrature formula of order mis the special 
case of formulas (25') and (26), in which r,_ 1 = (1 + ~J/2, i = l, ... , m, and 
~. is the ith zero of the Legendre polynomial Pm(x). 

THEOREM 5. Gaussian quadrature of order m is exact if f(x) is a polynomial 
of degree 2m - 1 or less. 

Proof By centering the origin and change of scale, we can assume the 
interval of integration to be [ -1, I] without loss of generality. Let f(x) be any 
polynomial of degree 2m - I or less; let p(x) be the Lagrange interpolation 
polynomial of degree at most m - l satisfying p(~,) = f(~,), i = l, 2, ... , m. 
Then e(x) = f(x) - p(x) vanishes at~ ..... , ~m- Hence,t we have e(x) = (x - ~1) 
• • • (x - ~m)b(x), where b(x) is a polynomial of degree at most m - I. 

t This follows by the Remainder Theorem; see Birkhoff-MacLane, p. 75. 
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Therefore, by (i) above, e(x) = c;;;,1Pm(x)b(x) = s(x)Pm(x), where s(x) is a poly
nomial of degree at most m - l. But, by (ii), Pm(x) is orthogonal to any poly
nomial of degree less than m. Hence 

so that (25') and (26) are exact for em by the choice of the t. Moreover, Gaus
sian quadrature is exact for p(x) by the choice of the t; hence, it is also exact 
for the given/(x), completing the proof. 

Let/(x) E @2m[a, a+ h], and let q(x) be the polynomial of degree 2m - 1 (or 
less) satisfying q(xj) = f(x), for x1 = a+ [jh/(2m + 1)],j = 1, ... , 2m. Then, 
by Theorem 1, we have e(x) = q(x) - f(x) = O(h2m) and so 

ra+h ra+h ra+h 
J a q(x) dx - J a f(x) dx = J a e(x) dx = O(h2m+ 1) 

But, by Theorem 5, we have 

Substituting back into the preceding equation, we get 

ra+h m 

(33) Ja j(x) dx - ~ w.J(a + 7jh) = O(h2m+l) if 

This proves the following result. 

COROLLARY. For f(x) E @2m, Gaussian quadrature of order m has an absolute 
error O(h2m+l) and a relative error O(h2m). 

Romberg Quadrature.t For more than a century, Gaussian quadrature was 
the ultimate in ingenious quadrature methods. Then, around 1960, an extrapo
lation method based on the idea of successive mesh-halving (as in Richardson 
extrapolation) to trapezoidal quadrature turned out to be even more accurate in 
many cases. 

Let r<t> be the trapezoidal sum 

h { 0-1 } 
(33') T0 (k) = 2 F(a) + F(b) + 2 ~ F(a+jh) , h = (b-a)/f, f = 2k. 

J=l 

and let T~> = [4mT~~p - T~~ 1]/(4m - 1). Then the Tt> converge extremely 
rapidly to J! F(x) dx. 

t See F. L. Bauer, H. Rutishauser, and E. Stiefel, Proc. XV Symposium on Applied Math., Am. Math. 
Soc. 1963, 199-218. 
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EXERCISESD 

1. Using a five-place table of sin x, x in radians [but not tables of Si(x)], evaluate 

for X = 0.1, 0.2, ... , 1.0 

by Simpson's rule, with h = 0.1. 

2. Show that fl dx/x = In 2 is given by various numerical quadrature formulas, with h 
= 1 /10, as follows: (a) initial point 0.73654401, (b) trapezoidal 0.69377139, (c) mid
point 0.6928354, (d) Simpson 0.6931474. 

3. Use Weddle's rule (Ex. B3, Ch. 7) with 12 subdivisions to compute the approximation 
0.69314935 to In 2 = 0.69314718056. 

4. Use Cotes' rule (Ex. B2, Ch. 7) with 12 subdivisions, to compute the approximation 
In 2 !:'-< 0.69319535. 

*5. Show that 

{x' h [ 1 11 ] 
Jx. J(x) dx = 2 /o + Ji - l2 (llfo + llfi) + 720 (04/o + o4fi.) + O(h7) 

*6. Show that, for n = 3, the Gauss quadrature formula on (-h, h) is 

i {8/(0) + 5 [J(-h ~) + J(h ~)]} 

with truncation error h6/"'(~)/15,750, where -h < ~ < h. 

*7. Show that the error in Hermite's tangent cubic quadrature formula, 

is h6J'"(~)/720, where 0 < ~ < h, if y = J(x) E t>4. 
8. (Simpson's Five-Eight Rule). Show that, if/E t13, then 

l h h 
J(x) dx = - [5/(h) + 8/(0) - J(-h)] + O(h4) 

0 12 

*9. Show that, if /(fJ) is an analytic periodic function, then trapezoidal quadrature over 
a complete period has O(hn) accuracy for all n. 

8 FOURTH-ORDER RUNGE-KUTIA 

In principle, it is easy to derive formulas of numerical integration for y' = 
F(x, y) having an arbitrarily high order of accuracy, if Fis sufficiently smooth. 
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Simply evaluate the successive derivatives of y as in Ch. 4, §8, getting y' = F, 
y" = F = Fx + FF, 

YI/I = F + 2FF + F 2F + y" F xx xy yy y 

Yiu = Fxxx + 3FFxxy + 3F 2Fxyy + F 3Fyyy + y"(3Fxy + 3FF,,) + y"' F, 

and so on. If Fis linear or a polynomial of low degree, the preceding formulas 
may even be practical for computation. 

Then evaluate Taylor's formula, valid for FE er, 

(34) 

ignoring the remainder O(hn+ 1). The relative error in the recursion relation so 
obtained 

(35) 
h2y" 

Yk+ I = Yk + hy~ + __ k + 
2 

is obviously of order n. Hence, by Theorem 9 of Ch. 7, so is the cumulative 
error. Moreover, this one-step explicit method has the advantages of permitting 
a variable mesh length and of being stable for strictly stable DEs. 

The calculation of (35), however, is rather cumbersome since it involves many 
terms. Furthermore, in some cases the derivatives of F can be computed only 
approximately by numerical differentiation, which amplifies roundoff errors 
(§5). A one-step method of integration that gives a high order of accuracy and 
avoids these defects will be described next. 

This approach is based on the idea of obtaining as high an order of accuracy 
as possible, using an explicit, one-step method. It consists in extending the 
approximations of the improved Euler method (Ch. 7, §8) further, so as to 
obtain a one-step formula having a higher order of accuracy. One-step methods 
have the advantage of permitting a change of mesh length at any step, because 
no starting process is required. 

The most commonly used one-step method with high order of accuracy is the 
Runge-Kuttat method. We now describe the LlE used in this method, for the 
first-order system 

(36) 
dx 
- = X(x, t), 
dt 

a<t<b 

with mesh points a = t0 < t1 < t2 < · · · . Let y0 = x(a) be the initial value. 

t Zeits, Math. Phys. 46 (1901), 435-453; C. Runge and H. Konig, Numerische Rechnung, 1924, Ch. 
10. 
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The approximate function table of values y, corresponding to the points t, is 
defined by the LlE 

(37) 

( hk2 h) k3 = X Y· + - t· + -
' 2 ' ' 2 ' 

where the mesh length h = h; may vary with i. 
We now show that the preceding Runge-Kutta method has an error of only 

O(h5) per step.t For simplicity, we restrict attention to the first-order DE 

(38) 
dx 
-=X(xt) 
dt ' ' 

and to the initial condition x(0) = 0. Formula (37) reduces in this case to 

(39) 

where 

(39') 
k1 = X(y,, t,), 

Let x(t) be the exact solution of the DE satisfying x(0) = y0 = 0. Set 
h/2 = 0. Then k2 can be written as 

where x0 = x(0), x 112 = x(0), and subscripts x stand for partial derivatives. Using 
primes to indicate total derivatives with respect to t, so that X' = oX/ot + 

:t The proof that follows was constructed by Robert E. Lynch. 
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X ax;ax, we get 

X'(O, 0)02 X"(O, 0)03 X"'(O, 0)04 5 
x 112 = x0 + X(O, 0)0 + 2 + 6 + 24 + O(h ) 

Since k1 = X(O, 0), it follows that 

so that 

X'(O, 0)02 

2 

X"(O 0)03 
--' ....;__ + O(h4) 

6 

[ X'(O, 0)02 X"(O, 0)03 ] 4 k2 = X(x 112 , 0) - X,,(x 112, 0) 2 + 6 + O(h ). 

For k3, we have, similarly, 

From this formula, since 

x0 = x 112 - X(x1;2, 0)0 + ½X'(x1;2, h/2)02 - !X"(x112, 0)03 

+ f;{X'" (x1;2, 0)04 + O(h5) 

we obtain 

k3 = X(x1;2, 0) + ½X,,<x112, 0)X'(x112, 0)02 - ½X,,(x112, 0)X,,(x112, 0)X'(O, 0)03 

- !Xx(X1;2, 0)X"(x1;2, 0)03 + O(h4) 

Similarly, we have 

and 

so that 
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Finally, we have the relations 

X(x 112, 0) = X(O, 0) + X'(O, 0)0 + ½X"(O, 0)02 + iX"'(O, 0)03 + O(h4) 

X(xi, h) = X(O, 0) + X'(O, O)h + ½X"(O, O)h2 + iX"'(O, O)h3 + O(h4) 

X,,(xi, h) = X,,(x 112, 0) + X;(x 112, 0)0 + O(h2) 

Combining these results, we find that 

Yi = Yo + ( ¾) [k1 + 2k2 + 2k3 + k4] 

h2 h3 h4 
= y0 + X(O, O)h + X'(O, 0) 2 + X"(O, 0) 6 + X"'(O, 0) 24 + O(h5) 

and y0 = x0. Since x(h) is given by 

x(h) = x 1 = x0 + X(O, O)h + X'(O, O)h2/2 

+ X"(O, O)h3/6 + X'"(O, O)h4/,24 + O(h5) 

we see that 

Hence, the relative error is of order four. Therefore, by Theorem 9 of Ch. 7, 
so is the cumulative error. The method of proof consists in comparing various 
Taylor series. 

The main defect of the Runge-Kutta method is the need for evaluating k1 = 
X(x1, 9 for four values of (x1, 9 per time step. If X is a complicated function, 
this may be quite time-consuming. To avoid this repetitious evaluation, many 
computer programs use Adams-type methods instead; see Exercise F8. 

EXERCISESE 

1. (a) Derive a power series expansion for fl.a + h) through terms in h3 for the solu
tion of y' = I + y2 satisfying fl.a) = c. 

(b) Truncating the preceding series after terms in h3, evaluate approximately in 
three steps the solution of y' = I + y2 satisfying f(.0) = 0, setting x1 = 0.5, 
x2 = 0.8, x3 = 1. What is the truncation error? [HINT: Consider tan x.] 

2. Same question for y' = x2 + y2. (The exact solution, rounded off to five decimal 
places, is 0.35023.) 

3. (a) Apply the Picard process to the DE y' = x2 + y2 for the initial value y0 = 0 and 
initial trial function y<0> = 0. Calculate the first four iterates. 

(b) Using the power series method of the text, calculate the Taylor series of the 
solution through terms in x17, and check against the answer to (a). 

(c) Evaluate y(l) numerically at x = I, using the preceding truncated power series, 
and compare with the answer of Ex. 2. 
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4. (a) Apply the Runge-Kutta method to the DE y' = 1 + y2 for the initial value 
y(0) = 0, setting x 0 = 0, x 1 = 0.5, x2 = 0.8, x3 = 1. 

(b) Same question for the DE y' = x2 + y2, with y(0) = 0, and the same mesh. 

5. For the first-order linear system dx/dt = A(t)x, show that the Runge-Kutta method 
is equivalent to 

where A0 = A(t,), A 1 = A(t,+ 112), A2 = A(t,+ 1). 

6. (a) Show that the system u' = v, v' = -u is neutrally stable, and indeed that I (u(t), 
v(t)) I = const. for any solution. 

(b) Show that the Runge-Kutta method is strictly stable, and satisfies 

( h6 hs ) I (u(t + h), v(t + h)) I = 1 - 72 + 576 I (u(t), v(t)) I 

In Exs. 7-11, lety' = F(x, y) = E:,,=o b1k,clyk andy(0) = 0. 

7. Show that 

and 

In Exs. 8-11, let B = b20 + b11 b00 + b02b0/ and B* = b10b01 + b00b0/. 

8. Show that, if y(0) = 0, then we have 

9. Show that, with midpoint integration, y(h) is given by the approximate formula 

and that the truncation error is -h3(B/12 + B*/6) + O(h4). 

10. Show that the improved Euler method gives 

with truncation error h3(B - B*)/6 + O(h4). 

11. Show that the trapezoidal approximation to y(h) is 

with truncation error h3(B/6 + B*/12) + O(h4). 
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12. Check the formulas of Ex. ES against those of Exs. 9-10 above in the special case 
t,_ 1 = 0, t, = h, and A(t) = p(t) = Po + p 1t + p2t2 + · · · of a first-order linear 
DE. 

*13. For the linear DE dx/dt = p(t)x, p(t) = I:~ 0 pk(t - a)k, evaluate x(a + h) through 
terms in h6 by the Runge-Kutta method. Compare this with the Taylor series for 
the exact solution. 

*9 MILNE'S METHOD 

A very different method for solving initial value problems with fourth-order 
accuracy is due to W. E. Milne. Whereas Runge-Kutta methods are based 
_directly on power series expansions, and the Euler methods of Ch. 7 (and Ch. 
1, §8) basically approximate derivatives by difference quotients, Milne's method 
replaces x'(t) = X(x; t) by the equivalent (vector) integral equation: 

(40) x(t) = x(a) + l' X(x, s) ds 

as in Ch. 6, (11). If the integral in (40) is evaluated by Simpson's rule, we get a 
very simple implicit, two-step dE 

(41) 

due to W. E. Milne.t It is perhaps the simplest scheme for achieving O(h4) accu
racy. Moreover, in the case of linear systems x'(t) = A(t)x + b(t), one can solve 
for xk+2 in (41) algebraically. 

Example 3. Consider the linear DE y' = 1 - 2xy of Ch. 7, §7, with initial 
value y(0) = 0 and mesh-length h = 0.1. In this case (41) reduces to 

Yk+2 = [15 + Xk+2r 1[3 + (15 - x,Jyk - 4xk+1Yk+1] 

Evaluating y(0.l) = 0.09934 by power series, Milne's formula gives y(0.2) = 
0.19475. This approximate value agrees to five places with the value of y{¾) 
obtained by power series expansion. The comparison suggests that the mesh 
length h = 0.l is adequate for four-place accuracy. Repeated use of (41) then 
gives the following approximaJe function table. 

X 0.1 0.2 0.3 0.4 0.5 

y 0.09934 0.194 75 0.28.264 0.36000 0.42444 

t W. H. Milne, Numerical Solution of Di.fferential Equations, John Wiley & Sons, 1953. 
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The truncation error is about 10-5, as can be verified by use of the power series 
solution 

00 

2 3 4 5 y=x--x +-x + _'°'a x2k+1 - £_, 2k+I , 
a2k+1 -2 --=---
a2k-1 2k + 1 3 15 k=O 

which gives y(l) = 0.538079. 
Having been successfully used in a wide variety of DEs, Milne's method pro

vides an excellent illustration of implicit, two-step methods. 

Starting Process. Given the initial value y0 = c = j(a), one must compute 
y1 by a one-step method before one can begin to apply a two-step method. For 
analytic F, it is usually best to calculate y1 = j(a + h) by expanding j(x) in a 
Taylor series as in Ch. 3, §7. When Fis not analytic, but fairly smooth (say, if 
FE @4), good approximations to j(a + h) are often obtained by repeated mesh
halving of the interval [a, a + h], using a one-step method with a lower order 
of accuracy. For instance, we might first compute j(a + h/8) by midpoint inte
gration, and then use Milne's formula to get j(a + h/4) = y114 from y0 and y118. 
Next we compute y112 from y0 and y114 by a second application of Milne's formula 
with mesh length h/4, finally getting y1 from y0 and y112 by a third application of 
the same process. 

Iterative Solution. Although (41) can be solved algebraically for linear DEs 
and systems, for nonlinear DEs one must resort to iterative methods to compute 
xk+2 from xk and xk+I· One can do this by a method analogous to Picard's 
method of successive approximation (Ch. 6, §7), as follows. First rewrite Milne's 
equation (40) in the following form 

(42) 

where all quantities are known except xk+ 2. 

Regarded as an equation in the unknown vector xk+2, (42) has the form 
xk+2 = U(xk+2), where the function U is computable. For any initial trial value 
xi0J2, one can hope that the sequence 

(42') (3) _ TT( (2) ) 
Xk+2 - LJI Xk+2 , • • • 

will converge fairly rapidly to the true solution. 
In the case of a single DE x'(t) = X(x, t), we now show that this will be the 

case if X satisfies a Lipschitz condition, where L is the Lipschitz constant and h 
is small. More precisely, iteration converges if h < 3/L, and it converges rapidly 
if h « 3/L. This results from (42'), in which 



258 CHAPTER 8 Efficient Numerical Integration 

Hence, if 0 = hL/3, we have by induction on r 

For h < 3/L, 0 < land so the sequence ofxft2 is a Cauchy sequence; let xk+2 

be its limit. Moreover U is a contraction which shrinks all distances by a factor 0 
or less, and so is continuous. Hence, passing to the limit on both sides of the 
equation xftJ> = U(xi12), we get (42). 

*10 MULTISTEP METHODS 

Milne's method (41) is evidently a two-step method in the sense that each new 
value of an approximate solution is computed using the two preceding values. 
In this section, we will study Milne's method more critically, and describe other 
multistep "Adams-type" methods. 

Multistep methods are usually best executed as predictor-corrector methods, 
in the sense of Ch. 7, §8. An explicit "predictor" formula based on extrapola
tion is made to yield higher order accuracy by one or two iterations of an implicit 
"corrector" formula. 

Milne's Predictor. Thus with Milne's method, we can use the predictor 

(43) 

which has O(h3) absolute, and 0(h2) relative accuracy. To get 0(h4) relative 
accuracy from this, we must iterate twice with the corrector (41). Alternatively, 
for k > 2, one can use the four-step (five level) predictor 

(43') 

which has 0(h4) accuracy, and apply the corrector (41) once. 

Stability. Unfortunately, like the two-step approximation YHI = Jk-l + 
2hy~ discussed in §3, Milne's method can give an unstable difference approxi
mation to a stable DE-and in fact it does this in the case of y' + y = 0. This 
can be verified by solving the relevant characteristic equation, which is 

(44) 

Setting p = l - h + h2/2! - h3/3! + h4/4!, it is easily verified that Eq. (44) 
holds through terms in h4, confirming that one characteristic root p1 = e-h + 
0(h5). This corresponds to relative 0(h4) accuracy. Unfortunately, the other root 
p2 = -1 - h/3 + 0(h2); hence, the magnitude of the error will grow exponen-
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tially like e'/3 with alternating sign. Therefore, computed values will ultimately 
oscillate with increasing amplitude, whereas the exact values tend smoothly to 
zero. 

Adams-type Methods. The preceding instability is avoided by more sophis
ticated multistep methods. One of the most successful of these uses the predictor 
formula of Adams and Bashforth (1883) 

3 

(45) Yk+I = Yk + h L flm V"'Xk 
m=O 

where {)0 = 1, {) 1 = ½, {)2 = -fu, {)3 = J. This is followed by the explicit corrector 
formula of Moulton (1926). 

3 

(46) Yk+I = Yk + h L 'YmV"'Xk 
m=O 

where 'Yo = 1, 'Yi = -½, -y2 = --h, -y3 = --h_, and 

By combining the results of §4 and §10, it is possible to derive an a priori 
error bound for Milne's method. Specifically, we can prove that the cumulative 
truncation error, over any fixed interval [a, a+ 7], is bounded by Mh4 for some 
finite constant M, that is, independent of the mesh length h. This is true, pro
vided that both y0 and y1 are accurate to O(h5). 

Indeed, let y(x) be any exact solution of the DE y' = F(x, y), and let ¢(x) = 
F(x, y(x)). Then by Theorem 4, we have 

where lek+2 1 ~ l<!>mlmaxh5/90. From this, a discussion like that of Ch. 7, §10, 
yields the bound 

(47) M = I¢'" I maxCeLT - 1)/90L ( 1 - ~) 

Finally, we can express <f>w(x) in terms of F and its derivatives, just as in Ch. 4, 
§8: 

and so on. Combining these results, we can compute Ma priori in terms of the 
values of F and its derivatives, thus getting an explicit error bound. 
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A priori error bounds, like the preceding, are seldom useful for methods hav
ing O(h4) accuracy. One reason is that they are so complicated. In practice, reli
ance is usually placed on a posteriori error estimates, which utilize computed val
ues. Another reason is that they neglect roundoff errors. 

EXERCISESF 

1. (a) Show that, for the DE y' = y and h = 0.1, Milne's method amounts to using the 
~EYH2 = (31yk + 4yk+1)/29. 

(b) Integrate the DE y' = y from x = 0 to x = 1 by Milne's method with h = 0.1, 
for the starting values y0 = 1 and y1 = 1.1052. 

2. Same question for the DE y' = 1 + y2, using the starting values y0 = 0 and y1 = 
0.1003. 

3. Same question for the DE y' 
0.00033. 

x2 + y2, with the starting values Yo = 0 and y1 = 

Exercises 4-6 concern the two-level midpoint method, defined by (16). 

4. (a) Show that, if y' = F(x, y), where Fe f: 2, then y = fix) satisfies the two-level mid
point formula (16) with discrepancy O(h3). 

(b) Show that, if FE f: 4 and Yn-i, Yn are exact, the truncation error is Kh3 + O(h4). 

5. (a) Integrate y' = y approximately by the two-level midpoint method with h = 0.1, 
taking y0 = 1, y1 = 1.1052 as starting values and integrating to y10 = 2. 7145. 

(b) Estimate the discrepancy and the cumulative truncation error in (a), comparing 
them with the roundoff error. 

6. (a) Do the same as in Ex. 5a but for the system y' = z - 2y, z' = y - 2z and the 
starting values y0 = 1, z0 = 0, y1 = 0.8228, z1 = 0.0820, computed by the Taylor 
series method. • 

(b) Show that the system in question is stable but that the approximating ~E is not. 
Explain why the computed table is approximately correct, although the method is 
unstable. 

7. (a) For general h > 0, set 

Yo= 1, ( 1 h h2) y = 1 + h + h2 - + - + -
I 2 6 24 

and Yn+I = Yn-1 + 2hyn 

Show that IYn - enh I = O(h2), as h -+ 0 with nh constant. 
(b) If h = 10-P and the roundoff error is 10-P, infer that the cumulative total error 

is O(lQP-h). 

8. Adams three-level methods for integrating y' = F(x, y) are 

(explicit) 

(implicit) 

Show that the truncation error of (A3) is O(h4) per step, while that of the implicit 
method (A~) is O(h5). 



CHAPTER 9 

REGULAR SINGULAR 
POINTS 

1 INTRODUCTION 

We briefly discussed the complex exponential function of a complex variable, 
w = i'z, in Chapter 3, §2. There we used its properties to explain the behavior 
of ln z = J dt/t, the natural logarithm of z, and the power function i = I In• 

for an arbitrary real or complex exponent A = µ + iv, as z = x + iy ranges 
over the complex plane. In the rest of that chapter, however, we assumed the 
independent variable to be real. 

In the present chapter, we shall consistently be considering complex-valued 
functions w = J(z) of a complex independent variable z, and the behavior of 
such functions as z varies in the complex domain. Specifically, we shall usually 
be studying functions that satisfy some second-order, linear homogeneous ordi
nary DE of the form 

We shall be particularly interested in the way in which their behavior depends 
on the coefficient-functions Pi(z) (j = 0, 1, 2), much as (in Ch. 2) we considered 
the analogous questions for real t and pi(t), extending the results to higher-order 
DEs in Chapter 3. 

Throughout, we shall be exclusively concerned with analytic functions. Here 
an analytic, or holomorphic, function w = J(z) of a complex variable z = x + iy is 
one having a complex derivativef'(z) = dw/dz at every point.t This is equivalent 
to the definition given in Ch. 4, §5, as is proved in books on complex analysis: 
any complex analytic function can be expanded in a convergent power series. 
An analytic DE is one in which the functions involved are all analytic. Its solu
tions are then necessarily also analytic (Ch. 6, §11). 

The solutions of analytic DEs are best studied as functions of a complex var
iable, because their isolated singular points are surrounded by connected 
domains in the complex z-plane. This permits one to continue solutions beyond 
and around isolated singular points, whereas on the real line, solutions termi
nate abruptly at singular points. 

t Ahlfors, p. 24; Hille, p. 72. Some knowledge of complex function theory is assumed in this chapter. 

261 
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For instance, consider the DE dujdx = u2 for real x and u. The formula 
u = - l jx defines two real solutions of this DE; one defined for x > O; the other 
for x < 0. As x - 0, one solution tends to +oo, and the other to -oo; the beha
vior of these two solutions near x = 0 seems to be unrelated if x is restricted to 
real values. On the other hand, consider the same DE dwjdz = w2 for complex 
z = x + iy and w = u + iv. The formula w = - ljz defines a single 
solution of the DE, in a domain D that includes every point of the complex z-plane 
except the isolated singular point at z = O; hence, it includes both real solutions. 
The general solution of the same DE is the complex-valued analytic function 
w = lj(c - z). This function has an isolated singularity at z = c. 

The DE dw/dz = w2 is defined and analytic for all z and w, real or complex. 
Each particular solution w = lj(c - z) of this DE is defined in the punctured 
z-plane with the point z = c deleted. Since this domain is connected, the solution 
can be continued as an analytic function from any region in it to any other. This 
process of analytic continuation is uniquely defined, for any given path of 
continuation. t 

The (real) solution w = u = -ljx of dwjdz = w2 on the negative x-axis is 
obtained by analytic continuation in the complex plane from the solution u = 
-1/x of dujdx = u2 for x > 0. This is evident if we continue the solution as a 
complex analytic function w = (-x + iy)j(x2 + y2) around the origin on either 
side. The fact that the analytic continuation of a solution of a DE is a solution 
of the analytic continuation of the DE is valid in general, as we shall prove in 
§4. 

Example 1. Consider the first-order Euler homogeneous DE 

(1) 
dw "fW 
-=-
dz z 

'Y = a + if), a, f) real 

By separating variables and writing z = re'8, we find the solution 

W = z'Y = e'Y In z = e<a+z/3)(1n r+zll) 

= e<a In r-fJll)[cos (f) In r + a8) + i sin (f) In r + a8)] 

When f) = 0 and 'Y = a is real, the analytic continuation of the real solution 
u = x a on the positive x-axis through the upper half-plane to the negative 
x-axis, where 8 = 1r, is (cos 1ra + i sin 1ra) Ix I a. Note that this is not equal to the 
real solution Ix I a on x < 0, unless a is an even integer. 

The preceding example also shows that DEs involving only single-valued func
tions can have multivalued solutions in the complex plane. Unless 'Y is a real 
integer, the value of w = z 'Y changes by a factor 

t Ahlfors, p. 182; Hille, p. 209. 
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when z describes a simple closed counterclockwise loop around the origin, mak
ing 8 increase by 21r and ln z by 21ri. This example shows that solutions of a linear 
DE can have branch points where the DE has a singular point,t even though the 
DE has single-valued coefficient-functions. 

Example 2, The second-order homogeneous Euler DE is 

(2) z2w" + pzw' + qw = 0, p, q real constants 

For positive z = x > 0, a basis of real solutions is provided by the real and 
imaginary parts of the functions z'Y = e-r 10 ', where 'Y is either of the roots of the 
indicial equation 

(2') v2 + (p - I )v + q = 0 

For instance, the roots of the indicial equation of the DE 

z2w" + zw' + w = 0 

are v = ± i. A basis of complex solutions, real on the positive x-axis, is therefore 
provided, as in Ch. 3, §3 by the real and imaginary parts of the functions 

= cosh 8 cos (ln r) - i sinh 8 sin (ln r), and 

w2 = i, (z' - z-') = cosh 8 sin (ln r) + i sinh 8 cos (ln r) 

The analytic continuation of the solution cos (ln x), real on the positive x-axis 
8 = 0, through the upper half-plane to the negative x-axis 8 = 1r is not the 
solution cos (ln Ix I) = cos (ln r) given in Ch. 3, §3 but is the complex-valued 
function cosh 1r cos (ln r) - i sinh 1r sin (ln r). 

*2 MOVABLE SINGULAR POINTS 

The general solution of the DE w' = w2 considered in §1 is 1/(c - z). This 
function has a pole at the variable point c. Thus, the location of the singular 
point of a solution depends in this example on the particular solution. This hap
pens for most nonlinear DEs; one describes the situation by saying that the "gen
eral solution" of w' = w2 has a movable singular point. 

t We define a singular point of the linear DE 

as a point where p0(z) "" 0, or some pk(z) has a singular point. 
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A second example of movable singular points is provided by the DE w' = 
z/w. The general solution of this DE, obtained by separating variables, is the 
two-valued function w = (z2 - c2) 112, which has branch points at z = ±c. Since 
c is arbitrary, the general solution has a movable branch point. 

There is no significant class of nonlinear first-order normal DEs whose solu
tions have fixed singular points. However, the solutions of the generalized Ric
cati DE w' = p0(z) + p1 (z)w + p2(z)w2 have .fixed branch points. t This can be 
shown by representing w = v' /p2v as a quotient of solutions v of the linear DE 
v" + P1V' + PoP2v = 0, as in Chap. 2, §5. 

A second-order nonlinear DE having a fixed singular point at z = 0 is 

w" = (w'2/w) - (w' /z), 

whose general solution is w = Cz 'Y, with C, 'Y arbitrary complex constants. But 
nonlinear DEs with fixed singular points are highly exceptional. 

It is otherwise for linear DEs, to which this chapter will be largely devoted. 
An nth order normal linear DE 

+ Pn-1(z)w' + pn(z)w = flz) 

with holomorphic coefficient functions has holomorphic solutions in any 
domain where the coefficient functions are holomorphic. The argument of Ch. 
6, §8, can be applied to construct solutions along any path. Moreover, as in Ch. 
6, § 11, all the functions constructed in the Picard iteration process are holo
morphic in any simply connected domain, say in 0 < I z I < R. It follows, as in 
Corollary 2 of Theorem 10 of Ch. 6, that the DE L[w] = 0 has a basis of holo
morphic solutions in any such domain-and that L[w] = flz) has a solution for 
any choice of initial conditions compatible with the order of the DE. 

It follows that the only possible singular points of the solutions of a normal 
linear DE occur where one or more of the coefficient-functions pk(z) has a sin
gular point. In short, linear DEs have fixed singular points. In the remainder of 
this chapter, we will see how the nature of these singular points is determined 
by the singularities of the coefficient-functions. 

3 FIRST-ORDER LINEAR EQUATIONS 

The study of singular points of linear DEs in the complex domain begins with 
first-order DEs of the form 

(3) w' + p(z)w = 0 

We will treat only isolated singular points, assuming that p is holomorphic in 
some punctured disk Ll: 0 < I z I < p, since any singular point can be moved to 
the origin by a translation of coordinates. 

t The Riccati DE is the only first-order nonlinear DE with fixed branch points. 



3 First-Order Linear Equations 265 

It follows that p(z) can be expanded into a Laurent series,t 

00 
(3') 0< lzl <p 

-oo 

convergent in d. When all ak with k < 0 vanish, p(z) is said to have a rem_ovable 
singularity; when there is a largest negative integer k = -m for which ak =fo 0, 
p(z) is said to have a pole of order m there. If there are an infinite number of 
nonzero coefficients ak with k < 0, then p(z) is said to have an essential singularity 
at the origin. 

In all cases, every nontrivial solution of (3) is given by Theorem 1 of Ch. 1, 
§3, as 

w = exp[ - J p(z) dz] 

(3") 00( ) 00( ) ak-1 k a-k-1 = C exp[ -a_1 ln z - L - z + L -- z-k ] 
k=I k k=I k 

As a corollary, we can represent the solution w in the form 

(4) w = Cz'Yg(z), 

where g(z) is a holomorphic function in the domain d. 

Caution. When 'Y is complex the innocent looking function z 'Y = e 'Y 10 • can 
be quite nasty. The discussion of z'Y in Ch. 3, §2, should be reviewed in the con
text of Riemann surfaces. For example, writing z = e'8 in the usual polar coor
dinate representation, but letting 8 wind around the origin on an infinite
sheeted "winding surface" for z =fo 0, I z' I = e-0 and arg(z') = ln r. Hence z' is 
unbounded for I z I = 1, though bounded for I z I = r on any one sheet of the 
Riemann surface of z'. 

In general, if z 'Y ('Y = a + i{:3), then as z tranverses any circle I z I = r once 
counterclockwise, z 'Y is multiplied by the constant 

(4') 

Hence w is holomorphic if and only if 'Y is a real integer. 
We now describe the basic classification of singularities for first-order linear 

DEs at any isolated singularity of p(z). In the vicinity of any removable singularity 
of p(z), 'Y = a_ 1 = 0 and so w(z) can be expanded in an ordinary convergent 
Taylor series. Hence, if p(z) has a removable singularity at z = 0, so does w. 

If p(z) has a pole of order one, then (4) holds, where 

g(z) = 1 

t Ahlfors, p. 182; Hille, p. 209. 
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is still analytic. Therefore, w has the form 

(*) 

In this case p(z) is said to have a branch pole of order 'Y at (0, 0), and the DE (3) 
to have a regular singular point at z = 0. The number 'Y can be real or complex, 
rational or irrational. 

Finally, if p(z) has a pole of order exeeding 1 or an essential singularity at z 
= 0, then the DE (3) is said to have an irregular singular point at 0. In this case, 
one can show that g(z) in (4) has an essential singularity at z = 0. For example, 
the DE w' + z-2w = 0 has the solution w = exp[l/f] = Ek=O z-k/k!, easily 
found by separating variables, with an essential singularity at z = 0. 

To prove this, suppose the contrary: that [z'Yg(z)]' + p(z)z'Yg(z) = 0, with 
00 

g(z) = E cki, and cm =I=- 0. Solving for p(z), we get 
k=m 

so that p(z) must have a simple pole at z = 0 unless M + 'Y = 0, in which case 
p(z) has a removable singularity. 

In summary, we have proved the following result. 

THEOREM 1. Every solution of the .first-order linear DE (3), with p holomorphic 
in a, has the form w = z 'Y g(z), where 'Y = -a_ 1 and g is single-valued and analytic 
in d. Removable singularities, regular singular points, and irregular singular points 
of (3) give solutions having removable singularities, branch poles of order 'Y, and essen
tial singularities at z = 0, respectively. 

Theorem 1 was derived by explicit calculation. To extend it to higher order 
linear DEs, which cannot be explicitly solved, more general arguments are 
needed. These require the notion of a simple branch point of an analytic function 
w = J(z). This is defined as an isolated singular point z0 near which J(z) can be 
represented in the form J(z) = (z - z0) 'Y g(z), where g(z) is a one-valued holo
morphic function in the punctured neighborhood of z0. Expanding g(z) in a 
Laurent series, we get the following expansion for a function f having a simple 
branch point at z0: 

00 

J(z) = L ah - z0yr+k 

-co 

Not all branch points are simple; for example, the functions ln(z - z0) and 
(z - z0f + (z - z0}'1 have branch points at z = z0 but do not have simple 
branch points there, unless a - (3 is an integer. Any branch pole (4) is a simple 
branch point, but a simple branch point need not be a branch pole; thus, 
consider z1l 2e- 1!•2 at z = 0. 
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We shall now give another proof of the first result of Theorem 1, namely that 
every solution w(z) of (3) that is not a holomorphic function has a simple branch 
point at z = 0. 

Starting at a point z0 in the given punctured disc, we continue the function 
w analytically counterclockwise around a closed circuit, say the circle I z I = I z0 I -
Returning to z0 after a complete circuit around the origin, the function w(e2,..'z) 

= w(z) obtained in a neighborhood of z0 is still a solution of the DE, by Theorem 
1. But w may differ from the function w in a neighborhood of z0, because the 
function w may have a branch point at z = 0 even though the coefficient p(z) of 
the DE does not have a branch point there; the DE w' = w/2z is a case in point. 

However, the general solution of the DE (3) has the form cw(z); from this it 
follows that 

w(z) = w(e2 ... 'z) = cw(z), C 'F 0 

Now, write c = e2 ... ,a, where a is a suitable complex number, and consider the 
analytic continuation of the function 

around the same circuit. We obtain 

g(ze2,..') = (ze2,..')-aw(ze2,..j = z-ae-21r,aw(ze2,..') 

= z-ae-2...,acw(z) = z-aw(z) = g(z) 

This shows that g is a single-valued function in the punctured disc a. Thus, the 
function w is the product of za and a function without a branch point. 

The idea behind this second (and deeper) proof of the first result of Theorem 
1 can be applied to linear DEs of any order, as we show in the following sections. 

EXERCISES A 

1. Show that no solution of w' = I/z that is real on the positive x-axis can be real on 
the negative x-axis. 

2. (a) Setting z = re'8, discuss the analytic continuation to the negative x-axis of the 
solutions z and z In z of z2w" - zw' + w = 0 on the positive x-axis. 

(b) Show that no nontrivial solution of z2w" + 3w/8 = 0 that is real on the positive 
x-axis can be real on the negative x-axis. 

3. Let w<n> + a1 (z)w<n- 1> + · · · + an(z)w = 0 be any holomorphic linear homogeneous 
DE satisfied by In z. Show that an(z) == 0. 

*4. Show that any holomorphic linear homogeneous DE that is satisfied by z In z is also 
satisfied by z. 

5. Find the function g of Theorem 2 when 
(a) p(z) = I/zn (nan integer) (b*) p(z) = e11• 

n I 
6. Solve the DE (4) for p(z) = L -- . 

k~I z - ak 
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7. Let p(z) be holomorphic and single-valued in I z I < p except at points a and b. Show 
that any solution w1 of (3) can be written in the form 

where f is single-valued and holomorphic in I z I < p except at a and b. 

8. Generalize the result of the preceding exercise to the case that p(z) is single-valued 
for I z I < p and holomorphic at all points except a1, •.. , an. 

9. Prove in detail that solutions of the generalized Riccati equation 

can have branch points only where the Ph) have singular points. 

10. Show that, if the DE of Ex. 9 has no movable singularities, p2(z) == 0. 

11. Show that, for analytic p,(z), the DE dw/dz 

[HINT: Consider the DE satisfied by p/w.] 

n 

L pk(z)w-k has a regular solution. 
k=O 

4 CONTINUATION PRINCIPLE; CIRCUIT MATRIX 

A rigorous discussion of complex analytic solutions of higher order DEs 
involves the concept of analytic continuation, with which we will assume the 
reader to be acquainted.t It also assumes a less well-known Continuation Prin
ciple for solutions of complex analytic DEs, which may be derived as follows. 

Let F(wi, ... , wn, z) be an analytic complex-valued function in a domain D 
of (w1 , •.. , wn, z)-space. This means that F can be expanded into a convergent 
power series with complex coefficients in some neighborhood of each point of 
D. Then, as was shown in Ch. 6, §11, every solution of the nth order DE 

(*) 
<f"W _ I II (n-1) 

n - F(w, w , w , ... ,w , z) 
dz 

is an analytic function. The function w<n>(z) - F[w(z), w'(z), ... ,w<n- 1>(z), z] of 
the variable z is holomorphic and vanishes identically in the subdomain where 
the function w is defined. It follows that all analytic continuations of this func
tion beyond D also vanish identically. Therefore, any analytic continuation of 
the function w is also a solution of the DE (*), and we have the following 
theorem. 

THEOREM 2. (CONTINUATION PRINCIPLE). The function obtained by analytic 
continuation of any solution of an analytic DE, along any path in the complex plane, 
is a solution of the analytic continuation of the DE along the same path. 

t Ahlfors, p. 275; Hille, p. 184. 
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With this theorem in hand, let w1 (z) and w2(z) be a basis of solutions of the 
second-order DE 

(5) w" + p(z)w' + q(z)w = 0 

where the functions p and q are single-valued and analytic in the punctured disc 
d: 0 < I z I < p. Analytic continuation of each of these solutions counterclock
wise around a circle I z I = r < p with center at the origin yields two functions 
(in general different): w1 (z) = w1 (ze2,r;) and w2(z) = w2(ze2,r'). These are, by the 
Continuation Principle, also solutions of the DE (5). Since every solution of (5) 
is a linear combination of w1 and w2: the continued functions w1 can be 
expressed as linear combinations of the solutions w1 and w2, thus: 

w1(z) = w1(e2,r;z) = a11 w1(z) + a12w2(z) 

w2(z) = w2(e2,r'z) = a21w1(z) + a22w2(x) 

The 2 X 2 matrix of complex constants A = 11 a9 11 is called the circuit matrix of 
the DE at the singular point z = 0, relative to the basis of solutions (w1, w2). 

For instance, consider the Euler DE z2w" - zw' + 3w/4 = 0, with indicial 
equation (v - ½Hv - i) = 0. The functions z1/2 and z312 form a basis of solutions; 
hence, the circuit matrix is the diagonal (scalar) matrix 

A similar calculation shows that the DE w" + (2/9z2)w = 0 has the solution 
basis z1 l 3

, z2 l 3
. Relative to this basis, its circuit matrix is 

where w = (- 1 + Y3 i) /2 is a cube root of unity. 

Higher Order DEs. A similar construction can be used to define a circuit 
matrix (relative to any solution basis) for the nth order linear DE 

(6) 

where again all the coefficient-functions pk(z) are holomorphic in the punctured 
disc d. 

LEMMA. Given a basis of solutions wJ<z) of (6), analytic continuation of the wiz) 
around any circle I z I = r in d, once counterclockwise, gives a new basis of solutions 
of (6), 

j = I, 2, ... , n 
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Proof. By the Continuation Principle, the wi<z) satisfy (6); since the wi<z) form 
a basis of solutions, the result follows. 

The matrix A = II a1k I I so defined is the circuit matrix of the DE (6) relative 
to the basis w1 (z), ... , wn(z). It represents a linear transformation of the vector 
space of all solutions of the nth-order linear analytic DE (6), in the following 
manner. If 

is the general solution of the DE, analytic continuation of w around the same 
circuit 'Y carries w(z) into the solution 

n 

(6') w(z) = w(e2,r;z) = L cpikwiz) 
J,k•I 

That is, the effect of analytic continuation around 'Y counterclockwise is to mul
tiply the vector c by the matrix A on the right, so that c - cA. 

Using the circuit matrix A just defined, we can construct at least one "canon
ical" solution of (6) of the special form z'i{z) with f holomorphic in the disc d. 
This is because every matrix hast at least one (complex) eigenvector (character
istic vector). Hence, for some choice of c =f,. 0, we can write cA = Xe, where ;\ 
is a complex number, an eigenvalue of the matrix A. Choose c in (6') to be such 
an eigenvector, and letfiz) = z-aw(z), where a = (ln X)/21ri. It is clear that;\ =f,. 

0, since otherwise we could retrace backward the circuit 'Y, continuing the solu
tion w = 0 into a nonzero solution. Continuing the function fiz) = z-aw(z) 
along the same circuit, we obtain, as in the proof of Theorem 2, the following 
result. 

THEOREM 3. Any nth order linear DE (6) with coefficients holomorphic in 
d: 0 < I z I < p admits at least one nontrivial solution of the form 

(7) 

where the Junction f is single-valued in d. 

5 CANONICAL BASES 

A solution of a holomorphic DE (6) in d has a simple branch point at z = 0 
if and only if it is carried into a constant (scalar) multiple of itself by continua
tion around the circuit -y. From the discussion in the preceding section, we see 
that a solution w(z) = E;=i ciwj(z) of (6) has a simple branch point at z = 0 if 
and only if the vector c = (ci, c2, ... , en) and the circuit matrix A satisfy the 

t Birkhoff and MacLane, p. 293. As stated there, A is a root of the characteristic equation IA = 
;\JI = 0. 
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relation cA = Ac, where the constant A will then be necessarily different from 
zero. In other words, a linear combination Ej= 1 ciw1 of solutions of (6) has a 
simple branch point at z = 0 if and only if the vector c is an eigenvector of the 
circuit matrix A associated with the basis (w1, w2, ... , wn) of solutions. Thus, 
there are as many linearly independent solutions of (6) with simple branch 
points as there are linearly independent eigenvectors of the matrix A. 

We shall now look for a basis of solutions with simple branch points for any 
second-order linear DE (5), with coefficients holomorphic in ~-

Given two linearly independent solutions w1 and w2 of (5), we can construct 
the circuit matrix A = lla9 II as in §4. The linear combination w = c1w1(z) + 
c2w2(z) then will have a simple branch point if and only if Ec1a1k = Ack. By the 
theory of linear equations, this system of equations has a nontrivial solution if 
and only if the following determinant (the characteristic equation of the circuit 
matrix A) equals zero: 

(8) 

Ordinarily, this characteristic equation has two distinct roots A1, A2. These 
roots give two linearly independent solutions F(z) = c1w1(z) + c2w2(z) and 
G(z) = d1w1(z) + d2w2(z), having simple branch points: F(e21r'z) = A1F(z) and 
G(e21r'z) = A2G(z). Relative to the canonical basis of solutions F, G, the circuit 
matrix is thus a diagonal matrix 

As in §4, F(z) = zaf(z) and G(z) = zl3g(z), where A1 = e21r,a, A2 = e21r•fJ, andf and 
g are holomorphic in ~- Such a basis is called a canonical basis. 

When the characteristic equation has a single solution A, the solutions may 
stillt sometimes have a basis of the form (7). Every solution of the DE is then 
multiplied by the same nonzero constant A = e21r,a when continued around a 
counterclockwise circuit -y. 

Otherwise, we choose a basis as follows. Let w1 (z) be the solution of the form 
zaf(z), where J is one-valued in the punctured disc whose existence was estab
lished in Theorem 2, and let w2(z) be any other linearly independent solution. 
Continuation of w2(z) around the circuit 'Y gives, as in §3, w2(ze21r~ = aw1 (z) + 
lrw2(z). The circuit matrix for this basis of solutions is therefore the matrix 

t This occurs when the matrix A is a multiple of the identity matrix. Otherwise, any 2 X 2 matrix A 

with only one eigenvalue is similar to a matrix of the form ( ~ ~). This fact is not assumed in the 

present discussion. 
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Since the eigenvalues of such a "triangular" matrix are A and b, and since the 
only eigenvalue of A was assumed to be A, we must have b = A and 

a,pO 

The continuation around the circuit 'Y of the function h(z) = w2(z)/w1(z) is easily 
computed to be 

It follows that the function 

a f1(z) = h(z) - -2 . In z 
11'ZA 

is single-valued in O < I z I < p and, therefore, that the function w2(z) can be 
written in the form 

In the exceptional case, since a 'F 0, we can make a/21riA = 1 by replacing 
w2 with 21riAw2/a. 

This completes the proof of the following theorem. 

THEOREM 4. Under the hypotheses of Theorem 3, the second-order linear DE(5) 
has a basis of solutions in the neighborhood of the singular point z = 0, having one of 
the following forms: 

(9a) 

or, exceptionally, 

(9b) 

The Junctions f(z), g(z), and fh) are holomorphic and single-valued in the pundured 
disc O < I z I < p. 

Higher Order Equations. t The preceding discussion can be extended to 
nth order DEs (6). A basis of solutions w1, w2, ... , wn is called a canonical basis 
when the associated circuit matrix A is in Jordan canonical formt or, somewhat 

t For a complete discussion see Coddington and Levinson, Ch. 4, §1. 

t See Appendix A or Birkhoff and MacLane, p. 354. 
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more generally, consists of zeros except on the main diagonal and (in the case 
of a repeated eigenvalue) just above it. If the eigenvalues of the circuit matrix 
are A1, A2, ••. , Am the continuation of the solution w1 around a small circuit 'Y 
is given by one of the two formulas 

(10a) 

(10b) 

By Theorem 3, there always is at least one solution that goes into a multiple of 
itself. If all the eigenvalues of the circuit matrix are distinct, then the circuit 
matrix can be reduced to diagonal form by suitable choice of a "canonical basis" 
of solutions, and the exceptional case of formula (10b) does not arise. 

Example 3. Consider the nth order Euler DE 

(11) 

The trial function zv, with unknown exponent v, satisfies the DE if and only if 
the exponent vis a root of the indicial equation of Ch. 4, §2, 

(12) /(v) = v(v - 1) • • • (v - n + l) 
+ c1v(v - 1) • • • (v - n + 2) + · · · + Cn-1V + en = 0 

When the roots of the indicial equation are distinct, the zv1 are a canonical basis 
of solutions of the Euler DE (11). The circuit matrix is the diagonal matrix with 
diagonal entries A1 = e exp 21rivj, where v1 is a root of the indicial equation. 
When v is a k-tuple root of the indicial equation, then the functions zv log z, 
zv(log z)2, and so on, form a basis of solutions. This basis is not "canonical" when 
n > 2 (see Ex. B2), though the circuit matrix for (11) is always triangular relative 
to it. 

EXERCISESB 
I. Construct DEs (5) with circuit matrix 

for which the functions f and g in Theorem 4 have (a) essential, and (b) removable 
singularities at 0. 

2. (a) Compute the indicial polynomial for the homogeneous Euler DE z3wm + 3z2w" / 
2 + zw'/4 = w/8. 

(b) Compute the circuit matrix of the preceding DE relative to the solution basis 
z112, z112(log z), and z1l 2(log z)2. 
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3. Find a DE (5) with circuit matrix(~ 1~ ;\) for which the functions/and gin Theo

rem 4 have (a) poles, and (b) essential singularities. Can f and g have removable 
singularities? 

4. Show that the requirements 0 ~ Re{a}, Re{/3} ~ 1 uniquely determine the exponents 
a and /3 in formula (9a). 

5. Show that, in the exceptional case of Theorem 4, the eigenvalues of the circuit matrix 
are equal. 

6. Show that e --.fi., e -0 form a solution basis for the DE w" + tw' - ¼.w = 0. Compute 
the circuit matrix for the given DE relative to this basis, and also find a canonical 
solution basis. 

7. Construct a second-order holomorphic DE (5) with a singular point at z = 0 whose 

cir~uit matrix has the form ( ! ~ ), such that fin Theorem 4 has an essential singu
lanty at z = 0. 

8. Show that, if w In z satisfies a (homogeneous) linear DE (6) with holomorphic coeffi
cients, and w is holomorphic, then w satisfies the same DE. 

6 REGULAR SINGULAR POINTS 

Many of the ordinary DEs of greatest interest for mathematical physics have 
singular points which are "regular" in the sense of the following definition. 

DEFINITION. A second-order DE 

(13) w" + p(z)w' + q(z)w = 0 

analytic for O < I z - z0 I < p, has a regular singular point at z0 when p(z) has at 
worst a simple pole at z = z0, and q(z) at worst a double pole there.t 

In the next several sections, we shall show how to adapt the power series 
methods introduced in Ch. 3 to solve ordinary DEs in the neighborhood of any 
regular singular point. In particular, we will show that a singular point of the 
second-order linear DE (13) is "regular" if and only if the functions J(z) and g(z) 
of the canonical basis (9a), of solutions constructed in Theorem 4, have at worst 
branch poles there.t Equivalently, the condition is that a basis of solutions have 
the form (25) below. 

t That is, p may either be holomorphic (have a removable singularity) or have a simple pole, and q 
may be holomorphic or have a pole of first or second order. 

;:: Or, in the exceptional case of (9b), poles times logarithmic branch points (order of growth log 
r/r"). 
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We now show that, near the regular singular point z = 0, there always exists 
a formal solution of the DE (13), namely, a formal power series of the form 

which, when substituted into (13), satisfies the DE. To calculate the coefficients 
ck and the exponent v of (14) it is convenient to rewrite (13) in the form 

(15) L[w] = z2w" + zP(z)w' + Q(z)w = 0 

where P(z) = EC:. 0Pkzk and Q(z) = Ef.00,zk are convergent for I z I < p. Sub
stituting (14) into (15) and equating to zero the coefficient of z', we obtain the 
indicial equation 

(16) /(v) = v(v - 1) + P0v + Qo = 0 

for the exponent v. The roots of this equation are called the characteristic expo
nents of the singular point, and /(v) is called its indicial polynomial. 

Equating to zero the coefficients of the higher powers of z, namely 
zv+i, ... , zv+n, ... , we obtain the relation 

and, recursively, 

n-1 

[(v + n)(v + n - 1) + (v + n)Po + Qo]cn = - L [(v + k)Pn-k + Qn-k]ck 
k=O 

Since the left side of the preceding equation is /(v + n)c,., the equation can be 
written in the form 

n-1 

(17) I(v + n)cn = - L [(v + k)Pn-k + Qn-k]ck, n = l, 2, 3, ... 
k=O 

The above equation for the coefficient Cn can be solved recursively for C1, c2, c3, 

... , except in one case: when, for some positive integer n, both v and (v + n) 
are roots of the indicial equation. By taking a characteristic exponent having the 
largest real part, we can make sure that I(v + n) does not vanish for any positive 
integer n, even in this case. We therefore obtain the following theorem. 

THEOREM 5. If the DE (13) has a regular singular point at z = 0, then at least 
one formal power series of the form (14) formally satisfies the DE. Unless the roots of 
the indicial equation differ iJ,y an integer, there are two linearly independent formal 
power series solutions (14) of the DE, whose exponents are the two roots of the indicial 
equation. 
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In the special case of an ordinary (i.e., nonsingular) point, clearly P0 = Q0 

= 0, and the indicial equation v(v - 1) = 0 has the roots 0, 1. In this special 
case, the preceding construction reduces to the methods of Ch. 4, §2. The series 
z(l + E;_ 1ckzk) associated with the larger real root is uniquely determined 
but, because the roots differ by an integer and /(1) = 0, the series associated 
with the root v = 0 is not. 

Example 4. A remarkable class of special functions having regular singular 
points at 0, 1, and oo (see §12), and no other singular points, is obtained by 
applying Theorem 5 to the hypergeometric DE 

(18) z(l - z)w" + [-y - (a + fJ + l)z]w' - afJw = 0 

The hypergeometric DE has regular singular points at z = 0 and z = 
1. The indicial equation at z = 0 is v(v + 'Y - 1) = 0, with roots v1 = 0 and 
v2 = 1 - -y. Unless 'Y is an integer, by Theorem 5 the hypergeometric DE has 
two formal power series solutions with exponents 0 and 1 - -y. Unless 'Y is a 
negative integer or zero, one such formal power series is obtained from the eas
ily computed recursion relations 

(19) (n + 1)(-y + n)cn+I = (a + n)(/3 + n)cm n:2=:0 

Setting c0 = 1, we obtain the hypergeometric series 

F(a, f), -y; z) 
af) a(a + 1 )f)(/3 + 1) z2 

= 1 +-z +-------
'Y -y(-y + 1) 2! (20) 

+ a(a + l)(a + 2)fJ(/3 + 1)(/3 + 2) z3 + 
-y(-y + 1)(-y + 2) 3! 

From the Ratio Test, it follows that the radius of convergence of the series is at 
least one, and is exactly one unless a, f), or 'Y is a negative integer. This also may 
be expected from the existence theorems of Ch. 6, since the radius of conver
gence of a solution extends to the nearest other singular point of the coefficients 
of the hypergeometric DE, which is at z = 1. The function F(a, f), -y; z) defined 
by the power series (20) is the hypergeometricfunction, to be studied in §IO below. 

7 BESSEL EQUATION 

To illustrate the behavior of solutions of second-order DEs near regular 
singular points, we consider an example of great importance in applied mathe
matics. This is the Bessel DE of order n: 

(21) 
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The Bessel DE has a regular singular point at the origin, with indicial equation 
/(v) = v2 - n2 = 0. In physical applications, n is usually an integer or half
integer. But, for theoretical purposes, it is interesting to let n2 be an arbitrary 
complex number. 

By Theorem 5, we can compute a formal power series solution beginning with 
zn, of the form zn(l + c1z + c2z2 + · · · ). From the recursion formulas (17) or, 
more simply, by direct substitution into the DE, we obtain the recursion rela
tions for the coefficients ck: 

(2n + l)c1 = 0, (k + 2)(2n + k + 2)cH2 + ck = 0, k = 0, 1, 2, ... 

Since Re(2n) > 0, the factor (k + 2)(2n + k + 2) cannot vanish. Solving 
recursively for ck+ 2, we obtain the series 

2 4 

zn [ 1 - n ! 1 ( i) + (2!)(n + :)(n + 2) ( i) 
The series in square brackets is an entire function (convergent for all finite z). 
Multiplying by the normalizing factor 1/2I'(n + 1), we obtain the Bessel function 
of order n, already discussed in Ch. 4, §4: 

(22) 

]n(z) = I'(n ~ 1) (iY [ l - n ! 1 (iY 4 

+ (2!)(n + :)(n + 2) (i) 
The Bessel function ]n is an entire function (Ch. 4, §5) if n is a nonnegative 
integer. Using the functional equation for the gamma function, I'(z + 1) = 
zI'(z), this formula can be recast in the form 

oo (-1 )\z/2t+2k 
]n(z) = ~ r(n + k + l)r(k + 1) 

Unless n is an integer, the series (22) with -n in place of n defines a second, 
linearly independent solution of the Bessel DE (21) 

oo { (-l)\z/2)-n+2k } 
]-n(z) = ~ r(k + l)I'(-n + k + 1) 

This solution has a branch pole at the origin. Unless n is an integer, ]n and ]-n 
form a canonical basis of solutions of the Bessel DE. 

Exceptional Case. When n is an integer, we have ]-n(z) = (- lt]n(z), so 
that another method must be used to find a basis of solutions. We can then 
proceed as follows [cf. Ch. 2, (12)]. 
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Consider the Wronskian W = ]n<b' - ]~</> of ]n and any other solution </J of 
the Bessel DE. A straightforward computation gives W + (1/z)W = 0, whence 
(z W)' = 0. Hence, for some constant A, we have 

A 
]n(z)</>'(z) - ]~(z)</>(z) = -

z 

If g(z) is the quotient </J(z)/]n(z), it follows by direct differentiation that 

W(z) A 
g'(z) = J/(z) = zj/(z) 

Therefore, the general solution of the Bessel DE (21) is 

(23) ZnCz) = ]nCz) [ B +AI z]~:(zJ 

for any indefinite integral of 1/zJ!(z) = Knz-2n- 1{l + E,;". 1bkz2k} [cf. Ch. 4, §8], 
where r is a suitable constant. Hence, we have 

(23') 

where the circle of convergence of the series in curly brackets ("braces") 
extends to the point z 'F O nearest the origin, where JnCz) vanishes. Within this 
circle, we can integrate the series term by term. Thus, when n = 0, we easily 
compute 1/z]/(z) = z- 1 + z/2 + 5z3/64 + · · · , and so the general solution 
of (21) when n = 0 is 

(23") { ( z2 5z4 )} Z0(z) = ] 0(z) B + A ln z + 4 + 256 + · · · 

This shows that any solution of the Bessel DE of order zero that is not a constant 
times ] 0(z) is logarithmically infinite near z = 0. 

More generally, the preceding formulas show that, when the parameter n in 
the Bessel DE (21) is not an integer,t we obtain the general case (9a) of Theorem 
4, with a = n and f3 = -n. When n is an integer, we have the exceptional case 
(9b) of Theorem 4. We shall now discuss this exceptional case. 

The Neumann Function. In the exceptional case that n is an integer, var
ious choices are possible for a canonical basis of solutions of the Bessel equation. 
The first solution w1(z) in (9b) must be chosen as a multiple of ]n(z), because 
only such multiples have branch poles at the origin. Any choice A 'F 0 in (23) 

t Note that, though the Bessel DE of half-integral order n + ½ has characteristic exponents which 
differ by an integer, it has a basis of solutions of the form (9a). This is because the recurrence rela
tions for the coefficients in its expansion express cH2 as a multiple of ck without involving cHI· 
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will give a possible second member of the canonical basis (9b). Thus, when n = 
0, we can choose A = l, B = 0 in (23"). Relative to this choice, the circuit 

•• ( 1 0) matnx 1s 2,ri 1 . 

A more convenient choice is A = 2/1r and B = (2-y - 2 log 2)/1r, where 'Y = 
0.5772 ... is Euler's constant. This defines the Neumann function Y0(x). The 
choice is convenient because of the asymptotic formulas, valid as x - oo, 

(24) 
J0(x) = ~ [ cos ( x - i) + 0 G) ] 
Y0(x) = ~ [ sin ( x - i) + 0 (;) ] 

This asymptotic behavior will be explained in Ch. 10, §11. 
The Bessel and Neumann functions ] 0 and Y0 are clearly linearly independent; 

hence, they are a canonical basis of solutions of the Bessel DE of order zero. 
Using these functions, we now derive a canonical basis for the Bessel DE of 
integral order n. 

This can be done as follows. If Zn is a solution of the Bessel equation of order 
n, the function Zn+ 1 defined by the formula 

is a solution of the Bessel equation of order n + l. This formula is valid whether 
n is an integer or not, as is immediately verified by substituting Zn+ 1 into the 
Bessel DE of order n + l. In particular, fn+ 1(z) = -zn[z-n]n(z)]', much as in 
Ch. 4, (13). 

We now define the Neumann function Yn(z) for integer n by the recursive 
formulas 

n = 0, 1, 2, ... 

Since the function Y0(z) is of the form Y0(z) = ]0(z)[f0(z) + K0 log z], where / 0 

is holomorphic and single-valued in a punctured disk with center z = 0, we 
verify by straightforward differentiation that 

where / 1 has the same property as / 0, and, recursively, that 

Thus, all Neumann functions Yn(z) have a branch point at z = 0. From this it 
follows that Yn and]n are linearly independent, and indeed are a canonical basis 
of solutions for the singular point z = 0 of Bessel's DE. 



280 CHAPTER 9 Regular Singular Point., 

The Neumann function is defined when v is not an integer by the formula 

/h) cos ,nr - J-h> 
Yv(z) =· . 

Sill J/7f' 

When v = n is an integer, let Yn(z) = limv-nYv(z). The limit can be evaluated by 
l'Hopital's Rule as 

It can be shown that this definition of the Neumann function for integral n 
agrees with that above. 

Modified Bessel Functions. The values of ]n(z) on the imaginary axis 
z = iy define a real function of the positive variable y: 

This function is called the modified Bessel function of order n. The function In(y) 
satisfies the modified Bessel DE 

obtained by substituting iy for z in the Bessel DE. The coefficient-functions of 
the modified Bessel DE are real. 

EXERCISES C 

1. (a) Show that the DE zw" + (1 - z)w' + )\w = 0 has a regular singular point at the 
origin, and that " = 0 is a double root of the indicial equation. 

(b) Find the power series expansion of the solution of this DE that is regular at 
z = 0. [HINT: Derive a recursion formula for Cn+ 1/cn.] 

2. State and prove an analog of Theorem 5 for w' + p(z)w = 0. 

3. (a) Show that, if 

(*) w" + p(z)w' + q(z)w = 0 

has a regular singular point at z = 0, and q(0) =I= 0, then 

has a regular singular point at z = 0. 
(b) Show that, if w 1, w2 are a basis of solutions of(*), then w{, w2 are a basis of 

solutions of (**). 
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*4. Show that, if the roots of the indicial equation at a regular singular point of (5) differ 
by an integer, the eigenvalues of any circuit matrix are equal. 

5. Let (13) have a regular singular point at z = 0, and let a be a root of its indicial 
equation having largest real part. Show that, if w is a solution, then v = z-aw satisfies 
a DE of the form (15) with Qo = 0 and Re{P0} ;;::: 1. 

6. (a) Given three pairs of nonzero complex numbers (Xi, X2), (µ,i, µ,2), (zi, z2), construct 
a holomorphic second-order linear DE (13) having regular points at z1 and z2, 

whose circuit matrices at these points have eigenvalues (Xi, X2), (µ, 1, µ,2). 

*(b) Generalize the above to n points Zi, ... , Zn. 

7. Show that, for n a nonnegative integer,Jn(z) and its complex multiples are the only 
solutions of the Bessel DE that are holomorphic at the origin. 

8. (a) Find the exponents at z = 0 of the DE zw" + (n + ½)w' + w = 0, and find 
formal power series solutions corresponding to each characteristic exponent. 

(b) Show that a basis of solutions of this DE is given by the functions 

and 

*9. Show that, when n is an integer, a solution of Bessel's DE [the Neumann function 
Yn(z)] is defined by 

10. Show that, if u1, u2 and v1, v2 are bases of solutions of the Bessel and modified Bessel 
DEs, respectively, u 1, u2, Vi, v2 form a basis of solutions of the DE 

11. Show that the self-adjoint form (Ch. 2, §8) of the hypergeometric DE (18) is: 

12. Show that a canonical basis of solutions of the hypergeometric DE (18) is provided 
by F(a, {:J, -y; z) and z1-'YF(a - 'Y + 1, {:J - 'Y + 1, 2 - -y; z) unless 'Y is an integer. 

8 THE FUNDAMENTAL THEOREM 

We now establish the fact that the formal power series solutions obtained in 
§6 are convergent. We begin by proving the converse of this result. 

THEOREM 6. Let the analytu: functions 

(25) a =fo (3 
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have simple branch poles at z = 0 of different orders a =fo {3. Then the normal second
order DE satisfied by w 1 and w2 has a regular singular point at z = 0, with charac
teristic exponents a and {3. 

Proof The coefficients of the normal second-order linear DE satisfied by w1 

and w2 are found by solving the simultaneous linear equations 

j = 1, 2 

for the unknown coefficient functions p, q, as in Ch. 2, Ex. B7. The result is 

p = -(w1w; - w2wT) 

(W1W2 - W2WD ' 

The Wronskian W = w1 w2 - w2w( in the denominators is equal to 

and does not vanish near z = 0, since a =fo {3. The numerators are the powers 
za+fJ- 2 and za+fJ-3 multiplied by holomorphic functions of z. Dividing out, we 
get 

where P(z) and Q(z) are holomorphic in some neighborhood of z = 0. This com
pletes the proof of the theorem. 

THEOREM 7. Let the second-order linear DE (5) have a regular singular point 
at the origin, and let a be the larger root of its indicial equation I(v) = 0. Then the 
formal power series z"(l + E akz~ of Theorem 5 converges to a solution of (5) in a 
domain 0 < lzl < u, u > 0. 

It will be recalled that, in Theorem 5, v was any root of the indicial equation 
I(v) = 0 such that I(v + n) = 0 for no positive integer n. 

Proof The method of proof, due to Frobenius, is a generalization of Cau
chy's Method of Majorants (Ch. 4, §6). The functions P and Qare holomorphic 
in a neighborhood of the origin; thus, a closed disk 0 < I z I < p can be found 
in which these functions are holomorphic, with I P(z) I < M and I Q(z) I < N. It 
follows from the Cauchy estimates for derivativest that 

t See Hille, pp. 197 and 202. 

N 
<- k• p 

k = 0,1,2, ... 
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Hence, we have 

From formula (16) we obtain the bound I I(v + n) I :2::: n2/K for some constant 
K > l: since l(v + n) =fo O for all nonnegative integers n by hypothesis, the 
sequence n2/ I l(v + n) I is bounded (it tends to 1 as n - oo). Therefore, if 

K=l+max [ n2 ] 

I I(v + nv) I 

the recursion formulas (1 7) give the following bound for the coefficient cn in 
the formal power series solution (14): 

Now, let A = Mlvl + N + M + l. Clearly (Mlvl + N + kM)jn < A for all n 
and for O < k < n, and AK > K :2:::: 1. Hence, we obtain 

(25') IC I<~~ AM= AK~M 
n L...., n-k L...., n-k 

n k=O p n k•O p 

Using this formula, we now prove by induction that 

n = 1,2, ... 

This inequality is immediate for n = l, namely lei I :s; AKlcol/p. Now assume 
it is true for all ck for 1 < k < n - l. Substituting in (25') the bounds for 
c0, ... , cn- I given by the induction hypothesis, we obtain 

KA n- I (AK)k l 
lcn I < - L - ' n-k I Co I 

n k=O p p 

Since AK > l, each term in the brackets above is bounded by (AK)n- I. Th~s, we 
have 
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and this shows that the formal power series solution (14) has a radius of 
convergence at least equal to p/ AK. The proof is therefore complete, with 
u = p/AK. 

COROLLARY. In Theorem 7, unless the roots a, {3 of the indicial equation differ 
by an integer, the DE (5) has a basis of solutions whose circuit matrix is a diagonal 
matrix with diagonal entries A1 = exp (21ria) and A2 = exp (21ri{3). 

For this, one only has to choose a canonical basis of the form (25), which 
exists by Theorem 7. 

Exceptional Case. The exceptional case, namely when the roots of the 
indicial equation differ by an integer, can be treated by the following method. 
Select for a a root of the indicial equation having maximum real part. Then 
{3 = a - n for some integer n ~ 0 and so, since by the indicial equation 
a + {3 = l - P0, it follows that -2a - P0 = -n - 1, where P0 is the leading 
coefficient of p(z) = P0/z + P1 + · · · and n is a nonnegative integer. 

Moreover, we know that /(a + n) =fo 0 for all integers n > 0, and so by Theo
rem 7 the given second-order linear DE (5) has a solution 

which has a branch pole at z = 0 and is nonvanishing in the punctured disk 
0 < I z I < u for some u > 0. Hence, ifwe set w = w1h = zaf(z)h(z), the DE (5) 
is equivalent to 

This first-order DE for the unknown function h' has a regular singular point at 
z = 0, since J'/f is holomorphic there, while 2a/z and p(z) have at worst first
order poles. Therefore, we can write h'(z) = z'Y(l + Eckzk), where 'Y = -2a -
P0 = -n - 1, as shown above. 

Integrating h'(z) term by term in the circle of convergence, we thus have 

ifn = 0 

ifn =fo 0 

where <f>(z) is holomorphic. This shows that the exceptional case of Theorem 4 
always occurs when the indicial equation has a double root and also when the 
roots differ by an integer n, unless cn = 0. 

Collecting results, we have proved (for C = cn) the following theorem. 
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THEOREM 8. Suppose that the roots a and {3 = a - n of the indu:ial equation 
of a second-order linear DE, having a regular singular point at z = 0, differ by a 
nonnegative integer n. Then there exists a canonu:al basis of solutions of the form 

(26) 

where the power series are convergent in a neighborhood of z = 0. 

Relative to the canonical basis (26), the circuit matrix has the form 

with A = e21r,a = e21rifJ_ 

*9 ALTERNATIVE PROOF OF THE FUNDAMENTAL THEOREM 

Theorem 7 also can be given a more intrinsic proof by relying on the follow
ing characterization of poles of analytic functions. t 

ORDER OF GROWTH THEOREM. If j(z) is holomorphic in O < I z I < R, then 
z = 0 is a pole of f(z) of order at most a, or a removable singularity, if and only if 
there exists a positive number C such that 

sup I.fire~ I < er-a, 
0;;;9;;;21r 

Theorem 7 can be deduced quite easily from this and the following basic 
result. 

LEMMA. If the DE (5) has a regular singular point at z = 0, then the Junction 
fiz) in Theorem 3 has at most a pole at z = 0. 

Proof. For any solution w(z) of (5), consider the real-valued function 

U(z) = lw(z)l 2 + lzw'(z)l 2 

Setting z = re.o, we shall majorize the derivative of this function relative tor for 
fixed 8; its differentiability follows by the Chain Rule. 

t Hille, p. 213, Theorem 8.4.1. 
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For any differentiable complex-valued function V(r) of a real variable r, as in 
Ch. 6, formula (3), we have 

I l' V'(t) dt I < l' I V'(t) I dt 

Applying this inequality to U(re'8) we obtain 

where z = re'8. Using the fact that w" = -(P(z)/z)w' - (Q(z)/z2)w we obtain 

The functions P(re'8) and Q(re'8) are holomorphic in some closed disk O < I z I 
< R, R > 0. Let M be a common upper bound for their absolute values, for 
0 < 0 :$ 21r and for fixed r. This gives the inequality 

11au1 1 'I (M+l)lz2w'2 1 2 -a-r < (M + ) I WW + ---r~-~ 

By definition of U, we have lwl 2 < U, lw'1 2 < U/r2, and hence, multiplying, 
I ww' I < U/r. We obtain, therefore, 

I 
[aU(re'8)] I < (4M + 4)U(re~ = KU' 

ar r r 
K>O 

In particular, for O < r < R, we obtain au;ar + KU/r 2: 0, whence integrating 
between the limits r and R, 

If N = maxo:./J:;.2,r U(Re'8), we obtain 

and hence, a fortiori, that I w(ri8) 12 < (NRK)r-K. By the Order of Growth Theo
rem, with C = NRK and a = K, the conclusion of the lemma follows. 

Consequently, if the DE (5) has a regular singular point at the origin, then it 
has a solution given by a locally convergent power series of the form described 
in Theorems 5 and 7. The construction of a second solution can then be 
achieved as in Theorem 8. 

The preceding result can be generalized to nth order linear DEs. 
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EXERCISESD 

1. Find the exponents at z = 0 of the DE w" + (µ,/z)w' + (1/z)w = 0. Show that this 
DE has a power series solution Cµ(z) = 1 + Ef. 1 akz\ convergent for all I z 1- Show 
that CµCz) = z(l-µ)f2.Jµ- 1(2Vz). 

2. Show that w" + (n + ½ - z2/4)w = 0 has a basis of solutions 

w (z) = 1 _ (2n + l)z2 + (4n2 + 4n + 3)z4 _ ... , and 
I 4 96 

(2n + l)z3 (4n2 + 4n + 7)z5 

W2(z) = Z - 12 + 480 

For what values of I z I do these series converge? 

3. The Laguerre DE is zw" + (1 - z)w' + <XW = 0. 
(a) Find its characteristic exponents. 
(b) Show that a nontrivial solution is given by Ec~k with 

(j - a)c; 
C -1+1 - (j + 1)2 

4. The associated Laguerre DE is zw" + (k + 1 - z)w' + (n - k)w = 0. Show that 
this has a polynomial solution w = L!(z) for any positive integers k, n. 

5. Show that e-•!2z<k-l)f2L;(z) satisfies the DE 

zw" + 2w' + [A + Bz + C/z]w = 0 

with A = n - (k - 1)/2, B = -¼, C = (1 - k2)/4. 

6. Show that, if ct,(0) =/a 0, the substitution w = </>(z)v carries second-order linear DEs 
(5) having a regular singular point at the origin into DEs having the same property. 

7. Generalize the result of Ex. 6 to nth order linear DEs. 

8. Show that the substitution w = z'</>(z)wi, where ct,(0) =/a 0 and ct,(z) is regular near 
z = 0, carries a regular singular point at z = 0 with indicial polynomial J(v) into 
one with indicial polynomial J(v - r). 

9. Do the functions log z and (log z)2 satisfy a second-order linear DE (3) with a regular 
singular point at z = 0? Do they satisfy a third-order linear DE with regular singular 
point at z = 0? Justify your answers. 

*10. (a) The DE wm + Ef. 1ph)w<3-k) = 0, pk(z) holomorphic for 0 :5 lzl :5 r, has a 
regular singular point at z = 0 if pk has, at worst, a pole of order k. Derive an 
analog of the indicial equation (16) and generalize Theorem 7 to this DE. 

(b) Generalize Theorem 8 for this DE when two exponents coincide. 

*10 HYPERGEOMETRIC FUNCTIONS 

So far in this chapter, the behavior of solutions of DEs has been studied only 
near a single isolated singular point. A fascinating topic of analysis is the relation 
between the behavior at different singular points of analytic functions defined 
by DEs. This topic is beautifully illustrated by the hypergeometric functions, 
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defined as solutions of the hypergeometric DE (18). This illustration (Example 
4 of §6) is of especial interest because many common transcendental functions 
can be expressed in terms of the hypergeometric functions. For example, 
(1 - z)-a = F(a, (3, {3; z), arcsin z = zF(}, ½, J; z2), log (1 + z) = zF(l, 1, 2; -z), 
and so on. 

According to the program laid out in Ch. 4, the properties of the hypergeo
metric functions can be deduced from the DE (18). For example, let us derive 
a formula for the derivative of the hypergeometric function F(a, (3, -y; z). Differ
entiating the hypergeometric DE, we get 

z(l - z)w"' + ['Y + 1 - (a + 1 + (3 + l + l)z]w" - (a + 1)((3 + l)w' = 0 

which is again a hypergeometric DE with constants aI = a + l, f3I = (3 + l, 
'YI = 'Y + 1. By Theorems 7 and 8, every solution of this DE holomorphic at 
the origin is a constant times F(a + 1, (3 + l, 'Y + 1; z). This implies the formula 
F'(a, (3, -y; z) = kF(a + l, (3 + l, 'Y + 1; z). The constant k is determined by 
differentiating (20) at z = 0. This gives the differentiation formula 

(27) 

The Jacobi identity 

a{3 
F'(a, (3, -y; z) = - F(a + 1, (3 + l, 'Y + 1; z) 

'Y 

can be similarly established by multiplying both sides of the identity by zI-a, and 
then verifying that both sides of the resulting identity satisfy the same hyper
geometric DE with constants aI = a + n, (3, -y. 

The study of the hypergeometric DE is greatly facilitated by its symmetry prop
erties. Making the substitution w = zI--Yu, we obtain as a DE equivalent to (18) 
for the dependent variable u, a second hypergeometric DE with different con
stants (unless 'Y = 1): 

where aI = a - 'Y + l; f3I = (3 - 'Y + l, and 'YI = 2 - -y. Since this DE has 
the solution wI(z) = F(aI, {3i, 'YI; z), we obtain at once a power series solution 
of (18) corresponding to the exponent 1 - 'Y in the form 

(29) 

The two solutions are a canonical basis of solutions of (18) at the regular singular 
point z = 0. 

The change of dependent variable w = (l - z)'Y-a-fJu gives another hyper
geometric DE of the form (18) in the variable u with aI = 'Y - a, f3I = 'Y - (3, 
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-y1 = -y. Since the solution of this DE, which is holomorphic at z = 0 and takes 
the value 1 there, is F('Y - a, 'Y - {:J, -y; z), we obtain the identity 

(30) F(a, {:J, -y; z) = (1 - z)'Y-a-/3F('Y - a, 'Y - {:J, y; z) 

A change of independent variable that transforms the hypergeometric DE 
into itself is t = 1 - z. This gives the DE 

t(l - t)w" + [-y 1 - (a - {:J + l)t]w' - a{:Jw = 0 

where -y1 = a + {:J - 'Y + l. It follows that the hypergeometric DE has a second 
regular singular point at z = 1, and a basis of solutions 

w3(z) = F(a, {:J, a + {:J + l - -y; 1 - z) 

and 

These functions form a canonical basis of solutions relative to the singular point 
z = 1. Note that the functions w3 and w4 are equal to linear combinations of 
the functions w1 and w2 by the uniqueness theorem for second-order linear DEs 
(Ch. 2, Theorem 3). 

*11 THE JACOBI POLYNOMIALS 

The linear transformation z I-+ 1 - 2z carries the hypergeometric DE (18) 
with parameters a = -n, {:J = n +a+ b + l, 'Y = a+ l into the Jacobi DE 

(31) (1 - z2)w" + [a - b - (a + b + 2)z]w' + n(n + a + b + l)w = 0 

It carries the regular singular points 0, 1 of (18) into 1 and -1, respectively. 
Note that the Jacobi DE (31) goes into itself under the transformation z I-+ -z, 
a.==b. 

Multiplying by (1 - zt(l + zt, we get the self-adjoint form (Ch. 2, §5) 

!!:._ [<1 - zt+ 1(1 + zt+ 1 du] + n(n +a+ b + 1)(1 - zt(l + ztu = 0 
dz dz 

When a = b, this reduces to the ultraspherical DE 

(32) !!:._ [<l - z2)a+I du ] + n(n + 2a + 1)(1 - z2tu = 0 
dz dz 

t Assuming, of course, that the parameters a, {J, 'Y are not chosen in such a way that the solutions 
coincide: thus 'Y 'F- a + {J. 
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This is obtained from the partial DE 'v2[r"u(cos 0)] = 0 in (2a + 3)-dimensional 
space by separation of variables; hence, its solutions play an important role in 
potential theory and its generalizations. Familiar special cases of the ultraspher
ical DE are a = b = 0, which gives the Legendre DE [(l - z2)u']' + n(n + l)u 
= 0 (Ch. 2, §1), and a = b = -½, which gives the Chebyshev DE 

(33) 

From the derivation of (32), it is evident that the hypergeometric functions 
F(-n, n +a+ b + l, a+ l, (1 - z)/2) are solutions ofit. It follows, inspecting 
the hypergeometric series (20), that if n is a nonnegative integer, this series is a 
polynomial in z unless a is a nonnegative integer -m, with m < n. Multiplying 

by the normalizing factor ( n ! a). we get, by definition, the Jacobi polynomials 

(34) 

p<;:,b>(z) = ( n : a) F(-n, n + a+ b + l, a+ l; (l ; z) 

( n + b) (1 - z) 
= (- lt n F(-n, n +a+ b + l; b + l; 2 

In turn, when a = b, these give the ultraspherical or Gegenbauer polynomials 
of index a + ½. These are usually normalized by the formula 

p(a)(z) = I'(2a + n + 1) p<a-l/2,a-l/2)(z) 
n I'(a + 1/2 + n + 1) n 

With this normalization Pi0>(z) = Tn(z) is the Chebyshev polynomial of degree 
n: Pi112>(z) is the Legendre polynomial of degree n, and so on. 

From the differentiation formula (27) for the hypergeometric function, we 
infer the differentiation formula for Jacobi polynomials 

(35) .!!:._ p(a,b)(z) = C. p(a+m,b+m)(z) 
dzm n n-m 

C = 2-m(n + a + b + l)(n + a + b + 2) • • • (n + a + b + m) 

An expression for the Jacobi polynomials often more convenient than (34) is the 
Rodrigues formula 

(36) 

We shall derive this formula from the identities for the hypergeometric function 
established in the preceding section. First, since (1 - tt = F(-a, b, b, t), the 
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binomial series is a special case of the hypergeometric series: (1 - tl+n = 
F(a + 1, -n - b, a + l, t). Using also the Jacobi identity, we justify the first 
two steps of 

In the last step, identity (30) for the hypergeometric function is used. 
The Rodrigues formula (36) follows by making the change of variable 
t = (l - z)/2. 

EXERCISESE 

1. Verify the following identities: 
(a) F(a, {j, /j; z) = (1 - z)-a 
(b) F(½, ½, i; z2) = (arcsin z)jz 
(c) F(l, 1, 2; z) = -log (1 - z)/z 

(d) 1 + (n z + (;)z2 + • • • + (:) zm = (:) zmF(-m, 1, a - m + 1; -z-1) 

(e) cos az = F[a/2, -a/2, 1/2; (sin z)2] 
(f) log [(1 + z)/(1 - z)] = 2zF(l/2, 1, 3/2; z2) 

2. (a) Show that (18) is equivalent to 

(b) Show that the eigenvalues of the circuit matrix of the hypergeometric DE at z = 
0 are equal if 'Y is an integer. 

(c) Show that the eigenvalues of the circuit matrix for z = 1 are equal if 'Y - a -
/j is an integer. 

3. (a) Show that, if a is zero or a negative integer, the hypergeometric DE (18) has a 
polynomial solution unless 'Y < a is a negative integer. 

(b) Using (34), express this solution as a Jacobi polynomial. 

4. (a) Compute the characteristic exponents at z = ± 1 of the Legendre DE 

[(1 - z2)w']' + Xw = 0 

*(b) Describe corresponding circuit matrices, taking as basic solutions an even and 
an odd solution. 

5. (a) Show that setting t = z2 in the Legendre DE gives a hypergeometric DE. 
(b) Express the Legendre polynomials as multiples of F(a, /j, "(;z2) for suitable a, fj, 

'Y· 
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6. Find the characteristic exponents at z = ± 1 of the associated Legendre DE: 

7. Derive from (31) the self-adjoint form of the Jacobi DE displayed in the text. 

*8. Prove that P'-;:,b>(z) = knF[ -n, -b - n, 1 + a; ~: ~ ~~]. where 

[HINT: Show that the right-hand side satisfies (31), using suitable identities for F.] 

9. Find the roots of the indicial equation of the Jacobi DE (31) at z = 1 and z = -I. 
10. Show that (34) defines a solution of (32) even when n is not a positive integer. What 

happens when n is a negative integer? 

11. Using (36), show that, for a > b > -1 

form =fo n 

*12 SINGULAR POINTS AT INFINITY 

Even when the coefficient-functions p and q of the second-order linear DE 
(5) are regular at infinity, the point at infinity may be neither a removable sin
gularity nor a regular singular point, but an irregular singular point. For 
instance, this is true of w" = w, whose solutions e±• have essential singularities 
at infinity. 

One determines when the point at infinity is a regular singular point by mak
ing the substitution z = l /t. This substitution transforms the second-order lin
ear DE (5) into the DE 

(37) d2v [ 2 1 ( 1 ) ] dv l ( 1 ) - + - - - p - - + - q - v(t) = 0 
dt2 t t2 t dt t4 t 

where v(t) = w(l/t). The point at infinity is said to be a regular singular point 
of the DE (5) when the origin is a regular singular point for the DE (37). This 
happens when the function 

has, at worst, a pole of the first order at t = 0, that is, when the first coefficient 
in the power series expansion of p(l/t) vanishes. Also, the function r 4q(l/t) 
must have, at most, a pole of the second order at t = O; this happens when the 
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first two coefficients in the power series for q(l /t) vanish. This gives the follow
ing theorem. 

THEOREM 9. The point at infinity is a regular singular point for the second-order 
linear DE (5) if and only if the coefficients p and q have power series expansions, 
convergent for sufficiently large I z I , of the form 

(38) P1 P2 p(z) = - + - + . . . ' 
z z2 

That is, it is necessary and sufficient that the function p have a zero of at least 
the first order and the function q have a zero of at least the second order at 
infinity. In particular, the solutions of the DE are holomorphic at z = oo, or 
t = 0, if and only if the coefficients 

and 

are regular at t = 0. Hence, the following corollary. 

COROLLARY. If the coefficients p(z) and q(z) of the DE (5) are holomorphic for 
sufficiently large z, then all solutions of (5) have removable singularities at z = oo if 
and only if p1 = 2 and q2 = q3 = 0 in (38). 

It follows from Theorem 7 that, if z = oo is a regular singular point, and if 
the indicial equation of (37) at t = 0 has roots a and (3 not differing by an inte
ger, then the DE (5) has a basis of solutions of the form 

V = a,{3 

The indicial equation at infinity is defined, because of Theorem 9, to be the 
following equation for v: 

(39) 

Its roots are called the characteristic exponents at z = oo. If they differ by an 
integer, then there is still a solution of the form (1/z")(l + (a1/z) + · · · ), but 
every second linearly independent solution may contain a logarithmic term. 

Example 5. The hypergeometric DE (18) has, by Theorem 9, a regular sin
gular point at infinity with characteristic exponents a and (3. In order to derive 
a canonical basis at infinity, it is convenient to make the substitution 
u(t) = e-aw(l/t). This transforms the DE into another hypergeometric DE 
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with a2 = a, {32 = a - 'Y + I, "(2 = a - {3 + I. It follows that the hypergeo
metric DE has the solution 

convergent when I z I > 1. From the symmetry between a and {3, we obtain a 
second solution 

The functions w5 and w6 form a canonical basis at infinity, unless a = {3. 

*13 FUCHSIAN EQUATIONS 

A homogeneous linear DE with single-valued analytic coefficients is called a 
Fuchsian DE when it has, at worst, regular singular points in the extended com
plex plane, including the point at infinity. Since functions whose only singular 
points are poles necessarily are rational functions,t it follows that the coeffi
cients of any Fuchsian DE are rational functions. The most general first-order 
Fuchsian DE has the form (see Ex. F8) 

w' + (t~)w = 0 
k=I z - Zk 

The general solution of this DE is the elementary function 

n 

w(z) = c IT (z - zJ-Ak 
k=I 

Second-order Fuchsian DEs offer much more variety; they are classified 
according to the number of their singular points. When the number of these is 
small, their study is greatly simplified by making linear fractional transformations! 
of the independent variable, of the form 

f = (az + b) 
(cz + d)' 

ad =fo. be 

Any such transformation can be obtained by successive changes of variable of 
the forms f = z + k, ( = az, and f = 1/z. Each such change of variable shifts 
the position of the singular points of a DE, carrying branch poles of solutions 
into branch poles. Therefore, by Theorems 6, 7, and 8, a general linear frac-

t Hille, p. 217, Theorem 8.5.1. 

l See Hille, pp. 46-50, or Ahlfors, pp. 76--89. 
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tional transformation transforms regular singular points into regular singular 
points, and the indicial equations of the transformed DE coincide with those of 
the original DE at corresponding points. 

We first consider second-order Fuchsian DEs having at most two singular 
points, say at z = z1 and z = z2. By a linear fractional transformation of the 
form f = (z - z1)/(z - z2), we can send these singular points to zero and infin
ity. It follows from the definition of a regular singular point and from Theorem 
9 that the Laurent series of p(z) and q(z) reduce to p1/z and q2jz2, respectively. 
Hence, the most general Fuchsian DE of the second order with two regular sin
gular points is equivalent to the Euler DE of Example 2, 

w" + Pi w' + q2 w = 0 
z z2 

after a linear fractional transformation. 
The simplest Fuchsian DE of the second order whose solutions do not reduce 

to elementary functions is, therefore, one having three regular singular points. 
By a linear fractional transformation of the independent variable, we may put 
these singular points at 0, 1, oo. From the definition of a regular singular point 
and from Theorem 9 of §12, we can determine the coefficient-functions of a 
second-order Fuchsian DE with three regular singular points at 0, 1, oo, as fol
lows. The coefficient p(z) must have, at worst, poles of the first order at z = 0 
and z = 1. It can therefore be written in the form 

where the function p1 (z) is regular throughout the plane. However, by Theorem 
9, the function zp(z) has a finite limit as I z I tends to infinity. Since the function 
z[A1/z) + (B1/(z - 1))] is bounded as I z I tends to infinity, it follows that zp1 (z) 
is uniformly bounded. By Liouville's Theoremt it must, therefore, vanish 
identically. 

Similarly, the coefficient q(z) has at worst poles of the second order at z = 0 
and z = 1, and can therefore be written in the form 

where the function q1 (z) is holomorphic in the finite complex plane. By Theorem 
9, the function z2q(z) remains bounded as I z I tends to infinity; hence, so does 
the function 

t Hille, p. 204, Theorem 8.2.2. 
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Therefore, A 3 = - B3 and, again by Liouville's Theorem, the function q1 (z) van
ishes identically. This completes the proof of the following theorem. 

THEOREM 10. Any second-order Fuchsian DE with three regular singular points 
can be transformed by a linear fractional transformation into the form 

(40) 

where the A 1 and B1 are constants. 

The differential equation (40) is called the Riemann DE; it evidently depends 
on five parameters. 

With the Riemann DE are associated three pairs of characteristic exponents 
(Ai, A2), (µ1, µ 2), (v1, v2), belonging to the singular points 0, 1, oo, respectively. 
These exponents are the roots of the indicial equations [cf. (16) and (39)] 

A(A - 1) + A 1X + A2 = 0, µ(µ - 1) + B1µ + B2 = 0 
v2 + (1 - A 1 - B1)v + A 2 + B2 - A3 = 0 

By means of these equations, we can express the parameters in the DE (40) in 
terms of the (characteristic) exponents: 

A 1 = 1 - X1 - X2 

B1 = 1 - µI - µ2 

A1 + B1 = Vi + V2 + 1 

B2 = µ1µ2 

A2 + B2 - A3 = V1V2 

From the identities in the first column, we obtain the Riemann identity 

(41) 

Substituting into (40) we find the Riemann DE 

(42) 

The preceding discussion shows that the Riemann DE (40) is completely deter
mined by the values of the exponents and the location of the singular points. 

THEOREM 11. A Fuchsian DE of the second order with three regular singular 
points in the extended complex plane is uniquely determined by prescribing the two expo
nents at each singular point. The exponents satisfy Riemann's identity (41). 
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The hypergeometric DE of §6 is a special case of the Riemann DE with three 
singular points at 0, 1, oo. As shown in §6 and in §12, the hypergeometric DE 
has three regular points at 0, 1, oo with exponents 0, 1 - -y; 0, 'Y - a - {3; a, 
f3 respectively. 

From Theorems 6-8 and from the fact that the Riemann DE is the unique DE 
satisfying the conditions of Theorem 11, several identities for the solutions can 
be derived. Ifwe make the change of dependent variable v(z) = z''w(z), the func
tion v(z) has a branch pole at each of the singular points 0, 1, oo. Therefore (cf. 
Theorem 9, Corollary), v(z) satisfies a DE with three regular singular points at 
0, 1, oo. By Theorem 11, this must be the Riemann DE (42). The exponents of 
this DE are unchanged at z = 1, whereas they are changed to a, + ;\ at z = 0 
and to 'Y, - ;\ at infinity. A similar result holds for the more general change of 
dependent variable 

v(z) = i•(z - ltw(z) 

Using these identities, we can prove the following fundamental 

THEOREM 12. Every Riemann DE (40) can be reduced to the hypergeometric DE 
(18) iJ,y a change of dependent variable of the form w = i'(l - ztv(z). 

COROLLARY. Every second-order Fuchsian DE with three regular singular 
points can be reduced to the hypergeometric DE by changes of independent and dependent 
variable. 

Proof. The general solution w(z) of the Riemann DE can be written in the 
form 

where v is the general solution of a Riemann DE with exponents 0, ;\2 - ;\1; 

0, µ2 - µ 1; v1 + ;\1 + µi, v2 + ;\1 + µ 1. Thus, the function v is a solution 
of a hypergeometric DE with a = v1 + ;\1 + µ 1, f3 = v2 + ;\1 + µ 1, and 
'Y = 1 - ;\2 + ;\1, q.e.d. 

EXERCISES F 
1. Show that the only second-order linear DE that has just two regular singular points, 

at O and oo, is the Euler DE W 8 + (p0/z)w'. + (q0/z2)w = 0. 

2. Show that no analytic linear DE (5) can have only removable singularities, if the 
point z = oo is included. 

3. Prove in detail that any linear fractional transformation carries regular singular 
points into regular singular points. 

4. If p and q are constant in (5), is the singular point at oo regular? Justify your 
statement. 

5. Show that, unless B = A2/4, the DE (z2 + Az + B)w8 + (Cz + D)w' + Ew = O 
can be reduced to the hypergeometric equation by a linear substitution z = a{ 
+ b. 
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6. Show that the Bessel DE has an irregular singular point at z = oo. 

7. Find necessary and sufficient conditions on p(z) for ul + p(z)w = 0 to have (a) a 
removable singularity, and (b) a regular singular point at oo. 

8. Show that the most general first-order linear DE with n + 1 distinct regular singular 
points at z1, ••• , Zn and oo is 

w'+ 

Integrate this DE explicitly. 

*9. Find the most general second-order linear DE (5) having regular singular points at 
a1, ••• , an and oo. 

*10. Find the most general linear DE having regular singular points at 0, oo and no other 
singular points. Show that any such DE can be integrated in terms of elementary 
functions. 

ADDITIONAL EXERCISES 

1. Show that J?2 d8(1 - k2 sin2 8) 112 = (1r /2)F(½, ½, 1; k2). 

2. Show that the substitution z = rm (m a nonzero integer) transforms DEs (5) having 
a regular singular point at z = 0 into DEs having a regular singular point at f = 0, 
with the characteristic exponents multiplied by m. 

3. Show that the DE w" + [(1 - z2)/4z2]w = 0 has a basis of solutions of the form 
w1(z) = z1l2[1 + z2/16 + z4/1024 + · · ·] and w2(z) = w1 log z - z3i2/16 
+ .. ·. 

4. Find an entire functionfiz) and constant c for which the functions 

w, = fiz)l/2 exp ± {c r· dz } 
Jc [fiz) V z(l - z)] 

are a basis of solutions of z(l - z)w" + (1 - 2z)w' /2 + (az + b)w = 0. 

5. The algebraic form of the Mathieu equation is 

4~(1 - ~)uu + 2(1 - 2~)u~ + (X - 16k + 32k~)u = 0 

Show that this has a regular singular point at~ = 0, calculate the exponents, and 
find a recurrence relation on the coefficients of the power series solutions. 

*6. (a) If P and Qare given polynomials without common factors and if Cn+i/cn = P(n)/ 
Q(n) and E cnzn is convergent, show that the function E cnzn satisfies the DE 
zP(zd/dz) w - Q(zd/dz)w = 0. 

(b) Find all quadratic polynomials P and Q for which the preceding DE has regular 
singular points only, and express the solutions in terms of hypergeometric 
functions. 

*7. (a) Find the eigenvalues of the circuit matrix of (18) for z = 0. 
(b) Using the change of variable t = 1 - z, solve the same problem for the circuit 

matrix for z = I. 

8. Show that the function In (In z) satisfies no linear DE of finite order with holo
morphic coefficients. 
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9. Show that, if /(0) = 0 but f'(0) =fa 0, the substitution z = Jm carries a regular 
singular point of (5) at z = 0 into one at f = 0 having the same indicial equation. 

10. Show that, for any nontrivial.solution of the Euler DE z2w" + zw' + w = 0 and 
any integer n, there exists a spiral path 8 = h(r) approaching the origin, along which 
Hm.-o I znw I = 00, 

*l 1. Let the DE w" + p1(z)w' + p2(z)w = 0 have an isolated singular point at z = oo. 
Show that this singular point is regular if and only if, for some n > 0, every solution 
satisfies lim.-00 z-nw(re'8} = 0 for 0 .:5 8 .::5 271'. 



CHAPTER 10 

STURM-LIOUVILLE 
SYSTEM·S 

1 STURM-LIOUVILLE SYSTEMS 

A Sturm-Liouville equation is a second-order homogeneous linear DE of the 
form 

(1) d [ du] - p(x) - + [;\.p(x) - q(x)]u = 0 
dx dx 

Here ;\ is a parameter, while p, p, and q are real-valued functions of x; the func
tions p and p are positive. In operational notation, with L = D[p(x)D] - q(x), 
we can write (1) in the abbreviated form 

L[u] + ;\p(x)u = 0 

Such a DE (1) is self-adjoint for real X; to ensure the existence of solutions, 
the functions q and p are assumed to be continuous and p to be continuously 
differentiable (of class (§1 1). For a given value of;\, (1) defines a linear operator 
transforming any function u E (§1 2 into L[u] + ;\pu. The Sturm-Liouville equa
tion (1) is called regular in a closed finite interval a < x < b when the functions 
p(x) and p(x) are positive for a < x < b. The functions p, q, and p, being con
tinuous, are bounded in the interval. 

For each ;\, it follows from the existence theorem of Ch. 6, §8, that a regular 
Sturm-Liouville equation for a < x < b has a basis of two linearly independent 
solutions of class (§12. 

A Sturm-Liouville system (or S-L system) is a Sturm-Liouville equation together 
with endpoint (or boundary) conditions to be satisfied by the solutions, for exam
ple u(a) = u(b) = 0. One type of endpoint condition we shall study is the 
following. 

DEFINITION. A regular S-L system is a regular S-L equation (1) on a finite 
closed interval a < x < b, together with two separated endpoint conditions, of 
the form-

(2) 

300 

au(a) + a'u'(a) = 0, f)u(b) + f)'u'(b) = 0 
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Here a, a', (:3, {:3' are given real numbers. We exclude the two trivial conditions 
a = a' = 0 and (:3 = {:3' = 0. 

A nontrivial solution of an S-L system is called an eigenfunction, and the cor
responding A is called its eigenvalue. Each eigenfunction also is said to belong to 
its eigenvalue. The set of all eigenvalues of a regular S-L system is called the 
spectrum of the system. 

Example 1. The system consisting of the DE u" + AU = 0 in the interval 
0 < x < 1r, with the boundary conditions u(0) = 0, u(1r) = 0, has the eigen
functions un(x) = sin nx and the eigenvalues An = n2, n = l, 2, 3, .... 

Example 2. For fixed n, the Bessel equation 

(3) - r - + k2r - - u = 0, d [ du] ( n2
) 

dr dr r 
a<r<b 

in an S-L equation with p = p = r, A = k2, and q = n2/r. When 0 < a < b, a 
regular S-L system is obtained by imposing the endpoint conditions u(a) = u(b) 
= 0, or by imposing any other separated endpoint conditions of the form (2). 

With a = 0, the DE (3) does not define a regular S-L system, because the 
coefficient p(r) vanishes at r = 0. We then obtain a singular S-L system, which 
is treated in §4. 

For fixed k and variable n, the Bessel equation (3) defines a different S-L 
equation, because the parameter is different. 

Periodic Endpoint Conditions. For S-L equations whose coefficients are 
periodic functions of x with period b - a, the periodic endpoint conditions 

(4) u(a) = u(b), u'(a) = u'(b) 

are sometimes imposed and give another type of S-L system, a periodic S-L 
system. 

Example 3. The system consisting of the DE u" + AU = 0, for -1r < x < 
1r, with the periodic endpoint conditions u(-1r) = u(1r) and u'(-1r) = u'(1r), has 
the eigenfunctions 1, cos nx, sin nx, where n is any positive integer. The corre
sponding eigenvalues are the squares of integers; if n > 0, there are two linearly 
independent eigenfunctions having the same eigenvalue n2. 

Example 4. A regular S-L system is obtained from the Mathieu equation 

(5) u" + (A + 16d cos 2x)u = 0, 

by imposing separated endpoint conditions. In this example, p = p == l, and 
q(x) = - l6d cos 2x. Note that, since cos 2x is periodic with period 1r, any solu-
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tion of (5) that satisfies the endpoint conditions 

(5') u(0) = u(1r) and u'(0) = u1(1r) 

will also be periodic with period 1r, while any solution satisfying 

(5") u(0) = -u(1r) and u'(0) = -u1(1r) 

will be periodic with period 21r. Moreover, since cos 2x = cos (-2x) is an even 
function, any solution of (5) is the sum u(x) = ½[<t>(x) + ~(x)] of an even solution 
<b(x) = u(x) + u(- x) and an odd solution ~(x). The Mathieu functions are suitably 
normalized even and odd solutions of (5), of periods 1r or 21r [i.e., satisfying 
(5') or (5")]. 

2 STURM-LIOUVILLE SERIES 

Examples 1 and 3 define two S-L systems from the same S-L equation, 
u" + J\u = 0, but with different endpoint conditions. The eigenfunctions of 
Example 3 are the functions used in the theory of Fourier series, studied in the 
advanced calculus. It is shown there that these functions are orthogonal on 
the interval -,r < x < 1r. This means that the following relations hold.t 

J_ ... ,.. sin mx sin nx dx = J: ... cos mx cos nx dx = 0, 

I,.. sin mx cos nx dx = 0, 
-'If 

for all integers m, n 

if m =fo n 

The eigenfunctions sin nx of Example 1 are also orthogonal on the interval 
0 < x < 1r on which the S-L system in question is defined: 

l" sin mx sin nx dx = 0, ifm=fon 

We will now show that analogous orthogonality relations hold for the eigen
functions of regular S-L systems generally, and for the eigenfunctions of S-L 
systems with periodic endpoint conditions. 

DEFINITION. Two integrable real-valued functions f and g are orthogonal 
with weight Junction p > 0 on an interval I if and only if 

(6) f p(x)f(x)g(x) dx = 0 
I 

t Courant and John, pp. 274, 583; Widder, p. 395. 
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The interval I may be finite and open or closed at either end; or it may be semi
infinite or infinite. 

THEOREM 1. Eigenfunctions of a regular S-L system (1)-(2) having different 
eigenvalues are orthogonal with weight Junction p. Thus, let u and v be eigenfunctions 
belonging to distinct eigenvalues ;\ and µ. Then 

(7) lb p(x)u(x)v(x) dx = 0 

Proof. We use the operator notation L[u] = [p(x)u']' -q(x)u. Then u and v 
are eigenfunctions of (1) with eigenvalues;\ andµ if and only if 

L[u] + ;\p(x)u = L[v] + µp(x)v = 0 
• 

We next establish the following lemma. 

LEMMA. If u and v satisfy an S-L equation (1) on a closed interval a < x < b, 
for values ;\ and µ of the parameter, then 

(8) (;\ - µ) lb p(x)u(x)v(x) dx = p(x)[u(x)v'(x) - v(x)u'(x)] I::: 
To prove (8), we apply the hypothesis to the Lagrange identity of Ch. 2, §8, 

namely the identity 

d 
uL[v] - vL[u] = - {p(x)[u(x)v'(x) - v(x)u'(x)]} 

dx 

which is easily verified directly. Integrating this identity between the endpoints 
x = a and x = band substituting -µpv for L[v] and -;\pu for L[u], we get (8) 
as claimed. The right-hand side of (8) is called its boundary term. 

To prove Theorem 1, it suffices to show that the boundary term vanishes in 
the case of. separated endpoint conditions. But (2) implies that 

p(a)[u(a)v'(a) - v(a)u'(a)] = [ap(a)/a'] [u(a)v(a) - v(a)u(a)] = 0 

if a' =fo 0. If a =fo 0, the right side of (8) reduces similarly at x = a to 

[ a' p~)] [u'(a)v'(a) - v'(a)u'(a)] = 0 

Hence p(a)[u(a)v'(a) - v(a)u'(a)] = 0 unless a = a' = 0. Similar formulas cover 
the boundary term at x = b. Since the possibilities a = a' = 0 and fl = fl' = 0 
are excluded, this shows that the right side of (8) vanishes. Formula (7) now 
follows from identity (8), after dividing through by the nonzero factor (;\ - µ). 
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From the lemma we also obtain the following corollary. 

COROLLARY. The result of Theorem l holds also for S-L systems with periodic 
endpoint conditions. 

For, in this case, the contributions to the boundary term on the right side of 
(8) from x = a and x = b are equal in magnitude and opposite in sign; hence 
they cancel. 

It is shown in the calculus that any reasonably smooth periodic function fix) 
can be expanded into a Fourier series 

00 

fix) = a0 + L (ak cos kx + bk sin kx) 
k=I 

that is, expressed as an infinite linear combination of the eigenfunctions of the 
Sturm-Liouville system of Example 3. Moreover, the orthogonality of these 
eigenfunctions makes it easy to calculate the ak and bk [see Ch. 11, (l)]. 

The orthogonality relations just proved enable one to obtain similar expan
sions for generalf(x) in the eigenfunctions of other Sturm-Liouville systems; the 
resulting infinite series are called Sturm-Liouville series. The most important 
property of Sturm-Liouville systems is that, in general, this series converges to 
fix). 

This will be proved for regular Sturm-Liouville systems in Ch. 11. In the pres
ent chapter, our main objective is to prove that the eigenfunctions of any reg
ular S-L system behave like the eigenfunctions of u" + AU = 0 for the same 
endpoint conditions, in a sense to be made precise. 

EXERCISES A 
1. (a) Show that every solution of the Airy DE v" + xv = 0 vanishes infinitely often 

on the positive x-axis and at most once on the negative x-axis. 
(b) Show that, if v(x) satisfies the Airy equation, u(x) = v(kx) satisfies u" + k3xu = 

0. 
(c) Show that the S-L system defined for the DE u" + Xxu = 0 by the endpoint 

conditions u(0) = u(l) = 0 has an infinite sequence of positive eigenvalues and 
no negative eigenvalue. [HINT: See Ch. 2, §4.] 

2. For the S-L system defined by u" + Xu = 0 and the endpoint conditions u(0) = 
U('II") + u'('II") = 0, show that there is an infinite sequence of eigenfunctions with 
distinct eigenvalues. What are its eigenvalues? 

3. Show that for u" + Xu = 0 and the endpoint conditions 
(a) u(0) = u('II") = 0 (c) u'(0) = u('II") = 0 
(b) u(0) = u'('II") = 0 (d) u'(0) = u'('II") = 0 

the eigenvalues are (k + 1)2, (k + 1/2)2, (k + 1/2)2, and k2, respectively. What are 
the eigenfunctions? 

4. (a) Show that u = U(kr) satisfies (3) if and only if U(x), (x = kr), satisfies the Bessel 
DE U" + (l/x)U' + [l - (n2/x2)]U = 0. 
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(b) Show that if U(x) and V(x) satisfy the Bessel DE and if 

then J! U(kr) V(k1 r)r dr = 0. 

5. (a) Show that any two Mathieu functions having distinct eigenfunctions are 
orthogonal, in the sense that 

1211" 
Jo u(x)v(x) dx = 0 

(b) Show that the even Mathieu functions are the eigenfunctions of the regular S-L 
system defined by (5) and 

u'(0) = u'(1r) = 0 

(c) Characterize the odd Mathieu functions similarly. 

6. Determine the eigenvalues X, such that u'" + Xu = 0 admits a nontrivial eigenfunc
tion satisfyingfi0) = f'(0) = fi1r) = f'(1r) = 0. 

7. Show that, if Ji (x) and J2(x) are eigenfunctions of Ex. 6 having distinct eigenvalues, 
>.1 "1' >-2, thenJ~J1(x)h(x) dx = 0. 

8. Show that the substitution ~ = cos2 x transforms the Mathieu equation into 

4W - ~)uu + (2 - 4~u~ + (A - 16d + 32d~)u = 0 

*9. Consider the boundary value problem defined by the first-order DE 

u' + [;\ + q(x)]u = 0, q EC, q real 

and one nontrivial side condition B[u] = au(a) + a'u'(a) + {:Ju(b) + {:J'u'(b) 0. 
Show that this problem admits at most three real eigenvalues. 

*3 PHYSICAL INTERPRETATIONS 

Sturm-Liouville systems arise typically from vibration problems in continuum 
mechanics. In physical language, they describe boundary-value problems cor
responding to simply harmonic standing waves. It is commonly assumed in phys
ics that any wave motion can be resolved into simply harmonic standing waves, each 
of which periodically osc~llates with its proper frequency. 

Though physicists commonly assume this result on the basis of experimental 
evidence and intuition, it can actually be deduced rigorously from the mathe
matical theory of wave motion as a boundary value problem in differential equa
tions, as will be shown below. 

We illustrate the physical interpretation of eigenfunctions of Sturm-Liouville 
systems by three classic examples. 
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The partial DE of a vibrating string ist 

where 
T 

c2 = -
p 

Here y is the lateral displacement from equilibrium; T is the tension and p the 
density of the string, both assumed constant. Simply harmonic standing waves 
are defined by the separation of variables 

y(x, t) = u(x) cos k(t - t0) 

For y(x, t) to satisfy the vibrating string equation y11 = c2yxx• it is necessary and 
sufficient that u" + Xu = 0, A = k2/c2, where k depends on the endpoint 
condition. 

For the vibrating string, it is natural physically to have .fixed endpoints, so that 
y(a, t) = y(b, t) = 0. This makes u(a) = u(b) = 0 and leads to the S-L problem 
of Example l. Tlie eigenvalue belonging to each eigenfunction is proportional 
to the squared frequency k2/41r2. This relation, combined with the analogy 
between mechanical and electromagnetic waves, has led mathematicians to call 
the set of eigenvalues the spectrum of an S-L system. 

Another physical interpretation of S-L systems is furnished by the longitudi
nal vibrations of an elastic bar of local stiffness p(x) and density p(x). The mean 
longitudinal displacement v(x, t) of the section of such a bar from its equilibrium 
position x satisfies the wave equation 

a2v a [ av] p(x) - = - p(x) -
at2 ax ax 

The simple harmonic vibrations (the normal modes of vibration) given by the sep
aration of variables 

v = u(x) cos k(t - t0) 

are the solutions of the Sturm-Liouville equation 

d [ du] - p(x) - + k2p(x)u = 0 
dx dx 

This is the special case q = 0 of (1), with X = k2. 

t Widder, pp. 413-421. In this section, subscript letters denote differentiation with respect to the 
variable indicated. 
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For a finite bar, extending over the interval a < x < b, various physical 
boundary conditions arise naturally: 

u(a) = u(b) = 0 (rigidly fixed ends) 

u'(a) = u'(b) = 0 (free ends) 

u'(a) + au(a) = u'(b) + {3u(b) = 0 (elastically held ends) 

u(a) = u(b), u'(a) = u'(b) (periodic constraints) 

Each of these endpoint conditions on u implies a corresponding condition on 
v(x, t), with djdx replaced by a;ax. The natural frequencies of longitudinal 
vibration (musical fundamental tone and overtones) of a bar whose ends are 
held in each of the ways described are thus the solutions of the S-L systems 
defined by (1) and the appropriate conditions above. Finally, the partial DE of 
a vibrating membrane is 

where r, 0 denote polar coordinates. A basis of standing wave solutions can be 
found by trying the separation of variables 

{cos} w(r, 0, t) = u(r) . n0 cos K(t - t0) 
sm 

For w to satisfy the membrane equation with K = ck, it is necessary and sufficient 
that u be a solution of the Bessel equation (3). The singularity at r = 0 of the 
Bessel equation is associated with the singularity in polar coordinates at the 
origin. 

If the membrane is a circular disc of radius a (vibrating drumhead), the phys
ically natural boundary conditons are u(a) = 0 and u(O) nonsingular. The latter 
condition characterizes the Bessel Junctions among other solutions of the Bessel 
equation, up to a constant normalizing factor. 

EXERCISESB 

1. Show that, if Un(x) satisfies the Bessel equation of order n (Ex. A4), then ct, = Un(kr) 
sin n0 and Un(kr) cos n8 satisfy the Helmholtz equation V2ct, + k2ct, = 0 for polar 
coordinates in the plane. 

2. The partial DE of a vibrating membrane is V 2U + k2U = 0. Using Ex. 1, show that 
this equation has solutions satisfying U(x, y) == 0 on x2 + y2 = I, for all numbers kmn 
such thatJn(kmJ = 0. 

3. A string of density T!o + u/oo cos 2x grams/cm is stretched taut between pegs at x = 
-1f/2 and x = 1fj2, under a tension of 2 kg. Determine its natural frequencies, in 
cycles per second. 

4. For the Bessel DE (xu')' + >.xu = 0, with the endpoint conditions that u(l) = 0 and 
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u is bounded on 0 < x :5 1, show that the first five eigenvalues are approximately 
X1 = 5.78, X2 = 30.5, X3 = 74.9, X4 = 139, and X5 = 223. [HINT: Consult a table 
of zeros of ] 0(x).] 

5. A vibrating reed, with one clamped end and one free end, executes simply harmonic 
vibrations with transverse displacement y(x, t) = u(x) cos kt if and only if u'" = k2u, 
u(0) = u'(0) = 0, and u'(l) = u"'(l) = 0. Find the characteristic frequencies 21r/k. 
[HINT: Consider the ultraspherical polynomials of Ch. 9, § 1 I.] 

6. Show that the general solution of the Airy DE is x112U113(2x312/3), where U113 is the 
general solution of the Bessel DE of order one-third. 

7. Show that the function]d1,(ecxv,;j:) satisfies the DE u" + bce2'x - d2)u = 0. 

8. Show that the function x]d1,(e'/xv,;j:) satisfies the DE 

u' + x-4 (be2c/x - d2) = 0 

*9. Show that the general solution of the DE 

is the function v(x) = y xU(bxa), where U is the general solution of the Bessel DE of 
order n. 

4 SINGULAR SYSTEMS 

An S-L equation (1) can be given on a finite, semi-infinite, or infinite interval 
I. In the finite case, / may include neither, one, or both end points. The exclu
sion of an endpoint a may be necessary when limx-a p(x) = 0, limx-a p(x) = 0, 
or when any one of the functions p, q, p is singular at a. 

Only when I is a closed, finite interval a < x < b can an S-L equation be 
associated with a regular S-L system. If I is semi-infinite or infinite, or if I is finite 
and p or p vanishes at one or both endpoints, or if q is discontinuous, we cannot 
obtain from (1) a regular S-L system. In any such case, the given S-L equation 
(1) is called singular. 

We can obtain singular S-L systems from singular S-L equations by imposing 
suitable homogeneous linear endpoint conditions. These conditions cannot 
always be described by formulas like (2). For example, the condition that u be 
bounded near a singular endpoint is a common boundary condition defining a 
singular S-L system. 

Example 5. The Legendre DE 

(9) [(l - x2)u']' + Xu = 0, -1 < x < l 

together with the condition that a solution u be bounded in the interval, is an 
example of a singular S-L system. As shown in Ch. 4, §2, the Legendre polynomials 
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Pn(x) are real eigenfunctions of this S-L system belonging to the eigenvalues 
An = n(n + 1). 

Example 6. For fixed n, the Bessel equation of Example 2, 

- r - + k2r - - u = 0, d [ du] ( n2
) 

dr dr r 
0<r<a 

is a singular S-L equation with p = p = r, A = k2, and q = n2/r. A singular 
S-L system is obtained for any a > 0 by imposing the endpoint conditions 
u(a) = 0, and u(r) bounded as r - 0. 

The eigenfunctions of the preceding singular S-L systems are the Bessel func
tions ]n(k1r), where k1a is the jth zero of the Bessel function ]n(x) of order n. It 
has been shown in Ch. 2, §6, that]n(x) has infinitely many zeros; it follows that 
the singular S-L system just defined has infinitely many eigenvalues. 

The eigenfunctions of singular S-L systems are also orthogonal, provided that 
they are square-integrable relative to the weight function p, in the following sense. 

DEFINITION. A real-valued function f is square-integrable on the interval I 
relative to a given weight function p(x) > 0 when 

(10) 

When the weight function p is identically equal to 1, we say simply that the 
function J is square-integrable on the interval I. 

The Schwarz inequality holdst for square-integrable functions: 

2 

(11) ( f lfix)g(x) I p(x) dx) :$ f J 2(x)p(x) dx f g2(x)p(x) dx 

This inequality implies in particular that the product of two such square-inte
grable functions is an integrable function relative to the weight function p, that 
is, the integral in parentheses on the left-hand of (11) is finite. 

The right side of the boundary term in (8) vanishes in the limit, for any end
point conditions that imply that 

(12) lim p(x[u(x)v'(x) - v(x)u'(x)] I fJ - 0 
ala,fJlb x•a 

t Birkhoffand MacLane, p. 201; see also Apostol, Vol. 2, p. 16. 
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The conditions p(a) = p(b) = 0 and u'(x) bounded on the interval [a, b] imply 
this property, for example. 

When (12) holds, we obtain from (8) the identity 

(l\ - µ) lb p(x)u(x)v(x) dx = 0 

for any two square-integrable eigenfunctions u and v with eigenvalues A and µ. 
The integral here may be an improper integral. If l\ =fo µ, this implies, as in the 
proof of the lemma of §2, that u and v are orthogonal. This proves the next 
theorem. 

THEOREM 2. Square-integrable eigenfunctions u and v belonging to different 
eigenvalues of a singular S-L system are orthogonal with weight p whenever the bound
ary term vanishes, as in (12). 

Applying this result to Example 5, we obtain the orthogonality relation for 
the Legendre polynomials 

(13) 

after verifying that the boundary term vanishes-:-Applying it to the Bessel equa
tion, we obtain the orthogonality relations for Bessel functions 

(14) 

Example 7. The Hermite DE is 

(15) u" - 2xu' + l\u = 0, 

as in Ch. 4, §2. Using the recursion formula 

(16) 
(2k - l\)ak 

ak+ 2 = (k + l)(k + 2) ' 

-00 < X < +oo 

k = 0, 1, 2, ... 

of Ch. 4, (9'), we obtain a polynomial solution of degree n for A = 2n. These 
polynomials are commonly normalized by the condition that an = 2n (and 
an-I = 0); this defines the Hermite polynomials Hn(x). For example, H0(x) = 1, 
H 1 (x) = 2x, H2(x) = 4x2 - 2, etc. Evidently, Hn(x) is an even function for even 
n, and an odd function for odd n. 

The Hermite DE is not an S-L equation, because it is not self-adjoint. Making 
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the substitution y = e-x2f2u in (15), we obtain the following equivalent self
adjoint S-L equation for the Hermite Junctions y(x): 

(17) y" + [;\ - (x2 - l)]y = 0, -00 < X < 00 

among whose solutions for;\ = 2n are the functions e-x2f2Hn(x); these functions 
are square-integrable and tend to zero as x - ± oo. 

That is, the functions <l>n(x) = e-x2f2Hn(x) are eigenfunctions for the singular 
S-L system defined by (17) and by the endpoint condition that a solution y(x) 
must tend to zero as x - ± oo. We shall now derive the orthogonality relations 
for the Hermite polynomials 

(1_8) m =I= n 

For, substituting into the identity (8), we obtain 

Since the boundary terms are e-x2 times a polynomial in x, and 

(19) lim xne-x2 = 0 
x--+oo 

for all n, the boundary term vanishes in the limit, as in (12). 

EXERCISES C 

1. (a) Prove the orthogonality relations for the Bessel functions 

if ]n'(otL) = ]n'(f3L) = 0, 

for any nonnegative integer n. 
(b) Prove the equality(*) if a] n'(aL)Jn(fJL) = /3]n'<fJL)]n(aL). 

Ol2 =/= {32 

2. Show that the Legendre polynomials (and their constant multiples) are the only solu
tions of the Legendre DE that are bounded on (-1, 1). 

3. Show that the S-L system [(x - a)(b - x)u']' + Xu = 0, a < b, with u(x) bounded on 
a < x < b, has the eigenvalues X = 4n(n + l)(b - a)2. Describe the eigenfunctions. 

4. (a) (Laguerre polynomials). Consider the singular S-L system 

on 0 < X < +oo 

with endpoint conditions that u(O+) is bounded and that e-xu(x) __.. 0 as 
x __.. +oo. Show that the values X = n give polynomial eigenfunctions. 

(b) Show that the preceding system has no other polynomial eigenfunctions. [HINT: 
Obtain the power series expansion of the general solution of the DE.] 
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5. Show that the eigenvalues of the singular S-L system defined by 

d [ 2-a+I du] 2 - (1 - X J - + >.(l - X tu = 0, 
dx dx 

a> -1 

and the condition of being bounded on (-1, 1), are >-n = n(n + 2a). 

5 PRUTER SUBSTITUTION 

We now develop a powerful method for the study of the solutions of a self
adjoint second-order linear DE 

(20) d [ du] dx P(x) dx + Q(x)u = 0, a<x<b 

where P(x) > 0 is of class (§1 1 and Q is continuous. One may want to find out 
how often the solutions of (20) oscillate on the interval under consideration, that 
is, the number of zeros they have for a < x < b. This can be done by using the 
Poincare phase plane, already introduced in Ch. 2, §7. Modifying slightly the 
formulas used there, we make in (20) the Priifer substitution 

(21) P(x) u'(x) = r(x) cos 8(x); u(x) = r(x) sin 8(x) 

The new dependent variables rand 8 are defined by the formulas 

(21 ') 8 = arctan (u/Pu') 

r is called the amplitude and 8 the phase variable. When r =fo 0, the correspon
dences (Pu', u) ~ (r, 8) defined by (21) are analytic with nonvanishingJacobian. 

For nontrivial solutions, r is always positive because, if u(x) = u'(x) = 0 for 
a given x, by the Uniqueness Theorem of Ch. 2, §4, u would be the trivial solu
tion u = 0. 

We now derive an equivalent system of DEs for r(x) and 8(x). Differentiating 
the relationt cot 8 = Pu' /u, we get 

2 d8 (Pu')' Pu'2 l 
-csc 8- = -- - - = -n(x) - -cot2 8 

dx u u2 ?<: p 

If we multiply through by -sin2 8, this expression becomes 

(22) 
d8 
-= 
dx 

Q(x) sin2 8 + - 1- cos2 8 = F(x, 8) 
P(x) 

t When 8 == 0 (mod '11"), the relation is not defined. But the final equations (22)-(23) can still be 
derived by differentiating the relation tan 8 = u/Pu'. 
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Differentiating r 2 = (Pu')2 + u2 and simplifying, we obtain 

(23) dr [ 1 ] 1 [ 1 ] - = - - Q(x) r sin 0 cos 0 = - - - Q(x) r sin 20 
dx P(x) 2 P(x) 

The system (22)-(23) is equivalent to the DE (20) in the sense that every non
trivial solution of the system defines a unique solution of the DE by the Priifer 
substitution (21), and conversely. This system is called the Priifer system associ
ated with the self-adjoint DE (20). 

The DE (22) of the Priifer system is a first-order DE in 0, x alone, not con
taining the other dependent variable r, and it satisfies a Lipschitz condition with 
Lipschitz constant 

laFI 1 L = sup - < sup IQ(x)I + sup --
a<x<b a0 a<x<b a<x<b I P(x) I 

The constant L is finite in any closed interval in which Q and P are continuous. 
Hence, the existence and uniqueness theorems of Ch. 6 are applicable, and 
show that the DE (22) has a unique solution 0(x) for any initial value 0(a) = 'Y, 
provided P and Q are continuous at a. 

With 0(x) known, r(x) is given by (23) after a quadrature: 

(23') r = K exp {.!_ fx [-1 - Q(t)] sin 20 dt} 
2 Ja P(t) 

where K = r(a). Each solution of the Priifer system (22)-(23) depends on two 
constants: the initial amplitude K = r(a) and the initial phase 'Y = 0(a). Changing 
the constant Kjust multiplies a solution u(x) by a constant factor; thus, the zeros 
of any solution u of (20) can be located by studying only the DE (22). 

6 THE STURM COMPARISON THEOREM 

The zeros of any solution u(x) of the DE (20) occur where the phase function 
0(x) in the Priifer substitution (21) assumes the values, 0, ±1r, ±21r, ... , that 
is, at all points x where sin 0(x) = 0. At each of these points cos2 0 = l and 
d0/dx is positive, by (22) [recall that P(x) > 0]. Geometrically, this means that 
the curve (P(x)u'(x), u(x)) in the (Pu', u)-plane, corresponding to a solution u of 
the DE, can cross the Pu'-axis 0 = n1r only counterclockwise. 

Now compare the DE (22) with a DE of the same form, d0/dx = F1(x, 0), 
having coefficients Qi (x) > Q(x) and P1 (x) < P(x): 

d0 = Qi(x) sin2 0 + - 1- cos2 0 = F 1(x, 0) 
dx P1(x) 
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If Qi(x) > Q(x) and P1(x) < P(x) in an interval/, then F1(x, 8) > F(x, 8) there. 
By the Comparison Theorem of Ch. 1, §11, we conclude that, if 81(x) is a solu
tion of the second DE whose initial value satisfies 81 (a) > 8(a), and 8(x) is a solu
tion of (22), then 81 (x) > 8(x) for a < x :s; b. Furthermore, we have 81 (b) = 8(b) 
only if 8(x) = 81 (x), which implies that u(x) = cu1 (x), whence F(x, 8(x)) = 
F1(x, 81(px)). This implies that Q(x) = Qi(x) since d8/dx = l/P1(x) > 0, where 
sin 8 = O; therefore, sin 8 can vanish only at isolated points. It also implies that 
P(x) = P1(x), except in intervals where cos 8 = 0, and so Q(x) = Qi(x) = 0 
(cf. Ch. 1, §12, Corollary 1). Therefore, if sin 8(a) = 0, the number ofzeros of 
sin 81(x) for a < x < bis at least the number of zeros of sin 8(x), except when 
P = P1 and Q = Qi, when it is equal, and when Q = Qi = 0 in an interval, 
when it may be equal. This completes the proof of the following theorem. 

THEOREM 3 (STURM COMPARISON THEOREM). Let P(x) ~ P1 (x) > 0 and 
Qi (x) > Q(x) in the DEs 

(24) d ( du) - P(x) - + Q(x)u = 0, 
dx dx 

d ( du 1) - P1(x)- + Qi(x)u1 = 0 
dx dx 

Then, between any two zeros of a nontrivial solution u(x) of the .first DE, there lies at 
least one zero of every real solution of the second DE, except when u(x) = cu1(x). This 
implies P = P1 and Q = Qi, except possibly in intervals where Q =Qi= 0. 

In the case of S-L equations, since p(x) > 0, Q(x) = Qi(x) evidently implies 
that X = X1. 

Sturm's Separation Theorem of Ch. 2, §6 follows as a corollary, by comparing 
two linearly independent solutions of the same DE. 

A short and easily remembered, if somewhat imprecise, summary is this: as Q 
increases and P decreases, the number of zeros of every solution increases. 

Maxima and Minima. For the self-adjoint DE (20), the inequality Q(x) > 0 
implies that 

d8/dx > 0 if 

For, in (22), cos 8 = 0 and I sin 81 = 1, if 8 = (n + ½)1r. Since cos 8 = 0 if and 
only if u' = 0, it follows that, if Q(x) is positive, any nontrivial solution of (20) 
has exactly one maximum or minimum between successive zeros. 

7 STURM OSCILLATION THEOREM 

We now consider the variation with;\ in the number of zeros of the eigen
functions of a regular S-L system (1) to (2). Setting P(x) = p(x) and Q(x) = 
;\p(x) - q(x) in (1), we obtain (20). Since u = 0 if and only if sin 8 = 0 in (21), 
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the zeros of any solution of (1) are the points where 0 = 0, ± 1r, ± 21r, ... , 
± n1r, ... , 0 being a solution of the associated Priifer equation 

(25) dO = [Xp(x) - q(x)] sin2 0 + -1- cos2 0, 
dx p(x) 

Here p(x) > 0, p(x) > 0 for a < x < b. 
We now fix 'Y, and denote by 0(x, ;\) the solution of (25) that satisfies an initial 

condition 0(a, ;\) = 'Y for all X, where 'Y is determined by the conditionst 

(25') 
u(a) a' 

tan"(= =--
p(a)u'(a) p(a)a ' 

The constants a and a' come from the initial condition au(a) + ot'u'(a) = 0. For 
fixed 'Y, the function 0(x, ;\) is defined on the domain a < x < b, -oo < ;\ < 
oo; we shall consider its behavior there. 

Applying the comparison theorem of Ch. 1, § 11 (and especially Corollary 1 
there) to (25), we obtain the following lemmas. 

LEMMA 1. For fixed x > a, 0(x, ;\) is a strictly increasing function of the variable 
X. 

LEMMA 2. Suppose that for some Xn > a, 0(xn, ;\) = n1r, where n 2: 0 is an 
integer. Then 0 (x, ;\) > n1r for all x > Xn. 

Proof If Xn is any point where 0(x, ;\) = n1r, then by the DE (25), we have 
d0(xn, ;\)/dxn = l/p(xJ > 0. Thus, the function 0 = 0(xn, ;\), considered as a 
function of xn, is increasing where it crosses the line 0 = n1r, as shown in Figure 
10.1. Hence, 0(x, ;\) stays above this line for x > Xm q.e.d. 

Lemma 2, combined with the condition O :s; 'Y = 0(a, ;\) < 1r, makes the first 
zero of u(x) in the open interval a < x < b occur where 0 = 1r, and the nth 
zero, where 0 = n1r. 

Our next aim is to show that, for fixed x > a, 0(x, ;\) - oo as;\ - oo. 
In view of Lemma 2, we will have shown that lim>.-oo 0(x, ;\) = oo for each x, 

if we can show that for every integer n > 0, we can find a number xnCX) be the 
smallest x such that 0(x, ;\) = n1r. Then, all we need to show is that x,.. < x such 
that 0(xn; ;\) = n1r for sufficiently large ;\0. Stated in different terms, let xn(;\) 
exists for large ;\ and that lim;i.,-00xnCX) = a. This is done in the following lemma. 

LEMMA 3. For a given fixed positive integer n and sufficiently large ;\, the Junc
tion xn(;\) is de.fined and continuous. It is a decreasing Junction of;\, and lim;i.,-oo 
Xn(A) = a. 

t We have assumed a 'F- 0. When a = 0, set 'Y = w/2, tan 'Y = oo. 
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Figure 10.1 Direction field of 

d(J = Q(x) sin2 (J + - 1- cos2 () = F(x, 8) 
dx P(x) 

Proof. By Theorem 3 of Ch. 6, the function 0(x, ;\) is a continuous function 
of both variables x and;\ for a < x < band -oo < ;\ < oo. We shall first prove 
that, if the function xnCX) is well-defined, that is, if 0(x, ;\) = mr for some x, then 
xn(A) is a monotonic decreasing function of;\. To prove this result, it suffices to 
prove that 0(x, ;\) is an increasing function of A. But this is the conclusion of 
Lemma 1. 

We now show that, for fixed n, the function xn(;\) is well-defined for large 
enough ;\, This amounts to saying that, for large enough ;\, there is an x in the 
inverval a < x < b for which 0(x, ;\) = mr. We can translate this statement into 
an equivalent statement for the solutions of the DE (1), using (21). It is equiv
alent to saying that every nontrivial solution of (1) has at least n zeros in the 
interval a < x < b, since 0(x, ;\), being a continuous function of x, must take all 
values between 0(a, ;\) = 'Y < 1r and n1r. 

Now, let qM and PM be the maxima of q(x) and p(x), respectively, and let Pm be 
the minimum of p(x) for a < x < b. A solution of the DE 

(26) 

is the function u 1(x) = sin k(x - a), where k2 = (APm - qM)/PM· The successive 
zeros of this function are spaced at a distance 1rv'pM/(;\pm - qM) apart. By the 
Sturm Comparison Theorem (Theorem 3 above), any nontrivial solution u(x) of 
the Sturm-Liouville equation (1) must have at least one zero between any two 
zeros of the function u 1 (x). Since u 1 (x) has n zeros on (a, b) when;\ is sufficiently 
large, it follows that u(x) has at least n zeros and, therefore, that 0(x, ;\) takes the 
value n1r for sufficiently large ;\, as we wanted to show. 

The number Xn(A) falls .between the (n - l)st and the nth zero of u1(x), and 
both these zeros tend to a as ;\ - oo. Therefore, we have xn(;\) - a as ;\ - oo, 
q.e.d. 

We are now ready to prove the following result. 
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THEOREM 4 (OSCILLATION THEOREM). The solution 0(x; A) of DE (25) 
satisfying the initial condition 0(a, A) = 'Y, 0 :s; 'Y < 1r for each A, is a continuous 
and strictly increasing Junction of A for fixed x on a < x < b. Moreover, 

(27) lim 0(x; A) = oo, 
ll.-oo 

lim 0(x; A) = 0 
ll.--oo 

fora< x < b. 

The first sentence was proved in Lemmas 1-3. The first formula of (27) was 
proved in Lemma 1. 

We shall now prove the second formula of (27). Choose numbers 'Y < -y1 < 
1r and E > 0. The slope of the segment in the x0-plane joining the points (a, -y1) 

and (x1, E) where a < x 1 < b, equals (E - -y 1 )/(x 1 - a). For a point (x, 0) on this 
segment, the slope of 0(x, A), as given by (25), will be less than the slope of 
the segment for large negative A. Therefore, the function 0(x, A) will lie below 
the segment for a < x < x1, for all sufficiently large negative A. We conclude 
that 0(x1, A) < E for sufficiently large negative A. Since, by the argument used to 
prove Lemma 2, 0(x1, A) > 0, it follows that I 0(x1, A) I < E. And since E and 
x1 are arbitrary, the proof is complete. 

We now derive an estimate for the positions of the zeros of a solution of a 
regular S-L equation (1), by comparing it with equation (26) and with 

(28) 

where Pm and qm are the minima of p(x) and q(x), and PM the maximum of p(x) 
fora< x < b. 

Consider solutions of (26) and (28) for which u(a)/p(a)u'(a) = tan -y. The 
zeros of these solutions can be determined by inspection. They are a + (n1r -

-y)/Y(APm - qM)/PM and a + (n1r - -y)/Y(APM - qm)PM, respectively. Applying 
the Sturm Comparison Theorem, we obtain the following Corollary. 

COROLLARY. Let xn be the nth zero of a nontrivial solution of the S-L equation 
(1). Then 

(29) 

The preceding results have been proved under the assumption that a =fo 0 in 
(2). If a = 0, we can use the same argument when f3 =fo 0, by changing the 
independent variable to t = a + b - x. If a = f3 = 0, we can still prove the 
foregoing results with 'Y = 1r /2. 

EXERCISESD 
1. For U 8 + [>.- q(x)]u = 0, with separated endpoint conditions (2), show that all 

eigenvalues are positive if q(x) > 0, aol < 0, and {J{J' > 0. 
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2. Show that the number of negative eigenvalues of a regular S-L system is always finite 
and is at most 1 if q(x) > 0. 

3. Show that any finite sequence of eigenvalues of a regular S-L system is unbounded. 

4. Find all solutions of the DE (J' = A sin2 (J + B cos2 (J, where A and B are positive 
constants. [HINT: Relate this to a Priifer system.] 

5. Show that, at all points x where a solution u(x) of (Pu')' + QJ1, = 0 has a minimum 
or a maximum, d0/dx = Q(x). 

6. Extend the Sturm Oscillation Theorem to the case where a = {J = 0 in (2). 

7. Derive Theorem 3 from the Sturm Comparison Theorem of Ch. 2 by introducing 
the new dependent variables t = J: ds/P(s) and t1 = J; ds/P1(s). 

8. For any solution of u" + q(x)u = 0, q(x) < 0, show that the product u(x)u'(x) is an 
increasing function. Infer that a nontrivial solution can have at most one zero. 

9. Show that, if q(x) < 0 in u" + p(x)u' + q(x)u = 0, no nontrivial solution of the DE 
can have more than one zero. 

10. (a) Show thatfn(x) is increasing for O < x :5 In 1- [HINT: Use the identity x(xj:;J' == 
(n2 - x2)]n-] 

(b) Prove that, if x 0 is the first positive zero of ]n and y0 is that of]~, then 

lnl ::5 Yo< Xo 

* 11. (a) Let u(x) be a solution of (Pu')' + QJ1, = 0, where P > 0, P' > 0, Q > 0, and 
(P '/Q) ' > 1. Show that the zeros of u, u', u" follow one another cyclically. 

(b) Infer that the zeros of]n,fn+i,fn+2 follow one another cyclically. 

12. (Sturm Convexity Theorem). In u" + Q(x)u = 0, let Q(x) be increasing. Show that 
xn - Xn- i < Xn+ 1 - Xn, where {xn} is the sequence of successive zeros of a nontrivial 
solution u. 

13. For the modified Bessel function / 0(y) = ] 0(iy), without considering its Taylor series, 
show that Ifh) > 0 and 1 < /0(y) < cosh y for ally > 0. 

14. Show that, in the Sturm Oscillation Theorem, (J(x, ;\) _.. oo as;\_.. oo, uniformly in 
any subinterval a' :5 x :5 b, a' > a. 

15. Show that 0(x, ;\) _.. 0 as X _.. -oo, uniformly in any subinterval a' :5 x :5 b, 
a'> a. 

8 THE SEQUENCE OF EIGENFUNCTIONS 

The existence of an infinite sequence of eigenfunctions of a regular S-L sys
tem that consists of the DE (1), together with the separated endpoint conditions 
(2), that is, the conditions 

(30) A[u] = au(a) + a'u'(a) = 0, B[u] = f)u(b) + f)'u'(b) = 0 

will now be proved. 
We first transform these endpoint conditions into equivalent endpoint con

ditions for the phase function 0(x, A) of the Prtifer system (22)-(23) associated 
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with the DE (1). If a =f,. 0, then the function 0(x, A) must satisfy the initial con
dition 0(a, A) = 'Y, where 'Y is the smallest positive number 0 < 'Y < 1r such that 
p(a) tan 'Y = -a' /a. When a = 0, we chose 'Y = 1r/2. Similarly, we choose 
0 < ~ < 1r so that tan~ = -(3'/(3p(b). 

A solution u(x) of the DE (1) for a < x < bis an eigenfunction of the regular 
S-L problem obtained by imposing the endpoint conditions (3) if and only if, 
for the corresponding phase function defined by (21'), 

(31) 0(a, A) = 'Y, 
0 < 'Y < 'Ir, 

0(b, A) = ~ + n1r, 
0<~<1r 

n = 0, 1, 2, ... 

Clearly, any value of A for which conditions (31) are satisfied is an eigenvalue of 
the given regular S-L system, and conversely. Let 0(x, A) be the solution of (25) 
for the initial condition 0(a, A) = -y. Figure 10.2 shows graphs of the function 0 
= 0(x, A) for various values of the parameter A. The waviness of the lines 
expresses the fact that 1/P(x) in (23) is independent of A, whereas Q(x) = AP -
q tends to infinity with A. As a result, the slope of the graph is 1/p(x) for all A 
when 0 = 0 (mod 1r), although it tends to infinity with A for all other 0. 

Since 0(b, A) is an increasing function of A, and 0(b, A) > 0 by Lemma 2 of § 
7, as A increases from -oo, there is a first value Ao for which the second of the 
conditions (31) is satisfied. For this eigenvalue, we have 0(b, Ao) = ~- As A 
increases, there is an infinite sequence of An for which the second boundary 
condition is satisfied, namely those for which 0(b, An) = ~ + n1r, for some non
negative integer n. Each of these values gives an eigenfunction 

(32) 

of the S-L system. Furthermore, the eigenfunction belonging to An has exactly 
n zeros in the interval a < x < b, by Theorem 4. This proves all but the last 
statement of the following theorem. 

(J (J 

7-r/2 7r/2 

311' 3,,,. 

Sr/2 Sr/2 

2r 2r 

3r/2 >.-1 3r/2 A=l 

'Ir 'Ir 

r/2 A=O r/2 >.-o 
>.--1 A=--1 

0 ).a-OD 0 >.- -10 
% 

'Y""o 
'II' 

-y=2 

Figure 10.2 8(x, >.) for u" + >.u = 0. 
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THEOREM 5. Any regular S-L system has an infinite sequence of real eigenvalues 
Ao < A1 < A2 < · · · with limn-oo An = oo. The eigenfunction un(x) belonging to 
the eigenvalue An has exactly n zeros in the interval a < x < b and is uniquely deter
mined up to a constant factor. 

Only the last assertion wants verification. Any two solutions of (1) that satisfy 
the same initial condition au(a) + a'u'(a) = 0 are linearly dependent, by the 
Uniqueness Theorem of Ch. 2, §4. 

EXERCISESE 
1. Show that for a regular S-L system, if q(x) is increased to q1 (x) > q(x), each nth eigen

value of the new system is larger than that of the old. 

2. Show that for a regular S-L system, if p(x) is increased to p1(x) > p(x), all positive 
eigenvalues decrease and any negative eigenvalue increases. 

3. Discuss the asymptotic behavior, as n---+ oo of the nth eigenvalue of the S-L systems 
defined by u" + ;\u = 0, and the endpoint conditions: 
(a) u(0) = 0, U(11') + u'(11') = 0. 
(b) u(0) = 0, U(11') = u'(11'). 

That is, find constants a0 , a1 such that ~ = n + ao + a1/n + 0(l/n2). 

4. For regular S-L systems with two sets of endpoint conditions, (30) and 

{ju(b) + {j'u'(b) = 0 

show that, if aVa1 < a' /a, the eigenvalues of the second system are smaller than the 
corresponding eigenvalues of the first. 

5. (a) Given (Pu')' + Qu = 0, and (P1v')' + Q1v = 0, P 1(x) > 0, Qi(x) continuous, 
establish Picone 's identity. 

where u(a) = u(b) = 0 and v(x) -:!a 0 in [a, b]. 
(b) Infer the Sturm Comparison Theorem from Picone's identity. 

*6. (Szego's Comparison Theorem). Under the hypothesis of the Sturm Comparison 
Theorem for a < x < b, P = Pi, Q ai!l Qi, let u(x) > 0, u 1(x) > 0 for a < x < b, 
and lim,-a P(x)[u'u 1 - uu;] = 0. Show that, if u(b) = 0, there is an x2 in (a, b) such 
that u 1(x2) = 0. 

9 THE LIOUVILLE NORMAL FORM 

By changes of dependent and independent variables of the form 

(33) u = y(x)w, t = I h(x) dx; y > 0, h>O 
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we can simplify the S-L equations (1) considerably. If the functions y and hare 
positive and continuous in the given interval, the first substitution leaves the 
location of zeros unchanged, while the second one distorts the range of the 
independent variable, preserving the order, and leaves the number of zeros of 
a solution in corresponding intervals unchanged. The equivalent DE in w and t 
is obtained from the identity d/dx = h(x) d/dt, which is obtained from the sec
ond of equations (33). When substituted into the S-L equation (1), this identity 
gives 

0 = h[hp(yw)1] 1 + (Xp - q)yw 

= h{pyhw11 + [(hp),:y + 2hpy,]w1 + (hpy1) 1w} + (Xp - q)yw 

Dividing through by the coefficient pyh2 of w11, we obtain the equivalent DE (for 
h, y E (§1 2), 

w11 + (P,Yh)- 1 [(hp),:y + 2hpy,]w1 + [(pyh)- 1(hpy1) 1 + h-2p- 1(Xp - q)]w = 0 

The term X(p/ph2)w reduces to )\w if and only if h2 = p/p. The coefficient of w1 

vanishes if and only if (hp)t!hp = - 2y/y, which can be achieved by choosing 
y2 = (hp)- 1• Therefore, a simplified equivalent DE in w and t is obtained 
by choosing 

(34) 
4,----

u = w/Vp(x)p(x), t = I V p(x)/p(x) dx 

This substitution reduces (1) to Liouville normal form. Since p and pare positive 
throughout the interval of definition (cf. § 1), this change of variables makes h(x) 
and y(x) positive and of class (§12 whenever p and pare of class (§12. 

THEOREM 6. Liouville's substitution (34) transforms the S-L equation (1) with 
coefficient functions p, p E lr2 and q E (§) into the Liouville normal form 

(35) 

where 

(36) 

d2w 
- 2 + [X - q(t)]w = 0 
dt 

Evaluating the second derivative in (36) and using the identity d/dt = 
(p/p) 112 d/dx, we get the alternative rational form 
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If the DE (1) is defined in a :$ x < b, and t is the definite integral 
t = J: V p(s)/p(s) ds, then the equivalent DE (35) is defined in the interval 
[0, c), where c = J! V p(x)/p(x) dx. An S-L equation (1) with p, p E (J2 and 
q E CJ is transformed by Liouville's substitution into an S-L equation (35) with 
q E CJ, since the denominator in (36) remains bounded away from 0. 

COROLLARY 1. Liouville's reduction (34) transforms regular S-L systems into 
regular S-L systems, separated and periodic boundary conditions into separated and 
periodic boundary conditions. The transformed system has the same eigenvalues as the 
original system. 

Let u(x) and v(x) be transformed into the functions j(t) and g(t) by Liouville's 
reduction (34). From the identity 

(37) le j(t)g(t) dt = lb u(x)v(x) V p(x)p(x) ~ dx = lb u(x)v(x)p(x) dx 

we infer the following result 

COROLLARY 2. Liouville's reduction (34) transforms functions orthogonal with 
weight p into orthogonal functions with unit weight. 

The Bessel equation (3) of Example 2, §1, 

(38) 

is the special case p = p = x, q = n2/x of the DE (1). Hence, Liouville's reduc
tion (34) is u = w/Vx and x = t, which leads to the equivalent DE 

- + k2 - ---4 w = 0, 
d2w [ n2 - l] 
dx2 x2 

If n = ½, this is the trigonometric DE w0 + k2w = 0, having a basis of solutions 
cos kx and sin kx (k = 1, 2, 3, ... ). Since ] 112(0) = 0, it follows that J112(x) is a 
constant multiple of (sin x)/Vx. 

EXERCISES F 
1. (a) Show that the self-adjoint form of the Hermite DE (15) is the S-L equation 

(b) Show that the Liouville normal form of this is the S-L equation (1 7) for the Her
mite functions. 
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2. Show that the Liouville normal form of the self-adjoint form of the Jacobi DE is, for 
X = COS t 

[ (¼ - £r2) (¼ - /32) ( (a + {3 + 1) )2] 
Wu + 4 sin2 (t/2) + 4 cos2 (t/2) + n + 2 w = O 

3. Show that the self-adjoint form of the hypergeometric DE is the singular S-L 
equation 

What is the Liouville normal form for this DE? 

4. Compute the Liouville normal form for the Legendre DE, setting x = -cost, -'If 
< t < 0. 

*5. Show that every solution of the Legendre DE is square-integrable on [-1, l] and 
satisfies the endpoint conditions lim.-± 1 (1 - x2)u(x) = 0. 

*6. The Laguerre DE is xu" + (1 - x)u' + Xu = 0. Show that its self-adjoint form is 
the S-L equation [xe-xu']' + Xe-xu = 0. What is its Liouville normal form? 

*7. Show that the Legendre polynomial Pn(x) has·exactly n zeros. [HINT: Reduce the 
Legendre DE to Liouville normal form and apply Ex. E6.] 

*8. If x1 = cos t1, ... , Xn = cos tn are the zeros of Pn(x), x1 < x1+1, show j that 27f(- l)/ 
(2n + 1) < t1 < 27fj/(2n + 1), for 2 :5.j :5. n. [HINT: Use the Liouville normal form 
and Ex. E6.] 

10 MODIFIED PRUTER SUBSTITUTION 

By applying a modification of the Priifer substitution to the Liouville normal 
form of an S-L system, we can obtain asymptotic formulas for the nth eigen
function un(x), valid for large n. 

Using the Liouville substitution, any regular S-L system can be transformed 
into a regular S-L system consisting of the equation 

(39) u" + [X - q(x)]u = u" + Q(x)u = 0, Q(x) = ;\ - q(x) 

and separated boundary conditions of the same form 

(40) au(a) + a'u'(a) = 0, {3u(b) + {3'u'(b) = 0 

The constants a, a', (3, {3' are usually changed, but we still have a 2 + a'2 =fo 0 
and (32 + {3'2 =fo 0. By Theorem 6, Corollary 1, the eigenvalues of this system are 
the same as those of the original system, and the eigenfunctions are obtained 
from those for the Liouville normal form through the Liouville substitution. To 
study the distribution of eigenvalues and magnitude of the eigenfunctions, it, 



324 CHAPTER 10 Sturm-Liouville Systems 

therefore, suffices to treat the system (39)-(40). In §§10-11, we shall use mainly 
(40). 

We shall assume from now on that Q(x) > 0 for a< x < b, that is, that A> 
q(x) and Q E <§1 1. We introduce the functions R(x, ;\) and ct,(x, ;\), the modified 
amplitude and modified phase, which are defined in the terms of a given solution 
u(x, ;\) of (39) by the equations 

(41) 
R . 

u = -4-smct,, 
VQ 

4 
u' = RVQcosct, 

These equations constitute the modified Priifer system for the DE (39). 
We shall now derive a pair of DEs for Rand ct, that are equivalent to (39). We 

havet 

(42) 
l u' 

cot ct, = \IQ-; , 
1 

R2 = VQu2 + -u'2 
\IQ 

Differentiating the first of these equations, we obtain (using u" = -Qu) 

Qu2 + u'2 1 Q' u' 
(csc2 ct,)ct,' = Q1;2u2 + 2 Q3/2-; 

Using the second equation, this simplifies to 

R2 1 Q' 
(csc2 ct,)ct,' = - + - - cot ct, 

u2 2 Q 

and, multiplying by sin2 ct, and simplifying, 

(43) 
l Q' 

ct,' = Q112 + - - sin 2ct, 
4Q 

To derive the DE satisfied by R, differentiate the second equation in (42), 
obtaining the identity 

The first term vanishes since u" = -Qu, leaving the DE 

(44) 
R' Q' -Q' 
- = - (sin2 ct, - cos2 ct,) = -- cos 2ct, 
R 4Q 4Q 

t When u #= 0, these equations are valid. When u = 0, set tan <f, = YQu/u' and proceed similarly. 
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In terms of A and q, the modified Priifer system is 

(45a) <b' = ~ - 4(;\ q~ q) sin 2</> 

(45b) 
R' q' 
-= 4(;\ _ q) cos 2</> R 

Clearly, to every nontrivial solution of (39) there corresponds a solution of 
the modified Priifer system, and conversely. Furthermore, we know that R > 0, 
unless R vanishes identically. 

Equations (45a) and (45b) determine the asymptotic behavior of the solutions 
of (39) as ;\ -+ oo. The fundamental result is the following. 

THEOREM 7. Let <b(x, A) and R(x, X) be solutions of the system (45a) and (45b), 
where q(x) E <§1 1 is bounded. Then, as;\-+ oo, 

(46) 

and 

(47) 

0(1) 
<b(x, A) = <J>(a, X) + \!X(x - a) + \IX 

0(1) 
R(x, ;\) = R(a, ;\) + T 

Intuitively, Theorem 7 states that for large ;\ the modified phase <b is approx
imately a linear function of \IX, and the modified amplitude function R is 
approximately constant. 

The Symbol 0(1). The symbol 0(1) used here and later signifies a function 
fix, ;\) of x and A, defined for all sufficiently large A, which is uniformly bounded 
for a < x < b as ;\ -+ oo. Hence, 0(1),/A' signifies a function fix, ;\) such that 
X'j(x, ;\) is uniformly bounded. The symbol 0(1)/X' is also often written 0(X-'), 
as has been done in analogous contexts in Chs. 7 and 8. 

The formula fix, ;\) = 0(1), where f is a given function, is not an ordinary 
equation. Thus, to write 0(1) = fix, A) would be meaningless, since 0(1) is not 
a function. The formula means simply that f remains uniformly bounded for all 
x as ;\ -+ oo, and that no other property of the function f is needed for the 
purpose at hand. Using this definition, the following important properties of 
the symbol 0(1) can be easily verified: 

0(1) + 0(1) = 0(1); 0(1)0(1) = 0(1); lb 0(1) dx = 0(1) 

for any finite a, b. Again, if a and {3 are real numbers with a< {3, then 0(1)/Xa 
+ 0(1)/X/J = 0(1)/Xa. Finally, if q(x) is any bounded function of x, then by 
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Taylor's formula we have, as ;\ - oo 

The preceding formulas will be used freely in subsequent computations. 

Proof. For all;\ for which I q(x) I < ;\ on [a, b], we have as before 

We now compare the solutions of the DEs (45a) and (45b) with the solutions 
<J,1(x, X) = <J,(a, ;\) + \,'X(x - a) and R 1(x, A)= R1(a) of 

and (log R)' = 0 

using Theorem 3 of Ch. 6. In making this comparison, we set E = 0(1)/VA, and 
replace x and y with the functions <J,(x, ;\) and <J,1 (x, ;\), respectively. If <J,1 (a, ;\) 
= <J,(a, A), the inequality (7) of Ch. 6 gives I <J,(x, ;\) - <J,1 (x, ;\) I < 0(1)/VA, and 
since <J,i(x, ;\) = <J,(a, ;\) + \,'X(x - a), equation (46) follows. 

Similary, to derive (4 7), compare R(x, ;\) with R 1(x, ;\), using the identity 
e0 <1>/>- = 1 + 0(1)/;\ obtained from Taylor's formula. 

*I I THE ASYMPTOTIC BEHAVIOR OF BESSEL FUNCTIONS 

We shall now use the modified Priifer substitution to study the asymptotic 
behavior of solutions of the Bessel DE (3) as x - oo. The substitution u = w/ 
Vx reduces (3) to the Liouville normal form 

(48) w0 + [l - (M/x2)]w = 0, 0 < X < 00, M = n2 - ¼ 

whose solutions are w(x) = VxZn(x), where Zn(x) is a solution of the Bessel DE 
[see (38)]. The modified Prilfer system for (48) is then obtained by setting Q(x) 
= 1 - M/x2 in (43) and (44). This gives 

(49a) 

(49b) 

A+ Msin2<J, 
<J,'(x) = 

2(x3 - Mx) 

R'(x) -M cos 2<J, 
--= 
R(x) 2(x3 - Mx) 
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Expanding the right sides of these equations, we have as x -+ oo, since 
(1 - M/x2) 1

1
2 = 1 - M/2x2 + 0(l)/x4, 

1 M 0(1) 
<b'(x) = 1 - - - + - , 

2 x2 x3 

R'(x) 0(1) 
R(x) = 7 

Here 0(1) denotes a function of x that remains bounded as x-+ oo. Integrating 
the first of these equations between any x > VM and y > x, we obtain 

M M 0(1) 
</J(x) - </J(y) = X - y - - - - + -

2x 2y x2 

Keeping x fixed and letting y -+ oo, we find that </>00 = lim,-00 [y - <b(y)] is finite. 
This gives <J>(x) = </>00 + x - M/(2x) + 0(l)/x2. 

If VM < x < y, integration of the second equation gives, similarly, log R(x) 
- log R(y) = 0(l)/x2. Taking exponentials and letting y-+ oo, we get 

R(x) = Roo exp [0(l)/x2] = Roo + 0(l)/x2 

where R 00 = limroo R(y). 
It follows that every solution of the Bessel DE (48) has the asymptotic form 

[ 0(1)] ( M 0(1)) 
Zn(x) = x- 1/ 2 R 00 + 7 sin <boo + X - 2x + 7 

Since sin (A + 0(l)/x2) = sin A + 0(l)/x2, the preceding display can be rewrit
ten as 

_ -1;2 • ( _ M) 0(1) 
Zn(x) - Roox SID X + <boo + 5/2 

2x X 

The solution Zn is uniquely determined by the constants R 00 and </J00 above. For, 
if two solutions had the same asymptotic amplitude R00 and phase <J>00, their dif
ference would be a solution having modified amplitude R(x) = 0(l)jx 51~ Since 

[ 0(1)] 
R(x) = Roo exp 7 

this would imply R = u = 0. Setting Xoo = 1r /2 + </>00 , this proves the following 
theorem. 

THEOREM 8. To every nontrivial solution of the Bessel DE (3), there corresponds 
an asymptotic phase constant x00 and a limiting modified amplitude R 00 • The solution 
is uniquely determined by x00 and R 00 ; every solution Zn(x) of Bessel's DE can be 
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expressed as x -+ oo in the form 

(50) 
R00 ( (n2 - 1/4) 0(1) 

Zn(X) = , r_ COS X + X00 - + ~ 
VX 2x X 

For the Bessel function]n(x), it can be shown that x00 = mr/2 + 1r/4 and that 
Roo = ~- The Neumann function Yn(x) is defined likewise by the conditions 
Xoo = n1r/2 + 31r/4 and Roo = ~- Thus, the Neumann function Yn(x) is 
defined by the condition that it has the same asymptotic amplitude as ]n(x), with 
an asymptotic phase lag of ,r /2 radians. 

That is, the asymptotic relation between ]n(x) and Yn(x) is, for large positive 
x, the same as that between cos x and sin x. The Hankel function Hn(x) = 
]n(x) + iYn(x) is, therefore, analogous to the complex exponential function 
e'x = cos x + i sin x. 

12 DISTRIBUTION OF EIGENVALUES 

We shall next show that the asymptotic distribution of the eigenvalues of all 
regular S-L systerp.s is the same: the trigonometric DE u" + AU = 0 is typical. 
We shall treat in detail the case of separated endpoint conditions (2), also assum
ing a'fl' =fo O for uniformity. We can assume the given S-L system reduced to 
Liouville normal form (39)-(40), because this does not change the eigenvalues 
or the condition a'fl' =fo 0. 

For the trigonometric DE and the boundary conditions u(a) = u(b) = 0, the 
nth eigenfunction is sin [n,r(x- a)/(b - a)] and the nth eigenvalue is An = 
n21r2/(b - a)2, n = l, 2, 3, .... For u(a) = u'(b) = 0, un(x) sin -.Ji;;.(x - a), 
where An = (.!!.,_ + ½) 21r2/(b - a)2. For u'(a) = u'(b) = 0, the (n + l)st eigenfunc
tion is cos VAn(x - a), where An = n21r2/(b - a)2 and n = 0, l, 2, .... 

We will treat in detail, here and in §13, regular S-L systems satisfying sepa
rated endpoint conditions (2) with a'fl' =fo 0. We will show that -.Ji;;, = [n1r/(b -
a)] + O(1)/n in this case, n = 0, l, 2, .... That is, unless a' = 0 or fl' = 0 in 
(40), the asymptotic behavior of the eigenvalues and eigenfunctions is similar to 
that of u" + Au = 0, with the endpoint conditions a = fl = 0. 

THEOREM 9. For the regular S-L system (39)-(40), let a'fl' =fo 0. Then the eigen
values An are given, as n -+ oo, by the asymptotic formula 

(51) 

Here 0(1) denotes a function of n that is uniformly bounded for all integers 
n 2:: 0. 

Proof Let A = -a/a' and B = -fl/fl'. By assumption, A and Bare finite. 
Choose a solution <J>(x, A) of (39) satisfying the initial condition 

(52) 
A 

cot </>(a, A) = V , 
A - q(a) 

0 < </>(a, A)< 1r 
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According to (41), the solution u(x, A) corresponding to <b will be an eigenfunc
tion if and only if 

(53) 
B 

cot <J>(b, A) = V 
A - q(b) 

Condition (52) can be simplified by expanding arccot x around x = 1r /2 to a 
first-order approximation in 1/VA. This gives, as A-+ oo, 

(54) 

Condition (53) can be simplified by a similar expansion. For the (n + l)st 
eigenvalue, the modified phase function changes asymptotically to n1r + 0(1)/ 
yi:;,. This gives, for x = A/VA - q(a) 

1r 0(1) 
</>(b, An) = - + n1r + . r--

2 VAn 
(54') 

Subtracting (54) from (54'), and comparing with (46) of Theorem 7, we 
obtain the equation 

(55) 
0(1) 0(1) 

<J>(b, AJ = <b(a, An) = n1r + ...;r:, = ...;r:,(b - a) + ...;r:, 

Letting An -+ oo we obtain l~-00 n1rA; 112 = (b - a), or ...;r;, = Knn, where the 
Kn tend to 1r j(b - a). Substituting into (55), we obtain 

...;r:, == __!!:!!__ + 0(1) = __!!:!!___ + 0(1) ' 
b-a ...;r:, b-a n 

q.e.d. 

COROLLARY. If An is the sequence of nonzero eigenvalues of a regular S-L 
system, then E:'=o A;2 < oo. 

13 NORMALIZED EIGENFUNCTIONS 

A square-integrable function u on an interval a < x < b is normalized relative 
to a weight function p when 

In the ease of the eigenfunctions of (39), p(x) = 1. Our aim is to show that 
the normalized eigenfunctions of (39) and (40) behave approximately like cosine 
functions, provided that ot{j' =fo 0. [The cases a = 0 and /j = 0 are similar, after 
phase-shifts of 1r/2 in (54) and (54').] 
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THEOREM 10. Let un(x) (n = 0, 1, 2, ... ) be the sequence of normalized eigen
functions of the regular S-L system (39)-(40), with a'{3' =fo 0. Then 

(56) 
mr(x - a) 0(1) 

cos----+ --
b - a n 

The proof of this theorem will be carried out in three steps. For an eigen
function un(x), with eigenvalue Am we have by (41) 

(57) 
R(x, An) . 

un(x) = 4 ~--- sm ct,(x, AJ, 
VAn - q(x) 

a<x<b 

In order to obtain formula (56), we obtain asymptotic expressions separately 
in terms of n for each of the three factors appearing in (57). This is done in the 
following three lemmas. 

LEMMA 1. Let ct,(x, A) be as in the proof of Theorem 9. Then as A-+ oo, 

(58) f b . 2 b - a 0(1) 
sm ct,(x, A) dx = -- + ~ 

a 2 A 

Proof. Using ct,(x, A) as the variable of integration in (55), and recalling from 
(46) that dxjdct, = (dct,jdx)- 1 = -A-112 + O(l)A-3/ 2, we have 

f b f </>(b,>..J dx 
sin2 ct,(x, A) dx = sin2 ct, -d dct, 

a q,(a,>,.) </> 

J:(b,>..) 
= (A - 112 + 0(1 )A - 312) sin2 ct, dct, 

q,(a,>.) 

The last integral can be evaluated explicitly. Apply Theorem 7, to obtain 

</>(b,>..) f </>Cb,>..J [<t> sin 2ct,] A112(b - a) 
sin2 ct, dct, = - - -- = ---- + 0(1) 

q,(a,>..) 2 4 q,(a,>..) 2 

Substituting into the previous displayed formula and simplifying, we obtain (58). 

A second step toward our result is the following lemma. 

LEMMA 2. Let u(x, A) be a solution of (39). Then, as A-+ oo 

(59) 
2 _ 114 b - a 0(1) 0(1) 

( 
b )1/2 ~( ) I u (x) dx = R(a, A)A - 2 - 1 + A112 + A5; 4 
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Proof Expressing u in terms of R by (41), and then expanding Ras in Theo
rem 7, formula (47), we have 

b [ 0(1)]2 b l u 2(x) dx = R(a, A) + -A- l [A - q(x)r 112 sin2 cp dx 

Since (A - q)- 112 = A - 112 + O(l)A-312, we get after simplifying and using (58) 

2 

lb u2(x) dx = [ R(a, A) + O~l)] (A - 112 + 0(1 )A - 3/ 2) ( b ; a + O(l )A - 112) 

[ 0(1)] 2 (b - a 0(1)) = R(a, A)+ T 2A1;2 + -A-

Hence, taking square roots 

( fb ) 112 ( 0(1)) (b - a 0(1))112 
Ja u2(x) dx = R(a, A)+ T 2A1;2 + T 

_ R(a, A) "' ~ ( 0(1)) 0(1) 
- Al/4 V ~ 1 + Al/2 + A5/4 • q.e.d. 

COROLLARY. If, in Lemma 2, J! u2(x, A) dx = l, then 

(60) R(a, A) = "' /2 A114[1 + O(l)A-112] v~ 
Proof Formula (59) gives the following condition on the amplitude function 

of a normalized solution: 

Solving for R, and taking the asymptotic form of the quotient, we get (60), q.e.d. 

LEMMA 3. Let A,, be the nth eigenvalue (A0 < A1 < A2 < · · ·) of the S-L system 
(39)-(40). Then, as n - oo, unless a'{j = 0 

(61) 
mr(x - a) 

sin ct,(x, An) = cos------'-+ O(l)A;;-112 
b-a 

Proof By Theorem 7, (46), we have 

0(1) 
ct,(x, An) = ct,(a, ;\,,) + 0:(x - a) + 0: 
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Moreover by (54), </>(a, An) = 1r/2 + 0(1)/VAn. Substituting back into the pre
ceding formula, we get 

(62) sin <J>(x, AJ = sin [\5,; (x - a) + 1r/2] + 0(1)/\5,; 

= cos [\5,; (x - a)] + 0(1)/n 

We now apply Theorem 9 to this formula. By formula (51) and the mean value 
theorem, we have 

. ;_ [n1r(x - a)] cos [ v An (x - a)] - cos --- = 0(l)n-1 = 0(1)~ 1/ 2 
(b - a) 

Substituting into the right-hand side of (62), we obtain (61), q.e.d. 
The proof of Theorem 10 can now be completed as follows. Of the three 

factors in equality (57), 1/~An - q(x) can be replaced by the first-order 
approximation (A - q)- 1/ 4 = A -l/4 + 0(l)A-514. The factor R(x, AJ is estimated 
by the Corollary to Lemma 2, and the factor sin <J>(x, AJ is estimated by Lemma 
3. Substituting all these expressions into (57) and simplifying, we obtain 

"' r-;;- cos [n1r(x - a)] + 0(1)~ 112 v~ b-a 

Since A;;- 112 = 0(l)n- 1, this gives Theorem 10. 

EXERCISESG 

1. For any DE un + u + p(x)u = 0 with p(x) = O(x-2) as x --+ +oo, show that, for 
every solution u(x), constants A and x 1 can be found for which 

as x--+ oo 

*2. Establish the following formula for Legendre polynomials: 

for 

for some constant A. [HINT: Find a DE satisfied by Pn(cos 8).] 

3. Show that the relative maxima of x 1f2 l]n(x) I form an increasing sequence if 0 < n 
< ½ and a decreasing sequence if n > ½, 

*4. (Sonin-Polya Theorem). Show that if in (Pu')' + QJ1- = 0, P, Q E "'1 [a, b], Q(x) =fo 0, 
and P(x)Q(x) are nondecreasing, the successive maxima of I u(x) I form a nonincreas
ing sequence, and that equality occurs if and only if Q(x) = 1/P(x). [HINT: Show that 
the derivative of <f,(x) = u(x)2 + P(x)u'(x)2/Q(x) is nonpositive.] 

*5. Show that the values of I P(x)Q(x) I 112 I u(x) I at those points where u'(x) = 0 are a 
monotonic increasing or decreasing sequence, according as the values of P(x)Q(x) 
are decreasing or increasing. [HINT: Consider v(x) = P(x)Q(x)<f>(x), </> as in Ex. 4.] 
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14 INHOMOGENEOUS EQUATIONS 

Inhomogeneous second-order linear equations, of the form 

(63) Po<x> * 0, Po(x) E (§11 

subject to homogeneous separated endpoint conditions (30), can be solved by use 
of Green's functions. The method of solution generalizes that for two endpoint 
problems described in Ch. 2, §§9, 11. The discussion given there, which covers 
the case a' = {:3' = 0 of (30), can now be reviewed to advantage. 

Before introducing Green's functions, we first analyze the problem with 
inhomogeneous separated endpoint conditions: 

(64) A[u] = au(a) + a'u'(a) = ot1, B[u] = {:3u(b) + {:3'u'(b) = (:3 1 

Let U(x) be the solution of L[u] = 0 satisfying the initial conditions U(a) = 
a', U'(a) = -a; let V(x) be the solution of L[u] = 0 satisfying V(b) = {:3', V'(b) 
= -(:3; let F(x) be the solution of L[u] = f(x) satisfying F(a) = F(a) = 0. The 
existence and uniqueness of these functions follow from Theorem 7, Corollary 
2, of Ch. 6, §8. For any constants, c, d, the function 

w(x) = cU(x) + dV(x) + F(x) 

satisfies the inhomogeneous DE (63). Moreover, we have 

A[w] = d(otV(a) + a'V'(a)) = dA[V] 

B[w] = c({:3U(b) + {:3'U'(b)) + B[F] = cB[U] + B[FJ 

If U and V are linearly independent, their Wronskian W = UV' - VU' never 
vanishes. Hence, 

A [V] = ot V(a) + a'V'(a) = - U'(a) V(a) + U(a) V'(a) =t,. 0 

Similarly, B[U] = - W(b) =fo 0. Therefore, equations (65) for the unknowns c 
and d have a unique solution for any values given to A[w] and B[w]. 

On the other hand, if U and V are linearly dependent, their Wronskian van
ishes identically. Hence, U(x) satisfies A[U] = aa' + a'(-a) = 0 and B[U] = 
0. This proves the following theorem. 

THEOREM 11. Either DE (63) has a solution w satisfying the boundary conditions 
A [w] =ot1 and B [w] ={:31,for any given constants a 1 and {:31, or else the homogeneous 
DE L[u] = 0 has an eigenfunction with eigenvalue 0, satisfying the homogeneous 
conditions A[u] = 0 and B[u] = 0. 
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15 GREEN'S FUNCTIONS 

We now show that, in the first case of the preceding theorem, there exists a 
Green's function G(x, ~) defined for a < x, ~ < b, such that the solution of (63) 
subject to the boundary conditions (30) is given by 

(66) 

Note that 9 is an integral operator (Ch. 2, §9) whose kernel is the Green's func
tion G(x, ~). 

This result has already been established in Ch. 2, § 11, for the endpoint con
ditions u(a) = u(b) = O; it will now be generalized to arbitrary homogeneous sep
arated endpoint conditions (30): A[u] = B[u] = 0. 

In this general case, G(x, ~) can be constructed by the method used in Ch. 2. 
For each fixed~. G(x, ~) is a solution of the homogeneous DE L[G] = 0 on the 
intervals [a,~] and [t b], satisfying the homogeneous endpoint conditions A[u] 
= 0 and B[u] = 0, respectively. It is continuous across x = ~ (i.e., across the 
principal diagonal of the square a < x, ~ < b), and its derivative ac;ax jumps 
by l/p0(x) across this diagonal. In other words, we have 

{ 
a(~)U(x)V(~). 

G(x, ~) = E(~) V(x)U(~), 

where the factor E(~) above is chosen to give ac;ax a jump of l/p0(~ across 
x = f Thus 

We are therefore led to try the kernel 

(67) {

U(x)V(~) 

Po(~)W(~)' 

G(x, ~) = um V(x) 

PomW(~' 

where W = UV' - VU' is the Wronskian of U and V. 

THEOREM 12. Unless W = 0, equations (66) and (67) yield for any continuous 
functionf on [a, b] a solution u(x) of the DE L[u] =f(x) that satisfies the boundary 
conditions A[u] =B[u] = 0. 
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That is, unless the homogeneous linear boundary-valu~ problem L[u] = A[u] 
= B[u] = 0 admits an eigenfunction, the function defined by (67) is a Green's 
function for the system L[u] = J, A[u] = B[u] = 0. 

The proof is like that given in Ch. 2, §I 1. Rewriting (66) as 

and differentiating, we have, by Leibniz' rule, 

The endpoint contributions give G(x, x-)J(x-) - G(x, x+)j(x+) = O; they cancel 
since G(x, ~) and J are continuous for x = ~- Differentiating again, we have, by 
Leibniz' rule 

u"(x) = lx Gxx<x, ~Jm d~ + Gx(x, x-)f(x-) 

+ lb GxxCx, ~f(~) d~ - Gx(x, x+)j(x+) 

The two terms corresponding to the contributions from the endpoints come 
from the sides x > ~ and x < ~ of the diagonal; since J is continuous, their 
difference is [Gx(x+, x) - Gx(x-, x)lf(x) = f(x)/p0(x). Simplifying, we obtain 

From the foregoing identities, we can calculate L[u]. It is 

where Lx[G(x, m stands for the sum p0Gxx + p1Gx + p2G. This sum is zero 
except on the diagonal x = ~. where it is undefined. This gives the identity (63). 

Since G(x, ~), as a function of x, satisfies the boundary conditions (30) for all 
tit follows from (66), by differentiating under the integral sign and using Leib
niz' Rule again, that u satisfies the same boundary conditions. This completes 
the proof of the theorem. 

In operator language (cf. Ch. 2, §3), we have shown that the operator J-
9[!] transforms the space <§>[a, b] of continuous functions on the interval [a, b] 
into the space <§>2[a, b] of functions of class <§12, and that this operator is a right 
inverse of the operator L. In other words, we have L[9[J]] = J for all contin
uous f In operator notation, we can write 9 = L - I. 
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EXERCISES H 

In Exs. 1-5 show that Green's function is as specified. 

l. u" = -J, u(0) = u'(l) = 0; G(x, t) = {; for X:,:;; t 
for X > t 

2. u" =f, u(-1) = u(l) = 0; G(x, t) = -[Ix - ti + xt - l]/2 

3. xu" + u' = f, u(x) bounded as x---+ 0, u(l) = 0; 

G(x t) = { log t 
' logx 

for 
for 

4. u" - u = f, u(x) bounded as lxl ---+ oo; G(x, t) = -exp (Ix - W]/2. 

5. u" - u' = J(x), u(0) = u'(l) = 0. 

6. Find Green's function for u" - u = /with u(-a) = u(a) = 0. Show that, as a---+ 
oo, it approaches that of Ex. 4. 

7. Show that L[u] + >..u = 0 for nontrivial u, >.. =I= 0 and given homogeneous endpoint 
conditions (30), if and only if 9[u] = µu forµ = 1/>... 

*8. Show that the Green's function G of a regular S-L system is a symmetric function of 
x and t, in the sense that G(x, t) = G(t, x). 

*16 THE SCHROEDINGER EQUATION 

The Schroedinger equation of quantum mechanics in one space dimension is 
the DE 

(68) 1//' + (!~) [E - V(x)]it, = 0 

Physically, the function V(x) has the significance of potential energy; the con
stant m stands for the mass of the particle; the constant E is an energy param
eter; h = h/21r is a universal constant, whose numerical value depends on the 
units used. The "wave function" IJ,(x) may be real or complex; IJ,IJ,* dx = liJ,1 2 

dx is the probability that the particle under consideration will be "observed" in 
the interval (x, x + dx). The eigenvalues of (68) for varying E are the energy levels 
of the associated physical system. 

The DE (68) is precisely the Liouville normal form 

(69) u" + [A - q(x)]u = 0 

of a general S-L equation, with A = 2mE/h 2 and q = 2mV/h 2. But, in most 
physical applications, one is concerned with the in.finite interval (-oo, oo). On 
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this interval, the "endpoint" condition that a solution remain bounded as x -
± oo defines a singular S-L system (cf. §4). In problems involving the Schroedin
ger equation, it is customary among physicists to define the spectrum of this S-L 
system as the set of all eigenvalues for which eigenfunctions exist. The set of 
isolated points (if any) in this spectrum is called the discrete spectrum; the part (if 
any) that consists of entire intervals is called the continuous spectrum. We shall 
adopt this suggestive terminology here; unfortunately, its logical extension to 
boundary value problems generally is very technical, even for ordinary DEs.t 

For regular S-L systems, we have proved that the spectrum is always discrete, 
and the eigenfunctions are (trivially) square-integrable. We now describe a sim
ple singular S-L system whose spectrum is continuous and whose eigenfunctions 
are not square-integrable. 

Example 8. Th~ S-L system of a free particle is 

(70) u" + "l\u = 0, -00 < X < +oo 

For every positive number A > 0, this DE has two linearly independent bounded 
solutions sin (VAx) and cos (VAx). For A = 0, it has the bounded solution u = 
1, and no other linearly independent eigenfunction. For A < 0, it has the lin
early independent unbounded solutions sinh (VA x) and cosh (VA x), and no 
nontrivial bounded solution. Hence, the spectrum of the free particle is continu
ous: it consists of the half-line A > 0. 

Example 9. In the case of a harmonic oscillator, the potential energy V(x) is a 
constant multiple of x2. By a change of unit x - kx, we can reduce the resulting 
Schroedinger DE to the normal form 

(71) 

Comparing with Example 7 of §4, we see that this has the eigenfunctions 
e-x2f2Hn(x), for A = 2n + 1 (n = 0, 1, 2, ... ). These eigenfunctions are even 
square-integrable. 

For any value of A not an odd positive integer, the recurrence relation 
ak+2 = (2k - A + l)ak/(k + l)(k + 2) satisfied by HA(x) may be compared with 
that for the Taylor series tflx2 = E {3'x2'/(rl), namely c2,+ 2 = {3c2,/(r + 1). Setting 
2r = k, we see that, for all sufficiently large k, 

if 

Hence I H>-.(x) I > Btflx2 - P>-.(x), where B > 0, P>-.(x) is a polynomial and (say) 
(3 =¾,It follows that le-x2/2H>-.(x)I > Bex2/ 4 - 0(1) is unbounded, unless A is an 

t See, for example, Coddington and Levinson, pp. 252-269. 
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odd positive integer. Finally, if u(x) is any bounded nontrivial solution of (71), 
the same is true of u(-x) and of [u(x) + u(-x)]/2, [u(x) - u(-x)]/2. This 
shows that, if (71) has an eigenfunction, it must have an odd eigenfunction or 
an even eigenfunction. Since either of these would be defined up to a constant 
factor by the relation 

(2k - ;\ + l)ak 

(k + l)(k + 2) 

on its coefficients, we see that the Hermite functions e-x2f 2Hn(x) are the only eigen
functions of the harmonic oscillator. 

*17 THE SQUARE-WELL POTENTIAL 

In Example 8, the spectrum is continuous; in Example 9, it is discrete. We 
now describe a Schroedinger equation whose spectrum is partly continuous and 
partly discrete. 

Example 10. A square-well potential is one satisfying V(x) = - C2 on 
Ix I < a, and V(x) = 0 when Ix I > a. This leads to the Schroedinger DE with 
discontinuous q(x): 

(72) u" +AU= {0 
-C2u 

on 
on 

lxl > a 
lxl < a 

The eigenfunctions can again be determined explicitly.t 
If u(x) is any eigenfunction, then so is u(- x), and so are the even part 

[u(x) + u(-x)]/2 and the odd part [u(x) - u(-x)]/2 of u(x). Hence, (72) has 
a basis of eigenfunctions consisting exclusively of even and odd eigenfunctions, 
that is, satisfying u'(0) = 0 or u(0) = 0. 

For ;\ > 0, every solution of (72) has the form A cos VAx + B sin VAx for 
Ix I > a. Hence, every nontrivial solution of (72) is an eigenfunction and, as in 
Example 8, the spectrum includes the entire half line ;\ > 0. 

For ;\ < - C2, on the other hand, the continuation to Ix I > a of both the 
even solution cosh (y-;\ - C2x) and the odd solution sinh (y-;\ - C2x), 
from the interval Ix I < a, can be shown (see Theorem 14 below) to satisfy u(x) 
> 0, u'(x) > 0, and u"(x) > 0 for all positive x. Hence, they are both 
unbounded. In summary, the spectrum contains no points on ;\ < - C2: there 
is no bounded solution with eigenvalue;\ < - C2. 

In the interval - C2 < ;\ < 0, one can show that the spectrum is discrete by 
working out the implications of the Sturm Oscillation Theorem. The solutions 

t This is done with the usual understanding (Ch. 2, Ex. A12) that a "solution" of (72) is a function 
u E 6' 1 which satisfies (72), and so is of class 6'2 where q(x) is continuous. 
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bounded for x > a are the functions A exp (- ~x) which satisfy u'(a)/u(a) 
= - ~.Writingµ = ,/x + C2, we see that the even solutions A cos µx of 
(72) satisfy the same boundary condition u'(a)/u(a) = -~ if and only if 
µ tan µa = ~- The odd solutions B sin µx satisfy it if and only if µ cot µa 
= - ~- Solving the preceding transcendental equations graphically, we 
see that the number of even eigenfunctions and the number of odd eigenfunc
tions belonging to the discrete spectrum are both approximately equal to aC/1r. 
Moreover, every eigenfunction that corresponds to the discrete spectrum is 
square-integrable, and conversely. 

*18 MIXED SPECTRUM 

The preceding example is typical of a wide class of Schroedinger equations
namely, all those having a "potential well" dying out at infinity. We first treat 
the continuous portion of the spectrum. 

LEMMA 1. In the normalized Schroedinger equation (69), let q be continuous and 
satisfy q(x) =B/x + O(l/x2) as x-+ oo,Jor some constant B. Then,Jor X > 0, every 
solution has in.finitely many zeros and is bounded. 

Proof The first statement follows from the Sturm Comparison Theorem, 
comparing with the DE u" + Xu/2 = 0. 

To prove the second statement, first change the independent variable 
tot = v>,,x, giving the DE Uu + Q(t)u = 0, with Q(t) = 1 - q(t/VA)/X. Applied 
to the new DE, the Prilfer substitution (21) gives, by (22), 

(73) 
d0 . A 0(1) 
- = Q(t) sm2 0 + cos2 0 = l + - sin2 0 + --
dt t t2 ' 

Moreover, r2 = u2 + u/ is given by (23'), as 

-B 
A=-

'fi._ 

where F(s) = (A/s)(sin 20) + O(l)/s2, and the limits of integration refer to s. 
Using the expression dt/d0 = l - (A/t) sin2 0 + 0(1)/t2, derivable from the 
preceding display, we have 

l' F(s) ds = l' [ ~ + 0 ( ~)] sin 20 d0 

The first term on the right side above can be integrated by parts: 

l' F(s) ds = [ - ~ cos 20]: - l' ~2 cos 20 ds + l' 0 ( ~) sin 20 d0 
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The boundedness of the first two terms on the right side of this equation is 
evident; the last term is bounded because d8/ds = l + 0(1)/s. Hence, u2 is 
bounded because u2 < r2 < K2 exp {J~ F(s) ds}. 

Combining Lemma 1 with the analogous result for negative x, we obtain the 
following result. 

THEOREM 13. If q E fJ satisfies q(x) =A/x + O(1/x2) as x -+ +oo and q(x) 
= B/x + O(1/x2) as x-+ -oo, then the spectrum (69) includes the half line;\> 0. 

As regards the discrete portion of the spectrum, the key result is the following 
lemma, which characterizes the asymptotic behavior for large x of a wide class 
of DEs that have nonoscillatory solutions, such as the modified Bessel equation 
of Ch. 9, §7. 

LEMMA 2. In the Schroedinger equation (69), let q be continuous, let limx----+oo q(x) 
= 0, and let;\ = -k2 < 0. For any E, 0 < E <k, there exist two solutions u 1(x) and 
u2(x) of (69) such that, for all sufficiently large x, 

(74) 

Proof Choose a so large that (k - E)2 < q(x) - ;\ < (k + E)2 for all 
x > a, and let u 1 (x) be the solution defined by the initial conditions u 1 (a) = e'w, 
u1(a) = ke'w. Then r(x) = u;ju1 satisfies r(a) = k and the Riccati equation 
r' = G(x, r) = q(x) - ;\ - r2. For the DEs 

p' = F(x, p) = (k - E)2 - µ2, u' = H(x, o) = (k + E)2 - u2 

it is clear that F(x, r) < G(x, r) < H(x, r) on the domain r > k - E > 0. More
over, the solutions p(x) = k - E and u(x) = k + E of the displayed DEs satisfy 
p(a) < r(a) < u(a). Hence, by the Comparison Theorem of Ch. 1, §11, we have 
k - E = p(x) < r(x) < u(x) = k + E. Integrating, we get the first inequality of 
(74). 

We now derive the second inequality. As in Ch. 2, §5, a linearly independent 
solution of the DE (69) is given by 

The first inequality of (74), applied to the integral on the right, gives the 
inequalities 

___ e-2(k-<)x > __ > ___ e-2(k+<)x l f 00 ds l 
2(k - E) x u 1 (s)2 2(k + E) 
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Multiplying through by 2ku1(x), and using (74) again, we get 

(75) 

But, for any 7/ such that 0 < 3e < 7/ < k we have, for sufficiently large x, 

e2•x 
-(k-71)x > ___ e-(k-<)x 

e - I - e/k 
and 

Applying these inequalities to (75), we obtain the second formula of (74) with 7/ 

in place of e. Since, for any 7/ with 0 < 7/ < k, we can find e = 71/6 with 0 < 3e 
< 7/ < k, and the proof is complete. 

COROLLARY 1. On (0, oo), let q(x) be continuous and satisfy limx-oo q(x) = q0. 

Then every solution of the Schroedinger equation with A <q0 that is bounded on the 
interval (0, oo) is square-integrable. 

COROLLARY 2. Let q(x) E CJ on the line (-oo, oo), and let q(x) tend to limits q0 

and q1, respectively, as x --+ ± oo. Then every eigenfunction with eigenvalue;\ < min 
(q0,q1) is square-integrable. 

The final conclusions can be summarized in a single theorem. 

THEOREM 14. Let q(x) be as in Theorem 13. Then, for;\ > 0, the spectrum is 
continuous. For;\ < 0, the eigenfunctions are square-integrable. 

It can also be shown that, for A > 0, the eigenfunctions are not square-inte
grable, and that for ;\ < 0, the spectrum is discrete. 

EXERCISES I 

1. Show that the S-L system: u" + >..u = 0, 0 ::5 x < oo, au(0) + a'u'(0) = 0, u(x) 
bounded as x--+ oo, has a continuous spectrum 0 < >.. < oo of aa' =fa 0. 

2. Show that, if u" - q(x)u = 0, 0 ::5 x < oo, with q(x) bounded, the DE ca1:mot have 
two square-integrable linearly independent solutions. [HINT: Use the Wronskian.] 

3. In u" + [>.. - q(x)]u = 0, 0 ::5 x < oo, if q(x) --+ +oo as x--+ oo, show that, for any 
>.., the DE has exactly one square-integrable solution up to a constant factor. 

*4. Under the assumptions of Ex. 3, show that the S-L system corresponding to the 
boundary condition u(0) = 0, u(x) square-integrable in [0, oo), has an infinite 
sequence of eigenvalues. 

5. Show that, if the DE u" + q(x)u = 0, 0 ::5 x < oo, q E rJ has a solution u 1(x) with 
limx-oo u1(x) = 1, it also has a solution u2(x) such that lim,_00 u2(x)/x = 1. 

6. In u" + q(x)u = 0, 0 ::5 x < oo, suppose that J;;"x I q(x) I dx < oo. Show that the DE 
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has a solution with lim,_00 u(x) = 1. [HINT: Show, by successive approximations, that 
the integral equation u(x) = 1 - J';'(t - x)q(t)u(t) dt has a solution.] 

7. Suppose that all solutions of the DE u" + q(x)u = 0 are bounded as x _.. oo and that 
f0p(x) dx < oo, p(x) > 0. Show that, for all X, all solutions of the DE u" + (q(x) 
+ Xp(x))u = 0 are also bounded as x ... oo. [HINT: Consider the inhomogeneous DE 
u" + qu = -Xpu, and show that the integral equation obtained by variation of para
meters has a bounded solution.] 

8. Show that, if k2 > 0 and Jo I q(x) - k2 I dx < oo, all solutions of the DE u" + q(x)u 
= 0 are bounded as x ... oo. 

*9. Show that solutions of the generaliz~d Laguerre DE 

u" + ! u' + [~ - (.!. + ~)] u = 0 
X X 4 x2 

are u = e-•f2x<k-l)f2L~>(x), where L~>(x) = dk[Ln(x)]/dxk, for a = (k2 - 1)/4 and 
X = n - (k - 1)/2, n, k any nonnegative integers. 

ADDITIONAL EXERCISES 

1. Show that, if a, b > 0, the singular S-L system 

-1 < x < 1 

with the endpoint condition that u remain bounded as x ... ± 1, has the eigenvalues 
"-n = n(n + a + b + 1) and eigenfunctions un(x) = P:,b>(x) Oacobi polynomials). 

2. Obtain orthogonality relations for the Jacobi polynomials. 

3. Using Rodrigues' formula, show that between any two zeros of P:.b> there is exactly 
one zero of P:Jl, if a, b > -1. 

*4. Derive the following identities for Legendre polynomials: 
(a) J:1Pn 2(x) dx = 2/(2n + 1) (b) J: 1xPn(x)P~(x) dx = 2n/(4n2 - 1) 
[HINT: Use Rodrigues' formula and integrate by parts.] 

*5. Show that the Legendre DE, with the endpoint condition 

Jim [(l - x2)u'(x)] = 0 
x-±1 

has the Legendre polynomials as eigenfunctions, and no other eigenfunctions. 

6. Show that there exists a bounded differentiable function g on a < x < b, satisfying 
the inequality g' + g2j P(x) + Q(x) :5 0, if and only if no solution of (Pu')' + Qu 
= 0 has.more than one zero on a :5 x :5 b. 

*7. Show that, if J!I Q(x) I dx :5 4/(b - a), no nontrivial solution of u" + Q(x)u = 0 
can have more than one zero in a :5 x :5 b. [HINT: By Theorem 3, it can be assumed 
that Q ~ 0. Changing coordinates so that a = 0, b = 1, use Ex. 6 with 

g(x) = f1 Q(t) dt + {(l/x) - 4• J,., 1/(x - 1), 
0<x:5½ 
½:5x<l 
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*8. (Fubini). Show that if, for a :5 x :5 b, 

then, between any two zeros of a solution of u" + 2p1u' + q1u = 0, there is at least 
one zero of u" + 2pu' + qu = 0. [HINT: See Ch. 2, Ex. B4.] 

9. For a regular S-L system with ao/ < 0, and fJfJ' < 0, and>.. less than the smallest 
eigenvalue, show that the Green's function is negative. 



CHAPTER 11 

EXPANSIONS IN 
EIGENFUNCTIONS 

1 FOURIER SERIES 

One of the major mathematical achievements of the nineteenth century was 
the proof that all sufficiently smooth functions can be expanded into infinite 
series, whose terms are constant multiples of the eigenfunctions of any S-L system 
with discrete spectrum. The present chapter will be devoted to proving this 
result for regular S-L systems and explaining some of its applications. 

The most familiar example of such an expansion into eigenfunctions is the 
expansion into Fourier series. We begin by recallingt from the advanced cal
culus two basic results about Fourier series. The first of these is the following. 

FOURIER'S CONVERGENCE THEOREM. Let f(x) be any continuously differ
entiable periodic Junction of period 21r, and let 

(1) 1 f" ak = - f(x) cos kx dx, 
11' -'Ir 

1 f,r 
bk = - f(x) sin kx dx 

11' _,.. 

Then the infinite series 

(2) a0/2 + a1 cos x + b1 sin x + a2 cos 2x + b2 sin 2x + 

converges uniformly to f(x). 

Note that the nonzero terms a1 cos x, b1 sin x, ... in (2) are actually them
selves eigenfunctions of the periodic Sturm-Liouville system in question (Exam
ple 3 of Ch. I 0); hence f(x) is represented as a sum of eigenfunctions in (2). 
However, we shall adopt the usual convention of referring to the normalized 
cos kx and sin kx in (2) as the eigenfunctions of the system. 

Though there exist continuous functions whose Fourier series are not con
vergent, the following sharpened form of Fourier's Convergence Theorem 
applies to all continuous periodic functions. 

t Fourier's theorem is proved in Courant and John, p. 594 ff; Fejer's Theorem is proved in Widder, 
p. 423. 

344 
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FEJER'S CONVERGENCE THEOREM. Let f(x) be any continuous periodic func
tion of period 21r, and let 

1 {N-1 [ n ] } uN(x) = - L a2° + L (ak cos kx + bk sin kx) 
N n=O k=I 

N-I 

= ~o + ~ (af cos kx + {3f sin kx) 

where af = (l - (k/N))a,., {3f = (1 - (k/N))b,., be the arithmetic mean of the .first N 
partial sums of the Fourier series of f(x). Then the sequence of Junctions 
uN(x) converges uniformly to f(x). 

The preceding results, which we will assume as known, yield as corollaries the 
following statements about cosine series and about sine series. Let f(x) be con
tinuous on 0 < x < 1r; define a function g(x) for -1r < x < 1r by the equation 
g(x) = f(lxl). Since g(-1r) = g(1r), g(x) can be extended to an even periodic 
function of period 21r, which is defined and continuous for all real x. By sym
metry, all coefficients bk are zero in the Fourier series of g(x). Applying Fejer's 
and Fourier's Convergence Theorems, we have the following corollary. 

COROLLARY 1. Any continuous Junction on 0 < x < 1r can be approximated 
uniformly and arbitrarily closely by linear combinations of cosine Junctions. If the Junc
tion is of class &1 and J'(0) = f '(1r) = 0, then it can be expanded into a uniformly 
convergent series of cosine Junctions: 

(2') f(x) = (a0/2) + a1 cos x + a2 cos 2x + 

By a linear transformation of the independent variable, the preceding result 
can be extended to any closed interval [a, b]; the required cosine functions are 
the functions cos {k1r(x - a)/(b - a)]. 

Similarly, if f(0) = f(1r) = 0, define h(x) as J(x) on 0 < x < 1r, and as 
-J(-x) on -1r < x < 0. This gives an odd continuous periodic function of 
period 21r, in whose Fourier series all ak vanish. 

COROLLARY 2. Any Junction of class &1 on O < x < 1r that satisfies f(0) = 
J (1r) = 0 can be expanded into a uniformly convergent series of sine Junctions. 

The preceding corollaries are examples of expansions into the eigenfunctions 
of the regular S-L systems defined by the DE u" + AU = 0 and the two separated 
endpoint conditions u'(0) = u'(1r) = 0 and u(0) = u(1r) = 0, respectively. We 
will prove below that analogous expansions are possible into the eigenfunctions 
of any regular S-L system. 
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2 ORTHOGONAL EXPANSIONS 

Let ¢ 1 (x), ¢ 2(x), ¢ 3(x), ... be any bounded, square-integrable functions on an 
interval /: a < x < b, orthogonal with respect to a positive weight function p(x), 
so that 

(3) if h=i'-k 

Suppose that a given function J(x) can be expressed as the limit of a uniformly 
convergent series of multiples of the <Pk, so that 

(4) 

Multiplying both sides of (4) by <f>ix)p(x), and integrating term-by-term over the 
interval-as is possible for uniformly convergent series-we get from the 
orthogonality relations (3) the equation 

Hence, the coefficients ch in (4) must satisfy the equation 

(5) 

When the <Pk are the trigonometric functions, from this identity we obtain, as a 
special case, the coefficients c1 = a0/2, c2 = ai, c3 = b1, . .. of the Fourier series 
(1 )-(2) with p = l , using the familiar integrals 

f r dx = 21r, 
-'Ir 

for any nonzero integer k. 
We can summarize the preceding result as follows. 

THEOREM 1. If a function f(x) is the limit f(x) = Eck<f>ix) of a uniformly con
vergent series of constant multiples of bounded square-integrable functions <f>ix) that 
are orthogonal with respect to a weight Junction p(x), the coefficients ch are given by (5). 

The preceding conclusion holds provided that one can integrate the series 
Ech<f>h(x)<f>ix)p(x) term-by-term on the interval I. This holds much more-generally 
than for uniform convergence, e.g., for mean-square convergence as defined in 
§3. 



3 Mean-Square Approximation 34 7 

The preceding conclusion was justified by using the fact that uniformly con
vergent series can be integrated term-by-term on any finite interval /. Many 
other series of orthogonal functions also can be integrated term-by-term, and 
formula (5), therefore, also holds for them, as we shall prove in later sections. 

3 MEAN-SQUARE APPROXIMATION 

So far, we have considered only uniformly convergent series, because these 
can be integrated term-by-term. The notion of convergence most appropriate 
for orthogonal expansions is, however, not uniform convergence but mean
square convergence, which we now define. 

DEFINITION. Let/and the terms of the sequence {J,,} (n = 1, 2, 3, ... ) be 
square-integrable real functions. The sequence {J,,} is said to converge to fin 
the mean square on /, with respect to the positive weight function p(x), when 

(6) asn-ao 

Now, suppose that </>i, </>2, <J,3, ... form an infinite sequence of square-integra
ble functions on the interval /, orthogonal with respect to the weight function p, 

and let f,,(x) = 'Yi</>1 (x) + · · · + 'Yn<l>n(x) be the nth partial sum of the series 
E~1 'Yk<f>ix). To make the partial sums J,, converge in the mean square to fas 
rapidly as possible, we choose the coefficients 'Yk so as to minimize the 
expression: 

(7) E = E("/1, ••• , 'Yn) = J [J(x) - t 'Yk<f>ix) ]
2 

p(x) dx 
I k=I 

Expanding (7), and using the orthogonality relations (3), the function E of 
the variables 'Yi, "{2, ... , 'Yn is given by the expression 

Now, consider the numbers 'Yi, "{2, ... , 'Yn that minimize the function E. 
Since E is differentiable in each of its variables, the minimum can be attained 
only by setting every oE/o'Yk = 0. That is, a necessary condition for a minimum 
is that the 'Yk satisfy the equations 

Solving for 'Yk, we get 'Yk = {I J</>,J> dx}/{I </>2p dxk}, which is the same as equation 
(5) for the ck, in another notation. 
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We now show that the choice 'Yk = ck, where, as in (5), 

(8) 

does indeed give a minimum for E. A simple calculation, completing the square, 
gives for E the expression 

(8') E = l [1 ~ L 'Yk<Pk ] 2p dx 

= f,J 2p dx + t [ -c/ + ('Yk - cJ2] J, ¢/p dx 
I k-I I 

The right side shows that the minimum is attained if and only if 'Yk = ck. This 
proves the following result, for any interval I. 

THEOREM 2. Let {<f>ix)} be a sequence of orthogonal square-integrable func
tions, and let f be square-integrable. Then, among all possible choices of 
'Yi, ••• , 'Yn, the integral (7) is minimized by selecting 'Yk = ckt where ck is defined by 
(8). 

The coefficients ck are called the Fourier coefficients off relative to the orthog
onal sequence <Pk· 

The partial sum c1¢ 2(x) + · · · + cn<f>n(x) in Theorem 1 is thus, for each n, 
the best mean-square approximation to f(x) among all possible sums -y1¢ 1 (x) + · · · 
+ 'Yn<f>nCx); it is often called the least square approximation to f(x) because it min
imizes the mean square difference (7). The remarkable feature of least-square 
approximation by orthogonal functions is that the kth coefficient 'Yk in the list 
(-y1, ... , -yJ which gives the best mean-square approximation to f is the same for 
all n > k. This "finality property" does not hold, for example, in the case of 
least-squares approximation by nonorthogonal functions, or of the approxima
tions in Fejer's Theorem, or of best uniform approximation minimizing the func
tional SUPa<x<b I J(x) - I:k=I ck<f>ix) I, 

Orthonormal Functions. The preceding formulas become much simpler 
when the orthogonal functions <Pk are orthonormal, in the sense that J <Pk 2p dx = 
1. For a sequence of orthonormal functions, the formula for the Fourier 
coefficients is ck = f 1 f<l>kP dx. We can easily construct, from any sequence 
<Pk of orthogonal functions, an orthonormal sequence Vlk by setting Vlk = 
<Pk/[f1 <f>/p dx] 1f2. For example, the functions 

1 
y';. cos kx, 

1 
y';. sin kx 
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are orthonormal on -1r < x < 1r with respect to the weight function 
p(x) = 1. 

Substituting the condition J <J>/p dx = 1 into (8') and remarking that E is 
nonnegative, we obtain the following important corollary. 

COROLLARY 1. Let E1 ck<J>k be the least-square approximation to f by a linear 
combination of orthonormal Junctions <l>k• Then 

(9) t c/ < J,J 2(x)p(x) dx 
I I 

For the right member of (9) to be finite, it is necessary that f 2p be integrable, 
that is, that J be square-integrable with respect to the weight function p. When 
this is the case, the integrals (8) are also well-defined by the Schwarz inequality. 
Under these circumstances, since the right side of (9) is independent of n, if we 
let n tend to infinity, we will still have 

(10) f c/ < f,J 2(x)p(x) dx < +oo 
I / 

(Bessel inequality) 

That is, the Fourier coefficients of any square-integrable function f form a square-sum
mable sequence of numbers if the <l>k are orthonormal. 

EXERCISES A 

1. Show that ak cos kx + bk sin kx = (1/ir) f1!..r J(t) cos [k(t - x)] dt. 

2. Show that½+ EZ=i cos kx = sin [(2n + l)x/2]/[2 sin (x/2)]. 

3. Using Ex. 2, infer that 

a0 n I Jr sin [(2n + l)(t - x)/2) 
- + L (ak cos kx + bk sin kx) = - J(t) . dt 
2 k=I 'II' -r 2 sm [(t - x)/2) 

4. (a) Prove in detail Corollaries I and 2 of Fejer's Theorem, discussing with care the 
differentiability at 0 and 'II' of the periodic functions constructed. 

(b) Find necessary and sufficient conditions for a continuous function on (0, '11'] to 
be uniformly approximable by a linear combination of functions sin kx. 

5. Show that, in Fejer's convergence theorem, 

2 

I Jr [ sin (nt/2)] 
un(x) = 2'11'n -rf(x + t) sin (t/2) dt 

*6. Prove Fejer's theorem, assuming that Ex. 5 holds. 

For the regular S-L systems in Exs. 7 and 8, (a) find the eigenvalues and eigenfunctions, 
(b) obtain an expansion formula for a functionfE 6'1 into a series of eigenfunctions. 

7. u" + ;\u = 0, u (0) = 0, u'('II') = 0, 0 :5 x ::5 'II'. 
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8. The same DE with u'(0) = 0, u(1r) = 0. 

9. Show that the trigonometric functions are orthogonal, for any a, in 

-1r - a :5 x :5 1r - a 

4 COMPLETENESS 

The most important question about a sequence of continuous functions <bk 
(k = 1, 2, 3, ... ), orthogonal and square-integrable with respect to a weight 
function p, is the following: Can every square-integrable function f be expanded 
into an infinite seriest f = Ee;" ck<l>k of the <bk? When this is possible for every 
continuous J,t the sequence of orthogonal functions <bk is said to be complete. 

Using the fundamental equation (8') on mean-square approximation, we can 
reformulate the definition of completeness as follows. In order that 

lim f [f(x) - t 1'k<l>k]
2 

p(x) dx = 0 
n-oo JI k=I 

it is necessary and sufficient that 

lim { [ f f 2p dx - t c/ f <J>/p dx] + t (1'k - cJ2 f <J>/p dx} = 0 
n-oo JI I JI k=I JI 

Since the term in square brackets is nonnegative by the Bessel inequality (10), 
and since f <bk 2p dx > 0 for any nontrivial <bk, the limit is zero if and only if 1'k = 
ck for all k, and equality holds in the Bessel inequality (10). This proves the fol
lowing results. 

THEOREM 3. A sequence {<bk} of functions <bix), orthogonal and square-integrable 
with positive weight p(x) on an interval I, is complete if and only if 

lf 2(x)p(x) dx = t { [ lf(x)<bh)p(x) dx r / 1 <J>/(x)p(x) dx} 

for all continuous square-integrable functions f 

t Here and below, the equation/= ~f cktj,k is to be interpreted in the sense of mean-square con
vergence, namely, that the partial sums ~Z- 1 cktj,k converge in the mean square to the function/with 
respect to p. 

t If every continuous function can be expanded into a series ~f cktj,k, then many discontinuous func
tions also have such an expansion, convergent in the mean square. The class of all such functions is 
that of all Lebesgue square-integrable functions (see § 11). We are here considering only continuous 
functions in order to avoid assuming a knowledge of the Lebesgue integral. 
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COROLLARY 1. If the <bk(x) are orthonormal, a necessary and sufficient condition 
for completeness is the validity of the Parseval equality 

(11) f f 2(x)p(x) dx = f [ f f(x)<J>ix)p(x) dx ]
2 

J1 k=I J1 

for all continuous square-integrable functions J. 

For example, take the case of Fourier series. In the notation of (1), the con
dition for the completeness of the functions 1, cos kx, sin kx on -1r < x < 1r 
is that, for all continuous functions J, 

(12) 

It follows from Fourier's Convergence Theorem, integrating the squares of the 
partial sums of (2), that the identity (12) holds if f is a continuously differentiable 
periodic function. 

We shall now prove that the identity (12) holds for all continuous periodic 
functions f. By Fejer's Convergence Theorem, the sums 

(13) u,v(x) = ao + ~ (1 - !:) ak cos kx + ~ (1 - ;) bk sin kx 
2 k=l N k=I 

converge uniformly for -1r < x < 1r to a continuous periodic function f(x). 
Therefore, J~,.. ui dx converges as N - oo to J~,.. f 2 dx. Evaluating the integral 
by (13), we find that 

(14) ~~ 1r [ ~~ + ~ ( 1 - ; Y (a: + b:)] = J:,..f 2(x) dx 

Now, by the Bessel inequality, we have 

(14') 1r[a~+f,(a/+b/)] < I f 2 dx<oo 
2 k=l J -,r 

Since [l - (k/N)] 2 < 1, it follows that, ifwe replace the sum in square brackets 
on the left side of (14) by a//2 + Ef=i (a/ + b/), we will get an increasing 
sequence whose limit is at least equal to J f 2 dx. But, by (14'), this limit is at most 
equal to J f 2 dx. Hence, the limit is exactly J f 2 dx, and (12) is proved. Since 
any continuous function on -1r < x < 1r can be given an arbitrarily close mean
square approximation by a continuous function satisfying f(-1r) = f(1r), this 
proves 



352 CHAPTER 11 Expansions in Eigenfunctions 

COROLLARY 2. The trigonometric functions l, cos kx, sin kx (k = 1, 2, ... ) 
are a complete orthogonal sequence in the interval -1r < x < 1r. 

Using the method of Corollary 2 of §1 and changing variables, we obtain 
another corollary. 

COROLLARY 3. The functions cos [k1r(x - a)/(b - a)], (k = 0, 1, 2, ... ), 
form a complete orthogonal sequence in the interval a < x < b. 

We conclude this section with the following criterion for completeness of a 
sequence of orthogonal functions, which relates the notion of completeness to 
that of approximation in the sense of mean-square convergence. 

THEOREM 4. Let {<bk} (k = 1, 2, ... ) be any sequence of orthogonal square-inte
grable Junctions on an interval I, relative to a weight Junction p > 0. The sequence is 
complete if and only if every continuous square-integrable Junction can be approximated 
arbitrarily closely in the mean square iJ,y a linear combination of the <Pk· 

Proof. The condition is clearly necessary. Conversely, suppose that, given 
E > 0, we can find a linear combination E~=I 'Yk<Pk such that 

If we replace each of the 'Yk by the Fourier coefficients ck off relative to <Pk-as 
given by formula (5)-then by Theorem 2 the square integral on the left 
decreases: 

But this is precisely what we had set out to prove. 

5 ORTHOGONAL POLYNOMIALS 

We shall now prove the completeness of the eigenfunctions of some of the 
singular S-L systems studied in Ch. 10. These are the S-L systems on a finite 
interval whose eigenfunctions are polynomials, such as the Legendre 
polynomials. 

We can use any positive weight Junction p(x) on an interval (a, b) with the prop
erty that J! xnp(x) dx is convergent for all n > 0, to construct an infinite 
sequence of polynomial functions P0(x), P 1 (x), P2(x), ... with Pn(x) of degree n, 
which are orthogonal on (a, b) with respect to this weight function, so that 

(15) lb Pm(x)Pn(x)p(x) dx = 0, 



5 Orthogonal Polynomials 353 

Equations (15) define Pn(x) uniquely up to an arbitrary factor of proportionality, 
the normalization constant. 

Given a weight function p(x), one can compute the Pn(x) explicitly from (15); 
the computations will not be described here.t Instead, we shall derive some 
interesting general properties of orthogonal polynomials. 

We shall first establish the fact that, on any finite interval, such sequences of 
orthogonal polynomials are complete. To prove this, we will need the following 
result. 

LEMMA. Every uniformly convergent sequence of continuous Junctions is mean
square convergent on any interval I, with respect to any integrable positive weight Junc
tion (f p dx < oo). 

This follows immediately from the inequality 

(16) f lfn(x) - f(x)]2p(x) dx < max [lfn(x) - J(x))2] l p(x) dx 

valid when I is any finite or infinite interval. On an infinite interval, however, 
we must carefully check the integrability of the weight function. For instance, 
the functions f,.(x) = n - 112 exp (-x2/n2) converge uniformly to the zero func
tion on the interval -oo < x < oo, but the integrals f~ooJ /(x) dx do not con
verge to zero. 

Using this lemma, it is easy to prove the completeness of a sequence of orthog
onal polynomials defined on a finite interval I, relative to any continuous integra
ble weight function p(x) from the fundamental 

WEIERSTRASS APPROXIMATION THEOREM. Let f(x) be any function contin
uous on a finite closed interval a < x < b, and let E > 0 be any positive number. Then 
there exists a polynomial p(x), such that lp(x) - j(x) I < 1:,Jor all x on a < x < b.t 

From this theorem, and the inequality (16), we infer 

THEOREM 5. Let Pn(x) (n = 0, 1, 2, ... ) be a polynomial Junction of degree n. 
For a fixed interval I: a < x < b, let 

if m =fo n 

where p(x) is a continuous integrable positive weight Junction. Then the orthogonal 
polynomials Pn(x) are complete on I. 

Proof Let p(x) be any polynomial of degree n. We can find en such that p(x) 
- c~n(x) is a polynomial of degree n - 1 or less. Hence, by induction on n, we 

t It is the Gram-Schmidt orthogonalization process applied to the vectors 1, x, x2, •••• This process 
can be applied in any Euclidean vector space (Birkhoff and MacLane, p. 204). 

t See Widder, p. 426, or Courant-Hilbert, Vol. 1, p. 65. 
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can express p(x) as a finite linear combination of P0(x), . .. , Pn(x). By the Weier
strass Approximation Theorem, we can approximate uniformly any continuous 
function arbitrarily ,closely by a suitable polynomial p(x). By the preceding 
lemma, every continuous function can, therefore, be approximated arbitrarily 
closely in the mean square by a linear combination of the Pk. The result now 
follows from Theorem 4. 

The completeness of Legendre, Chebyshev, Gegenbauer (or ultraspherical), 
and other Jacobi polynomials {see Ch. 9, §11) follows as a corollary. But it is 
harder to prove the completeness -0f polynomials orthogonal on semi-infinite 
and infinite intervals, such as the Her-mite polynomials and the Laguerre poly
nomials introduced in the next section. • 

EXER.CISESB 

1. Using Fourier's Convergence Theorem, show that the eigenfunctions of u" + Xu = 
0 for the separated boundary conditions u(O) = u'(1r) = 0 are complete on (0, 1r). 

2. Show that, iffn--+ fin the mean square, and ck, cin> are the Fourier coefficients off, 
fn relative to a given orthonormal sequence q,k, then cin> --+ ck uniformly in k. 

3. Using expansions into Legendre polynomials, obtain a formula for the best mean
square approximation in Ix I .::5 1 of a square-integrable function by polynomials of 
degree .::5 n. 

*4. Using the Liouville substitution, obtain from Fourier's theorem an expansion theo
rem for functions f E lr2[-1, 1] into series of Chebyshev polynomials. 

5. Show that, given square-integrable functions Ji, ... , fn, a sequence <f,1, ... , <l>m of 
orthonormal square-integrable functions can be found for which!,. is a linear com
bination of <f,1, ... , q,k> 1 .::5 k .::5 m. 

*6 PROPERTIES OF ORTHOGONAL POLYNOMIALS 

We shall now develop some of the properties of orthogonal polynomials 
which depend only on the fact that they are orthogonal, irrespective of com
pleteness. These properties apply to the polynomials whose completeness was 
proved in §5 (see last paragraph). They apply also to the Hermite and Laguerre 
polynomials, whose completeness will not be proved in this book. All these poly
nomials have been met before, except the Laguerre polynomials, which we now 
define. 

Example 1. Consider the singular S-'L system consisting of the DE 

(17) [ (2 - x)] (xu')' + a + 4 u = 0, 0<x<oo 

with the endpoint conditions that u(x) is bounded as x - oo and as x --+ 0. 
Setting u(x) = v(x)e-x/2, we get the Laguerre DE 

(18) xv" + (1 - x)v' + av = 0 
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Trying v = E:;:". 0 a,,x\ the Method of Undetermined Coefficients (Ch. 4, §2) gives 
the recurrence relation ak+ 1 = (k - a)ak/(k + 1)2. Hence, we have 

(19) 
(a - k + l)a0 

(kl)2 

The series is a polynomial if and only if a = n, a nonnegative integer; otherwise, 
it represents a function that grows exponentially at infinity. Normalizing the 
polynomial (for a= n) by the condition an= (-lf/(n!), we get the Laguerre 
polynomia[st: 

(19') 

Thus, the functions Ln(x)e-x/2 are eigenfunctions of a singular S-L system. These 
functions are certainly square-integrable, together with their derivatives, hence 
Theorem 2 of Ch. 10 applies, giving the orthogonality relations 

m =f,- n 

We shall now consider some of the fundamental properties of an arbitrary 
sequence of orthogonal polynomials (not necessarily solutions of a DE) P0(x), 
... , Pn(x), ... , where Pn is of degree n. As in §5, we assume that the weight 
function p(x) is such that all products xnp(x) are integrable on I. We do not 
assume that the interval I is finite. 

We first derive a result similar to the Sturm Oscillation Theorem. 

THEOREM 6. Let {Pn} (n = 0, 1, 2, ... ) be any sequence of polynomials orthog
onal on a given interval (a, b) where Pn(x) has degree n. Then Pn has n distinct zeros, 
all contained in the interval (a, b). 

Proof Suppose that Pn(x) has fewer than n zeros in (a, b). Let X1, ... , Xm (m 
< n) be those zeros at which Pn(x) changes sign. Then the polynomial (x - x1)(x 
- x2) • • • (x - xm)Pn(x) would be of constant sign. Hence -

m<n 

t The normalizing condition an = 1 is also often used, and makes some formulas simpler. 
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But (x - x 1) • • • (x - x,,J is a polynomial of degree lower than n. Therefore, 
it can be written as a linear combination of the polynomials P0, ••• , Pm, say 
Ei:'=o c1/\(x), m < n. Hence, we have 

a patent contradiction, since the integrand is positive except at the x,. Hence, 
Pn(x) has at least n zeros on (a, b). Since a polynomial of degree n has, at most, 
n zeros, the proof is complete. 

Next, we shall establish a recursion formula for an arbitrary system of orthog
onal polynomials. 

THEOREM 7. Any three orthogonal polynomials of consecutive degree satisfy a lin
ear relation 

(20) 

for suitable constants A,., B,., en. 

Proof First choose An such that Pn+ 1(x) - xAnPn(x) is a polynomial of degree 
n or less, so that 

Multiplying both sides by Pk(x)p(x), integrating from a to b, and using the 
orthogonality relation, we find that 'Yk = 0 fork = 2, 3, ... , n. Hence 

Therefore set 'Yo = Bn and 'Yi = em q.e.d. 

The numerical values of the constants Am Bm en in Theorem 7 depend on the 
normalizing factors used to define the orthogonal polynomials considered. For 
convenience, we have listed in Table I the recursion coefficients for some com
mon polynomials. 

EXERCISES C 

Establish the following formulas for Hermite polynomials (see Ch. 4, §2): 

1. Hn+1(x) = 2xHn(x) - 2nHn-1(x). 

2. H;(x) = 2nH.-1(x). 
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Table 1. Recursion Coefficients 

Polynomial An Bn en 

Legendre 
2n + l 

0 
-n 

n + l n + l 
Chebyshev 2 0 -1 

Gegenbauer 
2n + >.. 

0 
1 - n - 2>.. 

n + l n + l 
Hermite 2 0 -2n 

-1 2n + 1 -n 
Laguerre 

n + l n + l n + l 

*3. Ef-o Hix)ljk! = ext-1212 (generating function). 

4. Establish the recursion formula for the Laguerre polynomials: 

[HINT: Differentiate the recursion formula for Ln.] 

5. Show that for the functions <l>n(x) = c/2 rl" /dxn(e-xxn) are orthogonal in O < x 
<oo. 

6. Infer from Ex. 5 that <l>n(x) = (n!) e-xf2Ln(x), where Ln is the nth Laguerre 
polynomial. 

7. Show that, if L.(x) is the Laguerre polynomial of degree n, then dk[Ln(x)]jdxk satis
fies the DE 

xv" + (k + I - x)v' + (n - k)v = 0 

8. Prove the recursion formula of Table I: 

9. Let Pk(x) be a sequence of orthonormal polynomials with weight function p in 
a < x < b, and let ck = f!J(x)Pix)p(x) dx. Show that the partial sum 

n 

un(x) = L c~h) 
k=O 

coincides with J(x) in at least n + l points of the interval. [HINT: Use a method 
similar to the proof of Theorem 6.] 

*10. Show that, in Theorem 6, between any two zeros of Pn, there is exactly one zero of 

Pn+I· 

*11. Show that the Legendre polynomials are the only Gegenbauer polynomials for 
which the maximum of I P:(x) I, namely P:(l ), is independent of n. 

*12. (a) Expand the function (1 - 2xh + h2)- 112(1xl < I) into a series of Legendre 
polynomials, and show that the nth Fourier coefficient is 2hn/(2n + 1). 
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(b) Obtain from (a) the formula 

00 

(1 - 2xh + h2)- 1/2 = L hkPk(x) for lhl < V2 - 1 
k=O 

*13. Show that the generating function for the Laguerre polynomials is, 

1 [i-xt] 00 

- exp -- = L tnLn(x)/n! 
1-t 1 - t n=O 

In Exs. 14-17, D = d/dx and p(x) is positive. The method of proof is to find,by induction 
a S-L equation satisfied by the expressions given. 

* 14. Show that the only orthogonal polynomials of the form 

for 

are the Hermite polynomials. 

*15. Show that the only orthogonal polynomials of the form 

are the Laguerre polynomials, after a change of independent variable. 

* 16. Show that the only system of orthogonal polynomials of the form 

are the Jacobi polynomials, after a change of independent variable. 

*17. Show that the only sequences of orthogonal polynomials that satisfy a Rodrigues 
formula Pn(x) = K,.[p(x)r 1Dn[p(x)p(x)], where p is a given polynomial, are the 
Jacobi, Laguerre, and Hermite polynomials. 

*7 CHEBYSHEV POLYNOMIALS 

The Chebyshev polynomials Tn(x) were introduced in Ch.9,§11, as solutions 
of the self-adjoint DE 

(21) -1 < x < l 

The Liouville normal form of this DE is u99 + Xu = 0, which is obtained 
by setting w = u and 8 = f':_ 1 dV~, or x = -cos 8, 0 < 8 < 1r. For 
integral n and X = n2, two linearly independent solutions of this equation are 

(21a) 
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and Sn(x) given by the formula 

(21b) 

The Um(x) defined by (21b) are also polynomials of degree m, called Chebyshev 
polynomials of the second kind. Their theory is parallel to that of the Tn(x) and is 
developed in Exs. D3-D7. 

From the forms of the preceding explicit solutions, we see that the functions 
Tn(x) are eigenfunctions of the singular S-L system defined from (21) by the 
boundary conditions that u'(-1) and u'(l) be finite. All solutions of (21) are 
bounded at the singular points x = ± 1, as is apparent from inspection of 
explicit solutions (21a) to (21b) and also from a calculation of the roots v = 0, 
½ of the indicial equation 2v2 - v = 0 of the normal form of (21). But only 
multiples of the Tn(x) have bounded derivatives at the endpoints. 

Minimax Property. The most striking property of the Chebyshev polyno
mials is contained in the following result. 

THEOREM 8. Among all monic polynomials P(x) = xn + E;:;:-J akxk of degree n, 
21-nTn(x) minimizes max_Isx:s;;J I P(x) I (Minimax property). 

Proof For n = 1, the result follows by inspection. For n > 2, it follows by 
induction from ,the recursion formula 

which is equivalent to the trigonometric identity 

cos (m8 + 8) = 2 cos 8 cos m8 - ,cos (m8 - 8), n=m+l 

Next, since Tn(cos 8) = cos n8, we have that 

max 121-nTn(x)I = 21-n 
-JsxsJ 

In order to establish the statement, it therefore suffices to show that for any 
monic polynomial of degree n we have 

max lxn + an-lxn-1 + ... + aol > 21-n 
-Isxsl 

Suppose this were not so. Then, we could find a monic polynomial p(x) of degree 
n such that max_1sxsI IP(x) I < 21-n. Now, the polynomial 21-nTn(x) - p(x) is 
of degree n - 1. We shall reach a contradiction by showing that this polynomial 
has n distinct zeros. 

To see this, notice that the polynomial 21-nTn(x) takes alternately the values 
±21-n at n + 1 points x0 = -1 < x1 < · · · < xn = 1, which immediately 
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results from Tn(cos 8) = cos n8. Since IP(x,J I < 21-n I Tn(x,J I, it follows that the 
polynomial 21-nTn(x) = p(x) takes alternately positive and negative values at 
n + l points. Therefore, this polynomial of degree n - l must have at least 
n distinct zeros, and so, must vanish identically, q.e.d. 

Chebyshev Equioscillation Principle. An important partial generalization 
of Theorem 8 is the Chebyshev Equioscillation Principle. This states that, if 
J(x) E <§>[a, b], then there is a unique polynomial p(x) of degree n - l that mini
mizes max IP(x) - j(x)I on [a, b]. The difference P(x) = p(x) - f(x) vanishes at 
n - l points on [a, b], and I P(x) I assumes its inaximum value at n points. 
Settingf(x) = xn, we have P(x) = Tn(x). 

EXERCISESD 

1. Show that the DE [(1 - x2)312u']' + X(l - x2) 112u = 0 can be reduced to a DE with 
constant coefficients by setting v(O) = (sin O)u(cos 0). 

2. Show that the endpoint conditions lim,-±i v'f-=7 u(x) = 0 give an S-L system with 
eigenvalues >..n = n(n + 2), from the DE of Ex. 1. 

3. Show that the eigenfunction belonging to the eigenvalue >..n is a Chebyshev polyno
mial of the second kind. 

4. Using Ex. 3, obtain an expansion theorem of a smooth function into a series of 
Chebyshev polynomials of the second kind. 

5. Show that Tn(x) = Un(x) - xUn-1(x). 

6. Show that (1 - x2}Un-1(x) = xTn(x) - Tn+1(x). 

7. Express Un(x) in terms of the hypergeometric function. 

8. Expand the function arccos x on (-1, 1) into a series of Chebyshev polynomials 
of the first kind. 

*9. Infer the Weierstrass Approximation Theorem from Fejer's Theorem. 

8 EUCLIDEAN VECTOR SPACES 

The concepts of mean-square convergence and completeness have suggestive 
geometric interpretations. These interpretations are based on the properties of 
inner products. 

Consider the set of all real functions f, g, h, . . . , continuous and square
integrable on an interval I, with respect to a fixed positive weight function p. 

The interval I may be open or closed, finite, semi-infinite, or infinite. Define the 
inner product of two such functions f, g as the integral 

(22) (f, g) = f J(x)g(x)p(x) dx, p(x) > 0 

The following formulas are immediate: 

(J + g, h) = (f, h) + (g, h), (f, g) = (g,J) 

(cf, g) = c(f, g); (f, J) > 0, unless J=O 
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Hence, with respect to the inner product (J, g), this set of functions is a Euclid
ean vector spacet (or "inner product space"). 

For real functions, the integral (6) in the definition of mean-square conver
gence, is the inner product <fn - f.ln - l); hence it is the square of the distance 
llln - 111 = <fn - f,fn - !)112 betweenln andlin the Euclidean vector space E. 
Therefore, ln --+ 1 in the mean square, relative to p, means that the Euclidean 
distance from fn to 1 in E tends to zero. 

This distance enjoys the properties of distance in ordinary space, including 
the triangle inequality and the Schwarz inequality 

-11111 • llgll < (f, g) = 11111 • llgll cos L(J, g) < 11111 • llgll 

The Schwarz inequality shows that 1 and g are orthogonal if and only if the angle 

0 = L(f, g) = arccos [(f, g)/11111 • llgll], 

is 90°; it gives a geometrical interpretation to the definition of orthogonal 
functions. 

We shall now generalize Theorems 1, 2, 3, and 4 to an arbitrary Euclidean 
vector space E. 

If {¢k} is a sequence of orthogonal vectors in E, and 1 E E is given, consider 
the squared distance 

Defining ck = (f, ¢k)/(<Pk, <Pk), we obtain, as in §3, 

n n 

(J, f) - L [ci(<Pk, ¢0] + L [(ck - 'Y02(¢k, <t>J] 
k=I k=I 

Geometrically, the least-square approximation :Ei:=i ck¢k to lappears as the orthog
onal projection of the vector 1 onto the subspace S of all linear combinations 
'Yi¢1 + · · · + 'Yn<Pn of ¢1, ... , <Pn• This is because, in the orthogonal projection 
onto a subspace Sofa vector c issuing from the origin, the component of c per
pendicular to S is the shortest vector from S to c. The coefficients 'Yk are given by 
the direction cosine formulas of analytic geometry. 

Completeness of the <Pk is defined as in §4, as the property that 

00 

that is, 

t The reader should familiarize himself with this notion; the space is not assumed to be finite
dimensional. 
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for every fin E. It has a simple geometric interpretation in any Euclidean vector 
space E. The relation f = Ef ck<f>k holds if and only if the distance Ill - Ej ck<f>k II 
tends to zero as n - oo. That is, as in the proof of Theorem 3, the condition 
for completeness is that we can approximate any f arbitrarily closely by finite 
linear combinations c1</>1 + · · · + cn<f>n of the orthogonal vectors <l>k whose 
completeness is in question. This idea is most vividly expressed in terms of the 
concept of a dense subset of a Euclidean vector space. 

DEFINITION. A subset S of a Euclidean vector space E is dense in E if and 
only if, for any Jin E and positive numbers~> 0, an elements can be found in 
S such that 11s - JII < ~-

As in Theorem 4, a set {<l>n} of orthogonal elements of Eis complete if and only 
if the set S of all finite linear combinations Ej 'Yk<l>k of the <l>k is dense in E. 

The Parseval equality is easily derived in any Euclidean vector space E. 
Consider the sequence of best mean-square approximations 

to a given vector fin E. If the finite linear combinations Ej ck<f>k are dense in E, 
then the square distance 

must tend to zero as n - oo. Hence, if the sequence {<l>n} is complete, then 

00 

(23) L [(f, <l>J 2/(<l>k, <l>k)] = (f,J) (Parseval equality) 
k=I 

Applying Parseval's equality to the vector f + g and then expanding and sim
plifying, we obtain more generally 

00 

(23') L [(f, </>J(g, </>J/(<l>k, </>J] = (f, g) 
k=I 

valid whenever {<l>k} is complete and f, g are square-integrable. Even if Parseval's 
equality fails, we still get 

(24) 
oo f, 2 

L L..!hJ._ < <J. n 
k=I (</>k, <f>k) 

(Bessel inequality) 
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If Parseval's equality fails, then strict inequality will occur in (24) for some fin 
E. For such an f, we have by Theorem I 

II f - t 7k¢k II > II f - t ck¢k II > v'o > 0 
k=I k=I 

for any choice of 7k• Since o is independent of n, this shows that the ¢k cannot 
be a complete set of orthogonal vectors. This gives another proof of Theorem 
3, which we now restate for an arbitrary Euclidean vector space. 

THEOREM 9. A sequence {¢k} of orthogonal vectors of a Euclidean vector space E 
i,s complete if and only if the Parseval equality (23) holds for all fin E. 

9 COMPLETENESS OF EIGENFUNCTIONS 

The completeness of the eigenfunctions of a regular Sturm-Liouville system 
is a consequence of the asymptotic formulas of Ch. I 0, and a geometric property 
of sets of orthonormal vectors in Euclidean vector spaces. This property is stated 
in the following theorem of N. Bary. 

THEOREM 10. Let {¢n} be any complete sequence of orthonormal vectors in a 
Euclidean vector space E, and /,et {~n} be any sequence of orthonormal vectors in E that 
satisfies the inequality 

00 

(25) L ll~n - ¢nll2 < +oo 
n=I 

Then the ~n are complete in E. 

This result will be proved in §§IO, I 1. It is plausible intuitively, because it 
asserts that completeness is preserved in passing from a set of orthonormal vec
tors ¢n to any nearby system. 

Assuming Theorem IO provisionally, we can establish the completeness of the 
eigenfunctions of a regular S-L system as follows. 

Consider the asymptotic formula (56) of Ch. I 0, 

[ mr(x - a)] 0(1) 
cos ---- +--

(b - a) n 

If un(x) is the nth normalized eigenfunction of a regular S-L system in Liouville 
normal form, and if ¢n(x) = V2/(b - a) cos (mr(x - a)/(b - a)), this gives 
I un(x) - ¢n(x) I = O(1)/n. Squaring and integrating, we obtain 
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Since the series I + ¼ + ! + · · · + l/n2 + · · · converges (to 11'2/6), this 
implies the following lemma. 

LEMMA. Let un(x) be the nth normalized eigenfunction of any regular S-L system 
in Liouville normal form, with ol{j' 'F 0, and let 

-, /2 [n11'(x - a)] V ~cos (b - a) 

Then the <bn are an orthonormal sequence, and 

00 

(26) L llun - <bnll 2 < +00 
n=I 

Since the cosine functions are complete (by Corollary 3 of Theorem 3), it 
follows from this lemma and Theorem IO that the eigenfunctions of any regular 
S-L system in Liouville normal form with ol{j' =fo Oare a complete set of ortho
normal functions. 

As shown in Ch. 10, §9, the transformation to Liouville normal form, applied 
to the (normalized) eigenfunctions, carries the inner product 

(</>, if;) = l <J>(x)tf;(x)p(x) dx 

into the inner product 

(u, v) = lb u(x)v(x) dx 

Therefore,t the change of variable that leads to a Liouville normal form carries 
complete orthonormal sequences, relative to a weight function p, into complete 
orthonormal sequences. Hence, the eigenfunctions of regular S-L systems not 
in Liouville normal form are also complete. 

Finally, since similar arguments cover the case cl{j' = 0, we have the following 
result. 

THEOREM 11. The eigenfunctions of any regular S-L system are complete in the 
Euclidean vector space of square-integrable continuous Junctions, on the interval 
a < x < b, relative to the weight Junction p. 

t Since distance and convergence are defined in terms of inner products in any Euclidean vector 
space. 
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*10 HILBERT SPACE 

The set of real numbers differs from the set of rational numbers by the com
pleteness property that every Cauchy sequence of real numbers is convergent.t 
This property of completeness has an analog for Euclidean vector spaces (and, 
more generally, for metric spaces). 

DEFINITION. In a Euclidean vector space E, a Cauchy sequence is an infinite 
sequence of vectors fn such that 

(27) llfm - fn II - 0 as m, n- oo 

The space Eis called complete when, given any Cauchy sequence { fn}, there exists 
a vector Jin E such that llfn - JII - 0 as n - oo. A complete Euclidean vector 
space is called a Hilbert space. 

Any fini~e-dimensional Euclidean vector space is complete, but the Euclidean 
vector space of continuous square-integrable functions defined in §8 is not com
plete, as will appear presently. 

Example 2. Let (f 2) denote the Euclidean vector space of all infinite 
sequences a = {ak} = (a1, a2, a3, ..• ) of real numbers which are square-sum
mable, that is, which satisfy Ea/ < +oo. The vector operations on these 
sequences are performed term-by-term, so that a+ bis the sequence (a1 + b1, 

a2 + a2, a3 + b3, ... ). Inner products are defined by the formula 

00 

(28) (a, b) = L akbk = a1b1 + a2b2 + a3b3 + 
R=I 

LEMMA 1. The space (f2) is a Hilbert space. 

Proof Our problem is to prove completeness. To this end, let {an} be any 
Cauchy sequence of square-summable sequences. That is, let 

For each fixed k, the sequence of real numbers a;: (n = 1, 2, ... ) (the kth com
ponents of an) is a Cauchy sequence and, therefore, converges to some real num
ber ak. Let a = {ak} (k = 1, 2, 3, ... ). We must prove that the sequence a is 
square-summable and that an - a in the Euclidean vector space. 

Since I llanll - llamll I < !Ian - amll by the triangle inequality, it follows that 
the sequence llanll is bounded. Let yM be an upper bound. Then, for all 
integers n, we have Ef=i (ai:)2 < M. Letting n - oo in this finite sum, we get 
Ef=i (aJ2 < M. Since N is arbitrary, it follows that llall2 = Ef=i (aJ2 < M. 

t Courant and John, p. 94 ff.; Widder, p. 277. 
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Hence, a is a square-summable sequence. Moreover, given E > 0, n can be found 
so large that llan - amll2 < E for all m > n. Therefore, for every integer N 
we have Ef=i (ai: - a';:)2 < E. Letting m - ao, we obtain Ef=, (ai: - a,J2 < E. 

Since N is arbitrary, this implies Ef=t (ai: - a,J2 < E, q.e.d. 

The property of Hilbert space that is most useful for establishing the com
pleteness of eigenfunctions is the following. 

THEOREM 12. An orthogonal sequence {</>k} of vectors of a Hilhert space is complete 
if and only if there is no nonzero vector f orthogonal to all the <l>k• 

Proof Letfbe a vector, and let {<l>k} be a sequence of orthogonal vectors in 
a Hilbert space 11. Let gn = Ei:=i ck<f>k be the nth least-square approximation to 
Jby a linear combination of </>i, . .. , <l>n• Then, as before, we have ck = (f, <l>k)/ 

(<l>k, </>,J and, for m > n, 

By the Bessel inequality (24), the series Ef=t [lf, <J>,J2/(<l>k, <J>,J] of positive num
bers is convergent; hence, the last sum in the preceding display tends to zero as 
n - ao. That is, the sequence {gn} is a Cauchy sequence. 

It follows that 11, being complete, contains a vector g to which the gn 

converge; let h = f - g = limm-00 (f - gm). Then, since (f - gm, </>,J = 0 for 
all m > k, we have in the limit, as m - ao, (h, <J>,J = 0 for all k. By Theorem 9 
(Parseval's equality), h = 0 for all f if and only if {<l>k} is complete. This completes 
the proof. 

Remark. A complete orthonormal sequence {4'k} in the space (£2) is obtained 
by choosing q,k = eh, the kth unit vector whose kth component is 1 and whose 
other components are all 0. 

The Euclidean vector space ~[a, b] of all continuous functions on a finite 
interval a < x. < bis not complete; that is, it is not a Hilbert space. The following 
is an example of a mean-square Cauchy sequence of continuous functions that 
does not converge to any continuous function. In -1 .$ x < l, let fn(X) = 0 
for -1 < x < 0,fn(x) = nx for 0 < x < l/n, andfn(x) = l· for 1/n .$ x < l. 
The limit function f 00(x) equals 0 for -1 < x < 0 and 1 for 0 < x < l. 

Though the Euclidean vector space ~[a, b] is not complete, it can be embed
ded in the (complete) Hilbert space (f.2), as follows. First, make the change of 
independent variable t = ,r(x - a)/(b - a), in order to map the interval [a, b] 
on [0, ,r]. Then for eachflx) E ~[a, b], expandj(t) = J(a + (b - a)t/1r) into the 
cosine series ftt) = Eck cos kt, k = l, 2, .... The vector f = (c0, Ci, c2, ... ) defines 
an element of the space (f2) by the Bessel inequality. 

The correspondencef- £maps the space ~[a, b] into the space (f2); more
over, it preserves vector operations: f + g - f + g and XJ- Xf. By Parseval's 
generalized equality (23'), which is applicable since the cosine functions are 
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complete (Theorem 3, Corollary 3), we know that 

(£, g) = [ 7f' ] f b f(x)g(x) dx = r'lr j(t)g(t) dt 
(b - a) a Jo 

Hence, the correspondence f--+ £ also preserves inner products (up to a constant 
normalizing factor). Therefore, it also preserves lengths (£, f )112. In particular, 
f = 0 implies that f~ f 2(t) dt = 0. Hence, since f is continuous, it also implies 
that f(t) = 0. In conclusion, we have proved the following result. 

LEMMA 2. The Euclidean vector space &[a, b] (-oo <a< b < +oo) can be 
embedded in the Hilbert space (l2), with preservation of vector operations and inner 
products. 

More generally, let <bn be a complete sequence of orthonormal vectors in an 
arbitrary Euclidean space E. Then the mappingf--+ c = {ck}, where ck = (f, <bJ 
for fin E, defines an embedding of E as a subspace of (l2). In the same way as 
before we obtain the following lemma. 

LEMMA 3. Every Euclidean vector space with a complete sequence of orthonormal 
vectors can be embedded in (l2), with preservation of vecto~rations and inner 
products. 

In view of this lemma, it suffices to prove Theorem 10 under the assumption 
that the Euclidean vector space Eis complete, that is, that E is a Hilbert space. 
We shall make this assumption from now on. 

*I I PROOF OF COMPLETENESS 

We are now ready to prove Theorem 10. But to bring out more clearly the 
idea of the proof, we first treat a special case. 

We define a sequence of orthonormal vectors of a Hilbert space to be an 
orthonormal basis if and only if it is complete. 

LEMMA. Let {<bk} be an orthonormal basis in the Hilbert space 71. Let {1h} be an 
orthonormal sequence in 7f satisfying the condition 

00 

(29) L ll1h - <l>kll2 < 1 
k•l 

Then the sequence {1h} is also an orthonormal basis in 71. 

Proof If the sequence 1h were not a basis, then we could find a nonzero 
vector h-orthogonal to every 1h by Theorem 12. The inner product of this vector 
with <f>k would be given by 
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Squaring and using the Schwarz inequality, we would have 

(29') 

Summing with respect to k, we would obtain 

00 00 

llhll 2 = L (h, <t>,l < llhll2 L ll<Pk - 1hll2 < llhll 2 
k=l k=l 

in evident violation of Parseval's equality (Theorem 9), since the <Pk are an 
orthonormal basis. 

COROLLARY 1. Replace condition (29) by the weaker condition 

00 

(30) L ll1h - <Pkll 2 < 1 
k=N+I 

for some integer N. Then every element h of ff orthogonal to <Pi, ... , <PN and to 1/IN+1, 

1/IN+2• ••• must vanish. 

Proof Any such element h satisfies the inequality (29') for k > N. Indeed, 
summing over all k, we have, since (h, <Pk) = 0 fork = 1, 2, ... , N, 

00 00 00 

llhll 2 = L (h, ¢02 = L (h, ¢02 < llhll 2 L ll<Pk - 1/lkll 2 < llhll2 
k=I f=N+I k=N+I 

again contradicting Parseval's equality. 

COROLLARY 2. If <Pk is an orthonormal basis and 1/lk an orthonormal sequence 

satisfying (30), then every element of ff orthogonal to 1/IN+h 1/IN+2, ••• and to the 
elements 

00 

(31) 1/n = <Pn - L (</>n, 1/lk)l/lk, n = 1, 2, ... , N 
k=N+I 

must vanish. 

Proof. For any such element h, we have 

00 

(h, <Pn) = (h, 1/n) + L (</>n, 1/lk)(h, 1/IJ = 0 
k=N+I 

for n = 1, 2, ... , N. Thus h also satisfies the conditions of Corollary 2 and 
therefore vanishes. 
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The proof of Theorem 10 can now be completed as follows. Choose an inte
ger Nso that 

00 

L ll1h - <Pkll2 < 1 
k=N+l 

By Corollary 2, any element h of 7f: which is orthogonal to the elements 1/IN+i, 

1/IN+2, ... and to the elements 1/n (n = I, 2, ... , N) defined by formula (31) must 
vanish. Denote by S the set of all elements of 7f: orthogonal to I/IN+ 1, 1/IN+2, .... 

Evidently S is a vector space containing 7/i, ••• , 1/N· By virtue of the previous 
remark, the vector space S contains only the linear combinations of these ele
ments. In other words, S is a finite-dimensional vector space whose dimension 
is at most N. 

But the elements I/ti, 1/12, ••• , I/IN also belong to the vector space S, and they 
are linearly independent (they are an orthonormal sequence!). Therefore, the 
elements I/ti, 1/12, ... , I/IN are a basis for the vector space S.t Hence, the elements 
711, 712, ... , 1/N are linear combinations of 1/11, 1/12 ... , I/IN· It follows that any 
element of 7f: that is orthogonal to all the 1/tk must vanish, because such an ele
ment is also orthogonal to 711, ••• , 1/N and to 1/IN+l• 1/IN+2, .... We conclude that 
the sequence {1/tk} is complete, proving Theorem 10. 

Theorem 10 implies Theorem 11, as was already shown in §9. 
It is natural to ask whether the sums Eck<f>k having square-summable coeffi

cient sequences can also be interpreted as functions. This question can also be 
answered in the affirmative, by use of the Lebesgue integrai. Given any complete 
family {<l>k} of orthonormal functions on [a, b], the partial sums Ek=lck<f>k with 
square-summable coefficient sequences {ck} converge in the mean square of a func
tion j(x), which is square-integrable for the Lebesgue integral. Conversely, if f(x) is 
a Lebesgue square-integrable and if ck = if, </>J, the partial sums fn = Ek=lck<f>k 

converge to f(x) in the mean square. That is, the metric completion of the space 
lr[a, b] is precisely the Hilbert space .l2[a, b] of all functions on [a, b] whose 
squares are Lebesgue integrable. It is this space that is really appropriate for 
the theory of expansions in eigenfunctions. 

EXERCISES E 

1. Show that in a finite-dimensional Euclidean vector space E, a vector subspace S is 
dense if and only if S = E. 

2. Show that an orthonormal sequence <Pk (k = 1, 2, 3, ... ) in a Euclidean vector space 
is complete if Parseval's equality (23) holds for all/ in a dense subset. 

3. (Vitali). Show that an orthonormal sequence <Pk(x) (k = 1, 2, ... ) of continuous func
tions on a :5 x :5 b is complete if and only if 

a:5x:5b 

t As shown in Apostol, Vol. 2, p. 12. 
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fHINT: Show that linear combinations of the functions J(x) = Ix - c I form a dense 
subset, of (§'[a, b}, and apply Ex. 2.} 

*4. (Dalzell). Show that a sequence of continuous orthonormal square-integrable func
tions ,Pk{x), a :5 x :5 b, is complete if and only if 

oo 1b (J.' )2 (b a)2 L ,Pk(t) dt dx = -
k=I a a 2 

[HINT: Let q(x) = x - a - Ef_ 1 <J: <Mt) dt)2, and show that q(x) = 0 by establishing 
q(x) 2::: 0 and J! q(x) dx = 0, q continuous, applying Ex. 3.} 

5. Assuming the equality E,;"= 11/k2 = 1r2/6, infer from Ex. 4 that the trigonometric 
functions cos kx, sin kx, k = 0, l, 2, ... , are complete on (-1r, 1r). 

6. (Moment problem). Letf(x) be continuous, a :5 x :5 b, and let 

Show that if all the moments mn vanish,/(x) == 0. [HINT: Use the Weierstrass Approx-
imation Theorem.] • 

*7. Prove the completeness of the eigenfunctions of any regular S-L system with bound
ary conditions u(a) = u(b) = 0. 

*8. Let G(/1, h, ... , fn) = det (a9), where aiJ = (J;, Jj). Show that the minimum of 
II/ - E c,J;,11 is equal to G(f, / 1, h, ... , JJ/G(Ji, h, ... , JJ. [HINT: Interpret the 
determinants as volumes.] 

9. Show by a counterexample that Theorem 10 does not remain valid if the ,J,,n are 
allowed to be nonorthogonal unit vectors. 

10. Consider the orthogonal sequence <f>k> and let ,J;k = <f>k, k 2:: 2, ,J,,1 = 0. Then 
E ll<l>k - ,J,,kll 2 < oo, but {,J,,k} is not complete. Which hypothesis of Theorem 10 is 
violated? 

11. Show that the first-order complex DE iu' + [q(x) + X]u = 0, a :5 x :5 b, with the 
boundary condition u(a) = u(b) and i = Y-1, has a complete sequence 
of eigenfunctions for any real continuous q(x). 

12. Show that linear combinations of the trigonometric functions cos kx, sin kx are dense 
in -1r :5 x :5 1r, relative to any continuous positive weight function. 



APPENDIX A 

LINEAR SYSTEMS 

1 MATRIX NORM 

As in Ch. 6, §4, any system of linear DEs can be reduced to a system of n 
first-order DEs and so written in matrix notation as 

(1) x' (t) = A(t)x 

where x(t) is a column vector oflength n and A(t) an n X n matrix, both depend
ing on t. In Ch. 6, we proved the existence and uniqueness of solutions of (1) in 
any interval of continuity of A(t), for any initial x(O) = c. In this appendix, we 
derive some properties of solutions of linear systems (1) whose proofs depend 
on deeper properties of matrices. 

As before, x' (t) is the limit 

1 
lim -;-- 1[x(t + .::lt) - x(t)] 
Ai-o 1.J.t 

where the limit is taken separately in each component .::lxk/ .::lt. Here we extend 
this definition, calling the norm of any matrix A the real number 

(2) 

where 

IAxl 
IIAII = sup - 1 - 1 x,.O X 

and 

similarly.t Then A(t) - A(t0) means equivalently: 

(i) a1k(t) - a1k(t0) for all j, k = 1, ... , n. 

(ii) IIA(t) - A(t0) II tends to zero as t - t0• 

t We use standard notation here: AT signifies the transpose of A, and xrx the inner product of x 
with itself; see Birkhoff-MacLane, Chs. 8-10 for the facts assumed in this Appendix. 
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The equation IIIII = 1, the triangle inequality IIA + BIi < IIAII + IIBII, the 
multiplicative inequality IIABII < IIAII • IIBII, and lltAII = ltl • IIAII all follow 
quite directly from (2). From these relations, in turn, one can prove the conver
gence of the exponential series 

(3) exp tA = I+ tA + (t2/2!)A2 + (t3/3!)A3 + 

for any matrix A and any scalar t. It suffices to copy the usual proof for real or 
complex exponential series, replacing absolute values by norms throughout. 

2 CONSTANT-COEFFICIENT SYSTEMS 

We now introduce the alternative notation t/A for exp tA as defined above, 
and prove the differentiability relation 

(4) for any constant matrix A 

Because of the commutativity of all terms, we have, as in the scalar case, e'AeuA 
= e<t+u)A and, hence, 

Dividing the series in parenthesis through by !:,.t, we get the identity matrix I 
plus a series of matrices whose norms are bounded by t:,.,!-- 1ak/(k!), k = 2, 
3, ... , where a = IIAII. Hence, the norm of the sum tends to zero with dt, 
proving (4). 

From (4), there follows a very beautiful result. 

THEOREM 1. The constant-coefficient first-order linear system x'(t) = Ax has the 
general solution x(t) = e1Ax(O). 

Proof. Differentiating etAx(O) = y(t), we get Ae1Ax(O) = Ay by (4), where x(O) 
= y(O) trivially. 

THEOREM 2. If v is a (column) eigenvector of the matrix A with eigenvalue 
;\ = µ + iv, then the vector-valued function w(t) = rl"v is a solution of w' (t) =Aw. 

Proof. Since Av = Av, we have 

w'(t) = Xe~ = /''(Xv) = /''(Av) = Ai'v = Aw 

where the successive steps are easily justified. 



2 Constant-Coefficient Systems 373 

Complex Solutions. The preceding results hold for complex as well as for 
real solution vectors, coefficient-matrices, and independent variables, provided 
that we define the norm of a complex vector z = (zi, ... , znf as the square root 
of the Hermitian inner product 

n 

zHz = x/ + y/ + · · · + x/ + y/ = L zkz'f 
k=I 

of z with its conjugate transpose ~ = (zT, ... , z~. Hence, we can apply them 
to complex eigenvalues and eigenvectors of real matrices. 

Example 1. Consider the linear system 

dz1/dt = az1 - bz2 

dz2/dt = bz1 + az2 

or 

where the variables t, z1, z2 may be real or complex, but the coefficients a and b 

are real. The characteristic polynomial of the coefficient-matrix A = (: -: ) 

in (5) is (-a}2 + b2; hence the eigenvalues of A are = a ± ib (cf. Ex. Bl, Ch. 

5). The corresponding column eigenvectors are ( _ ~) and ( ! ). Hence the 

vector-valued functions 

and c*t (•) e • ' z 
c = a+ ib, 

are a basis of complex solutions of the system (5). 

c*=a-ib 

In general, every matrix A with distinct eigenvalues has a basis of real or com
plex (column) eigenvectors vJ' with corresponding eigenvalues 'X1 (j = l, ... , n). 
The vector-valued functions <J,it) = i'-11 v1 then form a basis of solutions of the 
constant-coefficient linear system z'(t) = Az in the entire complex t-plane. 

The Secular Equation. We now generalize the concept of the secular equa
tion from second-order linear systems with constant coefficients to nth-order 
systems. Namely, if PA('X) is the characteristic polynomial of the matrix A, we 
define the secular equation of the constant-coefficient system x'(t) = Ax to be the 
DE PA(D)u = 0, where D denotes d/dt, and PA(D) is the scalar differential oper
ator obtained from the characteristic polynomial IA - Ml = PA('X) of A by sub
stituting D for 'X. We first prove Theorem 3 of Ch. 5. 
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THEOREM 3. Any component x,(t) of any vector solution x' (t) = Ax satisfies the 
secular equation PA(D) = 0. 

Proof. Rewrite the given system as Dx = Ax, and let C(D) = II C1iD) II denote 
the matrix of cofactors of the entries a1k - DIJ1k of A - DI. Premultiplying the 
equation (A - D)x = 0 by the matrix C(D)r, we get the vector DE 

(6) PA(D)Ix = C(D{(A - D)x = 0 

But (6) asserts precisely that for eachj = 1, ... , n, PA(D)x1 = 0, q.e.d. 

Example 2. When n = 2, the identity C(D)T(A - D) = PA(D)I reduces to the 
easily verified matrix identity 

Stability. Theorem 3 shows that, if every eigenvalue of A has a negative real 
part, then by Theorem 5' of Ch. 5 the constant-coefficient systems x'(t) = Ax is 
strictly stable. A more explicit proof can be given of this result and its converse 
by allowing vectors and matrices to have complex components and replacing xTx 
and AT A by the corresponding Hermitian formulas x!1x and AH A, where the 
superscript H signifies conjugate transpose. t This permits us to make a change 
of basis in the vector space of x(t) that replaces A by its Jordan normal form 
J = PAP- 1 (P complex nonsingular). 

In this Jordan normal form, A is the direct sum of square diagonal blocks], 
having some eigenvalue A, on the diagonal and l's just above the diagonal. The 
given system x'(t) = Ax then has for its typical DE 

dx, - = AX 
dt ' ' 

or 
dx, dt = X,x, + x,+ 1 

depending on whether x, is the last variable in its block or not. 
Now consider, for example, a typical elementary Jordan block submatrix on 

the diagonal of], say the 4 X 4 matrix 

A; 1 0 0 

0 X, 1 0 
], = 

0 0 X, 1 

0 0 0 X, 

t AH is also often denoted A*, and called the "adjoint" of A. 
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We can exponentiate this block explicitly 

1 t t2/2! t3/3! 

e11• = i·•1 
0 1 t2/2l 

0 0 1 t 

0 0 0 1 

Since negative exponentials die out faster than any power, it follows that /1 -
0 as t - oo if and only if every eigenvalue of A has a negative real part. Finally, 
since e1A = p- 1 elf P, it follows that the same is true of e'A. (The matrices A and 
J = PAP- 1 have the same eigenvalues.) 

3 THE MATRIZANT 

We next consider the general case of A(t) variable but continuous in (1). If 
x 1(t), ... , xm(t) is any list of m (column) vector solutions of (1), then X m matrix 
X(t) composed of these columns will, trivially, satisfy the matrix DE X'(t) = 
A(t)X. In particular, we can construct in this way an n X n matrix solution of 

(7) M'(t) = A(t)M, M(O) = I (identity matrix) 

The matrix function M(t) so defined is called the matrizant of the system (1). By 
(4), the matrizant of the constant-coefficient system x'(t) = Ax is just etA. 

Since the multiplication of matrices is associative, the vector-valued function 
M(t)c = x(t) will satisfy x(O) = M(O)c = le = c for any given c. Since 

x'(t) = M'(t)c = A(t)M(t)c = A(t)x 

it will also satisfy (1). By the uniqueness theorem proved in Ch. 6, it follows that 
every solution of (1) has the form M(t)c. 

The determinant det M(t) of the matrizant also has a remarkable property. 
We know by (7) that 

M(t + Llt) = M(t) + LlM(t) = M(t) + A(t) LltM(t) + o(Llt) 

= [I - A(t) Llt]M(t) + o(Llt). 

By the multiplication rule for determ1.nants, therefore, we have 

det M(t + Llt) = det [I+ A(t) Llt] det M(t) + o(Llt) 

Expanding in minors, on the other hand, we obtain 

det [I + A(t) Llt] = 1 + Llt Tr A(t) + O(Llt2), 
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where Tr A = E a"" is the trace of A. Combining, 

det M(t + dt) = (1 + dt Tr A) det M(t) + o(dt) 

or 

det M(t + dt) - det M(t) 
dt = Tr A det M(t) + o(l) 

Now, passing to the limit as dt- 0, we get [using the alternative notation IM(t) I 
for det M(t)]: 

d I M(t) I = Tr A I M(t) I 
dt 

Integrating this first-order DE by the methods of Ch. 1, we obtain our final 
result. 

THEOREM 4. The determinant of the matrizant of (1) satisfies 

(8) det M(t) = exp {[ [Tr A(t)] dt} 

COROLLARY. If Tr A= 0, the matrizant of (1) has a determinant identically 1 
(is "unimodular'), 

This is the case, for example, with systems (1) that come from nth-order DEs 
having the normal form 

Next, we define the adjoint of the system (1) to be the first-order linear system 

(9) f'(t) = -A T(t)f 

We consider the solution curves of (9) as lying in the dual space of linear func
tionals on the space of x(t), given by the linear forms 

(10) (inner product) 

THEOREM 5. In order that [f(t), x(t)] be constant for every solution x(t) of the 
vector DE (1), it is necessary and sufficient that (9) hold. 
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Proof By straightforward differentiation, we have 

!!:.. [Lf/t)xit>] = L!J(t)x;(t) + Lf;<t)x/t) 
dt 1 1 1 

= L ]j(t)ajk(t)xit) + L n (t)xk(t) 
J k 

Since there exists a solution of (1) with x(t0) = c for any t0 and c, the condition 
that (f(t), x(t)) be constant for all solutions of (1), and hence that the derivative 
above vanish identically, is precisely that 

(11) 0 = L fi(t)a1k(t) + J Ht) for all k 
J 

which is obviously equivalent to (9), as claimed. 

4 FLOQUET THEOREM; CANONICAL BASES 

We next consider periodic linear systems, that is, systems of the form (1) with 

(12) A(t + T) = A(t) for some fixed period T 

A very special example is furnished by the Mathieu equation 

u" + (X - 16d cos 2x)u = 0 

which is equivalent in the phase plane to 

u' = v, v' = (-X + 16d cos 2x)u = 0 

Equations of Hill's type, 

u" + p(t)u = 0, p(t + 11") = p(t) 

provide a more general class of examples. 
In any case, let M(T) be the matrizant of the first-order periodic linear system 

satisfying (12), and let the eigenvectors of M(T) be Vi, .•. , vr (hopefully, 
r = n), with M(T)v, = X,v,. Then, if x,(t) is the solution of (1) and (12) with the 
initial-value vector v,, then by definition we have x,(T) = X,x,(0) = X,v,; more
over, X, =fo O since x(t) = 0 is the only solution with x(T) = 0 (Uniqueness 
Theorem). Since A(t + T) = A(t), x;(t + T) is, therefore, the solution of the 
same initial value problem as x,(t) but with the initial value vector multiplied by 
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;\,. We conclude the quasiperiodic relation 

(13) x,(t + T) = ;\,x,(t) 

This is essentially Floquet's Theorem. Since A; =f,. 0, ;\, = ea,T for some real or 
complex constant a,, we can define y;(t) = e-a•tx;(t) with the assurance that, by 
(13), y,(t + T) = y,(t). We have proved the following theorem. 

THEOREM 6. If the matrizant M(T) of (1) has r independent eigenvectors and 
(12) holds, then (1) has r linearly independent solutions satisfying 

(14) where y,(t + T) = Y,.(t) 

so that each x,(t) is an exponential (scalar) function ea,, times a periodic Junction. 

As in Ch. 5, §10, any second-order equation· of Hill's type (including the 
Mathieu equation) leaves invariant a periodic, time-dependent "energy" func
tion u'2 + f p(t)dt. It follows that, for such equations, all the a, in (14) must 
vanish if 

f p(t)dt = fJp(t)dt = 0 

In particular, referring back to Ch. 10 (Example 4 in §1, Ex. A5, and §8), we 
can conclude that there exist infinite sequences of even and odd Mathieu func
tions, and that the functions in each sequence have periods 21r and ,r alternately. 

Finally, let t = a be an isolated singular point of the matrix A(t), considered 
as a function of the complex independent variable t. By this we mean that all a1it) 
are analytic in some punctured disk 0 < It - a I < p. Much as in Ch. 9, we can 
consider the effect of making a simple loop t = a + e'8r around t = a on some 
~asis of solutions of the linear system (l); we do not assume periodicity. If the 
basis of solutions has for initial values x,(t0) = e,, where e, = (o,,1 • • • o,,n) is the 
ith unit vector, the vectors resulting from going once around the loop are 
the column vectors of the "matrizant" of (1) for the given loop. In any event, 
we can write 

(15) x(c + e21r'r) = Mx(c + r) 

where M is a suitable nonsingular circuit matrix. An argument like that used to 
prove Theorem 5 (and Theorem 4 of Ch. 9) gives the following result. 

THEOREM 7. If the circuit matrix of A(t) in (1) for the isolated singular point 
t =ahas r independent eigenvectors, then (1) has r solutions 

(16) x(t) = (t - at'f;(t), 

where the f;(t) are holomorphic in O < It - a I < p for some p > 0. 
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EXERCISES 

1. Compute the matrix B = f/A for the following A: 

(a) ( _ ~ ~) OJ) ( ~ ~) (c) ( ~ n (d) ( ~ ~) 

2. Apply the Ex. 1 to the following 3 X 3 matrices: 

N (! ~ i) N (~ i !) ~ (~ i [) 
3. For each A in Ex. 1, discuss the stability of the DE x'(t) = Ax. 

4. Do the same for each matrix in Ex. 2. 

5. Compute the matrizant of x'(t) = Ax for the following matrices A: 

(
0 O t2) 

(c) t2 0 0 
0 t2 0 

6. (a) For the system x' = y, y' = z, z' = x, find column vectors tf,1 (j = 1, 2, 3) such 
that x 1(t) = t/>i, x2(t) = e"'1,f,2, and x3(t) = e"'21t/,3 are a basis of solutions. 

OJ) Discuss the behavior of solutions for large t. 

7. Find a basis of solutions for the system 

dx 1 
- = -2x + X dt I 2 

(j = 2, ... , n - 1) 

[HINT: Try the initial conditions c1 = sin rftr, r = 1, ... , n - I.] 

8. Show that the matrizant M(T) of any DE of Hill's type has determinant I M(T) I = 1. 
[HINT: Show that, in the phase plane, TrA(t) = O.] 



1 WHAT IS BIFURCATION? 

APPENDIX B 

BIFURCATION 
THEORY 

In recent decades, the qualitative theory of ordinary differential equations 
has been revolutionized by a series of new concepts, loosely characterized by 
such words as "bifurcation," "control," "strange attractor," "chaos," and 
"fractal." Several fascinating books are now available which describe one or 
more of these ideas in some detail and depth. t The purpose of this appendix is 
to give readers some idea of the variety and richness of the phenomena which 
they try to analyze, by introducing them to the nature and typical examples of 
"bifurcation." 

In general, the qualitative behavior of solutions of differential equations and 
systems of differential equations of given form often depends on the parameters 
involved. We studied this dependence for the DE x + px + qx =· 0 in Chapter 
2, §2, and for the system • 

(1) 

in Chapter 5, §5. The qualitative dependence on the paramater ;\ of solutions 
of Sturm-Liouville equations 

(2) !:... [p(x) dy] + [;\p(x) - q(x)]u = 0 
dx dx 

provides another classic illustration, to which Chapters 10 and 11 were devoted. 
This appendix will introduce a typical concept associated with this parameter 
dependence: that of bifurcation. 

A striking example of bifurcation is provided by the van der Pol equation 

(3) y" - µ(l - y2)y + y = 0 

t See the books by Hale and Chow-Hale, Guckenheimer-Holmes, and Thompson-Stewart listed in 
the bibliography. 
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Whenµ is positive, as was shown in Chapter 5, §12, the equilibrium solution y 
= 0 is unstable, while all other solutions tend to stable periodic oscillations y = 
fit - r) associated with the same limit cycle in the phase plane, as t t +oo. 

When µ is negative, the behavior of solutions is totally different. This is evi
dent since the substitution t I-+ - t carries (3) into 'j' + µ(l - y2)y + y = 0, 
thus effectively reversing the sign ofµ and the sense of trajectories in the phase 
plane. It follows that, whenµ < 0, the equilibrium solution y = 0 of (3) is stable; 
the periodic solutions y = f(t - r) associated with the limit cycle are unstable; 
and all solutions having initial values (y0 , y0 ) located outside this limit cycle spiral 
out to infinity as t t +oo. 

To describe this qualitative change, the valueµ = 0 where it occurs is called 
a bifurcation point of the parameter µ in (3). More precisely, it is called a Hopf 
bifurcation (contrast with Example 2 in §4 below). 

An analogous, even simpler bifurcation occurs whenµ = 0 for the first-order 
DE 

(4) x+µx=C 

in the stable case µ < 0, all solutions approach the same equilibrium solution 
x = C/µ; whenµ< 0, they all diverge from it. 

By fixing one parameter (e.g., q), one can also apply the concept of bifurca
tion to DEs depending on two parameters, such as 

(5) x + px + qx = O 

see the exercises at the end of this appendix. 
A more novel example is provided by the so-called Brusselator equations of 

chemical kinetics: 

(6) x = A - (B + l)x + x2y y = Bx - x2y 

Setting A = l, the phase portrait of (6) has a stable focal point for B < 2 = 
1 + A2, and an unstable focal point for B > 2; hence B = 2 is a bifurcation 
point for B in (6), if A = l. 

*2 POINCARE INDEX THEOREM 

Let (X(x,y),Y(x,y)) be a plane vector field, and let 'Y be a simple closed curve 
which does not go through any critical point of the vector field. By the Jordan 
curve theorem,t the interior of 'Y is a well-defined, simply connected region; we 
will assume the vector field to be of class rJ2 in 'Y and its interior. 

t It is notoriously difficult to prove the Jordan curve theorem rigorously. 
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DEFINITION. Let 1/;(x,y) = arctan[Y(x,y)/X(x,y)] be the angle made by the 
vector (X(x,y),Y(x,y)) with the horizontal. Then the (Poincare) index of 'Y for the 
given vector field is 

(7) /("f) = J_ rh di/I - l 
2,r j'Y 

It is understood that 'Y is traversed counterclockwise. 

Note that although the arctangent function is only defined up to an integral 
multiple of ,r, the integral in (7) is independent of which branch of this function 
is chosen, as well as of the initial point O from which the integral is computed. 
Further, one can prove that /("() is an additive function of domains, in the fol
lowing sense. 

LEMMA 1. Let 'Y' and 'Y" enclose domains D' and D", whose union is a simply 
connected domain D with boundary 'Y, as in Figure B.1. Then 

(8) /("() = /("(') + /("(") 

The proof depends on the fact that 'Y consists of 'Y' U 'Y" with their common 
segment 'Y' n 'Y" deleted; since this segment is traversed in opposite directions 
by 'Y' and 'Y", the contributions from it cancel. 

LEMMA 2. If a sufficiently small curve 'Y contains no critical point, then I("()= 0. 
If it contains a single critical point (xl' y}, and 

(9) X(x,y) = aix - x1 ) + bi:, - y1 ) + O(r2) 

Y(x,y) = cix - x1) + di:, - y1) + O(r2) 

o· 

0 

Figure B.1 Additivity of Poincare index. 
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(9') 

In other words, /(-y) is the sign of the determinant I a1 I = a1d1 - b1c1 of the 
matrix of the linearization of the DE x = X(x,y),y = Y(x,y) unless this critical 
point (xpy) is degenerate, in the sense that I A1 I = 0. Getting down to cases, we 
see that focal, nodal, and vortex points have index + 1, while saddle points have 
index -1. 

The proof of Lemma 2, in the case of nondegenerate critical points, is 
straightforward but tedious. One first observes that, since the vector field 
X(x) E fJ2, there is some neighborhood of (x1,y) in which not only is there no 
other singular point, but the direction ofX(x) differs by less than 1r /4 radians from 
that of the linearized vector field 

One then takes up individually each of the non-degenerate cases of Figure 5.5; 
see the exercises at the end of this appendix. 

The reason why the degenerate case I A1 I = 0 has been excluded in Lemma 
2 is easily explained by examples. First, the degenerate field Z(z) = zn(n > 1) 
has index /(-y) = n for~ any contour -y containing the origin. Thus (x2 - y2,2xy) 
has index 2, (x3 - 3xy2, 3x2y - y3) has index 3, and so on. And again, the vector 
field (x,x4 sin(l/x)) has infinitely many critical points where the angle 1/t is unde
fined, in any neighborhood of the origin. However, using Lemmas 1 and 2, we 
can prove the following Poincare index theorem: 

THEOREM 1. Let -y be any simple closed curve not containing any degenerate crit
ical point of the plane vector .field X(x). Then -y contains only a .finite number of critical 
points x1 = (x1, y), and 

(10) _ "" _ "" I ax;ax /(-y) - L.., ~ - L.., sgn ax;ay 
1 1 

oY/oy I 
oY/oy 1 

is the sum of the (Poincare) indices of these critical points. 

3 HAMILTONIAN SYSTEMS 

Classical dynamics (including celestial mechanics) is primarily concerned with 
systems of first-order DEs having a very special form. These are so-called Ham-
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iltonian systems of DEs of the form 

(11) 

where i = 1, ... ,n and H(q;p) is a given real-valued Hamiltonian function. 
Most of the energy-conserving autonomous systems arising in classical 

dynamics are "Hamiltonian," with H = T + Vthe sum of the kinetic energy T 
and the potential energy V(q). The q, are position coordinates and the p, the cor
responding momenta. Thus, for the particle of mass m discussed in Chapter 5, 
§9, q = x, p = mx, and H = p2/2m + V(q). Hence, x = tj = aH;ap = pjm 
(which checks), and mi = p = - oH/oq = - V'(x) = F(x), where F(x) = 
- q(x) is the force. 

Likewise, for the pendulum discussed in Chapter 5, §3, letting the (general
ized) position coordinate be 8 = q, and p = .elJ, we have the energy function or 
Hamiltonian 

(12) 
H = gf(l - cos 8) + f 2fJ2/2 

= 2gf sin2 !1. + p2j2 = V + T 
2 

formulas from which (11) can easily be checked. 
Many other Hamiltonian systems having no clear connection with physics are 

also of current interest. An ingenious one-parameter family of such systems is 
the following.t 

Example 1. Consider the one-parameter family of plane autonomous 
systems 

(13) x = - µy + xy, j = µx + ½(x2 + y2) 

For any fixedµ, since x = 0 when (x - µ)y = 0, the critical points of (13) lie 
where j = 0 on the lines x = µ and on y = 0. When x = µ, j = 0 where 
x = 0 or x = - 2µ; when x = µ, j = µ2 + ½(µ 2 + y2) = 0 when y = ± V?,µ. 

Hence, ifµ 'F 0, the system (13) has four bifurcation points: one located at 
the origin, and the other three at the vertices (- 2µ, 0) and (µ, ± V?,µ) of an 
equilateral triangle. (Whenµ = 0, there is only one critical point. This is at the 
origin, and is degenerate.) 

One easily verifies that the system (13) is Hamiltonian because, for 

(14) µ 1 ( x3) V = - - (x2 + y2) + - xy2 - -
2 2 3 

t This example is taken from Sec. 1.8 of Guckenheimer-Holmes. 
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the DE (13) can be rewritten as 

(14') 
av av 

x = oy (x,y;µ), j = - ox (x,y;µ) 

which is of the form (12) in another notation. 
We next generalize Theorem 1 of Chapter 5 from plane Hamiltonian systems 

to Hamiltonian systems in general. 

THEOREM 2. The flow defined iJ,y any Hamiltonian system (11) is volume-con
serving; moreover, the solution curves (orbits or trajectories) lie on level surfaces 
H(q;p)= C. 

The first statement follows from a basic theorem of vector analysis, which 
states that a velocity field X(x) defines a volume conserving flow x'(t) = X(x) if 
and only if its divergence is zero.t For (11), evidently 

(15) div X = L-3 = L -- + I:- - - = 0 
n a n o2H n o ( oH) 

i=I ax; 1= 1 oq;op1 1= 1 ap1 aq; 

The second statement follows since 

d 2n oH n oH n oH 
- [H(x(t))] = L - x, = I:- tj; + L -p, 
dt ,= 1 ax, ,= 1 aq, ,= 1 ap, 

= t, aH aH + t, aH (- aH) = o. 
,= 1 oq; ap, ,= 1 ap, aq, 

Critical Points. By (11), the critical points of the Hamiltonian H(p,q), 
where its gradient vanishes, are the points where the velocity vector (q'(t),p'(t)) 
is 0. This shows that the critical points of the function H are the stagnation 
points of the associated flow. 

In the plane case (n = 1), we can say more. Near any critical point (~;17), an 
expansion in Taylor series gives 

where a11 

(17) 

t Courant and John, vol. II, p. 602. The fact that the Hamiltonian flows are volume-conserving is 
called Liouville's Theorem. 
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The eigenvalues of the coefficient matrix of the linearization (17) at (xpy) are 
the roots of the quadratic equation 

(18) 

THEOREM 3. A nondegenerate critical point of a planar Hamiltonian system is a 
vortex point at maxima and minima of H, where ana22 > q1/, and a saddle point 
where H has a saddle point (where ana22 < a1/). 

Where a 11 a22 = a1/, the local behavior of trajectories is indeterminate. Note 

that since the surface z = H(x,y) is horizontal at critical points, det [a 11 a12 ] 
a12 a22 

is precisely its Gaussian curvature. 

4 HAMILTONIAN BIFURCATIONS 

We now consider the bifurcations of one-parameter families of Hamiltonian 
systems, with Hamiltonians 

(19) 
av av 

x = ay (x,y;µ), j = - ax (x,y;µ) 

The fact (Theorem 1) that for any µ, the orbits of (19) are the level curves of 
the Hamiltonian V(x,y;µ), makes it easy to see how bifurcations arise. One can 
think of the orbits as the "shores" of the "lakes" obtained by deforming a flex
ible bowl z = V(x,y;µ) as the "time"µ varies.t 

In Example 1, the critical points (singular points of the phase portraits or 
critical points 'vV = 0 of V) move around as µ varies, changing their nature 
only at the "bifurcation value"µ = 0. The next example is more typical of bifur
cation, as that word is generally used. 

Example 2. Consider the one-parameter family of systems defined by the 
Hamiltonians 

(20) 

The corresponding Hamiltonian flows satisfy 

(21) 

t Of course, this "time" parameterµ is unrelated to the variable I associated with the "time" deriv

atives x = dx/dt and j = dy/dt. 
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In terms of the simile in the preceding paragraph, the sloping plane z = y 
becomes deformed by a deepening circular depression centered at the origin. 
When this depression becomes deep enough, the resulting dimple can hold 
water; at the same time, the retaining ridge on the downside has a saddle point. 
Thus this bifurcation gives rise to a pair of singularities: a vortex point and a 
related saddle point. 

In detail, clearly y = 0 for r > 0 in Example 2 if and only if x = 0-that is, 
on the y-axis. Moreover, at points (0,71) on the y-axis, x = 0 if and only if e112 = 
2µ71. Bifurcation takes place when the line ~ = - 2µ71 in the (71,~)-plane touches 
the graph of~ = e112 • For larger slopesµ > µ 0 , there are two points of intersec
tion and the surface z = V = y - µe-r2 has corresponding critical points: a 
vortex point and a saddle point, as already stated. 

Bifurcations ,involving the simultaneous appearance of such a paired vortex 
point and saddle-point are called saddle-point (or "fold") bifurcations, to distin
guish them from Hopf bifurcations (see §1), in which a stable equilibrium point 
is replaced by an unstable one enclosed in a surrounding limit cycle. 

The Poincare Index. Theorem 3 explains why the critical points arising 
from the preceding "bifurcation" are neither nodal points nor focal points. The 
fact that they are paired and of opposite indices is, however, a simple conse
quence of the Poincare index theorem (Theorem 1), as we shall now explain. 

For a general one-parameter family of plane autonomous systems, 

(22) x = X(x,y;µ) y = Y(x,y;µ) 

consider the variation with µ of the Poincare index of a fixed simple closed curve 
'Y, as defined by (7). Unless the curve passes through a critical point of the system 
(22) for some value ofµ, the angle 1/1(-y,µ) between the vector (X(x,y;µ),Y(x,y;µ)) 
and the horizontal will vary continuously withµ. Hence, the contour integral 

I(-y,µ) = p'Y dl/1(-y,µ) 

will also vary continuously, and cannot jump by an integral multiple of 21r. We 
conclude 

THEOREM 4. Inside any simple closed curve not passing through a critical point, 
new nondegenerate critical points appearing or disappearing at bifurcation values µ 
must arise or be destroyed in adjacent pairs having indices of opposite signs. 

In particular, they cannot appear or disappear singly. 

5 POINCARE MAPS 

The concept of a Poincare map arises in three different contexts: (i) limit 
cycles (Ch. 5, § 13) and other periodic orbits of autonomous systems, (ii) periodically 
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forced systems, of which linear constant-coefficient systems like 

(26) x + px + qx = A cos wt 

yield familiar examples (in the phase plane), and (iii) systems with periodic coef
ficient-functions, like the phase plane representation 

U = V, iJ = - p(t)u (27) 

of the Hill equation mentioned in Appendix A. 

Example 3. Consider plane autonomous systems of the special form 

(28) x = f(r)x - y, j = x + f(r)y, r = v' x2 + y2 

In polar coordinates, the system (28) simplifies to 

(28') i} = 1, i = g(r) = rf(r) 

and has a periodic orbit of radius r = a and period 21r whenever g(a) = 0. This 
orbit is evidently stable (a "limit cycle") if g'(a) < 0, and unstable if g'(a) > 0. 

The concept of a Poincare map provides another way of visualizing pertur
bation approximations to such periodic orbits. Let us call a small interval a - E 

< r < a + E of the r-axis 8 = 0 a Poincare section of the periodic orbit r = a. 
The Poincare map of this "section" maps each point (a + 17,0) in it onto the point 
where the orbit (solution curve) passing through that point next crosses the sec
tion. If f E 81, then d17/d8 = d17/dt = 11/'(a) + 0(17), and so the Poincare 
map multiplies '17 by approximately exp(21rf'(a)). It is thus locally a contraction if 
f'(a) < 0, but an expansion if J'(a) > 0; the periodic orbit is correspondingly 
stable or unstable. 

More generally, by a Poincare section of a periodic orbit at a point Pis meant 
any smooth curve through P not tangent to the orbit, and the Poincare map of 
this section is then defined (locally) as in the preceding paragraph. Using the 
theory of perturbations (Ch. 6, §12), one can show that iff'(a) ¥= 0, the linear
ization 11 -+ exp(21rf'(a))17 is the same for all Poincare sections-and that the 
Poincare maps of the "sections" crossing a given periodic orbit are all "equiv
alent" under diffeomorphism (Ch. 5, §6). 

Bifurcation. Now consider a one-parameter family x = f(r,µ)x - y, y = x 
+ f (r, µ) y of DEs of the form (28), with 

(29) g(r,µ) = rf(r, µ) = -r2 + µ sin2 r 

Whenµ = 0, the origin is a stable equilibrium point toward which all orbits 
tend. But whenµ exceeds 1, the origin is unstable, and a limit cycle occurs when
ever (sin r)/r = 1/µ. The nearest limit cycle is locally stable; the next is unstable, 
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the third is stable, and so on. Looking more closely at the intersections of the 
curves = (sin r)/r withs = l/µ, we see that new periodic orbits arise in pairs 
as µ increases, one stable and the next unstable. The analogy with bifurcations 
of equilibrium points is obvious! 

6 PERIODI.CALLY FORCED SYSTEMS 

The Poincare maps of sinusoidally forced (first-order) linear constant-coefficient 
systems are easily determined algebraically, by expressing in matrix notation the 
ideas introduced in Ch. 3, §7. Let 

(30) x'(t) = Ax + c/'', A = ik (k real) 

be such-a system. Then, unless I Al - A I = 0 (i.e., unless A is an eigenvalue of 
A, the case of resonance), the periodic solution is 

(30') 

where C is the solution of (Al - A)C = c. If the eigenvalues A1 of A are distinct, 
then the section I y - C I < e surrounding the point x = C through which the 
periodic orbit passes when t = 0 is transformed during the period T = 21r /k 
into a neighborhood I z - C I < E of x(n = C, by the formula 

(31) 

Just as in Ch. 4, §7, this periodic orbit is strictly_ stable if an only if every eigen
value A1 of A has a negative real part, so that I i•1T1 < 1. 

Periodic Linear Systems. More generally, the periodic, homogeneous lin
ear systems 

(32) x'(t) = A(t)x, A(t + n = A(t) 

considered in Appendix A, §4, also give rise to Poincare maps. Indeed, every 
such system has the trivial equilibrium periodic solution x(t) = 0, and the linear 
transformation x(t) = M(T) x = x(t + T) defined by the matrizant (Floquet 
matrix) referred to in Theorem 6 of Appendix A is the Poincare map associated 
with this equilibrium solution. Clearly, the equilibrium solution ("equilibrium") 
is strictly stable if and only if all the eigenvalues A1 of this Floquet matrix have 
magnitudes I A1 I < 1. 

Example 5. Consider for example the Mathieu equation of Ch. 10, §1, 
Example 4:t 

(33) u" + (µ + 16 d cos 2x)u = 0 

t We have written µ in place of A, to avoid confusion with the eigenvalues of (33"). 
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The initial conditions 

(33') 
</>(0) = 1, 
1/1(0) = 0, 

<b'(0) = 0 
1/1'(0) = 1 

determine a basis of solutions of (33), the first of which is an even function and 
the second odd. Moreover, the associated Floquet matrix has determinant one 
(see Ex. 8 of Appendix A). Hence its eigenvalues are i:he roots of a real char
acteristic equation of the form 

(33") X2 - 2BX + 1 = 0 

with roots ;\1 = B ± V B2 - I. The parameter B = B(µ,d) in (33") must be 
computed. 

LEMMA The Mathieu equation (33) is stable or unstable according as I BI < J 
or IBI > 1. 

For, since ;\1;\2 = 1, they are complex conjugate and on the unit circle if 
I BI < 1, but real and one exceeding one if I BI > 1. On the other hand, the 
values B = ± 1 yield the eigenvalues Aj = ± 1 associated with the Mathieu Junc
tions of periods 1r and 21r. There follows: 

THEOREM 5. The bifurcation associated with transition between stability and 
instability occurs at values µ and d associated with the periodic Mathieu function solu
tions of (33). 

Duffing's Equation. More interesting, and much harder to understand the
oretically, are the Poincare maps of periodically forced nonlinear systems. A 
good introduction to these is provided by Duffing's equation 

(34) x + ex - x + x3 = A cos wt. 

In the unforced case A = 0, (34) evidently has three equilibrium solutions: x(t) 
= 0 and x(t) = ± 1. Of these, x = 0 is unstable, while x = ± 1 are stable. The 
trajectories in the phase plane are easily drawn in the Hamiltonian case A = c 
= 0: they are the level curves of the energy function H = x4 - 2x2 + 2v2, with 
"separatrices" v = ± xVl - (x2/2) through the origin. These separatrices sep
arate the periodic orbits corresponding to local oscillations about one stable 
equilibrium point from the oscillations about all three, whose amplitudes exceed 
2 V2. The tangents to all trajectories in the phase plane are horizontal where 
they cross the vertical lines x = 0 and x = ± 1. 

When A = 0 but c > 0, most trajectories in the (x,v)-plane spiral clockwise 
from "infinity" into the two stable focal points at ( ± 1,0). There are, however, 
two special trajectories which originate (at t = -oo) in the unstable saddle point 
at (0,0), each of which spirals into one of the focal points at ( ± 1,0). Likewise, 
there are two special separating trajectories which spiral in from "infinity" but 
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come to rest at (0,0). These separate the trajectories which spiral into (1,0) from 
those which spiral into (-1,0). 

In the forced case A =I= 0, a rich variety of qualitatively different kinds of 
behavior can arise, depending on the choice of the three coefficients c, A, and 
w in (34). These can be explored most efficiently by using modem computers to 
compute and display the sequences of points (x(nT),x(nT)) in the phase plane 
arising by iterating the Poincare map, applied to selected initial states (x0,x0) for 
selected choices of c, A, and w. 

Of particular interest here are the fixed points of the Poincare map, that is, 
points such that (x(T),x (T)) = (x(0),x (0)), on periodic orbits of period T. For 
example, with small A, there are three such fixed points for (34): two stable fixed 
points (on stable periodic orbits) near(± 1,0), and an unstable fixed point near 
the origin. A family of trajectories asymptotic to the unstable fixed point forms 
a manifold separating trajectories attracted to the two stable periodic orbits. 

EXERCISES 

1. Explain why, for fixed q > 0, the value p = 0 is a "bifurcation value" of pin (5). 

2. (a) Show that for given A and B, (A, B/A) is the only equilibrium point of (6). 
(b) Derive the system (6') of variational equations for perturbations of the equilib

rium solution. 

*3. Compute numerically the stable limit cycle of (6) for A = 1, B = 3. 

4. (a) Show that the system x = 2y, j = 3 - 3x leaves invariant the energy (Hamilton
ian) function V = x3 - 3x + y2. 

(b) Show that this system has a saddle point at (1,0), a vortex point at (-1,0), and 
no other critical points. 

(c) Show that the cubic curve x3 - 3x + y2 = - 2 through the saddle point is a 
"separatrix." 

(d) Sketch the phase portrait of the system. 

5. (a) Show that µ, = 0 is a bifurcation value for the one-parameter family of Hamil
tonian systems with Hamiltonians H = y2 + 3µ,x2 = 3x. 

(b) Describe the qualitative change that takes place in the phase portrait when µ, 
changes sign. 

[HINT: The case µ, = 1 is treated in Ex. 4.] 

6. (a) For the Hamiltonian H = µ,y - e-r2/ 2, r 2 = x2 + y2, write down the Hamiltonian 
DEs. 

(b) Locate the critical points of the system, if any. 

(c) Show that the bifurcation values areµ, = ± Ve, and describe the changes in the 
phase portrait that take place when µ, crosses these values. 

7. As E -- 0, the DE m" + u = 1 is said to constitute a singular perturbation of u = 
1. 
(a) Solve this DE explicitly for the endpoint conditions u(0) = u(l) = 0, when 

E > 0 and when E < 0. 
(b) Contrast the increasingly irregular behavior of solutions as E ! 0 with the smooth 

"boundary layer" behavior as E t 0. 
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Adams three-level methods, 260 
Adams-type methods, 259 
Adjoint DE, 55 
Adjoint linear system, 376 
Airy DE, 107, 304, 308 
Amplitude, 36, 160 
Analytic continuation, 262 
Analytic DE, 1931£ 
Analytic function, 101, 110, 125, 261 
Approximate function table, 205 
Approximate solution, 201£, Ch. 7 
Arzela-Ascoli theorem, 193 
Asymptotic expansion, 107, 220 
Attractive, 153 
Autonomous system, 1311£, 171 

linear, 141 

Backward difference, 231 
Basis of solutions, 35, 43, 72, 78-82, 373 
Bernoulli DE, 17 
Bessel DE, 105, 276, 301, 307, 309, 311 
Bessel function, 105, 1171£, 277 

asymptotic behavior, 3261£ 
Bessel inequality, 349, 362 
Bifurcation, Appendix B 
Bifurcation point, 301 
Boundary term, 303 
Branch point, 263 
Branch pole, 266 
Brusselator equation, 381 

Canonical basis, 270, 298 
Cauchy polygon, 205 
Cauchy product formula, 111 
Cauchy sequence, 365 
Central difference, 231 
Characteristic equation, 238, 271 

INDE" 

Characteristic exponent, 275, 293 
Characteristic polynomial, 72, 239 
Chebyshev DE, 57, 358 

equioscillation principle, 360 
Chebyshev polynomials, 358 
Circuit matrix, 2681£, 378 
Comparison theorem, 29 

Sturm, 47 
Completeness, 3501£, 363, 365 
Complex exponential, 721£ 
Complex solutions, 77, 128, 373 
Conjugate point, 64 
Conservative dynamical system, 156 
Constant-coefficient DE, 36, 711£ 

system, 372 
Continuation principle, 268 
Continuation of solutions, 197 
Continuity theorems, 26, 175, 177 
Contour lines, see Level curves 
Convolution, 97 
Corrected midpoint formula, 214 
Corrected trapezoidal method, 225 
Corrector formula, 223, 259 
Cotes' rule, 215 
Critical point, 10, 12, 133, 383, 385 

degenerate, 383 
Cumulative error, 226 

Damped linear oscillator, 138 
Damped nonlinear oscillation, 159 
Deferred approach to limit, see Richardson 

extrapolation 
Delta-function, 68 
Derivative of vector function, 172 
Deviation, 207 
Difference equation, 219 

constant coefficients, 238 
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Difference equation (Continued) 
operator, 230 

Differential equation (DE), 1 
Differential inequality, 2 7 
Directional derivative, 209 
Direction field, 21 
Discretization error, see Truncation error 
Divided difference, 234 
Domain, 12 

of convergence, 111 
Duffing's equation, 390 
Dynamical system, 155 
Dynamic stability, 164 

Eigenfunction, 301, 318 
normalized, 329 

Eigensolution, 143 
Eigenvalue, 301, 336 
Elastic bar, 306 
Elastic spring, 160 
Elementary function, 99, 295 
Elliptic function, 140 
Elliptic integral, 101 
Endpoint conditions, 300 

periodic, 301 
separated, 300 

Energy function, see Liapunov function 
Entire function, 112 
Equicontinuous functions, 192 
Equilibrium point, 155 
Equivalent autonomous systems, 144, 151ff 
Equivalent integral equation, 183 
Error, 205 ff 
Error function, 4 
Escape time, 198 
Essential singularity, 265 
Euclidean vector space, 360 
Euler-Lagrange equation, 63 
Euler method, 21, 205 
Euler's DE, homogeneous, 62, 74, 262-263 
Exact differential, 15 

for second-order DE, 54 
Existence theorems, 24, 115, 124ff, Ch. 6 
Exponential series, 101, 372 
Exponential substitution, 71 
Extremum, 63 

Fejer's convergence theorem, 345 
Fibonacci number, 235 
Floquet theorem, 377 
Focal point, 52, 144, 147, 383, 390 
Fold bifurcation, 387 
Forcing term, 35, 58 
Formal power series, 122 
Forward difference, 231 

Fourier coefficients, 348 
Fourier convergence theorem, 344 
Fourier series, 90, 344 
Frenet-Serret formula 182 
Frequency, 36, 160 
Fuchsian equation, 294ff 
Function tables, 23, 231 
Fundamental theorem of algebra, 73 
Fundamental theorem of calculus, 3 

Gain function, 8 7 
Gaussian quadrature, 248 
Gegenbauer polynomial, 290 
Generating function, 120 
Global solution, 161 
Gradient curve, 10, 140 
Graphical integration, 20 
Green's function, 58, 65, 93, 216, 354 
Gregory-Newton formula, 233 

Hamiltonian system, 383ff 
bifurcation, 387 

Hankel function, 328 
Hard spring, 160 
Harmonic oscillator, 88, 337 
Hermite DE, 104, 320, 322 
Hermite functions, 310, 322, 338 
Hermite interpolation, 234 
Hermite polynomial, 104, 310, 357 
Hermite quadrature, 215, 250 
Hilbert space, 365ff 
Holomorphic function, 261 
Homogeneous linear DE, 7, 35 
Hopf bifurcation, 381 
Hypergeometric DE, 276, 297 
Hypergeometric function, 276, 287ff, 297 

Implicit function theorem, 13 
Implicit solution, 12 
Improved Euler method, 21, 222 
lndicial equation, 112, 263, 273, 275 
Indicial polynomial, 275 
Inhomogeneous linear DE, 7, 58, 83 
Initial condition, 3, 37 
Initial value problem, 8, 24, 37, 72, 132, 141 
Inner product, 172, 194, 373 
Integral, 13 
Integral curve, 14 
Integral operator, 65, 334 
Integrating factor, 16, 54 
Interpolation, 233ff 
Interpolation error, 235 
Invariant lines (radii), 18, 53, 143 
Irregular singular point, 266, 292 
Iterative solution, 185, 257 



Jacobi DE, 106 
Jacobi identity, 288 
Jacobi polynomial, 289, 290 
Jordan normal form, 374 

Lagrange identity, 55, 303 
Lagrange interpolation, 233, 236 
Laguerre DE, 323, 354, 357 

generalized, 342 
Laguerre polynomials, 311, 355 
Laurent series, 265 
Least square approximation, 348 
Legendre DE, 34, 102, 308, 323 
Legendre polynomial, 102, 308, 332, 342, 357 
Leibniz's rule, 60 
Level curves, 11, 151 
Levinson-Smith theorem, 163 
Liapunov function, 158 
Lienard equation, 165 
Limit cycle, 164, 381, 388 
Linear DE, 7 
Linear equivalence, 144 
Linear fractional DE, 17 
Linear independence, 78 
Linear operator, 40, 71, 231, 300 
Linear system, 188, 3 71ft' 
Liouville normal form, 324 
Liouville substitution, 324 
Lipschitz condition, 26, 173 

generalized, 29 
one-sided, 27, 180, 210, 243 

Lipschitz constant, 26 

Majorize, 113, 126 
Mathieu equation, 299, 301, 377, 389 
Mathieu function, 302, 305, 390 
Matrizant, 3 7 5 
Mean-square convergence, 347 
Mesh-halving, 210 
Method of Liapounov, 15 7 
Method of Majorants, 113, 126 
Method of Undermined Coefficients, 101ft', 113, 

121ft' 
Midpoint method, 238 
Midpoint quadrature, 212 
Milne's method, 256 
Milne's predictor, 258 
Mixed spectrum, 339 
Modified amplitude, phase, 324 
Modified Bessel function, 280 
Modified Euler method, 224 
Movable singular point, 263 
Multiplicity of root, 73 
Multistep methods, 259 

n-body problem, 181, 183 
Negative damping, 164 
Neumann function, 278, 328 
Neutral stability, 153 
Nodal point, 53, 148 
Nonlinear oscillations, 158, 163 
Norm, 206, 371 
Normal curve family, 31, 129 
Normal DE, 2, 34 
Normal system, 132, 180 
Numerical differentiation, 240 
Numerical integration, 21 
Numerical quadrature, 212 
Nyquist diagram, 90ft' 
Nyquist stability criterion, 93 

One-body problem, 183 
One-step method, 251 
Operational calculus, 76 
Operator, 41, 184 
Order of accuracy, 110, 210 
Order of DE, 1 
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Order of growth theorem, 285 
Orthogonal expansion, 346 
Orthogonal functions, 302, 309 
Orthogonal polynomials, 352ft' 
Orthogonal trajectories, 10, 140 
Orthonormal basis, 367 
Orthonormal functions, 348 
Oscillatory solution, 38, 51 
Osgood's uniqueness theorem, 33 

Parabolic interpolation, 235 
Parametric solution, 16 
Parseval equality, 351, 362 
Particular solution, 41, 71 
Peano existence theorem, 192 
Peano uniqueness theorem, 29 
Pearson's DE, 108 
Period, 36, 160 
Periodically forced system, 387ft' 
Periodic input, 89 
Perturbation equation, 198 
Phase, 36, 160, 312 
Phase constant, 87 
Phase lag, 87 
Phase plane, 49, 136 
Phase portrait, 52 
Phase space, 155 
Picard approximations, 185ft' 
Picone's identity, 320 
Piecewise continuous, 47 
Plane autonomous systems, Ch. 5, 201 
Poincare index, 381ft' 
Poincare-Liapunov theorem, 158 
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Poincare map, 388 
Pole, 263, 265 
Polynomial interpolation, 232 

of stable type, 86 
Potential energy (integral), 156, 159 
Predictor-corrector methods, 223, 259 
Priifer substitution, 312 

modified, 323 
Priifer system, 313 
Punctured plane, 19 

Quadrature, 4, 8, 244 
Quartic interpolation, 233 
Quasilinear DE, 1, 11 

Radius of convergence, 112, 124 
Rayleigh DE, 165 
Reduced equation, 35, 71 
Reduced system, 188 
Regular curve family, 31, 135, 201 
Regular singular point, 266, 274ft', 292 
Regular Sturm-Liouville system, 300 
Relative error, 207 
Removable singularity, 265 
Resonance, 89 
Riccati DE, 45, 68, 124 
Richardson extrapolation, 211 
Riemann DE, 296 
Rodrigues formula, 105, 290, 358 
Romberg quadrature, 249 
Roundoff error, 243 
Routh-Hurwitz conditions, 86 
Runge-Kutta method, 250 

Saddle point, 53, 148, 383 
Schroedinger equation, 336ft' 
Schwarz inequality, 172, 309 
Schwarzian, 69 
Second differences, 232 
Secular equation, 142, 373 
Self-adjoint DE, 56, 300 
Separable equations, 8 
Separatrix, 139, 390 
Similarity, 19 
Simple branch point, 266 
Simple pendulum, 138 
Simpson's five-eight rule, 250 
Simpson's rule, 22, 218, 247 
Sine integral function, 4, 100 
Singular point, 34, 261 
Singular Sturm-Liouville system, 308, 337 
Singularity, see Singular point 
Soft spring, 160 
Solution, 1, 34, 71 
Solution basis, see Basis of solutions 

Solution curve, 2 
Sonin-Polya Theorem, 332 
Spectrum, 301, 306 

continuous, discrete, 33 7 
mixed, 339 

Spline interpolation, 234 
Square-integrable function, 309, 349 
Square-well potential, 358 
Stability, 85, 153, 237, 374 

diagram, 40 
of difference equation, 239, 258 

Stable, 39, 85, 153, 239 
Star point, 148, 149 
Starting process, 25 7 
Static stability, 163 
Strict stability, 39, 153, 239, 374 
Sturm comparison theorem, 47, 313 
Sturm convexity theorem, 318 
Sturm-Liouville systems, 300ft' 

series, 302 
Sturm oscillation theorem, 317 
Sturm separation theorem, 47, 314 
Successive approximation, 185 
Superposition principle, 35, 68 
Szego's comparison theorem, 320 

Taylor series method, 22 
Trajectory, 50 
Transfer function, 86ft' 
Trapezoidal integration, 218, 228 
Trapezoidal quadrature, 215 
Trigonometric DE, 35, 85, 116 
Truncation error, 243 
Two-endpoint problems, 63, 333 

Ultraspherical DE, 289 
Undamped oscillations, 159 
Undetermined coefficients, methods of, 101ft', 

121ft' 
Uniform mesh, 213 
Uniqueness theorem, 26, 41, 174 
Unstable critical point, 153 
Unstable DE, 39, 85 
Unstdble difference approximation, 239, 258 

van der Pol DE, 165 
Variation of parameters, 60 
Vector DE, 131 
Vibrating membrane, 307 
Vibrating string, 306 
Vortex point, 139, 144, 159, 383 

Wave number, 36 
Weddle's rule, 215 



Weierstrass approximation theorem, 353 
Weierstrass convergence theorem, 195 
Weight function, 302, 309, 352 
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Well-posed problem, 24-, 64-, 170, 174-
Well-set see Well-posed problem 
Wronskian, 4-3 




