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Preface to Volume Five

The attraction of gravitation is universal. Over the last few decades it has
led to a resurgence of interest in Einstein’s general theory of relativity, our
best theory of gravitation. In the mid-1980s, this interest began to extend
to the history of general relativity, which is now enjoying international at-
tention of unprecedented vigor and intensity. This volume represents the
latest outcome of this new interest. Most of the papers began as presenta-
tions at the Third International Conference on the History and Philosophy
of General Relativity and, after considerable development and revision,
have been brought to their present form. The conference was held at the
University of Pittsburgh at Johnstown, Pennsylvania (U.S.A.), June 27-30,
1991. Members of the local organizing committee were John Earman, Al
Janis, Michel Janssen, Ted Newman, John Norton, and Alan Walstad (Uni-
versity of Pittsburgh) and Clark Glymour (Carnegie—Mellon University,
Pittsburgh). Members of the National and International Committee were
Jean Eisenstaedt (Institut Henri Poincaré, Paris), Hubert Goenner (Univer-
sity of Gottingen), Joshua Goldberg (Syracuse University), Don Howard
(University of Kentucky), A.J. Kox (University of Amsterdam and Einstein
Papers, Boston), Jiirgen Renn (Einstein Papers, Boston), and John Stachel
(Boston University).

This is the third volume in the Einstein Studies series to be devoted to
the history of general relativity. There are now sufficiently many scholars
working in the area to support a series of conferences and volumes of
research articles explicitly devoted to the history of general relativity. John
Stachel was the first to tap into this interest when he organized the first
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international conference on the history of general relativity at Osgood Hill,
Massachusetts (U.S.A.), May 8-11, 1986. He and Don Howard founded the
series Einstein Studies and edited its first volume, Einstein and the History
of General Relativity (Birkhiuser Boston, 1989), which contained papers
from the Osgood Hill conference and elsewhere. Following the success of
the first conference, Jean Eisenstaedt organized the Second International
Conference on the History of General Relativity, which was held at the
International Center of Mathematical Research (CIRM) at Luminy, France,
September 6-8, 1988. He and A.J. Kox edited a proceedings volume,
Studies in the History of General Relativity, which appeared as Einstein
Studies, Volume Three (Birkhéuser Boston, 1992).

The quality and diversity of papers in this volume demonstrate the ever
growing vitality of research in the history of general relativity. We have
divided the volume into five sections. The first group of papers deals with
disputes between Einstein and other figures in the history of general relativ-
ity. These papers remind us that science is a collaborative enterprise, even
in the case of general relativity, whose genesis is celebrated almost exclu-
sively as the work of just one person. The papers show us how disputes
might sometimes further the interests of science and other times not. John
Norton’s paper recounts how the prospects of a Lorentz covariant gravita-
tion theory were explored within an extended exchange between Einstein
and Nordstrém at the time that Einstein was laying down the foundations
of general relativity. Don Howard and John Norton’s paper recalls the
final dark months of Einstein’s struggle with general relativity, when he
still remained convinced through the hole argument that general covariance
was physically uninteresting. They conjecture that Paul Hertz at Géttingen
communicated a serviceable escape from the hole argument to Einstein—
which he misunderstood and brusquely rejected. The main focus of Carlo
Cattani and Michelangelo De Maria’s paper is the debate over the correct
formulation of conservation laws in general relativity. They show how
Einstein tenaciously defended his formulation against criticism from vari-
ous authors, foremost among them Tullio Levi-Civita. Peter Havas’ paper
portrays an accommodating Einstein entering a dispute with Ludwik Sil-
berstein over the two-body problem in general relativity. We follow the
dispute as it grows from a simple disagreement into an acrimonious quarrel
that surfaced in the popular press.

While general relativity is not celebrated for its intimate contact with
an empirical base, the second group of papers examines some episodes
related to the empirical evidence supporting the theory. John Earman and
Michel Janssen analyze Einstein’s perihelion paper of November 1915,
which was the work of only one week. They ask if Einstein achieved this
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speed by sacrificing mathematical rigor. A.J. Kox discusses Pieter Zeeman’s
little-known experiments on the equality of inertial and gravitational mass,
drawing on the recently discovered Zeeman Nachlass.

The mathematical complexity of general relativity stimulated consid-
erable research into the development of new and useful mathematical per-
spectives on general relativity. This is illustrated by two papers in the
third section, “Variational Principles in General Relativity” In the first,
S. Kichenassamy gives an overview of the early use of variational princi-
ples in general relativity, carefully distinguishing the different notions of
variation employed. Carlo Cattani’s paper on Palatini reveals that Pala-
tini’s contribution to general relativity is not exhausted by the celebrated
variational principle to which his name is attached. The reader may find it
helpful to read these two papers in conjunction with Cattani and De Maria’s
paper in the first section.

The largest group of papers in the volume addresses the reception and
development of general relativity. Karin Reich investigates the Ameri-
can reception and development of the theory of differential invariants, the
branch of mathematics essential to the historical foundation of general rela-
tivity and to its further development. Hubert Goenner dissects a less happy
episode in the reception of Einstein’s work, the malicious 1931 denun-
ciation A Hundred Authors against Einstein. Goenner exposes the often
murky background and motivations of the volume’s contributors. Silvio
Bergia gives an extensive survey of attempts to formulate unified field the-
ories along the lines suggested by general relativity. Bergia evaluates these
attempts with a carefully chosen set of criteria, articulated at the time of
the attempts, thus minimizing the danger of anachronism in his survey.

Gennady Gorelik recounts the life of one of the foremost Russian rel-
ativists, Vladimir Fock, revealing a fascinating and complex figure who
negotiated controversy within his home country and internationally with
dignity and principle. Kameshwar Wali explains why Chandrasekhar’s en-
try into active research in general relativity was delayed until the 1960s.
He then reviews Chandra’s substantial contributions from the 1960s to the
1990s, starting with relativistic instabilities and post-Newtonian approxi-
mations and continuing through rotating stars and black holes.

In the final section, papers by Jean Eisenstaedt and by George Gale and
John Urani explore the ever fertile interaction of cosmology and general
relativity. Eisenstaedt shows how Lemaitre’s interest in cosmology was
crucial for his important contribution to the modern interpretation of the
Schwarzschild solution. Gale and Urani maintain that E.A. Milne’s “kine-
matic relativity” was not merely a dead-end curiosity to be relegated to a
footnote in the history of 20th century philosophy. They argue that Milne’s
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program not only helped shape the debate about the nature of cosmology
but also played a direct role in the development of the Robertson-Walker
metric.

John Earman
Michel Janssen
John Norton

Fall 1693
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A NOTE ON SOURCES

In view of the frequent citations of unpublished correspondence or other
items in the Einstein Archive, we have adopted a standard format for such
citations. For example, the designation “EA 26-107" refers to item number
26-107 in the Control Index to the Einstein Archive. Copies of the Con-
trol Index can be consulted at the Jewish National and University Library
(The Hebrew University), Jerusalem, where the Archive is housed; and
at Mudd Manuscript Library, Princeton University, and Mugar Memorial
Library, Boston University, where copies of the Archive are available for
consultation by scholars.






Part I
DISPUTES WITH EINSTEIN






Einstein and Nordstrém: Some
Lesser-Known Thought Experiments
in Gravitation

John D. Norton

Late in 1907, Einstein turned his attention to the question of gravitation
in his new theory of relativity. It was obvious to his contemporaries that
Newton’s theory of gravitation required only minor adjustments to bring
it into agreement with relativity theory. Einstein’s first published words
on the question (Einstein 1907b, part V), however, completely ignore the
possibility of such simple adjustments. Instead he looked upon gravita-
tion as the vehicle for extending the principle of relativity to accelerated
motion. He proposed a new gravitation theory that violated his fledgling
light postulate and related the gravitational potential to the now variable
speed of light. Over the next eight years, Einstein developed these eatliest
ideas into his greatest scientific success, the general theory of relativity,
and gravitation theory was changed forever. Gravitational fields were no
longer pictured as just another inhabitant of space and time, like electric
and magnetic fields. They were part of the very fabric of space and time
itself.

In light of this dazzling success, it is easy to forget just how precarious
were Einstein’s early steps toward his general theory of relativity. These
steps were not based on novel experimental results. Indeed, the empirical
result Einstein deemed decisive—the equality of inertial and gravitational
mass—was known in some preliminary form as far back as Galileo. Again,
there were no compelling theoretical grounds for striking out along the path
Einstein took. In 1907, it seemed that any number of minor modifications
could make Newtonian gravitation theory compatible with Einstein’s new
special theory of relativity. One did not have to look for the relativistic
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salvation of gravitation theory in an extension of the principle of relativity.
Einstein himself would later label the motivations for his new approach
“epistemological” (Einstein 1916, section 2).

Through the years of his struggle to develop and disseminate general
relativity, one of Einstein’s greatest strengths was his celebrated mastery
of thought experiments. If you doubted that merely uniformly accelerating
your coordinates could create a gravitational field, Einstein would have you
visualize drugged physicists awakening trapped in a box as it was uniformly
accelerated through gravitation-free space (Einstein 1913, pp. 1254-1255).
Would not all objects in the box fall just as though the box were unaccel-
erated but under the influence of a gravitational field? Was not a state of
uniform acceleration fully equivalent to the presence of a homogeneous
gravitational field?

As vivid and compelling as Einstein’s thought experiments proved to
be, they still could not mask the early difficulties of Einstein’s precarious
speculations. Even a loyal supporter, Max von Laue, author of the earliest
textbooks on special and general relativity, had objected to Einstein’s idea
that acceleration could produce a gravitational field. How could this be
possible, he complained, since this gravitational field would have no source
masses.! Einstein’s evolving theory had to compete with a range of far more
conservative and more plausible approaches to gravitation, and it was to
these that physicists such as von Laue locked for a relativistic treatment of
gravitation. )

We must ask, therefore, about Einstein’s own attitude toward these al-
ternatives. In particular, what of the possibility of a small modification
to Newtonian gravitation theory in order to render it Lorentz covariant and
thus compatible with special relativity? Had Einstein considered this possi-
bility? What reasons could he give for turning away from this conservative
but natural path? It turns out that Einstein had considered and rejected this
conservative path in the months immediately prior to his first publication
of 1907 on relativity and gravitation. He felt such a theory must violate
the equality of inertial and gravitational mass. He was forced to revisit
these considerations in 1912 with the explosion of interest in relativistic
gravitation theories. He first continued to insist that a simple Lorentz co-
variant gravitation theory was not viable. In the course of the following
year, however, he came to see that he was wrong and that there were ways
of constructing Lorentz covariant gravitation theories compatible with the
equality of inertial and gravitational mass.

After an initial enchantment and subsequent disillusionment with Abra-
ham’s theory of gravitation, Einstein found himself greatly impressed by
a Lorentz covariant gravitation theory due to the Finnish physicist Gunnar
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Nordstrom. In fact, by late 1913, Einstein had nominated Nordstrom’s
theory as the only viable competitor to his own emerging general theory
of relativity (Einstein 1913). This selection came, however, only after a
series of exchanges between Einstein and Nordstrom that led Nordstrom to
significant modifications of his theory.

Einstein’s concession to the conservative approach proved to have a
silver lining; under continued pressure from Einstein, Nordstrm made his
theory compatible with the equality of inertial and gravitational mass by
assuming that rods altered their length and clocks their rate upon falling
into a gravitational field so that the background Minkowski space-time
had become inaccessible to direct measurement. As Einstein and Fokker
showed in early 1914 (Einstein and Fokker 1914), the space-time actually
revealed by direct clock and rod measurement had become curved, much
like the space-times of Einstein’s own theory. Moreover, Nordstrom’s
gravitational field equation was equivalent to a geometrical equation in
which the Riemann—Christoffel curvature tensor played the central role. In
it, the full contraction, the curvature scalar, is set proportional to the trace of
the stress-energy tensor. What is remarkable about this field equation is that
it comes almost two years before Einstein recognized the importance of the
curvature tensor in constructing field equations for his own general theory
of relativity! In this regard, the conservative approach actually anticipated
Einstein’s more daring approach.

Einstein now had an answer to the objection that general relativity in-
troduced an unnecessarily complicated mechanism for treating gravitation,
the curvature of space-time. He had shown that the conservative path led
to this same basic result: Gravitational fields come hand-in-hand with the
curvature of space-time.

Elsewhere, I have given a more detailed account of Einstein’s response
to the conservative approach to gravitation and his entanglement with Nord-
strom’s theory of gravitation (Norton, 1992). My purpose in this chapter is
to concentrate on one exceptionally interesting aspect of the episode. As in
Einstein’s better-known work on his general theory of relativity, the episode
was dominated by a sequence of compelling thought experiments.? These
experiments concentrate the key issues into their simplest forms and present
them in a way that makes the conclusions emerge convincingly and effort-
lessly. In this chapter I will review this sequence of thought experiments
as it carries us through the highlights of the episode.

In particular, we will see how one of the more arcane areas of spe-
cial relativistic physics proved decisive to the development of relativistic
gravitation theory. It emerged from the work of Einstein, von Laue, and
others that stressed bodies behave in strikingly nonclassical ways in rela-
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tivity theory. For example, a moving body can acquire energy simply by
being subjected to stress, even though it may not be deformed elastically
by the stress. Nonclassical energies such as these provided Einstein with
the key for incorporating the equality of inertial and gravitational mass into
relativistic physics.

1. First Thought Experiment: Masses Falling from
a Tower

The bare facts of Einstein’s initiation into the problem of relativizing grav-
itation theory are known. In late September 1907, Einstein accepted a
commission from Johannes Stark, editor of Jahrbuch der Radioaktivitdit
und Elektronik, to write a review article on the principle of relativity.? That
review (Einstein 1907b) was submitted a little over two months later, on
December 4, 1907. Its concluding part contained the earliest statement of
what came to be the principle of equivalence and of the bold conjectures
about gravitation that followed from it. What we know only from later
reminiscences by Einstein is that, in this brief period between September
and December, he considered and rejected a conservative Lorentz covariant
theory of gravitation.*

Einstein recalled that he knew how one could take Newton’s theory
of gravitation and render it Lorentz covariant with small modifications to
its equations. Newton’s theory is given most conveniently in the usual
Cartesian coordinates (x, y, z) by the field equation

¢ =4nGp D

for the gravitational field potential ¢ generated by a mass density p, where
G is the gravitational constant, and by the force equation

f=-mV¢ @)

for the gravitational force f on a body of mass m. The adaptation to special
relativity of the field equation to which Einstein alluded was obvious. One
simply replaces the Laplacian operator V2 of (1) with the manifestly Lorentz
covariant d’Alembertian [1? to recover
1 2

¢ = (v2 - g%)qs — 47 Gv, 3)
where v is an invariant mass density and ¢ the time coordinate. An analo-
gous modification of (2) would also be required. Einstein (1933, pp. 286~
287) continued to explain that the outcome of his investigations was not
satisfactory.
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These investigations, however, led to a result which raised my strong
suspicions. According to classical mechanics, the vertical acceleration
of abody in the vertical gravitational field is independent of the horizontal
component of its velocity. Hence in such a gravitational field the vertical
acceleration of a mechanical systern or of its center of gravity works out
independently of its internal kinetic energy. Butin the theory I advanced,
the acceleration of a falling body was not independent of its horizontal
velocity or the internal energy of the system.

This did not fit with the old experimental fact that all bodies have the
same acceleration in a gravitational field. This law, which may also be
formulated as the law of the equality of inertial and gravitational mass,
was now brought home to me in all its significance. I was in the highest
degree amazed at its existence and guessed that in it must lie the key
to a deeper understanding of inertia and gravitation. I had no serious
doubts about its strict validity even without knowing the results of the
admirable experiments of E&tvos, which-—if my memory is right—I
only came to know later. I now abandoned as inadequate the attempt to
treat the problem of gravitation, in the manner outlined above, within
the framework of the special theory of relativity. It clearly failed to do
justice to the most fundamental property of gravitation.

The result that troubled Einstein in the theory he advanced came from the
relativistic adaptation of the force law (2). As Einstein pointed out in his
reminiscences, this adaptation could not be specified so unequivocally. We
can proceed directly to the result, however, if we use four-dimensional
methods of representation not available to Einstein in 1907. The natural
adaptation of (2) is
du, ¢
M—

F, =m—* = _ ,
’ mdr ox,

CY

where F, is the gravitational four-force acting on a body of rest mass m
with four-velocity U, ; 7 is the proper time.> We can now apply (4) to the
special case of a body whose three-velocity v has, at some instant of time,
no vertical component in a static gravitational field. If the gravitational
field at that instant at the mass acts along the z-axis of coordinates, so that
the z-axis is the vertical direction in space, then it follows from (4) that the
vertical acceleration of the mass is given by

We see immediately that this vertical acceleration is reduced as the hori-
zontal speed v is increased, illustrating Einstein’s claimed dependence of
the rate of fall on horizontal velocity.
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The “old experimental fact,” which this result contradicts, surely be-
longs to the famous fable in which Galileo drops various objects of different
weights from a tower. Einstein and Infeld (1938, pp. 37-38) certainly iden-
tify this story when they wrote:

What experiments prove convincingly that the two masses [inertial and
gravitational] are the same? The answer lies in Galileo’s old experiment
in which he dropped different masses from a tower. He noticed that
the time required for the fall was always the same, that the motion of a
falling body does not depend on the mass.

We can combine these ingredients to make explicit the thought experiment
suggested by Einstein’s analysis. Masses are dropped from a high tower,
some with various horizontal velocities and some with none. According
to (5), the masses with greater horizontal velocity fall slower, contradicting
Einstein’s expectation and the familiar classical result that they should all
fall alike. See Figure 1.

Trajectories
after equal
times

Increasing ;.
horizontal ~
elocity

Figure 1. Vertical fall slowed by horizontal velocity in a Lorentz covariant theory
of gravitation.

2. Second Thought Experiment: Spinning Tops and
Heated Gases

It is not so obvious why Einstein found the outcome of this first thought
experiment to be so troubling that he felt justified in abandoning the search
for a Lorentz covariant theory of gravitation. The dependence is a minute
effect, second order in v/c. Indeed, one might well wonder how even the



Einstein and Nordstrdm: Thought Experiments 9

most ingenious experimentalist could compare the rate of fall of a mass with
that of another whizzing past at a horizontal velocity close to the speed of
light. Even if this were possible, the experiment had surely not been done
in 1907. How could Einstein reject this minute effect as incompatible with
an “old experimental fact” whose traditional origins lay with Galileo?

The answer resides in the.fact that Einstein derived the dependence of
vertical acceleration on the “horizontal velocity or the internal energy of
the system.” What Einstein meant by this was made clear in 1912 when the
Finnish physicist Gunnar Nordstrdm published the first of a series of papers
on a Lorentz covariant, scalar theory of gravitation (Nordstrom 1912). The
essential assumptions and content of Nordstr6m’s theory were contained
in equations (3) and (4) above. Nordstrom did correct, however, a problem
with (4). It turns out that this force law can only hold for a mass moving
so that the rate of change of the gravitational potential along its world line
is zero.® (This condition holds instantaneously for the special case used to
derive [5].) Thus the force law (4) requires modification if it is to apply to
masses along whose trajectories ¢ is not constant. Nordstrom found two
suitable modifications. He favored the one in which the rest mass m of the
body is assumed to vary with the gravitational potential ¢. In particular, he
readily derived the dependence

= mg exp(%), ©

where mg is the value of m when ¢ = 0.

By October 1912, when Nordstrdm sent his paper to Physikalische
Zeitschrift, Einstein’s novel ideas on gravitation had become a matter of
public controversy. In July, Einstein found himself immersed in a vitriolic
dispute with Max Abraham, who saw in Einstein’s admission of a variable
speed of light a “death blow” to relativity theory (Abraham 1912). In his
response, Einstein (1912, pp. 1062-1063) published his 1907 grounds for
abandoning Lorentz covariance in the most general form he could manage.
In any Lorentz covariant gravitation theory, he argued, be it a four-vector or
six-vector theory, gravitation would act on a moving body with a strength
that would vary with velocity. Any such theory was unacceptable, since it
viclated the requirement of the equality of inertial and gravitational mass.

Therefore it is not at all surprising that Nordstrdm attracted Einstein’s
attention when he published just such a theory. Finstein’s reaction was so
swift that Nordstrém was able to mention it in an addendum to his original
paper! The addendum began (Nordstrdm 1912, p. 1129):

Addendum to proofs. From a letter from Herr Prof. Dr. A. Einstein I
learn that he had already eatlier concerned himself with the possibility
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used above by me for treating gravitational phenomena in a simple way.
He however came to the conviction that the consequences of such a
theory cannot correspond with reality. In a simple example he shows
that, according to this theory, a rotating system in a gravitational field
will acquire a smaller acceleration than a non-rotating system.

Einstein’s reflection on the acceleration of fall of a spinning system is
actually only a slight elaboration of the situation considered in the first
thought experiment above. Each element of a suitably oriented spinning
body in a gravitational field has a horizontal velocity. Thus, according
to (5), which obtains in Nordstrém’s theory, each element will fall slower
than the corresponding element without that velocity, What is true for each
part holds for the whole. A spinning body falls slower than the same body
without rotation.

This example now makes clear Einstein’s remark about internal energy.
When the body is set into rotation, its parts gain kinetic energy, so its
overall energy and its inertia are increased. However, through (5), there is
a decrease in the gravitational force acting on it, so that its acceleration of
fall is decreased. That is, its rate of fall decreases as the internal energy
and inertia increases. Presumably Einstein thought the spinning body just
one example of a general effect of this type. In much later reminiscences,
Einstein used the example of a kinetic gas.” As the gas is heated, each
molecule moves faster and thus falls more slowly. Thus the aggregate of
molecules, the heated gas, falls more slowly than a colder gas. These two
examples comprise the second thought experiment. See Figure 2.

Einstein’s result in this form is a far greater threat to Lorentz covariant
theories of gravitation such as Nordstrém’s, for it points to effects that
might well be experimentally testable. Perhaps the effect might transcend
detection by a Galileo-like timing of the fall of spinning tops or hot gases,
but would it escape an apparatus similar to that of the E&tvos experiment?
Nordstrom seemed to think so, for he continued his appendix by dismissing
Einstein’s argument on the basis of the effect being “too small to vield a
contradiction with experience.” This dismissal depended on a rather bold
assumption: that there are no common systems of matter in which a great
part of the internal energy, and thus inertia, is due to the kinetic energy
of internal motions. Such systems, if they existed, would fall markedly
slower than others according to Nordstrom’s theory. Nordstr6m may well
have been right that no measurable effect would arise from the spinning of
a body, but could he be sure that the energy of commonplace matter did not
already have a significant kinetic component? The fundamental theory of
matter was then in a state of turmoil and scarcely able to assure him either
way. A more prudent Einstein was unwilling to take the risk. Should it turn
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not spinning

— " element has
U horizontal
velocity and

falls slower
ational gravitatiqnal
gf;iwl ear ;?ig; acceleration
accel

cold gas

gravitational k//i;(}igier
acceleration greale
horizontal

velocity

—_ and
falls slower

gravitational
acceleration ;

Figure 2. Spinning bodies fall slower than when not spinning. Hot gases fall slower
than cold gases, in Nordstrom’s theory.

out that a significant part of the total energy of various types of ordinary
matter was due, in different proportion, to an internal kinetic energy, then
Nordstrom’s theory might well be refuted by simple observations of the fall
of different substances from a tower.

By the time of submission of his next paper on the theory in January
1913, Nordstrém had become more wary (Nordstrém 1913a). While stili
insisting (p. 878) that no observable effect would arise in the case of spinning
bodies, he was prepared to raise the question of whether the “molecular
motions of a falling body” would influence the rate of fall. He did not state
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directly that the effect might be measurable, but the effect did worry him,
since he began to speculate on a way of incorporating the effect into his
theory.

3. Third Thought Experiment: The Energy of
a Stressed Rod

Nordstrom’s paper of January 1913 was devoted to a question that would
ultimately completely alter the direction of development of his theory. The
paper asked which quantity represented the inertial mass of a body. The
question was far from trivial. Recent work in the relativistic theory of
continua had shown that there were inertial effects that arose when a body
was stressed for which there were no classical analogs. Nordstrom ob-
served (1913a, p. 856) that it had proved possible to ignore this question
and develop a complete mechanics of extended bodies without explicitly
introducing the concept of inertial mass. This luxury could no longer be
afforded, he continued, when one worked in a relativistic gravitation the-
ory, because of the very close connection between inertial and gravitational
masses. One had to represent the inertial mass of a body in a way that al-
lowed for inertial effects in stressed bodies that cannot be attributed directly
to an individual mass.

The body of results to which Nordstrom referred had reached its mature
form in the work of von Laue (1911a, 1911b). There von Laue essentially
presented the modern theory of relativistic continua, introducing the no-
tion of the general stress-energy tensor of matter. The results to which
Nordstrom alluded took the following form. If one applied a stress to a
body without deforming it or setting it into motion, then both the energy
and momentum of the body would remained unchanged in its rest frame.
However, if one viewed this same process from a frame of reference in
which the body was in motion, then the energy and momenturm of the body
might change. For example, if the body was influenced by a shear stress®
pgy in its rest frame and then viewed from a frame of reference moving at
velocity v in the x direction, then in that frame the body would acquire a
momentum in the y direction. The momentum density g, due to the stress
is given by’

. v,
8y =V Pry (7N

If the stress was a normal stress p?_in the rest frame, then, when viewed in
the relatively moving frame, the body would have acquired both energy and
an x-directed momentum. The energy density W and momentum density



Einstein and Nordstrom: Thought Experiments 13
g acquired is given by

20 2V 0
W:y zipxx’ gxzy ;—ipxx' (8)

These are the effects for which there are no classical analogs. They proved
decisive in the relativistic analysis of a number of celebrated thought ex-
periments and real experiments, most notably the Lewis and Tolman bent
lever and the Trouton—Noble capacitor.'0

One of the clearest and earliest analyses of these nonclassical effects
is due to a thought experiment of Einstein (1907a, section 1; 1907b, sec-
tion 12) and was given in the context of his discussion of the inertia of
energy. He imagined an extended body at rest carrying a charge distribu-
tion. He then imagined that, at some definite instant in its rest frame, the
body comes under the influence of an external electromagnetic field. The
net external forces are assumed to balance so that the body remains at rest.
The effect of the continued action of the forces, however, is to induce a state
of stress in the body. Einstein now redescribed this process from a frame in
which the body moved uniformly. Because of the relativity of simultaneity,
the body does not come under the influence of the external field at one
instant. For a brief period, some charge elements are under the influence of
the field and some are not. During this period, the external forces exerted
by the field do not balance, so that there is a net external force exerted on
the body. Work is done on or by the force as the body moves, and there
is a net transfer of energy. This energy is the energy described in (8) and
associated with the induction of a stressed state in the body.!!

The beauty of this thought experiment is that it derives the effects of
equations (8) directly from the most fundamental, nonclassical effect of spe-
cial relativity, the relativity of simultaneity. Forces applied simultaneously
in one frame of reference need not be seen as applied simultaneously in
another. The resulting temporary imbalance leads to an energy and momen-
tum transfer in the latter frame only and these transferred quantities emerge
as those of (8). Einstein’s analysis is mathematically quite complicated,
however, since he considers a body of arbitrary shape and charge distribu-
tion. Recapitulating Einstein’s analysis for a simpler case is sufficient to
reveal the essential physics. That case is a rod of uniform cross section
with equal charges at either end. This is the third thought experiment. See
Figure 3.

The rod has rest length /, cross-sectional area A, and extends from
x’ = 0to x’ = [ inits rest frame (x’, ¢'). At a specific instant ' = 0 in its
rest frame, the rod comes under the influence of a field that applies equal but
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Figure 3. Stressing a moving rod changes its energy and momentum.

oppositely directed forces F to the charges. For concreteness, assume the
forces are directed away from the rod along its length. The forces induce a
tensile stress on the rod in its rest frame!?

pY =—F/A.

If we redescribe this stressing of the rod in a frame (x, #) 13 in which the
rod moves at velocity v in the +x direction, we find that the two forces are
not activated simultaneously because of the relativity of simultaneity. The
force F on the trailing end is activated at a time y -/ earlier than the force F
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on the leading end. For this short time period the external force F on the
trailing end is not balanced by the other external force. As a result, work is
done by the motion of the rod against the force. The resulting loss of energy
from the rod is FI y% and the loss of momentum Fly 5. Recalling the
above expression for p? and that the volume of the rod in the frame (x, t)
is V = Al/y, we recover expressions for the energy £ and x-momentum
G, gained by the rod in the process of being stressed:

2
v v
E = }/zgpng and G, = )/ZC—Z“ng v.

Division of these expressions by the volume V yields (8).

4. Fourth Thought Experiment: Radiation in
a Massless, Mirrored Box

Inhis paper (1913a), Nordstrom had asked the right question. What quantity
represents the total inertial mass of a body, including contributions to its
inertial properties that arose from stresses? He sought his answer in the
form of the source density v for equation (3), and he looked in the right place
for his answer. He expected this density to be a quantity derived from the
stress-energy tensor 7,,,, recently introduced by von Laune. After extensive
discussion, he settled upon 1/c? times the rest energy density of the source
matter as his source density v. The rest frame required for this choice was
the instantaneous local rest frame of a continuous matter distribution—
“dust”—which Nordstrém assumed contributed to the source matter. We
would now express Nordstrdm’s choice in manifestly covariant form as

1
p o= —ZTM\,B#}BW ®

where B, is the four-velocity vector field of the continuous distribution of
matter.

Nordstrom’s answer was close to the correct answer—but not close
enough, as was pointed out by Einstein, in section 7 of his physical part of
Einstein and Grossmann (1913).'* He reported that von Laue himself, also
in Zurich but at the University of Zurich, had pointed out to Einstein the
only viable choice, the trace of the stress-energy tensor

T =T,

Einstein proposed to call this scalar “Laue’s scalar.” What was distinc-
tive about this choice was that it enabled a gravitation theory that employed
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it to satisfy the requirement of the equality of inertial and gravitational mass,
at least “up to a certain degree,” as Einstein put it. This degree included
examples such as those in the second thought experiment above, as we shall
Nnow see.

The key result that enabled satisfaction of this equality was due to
von Laue. Von Laue (1911a) had found a single general solution to a range
of problematic examples within relativity theory. They all involved systems
whose properties appeared to violate the principle of relativity. For exam-
ple, on the basis of classical electromagnetic theory, Trouton and Noble
(1903) believed that a charged, parallel-plate capacitor would experience
a net turning couple if it was set in motion with its plates oblique to the
direction of motion—although their experiment yielded a celebrated null
resuit. Again, Ehrenfest (1907) had raised the possibility that a nonspher-
ical or nonellipsoidal electron could not persist in uniform translational
motion unless forces are applied to it. In both cases the projected behavior
would provide an indicator of the uniform motion of the system, violating
the principle of relativity.

What these examples had in common was the presence of stresses within
the systems and, with the proper treatment of these stresses, the threat to
the principle of relativity evaporated. Von Laue noticed that these systems
were all what he called “complete static systems,” that is, they maintained
a static equilibrium in inertial frames of reference without interacting with
other systems.!> The basic result characterizing these systems was that, in
their rest frames,

f pjdv°® =0, (10)

where the integral extends over the rest volume V0 of the whole body.
It follows from (10} that the energy and momentum of a complete static
system transforms under Lorentz transformation exactly like the energy
and momentum of a point-imass. Since the dynamics of a point-mass was
compatible with the principle of relativity, so was the dynamics of a com-
plete static system, and one could not expect a violation of the principle of
relativity in the dynamics of these systems.

Von Laue’s analysis was very general and powerful because it needed to
ask very little of the inner structure of the systems. All one needed to know
was whether the system was a complete static system. If it was, one could
ignore the further details and simply imagine a black box drawn around the
system. Its overall dynamics was now determined.

In effect, what Einstein was able to report in Einstein and Grossmann
(1913, section 7) was that von Laue’s machinery could be applied directly
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to the problem of selecting a gravitational mass density. If one chose T
as the gravitational mass density, von Laue’s result (10) entailed that the
total gravitational mass of a complete stationary system in its rest frame
was equal to its inertial mass. For, using (10), for such a system we have!®

simiont — [ 7av0 = [ (684 4y + T AV

an
:ﬁT& dVO — total __ total

energy ~  inertial mass’

where I follow Einstein in simplifying the analysis by neglecting factors of
c?, so that energy and inertial mass become numerically equal.

The power and subtlety of this rather beautiful result stood out clearly
in the example that Einstein employed in his discussion. This example is
our fourth thought experiment. The trace T for electromagnetic radiation
vanishes. Thus it would seem that electromagnetic radiation can have no
gravitational mass.!” But what of a system of electromagnetic radiation
enclosed within a massless box with mirrored walls? Would such a system
have any gravitational mass? The radiation itself would not, although that
radiation would exert a pressure on the walls of the box. These walls would
become stressed and, simply because of this stress, the walls would acquire
a gravitational mass. Since it is a complete static system, we need do no
direct computation of the distribution of stresses in the walls, The result
(11) tells us immediately that the total gravitational mass of the system in
its rest frame is given by the system’s total inertial mass. See Figure 4.

The same reasoning can essentially be applied to the spinning bodies
and heated gases of the second thought experiment, if they are set in a
gravitation theory that uses 7 as its source density. Molecules of gas with
horizontal motion will fall slower than those without this motion, thus they
do have a smaller effective gravitational mass. They exert a pressure on the
walls of the containing vessel, however, which becomes stressed. These
stresses alter the value of T and thereby contribute to the gravitational mass.
Since (11) applies here, we read immediately from it that the gravitational
mass of a gas enclosed in a vessel in its rest frame is given by the inertial
mass of the whole system.

Similarly, the individual masses comprising a spinning body do have a
smaller effective gravitational mass because of their motion, but the spin-
ning body is stressed by centrifugal forces. We know from (11}, without
calculation, that the contribution of the stresses to the total gravitational
mass exactly compensates for the reduction due the motion of the individ-
ual masses. As before, the total gravitational mass is given by the total
inertial mass.
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Figure 4, Equality of inertial and gravitational mass for complete stationary systems
in a gravitation theory with source density 7.

5. Fifth Thought Experiment: Lowering and

Raising Radiation

At this point, one might anticipate that Einstein would have to capitulate
and cease his opposition to Lorentz covariant gravitation theories. His ob-
jection to these theories had been that they failed to satisfy the requirement
of equality of inertial and gravitational mass. Most damaging was his con-
clusion that this equality would fail in the type of cases dealt with in the
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second thought experiment above. But now his analysis of the choice of T
as source density showed how a Lorentz covariant, scalar theory of grav-
itation could escape Einstein’s objection in exactly those most damaging
cases.

Einstein was in no mood for retraction, and with good reason. Having
presented T as the only viable choice of gravitational source density, he
proceeded to argue that the choice was a disaster. A theory that employed
T as the gravitational source density must violate the law of conservation of
energy. Einstein’s argument was presented within a thought experiment—
our fifth thought experiment—and it was beguilingly simple. See Figure 5.
He imagined electromagnetic radiation trapped in a mirrored, massless box.
We shall assume it cubic in shape for simplicity. The system is lowered into
a gravitational field. Since it has gravitational mass, an amount of energy
proportional to this mass is extracted.

Einstein now introduced another apparatus to raise the radiation. He
imagined a mirrored shaft extending out of the gravitational field. Within
the shaft are two mirrored, massiess baffles, firmly fixed together. The
radiation is introduced into the space between the baffles and is raised out
of the gravitational field as the baffles are raised. We shall again assume
for simplicity that the space between the baffies is cubic.

We have aiready seen that the gravitational mass of the mirrored box
used to lower the radiation is due entirely to the stresses in its walls. It
now follows immediately that the system of radiation and baffles has only
one-third the gravitational mass of the radiation/box system, for in elevating
the radiation trapped between the baffles, one need move only one-third as
many stressed members.'® Only one-third as much energy need therefore be
supplied to raise the radiation in the baffle apparatus as is released when the
radiation is lowered in the box. Since no energy is involved in raising and
lowering the massless box and baffles when devoid of radiation, a complete
cycle of raising and lowering the radiation yields a net gain of energy. This
violates the law of conservation of energy.

Einstein must have been very pleased with this outcome. In a single
blow, it ruled out not just Lorentz covariant, scalar theories of gravita-
tion, but any relativistic gravitation theory that employed a scalar potential.
Thus the “undeniable complexity” (Einstein and Grossmann 1913, part 1,
section 7) of Einstein’s second-rank tensor theory seemed unavoidable.

6. Sixth Thought Experiment: Lowering and
Raising a Stressed Rod

Einstein’s triumph was short lived. In July 1913, Nordstr6m (1913b) sub-
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Figure 5. Trace T as source density violates energy conservation.

mitted his so-called “second” theory to Annalen der Physik. This theory
- used the trace T as its gravitational source density and fully exploited the
opportunities it provided for enabling the equality of inertial and gravita-
tional mass. Moreover, it was able to incorporate an escape from Einstein’s
attack on all relativistic scalar theories of gravitation.

The basic equations of the theory remained (3) and (4), except that the
four-force F,, was replaced by a four-force density K,

3% % 3% 0%
5}{7"'@;{‘*‘“‘;*‘@7—8(@1},
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= _gipw22
Ku=—g@vy=,

where u = ict.

The major alteration was the inclusion of the gravitation factor g (¢). Iis
purpose was to allow for the fact that the total inertial mass and energy of a
system must vary with the gravitational potential, whereas the gravitational
mass of the system will be independent of the potential. If a system had
inertial mass m when in an external gravitational field of potential ¢, then
its gravitational mass M, was given by

Mg = g(gp)m. (12)

If we now considered a matter distribution whose parts lay in regions
of differing gravitational potential, the gravitational mass of the whole
distribution would be given by a g-weighted integral over its volume

M, =/g(qb)vdV.

At this point, the expressions for both g(¢) and the source density v re-
mained undetermined. Nordstrém now reversed the direction of Einstein’s
reasoning. Einstein had shown that choosing T as source density enabled
the equality of inertial and gravitational mass for complete static systems.
Nordstrém postulated this equality and from it derived Einstein’s choice
for source density

1
V= —ZZ-T
and an expression for g
(¢) = i
Y= Ax e

The constant A could be set arbitrarily as a gauge freedom. Under the
natural choice A = 0, which yielded the potential ¢’, Nordstrém’s second
theory now provided a very simple relationship between the energy E,
inertial mass m, and gravitational mass M, of a complete stationary system

E=mc* =M.

This dependence of the energy and mass of a system on the gravitational po-
tential ¢’ was closer to familiar classical expressions than the corresponding
result (6) of Nordstrom’s first theory.
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Satisfactory as these results were, they did not yet provide an escape
from Einstein’s objection to all relativistic scalar theories of gravitation. It
is odd that this objection is mentioned nowhere in NordstrSm’s paper, even
though a major part of the paper is devoted to developing effects that were
able to defeat that objection. These effects emerged from a long series of
analyses of different gravitational systems, including Nordstrdm’s model
of the electron, stressed rods, light clocks, gravitation clocks, and harmonic
oscillators. Nordstrom found that a very wide range of physical quantities
would depend upon gravitational potential. These included the lengths
of bodies, times of processes, masses, energies, and stresses. When these
dependencies were taken into account, it turned out that Einstein’s violation
of the law of conservation of energy no longer arose.

A simple thought experiment illustrates most simply how the depen-
dence arises in the case of the lengths of bodies and how this dependence
defeats Einstein’s objection. This is our sixth thought experiment. Nord-
strom attributed the thought experiment to Einstein although Einstein pub-
lished it nowhere himself. Since Nordstrém (1913b) was submitted from
Zurich, the home of both Einstein and von Laue, this raises the question
of precisely who developed the ideas that enable escape from Einstein’s
objection.

Einstein’s thought experiment cuts directly to the heart of the mecha-
nism that allowed a violation of energy conservation in the fifth thought
experimém. A body gains gravitational mass upon being stressed. This
additional gravitational mass generates energy when the body is lowered
into a gravitational field. That gravitational mass disappears when the body
is unstressed. If we raise the unstressed body, we create a cycle that yields
a net gain in energy. The radiation in the fifth thought experiment actually
only plays an incidental role in providing a mechanism for stressing bodies
that were to be raised and lowered.

The escape Nordstrém and Einstein now offered is ingenious. If a
stressed body expanded upon being lowered into a gravitational field, then
energy would be absorbed as the work required to expand the body against
the stresses. Could the expansion be so adjusted that it absorbed exactly
all the energy released in the fall of the gravitational mass of the stresses
themselves? If so, the construction of an energy-generating cycle would be
blocked. Nordstrém’s (1913b, pp. 545-545) account of Einstein’s thought
experiment shows us that this adjustment is easily achieved (see Figure 6).
He wrote:

Herr Einstein has proved that the dependence in the theory developed

here of the length dimensions of a body on the gravitational potential
must be a general property of matter. He has shown that otherwise
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Figure 6. Gravitational potential dependence of length restores energy conservation.

it would be possible to construct an apparatus with which one could
pump energy out of the gravitational field. In Einstein’s example, one
considers a non-deformable rod that can be tensioned movably between
two vertical rails. One could let the rod fall stressed, then relax it and
raiseitagain. Therod has a greater weight when stressed than unstressed,
and therefore it would provide greater work than would be consumed in
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raising the unstressed rod. However because of the lengthening of the
rod in falling, the rails must diverge and the excess work in falling will
be consumed again as the work of the tensioning forces on the ends of
the rod.

Let § be the total stress (stress times cross-sectional area) of the rod
and [ its length. Because of the stress, the gravitational mass of the rod

is increased by
1
8Pg-Lg,

c2 ¢/
In falling [an infinitesimal distance in which the potential changes by
d¢’ and the length of the rod by d/], this gravitational mass provides the
extra work

1 !
- 5’- Slde'.
However, at the same time at the ends of the rod the work
Sdi

is lost [to forces stressing the rod]. Setting equal these two expressions

provides
1 1
——d¢' = ~di,
@' l

which yields on integration

l¢' = const.,

Thus simply requiring that the length of a body vary inversely with the
gravitational potential ¢’ is sufficient to preserve the conservation of en-
ergy against the threat of Einstein’s earlier thought experiment. Einstein
clearly accepted this escape, as he acknowledged within his exposition of
Nordstrom’s theory (Einstein 1913, p. 1253) and again more briefly in his
addendum to the journal printing of Einstein and Grossmann (1913).

7. Conclusion

With the intrusion of these kinematical effects into Nordstrém’s theory, it
ceased to be a conservative, Lorentz covariant theory of gravitation and
became more akin to Einstein’s own theory, in which gravitation, space,
and time were intimately intermingled. Just how close if had come to
Einstein’s theory was revealed by Einstein and Adriaan D. Fokker in a
paper the following February (Einstein and Fokker 1914). Since the times
of all processes and the lengths of all bodies were affected equally by the
gravitational potential ¢, the times and spaces of the background Minkowski
space-time had ceased to be directly measurable by real rods and clocks.
Instead they revealed a non-Minkowskian space-time with the characteristic
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property that there exist preferred coordinate systems (x, v, z, #) in which
the invariant interval is given by

ds? = ¢*(dx? 4 dy? + dz? — 2 dr?). (13)

After postulation of this basic property for space-time, the theory de-
veloped in a remarkably similar way to Einstein’s theory. The trajectory
of a body in free fall in the gravitational field was a geodesic of the space-
time. The law of conservation of gravitational and non-gravitational energy-
momentum was given by the vanishing of the covariant divergence of the
stress-energy tensor. Finally, the field equation of Nordstrdm’s second
theory proved to be just

’ R =kT,

where R is the curvature scalar and k a constant. Einstein was not able to in-
troduce generally covariant field equations based on the Riemann curvature
tensor into his own gravitation theory until November 1915.

In 1914, Einstein could not offer decisive grounds for picking between
his and this final version of Nordstrdm’s theory. The strongest argument
he could muster against Nordstrdm’s theory was that it failed to satisfy
the requirement of the relativity of inertia, a requirement whose essential
content would be transformed into Mach’s principle. The presence of the
preferred coordinate systems (x, y, z, £) in (13) was judged by Einstein as
a residual, absolute element that had to be jettisoned if the principle of
relativity were to be generalized to accelerated motion.

The three soon-to-be classic tests of general relativity could offer no
help in deciding between the two theories. Both Einstein’s and Nordstrdm’s
theory predicted a red shift in light from the sun and of equal magnitude.
Unlike Einstein’s theory, Nordstrom’s theory predicted no deflection in a
beam of starlight grazing the sun. However, the world would still wait five
years for Eddington’s celebrated expeditions. Finally, accounting for the
anomalous motion of Mercury had not yet emerged as a sine qua non of any
new gravitation theory. Einstein’s theory of 1913 actually failed to account
for this anomalous motion, a shortcoming that was oddly never mentionedin
Einstein’s publications of this period. Nordstrém (1914) analyzed planetary
motions according to his theory. He found that it predicted changes in
planetary orbits that were very small in comparison with the perturbations
due to other planets and thus felt justified in concluding that this theory was
“in the best agreement with experience” (p. 1109).

What decisively changed the standards for evaluation of gravitation
theories was a result communicated by Einstein (1915) to the Prussian
Academy on November 15, 1915. He showed that his gravitation theory,
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now equipped with generally covariant field equations, was able to ac-
count almost exactly for the anomalous advance of Mercury’s perihelion.
Overnight, the margin of error in astronomical prediction allowed a gravi-
tation theory dropped by at least an order of magnitude. As von Laue noted
in his sympathetic review (1917, p. 305), Nordstrém’s theory was no match
for Einstein’s when it came to Mercury, for Nordstrom’s theory predicted
a slight retardation of the planet’s perihelion. The failure was now deemed
so complete that von Laue did not even bother to report the magnitude of
the retardation.

After the excitement of Eddington’s eclipse expedition and the public
acclaim of Einstein and his theory, the fate of Nordstrom’s theory was
sealed. It could offer little competition to the seductive charms of Einstein’s
theory. By the time of Pauli’s authoritative survey (1921, section 50), in less
than a paragraph Nordstrom’s theory was dismissed briefly and decisively
as a viable gravitation theory.

NOTES.

! M. von Laue to A. Einstein, December 27, 1911, FA 16-008. For further
discussion, see Norton (1985, section 4.1).

2 For philosophical analyses of thought experiments from various perspectives,
see Horowitz and Massey (1991), which contains Norton (1986), and see also Brown
(1991)-and Sorensen (1992).

3 Einstein to J. Stark, September 25, 1907, EA 22-333.

4 One of the most informative is Einstein (1933, pp. 286-287).

5 Here and henceforth, Greek indices will vary over 1, 2, 3, 4 and Latin indices
over 1,2, 3. I will employ the coordinate system (x;, x5, x3, X4) = (x, y, 2, u = ict)
as was common in four-dimensional physics in the early 1910s. Summation over
repeated indices will be implied.

¢ From the orthogonality of four-velocity U,, and four-acceleration dU,, /dt, we
infer from the contraction of (4) with U,, that

99 4,9

0=F, U, =— = ,
ko maxu dr "

so that d¢ /dt = 0.

7 In a lecture given on April 14, 1954, according to notes taken by Wheeler (1979,
p- 188).

8 p?, is the (three-dimensional) stress tensor.

5y =1/ /T= /.

19 See Norton (1992, section 9), and Janssen (manuscript).

H Einstein’s analysis did not consider the corresponding exchange of momentum
associated with the temporary imbalance of external forces, which would lead to
the momentum expression in (8). I add this to my analysis below since it is a trivial
and obvious extension of Einstein’s original thought experiment.
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12 1 follow Einstein in assuming that we are treating a case in which the forces
between the charges on the body are small compared with the external forces and
can be neglected.

13 As usual, we have t = y(t' + (v/c*)x") and x = y(x’ + vt’), where y =
1/4/1 —v?/c.

14 One obvious problem with (9) that Einstein did not mention is that it is ill-
defined for source matter that, unlike dust, has no natural rest frame.

15 Yon Laue’s (19114, section 5) definition was unnecessarily restrictive and did
not include bodies rotating uniformly about their axes of symmetry. Nordstrém
(1913b, pp. 534-535) quietly extended the analysis to “complete stationary” sys-
tems, which did include such rotating bodies.

16 Under Nordstrom’s choice of coordinate system, with x, = ict, Tyy = —(ener-
gy density), whereas under Einstein and Grossmann’s (1913) choice of metrical
signatare (—, —, —, +), T4 = +(energy density). I have also followed Einstein in
simplifying the analysis by ignoring the fact that the total energy of a system must
vary with gravitational potential, whereas its gravitational mass will not. Thus
the expression for the proportionality of the inertial and gravitational mass of a
system must contain a factor that is a function of the gravitational potential. This
effect is explicitly incorporated into Nordstrém’s (1913b) second theory through
the factor g(¢), and the proportionality is expressed as relation (12) of Section 6
below. For the analysis of this section and the following, this g factor can be taken as
approximately constant and its effect absorbed into other constants in the equations.

17 This conclusion holds for free radiation, and for this reason there is no gravi-
tational bending of light in Nordstrém’s (1913b) second theory, since it employs 7'
as its source density.

18 To see this most clearly, imagine that each pair of opposing walls of the box
are held together by a slender rod that carries all the stresses needed to hold the
walls against radiation pressure. One set of opposing walls and rods forms the set
of baffles. Three identical sets can be fitted together to form the cubical box.
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Out of the Labyrinth? Einstein, Hertz,
and the Gottingen Answer to the
Hole Argument

Don Howard and John D. Norton

In his lifetime, Einstein became a living oracle. We are told time and time
again of lesser-known scientists grappling with overwhelming problems
who made the pilgrimage to consult Einstein, perhaps just for encourage-
ment or endorsement, or perhaps in the hope that he might hand them the
thread that would lead them out of their labyrinth. Our paper tells the
story of a scientist who had become hopelessly lost in a labyrinth of his
own making as he struggled with the most important discovery of his life.
A correspondent gives him the thread that could be followed out of the
labyrinth, but the scientist impatiently dismisses this gift as a confused dis-
traction, only to discover a similar way out a few months later. What makes
our story special is that the scientist was not just anyone—it was Einstein
himself—and the discovery was general relativity.

The time was 1915. Einstein’s correspondent was Paul Hertz, then a
physicist working in Gottingen and taking regular part in the activities of the
group centered around David Hilbert. The problem was the so-called hole
argument, through which Einstein had convinced himself that no physically
acceptable version of his still-incomplete general theory of relativity could
be generally covariant. We will conjecture that Hertz provided Einstein
with a serviceable and sophisticated escape from this ill-fated conclusion,
and that Finstein misunderstood and dismissed it, only to arrive at a similar
escape a few months later in the form of his point-coincidence argument.
Finally, on the basis of an intriguing similarity in wording and timing, we
will suggest that Einstein may have drawn immediate inspiration for the
final formulation of his point-coincidence argument from another hitherto
unrecognized source.
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Our argument for our main conclusion will be somewhat unusual, rest-
ing, as it does, upon our conjectural reconstruction of letters from Hertz
to Einstein on the basis of Einstein’s surviving replies to Hertz. Such an
approach raises obvious methodological and historiographical questions
about the use of evidence that is as much conjectured as discovered. How-
ever, in the absence of more direct evidence, our only alternative is to say
nothing at all; but this is an issue too interesting and important to pass over
in silence.

1. Background: General Covariance Lost and Regained

In the summer of 1915, when our story is set, Einstein’s long struggie
toward his general theory of relativity was drawing to a close. Roughly
two years earlier, he and Marcel Grossmann had published the first outline
of the theory, complete in all essential details excepting the gravitational
fields equations offered, which were not generally covariant (Finstein and
Grossmann 1913). To make matters worse, Einstein soon suppressed his
concern over this lack of general covariance by convincing himself that any
generally covariant field equations that one might propose must be physi-
cally uninteresting. His principal argument for this surprising conclusion
was the “hole argument,” published in its final and most complete form in
Einstein 1914b, pp. 1066-1067 (see Norton 1987, Stachel 1989).

In the hole argument, Einstein considered a “hole,” a region of space-
time devoid of “material processes” (the stress-energy tensor 7;; = 0),anda
solution g, in a coordinate system x™, of supposedly generally covariant
field equations for the metric tensor g;, given a matter distribution that
is nonvanishing only outside the hole. He then showed that the general
covariance of the field equations allowed him to construct a second solution,
with components g;,, in the same coordinate system x™, that agreed with the
first solution g;;, outside the hole but came smoothly to differ from it within
the hole. Einstein found the existence of two such solutions in the same
coordinate system unacceptable, for he took it to violate the “principle
of causality,” which seemed here to amount to the requirement that the
field and matter distribution outside the hole should determine uniquely the
processes or events within the hole. His presumption, apparently, was that
there is a unique, real state of affairs within the hole (and elsewhere) that is
supposed to be described, uniquely, by a theory of gravitation (see Howard
1992).

In brief, Einstein constructed these two solutions by means of a transfor-
mation from the original coordinate system x™ to a new coordinate system
x™ that agreed with the original outside the hole but came smoothly to
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differ from it within the hole. Under this transformation the first solution
gik, in x™, becomes g/, in x™, which general covariance guarantees is also
a solution of the field equations. To recover the second solution mentioned
above, Einstein looked upon the components g/, as ten functions of the
arguments x™ and imagined that these arguments were replaced by numer-
ically identical values of the original x™ without changing the functional
form of g;,. The result is two differing solutions of the field equations in
the same coordinate system x™. (See Figure 1.)

It will be important for later discussion to pause here and note that these
two solutions have the following characteristic property, although Einstein
did not stress this fact: There exist two coordinate systems x™ and x™' that
agree outside the hole but come smoothly to differ within the hole, such
that the components of the second solution, in the coordinate system x™,
are precisely the same functions of the coordinates as are the components
of the first solution, in the second coordinate system x™’.!

For example, in the case of the two-dimensional space-time of Figure 2,
if the matrix of values of the second solution is [ (1) _02] at (1, 1) in the first
coordinate system, then the matrix of values of the first solution is also
[(1) _02] at (1, 1) in the second coordinate system. Notice, however, that if
(1, 1) are the coordinates of a point p inside the hole, then, by construction,
(1, 1) in the second coordinate system will be the coordinates of a differenz
point, p’, in the hole.

The hole argument forced Einstein to limit the range of coordinate
systems used in his theory in such a way that, for any arbitrarily selected
region of space-time, he could not use two coordinate systems that agreed
outside but came smoothly to disagree within the region. To see how
close the covariance of his 1913 theory came to this limit, Einstein defined
the notion of the “adapted coordinate system,” analyzed most completely in
Einstein 1914b. The coordinate system adapted to a given field was defined
by a variation principle so contrived that it selected a single coordinate
system from all those that came smoothly to agree on the boundary of
any given region of space-time. This entails a result that will become
important below: For any region of space-time, it is impossible for there 1o
be rtwo different adapted coordinate systems thas come smoothiy to agree at
the boundary. Einstein could also show that his 1913 field equations were
covariant under transformations between these adapted coordinate systems,
so that while these field equations were not generally covariant, they had
at least the maximum covariance permitted by the hole argument.?

Einstein’s failure to offer generally covariant field equations was a great
worry and embarrassment to him. His frequent protestations of the unac-
ceptability of generally covariant field equations, however, such as Ein-
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stein 1914a, and his publication in October 1914 of a lengthy review article
(Einstein 1914b) of the theory suggested that he felt the theory had achieved
some stability in its then non-generally covariant formulation.

In late June and early July of 1915, Einstein visited Gottingen and
gave six lectures on his theory to a group including David Hilbert, Felix
Klein and, more likely than not, Emmy Noether and Paul Hertz. Einstein
described this visit to several correspondents. Thus, on August 16, he wrote
to Berta and Wander Johannes de Haas: “To my great delight, I succeeded
in convincing Hilbert and Klein completely” (EA 70-420).3 And one month
earlier, on July 15, Einstein had reported enthusiastically to Sommerfeld:

In Gottingen I had the great pleasure of seeing everything understood,
down to the details. I am quite enthusiastic about Hilbert. A man of
consequence. (EA 21-381; reprinted in Hermann 1968, p. 30)*

That report to Sommerfeld, however, also showed that Einstein was not yet
entirely reconciled to his new theory. He wrote Sommerfeld that he would
prefer not to include one or two papers on his new theory (Einstein 1911b,
1914b) in the collection Das Relativititsprinzip, since none of the current
presentations were “complete.”

As it turned out, Einstein had been understood in Géttingen even better
than he realized. Hilbert was particularly excited, writing to Karl Schwarz-
schild on July 17, 1915: “During the summer we had here as guests the
following: Sommerfeld, Born, Einstein. Especially the lectures of the last
on gravitational theory were an event” {(quoted in Pyenson 1979a, p. 193,
n. 83). The excitement in Gottingen was tempered, however, by a widely
shared belief that Einstein’s mathematical abilities might not be up to the
task of perfecting the new theory of gravitation. Typical of this attitude are a
couple of remarks found in Felix Klein’s lecture notes on general relativity
from the summer of 1916. Thus, on the first day of the lectures, July 15,
1916, Klein remarked to his audience that, in the popular mind, relativity
theory was surrcunded by a “fog of mystery” [Nebel der Mystik], adding:

Einstein’s own way of thinking is partly to blame for this mystery, for it
starts out again from the most general philosophical speculations and is
guided, above all, more by strong physical instinct than by clear mathe-
matical insight.3

More to the point, however, is a remark later in that same lecture, in the
middie of a section entitled “On the Choice of Coordinates Encountered
in Einstein.” In Einstein’s new theory, Klein tells his students, we enter
upon the terrain of arbitrary coordinates, “familiar” to us from the work of
Lagrange, Gauss, and Riemann, where the g,, and the ds? must be treated
according to the rules of Ricci’s absolute differential calculus, or “maore
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objectively expressed,” according to the rules of the theory of invariants
of the group of arbitrary point transformations applied to the differential
invariant ds?. Everything we learned about Lagrange, Gauss, and Riemann
may be clear in itself, says Klein. Still,

It is nevertheless a good idea to explain it further, because there are here,
in Einstein’s work, imperfections [Unvollkommenheiten], which do not
impair the great ideas in his new theory, but hide them from view.

This is connected with the repeatedly mentioned circumstance that
Einstein is not innately [von Hause aus] a mathematician, but works
rather under the influence of obscure [dunkelen], physical-philosophical
impulses. Through his interaction with Grossmann and on the basis of
the Zurich tradition he has, to be sure, gradually become acquainted
with Gauss and Riemann, but he knows nothing of Lagrange and over-
estimates (parenthetically) Christoffel, under the influence of the local
Zurich tradition.

One senses in Klein’s words a hint of jealousy, but they still help us under-
stand how members of the G&ttingen group may have regarded Einstein’s
mathematical failings with more than a little condescension.

Undeterred by the hole argument, and determined, perhaps, to demon-
strate how the vaunted Géttingen expertise at the mathematics of mathemat-
ical physics might yield dividends of akind not yet achieved by the “obscure
physical-philosophical impulses” of Einstein, Hilbert himaself turned to the
task of finding generally covariant field equations for his version of Ein-
stein’s theory, a fusion of Einstein’s gravitation theory and Mie’s matter the-
ory. He communicated the modern gravitational field equations of general
relativity to the Gottingen Gesellschaft der Wissenschaften on November
20, 1915 (Hilbert 1915). Meanwhile, Finstein had lost confidence in the
lack of general covariance of his theory and returned to the quest for gen-
erally covariant field equations. He arrived at the same gravitational field
equations as Hilbert, and they were communicated to the Prussian Acad-
emy on November 25, 1915, five days after Hilbert had communicated the
same equations in Gottingen.’

Einstein soon turned to the task of informing his correspondents of how
he reconciled his hole argument with his return to general covariance by
means of a consideration now known as the “point-coincidence argument.”®
The latter was first published in Einstein’s comprehensive 1916 review ar-
ticle, “Die Grundlage der allgemeinen Relativititstheorie” (Einstein 1916,
pp. 117-118). Whereas previously he had argued that generally covariant
equations typically can be made to yield different solutions for one and the
same coordinatization of the physical space-time, Einstein now argued that
while the two solutions g;; and g, may be mathematically distinct, they
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are not physically distinct, for both solutions catalogue the identical set of
space-time coincidences, which exhaust the reality captured by the theory.
Thus, Einstein wrote to Paul Ehrenfest on December 26, 1915:

The physically real in the world of events (in contrast to that which is
dependent upon the choice of a reference system) consists in spatiotem-
poral coincidences.” Real are, e.g., the intersections of two different
world lines, or the statement that they do not intersect. Those statements
that refer to the physically real therefore do not founder on any univo-
cal [eindeutige] coordinate transformation. If two systems of the g,
(or in general the variables employed in the description of the world)
are so created that one can obtain the second from the first through
mere space-time transformation, then they are completely equivalent
[gleichbedeutend]. For they have all spatiotemporal point coincidences
in common, i.e., everything that is observable.

*Jand in nothing else! (EA 9-363)

An example of these space-time coincidences would be the collision of two
point-masses.

We illustrate Einstein’s point-coincidence argument in a way that will
be suggestive below. Let two point-masses originate at a point-event g
outside the hole, separate, and then collide at some point-event within the
hole. See Figure 3. According to the second solution, g;,, the particles will
collide at the point{-event] with coordinates (1, 1) in the first coordinate
system, x™. According to the first solution, g;, the particles will collide at
the point with coordinates (1, 1) in the second coordinate system, x™'. As
illustrated in Figure 2, Einstein had earlier assumed that the two sets of co-
ordinates would represent different point{-event]s, p and p’, in the physical
space-time. He now understands that, on the contrary, they must repre-
sent the same point[-event], because the two sets of trajectories agree in all
physically significant quantities and thus cannot pick out physically differ-
ent point[-event]s. For example, measurements of physical time elapsed
along the trajectory gap as determined by the first solution g;; would be
identical to that along gap’ as determined by the second solution g; k.9

2. Letters from Paul Hertz

Einstein later recalled the infense emotions that simmered and boiled within
himself through the years of his struggle with general covariance when he
wrote of the episode: “But the years of anxious searching in the dark,
with their intense longing, their alternations of confidence and exhaustion
and final emergence into the light—only those who have experienced it
can understand that” (Finstein 1934, pp. 289-290). Into this emotional
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and intellectual cauldron around August 1915 was added an exchange in
correspondence with Paul Hertz, just a few months before the struggle drew
to its dramatic close that November.

Hertz was born in 1881 in Hamburg. In 1915 he was a Privatdozent at
Géttingen and a member of the group clustered around Hilbert and Klein.
He had taken a degree at Gottingen in 1904 under Max Abraham, with
a dissertation on discontinuous movements of an electron (Hertz 1904).10
After publishing a few additional studies on electron theory, he turned his
attention to the foundations of statistical mechanics, an interest that cul-
minated in his seminal 1916 monograph in the Repertorium fiir Physik
(Hertz 1916), and also led to his acquaintance with Einstein. This ac-
quaintance was a direct result of Hertz’s critical remarks (Hertz 1910) on
Einstein’s early papers on the subject (Einstein 1902, 1903, 1904), re-
marks to which Einstein replied in a short note in the Annalen in 1911
(Einstein 1911a). They had begun corresponding by August 1910 and had
become personally acquainted no later than early September 1910, at a
meeting of the Schweizerische Naturforschende Gesellschaft in Basel.!!
Hertz was by this time acquainted with several of Einstein’s closer friends
and colleagues, most importantly Paul Ehrenfest, who had been a student
in Géttingen at the same time as Hertz,'? and Jakob Laub, another fellow
student from G6ttingen, who was a colleague of Hertz’s in Heidelberg from
1909 to 1911.13 In 1921, Hertz finally received an appointment as Ausseror-
dentlicher Professor in Gottingen, the same year that he and Moritz Schlick
published their influential edition of Helmholtz’s epistemological writings
(Helmholtz 1921). And in later years, Hertz turned his attention to various
topics in the philosophy of science, including pioneering studies, very much
in the Géttingen tradition, of the formal axiomatics of scientific theories.!*
Einstein provided a letter of recommendation for Hertz after his emigration
to the United States (EA 12-221). He died in Philadelphia in 1940.

We do not know for certain that Hertz was present when Einstein lec-
tured in Gottingen in late June and early July of 1915. Given the nature
of the previous relationship between Hertz and Einstein, given Hertz’s role
in the group around Hilbert, and given the character of Heriz’s correspon-
dence with Einstein later that summer, it is more than likely, however, that
he was present.

We know of the letters that Hertz wrote to Einstein only because Ein-
stein’s replies still exist (EA 12-201 and EA 12-203). Einstein’s letter
EA 12-203 is dated “22. VIII” (August 22). The content is compatible
only with the years 1913-1915. The year must be 1915 because of the
mention in a postscript of a coming visit to Zurich (“Aug. 26 to about Sep-
tember 157), the address of his friend Heinrich Zangger being given for
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correspondence. Einstein made a visit to Zurich fitting this description in
1915.15

Einstein’s letter is written in a friendly and encouraging tone. It reflects
on the great problems Einstein had faced in finding a way to restrict the
coordinate systems of his theory and sketches the difficulties still facing the
theory in this area. The letter begins:

One who has himself poked about so much in the chaos of possibilities
can understand very well your fate. You haven’t the faintest idea what
I, as a mathematical ignoramus, had to go through until T entered this
harbor.

And about his specific restriction to “adapted” coordinates, he comments:

How can one pick out a coordinate system or a group of such? It appears
not to be possible in any way simpler than that which I have chosen. I
have groped about and tried everything possible.... The coordinate
restriction that was finally introduced deserves particular confidence be-
cause it can be brought into connection with the postulate of the complete
determination of events.

This last remark alludes to the fact that adapted coordinate systems were
first introduced by Einstein in order to block the conclusion of the hole
argument.

The letter’s primary purpose, however, is to respond encouragingly
to an idea of Hertz’s alluded to in the first paragraph, which presumably
concerns the restriction of the coordinate systems. Hertz’s idea is presum-
ably also the one that Einstein refers to in both the opening sentence—“A
surface-theoretical interpretation of preferred systems would be of very
great value”—and the closing sentence of paragraph five—*“Perhaps one
could get an overview on the question if one succeeded in finding the geo-
metrical interpretation for which you seek”—for such an interpretation is
not given or even mentioned by Finstein anywhere else in the letter. And
Einstein’s other letter, EA 12-201, contains a response to a proposal by
Hertz that is cast in the older language of the theory of two-dimensional
Gaussian surfaces.'®

Einstein’s EA 12-201 is dated “Berlin, Saturday” but, because of the
close similarity of content, it was quite plausibly written at about the same
time as EA 12-203. The earliest possible date is August 14, since Hertz’s
son, Hans, who is mentioned at the end of the letter, was born on Sunday,
August 8.7 The letter was probably written no later than about Saturday,
October 9, since it betrays no doubts on Einstein’s part about the restricted
covariance of the Einstein—Grossmann (1913} theory, whereas by Octo-
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ber 12 Einstein is writing to Lorentz that he now realizes that something is
amiss with the theory.

The letter responds to another proposal by Hertz, but, as we shall see, itis
written in a very different tone. The letter is at times impatient, discouraging
and almost hostile—Einstein did not like Hertz’s proposal! On the basis of
Einstein’s reply in EA 12-201, we reconstruct Hertz’s proposal to amount
to an escape from the hole argument, coupled with a proposal for setting up
generally covariant gravitational field equations. The reconstruction that
follows is the only one we have found that is compatible with the entirety
of Finstein’s response.

At this point, some readers might like to scan ahead and read the letter
EA 12-201, which is quoted in full in Section 4, in order to see the raw
material upon which our reconstruction is based. Readers who like puzzles
might even want to try to build their own reconstruction before reviewing
the one we offer below in Section 3.

3. Our Reconstruction of Hertz’s Proposed Escape
from the Hole Argument

Hertz tried to show Einstein that he should not be troubled by the dif-
ferences between the two solutions considered in the hole argument. He
considered the hole argument for the case of a two-dimensional Gaussian
surface. We would now write the line element of such a surface in the
quadratic differential form ds? = g;(dx')? 4+ 2g1p dx! dx? + gy (dx?)?,
where Hertz used the older notation introduced by Gauss, wherein one
writes ds? = E du® 4 2F du dv + G dv?. In the case of variable curvature,
this geometry seems to allow the defining of a special coordinate system
(u, v), whose curves are the curves of constant curvature and of maximum
curvature gradient, and are thus adapted to the geometry. We shall call such
systems “Hertz-adapted” to avoid confusing them with Einstein’s “adapted”
coordinate systems. Presumably such coordinates were proposed because
they would be defined in terms of invariant features of the surface and be-
cause they might be proved to exist for spaces of both positive and negative
curvature, unlike isometric coordinates.

Hertz, examined the two solutions of the hole argument in the way
outlined in Section 1 above. He considered one solution with coefficients
E, F, and G in his original coordinate system (u, v) and the other with
coefficients £*, F*, and G* in the second coordinate system (u*, v*) so
that the E,'F, and G are the same functions of the variables u and v as
the functions E*, F*, and G* are of the variables u* and v*.!® Moreover,
Hertz ensured that the coordinate system (u, v) is Hertz-adapted to the
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geometry represented by £, F, and G, which entails that the coordinate
system (u*, v*) is also Hertz-adapted to the geometry represented by E*,
F*,and G*.

He then asked after the nature of the underdetermination of the ge-
ometry revealed by the admissibility under general covariance of the two
solutions constructed in the hole. To do so, he asked after the geometry
within the hole according to the two solutions at two points that correspond
in the sense that the coordinates of the first point in the first coordinate sys-
tem (¢, v) are numerically equal to the coordinates of the second point in
the second coordinate system (¢#*, v*). To find the points, one must follow
the two coordinate curves corresponding to the coordinate values selected
and pursue them until they meet in the hole. Since the two coordinate
systems are Hertz-adapted to superficially different geometries, the coordi-
nate curves must diverge upon entering the hole, according to whether the
system was adapted to the first or second solution of the field equations.
For the coordinate system adapted to the first solution, the curves would
meet at the point P (u, v). For the coordinate system adapted to the second
solution, the curves would meet at the point P*(u*, v*). See Figure 4,
which is our rendering of the diagram Einstein gives in his letter (which is
reproduced as Figure 5).

But what are the differences between the two solutions revealed by the
construction? Hertz could point to no geometrically significant differences.
Spelling out the argument in a way that employs the equations Einstein
writes in his letter EA 12-201, the points selected by the construction would
have the same coordinate values in each of the geometrically significant
Hertz-adapted coordinate systems so that

w* =u and v*=w.

Moreover, the geometries at each point in the corresponding solutions are
the same. For if E, F, and G are the coefficients assigned by the first
solution to P, and if E*, F*, and G* are the coefficients assigned by the
second solution to P*, then the geometries at the two points are the same
insofaras E* = E, F* = F,and G* = G."°

Perhaps Hertz might now have said that the two solutions are geo-
mefrically the same in every respect, for these identities would hold for
corresponding points covering every point of both solutions. We can think
of each solution as representing a different geometric surface. The con-
struction shows how one of them can be mapped into the other by the map
that takes point P to point P* while preserving all geometric properties. In
modern language, the two are isomorphic.
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First coordinate
system (x,v) in
which first solution
has coefficients
E,F,and G

Curve of
constant u, u*

Second coordinate
system (1%, v*) in
which second solution
has coefficients

EX, F* and G*

Figure 4. Interpretation of figure in Einstein’s letter (cf. Figure 5).

We might rephrase this last point using the only direct quotation Fin-
stein gives of Hertz: Since the two solutions amount to the same surface
geometrically, we merely recall that, by the construction, this surface “is
developable [i.e., isomorphically mappable] into itself,” a clumsy but in-
telligible way of making the point. This usage of the term “developable”
as meaning isomorphically mappable was standard at the time and was
even applied to precisely the case Hertz treats using exactly the same set of
equations.

Consider, for example, the discussion of two two-dimensional Gauss-
ian surfaces embedded in a three-dimensional space that is found in Jo-
hannes Knoblauch’s Grundiagen der Differentialgeometrie (Knoblauch
1913, pp. 121-124), then regarded as a standard text in Gottingen.? If
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the two surfaces could be laid upon one another without deformation, they
are said to be “developable onto one another.” The two surfaces have this
property if they both admit two-dimensional coordinate systems (u, v) such
that at corresponding points on the two surfaces, where the coordinate val-
ues are the same, the coefficients E, F, and G of one surface have the same
values as the coefficients E, Fi, and G, of the second surface. Knoblauch
wrote this requirement in the now-familiar equations:

Eyz=E, FN=F G =¢G.

4. Einstein’s Immediate Response

The escape from the hole argument sketched above is obviously very close
in strategy to the escape Einstein himself would offer shortly as the point-
coincidence argument, but Einstein’s immediate response to Hertz’s pro-
posal was just a list of protests and complaints. Einstein took Hertz-adapted
coordinates to be the same as the adapted coordinates Einstein himself had
defined (see Section 1 above). The letter from Einstein began with the
protest that Hertz had misrepresented Einstein’s adapted coordinate sys-
tems, since he had failed to retain the crucial property stressed in Section 1
above, namely that two different (Einstein-)adapted coordinate systems
could not come smoothly to agree on the boundary of some region of space-
time. And in any case— whether or net the two coordinate systems were
adapted—they were supposed to have properties that, in general, could not
obtain. Einstein wrote:

Berlin, Saturday
Dear Herr Hertz,

If T have understood your letter correctly, then you make a completely
erroneous representation of that which I call “adapted coordinate sys-
tems.” How do you come to require that a pair of coordinate systems
[Figure 5 = figure from Einstein’s letter] should exist, such that for

ut=u
v =
one has also
E*=E
F*=F
(GF=G)¢* =¢
and over and above this they agree on the boundary of the region?
I am rather convinced that (excepting perh.[aps] quite special fields)
this is never allowed to be possible. 1 have never posited the existence
of systems equivalent in this sense.”!
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Figure 5. Diagram in Einstein to Hertz, “Berlin, Samstag” [1915] (EA 12-201).

We can only conjecture about how Einstein came to see the adapted
coordinates of Hertz’s proposal as being the same as the adapted coordi-
nates he himself had defined for his 1913 theory. Both would use the term
“adapted” naturally as an appropriate term for coordinate systems that they
define in a way that responds to the geometry of the metric field, but it
is hard to see that the use of the term alone would be sufficient to lead
to this misunderstanding. Recall that in EA 12-203 Einstein had encour-
aged Hertz in his attempts to find a “surface-theoretic interpretation” of
the preferred systems of coordinates of Einstein’s theory. If EA 12-203
was written before EA 12-201, we could well imagine Einstein anticipat-
ing such a proposal from Hertz when he received EA 12-201. Or, even if
EA 12-201 did predate EA 12-203, Hertz himself might have thought his
adapted coordinates would serve as the surface-theoretic interpretation of
Einstein’s adapted coordinates and offered them as such. Finally, 2 minor
factor that might well be crucial in such circumstances: Einstein complains
later in the letter that he cannot read Hertz’s handwriting on page five of
his letter. We might well wonder, then, how clearly written the other pages
were.

Einstein’s more general complaint about the inadmissibility of the two
coordinate systems (u*, v*) and (u, v) is readily explicable. All he need
assume is that both coordinate systems with their components (E*, F*, G*)
and (E, F, G) are coordinate systems and components of the same field,
not of two different fields as is crucial to both the hole argument and the
proposal of Section 3 above. (Perhaps this is already assumed in Einstein’s
objection that the two systems cannot both be adapted coordinate systems.)
As Einstein points out, only quite special fields can be transformed in
the way indicated. A coordinate transformation in general produces a
quite different set of components for the field that will fail to match in the
indicated way.
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Einstein continued in what seems to be an attempt further to worry
Hertz’s proposal. He pointed out that the defined special coordinate system
would become degenerate in the case of a space of constant curvatare and
then mentioned the problem of extending the definition of these coordinate
systems to the four-dimensional case in a way that suggested some doubt
about its feasibility. If Einstein did intend doubt here, he was shortly proven
wrong about the general program of finding four-dimensional coordinate
systems that fit the natural structure of a region of space-time, for less than
two years later Kretschmann showed how a four-dimensional coordinate
system could be constructed in general relativity from curvature invariants
(Kretschmann 1917, pp. 592-599).22 The search for coordinates somehow
“adapted” to the intrinsic geometry of the space was, in any case, char-
acteristic of the G&ttingen approach to general relativity, as reflected in
Hilbert’s employment of what he termed “Gaussian coordinates” (Hilbert
1916, pp. 58-59), which are now commonly designated geodesic normal
coordinates.?> The passage quoted above continues thus:

Independently of this, I understand how you establish a special coor-
dinate system on a two-dimensional manifold by curves of constant
curvature and those of maximal curvature gradient. What is problematic
[verddchtig] about this, however, is that, in regions of constant curva-
ture, the (surfaces) curves (or surfaces) of constant curvature are shifted
infinitely far away from one another. The difference, in principle, of
the two coordinates that have been introduced is also problematic. You
could, nevertheless, attempt to see whether such a thing can be done in
a four-dimensional manifold.

Hertz had apparently also coupled his analysis with a proposal for a
generally covariant field equation. Einstein replied sharply, asking whether
or not Hertz agreed with the need to restrict the covariance of his theory,
which again suggests that Hertz had been less than clear in explaining that
the proposal, as outlined in Section 3, was intended as an escape from the
hole argument. Einstein wrote:

I have not understood the proposal for the setting-up of a gravitation
law, because I cannot read your writing on page 5. After all, [ have said
in my work that a usable gravitation law is not allowed to be generally
covariant. Are you not in agreement with this consideration?

Einstein then returned to his earlier objection about the two coordinate
systems that Hertz had introduced and closed with these words:

So once again: I would not think of requiring that the world should be
“developable onto itself,” and I do not understand how you require such
a dreadful thing of me. In my sense, there is certainly a huge manifold
of adapted systems that do not, however, agree on the boundary.
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With best regards to you, your wife, and your gentleman son, who is
already surprisingly affable and fond of writing, I remain, riveted upon
your further communications, yours

A. Einstein

Einstein had understood, in effect, that Hertz required the transforma-
tion relating the two coordinate systems to be an isometry of the surface,
so that he could say that the surface could be developed onto itself by
the transformation. As Einstein had pointed out, surfaces admitting such
isometries are exceptional and, in any case, the transformation could not be
between Einstein’s adapted coordinate systems, since such systems would
never agree on the boundary of the region in the way Hertz required.

5. Einstein’s Eventual Assimilation of
the Lessons Hertz Tried to Teach Him

Even though Einstein’s immediate response to Hertz was so prickly and
defensive, he eventually came to appreciate and advocate Hertz’s central
point: If a system is developable onto another, the two represent the same
reality. This advocacy is nowhere more in evidence than in Einstein’s
correspondence with Ehrenfest in late December and early January 1916.
Ehrenfest was reluctant to accept the generally covariant form of the theory
of gravitation announced by Einstein in November 1915, and he pressed
his reservations by reminding Einstein, as had other correspondents, of the
earlier hole argument. More specifically, in a letter that no longer exists

%‘i&m

Figure 6. First diagram in Einstein to Ehrenfest, January 5, 1916 (EA 9-372).



48 Don Howard and John D. Norton

from late December 1915, Ehrenfest evidently asked Einstein to consider a
situation in which light from a distant star passes through one of Einstein’s
notorious holes and then strikes a screen with a pinhole in it that directs the
light onto a photographic plate.?* Given that generally covariant equations
allow for two different solutions, gﬁv and gllfv, inside the hole, Ehrenfest
asks how we can be sure that light from the distant star following different
paths through the hole determined by the two different solutions can be
guaranteed to strike the same place on the plate.?

We quote the relevant section of Einstein’s detailed answer in its en-
tirety:

In the following way you obtain all of the solutions that general co-
variance brings in its train in the above special case. Trace the little
figure above [see Figure 6] on completely deformable tracing paper.
Then deform the tracing paper arbitrarily in the paper-plane. Then again
make a copy on stationery. You obtain then, e.g., the figure [Figure 7].
If you now refer the figure again to orthogonal stationery-coordinates,
then the solution is mathematically a different one from before, naturally
also with respect to the g,,. But physically it is exactly the same, be-
cause even the stationery-coordinate system is only something imaginary
[eingebildet]. The same points of the plate always receive light. . ..
What is essential is this: As long as the drawing paper, i.e., “space,”
has no reality, the two figures do not differ at all. It is only a matter of
“coincidences,” e.g., whether or not the point on the plate is struck by
light. Thus, the difference between your solutions A and B becomes a
mere difference of representation, with physical agreement. (EA 9-372)
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Aside from the talk of “coincidences,” Einstein’s point here is exactly
Hertz’s, namely, that one can have two solutions that are mathematically
different, while being physically or geometrically (they come to same thing
in this context) indistinguishable,

6. Hilbert’s Escape from the Hole Argument

The reconstruction of what Hertz wrote to Einstein as conjectured in Sec-
tion 3 above was based on an analysis of Einstein’s letters. We then sought
some independent evidence for our conjecture, but the existing documenta-
tion provided none. There is additional correspondence between Einstein
and Hertz from early October 1915, concerning whether or not Hertz should
resign his membership in some society seemingly concerned with political
matters. And something that Einstein wrote in this connection so irritated
Hertz that he threatened to break off the correspondence, an eventuality that
Einstein earnestly sought to avoid.?6 Further communication was no doubt
made even more difficult by the fact that Hertz soon found himself in the
military, posted to a flight school in Posen.?’

If we could not confirm independently that Hertz suggested such an
escape from the hole argument, then, we asked ourselves, could we at
least determine whether or not such an escape was common knowledge
in Géttingen at the time so that Hertz was either initiating or reflecting a
standard response? To our surprise and pleasure we found—after we had
completed the construction of the conjecture of Section 3—that Hilbert
had offered almost exactly the escape in the second of his famous papers
on general relativity and the foundations of physics (Hilbert 1916).

The relevant remarks are found in Hilbert’s somewhat labored discus-
sion of the “causality problem” in general relativity, the designation Ein-
stein often used for the hole argument (Hilbert 1916, pp. 59-63).% Hilbert
points out that the Cauchy problem is not well posed for his own gen-
erally covariant version of general relativity (Hilbert 1915). That theory
has fourteen independent variables—the ten gravitational potentials, g,
and the four electromagnetic field potentials, g, —but the gravitational field
equations and Maxwell’s equations provide only ten independent field equa-
tions. Hilbert illustrates this underdetermination with a pair of solutions,
the first of which represents an electron at rest throughout all time, with
the gravitational and electromagnetic fields everywhere time-independent.
In a manipulation reminiscent of the hole argument, the second solution
is obtained by a coordinate transformation that is the identity for the time
coordinate x4 < 0, but comes to differ for x4 > 0. In the second solution,
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the electron adopts a nonvanishing velocity and the fields become time-
dependent after x; = 0. While the possibility of such different solutions at
first seems to threaten the principle of causality, however, Hilbert proposes
to rescue it by offering a definition of what it means for an object, a law, or
an expression to be “physically meaningful.” According to Hilbert, some-
thing should be regarded as physically meaningful only if it is invariant
with respect to arbitrary transformations of the coordinate system. And in
this sense, the causality principle is satisfied, since, he asserts, all physi-
cally meaningful expressions, which is to say, all invariant expressions, are
unambiguously determined by the generally covariant equations.?’

Itis at this point in Hilbert’s exposition that his argument converges upon
what we believe Hertz proposed to Einstein. Hertz, we believe, exploited a
geometrically adapted coordinate system to display the essential agreement
between the two solutions E, F, G and E*, F*, G*. Hilbert summarized
his basic claim and then promised to prove the claim by exploiting the
geometrically adapted Gaussian coordinate system:

The causality principle holds in this sense:

From a knowledge of the 14 physical potentials, g,,, g;, follow all
assertions about them for the future necessarily and uniquely, insofar as
they have physical significance.

In order to prove this claim, we employ the Gaussian space-time
coordinate system. (Hilbert 1916, p. 61; Hilbert’s emphasis)

Hilbert begins by noting that the selection of Gaussian coordinates provides
the four extra constraints needed to ensure that the fourteen potentials are
determined uniquely by fourteen equations. The Gaussian coordinate sys-
tem is uniquely defined, and, most importantly, the unique assertions then
made about the potentials in the Gaussian coordinate system are of invari-
ant character. Thus, the present can uniquely determine the invariant and
therefore physically meaningful content of the future and no contradiction
with the causality principle remains. '

Hilbert proceeded to indicate three ways in which invariant assertions
can be given mathematical expression. Reminiscent of our reconstruction
of Hertz’s proposal, the first two of Hilbert’s ways resorted to specially
adapted coordinate systems.>® The first recapitulated the use of invariant
coordinate systems, such as what he termed Gaussian (geodetic normal)
coordinates, and elaborated on its application to the example of the electron
at rest. The second allowed invariant character for an assertion that there
exists a coordinate system in which some nominated relation holds. As
an illustration, he resorted again to the case of the electron and claimed
invariant character for the assertion that there exists a coordinate system
according to whose x4 time coordinate the electron is at rest.
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That Hertz, as we reconstruct him, and Hilbert, both working in Géttin-
gen, should rely so heavily on specially adapted coordinate systems to reveal
the physically significant elements of a theory provides strong evidence for
our reconstruction. It also raises the further question of the origin of these
ideas. Were they Hertz’s own? Or was he acting, in effect, as a spokesperson
for Hilbert and the Gottingen group?

7. Other Influences on Einstein’s Resolution of
the Hole Argument

Hertz’s proposal to Einstein—as reconstructed by us—would have pro-
vided a serviceable escape from the hole argument. The escape route ac-
tually followed by Einstein, however, his point-coincidence argument, dif-
fered in crucial ways from that of Hertz and the Gottingen group. The latter
was the mathematician’s escape, relying principally on the mathematical
notion of invariance; the former was the physicist’s escape, relying prin-
cipally on general dicta about physical reality. Was the point-coincidence
argument another unprimed outpouring of Einstein’s genius? Or can we
identify who primed the pump? We believe that there are at least two
plausible candidates.

The first of these, chronologically, is Joseph Petzoldt, a Privatdozent
at the Technische Hochschule Berlin—Charlottenburg, founder in 1912 of
the Gesellschaft fiir positivistische Philosophie (of which Einstein was a
founding member), and author of numerous books and articles promoting
a point of view that Petzoldt labeled “relativistic positivism,” a mélange of
ideas from Mach and Einstein, the chief aim of which was a critique of the
traditional metaphysical notion of substance. Petzoldt’s most important
contribution for the purposes of our discussion was his introduction in
1895 of what he termed “Das Gesetz der Eindeutigkeit” (“The Law of
Uniqueness” or “Univocalness”) (Petzoldt 1895), according to which, in
one of its forms, a theory would be acceptable only if it determined a unigue
model of the reality it aimed to describe. Petzoldt’s “law of uniqueness”
and the major discussion stimulated by it form an essential part of the
background to Einstein’s hole and point-coincidence arguments, since it is
this very methodological principle that lies at the root of both.!

By 1915, Einstein and Petzoldt were in personal contact with one an-
other. There is evidence that Petzoldt was attending Einstein’s lectures
on relativity in Berlin in either the winter semester of 19141915 or the
summer semester of 1915, A postcard from Einstein to Petzoldt in late
1914 or early 1915 makes it clear that Einstein had been reading Petzold{’s
work and approved of its general tendency: ‘“Today I have read with great
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interest your book in its entirety, and I happily infer from it that I have for
a long time been your companion in your way of thinking” (EA 19-067);
the book was most likely Petzoldt’s Das Weltproblem vom Standpunkie des
relativistischen Positivismus aus, historisch-kritisch dargestellt (Petzoldt
1912b).3?

Against this background, one may wonder whether Einstein had ab-
sorbed the point of view exemplified by a remark in Petzoldt’s “Die Rela-
tivititstheorie im erkenntnistheoretischer Zusammenhang des relativistis-
chen Positivismus” (Petzoldt 1912a), which would have appeared early in
1913 in the proceedings of the Deutsche Physikalische Gesellschaft. The
relevant remark concerns the way Petzoldt’s epistemological perspectival-
ism is allegedly embodied in special relativity. Petzoldt writes,

The task of physics becomes, thereby, the unique [eindeurige] general
representation of events from different standpoints moving relative to one
another with constant velocities, and the unique setting-into-relationship
of these representations. Every such representation of whatever totality
of events must be uniquely mappable onto every other one of these rep-
resentations of the same? events. The theory of relativity is one such
mapping theory. What is essential is that unique connection. Physical
concepts must be bent to fit for its sake. We have theoretical and tech-
nical command only of that which is represented uniquely by means of
concepts. :

' Better: representations of events in arbitrarily many of those systems
of reference that are uniquely mappable onto one ancther are representa-
tions of “the same” event. Identity must be defined, since it is not given
from the outset. (Petzoldt 1912a, p. 1059)

Tt is the footnote that grabs one’s attention, for it expresses a fundamental
presupposition of Einstein’s point-coincidence argument. What is interest-
ing about Petzoldt’s remark is that this way of talking about identity under a
mapping, especially of what are clearly, from context, Minkowskian point-
events, was not commonplace in the pre-1915 literature on relativity.

To appreciate the role of the second figure possibly influencing Ein-
stein’s formulation of the point-coincidence argument, recall that Einstein’s
struggle to find generally covariant field equations came to a close with his
November 25, 1915 communication to the Prussian Academy (Einstein
1915b). Already in his immediately preceding communication of Novem-
ber 18, 1915, he remarked that through general covariance, “time and space
have been robbed of the last trace of objective reality” (Einstein 1915a,
p. 831), by which he meant that “the relativity postulate in its most general
formulation . . . turns the space-time coordinates into physically meaning-
less parameters” (Einstein 1915b, p. 847). This makes it clear that, at this
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time, in Iate November, Einstein was in possession of an answer to the
hole argument involving essentially the idea that coordinatizations are not
sufficient for the individuation of points in the physical space-time. Curi-
ously, however, when he begins informing his correspondents about these
developments in late December, he adds, for the first time, the talk of co-
incidences so characteristic of the familiar form of the point-coincidence
argument.

It seems likely to us that Einstein’s immediate inspiration for the point-
coincidence talk came from the work of Erich Kretschmann. His 1915 es-
say, “Ober die prinzipielle Bestimmbarkeit der berechtigten Bezugssysteme
beliebiger Relativititstheorien,” is a lengthy and labored discussion of the
determination of coordinate systems in which the notion of spatiotemporal
coincidence plays a prominent role. The paper clearly anticipates essen-
tial elements of the point-coincidence argument, as Kretschmann himself
seemed to think when, in a later publication, he cited his own 1915 paper
“for further details” (Kretschmann 1917, p. 576) on the point-coincidence
argument, citing Einstein’s version of the argument solely for the introduc-
tion of the German term “Koinzidenzen,” replacing Kretschmann’s 1915
“Zusammenfallen” (see below).3?

In his 1915 paper, Kretschmann argues that only what he calls “topolog-
ical” relations in the form of coincidences have empirical significance, since
all observation requires that we bring a part of the measuring instrument
into contact with the measured object:

What is observed here—if we neglect, at first, all direct metrical determi-
nations—is only the completely or partially achieved spatiotemporal co-
incidence [ Zusammenfallen] or non-coincidence [ Nichtzusammenfallen}
of parts of the measuring instrument with parts of the measured object.
Or more generally: topological relations between spatiotemporally ex-
tended objects. (Kretschmann 1915, p. 914)

A similar insistence on the observability of coincidences figures promi-.
nently in the best-known of Einstein’s statements of the point-coincidence
argument, where Einstein writes:

All our space-time verifications invariably amount to a determination
of space-time coincidences [Koinzidenzen].... Moreover, the results
of our measurings are nothing but verifications of such meetings of the
material points of our measuring instruments with other material points,
coincidences [Koinzidenzen] between the hands of a clock and points on
the clock dial, and observed point-events happening at the same place at
the same time. (Einstein 1916, p. 117)*

There is, to be sure, the one difference noted later by Kretschmann, which
is that Einstein uses the term “Koinzidenzen,” not Kretschmann's “Zusam-
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menfallen.” The former term is more suggestive of the topologist’s notion. -
of the intersections of lines at extensionless points, whereas the latter is
more suggestive of macroscopic congruences of bodies at the level of ob-
servational practice. Thus, Kretschmann can talk more comfortably of
“completely or partially achieved coincidences [Zusammenfallen].” The
similarity is nonetheless striking.

Kretschmann proceeds in the 1915 paper to develop now-familiar ideas
concerning coordinate systems. In particular, he urges on the basis of his
earlier assertions on coincidences that, “in no case can a soundly based
decision be made, through mere observations, between two quantitatively
different but topologically equivalent mappings of the world of appear-
ance onto a space-time reference system” (Kretschmann 1915, p. 916).
An immediate application of Kretschmann’s remark (but not offered by
Kretschmann) is the case of the two solutions, g and g;, (in the same
coordinate system x™) of the hole argument. They are “two quantitatively
different. .. mappings of the world of appearance onto a [single] space-
time coordinate system.” Nonetheless, they are “topologically equivalent,”
since they agree on all point-coincidences, and hence observation allows
no soundly based decision between them. But if observation reveals no
difference, does there remain any factual difference between them? If
we pursue the development of Kretschmann’s ideas, we find that what-
ever differences obtain between the two solutions, gix and g/, must be
merely matters of convention: “Insofar as the kinematical assertions of a
system of physical laws cannot be reduced to purely topological relations,
they are henceforth to be considered as mere—at most methodologically
grounded-—conventions” (Kretschmann 1915, p. 924).%

Of course, there is no reason to think that Kretschmann intended his
discussion to be applied to Einstein’s hole argument. However, the similar-
ity between Einstein’s expositions of the point-coincidence argument and
Kretschmann’s discussion is so striking that it cannot be (dare we say!) a
mere coincidence and must have resulted from some sort of connection be-
tween Einstein and Kretschmann. The only question to be resolved is the na-
ture of that connection. What is extremely suggestive is that Kretschmann’s
paper appeared in an issue of the Annalen der Physik that was distributed
on December 21, 1915, five days before the earliest of the surviving let-
ters in which Einstein articulates the point-coincidence argument, his letter
to Ehrenfest of December 26 (EA 9-363). We are unaware of any similar
invocation of point-coincidences in the corpus of Einstein’s writings—
both published and unpublished—prior to this letter. What is more, when,
in a letter of December 14, 1915 (EA 21-610), Einstein informed Moritz
Schlick about the exciting developments of November 1915, he remarked
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only on space and time having lost the last vestige of physical reality, with
no mention of point-coincidences. These facts make almost irresistible the
conclusion that Einstein read Kretschmann’s paper or learned of its content

“when it appeared, found the ideas on coincidences extremely congenial, and
turned to refine and exploit them to explain to his correspondent Ehrenfest
where his hole argument had failed.

Other paths of transmission of these ideas between Einstein and Kretsch-
mann are possible, but seem less likely. Kretschmann completed his Ph.D.
in 1914 under Max Planck and Heinrich Rubens in Berlin, standing for the
Promotionspriifung on February 5 of that year. But Kretschmann reports
that he finished his studies in Berlin in 1912 (see the Lebenslauf at the end
of Kretschmann 1914), and the manuscript of his 1915 paper was submitted
from K&nigsberg, where he had finished Gymnasium in 1906 and where he
became a Privatdozent in 1920. Were he present in Berlin after Einstein’s
arrival in April 1914, it is plausible that he might have had some contact
with Einstein, through which contact Einstein may have supplied the ideas
about coincidences to or learned them from Kretschmann. Whatever con-
tact they may have had in Berlin, however, cannot have been extensive or
engaging to Kretschmann as far as Einstein’s still incomplete general theory
of relativity was concerned. While he was elsewhere rather long-winded,
Kretschmann’s 1915 paper contains only a brief discussion of Einstein’s
theory (pp. 977-978), citing just two of the earlier joint publications by Ein-
stein and Grossmann (Einstein and Grossmann 1913, 1914), and omitting
the major review article of November 1914 (Einstein 1914b). The discus-
sion is sketchy and fails to make any serious contact with the idea of adapted
coordinates, an idea that was a major focus of Einstein’s Berlin work on the
theory at that time and very relevant to the subject of Kretschmann’s paper.
Finally, of course, the possibility of such earlier transmission completely
fails to explain the extraordinary fact that the point-coincidence argument
and mention of space-time coincidences in this general context appear for
the first time in a letter of Einstein’s of December 26, 1915, only days after
the issue of the Annalen containing Kretschmann’s paper was distributed.3®
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NoOTES

I To see this, note that the first solution transformed from x™ to x™' has the
functional form g], of the coordinates x™’, which is the same functional form as the
components of the second solution in the coordinate system x™.

2 For a summary of the mathematical machinery Einstein used to analyze his
adapted coordinates, see Norton (1984, section 6).

3 This letter is dated on the basis of its place in a sequence of letters discussing
the shipment of the de Haas’s furniture from Berlin to the Netherlands, the shipment
being overseen by Einstein.

4 For more on this visit, see the discussion in Pais 1982, pp. 250 and 259.

3 Cod. Ms. Klein 21L, p. 63, Niedersichsische Staats- und Landesbibliothek
Gottingen.

6 Cod. Ms. Klein 21L, p. 69, Nledersachmsche Staats- und Landesbibliothek
Géttingen.

7 This timing, the fact that Einstein and Hilbert engaged in an intense corre-
spondence through November 1915 and then had a brief falling out after that cor-
respondence, has raised the possibility that Einstein stole the field equations from
Hilbert. We do not take this possibility senously for the reasons given in Norton
(1984, pp. 314-315).

8 See, for example, Einstein to Paul Ehrenfest, December 26, 1915 (EA 9-363),
December 29, 1915 (EA 9-365), and January 5, 1916 (EA 9-372), as well as Einstein
to Michele Besso, January 3, 1916 (EA 7-272; reprinted in Speziali 1972, pp. 63—
64).

? Notice that such magnitudes as “time elapsed” are in turn reducible to space-
time coincidences. A crude physical time could be measured by an idealized light
clock, which is a small rigidly co-moving rod along whose length a light pulse is
repeatedly reflected. The time elapsed is measured by the number of collisions of
the light pulse with the mirrored ends of the rod.

19 Hilbert was the titular director of Hertz’s dissertation, but Hertz actually did
the work under Abraham, who was then Privatdozent; see Pyenson 1979b, p. 76.

11 See Einstein to Hertz, August 14, 1910 (EA 12-195) and August 26, 1910
(EA 12-198). For more on the beginning of their acquaintance, see Stachel et al.
1989, p. 44, and Klein et al. 1993, p. 315.

- 12 See the Hertz-Ehrenfest correspondence in the Ehrenfest scientific correspon-
dence in the Archive for the History of Quantum Physics.

13 See Pyenson 1990, as well as Laub to Einstein, May 16, 1909 (EA 15-465),
Einstein to Laub, May 19, 1909 (EA 15-480), and Einstein to Laub, October 11,
1910 (EA 15-489), November 4, 1910 (EA 15-491).

14 See, for example, Hertz 1923, 1929a, 1929b, 1930, 1936a, 1936b.
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15 See Clark 1971, p. 184. The chief purpose of Einstein’s trip was to meet
the novelist Romain Rolland at Vevey, this as part of Einstein’s efforts to promote
international intellectual cooperation in spite of the barriers raise by World War L
For more on the meeting with Rolland and Einstein’s related activities, see Nathan
and Norden 1968, pp. 12-18. The year could not be 1913, because Einstein was
then still in Zurich, and such a trip would not likely have been undertaken in late
August 1914, immediately after the outbreak of the war.

16 See below. In particular, Hertz uses the older “E, F, and G” notation for what
we would now call the components of the metric tensor.

17 Rudolf Hertz (Paul’s son), private communication,

18 Tg see the correspondence between our account of the hole argument in Sec-
tion 1 and Hertz’s construction, notice that our second solution, g/,, in the first
coordinate system, x™, corresponds to Hertz’s E, F, G in (i, v), while our first
solution, g;;, in the second coordinate system, x™’, corresponds to Hertz’s E*, F*,
G* in (u*, v*). Of course, there is the inconsequential change of context. Einstein’s
argument is formulated in a space-time with an indefinite metric, whereas Hertz’s
argument is formulated for the space of a two-dimensional Gaussian surface.

19 Obviously, this construction and the point-coincidence argument have the
following in common: They pick out a point in the physical space by the intersection
of curves with invariant geometrical properties. In Hertz’s case, the curves are
curves of constant curvature and maximal curvature gradient; in the case of the
poing-coincidence argument, they are geodesics.

2 In his Vorlesungen iiber die Entwicklung der Mathematik im 19. Jarhundert
(Klein 1927, pp. 147-148), Felix Klein lists Knoblauch 1913 as one of the “great
textbooks” appearing around the turn of the century, along with Darboux’s Lecons
sur la théorie générale des surfaces (Darboux 1914-1915) and Bianchi’s Vorlesun-
gen tiber Differentialgeometrie (Bianchi 1910). Although first published in 1927,
Klein’s lectures were delivered in the years 1915 through 1917.

2! Einstein’s replacing of G, the g, component of the metric, by ¢ is explicable
in terms of his 1913 theory. In Einstein’s 1913 theory, the gw«ime «imer COMponent
of the metric in a static field in a suitably adapted coordinate system represents the
single gravitational potential of the field, commonly represented by ¢. Note that
the angle brackets indicate a strikeout in Einstein’s original.

22 In a footnote, Kretschmann comments that the possibility of finding “absolute”
coordinates, meaning coordinates picked out uniquely by the geometry of the space
being thus coordinatized, had been pointed out to him already in a letter from Gustav
Mie in February 1916; see Kretschmann 1917, p. 592, n. 1.

23 For more on Hilbert’s introduction of “Gaussian coordinates,” see Stachel
1992, pp. 410-412. :

24 The approximate date of Ehrenfest’s letter to Einstein can be determined from
his remark, in a letter to Lorentz of December 23, 1915, that he had invited Einstein
to spend the holidays in Leiden. Einstein’s reply to Ehrenfest’s thought experiment
is contained in the same letter of January 5, 1916 (EA 9-372), in which he explains
that the border’s being blocked was the reason why he could not have come to
Holland at that time. We thank A.J. Kox for making available transcriptions of
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the Ehrenfest-Lorentz correspondence, these from his forthcoming edition of the
scientific correspondence of Lorentz.

25 The reconstruction of Ehrenfest’s thought experiment is based upon Einstein’s
reply of January 5 (EA 9-372) and on the description found in Ehrenfest’s letter to
Loreniz of January 9, in which he enclosed Einstein’s letter, asking for Lorentz’s
opinion.

26 See Einstein to Hertz, undated 1915 (EA 12-205), October 1915 (EA 12-206),
Hertz to Einstein, October 8, 1915 (EA 12-207), and Einstein to Hertz, October 9,
1915 (EA 12-208). Though the dating of some of these letters is problematic, they
seem clearly to form a sequence written over a short period. It should be noted that
most of Hertz’s are missing, the letter of October 8 having survived because Hertz
retained a copy in his files.

27 See Hertz to Hilbert, February 17, 1916 (Cod. Ms. Hilbert 150, Handschriften-
abteilung, Niederséchsische Staats- und Universitétsbibliothek Gottingen).

28 Hilbert’s only footnote in.this section of the paper (Hilbert 1916, p. 61) cites
Einstein’s most complete version (1914b, p. 1067) of the hole argument.

» For more on Hilbert and the causality principle in general relativity, see Stachel
1992, pp. 410-412. :

30 The third merely allowed invariant character to a fully covariant law, such as
the law of conservation of energy-momentum expressed as the vanishing covariant
divergence of the stress-energy tensor..

31 For more on Petzoldt and a more detailed bibliography of his writings, see
Howard 1992.

32 For the dating of Einstein’s postcard to Petzoldt and other details about their
relationship, see Howard 1992.

33 For more on Kretschmann’s papers, see Norton 1992, pp. 295-301.

34 See Howard 1992, n. 25, for a critical discussion of Friedman’s (1983, pp. 22—
25) interpretation of this passage as anticipating the verificationist theory of meaning
that later became popular among the logical positivists.

35 In a footnote to the word “convention,” Kretschmann carefully indicates the
precise sense of the word intended. It is to mean that which is not demonstrable
through observation, rather than something arrived at by some kind of free agree-
ment.

36 We might also conjecture that Einstein was asked to review the paper by
Planck, the editor of Annalen. Kretschmann’s paper is dated October 15 and was
received on October 21. If it was sent out for review, Einstein would have been the
obvious reviewer. The short time between submission and publication, October 21
to December 21, suggests that, even though Kretschmann was a first-time author in
the Annalen, the manuscript was not sent out for review, since a two-month period
between submission and publication was more or less normal for established authors
(see Pyenson 1983). This would not be surprising, since Planck had supervised
Kretschmann’s Ph.D., was presumably confident of Kretschmann’s scholarship,
and possibly already familiar with the work submitted.
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Conservation Laws and Gravitational
Waves in General Relativity
(1915-1918)

Carlo Cattani and Michelangelo De Maria

1. Introduction

This chapter deals with two closely related debates in general relativity in
1916-1918, one on gravitational waves, the other on the correct formulation
of conservation laws. Both issues involve the definition of a quantity rep-
resenting the stress-energy of the gravitational field. Such definitions were
typically proposed in the context of deriving the gravitational field equa-
tions from a variational principle. A proper understanding of the debates
on gravitational waves and conservation laws therefore requires some dis-
cussion of the rather complicated history of attempts to derive gravitational
field equations from a variational principle.!

We will trace Einstein’s work on gravitational waves and his work
on conservation laws during the years 1916-1918 in this more complex
network, We will look at objections to Einstein’s approach from Levi-
Civita, Schrédinger, and Bauer; at alternative approaches suggested by
Lorentz and Levi-Civita;, and at Einstein’s response to all of them. In
particular, we will examine the 1917 correspondence between Einstein
and Levi-Civita. We will see how Levi-Civita’s criticism of Einstein’s
formulation of conservation laws strengthened Einstein in his conviction
that physical considerations force one to adopt a noncovariant formulation
of conservation laws for matter plus gravitational field.

2. The Importance of the Conservation Laws in
Einstein’s 1914 Gravitational Theory

In Einstein and Grossmann 1914 and Einstein 1914, Einstein used a vari-
ational method to derive the field equations of limited covariance of his
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so-called Entwurf theory (Einstein and Grossmann 1913). He used conser-
vation of energy-momentum of matter plus gravitational field—the stress-
energy of the latter being represented by a pseudotensor rather than a ten-
sor—to define the Lagrangian H for the gravitational field and to restrict
the covariance of his theory. Einstein believed he had found a very general
argument to fix the Lagrangian for the gravitational field. This Lagrangian
leads to the field equations of the Entwurf theory.

By substituting the gravitational tensor into the law of conservation of
energy-momentum of matter (with stress-energy tensor 7,,"), Einstein was
able to derive certain constraints on H that he thought uniquely fixed its
form. Imposing conservation of energy-momentum of matter and unaware
of the contracted Bianchi identities, he obtained a set of equations to be
satisfied by the gravitational field:

.
=S =B, =0, (@v,...=0,1,23)
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Then Einstein showed that both B, and Ss" must vanish:
BN = 07 Sa’v = 07 (3)

and used these conditions to define the form of H. He finally obtained the
Entwurf field equations in the form®

gy = —x(T" + 1), @)
where the stress-energy tensor” ¢,” for the gravitational field is defined as

- “/_( “Tf, Tl — $ 82 g™ T4, Tl ), ®
I/ being the Christoffel symbols. Differentiating equation (4) with respect

to x" Einstein obtained the conservation law for matter plus gravitational
field in the form

2V 1,") = 0. ©)

It must be stressed, however, that, already in 1914, Einstein noticed that
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t,¥ does not transform as a tensor under arbitrary justified transforma-
tions, but only under linear transformations; nevertheless, we will call
t,” the [stress-]energy tensor’ of the gravitational field. Something anal-
ogous holds for the components I'}, of the gravitational field strength.
(Einstein 1914, p. 1077) ‘

In the spring of 1915, in private correspondence with Einstein, Levi-Civita
sharply attacked Einstein’s proofs of the covariance of certain fundamental
quantities of his Entwurf theory (Cattani and De Maria 1989b); however,
he did not explicitly criticize the pseudotensor character of 7,”.

3. Lorentz’s Variational Approach (1915)

In 1915, Lorentz published a paper (Lorentz 1915) in which he criticized
both the Entwurf theory and the variational formulation Einstein had given
to it in 1914. In the second part of his paper, Lorentz proposed a more
general variational derivation of gravitational field equations. Lorentz did
not specify the form of the Lagrangian; he just assumed it to be a function
of the metric tensor and its first-order derivatives. Requiring that the action
integral be stationary not only for arbitrary infinitesimal variations of the
coordinates, as Einstein had required, but also for arbitrary infinitesimal
variations of the components of the metric tensor, Lorentz obtained the
gravitational field equations in the form

aR* ] <8R*>=_X oM

e | —— , ’7
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where R* and M are the Lagrangians for the gravitational field and mat-
ter, respectively. Furthermore, Lorentz showed that equations (7) turn
into the Entwurf field equations when the function H chosen by Einstein
is substituted for R*. As is well known, Einstein himself later realized
that his choice of a Lagrangian was, in fact, quite arbitrary (Cattani and
De Maria 1989b). Unlike Levi-Civita, Lorentz at this point was unaware of
the mathematical mistakes Einstein made in his early variational approach,
and praised him for “his ingenious mode of reasoning” (Lorentz 1915, p.
1089).

4. Hilbert’s Variational Approach (1915)

On November 20, 1915, Hilbert presented a paper, entitled “The Founda-
tions of Physics” (Hilbert 1915), in which he discussed a variational princi-
ple for general relativity. Hilbert cited both Einstein (1914, 1915a, 1915b,
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1915¢) and Mie (1912), the former for his gravitational field equations,
the latter for his work on nonlinear electrodynamics and his electromag-
netic theory of matter. Like Mie, Hilbert restricted his investigation to the
sitnation of an electromagnetic field in the presence of a gravitational field.

Hilbert was critical of Einstein’s 1914 variational approach as the fol-
lowing quotation from his paper illustrates:

Einstein gave the fundamental original idea of general invariance a sim-
ple expression; however, for Einstein the Hamilton principle only plays
a subordinate role and his function H is not at all generally invari-
ant. Moreover, the electrical poteniials are not included [in his theory].
(Hilbert 1915, 1, p. 396, footnote)

Hilbert proceeded as follows. He assumed that the quantities char-
acterizing the fields are the ten gravitational potentials g, and the four
electromagnetic potentials g,,. He defined a unique invariant world func-
tion according to the following axioms:

Axiom 1 (of Mie about the world function). The law of physical events
is determined through a world function [Lagrangian] H = ./—gH that
contains the following arguments:

aguv azguu . aﬁ
9x*’ Dx*dxP’ o> Gxa
and specifically the variation of the action integral must vanish for
[changes in] every one of the 14 potentials g,., 4.
Axiom 2 (of general invariance). The world function H is invari-

ant with respect to arbitrary transformations of the world parameters
[coordinates] x”. (Hilbert 1915, I, p. 396)

gulh

He then defined two Lagrangian functions, one for the gravitational field
and one for matter. For the gravitational field he used the Riemann curvatare
scalar R. For the matter part he introduced a function M. As long as the
gravitational field equations contain no derivatives of g,, higher than of
second order, the total Lagrangian H must be the direct sum of these two
functions:

H=R+ M. 8)

By evaluating the “Lagrangian derivatives” (Hilbert 1915, I, p. 397) of H
with respect to the various variables, Hilbert obtained the evolution equa-
tions for both gravitational and electromagnetic potentials. His next step
was to show that Axiom 2 allows one to give an explicit proof of the covari-
ance of these evolution equations. Splitting the Lagrangian into two parts,
the scalar curvature invariant for the gravitational field and a Lagrangian for
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the electromagnetic field, Hilbert arrived at the correct gravitational field
equations:

Tuvs ®

where
def

Gu = Ruy — 2 Rgu0. (10)
Finally, Hilbert obtained the evolution equations for electrodynamics in
a curved space-time by generalizing Mie’s derivation for flat Minkowski
space-time.
In conclusion, we want to stress the limits of Hilbert’s method:

(1) Hilbert derived the field equations in the context of Mie’s electro-
magnetic theory of matter. As a consequence, his variational method
could not readily be generalized to other matter. To accomplish that,
one would have to specify how the matter Lagrangian depends on the
gravitational potentials g, .

(2) Although Hilbert obtained generally covariant field equations, he made
use of Lagrangian derivatives that were not generally covariant.

(3) Hilbert was unaware of the contracted Bianchi identities, so that he
arrived at the explicit form of the gravitational tensor in a rather clumsy
way.

5. Lorentz’s Variational Approach (1916)

In 1916, Lorentz published a Iong paper in four parts on general relativ-
ity (Lorentz 1916, I-IV). In part III, he derived the correct gravitational
field equations and an expression for the “stress energy complex” for the
gravitational field. In part IV, he discussed the conservation law for the
gravitational field.

As opposed to the unspecified Lagrangian of his 1915 article, Lorentz
now chose the Riemann curvature scalar R as the Lagrangian for the grav-
itational field. He had come to realize that the Lagrangian has to be a
generally covariant scalar (Lorentz 1916, I, p. 248, p. 251; see also Janssen
1992). ‘ '

Lorentz split the variation of the action R into two parts. The first part,
which is no longer a scalar quantity, leads to gravitational field equations;
the second part vanishes identically on account of the boundary conditions.
Moreover, he showed that the form of his gravitational tensor coincided
with Einstein’s “only for one special choice of coordinates” (Lorentz 1916,



68 Carlo Cattani and Michelangelo De Maria

p. 281, italics in the original). Lorentz obtained the correct gravitational
field equations (Lorentz 1916, II, p. 285). We want to stress, however, that
Lorentz made some mathematically unwarranted assumptions in deriving
his results. He assumed that the infinitesimal variations of the components
of the metric tensor have tensor character. Moreover, he had to make a
special choice of coordinates.

Lorentz also discussed the conservation of energy-momentum of matter
plus gravitational field, and arrived at the equations (6) obtained by Einstein
in 1914 (Lorentz 1916, 111, p. 292). Lorentz too was aware of the fact that
the complex t," is not a tensor (Lorentz 1916, III, p. 294). Whereas this
was perfectly acceptable to Einstein, Lorentz wrote that

[elvidently it would be more satisfactory if we could ascribe a stress-:
energy-tensor to the gravitation field. Now this can really be done.
(Lorentz 1916, I11, p. 295, italics in the original)

A “natural” candidate for this tensor, according to Lorentz, was the gravita-
tional tensor G, of Einstein’s generally covariant field equations. There-
fore he suggested one interpret these equations as conservation laws. In
Lorentz’s opinion this interpretation of the field equations

and the conception to which they have led, may look somewhat star-
tling. According to it we should have to imagine that behind the directly
observable world with its siresses, energy etc. the gravitation field is
hidden with stresses, energy etc. that are everywhere equal and opposite
to the former; evidently this is in agreement with the interchange of mo-
mentum and energy which accompanies the action of gravitation. On the
way of a lightbeam, e.g., there would be everywhere in the gravitation
field an energy current equal and opposite to the one existing in the beam.
If we remember that this hidden energy-current can be fully described
mathematically by the quantities g,, and that only the interchange just
mentioned makes it perceptible to us, this mode of viewing the phenom-
ena does not seem unacceptable. At all events we are forcibly led to it
if we want to preserve the advantage of a stress-energy-tensor also for
the gravitation field. (Lorentz 1916, III, p. 296, italics in the original)

In part IV of his paper, Lorentz compared his definition of the stress-
energy components of the gravitational field with the definition given by
Einstein. While his expression contained first and second order derivatives
of the metric, “Einstein on the contrary has given values for the stress-energy
components which contain the first derivatives only and which therefore are
in many respects much more fit for application” (Lorentz 1916, IV, p. 297).
Thus Lorentz defined a stress-energy complex with components 1, ¥ that are
homogeneous and quadratic functions of the first-order derivatives of the
metric and do not contain any higher-order derivatives. The divergence of
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Lorentz’s complex coincides with the divergence of Einstein’s #,¥. Lorentz
showed that when ./—g = 1 and g,s = 8,p his complex is the same as
Einstein’s. He added that “it seems very probable that the agreement will
exist in general” (Lorentz 1916, IV, p. 299).

In conclusion, we want to stress that Lorentz showed, for the first time,
that the quantity representing gravitational stress-energy was not uniquely
defined.

6. Einstein’s Variational Approach (1916)

In 1916, Einstein returned to a variational approach to derive his gravi-
tational field equations. He remarked that both Lorentz and Hilbert had
succeeded in giving general relativity a clear form by deriving the field
equations from a single variational principle. His aim now was to present
the basic relations of the theory as clearly as possible and in a more general
way. In fact, he considered his new approach more general and “in contrast
especially with Hilbert’s treatment” (Einstein 1916b, p. 1111), since he
rejected some of Hilbert’s restrictive hypotheses on the nature of matter.

His starting point was the universal function H EH +/—g&, assumed
to be a function of the metric tensor and its first-order derivatives and a
linear function of its second-order derivatives. Furthermore, he generalized
the variational principle to any physical phenomenon by assuming H to be
dependent on matter variables g, (not necessarily of electromagnetic origin)
and their first-order derivatives. Thus, he replaced his 1914 Lagrangian by

g gt Bgp )
3x7  dxPoxc’ 17 xa )’

H="H(g", (1)
Integrating a Lagrangian of this form with the usual boundary conditions,
one arrives at the variational principle

ajfﬁ* dr =0, (12)

where H* no longer depends on the second-order derivatives of the metric.
Einstein had to start from a function of the form of (11) because, according
to his principle of general relativity, the Lagrangian H must be invariant
under arbitrary coordinate transformations. However, the reduction of H
to H* (i.e., the reduction to a quadratic function of the metric’s first-order
derivatives) enabled Einstein to make use of the mathematical machinery
developed in his 1914 paper. Meanwhile, the problems he had struggled
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with in 1914 had been overcome: the theory was now generally covariant
and his choice of a Lagrangian was no longer arbitrary (Norton 1984;
Cattani and De Maria 1989b).

Einstein’s next step was to split, like Hilbert, the Lagrangian into a
gravitational and a matter part (see equation (8) above). Einstein concluded
that in order to satisfy his principle of general relativity, the gravitational
part of the Lagrangian “(up to a constant factor) must be the scalar of
the Riemann curvature tensor; since there is no other invariant with the
required properties” (Einstein 1916b, p. 1113). Closely following his 1914
variational approach, Einstein showed, using an infinitesimal coordinate
transformation x#’ = x* -+ Ax*, that the condition B8, = 0 (see equation (3)
above) still holds. In fact, Einstein proved that this condition could be
obtained by showing that A [ Rdt = A [ R*dr where

= V=gg" (T8, o + T2, Thy ).

Therefore, the relation 5, = 0 now holds in every coordinate system, due
to the invariance of R and to the principle of general relativity. B, played a
fundamental role in Einstein’s new derivation of the conservation laws. In
fact, according to Einstein, the gravitational equations could be explicitly
written as equations (7). These equations allowed him to obtain, in a very
straightforward way, the conservation laws. By multiplying equations (7)
by g** he obtained

a (OR*
— =g = (Y + 1), 13
w7 (5rr8") = 1 (" 1) (13
where M
V=gt 14
iy (14)
and 1 /9> oR*
y def uv IW)
o (aguo g(x + ag“” g °
When conditions (2)—(3) are imposed, it follows that
aR*
1 * QU o
= E(R 6(7 - éggvg”“>' (15)

When equation (13) is differentiated with respect to xV, the lefi-hand side
turns into B,. Since B, vanishes, the relation obtained in this way is just
equation (6), expressing conservation of total energy-momentum.
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As in his previous theory, Einstein identified 7, as representing the
stress-energy density for matter and ¢,” as representing the stress-energy
density of the gravitational field (Einstein 1916b, p. 1116). He concluded
that although #,” was not a tensor, the equations expressing the conserva-
tion of total energy-momentum are generally covariant, since they were
obtained directly from the principle of general relativity (Einstein 1916b,
p. 1116). As we shall see, this claim led Levi-Civita, in 1917, to dispute not
only the tensor character of #,” but also the equations Einstein used as his
conservation laws for matter plus gravitational field (Cattani and De Maria
1989a).

7. Einstein’s First Paper on Gravitational Waves (1916)

In another paper from 1916, Einstein tried to compute the components of
t,” for the special case of a weak field, and in doing so discovered the
existence of gravitational waves. The metric for the weak field is written,
as usual, in the form

v = Ny + V> (16)

where 7, is the Minkowski metric and y,,, (and its first-order derivatives)
are infinitesimal quantities. In the weak-field approximation the field equa-
tions reduce to

4 82 !
Y
2 ez = 20T, (17)
a=1 -
where st
! [
Vo = Vv — 5¥8, ¥ = VI (18)

The quantities V;,w are defined only up to a gauge transformation. Einstein
therefore imposed the gauge condition

In this way, he found solutions of the weak-field equations, vanishing at in-
finity, that are the analogs of retarded potentials in electrodynamics. There-
fore, according to Einstein, “gravitational fields propagate as waves with
the speed of light” (Einstein 1916a, p. 692). Multiplying equation (17)
by dy,,/0x?, Einstein obtained the conservation law for the total energy-
momentum in the usual form (6), where

1 Wap Wap 3ip\
by = @[Z T DM ] (19)
af aft
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In deriving the conservation law, however, Einstein made a trivial math-
ematical error (he used y’ % instead of y*# in the conservation law for
matter). As we shall see, two years elapsed before Einstein discovered
this “regrettable error in computation” (Einstein 1918b, p. 154). The error
caused some “‘strange results” (Einstein 1916a, p. 696). Einstein obtained
three different types of gravitational waves compatible with equation (17):
not just longitudinal and transversal ones but also a “new type” of wave
(Einstein 1916a, p. 693). Using equation (19) to compute the energy carried
by these waves, he found the paradoxical result that no energy transport
was associated with either the longitudinal or the transversal waves. He
tried to explain this absurdity by treating these waves as fictitious:

The strange result that there should exist gravitational waves without
energy transport . . . can easily be explained. They are not “real” waves,
but “apparent” ones, because we have chosen as the coordinate system
the one vibrating as the waves. (Einstein 1916a, p. 696)

Einstein found that only the third kind of waves transport energy. He
concluded, however, that the mean value of the energy radiated by this new
type of waves was very small, because of a damping factor 1/c* and because
of the small value of the gravitational constant x (= 1.87 - 10~%7) that
entered into its expression. Still, the possibility of gravitational radiation
was bothersome. As Einstein stated in his paper:

Nevertheless, due to the motion of the electrons in the atom, the atoms
should radiate not only electromagnetic¢ energy, but also gravitational
energy, though in a little quantity. Since, this does not happen in nature,
it seems that the quantum theory should modify not only the electrody-
namics of Maxwell, but also the new theory of gravitation. (Einstein
1916a, p. 696)

8. Levi-Civita’s 1917 Article

Einstein’s choice of a noncovariant stress-energy complex (Einstein 1916b)
and his strange results on gravitational waves (Einstein 1916a) motivated
Levi-Civita to try and find a satisfactory definition of a gravitational stress-
energy tensor in Einstein’s theory (Levi-Civita 1917). In Levi-Civita’s
opinion, it was Einstein’s use of pseudotensor quantities that led to his
physically unacceptable results on gravitational waves. He wrote:

The idea of a gravitational [stress-energy] tensor belongs to the majestic
construction of Einstein. But the definition proposed by the author is
unsatisfactory. First of all, from the mathemaiical point of view, it lacks
the invariant character it should have in the spirit of general relativity.
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More serious is the fact, noticed also by Einstein, that it leads to a clearly
unacceptable physical result regarding gravitational waves. He thought
that the way out of this last problem was through the quantum theory. . ..
Indeed, the explanation is closer at hand: everything depends on the
correct form of the gravitational [stress-energy] tensor. - (Levi-Civita
1917, p. 381)

In Levi-Civita’s opinion, general relativity called for a generally covariant
gravitational stress-energy tensor. Since no differential invariants of the
first order exist, one cannot have a stress-energy tensor containing only first-
order derivatives of the metric; and, since the definition of #,” in (Einstein
1916b) only contains first-order derivatives, Levi-Civita concluded that
“Einstein’s choice of the gravitational tensor is not justified” (Levi-Civita
1917, p. 391). Levi-Civita, in fact, showed that Einstein’s stress-energy
complex was covariant under linear transformations only. He proposed a
new candidate for the gravitational stress-energy tensor, and, consequently,
a new candidate for the conservation law.

Starting from the Ricci tensor R, Levi-Civita, like Hilbert in 1915,
defined G,y = Ry — % 8uv R and wrote the gravitational field equations
in the form of (9). Using, for the first time, the contracted Bianchi iden-
tities, Levi-Civita showed that the covariant divergence of G,” vanishes:
V,G," = 0. Consequently, V,7,” = 0. This conservation law for matter
will hold, Levi-Civita pointed out, since “7," includes the complete con-
tribution of all phenomena (but gravitation) which take place at the point
in time under consideration” (Levi-Civita 1917, p. 389).

Levi-Civita now made a move similar to the one we saw Lorentz make
earlier: he proposed to interpret equation (9) both as field equations and as
conservation laws. Defining the stress-energy tensor for the gravitational

field as

1
Ay = ;gl“’ =—Tw = Anw+7,=0, (20

he identified

A,, as the components of a [stress-Jenergy tensor of the space-time
domain, i.c., depending only on the coefficients of ds?. Such a tensor
can be called both gravitational and inertial, since gravity and inertia
simultaneously depend on ds?. (Levi-Civita 1917, p. 389)

According to Levi-Civita, A,, completely characterizes the contribution of
gravity to the local mechanical behavior. With this interpretation, it follows
from equation (20) that no net flux of energy can exist. This equilibrium is
guaranteed by the “real” existence of both quantities which, being tensors,
are independent of the choice of coordinates. Hence,
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[n]ot only the total force applied to every single element vanishes, but
also (taking into account the inertia of the A,,) the total stress, the flux,
and the energy density. (Levi-Civita 1917, p. 389)

So, for Levi-Civita, the gravitational stress-energy is characterized by the
only element independent of the coordinates, the Riemann tensor.

In Levi-Civita’s approach, the problems that Einstein ran into are
avoided. Einstein had to admit the possibility that gravitational waves
transporting energy are generated in the absence of sources. Einstein’s
weak-field equations have solutions for 7, = 0 representing such spon-
taneous gravitational waves. Moreover, the energy flux, computed on the
basis of equation (17), could be zero in one coordinate system and nonzero
in another. Einstein invoked the help of quantum theory to solve these
problems. Levi-Civita claimed that it was enough to define the gravi-
tational stress-energy tensor the way he suggested and to reinterpret the
field equations accordingly. This precludes all counterintuitive situations
of the sort Einstein encountered, for, according to (20), the gravitational
stress-energy tensor A, vanishes whenever the stress-energy tensor 7T,
for matter vanishes.

9. Einstein’s Response to Levi-Civita

In the summer of 1917, the Great War still raging on, Einstein went on
a vacation trip to his home country, neutral Switzerland. While there, the
mathematician Adolf Hurwitz gave him a copy of Levi-Civita’s paper (Levi-
Civita 1917), which had just been published in Rendiconti dell’ Accademia
dei Lincei. From Lucerne, on August 2, 1917, Einstein wrote a long letter
to Levi-Civita,® still in Padua (which was very close to the war front), in
order to rebut the latter’s criticism of his theory, especially his use of a
pseudotensor to represent gravitational stress-energy. Einstein gave some
physical considerations to show that the stress-energy of the gravitational
field cannot be represented by a generally covariant tensor.

Einstein began his letter expressing his admiration for Levi-Civita’s
“beautiful new work™:

I admire the elegance of your method of calculation. It must be nice
to ride through these fields upon the horse of true mathematics, while
people like me have to make their way laboriously on foot.... I still
don’t understand your objections to my view of the gravitational field.
I would like to tell you again what causes me to persist in my view.
(Einstein to Levi-Civita, August 2, 1917, p. 1)
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He then proceeded to discuss the example of a counterweight pendulum
clock to show that Levi-Civita’s choice of a tensor to represent the stress-
energy of the gravitational field is problematic from a physical point of
view: ~

I start with a Galilean space, i.e., one with constant g,,. Merely by
changing the reference system [i.e., by introducing an accelerated ref-
erence system], I obtain a gravitational field. If in K’ a pendulum clock
driven by a weight is set up in a state in which it is not working, grav-
itational energy is transformed into heat, while relative to the original
system K, certainly no gravitational field and thereby no energy of this
field is present.” Since, in K, all components of the energy “tensor” in
question vanish identically, all components would also have to vanish in
K', if the energy of gravitation could actually be expressed by a tensor.
(Einstein to Levi-Civita, August 2, 1917, p. 1)

If gravitational stress-energy could be expressed by a tensor, no gravita-
tional process could occur in K’, in which case, contrary to experience,
gravitational energy could not be transformed into heat. In short, the pen-
dulum clock example shows that it should be possible for the components of
gravitational stress-energy to be zero in one reference frame and nonzero in
another. Therefore, gravitational stress-energy cannot be represented by a
generally covariant tensor. Notice how Einstein’s reasoning here is deeply
rooted in his conception of the equivalence principle.

To the physical argument of the pendulum clock, Einstein adds an ar-
gument against the tensor character of gravitational stress-energy of a more
mathematical nature:

In general, it seems to me that the energy components of the gravitational
field should only depend upon the first-order derivatives of g, because
this is also valid for the forces exerted by the fields.? Tensors of the
first order (depending only on dg,,/9x” = g~"), however, do not exist.
(Einstein to Levi-Civita, August 2, 1917, pp. 1-2)

In his letter, Einstein went on to criticize Levi-Civita’s interpretation of
the gravitational field equations (20) as conservation laws. Einstein gave
some examples showing that such conservation laws would have strange
and undesired consequences. He wrote to Levi-Civita,

You think that the field equations . .. should be conceived of as energy
equations, so that [Qﬂ would be the [stress-]energy components of the
gravitational field. However, with this conception it is quite incompre-
hensible how something like the energy law could hold in spaces where
gravity can be disregarded. Why, for example, should it not be possible
on your view for a body to cool off without giving off heat to the outside?

(Einstein to Levi-Civita, August 2, 1917, p. 2)
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On Levi-Civita’s proposed definition of the conservation laws, the only way
for matter to lose energy, it seems, is to transfer it locally to the gravitational
field. Tt does not seem to allow for the possibility of energy transfer from
one place to another.

At the same time, Levi-Civita’s proposal did seem to allow for processes
one would like to rule out. Einstein wrote:

The equation
G+ Tr=0 2D

allows 7,' to decrease everywhere, in which case this change is com-
pensated for by a decrease of the, physically not perceived, absolute
value of the quantity G;. ... I maintain, therefore, that what you [Levi-
Civita] call the energy law has nothing to do with what is otherwise so
designated in physics. (Einstein to Levi-Civita, August 2, 1917, p. 2)

On these grounds, Einstein rejected Levi-Civita’s interpretation of the
field equations as conservation laws, and held on to his earlier formula-
tion of the conservation laws (6). He argued that this formulation was
perfectly sensible from a physical point of view, even though it invelved a
pseudotensor representing gravitational stress-energy:

[My] conclusions are correct, whether or not one admits that the ¢] are
“really” the components of the gravitational [stress-Jenergy. That is to

say, the relation
: d
gl [t suyav] =0

holds true with the vanishing of 7" and &,” at [spatial] infinity, where
the integral is extended over the whole three-dimensional space. For
my conclusions, it is only necessary that T.* be the energy density of
matter, which neither one of us doubts. (Einstein to Levi-Civita, August
2,1917,p.2)

Finally, Einstein pointed out that, in his definition, the gravitational
stress-energy exhibits the desired behavior at spatial infinity:

... (in the static case) the field at infinity must be completely determined

by the energy of matter and of the gravitational field (taken together).
This is the case with my interpretation.... (Einstein to Levi-Civita,
August 2, 1917, p. 2)

10. Levi-Civita’s Response to Einstein

At the end of August 1917, Einstein received Levi-Civita’s answer,’ full of
flattery as well as criticism:
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I am very grateful that you kindly appreciate the mathematics of my last
articles but the credit of having discovered these new fields of research
goes to you. (Levi-Civita to Einstein, August 1917, draft, p. 1)

In his letter, Levi-Civita criticized Einstein’s definition of the gravitational
field energy, wondering why a function of first-order derivatives of the
metric tensor shouid be taken as stress-energy (pseudo)tensor, and asking
for a more convincing motivation of this choice.

On the other hand, Levi-Civita granted Einstein that his interpretation
of the field equations as conservation laws was not very fecund:

I recognize the importance of your objection that, in doing so, the energy
principle would lose all its heuristic value, because no physical process
(or almost none) could be excluded a priori. In fact, [in order to get any
phiysical process] one only has to associate with it a suitable change of
the ds?. (Levi-Civita to Einstein, August 1917, draft, p. 1)

Levi-Civita seems to be referring to Einstein’s example of a stress-energy
tensor for matter whose energy component decreases everywhere, Ein-
stein’s conservation laws (4) rule out such a stress-energy tensor. It looks
as if Levi-Civita’s conservation laws, i.e., the gravitational field equations,
do not. Ttlooks as if it would be possible for almost any matter stress-energy
tensor to find a metric field such that the field equations are satisfied. The
conservation laws thus seem to lose their “heuristic value” of restricting
the range of acceptable matter stress-energy tensors. Of course, through
the contracted Bianchi identities, the field equations do, in fact, restrict the
range of acceptable matter stress-energy tensors.

In his letter, Levi-Civita stressed having no prejudice against a definition
of gravitational stress-energy dependent on the choice of coordinates, or,
as he put it,

dependent on the expression of ds2, in analogy with what happens for
the notion of force of the field. . .. In the case of the equations of motion,

written in the form

d’x” v ] dx® dx”

ds? op| ds ds’
one can explicitly connect the right-hand side (which does not define
either a covariant or a contravariant system) with the ordinary notion of
force. According to you, the same should happen for your #,* (which
do not constitute a tensor). I am not in principle opposed to your point
of view. On the contrary, I am inclined to presume that it is right as are
all intuitions of geniuses. But I would like to see each conceptual step
[canceled: logical element] to be clearly explained and described, as is -
done (or, at least, as is known can be done) in the case of the equation
above, where we know how to recover the ordinary notion of force.
(Levi-Civita to Einstein, August 1917, draft, pp. 1-2)
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Atthe same time, Levi-Civitainsisted that, at least from a logical point of
view, there was nothing wrong with his own choice of a generally covariant
tensor to represent gravitational siress-energy:

[canceled: Let me add some opinions for a logical defense]. While I
maintain an attitude of prudent reserve and wait, I still want to defend the
logical flawlessness of my tensor G,,. (Levi-Civita to Einstein, August
1917, draft, p. 2)

Next, Levi-Civita attacked the counterweight pendulum-clock example:

I want to stress that, contrary to what you claim, there is no contradiction
between the accounts of the pendulum-clock in the two systems K and
K', the first one fixed (in the Newtonian sense), the second one moving
with constant acceleration. You say that:

(a) in K, the energy tensor is zero because the g, are constant;

(b) in K’, this is not the case; instead, there is a physical phenomenon
with an observable transformation of energy into heat;

(¢) due to the invariant character of a null tensor, the simultaneous
validity of (a) and (b) implies that there is something wrong with
the premises.

I contest (a), since we can assume that g, are constant outside of the
ponderable bodies, but [not] in the space taken up by your pendulum-
clock. (Levi-Civita to Einstein, August 1917, draft, p. 2)

In other words, Levi-Civita denied that Einstein’s pendulum clock example
is incompatible with the tensor character of A, observing that since the
pendulum is not massless, strictly Euclidean coordinates cannot be assumed
in K. Therefore, the energy tensor for gravitational field is different from
zero both in K and in K.

Finally, Levi-Civita responded to Einstein’s comment on the behavior
of the gravitational field at infinity:

With regard to the last consideration of your letter (point 4), if I am
not wrong, it [the behavior of the gravitational field at infinity] is not
a consequence of the special form of your #,”, but is equally valid for
my A,,. It seems to me that the behavior at infinity can be obtained
from [our equation (20)] by using the circumstance that the divergence
of the tensor A, is identically zero; therefore, the divergence of 7,

. . d
also vanishes, and it reduces asymptotically to ZTTIW = 0, because
X

the g, tend to the values ¢, [i.e., the constant Minkowski values of the
metric tensor]. (Levi-Civita to Einstein, August 1917, draft, p. 2)

So, Levi-Civita invoked the contracted Bianchi identities to show that his
conservation laws, like Einstein’s, exhibit the desired behavior at spatial
infinity.
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In an addendum, Levi-Civita finally remarked:

An indication in favor [of our equation (20)] is the negative value of the
energy density of the gravitational field Ag (assuming g9 > 0). This is
in agreement with the old attempts to localize the potential energy of a
Newtonian body, and explains the minus sign as due to the exceptional
role of gravity compared to all other physical phenomena. (Levi-Civita
to Einstein, August 1917, draft, p. 2)

11. Einstein’s Second Paper on Gravitational Waves (1918)

After Levi-Civita’s August 1917 letter, the polemic between the two scien-
tists stopped until Einstein in 1918 published a new paper on gravitational
waves (Einstein 1918b). In the introduction, he recognized that his earlier
approach to gravitational waves (in Einstein 1916a)

was not transparent enough, and it was marred by a regrettable error
in computation. Therefore, I have to turn back to the same-argument.
(Einstein 1918b, p. 154) :

Because of this error, he had obtained the wrong expression for his stress-
energy complex. Correcting the error, Einstein could easily derive the
correct expression for the stress-energy complex. As a consequence, he
obtained only two kinds of waves, thereby resolving all the physical para-
doxes of his previous results. Einstein could now assert with confidence
that

[a] mechanical system which always maintains its spherical symmetry
cannot radiate, contrary to the result of my previous paper, which was
obtained on the basis of an erroneous calculation. (Einstein 1918b,
p. 164)

In the last section of (Einstein 1918b), entitled “Answer to an objection .
advanced by Mr. Levi-Civita,”'® Einstein publicly gave his final reply to
Levi-Civita’s old objections. Einstein gave improved versions of some of
the arguments already given in his August 1917 letter to Levi-Civita. He
stressed that at least the time component of equation (6) must be locked upon
as the energy equation, even if the tV; cannot be considered components of
a tensor. )

In this section of his paper, Einstein gave ample credit to Levi-Civita
for his contributions to general relativity:

In a recent series of highly interesting studies, Levi-Civita has con-
tributed significantly to the clarification of some problems in general
relativity. In one of these papers [Levi-Civita 1917], he defends a point
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of view regarding the conservation laws different from mine, and dis-
putes my conclusions about the radiation of energy through gravitational
waves. Although we have already setiled the issue to the satisfaction
of both of us in private correspondence, I think it is fitting, because
of the importance of the problem, to add some further considerations
concerning conservation laws. ... There are different opinions on the
question whether or not ¢, should be considered as the components of
the [stress-]Jenergy of the gravitational field. I consider this disagreement
to be irrelevant and merely a matter of words. But I have to stress that
[our equation (6)], about which there are no doubts, implies a simplifi-
cation of views that is important for the significance of the conservation
laws. This has to be underscored for the fourth equation (¢ = 4), which
I want to define as the energy equation. (Einstein 1918b, p. 166)

Without entering into the mathematical details of ts”, Einstein defended
his energy equation with the following argument:

Let us consider a spatially bounded material system, whose matter den-
sity and electromagnetic field vanish outside some region. Let S be
the boundary surface, at rest, which encloses the entire material system.
Then, by integration of the fourth equation over the domain inside S,
we get

_Iiz f (7?14 + 1‘44) dV = f (1‘41 cos(nxy) + 14 cos(nxy) + 4’ cos(nm)) do.
v S

One is not entitled to define #4* as the energy density of the gravitational
field and (t4', 4%, t°) as the components of the flux of gravitational
energy. But one can certainly maintain, in cases where the integral of 4%
is small compared to the integral of the matter energy density 7;*, that
the right-hand side represents the material energy loss of the system. It
was only this result that was used in this paper and in my first article on
gravitational waves. (Einstein 1918b, pp. 166-167)

Einstein then considered Levi-Civita’s main objection against his choice of
conservation laws:

Levi-Civita (and prior to him, although less sharply, H.A. Lorentz) pro-
posed a different formulation . .. of the conservation laws. He (as well
as other specialists) is against emphasizing [equations (6)] and against
the above interpretation because #," is not a tensor. (Einstein 1918b,
p. 166)

Although Einstein obviously had to admit that #,” is not a tensor, he con-
cluded:

I have to agree with this last criticism, but I do not see why only those
quantities with the transformation properties of the components of a
tensor should have a physical meaning. (Einstein 1918b, p. 167)
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Finally, Einstein stressed that, even though there is no “logical objection”
Einstein 1918b, p. 167) against Levi-Civita’s proposal, it has to be dis-
missed on physical grounds.

I find, on the basis of [equation (20)], that the components of the total
energy vanish everywhere. [Equation (20)], (conirary to [equation (6)]),
does not exclude the possibility that a material system disappears com-
pletely, leaving no trace of its existence. In fact, the total energy in
[equation (20)] (but not in [equation (6)]) is zero from the beginning;
the conservation of this value of the energy does not guarantee the per-
sistence of the system in any form. (Einstein 1918b, p. 167)

In fact, this result is due to the algebraic form of Levi-Civita’s “conser-
vation law” (according to which the total stress-energy is equal to zero
everywhere). In Levi-Civita’s opinion, the local vanishing of the matter
stress-energy does not allow any energy flux. From a mathematical point
of view, Levi-Civita’s approach, with a generally covariant gravitational
stress-energy tensor, was certainly more general than Einstein’s, and ap-
parently more in line with the spirit of general relativity. Einstein’s choice,
on the other hand, was more convincing on the basis of physical arguments,
as Levi-Civita himself admitted. At the time, Einstein stood alone in his de-
fense of a noncovariant definition of gravitational energy. Modern general
relativists, however, follow Einstein’s rather than Levi-Civita’s approach to
conservation laws.

12. Schrédinger’s Example against Einstein’s
Stress-Energy Complex and Einstein’s Reply

Lorentz and Levi-Civita were not the only two scientists to criticize Ein-
stein’s definition of gravitational stress-energy. In November 1917, Erwin
Schrodinger showed, in a straightforward calculation, that, given a symmet-
rical distribution of matter, Einstein’s gravitational stress-energy complex
t” can be zero in a suitable coordinate system. Schrodinger evaluated the
stress-energy complex, starting from the Schwarzschild metric for the case
of an incompressible fluid sphere of matter, and noticed that

to determine f,", we must always specify the coordinate system, since
their values do not have tensor character and do not vanish in every
system, but only in some of them. The result we get in this particular
case, i.e. the possibility of reducing #,” to be identically zero, is so
surprising that I think it will need a deeper analysis. . .. Our calculation
shows that there are some real gravitational fields whose [stress-Jenergy
components vanish; in these fields not only the momentum and the
energy flow but also the energy density and the analogs of the Maxwell
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stresses can vanish, in some finite region, as a consequence of a suitable
choice of the coordinate system. (Schrodinger 1918, p. 4)

Thus, Schrédinger concluded,

This result seems to have, in this case, some consequences for our ideas
about the physical nature of the gravitational field. Since we have to
renounce the interpretation of #,” ... as the [stress-Jenergy components
of the gravitational field, the conservation law is lost, and it will be our
duty to somehow replace this essential part in the foundation [of the
theory]. (Schrodinger 1918, pp. 6-7)

About two and a half months later (on February 5, 1918), Einstein replied to
Schrodinger in the same journal (Einstein 1918a). Oddly enough, Einstein
started by raising further doubts about his choice of the quantities ¢,V to
represent gravitational stress-energy:

Schridinger’s calculations have shown that in a suitably chosen coordi-
nate system all [stress-]energy components £, of the gravitational field
[generated by a] sphere vanish outside of this sphere. Understandably,
he was puzzled by this result, and so was I at first; in particular, he
wondered whether 7,” should really be interpreted as [stress-Jenergy
components. . .. To these doubts I can add two more:

(1) the [stress-]Jenergy components of matter 7,” represent a tensor,
. while this is not true for the “[stress-Jenergy components” of the
gravitational field 77 ,; Rt

(2) the quantities 7,; = > 7T."g, are symmetric in the indices o and
7, while this not true for t,; = ) 15" gue.

For the same reason as mentioned in point (1), Lorentz and Levi-Civita
also raised doubts about interpreting ¢, as the [stress-Jenergy compo-
nents of the gravitational field. Even though I can share their doubts, I
am still convinced that it is helpful to give a more convenient expression
for the energy components of the gravitational field. (Einstein 1918a,
p. 115)

Einstein then offered the following explanation for Schridinger’s appar-
ently strange result. He pointed out that a gravitational field generated by
only one body, as in Schrodinger’s example, is different from physical grav-
itational fields that always involve more than one body: “in gravitational
fields mediating exchange effects between different bodies the quantities
t?, cannot vanish identically” (Einstein 1918a, p. 115). As an example,
Einstein considered two material bodies, M| and M-, connected by a rigid
rod. Using his conservation law, he found that since the stresses for matter
are nonzero, the gravitational energy flux is nonzero as well. Therefore,
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[t]hese considerations hold mutatis mutandis in all those cases where
the field transmits exchange effects between different bodies. But this
is not the case for the field considered by Schrodinger. (Einstein 1918a,
p-116)

He concluded peremptorily:

Hence, the formal doubts (1) and (2) cannot lead to a rejection of my
proposal for the expression of the energy-momentum. It does not seem
justified to put any further formal demands [on the properties of a quantity
representing gravitational stress-energy]. (Einstein 1918a, p. 116)

13. Bauer’s Example against Einstein’s
Stress-Energy Complex and Einstein’s Final Reply

About one month after Einstein’s reply to Schrodinger, Hans Bauer at-
tacked Einstein’s choice of 17, (Bauer 1918). He discussed an example
complementary to Schrodinger’s. Schrodinger had shown that Einstein’s
gravitational stress-energy sometimes vanishes despite the presence of a
gravitational field. Bauer now showed that it does not always vanish in the
absence of a gravitational field. He stressed that

the partial nonvanishing of the [stress-lenergy components has nothing
to do with the presence of a gravitational field, but it is due only to the
choice of a coordinate system. ... This behavior is not surprising, since
t?, is not a tensor. (Bauer 1918, p. 165) .

So, Bauer thought he had thrown another stone at the physical plausibility
of Einstein’s proposal:

we have to conclude that the “[stress-]Jenergy components” 9, are not
related to the presence of a gravitational field as they depend only on
the choice of coordinates. They can vanish in presence of a field, as
shown by Schrodinger, and do not always vanish in absence of a field,
as shown below. Hence, their physical significance seems to be very
dubious. (Bauer 1918, p. 165)

Einstein replied to Bauer’s criticism without delay. In May 1918, he pub-
lished a new reply to Schrodinger and Bauer (Einstein 1918c). He once
again justified his choice with physical arguments. In his opinion,

the theory of general relativity has been accepted by most theoretical
physicists and mathematicians, even though almost all colleagues stand
against my formulation of the energy-momentum law. Since [ am con-
vinced that T am right, I will in the following present my point of view
on these matters in more detail. (Einstein 1918c, p. 448)
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Einstein reminded his readers how special relativity combines the ordinary
conservation laws of energy and momentum into one differential equation
(i.e., the vanishing of the four-divergence of the stress-energy tensor) which
is equivalent to the integral form of these conservation laws verified in
experience. The generalization of this conservation law to general relativity,
he explained, was particularly delicate. Einstein showed how, with his
choice, “the classical concepts of energy and momentum are established as
concisely as we are accustomed to expect in classical mechanics” (Einstein
1918c, p. 449). Then he demonstrated that the energy and momentum of a
closed system are uniquely determined only when the motion of the system
(considered as a whole) is expressed “with respect to a given coordinate
system” (Einstein 1918¢, pp. 449-450). In particular, he showed that the
stress-energy of such closed systems can only be expected to transform
as a tensor under certain coordinate transformations, viz. those coordinate
transformations that reduce to the identity transformation at infinity. The
transformations used in Schrédinger and Bauer’s examples do not meet this
requirement, so they do not count as counterexamples.

After this article by Einstein, the debate on the correct formulation of
conservation laws in general relativity apparently came to the end.

14. Conclusions

In this chapter, we have described the polemic between Einstein and Levi-
Civita on the correct formulation of conservation laws in general relativity
during the years 1917-1918. Prompted by a mistake Einstein made in his
first paper on gravitational waves, Levi-Civita criticized the use of non-
covariant quantities in a generally covariant theory. This, in tum, stimu-
lated Einstein to give a new and correct description of gravitational waves.
Meanwhile, Lorentz had shown that there is no unique definition of the
stress-energy of the gravitational field in general relativity. Following up
on this insight, Lorentz proposed to interpret the field equations as con-
servation laws. Levi-Civita independently made the same proposal in a
mathematically more satisfactory way, using the contracted Bianchi iden-
tities. Einstein held on to his old formulation of the conservation laws
involving the pseudotensor ,” to represent the gravitational stress-energy.
Schrédinger and Bauer showed that, in certain cases, Einstein’s choice of
t," led to paradoxical results.

This episode makes for an interesting case study in the history of general
relativity for at least two reasons: (1) it clarifies the connections between
variational methods and conservation laws in general relativity and their
cross-fertilization; (2) it shows the extent of Einstein’s scientific isolation
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in his efforts to complete the edifice of general relativity during 1916-1918.
Some of the most celebrated mathematical physicists, such as Lorentz and
Levi-Civita, attacked his choice of a pseudotensor to represent gravitational
stress-energy on the basis of formal mathematical arguments very much in
the spirit of general relativity. Moreover, two young theoretical physicists,
Schrédinger and Bauer, came up with some apparently damning counterex-
amples against Einstein’s choice. Yet Einstein, masterfully exploiting the
equivalence principle as a heuristic tool, stubbornly defended his choice
and justified it with strong physical arguments. By today’s standards, he
was right.
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NOTES

1 See also Cattani’s chapter “Levi-Civita’s Influence on Palatini’s Contribution
to General Relativity” in this volume.
2 With his 1914 choice of H, B, explicitly is

32
= 0xvox®
3 For a more extensive discussion of these calculations, see Norton (1984).
4 Einstein defined the pseudotensor ¢ as (Einstein 1914, p. 1077)

el wAHE U,BH<—g>”2)
LA X 8 ager a dgar ’
in order to show explicitly its dependence on H.

5 In this period physicists meant siress-energy tensor when they said energy-
tensor.

6 Einstein to Levi-Civita, August 2, 1917, Einstein Archive, Boston (EA 16-253).
English translation by J. Goldstein and E.G. Straus with some modifications.

7 Let us examine Einstein’s pendulum clock example a little more closely. In K,
the reference frame in which there is no gravitational field, the clock is not working
since the counterweight that should drive it is not subjected to a gravitational field.
Let us take a concrete example. Suppose our clock is in a spacecraft far from any
masses with its engines turned off (frame K). In this case, the clock is in a situation
of “absence of weight,” and consequently cannot work. When the engines are
turned on, the spacecraft accelerates (frame K'). Consequently, all objects inside
the spacecraft experience an apparent gravitational field. Our clock will want to
start working under the influence of this field. If, in X', we want to prevent this,
the clock’s gravitational energy will be transformed into heat.

8 Here Einstein presumably alludes to the fact that in general relativity grav-
itational forces are expressed in terms of the Christoffel symbols, which contain
first-order derivatives of the metric only.
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? Levi-Civita to Einstein, August 1917. Only a draft of this letter survives
(Levi-Civita Papers, Accademia dei Lincei, Rome). It seems reasonable, though,
to assume that the actual letter was not all that different from the draft.

10 “Antwort auf einen von Hrn. Levi-Civita herrithrenden Einwand,” Einstein
1918b, pp. 166-167.
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The General-Relativistic
Two-Body Problem and the
Einstein—Silberstein Controversy

Peter Havas

1. Introduction: The “Problem of Motion” in
the General Theory of Relativity

In 1933, Ludwik Silberstein, a Polish physicist, wrote Einstein that he
had found an exact solution of the field equations of the general theory of
relativity for the problem of two masses at rest. A lengthy correspondence
ensued, which became more and more acrimonious and finally spilled over
into the newspapers. To be able to understand the details of this controversy,
it is necessary to outline earlier work on this problem, both by Finstein
himself and by other scientists. ‘

The two-body problem is an important part of the “Problem of Motion”
in the general theory. I gave a talk on the early history of this problem at our
1985 conference, of which a slightly extended version is being published in
the Proceedings (Havas 1989). To understand the problem under consider-
ation and to put it in its proper historical perspective, it will be necessary,
however, to repeat some of the earlier discussion as well as to elaborate on
part of it and to provide some technical details.

In his initial formulation of the general theory, Einstein had assumed
that—just as in Newtonian mechanics—the laws of motion are independent
of the force laws or field equations responsible for the interactions between
bodies, and he had postulated that a single mass point would move along
a geodesic of the metric g, describing the field. For a single body at
rest, this assumption poses no difficulties, and the exact solution for such a
body, obtained very early on (Schwarzschild 1916; Droste 1916a), remains
untouched by the subsequent investigations of the problem of motion.



The Two-Body Problem and the Einstein—Silberstein Controversy &9

The first attack on the two-body problem is also due to Droste, a student
of H.A. Lorentz who, in accordance with Einstein’s ideas, assumed that it
was possible to solve the field equations under the assumption that the
bodies were permanently at rest and thus their field was static. He obtained
an approximate solution (Droste 1915); he also obtained an approximate
solution for n slowly moving bodies (Droste 1916b), but did not proceed
far enough to realize that his method would lead to inconsistencies. Both
Droste 1916a and 1916b were based on his University of Leiden thesis,
which he defended in December (Droste 1916¢). He briefly continued
working with Lorentz; their important joint paper (Lorentz and Droste
1917) is discussed in Havas 1989. But then he moved into mathematics
and did not publish anything further in relativity.

The general theory was developed and the investigations mentioned
were carried out while the First World War was raging in Europe.
Schwarzschild died shortly after finding his solution. Of the other early
investigators in general relativity, Lorentz and his school were working in
neutral Holland, Einstein in Berlin, Eddington and others in England. Al-
though they were not completely isolated from each other, communication
was difficult, and it is not possible to establish when (or sometimes if) they
became aware of each other’s results. De Donder, on the other hand, was
working in complete isolation in German-occupied Belgium; although he
seems to have obtained some important results before anybody else, he
was not able to communicate them even to Lorentz in neighboring Holland
without delays of many months.

Eddington was able to complete a report on the general theory of rela-
tivity for the Physical Society of London by June 1918 (Eddington 1918).
From general considerations he came to the conclusion (p. 65) for particles
of matter considered as singularities of the field that “the laws of motion
of the singularities must be contained in the field equations.” He later pub-
lished a popular discussion of the theory of relativity in Space, Time and
Gravitation, the French edition of this book (Eddington 1921) contained
a 149-page mathematical supplement (apparently completed in October
1920) in whose section 1v a much more detailed derivation of the law of
motion is given.

This book was used in the preparation of an excellent introduction to
relativity by Jean Becquerel, based on a course given by him for several
years, whose section 87 is entitled “The law of motion of the free mass point
is contained in the law of gravitation” (Becquerel 1922)! and essentially
repeats the derivation given in Eddington 1921.

Thus, through both a French textbook and a French edition of an English
book, French scientists had had access to this important result of the general
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theory of relativity for a year by the time Einstein visited Paris in 1922.
However, there is no indication that Einstein himself was aware of it then
or that it had been pointed out to him during his visit, although his host,
Paul Langevin, had written the introduction to Eddington 1621. It is also
doubtful that he ever studied Eddington’s contributions to his theory in any
detail.

Eddington was by no means the only scientist who had realized the
connection between the field equations and the laws of motion by 1921. It
was clearly recognized by De Donder in Belgium, whose derivation of the
geodesic law from the field equations (De Donder 1919) is also presented
in chapter m1 of his exposé of Einstein’s theory (De Donder 1921). A
derivation from the variational principle underlying the field equations was
given by a Swiss physicist working in Géttingen (Humm 1918). The most
important contributions, however, are due to Hermann Weyl, a German
mathematician who was a professor at the ETH in Zurich from 1913 to
1930. He was therefore a colleague of Einstein before he left for Berlin,
and since Switzerland was neutral during the war, they also had no difficulty
communicating later.

2. Static Solutions in General Relativity

Initially, Weyl was concemed with static axially symmetric exact solutions
of Einstein’s field equations (Weyl 1917, 1919b; Bach 1922) (as was the
Italian mathematician Levi-Civita [1917-1919]). In the course of this work
he came to realize that two bodies interacting only gravitationally cannot
be in equilibrium. More precisely, this is always the case for two extended
bodies that can be separated by an open surface; if this is not possible, i.e., if
one body encloses the other, equilibrium may be possible [the latter case was
discussed much later in Marder (1959)]. This is exactly analogous to the
situation in Newtonian mechanics. Weyl, however, was mainly concerned
with bodies considered as singularities of the field (which of course can
always be separated by a plane) and the remainder of this paper will be
restricted to this case,? as well as to purely gravitational interactions; in
the presence of other interactions, again just as in Newtonian mechanics,
equilibricm may be possible.

In his first paper discussing axially symmetric static solutions, Weyl
(1917) assumed that the bodies were held at rest by stresses counteracting
the gravitational forces, without going into any detail. = After the paper
was criticized by Levi-Civita, he elaborated on this and indicated how the
stresses can be calculated (Weyl 1919b). It is implicit in these papers that
in Einstein’s theory bodies cannot be in equilibrium under the influence
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of gravitational forces alone, but somewhat surprisingly it was nowhere
stated that the fact that this follows from the field equations alone is an
important new result of this theory. This was only done explicitly in Weyl’s
“Addendum” to R. Bach’s paper on new solutions of Einstein’s equations
(Bach 1922),> which discussed “The Static Two-Body Problem” in full
generality. After showing that Bach’s calculations imply that two mass
points are attracted by a force that, for masses whose gravitational radii are
small compared to their separation, reduces to that given by Newton’s law,
Weyl concluded that

The physical importance of this result should not be exaggerated; for the
solution of the real two-body problem, the determination of the motion
of two gravitationally attracting bodies, nothing is gained by it.

Nevertheless, the importance of his proof that there is no static solution
for two masses that are free to move was widely, though not universally,
recognized.

Within the next few years, a number of scientists attacked the static
two-body problem, not always realizing the need for stresses to maintain
equilibrium. (This requirement is now frequently stated as the need for a
“strut” or “rod” between the bodies.) At about the time of the publication
of Bach 1922, but clearly not aware of it and of earlier results by Weyl,
a German mathematician published a paper claiming an exact solution
for the static field of two mass points (Trefftz 1922). This claim was
immediately disputed by Einstein himself (Einstein 1922) who showed that
if one attempted to interpret Trefftz’s solution as the field of two massive
spheres, this would require the presence of a true singularity of the field
outside the two masses and that

therefore it is not permitted to continue the solution up to that spot. In
reality it presupposes the existence of other extended masses distributed
with spherical symmetry, as already shown by H. Weyl.

No reference to Weyl is given, and the papers by Weyl referred to earlier
do not put his results into this form. Nevertheless, this passage shows
that in late 1922 Einstein was aware of some of Weyl’s work, although
he did not realize that (just like Eddington’s results) it implied that the
field equations contained the equations of motion. Weyl had attacked the
problem of finding the explicit form of these equations earlier within the
context of his own generalization of Einstein’s theory (Weyl 1919a) and
elaborated on it in Weyl 1921a and in the third, more clearly the fourth,
and especially in the fifth addition of his book Raum-Zeit-Materie (Weyl
1919c¢, 1921b, 1923). In the third and fourth editions, this elaboration was
still done in the context of his own theory, which attempted to geometrize
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the electromagnetic field in addition to the gravitational one; however, a
careful reading of his presentation leaves no doubt that all the mathematical
and physical arguments remain valid in the absence of the electromagnetic
field, in which case Weyl’s theory reduces to Einstein’s. In the fifth edition,
however, Weyl considered the problem of motion purely in the context of
Einstein’s theory. Nevertheless, Einstein, having raised various objections
to Weyl’s theory earlier, apparently did not recognize the validity of Weyl’s
considerations on the problem of motion within his own theory and did not
realize the connection between his field equations and the laws of motion
until 1927.

In that year, he and his assistant Jakob Grommer published a paper
containing a derivation of the geodesic law (Einstein and Grommer 1927)
which until recently has been widely credited with being the first to rec-
ognize the connection between the field equations and the equations of
motion. It also contained a discussion of Einstein’s reasons for not hav-
ing recognized this connection earlier. No discussion of earlier work was
given, showing that he had not been aware that this connection had been
discussed even in several standard presentations of his theory. This paper
and the various arguments presented by Einstein are discussed in some
detail in Havas 1989, and I shall not repeat this discussion here. I shall
only note that Weyl reacted to the paper as soon as he had seen the galleys
(shown to him by Herglotz) and wrote Einstein that “I must confess that I
did not understand what in it goes beyond my earlier developments™ (letter
by Weyl, February 3, 1927, EA 24-086, in German). He then referred to his
“Addendum” and to Weyl 1923, and to make sure that he would not be mis-
understood he outlined the arguments given there in some detail. Einstein
responded almost three months later, raising objections which only refer
to electrically charged particles (EA 24-088), although Weyl’s derivation
was only concerned with neutral ones, apparently still under the impression
that Weyl’s treatment was restricted to his extension of Einstein’s theory.
Weyl’s answer appears lost. In any case, in his later work Einstein never
acknowledged the priority of Weyl’s or any other author’s contributions to
recognizing that the field equations imply the laws of motion.

. As noted before, much work on the relativistic two-body problem con-
tinued after Weyl’s fundamental work. In 1922, the American mathemati-
cian Horace Levinson obtained his Ph.D. at the Department of Astronomy of
the University of Chicago with a thesis on the gravitational field of masses
at rest (Levinson 1922); the next year he received a Doctorat d’Université
from the University of Paris with a thesis on the field of two mass points
at rest (Levinson 1923a). Both theses derive only approximate solutions
and show no recognition of the problem of motion, nor do his publications
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on the subject (Levinson 1923b, 1628). Although at least one of the ex-
aminers, Elie Cartan, was quite familiar with general relativity, clearly no
objections were raised.*

Levinson continued investigations in general relativity as a sideline
while working in business; his most significant contribution was a letter to
Einstein (August 25, 1948, EA 16-300) criticizing the mathematical meth-
ods used in the famous EIH paper (Einstein, Infeld, and Hoffmann 1938) and
its sequel (Einstein and Infeld 1940) to derive the approximate equations of
motion of n bodies from the field equations. This criticism, discussed fur-
ther in a lengthy correspondence, prompted Einstein to take up the problem
again and, together with Infeld, to devise an alternate derivation (Einstein
and Infeld 1949). '

The problem of determining the field of two bodies at rest was also
attacked in Palatini 1923 and Chazy 1923a, 1923b, 1924, apparently with-
out any knowledge of Bach and Weyl’s work or recognition of the need
for stresses. Both authors gave exact solutions, but it was pointed out by
Chazy that Palatini’s solution did not reduce to Schwarzschild’s if the two
masses coalesced, while Chazy’s did. The need for stresses was explic-
itly realized by Straneo (1924a, 1924b, 1924c). An excellent discussion
of the early work on the two-body problem was given a few years later in
a slender French monograph on general relativity (Darmois 1927). Some
mathematical problems of the n-body problem were discussed in a thesis
at the University of Paris (Racine 1934), which apparently has been uni-
versally overlooked, although the examination committee consisted of the
most knowledgeable French physicists—Cartan, Chazy, and Darmois; this
may be considered as divine retribution for the fact that it did not contain
a single reference to non-French papers, except for Levi-Civita's, not even
Weyl’s.

The n-body problem was also treated by the British mathematician
Harry Curzon (1880-1935), who had been “Recognized Teacher of Math- -
ematics” at Goldsmiths’ College of the University of London since 1906.
His papers (Curzon 1924a, 1924b), his only contribution to physics, do not
contain any references, and it seems that he was not aware of any previous
work on the problem. However, he used the same method as Weyl and
Levi-Civita to obtain static axially symmetric solutions, which leads to a
two-dimensional Laplace equation in cylindrical coordinates. But while
Weyl and Levi-Civita had recognized that the solution corresponding to
that of Schwarzschild and Droste required a line singularity on the axis in
the particular coordinate system employed, Curzon, without any comment,
used point singularities instead, which, transformed to spherical coordi-
nates, do not describe mass points but what later became known as Curzon
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singularities.” He also treated the case of such singularities carrying electric
charges for which, as noted before, equilibrium is possible without the need
for stresses. However, this problem was not discussed there. Curzon also
does not seem to have recognized that his solutions did not represent mass
points.

Curzon’s one- and two-body solutions were rediscovered later by Sil-
berstein, and will therefore be discussed in the context of the latter’s con-
troversy with Einstein.® It appears that Curzon’s paper was totally ignored
for a decade and not referred to in the literature before 1936.

3. The Einstein—Silberstein Controversy:
A Tragicomedy of Errors in Two Acts

3.1 DRAMATIS PERSONAE

Ludwik Silberstein was born in Warsaw in 1872. After initially studying in
Cracow, he continued on to Heidelberg and Berlin, where he obtained his
Ph.D. in 1894. He was Assistent in physics at the University of Lemberg
(now Lvov, Ukraine) from 1895 to 1897, but was apparently unable to
obtain a permanent position in Poland. He was Libero Docente (lecturer)
in mathematical physics at the University of Bologna from 1899 to 1903,
and from 1903 until 1912 he was at the University of Rome in the same
capacity. Whilein Italy, he wrote a number of excellent texts in mathematics
and physics (in Polish). In 1912 he moved to London, lectured on relativity
at University College, and wrote one of the first treatments of the special
theory of relativity (Silberstein 1914). It should be noted that he was one of
a very small number of physicists working in relativity who was older than
Einstein. He lectured on relativity and gravitation at Cornell University in
1920 and at the Universities of Toronto and of Chicago in 1921. Based
on these lectures he wrote Theory of General Relativity and Gravitation
(Silberstein 1922).- In all of his writings, he showed great originality and
revealed an independent and critical mind, occasionally more critical than
the facts warranted.

At that time Silberstein was certainly not antagonistic either toward the
theory of relativity or toward its creator. On the contrary, he wrote in the
introduction of his book on general relativity: '

Some of my readers will miss, perhaps, the enthusiastic tone which
usually permeates the books and pamphlets that have been written on
the subject (with the notable exception of Einstein’s own writings). Yet
the author is the last man to be blind to the admirable boldness and
_the severe architectonic beauty of Einstein’s theory. But it has seemed
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that beauties of such a kind are rather enhanced than obscured by the
adoption of a sober tone and an apparently cold form of presentation.

Nevertheless, Silberstein remained skeptical and ambiguous in his at-
titude toward Einstein’s theory. Quite early he attempted to formulate a
theory of gravitation that was generally covariant, but did not contain the
principle of equivalence, which he considered to be the weak point of Ein-
stein’s theory on both theoretical and observational grounds (Silberstein
1918), no red shift having yet been observed. Here and on other occasions
he was ready to accept experimental results uncritically if they seemed to
contradict either the special or the general theory’s predictions.

Silberstein stayed in London until 1920 and became a British subject.
During his stay he continued working on relativity and earned his living
as “Scientific Advisor” for Adam Hilger Ltd., a leading optical instrument
maker, from 1915 until 1920; his expertise in optics dated to a period
(1898-1899) as scientific codirector of an optical firm in Warsaw. (Some of
the biographical information is taken from an undated—19217—Iletter by
Silberstein, University of Toronto Archives A67-0007/65 Falconer Papers.)
In 1920 he was invited to join the research laboratory of Eastman Kodak as
their leading scientific advisor. He moved to the United States in June and
stayed with Eastman Kodak until his death in 1948—seven years before
Einstein, but at the same age. It is not clear whether he went into industry
by choice or, more likely, because he was unable to obtain a permanent
academic position either in Britain or in the United States, possibly due his
age and to the prevailing anti-Semitism at British and American universities
between the two world wars. At Eastman Kodak he worked mostly in optics,
but he maintained his interest in relativity.

Einstein and Silberstein had corresponded at length since 1918, most-
ly on inquiries by Silberstein concerning the theory of relativity, but also
on various other matters, and appear to have become quite close. After
Silberstein’s move to the United States they met during Einstein’s trip to
this country in the cause of Zionism in the spring of 1921, at Princeton and
possibly in Chicago. Although itis not directly related to our topic, I would
like to discuss one exchange of letters just after Silberstein’s stay at the
University of Chicago, as it shows both the close relationship of the two men
and their attitude toward the situation in Germany at the time, and reveals a
little-known offer to Einstein. Having just returned to Rochester, Silberstein
wrote on September 4,1921 (EA 21-046, in German; underlinings, here and
in all subsequent quotations, in the original; signatures omitted):

On September 1st, Dr. Gale (full professor, coordinated with Millikan
at the Ryerson Lab, and Dean of the Science Faculty, Univ. of Chicago)
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has asked me and urgently requested to feel you out “informally”
whether you would be inclined to accept a position as professor in the
Physics Department (seat of the Ryerson Lab), as “head” (leader) of
studies and investigations in theoretical physics (not necessarily lectures,
as long as it does not suit you) and, more or less, what your conditions
would be. ... You would receive all conceivable support enabling you to
devote yourself freely to your research, in completely free cooperation
with the experimental physicists in the Ryerson Lab. You would have
to devote only as much (or as little) time to lectures as is convenient for
you—especially as the faculty intends to engage an Assistant Professor
of Theoretical Physics in America to help you*

(Added in a footnote: “* Dr. Gale offered me the prospect of this position;
I told him I would be ornly too happy to work with you as my superior.””)

whose duties would include systematic lecturing in agreement with you.
In short, you would have ideal conditions for your investigations.

For my part, I would like to urge you to say “yes,” the more so [the
last three words in English] since I have recognized in Chicago in the
past three months that the intellectual and also the social atmosphere
there is really excellent. Instead of envy and hostile demonstrations you
would find in Chicago the best sympathy, veneration, and friendship—
and these are important factors for such an ideal (and affectionate) and
sensitive man as you are. :

Although Frau Einstein had told me (in Princeton) that you had a
moral “duty” (a perfectly mystical concept in the present case) [the
phrase in parentheses in English] “not to leave the Germans who have,
after all, lost almost everything” just now. But I am deeply convinced
that Germany is not the right place for you.

(Added as a footnote: “By this I mean the atmosphere of the German
professors, the Geheimriithe, the Hofrithe, etc.—since the working class
in Germany is free of Junkerdom and other dirt.”

The Lenards, the Gehrkes, etc.—their name is legion—(possibly with
the exception of Planck and the late Rudolph Virchow) are peity and
simultaneously brutal individuals, Junkers and simultaneously miserable
slaves of the Kaiser regime.’

The letter continued in the same vein, expressing sentiments exactly like
those expressed by Einstein about Germany after the next world war—and
about the German academic atmosphere since his early youth. Neverthe-
less, Einstein answered almost immediately, on October 4 (EA 21-048, in
German): ‘

I was very touched that colleagues Gale and Michelson [note that Silber-
stein had mentioned Millikan, not Michelson] are ready to offer me this
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wonderful position. The prospect of working with these men and espe-
cially with you in close cooperation is extraordinarily attractive to me.
I am also convinced that such a cooperation would be very satisfactory
and fruitful. But still I cannot accept this beautiful call. While it is true
that I have experienced some evil by my colleagues and students here,
still I am rooted here so firmly by family and friendship ties that in the
absence of a real emergency I could not make the decision to move to a
totally new, even if very tempting, environment. If one has lived so long
and has acquired human relationships, one would leave behind a large
piece of oneself, and at my age I am not able to regenerate sufficiently
to change my environment so completely without significant damage.
Please transmit my heartfelt thanks to the colleagues; they will certainly
be able to appreciate the inner conflict which does not permit me to make
such a radical decision.

The attitude expressed here was not uncommon among assimilated Jews
in Central Europe before Hitler came to power, especially within intellectual
circles and among individuals active in the trade unions and in the various
political parties of the left. But it is noteworthy because Einstein’s letter
was written precisely at the time he had embraced Zionism, completed a
propaganda tour for it, and elsewhere—but nowhere in this letter—put
more and more stress on his Jewishness.

Chicago’s offer and Einstein’s refusal are not mentioned in any of his
biographies, as far as I am aware, nor in Millikan’s antobiography (Millikan
1950) or in Michelson’s biography by his daughter (Livingston 1973). The
prospective offer of a position for Silberstein was never mentioned by him
again and seems to have been entirely contingent on Einstein’s acceptance.

Silberstein answered Einstein’s letter on December 11 (EA 21-051, in
German), writing that he had passed on the letter to Dean Gale and had
only received an answer two days earlier, from which he concluded that
Einstein’s “words had reached him and he had liked them very much in
spite of the result which is sad for all of us.”

3.2 PROLOGUE

During his stay in Chicago, Silberstein had suggested to Michelson that
he undertake a new test of the hypothesis that the ether is carried along
by the earth, essentially a repetition of Sagnac’s experiment with more
powerful methods, and even promised to pay for it (Livingston 1973), an
offer possibly made on behalf of Eastman Kodak. Michelson wrote later
(Michelson 1925):

... at the urgent instance of Dr. Silberstein the writer was convinced of
the importance of the work, notwithstanding serious difficulties which
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were anticipated in the way of raising the necessary funds.... Funds
for this experiment, amounting to about $17,000, were furnished by the
University of Chicago, with an additional contribution of $491.55 made
through the efforts of Dr. Silberstein.

After unsuccessful open-air experiments had been performed at Mt. Wilson
in the summer of 1923, the funds provided allowed the construction of a
pipeline one mile long and a foot in diameter that could be evacuated. It
was installed in Clearing, Hlinois, and Silberstein wrote to Einstein on the
progress of the experiment on April 15 (EA 21-052). It was carried out in
late 1924 in his presence (Michelson and Gale 1925).°

The results of this experiment, like those of all of Michelson’s previous
ones, were in full agreement with those expected from the special theory of
relativity. However, other results obtained by a former collaborator seemed
to contradict the theory (Miller 1925). At the request of Science Service,
a Washington-based organization that published a science news bulletin,
Silberstein wrote a brief analysis of the as yet unpublished results, which
appeared in the bulletin under the headline “NEw EXPERIMENTS MEAN
DowNFALL OF RELATIVITY” provided by the editor (EA 21-053), stating
that those results could be explained “by means of the Stokes ether concept,
as modified by Planck and Lorentz.”” A similar comment appeared in a
letter to Nature (Silberstein- 1925a), which was contradicted in Eddington
1925 prompting a brief rejoinder by Silberstein (1925b), and caution in
any interpretation was advised in Giorgi 1925. Giorgi had simultaneously
written to Einstein about this, asking his opinion (letter of July 14, 1925,
EA 21-054, in Italian). Miller’s results were reanalyzed much later and
finally discounted (Shankland et al. 1955).

" Tronically, Silberstein had written to Einstein as early as March 10,
1920 (EA 21-041), about the Stokes—Planck—Lorentz ether theory, sending
him a reprint on the subject (Silberstein 1920) and asking his opinion. No
answer has been preserved. The Miller controversy does not seem to have
affected the tone of Silberstein’s letters to Einstein, which had always been
friendly and frequently quite deferential, even when he informed him that
he had submitted a paper with the “impertinent” title “SPECIAL RELATIV-
1Ty OVERTHROWN BY DOUBLE STARS” (EA 21-044, 21-045) to a journal
(he withdrew it before publication). An example of his deference is the
beginning of the letter quoted earlier (EA 21-051):

Dear Herr Kollege!
If T address you like this, copying your own letter, this is only for the
sake of the sacred principle of equality and comradeship, even though 1
_ had really “Most revered master” in mind.
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There was no indication anywhere in their exchanges over two decades of
any latent hostility or veiled irritation. They continued their correspon-
dence, though sporadically, for the next decade.

Eleven years after refusing Chicago’s offer, Einstein found himself in
the presence of “a real emergency,” which forced him to abandon Germany
even without the inducement of an offer and made him renounce his former
pacifism and adopt a permanent hostility toward Germany. Being eleven
years older, he—like thousands of other refugees—was even less able “to
regenerate without significant damage” than he had been at the age of 48,
but he had no choice anymore.

3.3 Act I

Shortly after arriving in the United States, Einstein received a letter from
Silberstein (December 3, 1933, EA 21-059). It started out in German:

Dear Professor Einstein,

First of all, I would like to greet you most heartily on the occasion
of your arrival and settlement in America. Everybody here reveres and
loves you, so that you without any doubt will feel very happy in your
new home country. Furthermore I would like to beg you for your kind
instruction in a question of relativity which has haunted me for some
time and which seems to me to be fundamental. But since little by little
I have lost fluency in the German language, I take the liberty of writing
in English, the more so since you yourself probably use this language
more and more.

This last assumption can only induce a smile in anybody who met
Einstein in this country; he never became comfortable with the English
language, and wrote all his letters in German, having them translated if nec-
essary. Nevertheless, from this point on Silberstein always wrote in English
and Einstein always answered in German; therefore no further reference
will be made to the language of the various guotations. As to Silberstein’s
assertion, it should be kept in mind that his German was flawless, at least
in writing, although it was not his native language; his English, on the
other hand, was not, and all the awkward turns of phrase, occasional wrong
choices of words, as well as the British spelling, in subsequent quotations
are his own.'”

Silberstein continued:

A “free particle” placed in a metrical field g,, describes a geodesic in that
field. Outside of matter, and rejecting the A-term, the field is determined
by

Gy =0 O
These are two main assumptions of your theory.
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Now suppose we have found a solution of (1), g, = gu(x1, ...,
x4), which has one or more singular “points” (or rather, four-dimension-
ally, singular lines), suche.g. as r = O for all x4 in the case of the familiar
Schwarzschild solution. Such a singular point can be interpreted as a
mass-centre or particle. Are we entitled to consider itas a “free particle”?
If so, then it should describe a geodesic of the field. In other words,
the singular lines of the solution g, ought to be geodesics of the field
&.. [All underlinings are Silberstein’s.] In fact, in the simplest, radially
symmetric case corresponding to a unique mass-centre the singular line
(r = 0, any x,) is a geodesic, i.e., satisfies X, + { “Lﬂ }fc,,fcﬂ = 0. Butcases
of two or more mass-centres have not been analyzed from this point of
view (quite apart from the difficulty of producing such solutions).

I would greatly appreciate your opinion on this matter. Such consid-
erations may perhaps be helpful also for establishing your law of motion
of free particles not by an independent act, but in intimate connection
with the field equations themselves. I believe that you have yourself
expressed the desirability of some such unification, though on different
lines.

I have in mind non-stationary fields corresponding to at least two
mass-cenires. I am fully aware, of course, of the insuperable math-
ematical difficulties in constructing such solutions. But it should be
possible to read off the properties of such singular lines from the dif-
ferential egs. G, = 0 without ever solving them.... The problem,
restated concisely, is: It being assumed that a field g, satisfying G, =
0 has singularities distributed along lines, to find the differential prop-
erties, of 2nd order, of these lines.*

(Added in a footnote: “# Without introducing, of course, a tensor of matter.
The vanishing of the divergence of such a tensor for a pressureless medium
readily gives (under certain conditions about p) for each element of the
medium the equations %, 4+ {“Lﬂ }iats =0.)

If this yielded the geodesics, it would be an elegant result. But the

problem is much beyond my power, & I would greatly appreciate to
have your views on the whole question.

Before continuing with Silberstein’s letter, two comments are in order.
First, Silberstein was clearly aware of the possibility of deriving the ge-
odesic law in the presence of a matter tensor, an approach taken, e.g., in
Eddington 1918, whether or not he knew of this or similar derivations by
others. Second, he appears to have shared Einstein’s view that one should
work with the vacuum field equations alone, and probably also shared his
failure to see that such equations with a singularity actually correspond to
singular energy-momentum tensors, a point which is discussed in detail in
Havas 1989.

Now Silberstein came to the crucial problem:
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In connection with this subject, I should like to ask a somewhat different
question, namely, about the physical admissibility of solutions of G,, =
0. Consider a stationary axially symmetric field corresponding to two
mass-centres. Levi-Civita’s general ax. symmetr. sclution is

ds® = e dx; — e[ (dx] + dxd) + 1} dx} ]
where v is any solution of the ordinary cylindrical Laplacian equation
Vi = ;%5%7()‘1;7‘)1) + gi;;— = (0 and

0 0
dp = 2 g+ 2B gy,
8x1 axz

T/ B \? v \? v dv
=al(5) - (@) vt e
(this being a total differential in virtue of VZv = 0). The solution
corresponding to a single mass-centre is immediate. Passing to two
mass-centres, i.e. putting

@

My M,

TR T
I find by some simple artifices, as a solution of (2),

x2 ¢ M? M? 2M M. a’x?
u=——‘(———4‘+—f)+ - 2[ 1——1—1].
2 \r r a

?

This is accompanied by a sketch showing that Silberstein was using bipolar
coordinates and that a is the separation of the two centers.

In the above, Silberstein had rediscovered the solution given in Curzon
19242 and 1924b and had fallen into the same trap. He then continued:

This field v, u is, then, a rigorous solution of G, = 0, and it has only
the two singular points r; = 0 and r, = 0, in fine, the mass-centres
themselves. The field being stationary, the mass-centres will remain at
rest, at an x,-distance a, instead of falling towards each other, as we
know, unofficiaily, from Newtonian physics. Now, it does not seem
satisfactory to imagine that M; & M, are forced to remain at relative
rest by a stress-system (as does Dr. Weyl; “stuetzende Spannungen”;
R.Z.M., Sthed., p. 257) [Weyl 1923] or say by a stiff rod placed between
them. For this would mean the existence of a material tensor 7, i.e.
G, # 0 within the rod, and even if the rod is made ideally thin, it would
mean that the field has singularities all along the segment M, M, of the
axis, whereas such is not the case; the solution becomes at any point of
theaxisv = — 4L — Y2, — 0, and this is singular only at My, M,, and

r r

perfectly regular a]oné the included segment.

This passage is crucial for the following discussion, and therefore it had
to be quoted in full. It shows that Silberstein was fully aware of Weyl’s
results, but thought that he had found a counterexample.

He continued:
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Such being the case, this field v, . seems to be entirely inadmissible
and yet it is a rigorous solution of the eqs. G, = 0. Whence the
moral: not every solution of the field-egs. is admissible. Now, in this
flagrant case we happen to know (not from Relativity) that the solution
is inadmissible. But there might be other, more subtle, cases in which
no such extraneous knowledge would warn us.

It would, therefore, seem necessary to set up some more general
criterion of admissibility or non-admissibility of a solution of the field
equations,—always supposing that the Theory of Relativity is to be a
self-contained doctrine not borrowing special information from other
sources.

You would greatly oblige me, dear Professor Einstein, by giving me
your views on these two points, and especially on the first one.

Apologizing for my prolixity in stating these subjects,

with kind regards, yours sincerely,

The tone of this letter is that of a disciple asking his master for advice,
the same tone as had been adopted by Silberstein in all previous correspon-
dence. This was soon to change, however. _

Einstein responded two weeks later, on December 17 (EA 21-061):

At first I was taken aback by your static example with two masses, since
I believed you that the space outside the mass points is regular. I was
even more astonished since I myself had shown earlier that singularities
will appear already in calculating the second approximation.

Actually, however, the solution given by you is singular, as shown by
the following consideration. Your spatial line element is given by

U (dxf + dxg) + e*x] dxf = do®.

Einstein then proceeded to calculate the ratio of the circumference to the
radius of a circle perpendicular to the axis and surrounding it. The details
will not be given here, since he had already made a trivial error.in the
equation quoted above, as noted in Silberstein’s response. Einstein then
continued, having obtained the value e 2 - 27 for the ratio:

But this ratio would have to be 2 for an infinitely small circle in the
limit, which is not the case here for the x,-axis. The field calculated
therefore is singular everywhere on the x-axis.

From this, first of all, it follows that your example is not valid. It
would be more interesting to prove the nonexistence of a static solution
(whose singularities have the character of simple poles). I have shown
this earlier at least for the second approximation (and also that for a
“correctly” accelerated mass the singularity disappears). It can thus
hardly be doubted that the field equations contain the law of motion, so
that the geodesic hypothesis is unnecessary.

However, a really complete theory would exist only if the “matter”
could be represented in it by fields and without singularities.
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With thanks also for your friendly personal words and with friendly
regards
Your

Einstein clearly had put his finger on one crucial error in Silberstein’s
argument; however, his own “consideration” was wrong, as immediately
noticed by Silberstein. It should also be noted that Einstein did not rec-
ognize that the proof he had asked for as being more interesting had been
provided by Weyl more than a decade earlier—in spite of the fact that
Silberstein had mentioned Weyl’s work in his letter.

Silberstein answered by return mail on December 20 (EA 21-062):

I wish to thank you for your kind letier of December 17th. Your verdict,
however, I am sorry to say, is quite wrong. You have inadvertently
misplaced the two exponents v and (.

As in my first letter

ds® = ¥ dx} — & {e?#(dx] + dx}) + x{ dx3}. )
Thus the circumference of the circle you are contemplating is
C=2nrRe™?,
and its radius,
p = Re"™,
whence,
Clp=2rme™ (note’2m).
Now,
x? (M? M2 2M; M. a’x?
wen Gl o

vanishes rigorously for x; = R — 0, so that

lim E =27,
o
Thus the solution (1), with (2) and v = —M;/r; — M,/ r,, satisfies also
your own requirement of regularity (elementally Euclidean behaviour).!!
The statements made in my first letter remain, therefore, in full rigour.
Against your expectations, a statical solution with two (and, similarly,
3 or more) “singularities of simple pole character” does exist and, in
view of its physical implications, it is imperative to deal with it in a
fundamental way in order to uphold your gravitational theory.
1 shall expect, with much interest, your views on this matter.

Einstein scribbled some calculations on this letter about the metric com-
ponents and the Christoffel symbols as “First approximation” to check Sil-
berstein’s assertions; having found that, in this approximation, indeed

PR PR
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he wrote stimmt (correct) at the bottom. He then immediately, on Christmas
eve, wrote to Silberstein (EA 21-063):

I beg you to excuse my mistake. So it is true that there exists a static
solution with only two pointlike singularities. What does this signify
for the general theory?

First of all it is clear that the general basis of the theory implies the
correct law of motion.

He then proceeded to insist that

Singularities must be excluded in principle in a field theory.... In any
case, your investigation shows clearly how carefully one has to handle
singularities and how empty is a field theory which allows singularities
without precisely stipulating their character.

As mentioned in the discussion of Curzon’s papers before, the singu-
larities introduced by Curzon and Silberstein are not simple poles of the
field. It is surprising that Silberstein still considered them to be such poles
since he was familiar with at least some of Wey!’s work on the two-body
problem, as well as with Levi-Civita’s. Einstein, who was not, seems to
have fully accepted in the first paragraph of his letter Silberstein’s charac-
terization of his results, and then to have hedged on this issue, but did not
guestion directly their significance as interpreted by Silberstein. Neither of
them knew of Curzon’s papers.'?

On December 30, Silberstein replied (EA 21-064):

Many thanks for your excellent letter of the 24th. I fully agree with
you. It seems that, for the present, the best plan is to make the complete
field-eqgs (i.e. with T, # 0) the master equations of the theory, and if
somebody finds solutions of R, = 0 with singularities, he has to test
them by considering these singularities as small regions (slender world
tubes), seats of T,. ... This settles, for the present, the subject proposed
in my first letter, and I wish once more to thank you most cordially for
the patience and kindness with which you have discussed it with me.

The curtain falls on a scene of mutual kindness and reconciliation built
upon a shared error.

3.4 ENTR’ACTE -

In the same letter (EA 21-064) Silberstein discussed at some length “a cer-
tain result which I have found a few days ago and which seems to me very
remarkable (so far as I know, it is new).” This result was, as he showed in a
two-page calculation, that the most general spherically symmetric solution
of R, = 0 is “a statical field (the familiar Schwarzschild field) around a
centre of necessarily constant ‘mass’ m.” He then quoted from Einstein’s
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previous letter a suggested requirement that the singularities should have
temporally constant and spatially central symmetric character and stated
that “in view of my result it is enough to make them rad. symmetrical,;
for then they will, eo ipso, also be constant in time.” Einstein’s answer of
February 13, 1934, is lost, but Silberstein’s belated response of Septem-
ber 16 shows that he had suggested that Silberstein should “correspond with
Levicivita [sic] for the possibly existing literature on the subject & then,
perhaps, publish my proof if it differs from the others.” Obviously neither of
the two had heard of Birkhoff’s theorem, which was already known when
Silberstein 1922 was published (Jebsen 1921; Alexandrow 1921; Birkhoff
1927). For whatever reason, Silberstein only published his result four years
later: it will be discussed in Section 3.6.

These subjects were put aside at that point; the next few exchanges
were mainly concerned with the problem of helping Hitler’s victims. The
situation of the Jews in Germany in 1933, still eight years away from
the Holocaust, appears to have affected Silberstein psychologically more
than Einstein, as seems evident from a 13-page rambling letter Silberstein
himself called “passionate,” wriiten on September 23, 1934 (EA 21-070), in
a haphazard mixture of German and English and in a handwriting differing
from that of all other letters.

Although not returning to it in their correspondence, Einstein clearly
was deeply disturbed by Silberstein’s results and felt that the entire problem
of interacting masses had to be treated in a different manner. This was
done jointly with one of his current assistants, Nathan Rosen. In early
May 1935, they submitted the manuscript of the famous “bridge” paper
to The Physical Review, which appeared in the July 1 issue (Einstein and
Rosen 1935). Silberstein’s results were fully accepted and given as the
prime motivation for the investigation. In the Abstract they described their
method and results as having been

led to modify slightly the gravitational equations which then admit reg-
ular solutions for the static spherically symmetric case. These solutions
involve the mathematical representation of physical space by a space of
two identical sheets, a particle being represented by a “bridge” connect-
ing these sheets.

In spite of this different approach, to which they did not return in later
years, Einstein and Rosen also continued to work on the problem of motion
with particles treated as singularities. On vacation, Einstein wrote to Rosen
in Princeton (September 8, 1935, EA 20-209) that he had found a “better
form for the calculation of the many-body problem in first approximation.
I believe that Lanczos'® has once published something similar, but don’t
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know it anymore exactly.”” Rosen commented on this method on the 20th
(EA 20-210, in German), and added:

Now I am trying the following: One can easily generalize the (isotropic)
Schwarzschild solution for the case of a uniformly moving particle. . ..
With this solution as model I am now looking for a solution of the equa-
tions for two particles which move along a line (of course not uniformly).
Probably nothing will come of it.

Nothing did.
But he added, returning to Einstein’s calculation:

I am of the opinion that we have to start from the ordinary Schwarzschild
solution, even though it is not singularity-free, because it is necessary
to have the functions appearing in the equations as simple as possible to
be able to find solutions.

Nothing came of these calculations either.

3.5 AcT II

In 1935-1936, Silberstein again spent some time at the University of
Toronto. He invited Einstein for a visit during the meeting of the American
Astronomical Society, but nothing came of it. On September 23, 1935, he
wrote him again (EA 21-074), requesting a reprint of Einstein and Rosen
1935, which he had seen in manuscript form, and mentioning that

Paul Epstein (Pasadena) asked me to disclose to him how I got the
complete solution of your field-eqs for two mass-points. This I sent
him.... In reply he wrote me...saying that this is a “very important
contribution” and urging me to publish it in detail.... I shall write
out the whole investigation and send it as a paper to Phil. Mag. but
before doing so I would like to hear your opinion: Is this solution (with
two singularities, point singularities, which necessitated a revision of
your whole theory and gave rise to your new attempts, is it in itself
important enough to be worth a publication—in toto? Or should I
merely publish the result, i.e. the final ds?, axially symmetrical, with
two point singularities?

Apparently not waiting for an answer, he sent off the paper containing all
the details to The Physical Review in November, where it was received on
the 25th, and informed Einstein of its submission.

- Maybe Einstein was stung by the suggestion that he had revised his
whole theory; in any case, this letter induced him to take another look at
Silberstein’s calculations. He wrote him on December 21, 1935 (EA 21-
076), that “I also have to inform you that your example of the two mass-
points at rest (calculated by the method of Weyl and Levi-Civita) has a
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critical flaw.” Then he proceeded to repeat precisely the same mistake he
had made when he had first looked at Silberstein’s calculations and repeated
the same objection as in his letter of December 17, 1933 (EA 21-061). He
added that “If it would be possible for you to withdraw your publication on
this matter, it would be better.” '

Not surprisingly, Silberstein hit the ceiling; and, having realized that
the master was not infallible, from then on he changed the tone of his letters
from that of a disciple to that of a rival. On December 28, he responded
(EA21-077):

I am greatly puzzled by your statement. ... Is it possible that you have
quite forgotten that you have made the very same “objections” in De-
cember 1933 and that I have then shewn to you that you have just made
a “clerical” error (misquoting my formula), nay, that you have then (Jan.
1934) written me a long letter apologizing heartily for your mistake?!
And now you repeat exactly the same thing.. ..

He then repeated his calculation of EA 21-062.
At last, Einstein really took a close look at the problem. On December
30, he replied (EA 21-079):

Dear Mr. Silberstein:

Now I remember very well that you already informed me of your ar-
gument concerning the two-body problem after I had claimed the appear-
ance of a singularity along the axis. However, I let myself be convinced
incorrectly, since this proof was wrong.

You claim that

[ = xlz M12 M22 2M1M2 1 (AB)ZX% 1
=\ T )t == I
1 2 AB nr

vanishes everywhere outside the singularities on the axis x; = 0. But
this presupposes that (without violating continuity) one can take the
square root as positive everywhere.

That this, however, is not the case, one can recognize thus: Calling
o the angle between r; and r, and A the triangle [showing the sketch of
a triangle with one side A B opposite the angle «, and clearly meaning
that A is the area], then

2A = rifs sina = ﬁx;,

{}:\/l—siﬁa—l::pcosa—l.

The sign of cosa can be freely chosen, but one has to take it as the
same in all of space, if one does not want to introduce a discontinuity in
the first derivative. However one chooses the sign, one can not achieve
that [ vanishes everywhere on the axis.

thus
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He then elaborated on this argument, but Silberstein did not accept it. He -
replied on January 3, 1936 (EA 21-080):

Dear Professor Einstein,
Many thanks for your prompt answer to my letter. I am sorry to say
that you are again wrong. . .. Of course I assume v/ tohaveafixed sign,
-namely +1, once for all, i.e. between A & B and outside the segment
AB.
Now, such being the case, we have not, as you put it,

€}=coscx—1,

{ } = |cosa|—1,
and therefore forae = 0,aswellasfora =7, o = Ogoz =mo= 0,_

=

Perimeter
Diameter

but

for x; = 0, A — 0, and
settle the matter.

of circle equal 7. This, I hope, will

Einstein, however, did not accept this. He responded on the 8th (EA 21-
081):

Dear Mr. Silberstein,
‘I am not yet giving up the hope of convincing you of your error. You
think that you can put in your /-expression

{ }: jcosar| — 1.

I already mentioned that the first differential quotient of this function
is discontinuous (in @ = (2n + 1)7). One must consider & = Z
[accompanied by a sketch]. In this surface the differential equations are
violated by your solution.

If you still don’t admit your error, I will write nothing about it any-
more. I only beg you not to conclude from such silence that I assent.

With friendly greetings

Silberstein answered on January 15 (EA 21-082) that “University lectures
& some social pastimes have delayed a reply to your letter of Jan. 8, all
these days. I am now ready to answer it.” He then proceeded with a lengthy
discussion, concluding: »

In fine, the g,.’s become infinite only at A, B and their derivatives
are discontinuous at a certain surface passing through them. What of
that? Why don’t you consider this as an admissible gravitational field
~ surrounding two mass-centres? The Schwarzschild solution for one
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centre. .. (S) has a much more formidable singularity at the sphere r =
2M, namely
g =0, gn=o9,

yet neither you nor any other relativist has ever hesitated to use the line-
element (S) as representing the field around a mass-centre.... If we
apply to M; -+ M, the same leniency as to a single M (Schwarzschild so-
Iution), we must admit that your field-equations, R, = 0, misrepresent
fact and experience—giving two stars placed opposite each other.

Einstein, as promised, did not answer. This is unfortunate, since it
would have been important to stress the difference between a coordinate
singularity and a real one, e.g., by providing an invariant characterization.
This difference had been recognized for the Schwarzschild solution at least
since Eddington 192314

Silberstein wrote him again on February 10 (EA 21-083):

I pointed out to you that your invocation of these little singularities is but
a “futile exercise,” and a quite hair-splitting one. ... Now, it greatly sur-
prises me that instead of answering my letter of Jan. 15 ... you have told
some reporters at Princeton (Feb. 9) that my conclusion “was based on
an error,” etc. .. . I am sorry to say that, while our correspondence in the
past has been just & unimpeachable, your behaviour now in relation to
my last letter and to your Princeton reporters strikes me as quite unfair.
And T say this with much regret because I have always had the high-
est opinion of your objectivity and fairness in scientific polemics.. .. It
is quite possible that the reporters have distorted your (Feb. 9) state-
ments, as they certainly have distorted or exaggerated of late some of
my statements in this matter.

Einstein again did not answer, and Silberstein grew frantic. On March 6
he wrote him again (EA 21-084):

I desire to remind you that my letters. .. have been left unanswered by
you. And as they were preceded by some unfair and, in part, nonsensical
remarks which you have given out to some Princetonreporters (published
by the press in Feb. 9), I feel justified in assuming that you do not desire
to continue any direct correspondence with me and that you prefer to
drop vour previous principle of fair scientific discussion and to embark
on a non-geodesical (in plain English, crooked) way in dealing with your
previous friend, and with the radical defect of your “great” gravitation
theory. )
I shall thoroughly conform my further actions to this assumption
which (in view of your silence) I consider to be true to actual facts.
Yours faithfuily,

The paper Silberstein had submitted in November appeared in the Feb-
ruary 1 issue of The Physical Review (Silberstein 1935). It carried the
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provocative title “Two-Centers Solution of the Gravitational Field Equa-
tions, and the Need for a Reformed Theory of Matter,” and stated that the
solution “has singularities at A and B only, and not (as in R. Bach’s and
H. Weyl’s physically trivial solution) along the straight segment joining

Peter Havas

these two points” and that it had been communicated

It was the publication of this article which had brought the reporters to

to Einstein, pointing out, rather emphatically, that this is a case of a per-
fectly rigorous solution of his field equations and yet utterly inadmissible
physically, so that one cannot henceforth treat “matter particles” as sin-
gularities of the field. This has, in fact, induced Einstein to attempt, in
collaboration with N. Rosen, a new theory of matter.

Einstein’s door.

The article prompted Einstein and Rosen to submit a letter to the editor
on February 17, which appeared in the March 1 issue (Einstein and Rosen
1936). After repeating the arguments of Einstein’s letter to Silberstein of

December 30, 1935 (EA 21-079), it stated that

Lanczos had written to Einstein on February 15 (EA 15-256, in Ger-
man): “The last issue of Phys. Rev. contains an article by Mr. Silberstein,
which is in complete opposition to the general expectations.” After briefly
outlining his own earlier approach to the problem of motion, concluding

that

a-closer investigation shows that the calculation can be carried through
without the introduction of the square root and the resultant ambiguity
of sign. One then finds that in the correct solution
[ ] =cosa — 1.
This, however, also fails to satisfy the regularity conditions.. ..
- We should like to remark that, as shown in a letter to one of us,

Professor C. Lanczos of Purdue University has independently recognized
the error in Silberstein’s paper.

While the indeterminacy of the field due to the omission of the matter
tensor is quite large, one can nevertheless derive center-of-mass theorems
which are largely analogous to the usual mechanical theorems for rigid
bodies,

he continued:

That the singularity concept is insufficient and would cause a large in-
determinacy in the field, we all know, of course. But one can not forge
a weapon against this conception out of the gravitational field alone, as
this yields approximately the same as one would expect on the basis of
classical physics.

The fallacy in Mr. S.’s paper is contained in the square-root term in
formula (10}, p. 270.
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He then provided a proof that this term leads to a discontinuity and that
“one obtains again the usual mass line, which prevents the two masses from
falling on each other.” The proof is substantially the same as that given by
Einstein in EA 21-079.

Neither Lanczos’ letter nor the Einstein-Rosen letter to the editor men-
tions that the mass centers do not correspond to simple poles, nor is there
any discussion of the difference between the line singularity of Silber-
stein’s solution and the coordinate singularity of Schwarzschild’s. None of
them mention Curzon; on the other hand, the Science Abstracts summary
of Silberstein’s paper, written by McVittie, states at the outset that it had
“rediscovered” the Curzon solution (McVittie 1936).

On March 7, 1936, a note appeared in The Evening Telegram of Toronto
with the headline “Fatal Blow to Relativity Issued Here” and the subtitle
“Told by Einstein That He’s Wrong, Toronto Savant Makes New Attack on
Theory.” It started with

Relatively speaking, the battle between Professor Einstein and Dr. Lud-
wik Silberstein, visiting lecturer at the University of Toronto, over a
theory is warming up to frizzling point.

It then summarized Silberstein’s article as showing that

Einstein’s gravitational theory was invalid and that the general theory
of relativity hadn’t a leg to stand on. Professor Einstein agreed that
his gravitational theory required revision, but, answering the criticism
in the current issue of the Physical Review, he charged Dr. Silberstein
with conjuring “mathematical spooks” which had nothing to do with
relativity.

(Actually, no such “spooks” are mentioned in the Einstein—Rosen letter.)
Then it mentioned that Silberstein had sent another paper “to the Physical
Review yesterday. ... It’s a follow-up which Dr. Silberstein contends gives
the coup-de-grace to Einstein’s gravitational theory.”

Silberstein enclosed this note in a letter (EA 21-085) addressed to
“Messrs. Einstein, Rosen, & Lanczos” and mailed to Lanczos. He wrote:

Gentlemen,

The new paper by the undersigned (mentioned in the attached clipping
from Evening Telegram) fully disposes of Dr. Einstein’s & Dr. Lanczos’
rash & foolish objection to my solution of Feb. 1 (Phys. Rev.).

After adding a few calculations and again concluding that there is “No
‘matter’ between the centres,” he ended by “Einstein and Rosen’s idea of
calling my solution ‘mathematical spooks,” etc., is as foolish as it is unfair.
E. & R.s attitude strikes me as also vulgar. They will soon repent it.”
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This letter was transmitted to Einstein by Lanczos as requested on
March 12, together with a lengthy letter of his own (EA 15-257, in German),
starting:

Dear Mr. Einstein! Dutifully, I am sending you the enclosed letter, asitis
also addressed to you and Mr. Rosen. The situation with Mr. Silberstein
is very regrettable, since he is obviously more and more doggedly stuck
with these fixed ideas. In a further letter to me he informs me of his
additional results regarding axially symmetric solutions (especially, that
for certain Ansdtze of the line element there exist only static solutions
[but setting the g;4 = 0!]), but which, it seems to me, are all well known
through the papers of the Italian school. Thave tried as gently as possible
o point out his error concerning the problem of motion, but given his
high-strung state all this will not help much. Given the rigorous criticism
common for American journals possibly his paper for Phys. Rev. will
not even be accepted, which I am almost afraid of, since the rejection
might cause the total collapse of his mental vigor. It is sad that in such
cases one cannot do anything sensible, but after all one can not demand
that one should swallow obvious errors for humane reasons.

(The Lanczos—Silberstein correspondence is not available, nor are Ein-
stein’s answers to the two letters from Lanczos.)

Before Einstein had received Lanczos’ letter containing Silberstein’s,
however, he had already dashed off an irate response to Silberstein’s letter
of March 6 (EA 21-084) on March }p (EA 21-087):

Dear Mr. Silberstein,

T have alerted you in two letters in detail to your mistake, and advised
you to withdraw publication. In addition, the newspaper contained the
idiotic claim that I had revised the general theory of relativity because
of an earlier letter by you. By this you made it necessary for me to
correct your errors publicly. Pauli told me, e.g., that I should absolutely
do this, since the error was not so obvious that it could be noticed by any
knowledgeable reader. Whether I will answer later publications by you
on this subject will depend on whether I consider it necessary.

With friendly greetings

Silberstein responded on the 17th (EA 21-088):

Sweet Mr. Einstein,

Your letter of Mar. 10 to hand. Its tone, and the “airs” you give
yourself therein, greatly surprises me. But let us adhere to the principle
of “sense of humour,” especially cultivated by the Anglo-Saxons. And

" so, instead of barking at you, I send you herewith a refutation of your
- objections which is yet simpler than my proof (given in a paper sent a
week ago to Phys. Review) thatall R, = Oontheaxis AB,&allT,, =0
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(no “matter” between the centres A, B).... This, I trust, fixes you up
(U.S.A. slang) once & for all.

With friendly greetings,

Yours sincerely

“The rest is silence” (Shakespeare 1602). Silberstein’s solution was
never mentioned again, and no letters were exchanged for five years.

3.6 EPILOGUE

During those five years Nazi Germany had remilitarized the Rhineland,
the civil war in Spain took its course, Austria suffered the “Anschluss,”
Munich produced the annexation of the Sudetenland and subsequently the
occupation of all of Czechoslovakia, the attack on Poland started World
War II, and, within less than a year, half of Europe had been occupied by
Nazi Germany and the Soviet Union. Nuclear fission had been discovered,
and Einstein had been induced to write to President Roosevelt about it.

Einstein, and probably also Silberstein, spent more and more time trying
to help the victims of world events. But while they previously had on
occasion collaborated in these efforts, they did not communicate even on
these subjects now.

The paper mentioned in Silberstein’s last letter (EA 21-088) and in the
Toronto Telegram article was never published; whether it was withdrawn
or rejected by The Physical Review is not known. Rosen left Princeton to
accept an appointment at the University of Kiev and did not return to the
problem of motion for more than a decade. The scientific public accepted
the Einstein—Rosen letter as the final word on Silberstein’s claims. As many
Jewish and anti-Nazi scientists had to worry more about survival than about
their research, and some of those who escaped as well as their former or
new colleagues on both sides devoted their energies to war work, very little
effort went into investigations of fundamental problems.

Silberstein had mentioned results on spherically symmetric solutions to
Einstein in his letter of December 30, 1934, and similar results on axially
symmetric solution in a (lost) letter referred to by Lanczos on March 12,
1936. He submitted an extended version to The Philosophical Magazine in
November 1937, which was published shortly thereafter (Silberstein 1937).
It had two parts: Part I (whose results, he noted, had been “communicated
to Dr. Einstein in a private letter of December 1933”), consisted of the proof
that any spherically symmetric solution of R, = 0 can be put in a static
form, without giving any references to previous work; this indicates that
Silberstein had not gotten in touch with Levi-Civita (and that the referee also
was not aware of Birkhoff’s theorem, which by then had become quite well
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known and was, e.g., accorded a section in Tolman’s famous monograph
(Tolman 1934)). ‘

Part II first gave a proof that if one assumes the form of the axially
symmetric line element to be that which had been proved by Levi-Civita
to be the most general static one, this form allows only static solutions of
R, = 0. This seems to be the same proof Silberstein had mentioned to
Lanczos. But then he went on to give a “proof” that all axially symmetric
solutions are static, and thus, in particular, there does not exist a solution for
two mass centers moving along a line. This resultis nonsense, on the face of
it. In spite of this, it not only got past the referee, but it apparently has never
been challenged directly in the literature. It probably escaped attention for
a few years because of world events, and then was not noticed by the next
generation of relativists—or by Weyl, who had also ignored Silberstein
1936. Although Weyl later joined Einstein in Princeton, nobody seems
to have drawn his attention to Silberstein’s claims. Of course, numerous
examples of explicitly time-dependent solutions have been exhibited by
several authors in the last fifty years, indirectly disproving Silberstein’s
result.

This was Silberstein’s last publication in the area of relativity, although
he published dozens of papers on other subjects, mostly in optics, between
1937 and his death eleven years later.

In the meantime, Einstein, in collaboration with Banesh Hoffmann and
Leopold Infeld, had attacked the problem of motion from a different angle.
The result, which they called the “new approximation method” for obtaining
the equations of motion of n slowly moving particles, was published in 1938
(Einstein, Infeld, and Hoffmann 1938). Three years later, on February 8,
1941, Silberstein wrote to “Drs. A, Einstein, L. Infeld, and B. Hoffmann”
(EA 21-089):

Gentlemen,

On Jan. 26th I have pointed out to Prof. Veblen certain fundamental
objections to the method of attacking the “Problem of Motion” adopted in
your paper of Jan. 1938.. . . namely the non-existence of spherically sym-
metrical point singularities, i.e. their incompatibility with the very struc-
ture of Einstein’s gravitational field equations,—singularities which,
nonetheless, you assume throughout your investigation.

My impression is that this essential objection still holds and it has
seemed worthwhile of bringing it directly to your notice, as the authors
of that otherwise very interesting (although, by necessity, extremely
laborious) method.

He then stated that he had written Veblen again on January 27 telling
him the result of his computation of the perihelion motion, which differed
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from Einstein’s both in sign and in magnitude, but then had found an error
and now agreed with the old result as well as the one obtained in Robertson
1938 on the basis of the EIH equations, but “Since my own derivation of
it seems to be more Jucid than Robertson’s, I give it here, in toto, in the
belief that it may interest you. ...” He ended the letter with “Nonetheless,
the objection as to the rigorous non-existence of spherically symmetrical
point singularities persists.” Then he added a p.s. containing a calculation
claiming the existence of a secular acceleration of the center of mass for
two comparable masses.

Einstein replied on February 18 (EA 21-090), apologizing for the delay.
He then wrote: "

Your computation of the two-body problem is pretty. But in the present
case it is important to give the solution for nonvanishing mass ratio.
Now as to your objection concerning the spherical symmetry of the
singularity. Here it should be noted that the main interest of the entire
consideration is that only that part of the space matters in which the field
is regular (surface conditions). ... Of course, in a complete field theory
the positing of singularities is altogether forbidden. In the present case
the introduction of singularities is justified because it allows treatment on
the basis of the gravitational field alone of a problem of which “matter”

is a part, without having to use a theory of the latter.
Infeld and Hoffmann are no longer in Princeton, and I preferred not

to bother them for the time being.

With friendly greetings,
Yours,

Silberstein was delighted. He replied immediately (February 21, EA
21-091):

Dear Professor Einstein,

Your letter of Feb. 18 has given more pleasure than I can say in words.
The very fact that you have written to me at all after my discourteous
letter of 1937 (or so), the outcome of a momentary passion, and thus
have forgiven me, is a precious gift to me. For, having been since
1921, instinctively, your true friend, I have these last four years often
reproached myself bitterly for that explosion of bad temper (originated in
the two mass-centres problem). Well, I thank you most heartily for your
spirit of goodwill and forgiveness. ... I am naturally glad that you have
found my treatment of planetary motion (m, > m;) “pretty”. .. and that
you have recognized the validity of my objection, viz. the non-existence
of radially symmetrical point singularities in a field R,, = 0. I accept, at
the same time, your views as to the (practical) necessity of working—
with your method—with just such singularities. ...

He then added more than four pages describing various results he had
obtained using the EIH equations, raising various objections in that context,
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Einstein replied on March 4 (EA 21-093):

It has to be said again that I cannot see it as an objection that the gravita-
tional interaction disturbs the central symmetry of the fields surrounding
the particles. ... Now I come to your new objections. ... You conclude
that for the motion along a line. .. the “mass center” is not in uniform
motion. But you have to bear in mind that our coordinate system has no
absolute significance. ... Something similar occurs in your application
of II to the motion of the “mass center” of the masses circling one an-
other with constant separation. This result would show the absurdity of
our formulae if it would not rest on an error in the calculation. ... Thus
the objections amount to nothing.

Silberstein responded on March 8 (EA 21-094) with an eight-page letter
which started with “Many thanks for your interesting, and actually instruct-
ing, letter” and concluded with “Please, Prof. Einstein, have patience with
me and teach me to conquer my ignorance in dealing with these intricate
subtleties.” It does not appear that he meant this ironically. In an undated
reply (EA 21-095), Einstein wrote that he did not have the time to work
through all the details of Silberstein’s letter, but elaborated further on the
significance of coordinates. The correspondence continued until the end
of 1946, dealing with various topics, including Silberstein’s questioning of
the universal validity of E = mc?; the tone was generally friendly.

Sometime in early 1941 Infeld received two letters by Silberstein, ap-
parently containing objections to the method of EIH. He wrote to Einstein
(undated, probably March 1941, EA 14-055): “Of course he is wrong.
But I doubt that you will be able to convince him, because he is mentally
unbalanced as I learned from people who know him well.”

Given Infeld’s style, this judgment should probably not be taken liter-
ally. What is surprising is that his letter gives the impression that he did not
know Silberstein personally; both were of Polish origin, although one gen-
eration apart, and since 1938 Infeld had been at the University of Toronto,
where Silberstein frequently had visited from Rochester, just across Lake
Ontario. Thave been unable to question anybody who actually knew Silber-
stein in his later years; however, Lanczos’ “high-strung” comment seems
to be justified on the basis of the tone of some of Silberstein’s letters.

Tt is also quite clear from the correspondence between Einstein and Sil-
berstein, however, that here were two proud and stubborn men—Silberstein
even more so than Einstein, even less inclined to accept criticism of his work
and, after the break in 1936, incapable of taking the initiative and apolo-
gizing to Einstein, although he knew that he was at fault; both frustrated,
Silberstein by the lack of recognition of his by no means insignificant ear-
lier work, attempting to show his mettle by using every opportunity to try
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to prove that Einstein’s theory was inadequate (various ether-drift exper-
iments, double star and red shift observations, the two-body metric and
other axially symmetric solutions), Einstein by his failure to find the pure
field theory; both—perhaps because of their strong belief in their own men-
tal powers—persisting in some easily correctable errors, having stopped
reading the relevant literature as well as having failed to consuli with easily
accessible scientists who had worked in the same area, such as Weyl and
Levi-Civita.
“Finita la commedia” (Alighieri 1321).

4. Conclusion

Scientifically, it is clear that Silberstein was wrong on the main issue, his
solution for the two-body problem; but Einstein was not completely right
either. His dislike of singularities (and vain search for a “pure” field the-
ory of matter) made him go off on tangents repeatedly, without realizing
that even Silberstein’s one-center solution was not what it was purported
to be, since it did not describe the field of a spherically symmetric source.
Thus, the extended correspondence and the associated publications (Ein-
stein and Rosen 1936; Silberstein 1936, 1937), while shedding much light
on the modes of thinking and the character of the men, fundamentally added
nothing to clarifying the problem of two particles.

In 1927, Darmois had summarized the status of that problem as follows
(Darmois 1927, p. 44), after landing Wey[’s contribution (given en frangais,
because it sounds so much better than any translation could):

Mais le veritable probléme du mouvement libre de deux masses, éxigeant
par conséquent un ds” & deux tubes massiques, n’est nullement resolu.
Méme pour le probléme de deux masses égales, tournant circulairement
autour du centre de gravité, on ne sait encore rien.">

And the conclusion in 19887 “Plus ¢a change, plus c’est la méme
chose” (Karr 1849).
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1 All translations are my own.

2 We shall also restrict ourselves to singularities corresponding to positive masses.
Negative masses were considered much later in Synge 1960; Hoffmann 1962; Is-
rael and Khan 1964; the general case of equilibrium configurations with multipole
singularities along an axis was treated in Szekeres 1968.

3 “R. Bach” is really Rudolf Forster; I am indebted to A.J. Kox for drawing my
attention to the Forster correspondence in the Einstein Archives. Forster obtained
a doctorate in mathematics and physics at the University of Leipzig in 1908. For
a time he was an assistant at the Technische Hochschule Danzig (now Gdansk)
according to the eulogy quoted below; I am indebted to Prof. L. Kostro of the
University of Gdansk for his help in trying to verify this, but unfortunately we
were unable to do so. During World War I he was a research engineer at Krupp.
He started working in general relativity in total isolation and corresponded with
Einstein in 1917-1918." As he wrote on December 28, 1917 (EA 25-065), his
contract prohibited any outside writing, “the fate of the ‘industrial slave,” and
therefore he chose to publish under a pseudonym. After leaving Krupp, Forster
worked at Ziindapp and, from 1924 until his death in 1941, at Siemens-Schuckert in
Nuremberg. Although his work as “R. Bach” was known to his last employer, and,
in the eulogy by a Dr. Bohloff (November 2, 1941, EA 25-070, in German), this use
of a psendonym was ascribed to his modesty rather than to any outside pressure (and
lauded—without mentioning that relativity was proscribed in Nazi Germany), he
did not publish anything after 1922. However, according to his widow, who wrote
to Einstein after the war (January 20, 1948, EA 25-068, in German), he did continue
his scientific work until his death. She asked Einstein for permission to send him
Forster’s notes, but Einstein apparently never answered. None of Einstein’s earlier
letters to Forster are known to survive, but it is clear from Forster’s that his various
results as well as his questions were taken quite seriously. Furthermore, Forster’s
widow stated that Einstein once had written: “Isee from your letter that I am dealing
with a man of unusual theoretical talent. It would be regrettable if you would not
have enough leisure to think about these beautiful problems.” This was probably a
quote from the lost letter of February 19, 1918, since, in his answer of March 19
(EA 25-067, in German), Forster wrote:

Concerning my profession, I can only tell you that I am very satisfied with
it and would not exchange it with that of a teacher, not even an academic
one, quite apart from the strangely low pay. At most, I might be tempted
by a position at a research institute. The results of my work here have
only a very distant relation to the mass murder of the nations. I do not
construct any cannons, but am occupied with electrical measurements,
apparatus, electrical propulsion of mechanical apparatus, etc.

Since in the above-mentioned eulogy Forster’s work at Krupp was described as
involving “controls for artillery,” the letter may well represent only an apologia
for war work directed to a man known for his opposition to the war raging at the
time. Forster’s most important work (Bach 1922) unfortunately is reprinted in
Weyl’s collected papers (Weyl 1968) as if Weyl were the author, and “Bach” is not
mentioned editorially at all.




The Two-Body Problem and the Einstein—Silberstein Controversy 119

4 The other members of the examination committee were M. Brillouin and Emile
Borel (chairman). According to Levinson’s CV, he was working under Brillouin.

3 For later discussions of the Curzon singularity, see Mysak and Szekeres 1966;
Gautrean and Anderson 1967; Stachel 1968; Cooperstock and Junevicus 1974.

6 A good discussion of the Weyl-Levi-Civita method and of Curzon’s paper is
given in Synge 1960, chapter vi; there is no mention of Silberstein, however.

7 Philipp Lenard (1862-1947) at the time was a professor at the University
of Heidelberg and director of the Physics and Radiology Institutes there; he later
wrote the infamous four-volume Deutsche Physik. Ernst Gehrcke (1878-1960) was
director of the State Physical-Technical Institute in Berlin and a. o. Professor there;
he had published Die Relasivitiitstheorie, eine wissenschaftliche Massensuggestion
a year before Silberstein’s letter. (That same year had seen a right-wing coup
attempt, the Kapp Putsch, which was defeated mainly through a general strike.)
Both were leaders in the campaign against Einstein, which is discussed in detail in
this volume (Goenner 1993). Rudolph Virchow (1821-1902) is considered to be
the father of modern pathology. In evaluating Silberstein’s comments, it should be
kept in mind that he had not lived in Germany for more than a quarter century. This
may explain the inclusion of Virchow, who had been dead for almost two decades,
as one of only two “good Germans.” Possibly Silberstein had known him in his
student days.

8 This period in his life is discussed in detail in Stachel 1990. In contrast to
several treatments of Einstein’s relation to Judaism and Zionism which were written
by religious Jews or Zionists, this paper provides an excellent balanced survey,
although it does not give full weight to the degree of assimilation and the frequently
total absence of religious feelings among many Central European Jews, who were
often not even “Jews in name only.” In the 1920s and early 1930s, after the Nazis
had given the broadest and vaguest possible “racial” labeling of “Jews,” an extensive
discussion took place in the German and Austrian press, in books, and in meetings
of the left and the right about “What Is a Jew?” A few years later, Einstein wrote
an article (Einstein 1938) containing a section with the same title, which totally
ignored that discussion and the arguments given there, actually echoing the Nazi
line of “Once a Jew, always a Jew” without realizing it. This is briefly discussed in
Havas 1980. After coming to power, the Nazis, in the Nuremberg laws, had to give
up any attempt at a racial definition, and had to resort to using the religion of one’s
four grandparents as the only criterion.

° In Livingston 1973, p. 310, this is described as follows, based on an interview
with Tom O’Donnell, a collaborator of Michelson:

Dr. Silberstein arrived from Rochester at a time when Michelson was not
well enough to meet him. Henry Gale took Silberstein out to Clearing
and disliked him immediately.... Gale loved his liquor, but disliked
Silberstein and would only drink with “friends.”

This sounds as if Gale had met Silberstein only then, while he had known him for
at least three years, and well enough to consider offering him a position. On the
other hand, any dislike on Gale’s part would explain why he did not maintain his
offer to Silberstein once Einstein was out of the picture.
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10 The problem Silberstein experienced with the German language was, however,
clearly stated by him in a later letter (September 23, 1934, EA 21-071, in German,
with the two words in square brackets in English):

This time I will try to write to you in German (although, through Hitlerian
association, even the language itself [itself] sounds hateful [odious] inside
my “soul.” I shall only insert English words here and there.

1 n Silberstein 1922, p. 13, the term “elementally flat” was used equivalenily
with locally Minkowskian. Apart from the unusual spelling (curiously, the index
of the book refers to “elementary flatness™), this is the first use of the term in the
literature that I am aware of. This is rather ironic, given that it is precisely the
question of elementary flatness that would be at issue in the entire controversy.

12 The most detailed discussion of the question whether a given space-time
actually is spherically symmetric is given in Takeno 1952, where it is proved that the
one-body solution of Weyl and Levi-Civita is indeed spherically symmetric, whereas
that of Silberstein (and thus of Curzon, whose paper was apparently not known to
Takeno) is not. The most recent discussion of the line singularities of Curzon’s
and Silberstein’s two-body solution is contained in Schleifer 1985a, 1985b. There
it is shown that, although all scalar invariants vanish everywhere outside the two
centers, the region between them along the axis does not constitute a Lorentzian
manifold. .

13 Cornelius Lanczos had been Einstein’s assistant in Berlin in 1928-1929. At
that time Einstein was working on a unified field theory, and Lanczos had vainly
attempted to interest him in the problem of motion (Havas 1989). He left Germany
in 1931 and became a professor at Purdue University.

14 A detailed discussion of the difference between real and coordinate singulari-
ties is given in Szekeres 1960; cf. also Mysak and Szekeres 1966.

15 «“Buyt the real problem of the free motion of two masses, which thus requires a
ds? of two mass tubes, is not at all resolved. Even about the problem of two equal
masses rotating around the mass center in a circle one knows as yet nothing.”
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