DEPARTMENT OF COMMERCE U. S. COAST AND GEODETIC SURVEY 'I' SUPERINTENDENT GEODESY PRIMARY TRIANGULATION ON THE ONE HUNDRED AND FOURTH MERIDIAN, AND ON THE THIRTY- NINTH PARALLEL IN COLORADO, UTAH, AND NEVADA BY WILLIAM BOWIK Inspector of G-eodetio Work and Chief of the Computing Division TJ. S. Coast and G-eodetio Survey SPECIAL PUBLICATION ,'NO. 19 WASHINGTON GOVERNMENT PRINTING OFFICE wu DEPARTMENT OF COMMERCE U. S. COAST AND GEODETIC SURVEY SUPERINTENDENT l GEODESY PRIMARY TRIANGULATION ON THE ONE HUNDRED AND FOURTH MERIDIAN, AND ON THE THIRTY- NINTH PARALLEL IN COLORADO, UTAH, AND NEVADA BY WILLIAM BOWIK Inspector of Geodetio 'Work and Chief of the Computing Division IT. S. Coast and Geodetic Survey SPECIAL PUBLICATION No. 19 WASHINGTON GOVERNMENT PRINTING OFFICE 191* ADDITIONAL COPIES O? THIS PUBLICATION MAT BE PROCURED FROM THE SUPERINTENDENT OF DOCUMENTS GOVERNMENT PRINTING OFPICE WASHINGTON, D. C. AT 25 CENTS PER COPY <2b Has '9M CONTENTS. General statement Reconnoissance General instructions for reconnoissance Cost of reconnoissance Measurement of bases on the one hundred and fourth meridian Ambrose base 5 Provo base El Paso base, discussion of old measurement Base measurements in 1913 El Paso base Cheyenne base Conclusions from base measurements Building signals and marking stations Instruments used on triangulation Light keepers Signal code and instructions to light keepers Observations for horizontal directions General instructions to observers on primary triangulation , Methods of observing employed Program of occupation of stations, one hundred and fourth meridian Connections made between the one hundred and fourth meridian triangulation and stations and monuments of other surveys Connections made between the thirty-ninth parallel triangulation and stations and monuments of other surveys. Statement of costs Statement of adjustments 1 Abstract of horizontal directions and elevation of telescope above the station mark Condition equations Accuracy as indicated by corrections to observed directions Accuracy as indicated by corrections to angles and closures of triangles Accord of bases Accord of azimuths Study of errors Deviation of triangulation in azimuth Effect of drag Accuracy of the primary triangulation in the United States The North American datum Explanation of tables of positions Tables of positions ' One hundred and fourth meridian Thirty-ninth parallel Descriptions of stations : One hundred and fourth meridian Th irty-ninth parallel Vertical circle Computation, adjustment, and accuracy of the elevations Table of elevations Determination of astronomic longitude Astronomic azimuths Astronomic latitudes Triangulation sketches Index to positions, descriptions, elevations, and sketches General index Page. 5 6 6 8 9 10 13 15 19 19 22 28 28 30 31 32 35 35 37 38 39 40 40 41 42 47 53 56 63 63 64 65 76 79 80 83 88 88 95 114 115 126 140 140 146 148 151 152 154 155 162 3 4 CONTENTS. ILLUSTRATIONS. No. 1. Reel for invar tape (two viewB) 2. Twelve-inch theodolite 3a. Vertical collimator (two views) 3b. Box heliotrope used on triangulation 3c. Large acetylene signal lamp used on triangulation 4. Standard triangulation station and reference marks 6. Vertical circle used in trigonometric leveling and for making time observations 6a. Zenith telescope used for latitude observations 6b. Portable wooden support with adjustable legs for the zenith telescope 6c. Motor truck used by latitude party 7. Index map showing areas covered by published triangulation which has been rigidly computed on the North American datum 8. Index map showing the main scheme of the triangulation published in this report and showing also the limits of each of the following sketches Nos. 9tol7 9. Triangulation, one hundred and fourth meridian, stations Pikes Peak and Divide to Ragged and Whitaker. 10. Triangulation, one hundred and fourth meridian, stations Ragged and Whitaker to Alkali and Elk 11. Triangulation, one hundred and fourth meridian, stations Alkali and Elk to Black and Rainy 12. Triangulation, one hundred and fourth meridian, stations Black and Rainy to Canada boundary 13. Triangulation, one hundred and fourth meridian, Missouri River connection 14. Triangulation, thirty-ninth parallel, Kansas-Colorado boundary to stations Divide, Pikes Peak, and Plateau. 15. Triangulation, thirty-ninth parallel, stations Divide, Pikes Peak, and Plateau to Patmos Head and Mount Ellen 16. Triangulation, thirty-ninth parallel, stations Patmos Head and Mount Ellen to Diamond Peak and White Pine 17. Triangulation, thirty-ninth parallel, stations Diamond Peak and White Pine to California-Nevada boundary. l-age. 10 28 30 32 32 114 140 150 152 152 154 154 154 154 154 154 154 154 154 154 154 PRIMARY TRIANGULATION ON THE ONE HUNDRED AND FOURTH MERIDIAN, AND ON THE THIRTY-NINTH PARALLEL IN COLORADO, UTAH, AND NEVADA. By William Bowie, Inspector of Geodetic Work and Chief of the Computing Division, United States Coast and Geodetic Survey. GENERAL STATEMENT. The primary object of this publication is to give the geographic positions, elevations, and descriptions of the main scheme, subsidiary and intersection stations determined by primary triangulation in the State of Colorado and northward, from the line Pikes Peak-Divide of the thirty-ninth parallel triangulation, approximately along the one hundred and fourth meridian to the Canadian border, and also similar data for the various stations of the thirty-ninth parallel triangulation which He in the States of Colorado, Utah, and Nevada. The geographic positions are on the North American datum, and,, as far as geographic purposes are concerned, they will probably not be changed. The geographic positions of stations of the thirty-ninth parallel within the States mentioned above, as given in Special Publication No. 4 (The Transcontinental Triangulation), are superseded by the positions contained herein. That publication was issued before the adoption of the North American datum. The author desires to express his appreciation of the valuable services performed in the field and in the office by members of the Survey in connection with the one hundred and fourth meridian triangulation; also in the office work connected with the readjustment of the thirty- ninth parallel triangulation in Colorado, Utah, and Nevada, and the preparation of the results for 1 publication. Especial mention should be made of E. H. Pagenhart and C. V. Hodgson, who were in charge of the base measurements and triangulation observations; also of J. S. Bilby, who laid out the scheme and selected the stations in the field and then prepared the stations for the observing party. In the office A. L. Baldwin had direct supervision of the computations and adjustments and prepared portions of the text. The heavy adjustments were made by W. P. Reynolds and O. S. Adams under Mr. Baldwin's direction. C. H. Swick prepared the descriptions of stations, assembled the tables, and edited the text. Of the others who assisted in the work, including the preparation of this report, W. D. Lambert, H. R. Tolley, E. F. Church, and E. M. Panopio should be mentioned. . The engineer intent only on securing the necessary information to extend this triangula- tion or to base other surveys on it will find the information he desires on pages 80 to 148, com- mencing with the explanation of the table of positions, lengths, and azimuths. The index, printed on pages 155 to 161, used in connection with the sketches at the end of this publication will enable him to find quickly the data for any given locality. Illustration No. 7, at the back of this volume, shows graphically the area covered by each of the publications of the United States Coast and Geodetic Survey and by one publication of the United States Army Engineers, which give the results of triangulation, which has been rigidly adjusted and computed on the North American datum. In illustration No. 8 are shown the main scheme of the triangulation covered by this report and the area covered by each of the illustrations Nos. 9 to 17, which give the details of the triangulation nets. 1 Acknowledgments are made for the field and office work connected with the transcontinental triangulation in Special Publication No. 4. 5 6 U. S. COAST AND GEODETIC SURVEY SPECIAL PUBLICATION NO. 19. There are also given in this publication descriptions of the methods employed in the triangulation and base measurements on the one hundred and fourth meridian arc and data necessary to show the accuracy of the results of that work. The methods employed on the thirty-ninth parallel triangulation and the accuracy of the results are described in Special Publication No. 4 of the Coast and Geodetic Survey. RECONNOISSANCE. The reconnoissance for the triangulation on the one hundred and fourth meridian was done by Signalman J. S. BUby in 1911. His party consisted of only one man besides himself; his equipment was three mules, one wagon, one riding saddle, necessary tools for repairing the outfit, one tent, cots and bedding for two persons, and a few cooking utensils. The instruments he carried were a 4-inch surveyor's transit, a prismatic azimuth compass, a field telescope, binoculars, and a set of drawing instruments. He also carried copies of all the available maps covering all or parts of the area within which he operated. The new scheme began with the line Pikes Peak-Divide of the transcontinental triangula- tion, with station Bison as the third and check point ; it was carried northward to the Colorado- Wyoming boundary, thence northeastward just across the Wyoming-South Dakota boundary, thence northward to the international boundary. Base lines were provided for at Provo, S. Dak. (approximate latitude 43 12'), and at Ambrose, N. Dak., at the northern end of the scheme. Provision was made for connecting with a number of triangulation stations of the United States Geological Survey, with monuments of each State boundary crossed, with the triangula- tion stations of the Missouri River Commission where the scheme crossed that river, with triangulation stations of the international boundary, and with a number of bench marks of various organizations. The statistics of the reconnoissance are: Length of scheme along its axis in miles Area of scheme in square miles Number of stations in the main scheme Number of subsidiary stations Number of base lines selected Date of beginning field work Date of ending field work Total length of season, months Rate of progress per month, miles Average number of stations selected per month: Primary Subsidiary GENERAL INSTRUCTIONS FOR RECONNOISSANCE. 720 17 000 74 23 2 May 2, 1911 Aug. 10, 1911 3. 3 218 22 7 1. Character offigures. The chain of triangulation between base nets shall be made up of completed quadrilaterals and of central-point figures, with all stations occupied. It must not be allowed to degenerate even for a single figure to simple triangles. There must be two ways of computing the lengths through each figure. On the other hand there must be no overlapping of figures and no excess of observed lines beyond those necessary to secure a double determina- tion of every length, except that in a four-sided central-point figure one of the diagonals of the figure may be observed. R= 2. Strength of figures. In the chain of triangulation between base nets the value of the quantity ( 75) 2[82l+8jJ}b+82b] for any one figure must not in the selected best chain (call it .R,) exceed 25, nor in the second best R (call it 2) exceed 80, in units of the sixth place of logarithms. These are extreme limits never to be exceeded. Keep the quantities R t and R2 down to the limits 15 and 50 for the best and second best chains, respectively, whenever the estimated total cost does not exceed that for a chain barely within the extreme limits by more than 25 per cent. The R values of may be readily obtained by the use of the following "Table for determining relative strength of figures in triangulation." ^ In the above formula the two terms and +9 I[81t.+8i.dB 2 B] depend entirely upon the figures chosen and are independent of the accuracy with which the angles are measured. The product of these two terms is therefore a measure of the strength of the figures with respect to length, in so far as the strength depends upon the selection of stations and of lines to be observed over. In the following table the values tabulated are +d +8 2 2[d jL AdB 2 B ]. The unit is one in the sixth place of loga- rithms. The two arguments of the table are the distance angles in degrees, the smaller distance angle being given at PRIMABY TKIANGULATION. the top of the table. The distance angles are the angles in each triangle opposite the known side and the side required. A B A =+0.023mm; Jan., 1913, Tilt=50m+( 9.618mm0.016mm) at 26.8 C; v=-0.022mm. Mean= 9.596mm Mar., 1912, Tj,r =50m+( 9.960mm0.022mm) at 26.9 C; v=+0.026mm; Jan., 1913, Z'8 ,7 =50m+(10.011mm0.016mm) at 26.9 C; v= -0.025mm. Mean= 9.986mm Mar., 1912, 7'M1 =50m+(10.124mm0.021mm) at 26.8 C; t>=+0.012mm; Jan., 1913, 2'M1 =50m+(10.149mm0.016mm) at 26.8 C; v= -0.013mm. Mean= 10.136mm Mar., 1912, 2'622 =50m+(10.988mm0.017mm) at 26.8 C; u=-f-0.010mm; Jan., 1913, 7,5:a =50m-f-(11.008mm0.016mm) at 26.8 C; r=-0.010mm. Mean= 10.998mm Five of these residuals are smaller than the probable errors of the standardizations, and in no case do they exceed these probable errors by an appreciable amount. Therefore it is reasonable to suppose that between the standardizations the tapes underwent no permanent change in length and that the differences were due to errors in the standardization itself. This shows that a straight mean of the results of the January, 1912, and March, 1913, standardizations could have been used in making the computations of the two bases without introducing any error as great as the probable error of the standardization of a tape, which is on an average less than 1 part in 1 000 000. Reduction to sea level. The elevation of Ambrose Northeast base, as given by a con- nection with the spirit leveling along the international boundary, is 623.521 meters. The mean elevation of each section of the base was obtained from the leveling which was run for the purpose of getting the inclination corrections necessary to reduce the measures to the horizontal. The formula used in reducing the base to sea level is C--sJ+s5J-fl f etc., in which C is the reduction to sea level for a section of length S and mean elevation h, and r is the radius of the earth's curvature for the section in question. The reduction to sea level for each section of the base is given in the following table in the column headed "Reduction to sea. level." Results of the measurement. in the following table: The results of the measurement of the Ambrose base are given The Ambrose base line. PRIMARY TEIANGULATION. 13 The Ambrose base line Continued. 14 V. S. COAST AND GEODETIC SURVEY SPECIAL PUBLICATION NO. 19. Division of the base. As in the case of the Ambrose base (see p. 10) this base was divided into three parts, each of which was measured twice in opposite directions with different tapes. Tho measurements were so planned that it was possible to obtain an intercomparison between each two tapes used. The following table shows the divisions of the base, with the tapes used on each and the approximate length of the divisions: Division. PEIMABY TKIANGULATION. 15 The Provo base line Continued. Section. Date and hour. Di- rec- tion Tape Weather and of No. wind. meas- ure. Temperature (cen- tigrade). Correction to length Mean for tem- correct- perature. ed. Set-up or set- back. Grade correction. Tape correc- tion. Reduction to sea level. Reduced lengths of sections. Adopted lengths of sections. Oct., 1912. V.80-100 7, 2:20 p.m. J, 7:45 a. m. VI, 100-120.. . 3, 12:25 p.m. .3, 11:00 a.m. WI VII, 120-140... '3, 1:00 p.m. 3, 10:30 a. m. F. w VIII, 140-160. . 3, 1:30 p.m. 3, 9:50 a.m. E W IX, 160-180.... '3, 2:00 p.m. 3, 9:10 a.m. E X, 180-200 ;, 2:30 p.m. 63, 8:20 a.m. w XI, 200-220.... 3, 3:15 p.m. ,8,11:30 a.m. XII, 220-240... /3, 3:50 p.m. \S, 11:00a. m. E XIII, 240-260.. f8, 8:20 a.m. [8, 10:35 a. m. XIV, 260-280.. f8, 8:50 a.m. [8,10:15 a.m. XV.280-E.B. f8, 9:20a.m. 18, 10:00 a. m. Cy, M NW 521 C, LSE... 517 C, LW.... 51i; C, L V.... 51 C.LW.... 516 C, LW.... 517 C, L W.... 516 C, L W.... 517 C, L W.... Sid C, L W.... 517 C, L W.... 516 C, LW.... 521 C,0 517 C,MW... 521 C.O M 517 C, W... 521 517 C, C, LNW.. MNW. 521 517 C, C, LNW.. MNW. 521 C, LNW.. 517 C, LNW.. m + 15.6 -0.0040 0.0408 -0. 2234 +0. 1921 -0. 1769 999. 8286 + 6.3 -0.0084 0.0371 -0.2234 +0.2028 -0. 1769 999.8312 m mm TflTfl 999.8299 (+1.3 1.69 1-1.1 1.69 24.3 -0.0008 20.8 -0.0021 0.0099 -0.1170+0.1999 -0. 1706 999.8956 0.0000 -0.1170+0.1921 -0. 1766 999.8964 - 24.0 -0.0009 0.0138 -0.0936 +0.1999 -0. 1758 999.9158 19.5 -0.0026 0.0000 -0.0936 +0. 1921 -0. 1758 999.9201 999.8960 f+0.4 \-0.4 999.9180 (+2.2 t-2.1 0.16 0.16 4.84 4.41 24.9 -0.0006 17.4 -0.0034 0.0106 -0.1048 +0.1999 -0. 1770 999.9069 0.0000 -0. 1048 +0. 1921 -0. 1770 999. 9069 + 24.3 -0.0008 0.0384 -0.3527 +0.1999 -0. 1754 999. 7094 + 14.9 -0.0042 0.0522 -0.3527 +0. 1921 -0. 1754 999. 7120 24.4 -0.0008 + 0.0303 -0.5497 +0.1999 -0.1745 999.5052 + 12.9 -0.0050 0.0418 -0.5497 +0.1921 -0.1745 999.5047 + 23.6 -0.0013 0.0450 -0. 1158 +0.2028 -0. 1742 999. 9565 + 18.0 -0.0028 0.0461 -0. 1158 + 0.1999 -0. 1742 999. 9532 + 22.4 -0.0018 0.0273 -0.2201 +0.2028 -0. 174' 99U. s:5 + 17.7 -0.0029 0.0255 -0. 2201 +0. 1999 -0. 1747 999.8277 999.9069 ( 0.0 \ 0.0 999. 7107 (+1.3 \-1.3 (-0.2 999.5050 t+0.3 (-1.6 999.9549 t+1.7 (-2.9 999.8306 \+2.9 0.00 0.00 1.69 1.69 0.04 0.09 2.56 2.89 8.41 8.41 9.7 -0.0070 16.8 -0.0032 0.0000 -0. 2744 +0.2028 -0. 1746 999. 7468 (-2.1 4.41 999. 7447 0.0051 -0. 2744 +0. 1999 -0. 1746 999. 7426 \+2.1 4.41 + 10.8 -0.0066 16.2 -0.0034 o.ooon -0.0589 +0.2028 -0. 1752 999.9621 999.9629 (+0.8 0.64 0.0013 -0.0589 +0. 1999 -0. 1752 999.9637 \-0.8 0.64 + 11.8 -0.0034 + 15.0 -0.0021 0.2109 -0.0164 +0.1116 -0.0966 550. 2061 1-1.2 550. 2049 1.44 0.20S8 -0.0164 +0. 1100 -0.0966 550.2037 t+1.2 1.44 The length of the Provo base is 14 559.2511 0.0046 meters. The logarithm of this length is 4.1631390 1. This probable error of the length corresponds to one part in 3 165 000. The computation of the probable error was made in a manner similar to that described on pages 160-161 of Appendix 4 of the report for 1910. Cost of the Provo base. The cost of preparing this base and making the measurements was about $525. This includes all salaries, but there was nothing charged for traveling expenses or outfit. As the base is 14.5 kilometers in length, the field work cost at the rate of about $36 per kilometer. If to the above amount is added one-half the cost of the two standardizations of the four tapes (the cost is $50 to anyone not connected with the Government for the fundamental standardization of a base tape by the Bureau of Standards), and also about $40 for the cost of making the revised or office computation, the total cost will be $765, a rate of about $53 per kilometer, or $85 per mile. This low cost was due in part to the absence of traveling expenses and any unproductive period before or after the preparation and the measurement of the base. EL PASO BASE, DISCUSSION OF OLD MEASUREMENT. This base was located in 1878 by former Assistant O. H. Tittmann (now superintendent) on the eastern slope of the Rocky Mountains, in El Paso County, Colo., about 30 miles (48 kilometers) east-northeast of Pikes Peak. The middle point of the base is in approximate latitude 38 58' and longitude 104 31'. The length is about 114, kilometers. The base was measured by the party of Mr. Tittmann between August 7 and September 4, 1879, once forward and once backward, with the 6-meter contact-slide steel rods Nos. 3 and 4. The methods employed in the measurement of this base and the results obtained are given on pages 101-107 of Special Publication No. 4, The Transcontinental Triangulation. 16 U. S. COAST AND GEODETIC SURVEY SPECIAL PUBLICATION NO. 19. Length of the contact-slide rods Nos. 8 and 4- It is stated in the above-mentioned publica- tion that these rods were compared at the survey office with the standard iron 6-meter bar No. 1 just before and just after the measurements in the field. The length of bar No. 1 was obtained from comparisons with six steel meter bars especially constructed for the purpose. The coefficient of expansion of bar No. 1 was determined by extensive observations made in 1860. An account of these observations is given in Appendix 26 of the report for 1862. The observations in 1877 for the length of the 6-meter standard (No. 1) consisted in the first place of intercomparisons of the six steel meter bars (Nos. 1, 12, 13, 19, 28, 35) and of bar No. 19 with the committee meter; and, secondly, of comparisons of length of the six 1-meter bars (joined together) with the 6-meter bar (No. 1). In these comparisons several thermometers were used and their readings were corrected for index error and defects in graduation. The average temperature during the comparisons was about 7 length of 6-meter bar No. 1 was 5.9999547 25 at C. C. The resulting value of the The value derived from a comparison in 1860 was 5.9999407 8 at C. An additional value for the length of 6-meter bar No. 1 was obtained from comparisons made in 1882 at the survey office with a 5-meter standard to which was joined a single meter bar, both of known length. This value was 5.9999461 46 at C. For the final value of 6-meter bar No. 1, the weighted mean of the three values of 1860, 1877, and 1882, with their respective weights , 1 , and $, were taken. The resulting length of the standard was 5.999949 3 at C. A comparison in May, 1879, of the 6-meter contact-slide rods Nos. 3 and 4 with standard No. 1 gave the following results: Length of No. 3 = 6.0010765 at 17.28 C. Length of No. 4 = 6.001142 4 at 17.28 C. A second comparison, made in November, 1879, gave the following lengths: Length of No. 3 = 6.000514 4 at 7.74 C. Length of No. 4 = 6.000476 4 at 7.74 C. Before using the El Paso base length in the computation and adjustment of the trans- continental triangulation it was decided to redetermine the coefficients of expansion of these rods. This was done in 1897, and the resulting coefficients were: For 6-meter bar No. 3 = 0.00001149. For 6-meter bar No. 4 = 0.00001141. The lengths of the bars at the mean temperature of the two standardizations and at C are: No. 3 at 12.51 C = 6.000795 m. or at C = 5.999933 m. No. 4 at 12.51 C = 6.000809 m. or at C = 5.999953 m. These are the final lengths used in the computations of the El Paso base. Since the question of the degree of accuracy of this base measurement is an important one, it is believed to be advisable to reproduce here the table on pages 104-106 of Special Pub- lication No. 4, which gives a summary of the forward and backward measurements of the base. Section measures of the El Paso base. Section marks. Mean Mean tempera- temperature F. ture F. No. of corrected. for- corrected, back- (ayerage) bars. ward. ward. Corrected distance, forward. Corrected distance, backward. Mean. Difference from mean. A East base to A East base to (day). . . (night). Do A toB (day) B to A(day) AtoB(night) B toC(day) CtoB(day) B toC(nlght) CtoD(day) DtoC(day) C toD (night) 57.41 57.38 59.79 60.76 51.11 66.45 49.29 68.35 68.37 70.09 66.'96 TO 240. 01450 .01309 .01174 198. 02356 19S. 02257 222.03368 222. 02872 201. 02329 201. 021S2 198.02533 222.03385 204.02571 TO 240.01311 198.02382 222.03208 204.02361 TOTO 1.39 0.02 1.37 0.26 1.51 1.25 1.60 1.76 3.36 0.32 2.10 1.79 PRIMARY TRIANGULATION. Section measures of the El Paso base Continued. Section marks. D toE E toF FtoG GtoH Htol I to J JtoK KtoL LRMittdoogeRNitdogMe NtoO OtoP PtoQ QtoR R toS S to Signal Signal to T TtoU UtoV VtoW WtoX XtoY YtoZ Zto Gulch Gulch to Range. Range to Dot... Dot to Spring... Spring to Road.. Road toa a to /J to r rto.) a to t toC C ton to e i] 9tO I. Montana... July 20, 22, 23 Mondak . . . July 24, 25, 27 Ferry Cut-off.... Jackson... Lovering. Sheep Flat Trotter... Blue Assistant E. H. Pasenhart, Chief of Party, Assistant T. L. Warneb, Obsorver; Season of 1912. July 30 July 31; Aug. 1. Aug. 2, 3, 5 Aug. 6,8,9 Aug. 10, 12 Aug. 13 Aug. 15 Aug. 17, 20, 21.. Cook Hump... Sentinel. Saddle... Badland. Rainy. . . Black.... Butte.... 1 This station was reoccupied. Aug. 23,24.. Aug. 26 Aug. 29,30.. Sept. 2,3,4. Sept. 6 Sept. 9, 10... Sept. 12 Sept. 16, 17. PKIMARY TRIANGULATION. 39 Stations occupied Continued . Assistant E. H. Pagenhakt, Chief of Party and Observer; Season of 1912. Station. 40 U. S. COAST AND GEODETIC SURVEY SPECIAL PUBLICATION NO. 19. The data in regard to these connections may be found by consulting the index and illus- trations at the end of the report, and the table of geographic positions and the descriptions which begin on pages 88 and 115, respectively. The bench marks connected with the one hundred and fourth meridian triangulation for the purpose of controlling the elevations determined by trigonometric leveling are referred to on page 141 and 145, under the heading, "Computation, adjustment, and accuracy of the elevations." CONNECTIONS MADE BETWEEN THE THIRTY-NINTH PARALLEL TRIANGULATION AND STATIONS AND MONUMENTS OF OTHER SURVEYS. The United States Geological Survey, and no doubt other organizations which have carried on surveys in Colorado, Utah, and Nevada, have connected their work with the stations of the thirty-ninth parallel triangulation. At the time the triangulation of the Coast and Geodetic Survey was done in those States, the other organizations of the Government had not carried on very extensive operations in them. Several connections were made, however, between the stations of the thirty-ninth parallel triangulation, at the time they were established, and stations of the United States Geological Survey and the General Land Office. Monuments of the Colorado-Utah and the Utah-Nevada boundaries were also connected with the triangulation. The geographic positions of the stations of other organizations and of the state boundary monuments are given in the table beginning on page 88. The index of stations and the sketches should also be consulted. The bench marks connected with the thirty-ninth parallel triangulation for the purpose of controlling the elevations determined by trigonometric leveling are referred to on page 145, under the heading "Computation, adjustment, and accuracy of the elevations." STATEMENT OF COSTS. The following table gives a statement of the cost of the triangulation along the one hundred and fourth meridian for each of the two observing parties, and also the cost of the entire work. For comparison and for use in estimating the cost of future work, there are given simdar data for the primary triangulation on the ninety-eighth meridian, done later than 1901, and on the Texas-California arc. Name of observer or arc. PRIMARY TRIANGULATION. 41 The total expenses include the cost of preparing and marking the stations and all salaries, but not the cost of the reconnoissance. The cost per mile of progress, which the writer believes is the fairest unit for comparison, is practically the same for the two parties $41 for Mr. Pagenhart and $39 for Mr. Hodgson. In Mr. Pagenhart's party there was only one observer, while in that of Mr. Hodgson's there was one observer for about half the season and two observers for the other half. The cost per mile of progress is only about 60 per cent of that of the ninety-eighth meridian triangulation after 1901, but it is 25 per cent greater than the cost per mile of the TexasCalifornia arc. The cost of the building on the one hundred and fourth meridian triangulation was much less than that on the ninety-eighth meridian triangulation and only slightly less than the building on the Texas-California arc. The weather conditions on the one hundred and fourth meridian were not so favorable on an average as those ,on the Texas-California arc. Considering the fact that no one of the observers on the one hundred and fourth meridian triangulation had ever done primary triangulation previously, it must be concluded that the work was done in a remarkably rapid and efficient manner. The completion of a continuous arc of primary triangulation 720 miles (1159 kilometers) in length during one summer is an exceptional and noteworthy performance. There were 8 subsidiary stations occupied by Mr. Pagenhart and 12 such stations occupied by Mr. Hodgson which have not been classed as occupied stations in the above table. At each of these stations the amount of observing was much less than at a primary station, and as a rule the additional time required in traveling for a subsidiary station was not so much as for a primary station. It would seem to be advisable, therefore, to give a weight of onehalf to the subsidiary stations and then obtain the rates of progress and the costs per stations occupied, which are given below. Name of observer. 42 U. S. COAST AND GEODETIC SURVEY SPECIAL PUBLICATION NO. 19. and fourth meridian triangulation starts from the line Pikes Peak-Divide adjoining the El Paso base net which had been fully adjusted as reported in Special Publication No. 4, pages 101-114. The length discrepancies developed in the triangulation along the thirty-ninth parallel assembled on page 614 of Special Publication No. 4 disclosed the fact that the lengths in the El Paso base net were too long by 85 in the seventh decimal place of logarithms (one part in 51 000) when compared with the Salt Lake base and also too long by 92 in the seventh decimal place of logarithms (one part in 47 000) when compared with the Sauna base to the oastward. This not only strengthened the decision to adopt the new measured length for the El Paso base but also made necessary a readjustment of the triangles in and adjoining the El Paso base net to distribute this length change without changing the standard positions along the parallel to the east and west for any very great distance. It was determined to readjust the triangulation of the thirty-ninth parallel from the line Arapahoe-Monotony near the Colorado-Kansas boundary to the line Tushar-Mount Nebo of the Nevada-California series, adjoining the Salt Lake base net. The geodetic positions already adopted for these two lines were held fixed and by means of one adjustment the 191 conditional or observation equations relating to the one hundred and fourth meridian were combined with the 14 equations of the El Paso base 1 net, the 28 observation equations of the Rocky Mountain 2 series, 27 of the observation equations of the Kansas-Colorado 3 series, 2 azimuth equations, 1 latitude equation and 1 longitude equation. The last-mentioned two and one of the azimuth equations were necessary to hold fixed the standard positions at the east and west ends of this section of the thirty-ninth parallel. The extra azimuth equation was necessitated by the intro- duction of the Laplace azimuth as the true geodetic azimuth at station Watkins. The total number of normal equations solved was 264. Three Laplace azimuths were computed and adopted at stations Watkins astronomic, Provo astronomic, and Mondak. The introduction of these into the adjustment made two other azimuth equations necessary. The fixed lengths in the adjustment were six, viz., the line Arapahoe-Monotony, with its length as adjusted in the thirt3'-ninth 4 parallel; the El Paso base; the fine Tushar-Mount Nebo, with its length as ajusted in the Nevada series of the thirty-ninth 5 parallel; the Cheyenne base; the Provo base; and the Ambrose base. ABSTRACT OF HORIZONTAL DIRECTIONS AND ELEVATION OF TELESCOPE ABOVE THE STATION MARK. All observed directions in the one hundred and fourth meridian triangulation have been given equal or unit weight. Those directions were reduced to center where either the instrument or the object observed was not coincident with the center of the station mark. The horizontal directions are all reduced to sea level. The correction expressed in seconds is given by e2h sin2 latitude, and nr = the azimuth counted from the south westward. In the following table are also given the elevations of the telescope of the theodolite above the station mark at each of the primary stations of the one hundred and fourth meridian and at those primary stations of the thirty-ninth parallel where the data were available. These elevations enable the reader to judge of the amount of building done and they permit the engi- neer or surveyor who uses the stations to form an estimate of the probable amount of building required to make any particular fine clear. The abstracts of horizontal directions and the condition equations in the thirty-ninth parallel triangulation are reprinted, but the numbers assigned to the directions were preserved. The table of corrections to the observed directions enables the reader to compare directly with the corresponding corrections in the original adjustment. ' See Special Publication No. 4, pp. 110-111. Ibid., pp. 560-563. ' Ibid., pp. 527-539. Ibid., p. 548. Ibid., p. 591. PRIMARY TRIANGULATION. 43 Station occupied and elevation of instrument above station mark. Num- ber of direction. Object observed. Observed direction reduced to sea level. Final seconds after figure adjustment. Station occupied and elevation of instrument above station mark. Num- ber of direction. Object observed. Observed direction reduced to sea level. Final seconds after figure adjustment. Arapahoe, 12.08 me- ters. Monotony, 12.68 me- ters. Cheyenne Wells.. First View, 9.62 me- ters. Landsman. Kit Carson, 2.11 me- ters. Eureka, 1.90 meters Aroya, 1.90 meters. Overland, 1.75 me- ters. Hugo, 1.91 meters... Adobe, 5.61 meters. Square Blufls, 1.88 meters. Holt, 1.83 meters.... Cramer Gulch, 6.22 meters. Holcolm Hills. 154 First View 155 Cheyenne Wells. Monotony; McLane Curlew McLane Curlew Arapahoe First View Cheyenne Wells. Landsman 00 59. 98 33 03 37. 83 60 41 14. 87 106 32 46. 02 158 31 39. 74 00 00.00 27 57 07. 25 66 02 45. 24 135 50 58. 10 147 15 48. 65 163 46 19. 23 Monotony.. Arapahoe. . First View. Landsman . 00 00.08 71 09 20. 69 160 18 22.37 212 27 29. 72 Kit Carson Eureka Landsman Cheyenne Wells.. Monotony Arapahoe 00 00.06 57 33 37. 39 99 35 36. 20 147 25 30. 46 155 42 18. 79 205 12 52. 89 Monotony Cheyenne Wells.. First View Kit Carson Eureka 00 00.05 15 56 56.61 95 57 59. 24 148 12 39. 99 205 13 38. 86 Aroya Overland... Eureka Landsman . First View . Landsman . First View . Kit Carson. Aroya Overland . . . Adobe Hugo Overland.. Eureka Kit Carson. Azimuth mark. 195 Eureka 196 Kit Carson 197 Aroya 198 Adobe 199 Hugo 200 Overland 201 Aroya 202 Adobe 203 Square Bluffs . 204 Holt Mark 207 Hugo 208 Overland 209 Aroya 205 Cramer Gulch. 206 Square Bluffs . 210 Holt 211 Hugo 212 Adobe 213 Cramer Gulch. 214 Big Springs 215 Holcolm Hills. 00 59793 32 24 48. 48 67 39 53. 21 108 58 51. 12 137 08 34.21 00 59.97 28 42 22. 12 81 40 04.71 137 13 18.52 186 32 02. 17 00 00.08 69 40 19. 90 115 08 24.66 167 53 52. 18 224 40 46. 23 00 00.00 104 10 37. 47 144 03 38. 94 182 06 29. 09 219 50 30. 24 277 58 13. 86 00 59.97 38 40 10. 21 86 51 30. 29 130 05 35. 37 166 31 20.55 00 00.00 4 35 07. 30 39 35 56. 52 66 43 33. 19 254 09 13.06 309 09 14. 59 216 Hugo 217 Square Bluffs. . 218 Holcolm Hills. 219 Big Springs... 220 Square Bluffs. 221 Adobe Dry Camp Holt 223 Square Bluffs 20 Big Springs 21 Corral Bluffs 22 El Paso east base. . 23 El Paso west base. 24 Divide , Big Springs.. Divide, 1.45 meters. Pikes Peak, 1.33 meters. El Paso east base. El Paso west base. . . 37.68 38.68 29.01 30.23 14.00 Corral Bluffs. 59788 11.06 30.08 34.96 20.43 Bison.. Plateau. Mount Ouray. Uncompahgre. . 59.29 13.21 27.47 05.37 35.83 58.37 36.31 Tushar.. 25 Corral Blufls 26 El Paso east base. 27 Divide 28 Holcolm Hills.... 224 Square Bluffs 225 Cramer Gulch Dry Camp Plateau Pikes Peak 00 59. 90 27 23 27.38 33 35 42.043 54 4204.94 138 58 19. 89 18803 38.51 235 37 57. 079 279 28 24. 430 344 22 41.480 Holcolm Hills.... BigSprings E lJPaso east base. Corral Bluffs El Paso west base Pikes Peak Bison Elbert Hilltop Azimuth mark, Mount Rosa. Plateau Mount Ouray Mount Elbert Bison Divide BigSprings Morrison Hilltop Elbert 000 59.89 3319 29.08 4647 59.79 831411.32 9842 24.44 12659 20.22 16829 32.54 229 0144.02 23046 25.14 00000.00 02412.57 1071136.82 145 46 20. 91 17936 26.33 281 54 23. 84 3190136.65 2114845.82 2474311.09 263 47 48.56 Azimuth mark. . . Holcolm Hills.... Big Springs Corral Bluffs El Paso west base Divide 00000.00 674834.55 14117 47.24 2295710.61 2824801.53 3405834.40 Divide Holcolm Hills El Paso east base. Corral Bluffs Bear Creek Glen Eyrie E 1 Paso west base Divide E 1 Paso east base. Holcolm Hills BigSprings Bear Creek Glen Eyrie 00000.14 50 45 56. 49 6955 02.78 14854 53.35 2023337.97 219 44 24.05 00000.01 15 3652.53 480918.10 56 4011.19 11206 29.59 255 15 13. 89 2751841.66 Reference mark. . Pikes Peak Mount Ouray Mount Elbert Divide 00 00.000 8 05 07.647 84 58 58. 452 130 53 06. 876 33153 09.941 Pikes Peak Corral Bluffs BigSprings Dry Camp Mount Ouray 00 59. 714 36 49 56. 694 73 43 16.683 9812 57.315 312 14 50. 449 Reference mark . . Azimuth signal... Uncompahgre Treasury Moun- tain. Mount Elbert Bison Pikes Peak Plateau 000 00.000 4 43 02. 772 73 3143.901 134 01 13. 790 169 02 58.555 217 35 12. 159 248 16 47.931 273 44 33. 126 Azimuth mark Mount Ellen Mount Waas Tavaputs Treasury Moun- tain. Mount Elbert Mount Ouray 00 00 000 17 57 20. 789 34 57 59. 822 66 53 01. 218 122 33 55. 882 142 52 07. 746 175 40 48. 333 Beaver Pioche Wheeler Peak Ibepah MountNebo Wasatch Mount Ellen 000 00 000 27 52 18 310 %671711.920 32 39. 837 155 33 43. 20! 182 45 10. 509 238 4136.230 00.03 26.88 41.31 05.17 20.46 38.64 "25.'6i 41.04 00.11 28.50 60.56 11.21 25.00 20.33 33.38 43.54 23.81 12.52 36.74 21.86 26.20 23.58 37.08 45.85 10.38 48.40 33.93 48.24 10.28 01.48 34.41 59744 57.17 02.40 53.76 00.09 52.17 17.87 11.22 30.08 50.93 44.54 14.16 48.15 12.56 47.65 32.40 21.30 59.81 01.38 56.00 07.52 47.77 18.40 12.29 39.44 43.20 10.56 37.26 44 U. S. COAST AND GEODETIC SURVEY SPECIAL PUBLICATION NO. 19. Station occupied and elevation of instrument above station mark. Num- ber o( direction. Object observed. Observed direction reduced to sea level. Final seconds after figure adjustment. Station occupied and elevation of instrument above station mark. Num- ber of direction. Object observed. Observed direction reduced to sea level. Final seconds after figure adjust- ment. Mount Nebo. Patmos Head. Wasatch. Mount Waas. . Mount Ellen.. Treasury Mountain. Tavaputs. Mount Elbert. Hilltop, 1.34 meters. Indian, 1.10 meters. Morrison, 1.42 me- ters. Elbert, 1.38 meters.. Brighton, 1.36 me- ters. Azimuth mark. 1'atmosHead.. Wasatch Tushar Wheeler Peak.. Ibepah Pilot Peak Deseret Ogden Peak Azimuth mark. Tavaputs Mount Waas... Mount Ellen... Wasatch Mount Nebo. . . Azimuth mark. .. Mount Nebo Patmos Head Mount Ellen Tushar Azimuth mark.. Mount Ellen Patmos Head... Tavaputs Treasury Mountain Uncompahgre.. Azimuth mark.. . Tushar Wasatch Patmos Head Mount Waas Uncompahgre Azimuth mark. Mount Elbert.. Mount Ouray . . Uncompahgre.. Mount Waas... Tavaputs Azimuth mark... 21 Treasury Moun- tain. 25 Uncompahgre Mount Waas Patmos Head Reference mark.. 45 Bison 46 Pikes Peak 47 Mount Ouray 48 Uncompahgre 49 Treasury Moun- tain. 17 Indian 12 Divide 13 Elbert 14 Pikes Peak 15 Morrison 16 Douglas 25 24a BWraitghktoinns astro- nomic. 21 nilltop 22 Douglas 23 Morrison 24 Boulder 26 Boulder 27 Brighton 27a Watkins nomic. Indian astro- Douglas Hilltop Elbert Pikes Peak Hilltop Divide Pikes Peak. Morrison Indian Morrison Boulder II orse tooth.. Dewey 41.97 16.61 40.43 45.93 49.37 12.85 29.47 13.83 Watkins astronomic, 3.23 meters. Warren, 1.27 meters. 01.25 05.08 05.40 46.98 30.22 Dewey, 0.98 meter. 20.99 25.26 19.79 50.53 Horsetooth, 1.36 meters. 34.25 58.92 49.70 22.02 30.86 16.90 53.79 51.24 14.96 08.65 Boulder, 1.26 meters Douglas, 1.40 meters Ragged, 1.40 meters 55.70 22.77 26.93 07.08 27.78 Wadill, 1.38 meters. 24b Indian . . . 24c Morrison. 24d Boulder.. 61 Twin 62 Russell 63 Wadill 59 Dewey 60 Horsetooth.. 00 59.97 27 11 38.16 68 54 53.96 239 23 26.51 291 59 14.69 45 Horsetooth.. 46 Twin 47 Warren 43 Brighton 44 Boulder 00 59798 41 11 10.44 61 06 10.73 283 57 46.45 312 17 14.36 50 Dewey 51 Brighton 52 Boulder 48 Twin 49 W'arren 00 59.99 52 59 00.94 93 51 37.90 260 21 54.73 293 41 48.62 Horsetooth 00 00.04 , 34 Dewey 38 25 45.65 35 Brighton 73 16 02.22 35a Watkins astro- 104 24 42.78 nomic. 36 Indian 111 31 36.80 37 Morrison 161 17 19.55 20 Indian... 18 Hilltop... 19 Morrison . Whi taker Wadill Greentop Notch Chugwater 00 00.09 141 16 23. 19 264 00 04.64 ~~ 000 23 39 74 41 262 30 294 23 Greentop Ragged Whi taker Warren Twin Russell Cheyenne west base. 69b Cheyenne east 59 03 18.14 H. sy 19.74 15.37 59.69 37.95 53.71 27.35 14.57 00.79 10.32 09.72 45.99 15.15 59.59 01.04 38.12 55.31 48.13 00.30 45.08 01.27 43.94 36.61 19.82 59796 23.54 04.41 59782 47.98 55.11 14.31 51.82 59.61 38.30 19.78 02.35 14.23 33.51 52.65 17.90 ! 32. 17 120.17 02. 77 I 48.31 ! 16.56 Greentop, 1.28 me- ters. Russell, 1.30 meters Twin, 1.42 meters... Cheyenne west base, 1.44 meters. Cheyenne east base, 1.44 meters. Haystack, 122 me- ters. Coleman, 1.31 me- ters. Notch, 1.42 meters. 76 Wadill.... 77 Twin 78 Russell 74 Ragged . . . 75 Whitaker. 70 Greentop. . 71 Wadill.... 72 Warren . . . 73 Twin 00 59. 98 91 03 54. 17 127 06 08.19 173 13 00.65 58 Horsetooth. 53 Russell 54 Greentop... 55 Wadill 56 Warren 57 Dewey 00 59.97 174 39 01. 24 177 10 29. 96 234 59 37.06 281 20 33. 34 320 49 06.91 430 Whitaker 431 Cheyenne base. Wadill east 00 00.04 89 53 02.02 107 42 25.25 435 Wadill 00 00.20 433 Cheyenne west 120 10 12.51 base. 434 Will taker 180 38 03. 19 101 Coleman . . . 102 Willow 103 Hobbs 104 Rawhide. . . 99 Chugwater. 100 Notch 107 Haystack . . 108 Chugwater. 109 Notch 105 Willow 106 Hobbs Chugwater. N Whi taker.. Ragged Coleman . . . Haystack.. 511.07 08.66 40.01 44.13 25.07 59795 53.89 09.00 00.18 00.35 01.22 29.72 37.28 33.53 06.41 00.21 02.14 24.96 00.26 12.23 03.42 00.09 07.33 03.93 16.36 05.77 07.85 59740 15.92 05.29 27.55 22.18 59751 37.01 22.03 31.02 36.72 PRIMARY TRIANGULATION. 45 Station occupied and elevation of instrument above station mark. Num- ber of direction. Object observed. Observed direction reduced to sea level. Final seconds after figure adjustment. Station occupied and elevation of instrument above station mark. Num- ber of direction. Object observed. Observed direction reduced to sea level. Final seconds after figure adjust- ment. Chugwater, 1.41 me- ters. Whitaker, 1.38 me- ters. Notch. Coleman Haystack Whitaker Ragged 00 59. 85 36 24 45. 62 71 39 42.03 219 21 18.01 256 19 55.49 80 Greentop 00 00.06 81 Ragged 19 32 24. 87 82 Notch 79 26 58.96 83 Chugwater 79 WadM 96 57 42.36 269 19 52.31 79a Cheyenne east 269 26 54. 72 base. 79b Cheyenne west 299 06 01. 98 Hobbs, 1.32 meters. . Rawhide, 1.46 me- ters. Willow. 1.42 meters. Manviue, 1.37 me- ters. Kirtley, 1.28 meters Cottonwood, 1.33 meters. Sullivan, 1.37 me- ters. Provo east base, 9.70 meters. Provo astronomic, 1.35 meters. Provo west base, 4 14 meters. Parker, 1.33 meters. Alkali, 1.41 meters. 110 Haystack. 111 Coleman.. 112 Willow.... 113 Rawhide. . 00 00.03 53 10 21. 77 142 26 35. 12 256 16 37. 78 116 Willow.... 117 Manville.. 118 Kirtley... 114 Haystack . 115 Hobbs.... 00 59.89 38 OS 35.01 98 00 51.88 255 11 35. 13 316 53 58.85 119 Manville.. 120 Kirtley . . . 121 Rawhide- . 122 Hobbs 123 Haystack. 124 Coleman . . 00 00.07 45 50 57. 05 107 04 41. 10 130 08 38. 74 155 25 07. 50 205 49 33. 21 126 Kirtley . . . 127 Rawhide128 Willow... 129 Alkali 125 Parker 00 00.01 78 31 22.84 113 18 06.68 277 07 28.80 321 46 21. 80 134 Rawhide. 130 Willow... 131 Manville. 132 Alkali.... 133 Parker... 00 00.11 20 45 26. 12 41 36 25. 18 113 38 26. 69 162 36 37. 49 153 Sullivan 00 00.04 154 Parker 52 03 21.60 155 Provo east base. . 88 42 55.29 156 Provo astronomic 94 16 19.06 157 Provo west base.. 108 56 44. 65 152 Alkali 311 53 38.06 172 Alkali 173 Elk 170 Parker 171 Cottonwood. 00 59798 68 27 42.52 213 03 56. 23 274 41 18.98 169 Parker 00 00.03 166 Provo west base.. 245 27 12. 79 167 Provo astronomic 251 21 54.32 168 Cottonwood 269 55 51. 79 164 Parker 165 Provoeastbase.. 162 Provo west base. 163 Cottonwood 00 00. 07 56 03 54.33 224 42 18. 72 260 11 14.61 160 Provo astronomic 00 00.04 161 Provo east base . . . 5 26 53. 74 158 Cottonwood 230 09 21.21 159 Parker 325 13 07.02 140 Cottonwood 00 00.06 141 Alkali 48 18 44.86 142 Sullivan 143 Elk , 66 19 17. 29 77 26 37. 90 135 Provoeastbase... 306 43 40. 20 136 Provo astronomic 322 01 40.61 137 Kirtley 325 03 35. 88 138 Provo west base.. 331 57 05. 13 139 Manville 345 49 50. 78 144 Inyankara... 145 Cambria 146 Elk 147 Sullivan 148 Parker 149 Cottonwood. 150 Kirtley 151 Manville 00 00.04 17 37 42.20 64 05 41. 19 87 18 25.96 102 21 52.04 133 53 28. 96 150 08 45. 09 175 14 18.77 00.12 45.72 41.21 18.11 55.86 Elk, 1.40 meters Alkali Cambria Crow Parker Sullivan 00.70 24.59 59.02 42.13 53.07 54.35 Cambria, 1.24 meters 01.43 Crow, 19.28 meters . 182 Inyankara... 183 Laird 184 Crow 185 Elk 186 Alkali 180 Cambria 181 Laird 179 Elk Laird, 1.19 meters.. 188 Cambria 189 Inyankara... 190 Sundance. .. 191 Terry 187 Crow Inyankara, 1.42 me- ters. 192 Sundance... 193 Terry 194 Laird 195 Cambria 196 Alkali Terry, 1.52 meters... 199 200 .201 Laird Inyankara... Sundance... Wymonkota Castle Sundance, 1.37 me- ters. 208 Inyankara... 202 Wymonkota 203 Castle 204 Terry 205 Laird Castle, 1.32 meters . 210 Harding 211 Moreau 212 Reva 207 Terry 208 Sundance . . . 209 Wymonkota Table, 1.31 meters. 233 Butte 234 Whetstone.. 235 Lodge 236 Reva 237 Harding I... Reva, 1.27 meters. 232 Lodge 228 Castle 229 Moreau 230 Harding 231 Table Harding, 1.38 me- ters. Moreau, 1.30 meters. 218 Table 219 Lodge 220 Reva 221 Moreau 222 Castle 223 Wymonkota 227 Reva 224 Castle 225 Wymonkota 226 Harding Wymonkota, 1.44 meters. 213 Harding 214 Moreau 215 Castle 216 Terry 217 Sundance... Lodge, 1.28 meters.. 238 Reva 239 Harding 240 Table 241 Butte 242 Whetstone.. Whetstone, 1.05 me- ters. 248 Lodge 249 Table 250 Butte 251 Black 252 Rainy 00 00.04 87 45 17. 78 116 49 38.08 247 24 02.20 271 40 27.31 00 59790 72 54 00. 28 120 20 22. 73 195 31 11.22 241 17 58.26 00 00. 01 81 10 47. 84 284 15 07. 14 00 00.00 51 41 47.47 91 10 54. 64 187 07 35. 74 308 37 11. 74 00 59794 87 51 00.08 105 57 00. 82 161 21 15.42 205 01 33. 54 00 00. 12 26 28 14.73 62 38 02. 19 118 54 04. 12 155 05 17. 13 00 59794" 221 18 22. 86 248 10 28.02 304 00 44.73 325 26 05.38 00 59.93 11 24 39.43 56 41 33.52 241 59 15.90 273 41 55.01 310 18 33.07 00 00.05 24 55 31. 84 64 48 04.49 104 14 39. 12 165 58 52. 50 00 00.03 177 38 48.71 217 22 55. 84 227 14 20.30 296 30 26. 21 00.45 17.79 38.31 01.68 27.17 00.26 59. 69 22.90 11.15 58.38 59783 48.25 06.91 00.54 47.75 54.82 35.13 11.35 59796 00.68 00.39 15.03 33.75 00.61 14.44 02.02 04.11 17.12 59790 22.99 27.81 44.86 05.36 ooToo 39.28 33.35 16.12 54.70 33.43 59772 31.60 04.53 39.75 52.41 00.70 48.83 55.82 19.95 25.80 00 00.03 32 26 17. 99 48 59 48. 17 85 01 09.45 122 42 50.92 184 34 52.02 00.01 18.11. 48.24 09.20 51.13 51.88 00 00.06 94 59 04. 10 162 04 59.95 225 52 43.78 00.05 04.05 59.84 43.96 00 00.04 16 38 34.51 68 26 38. 10 143 56 17.40 184 58 01.48 00.11 34.79 37.84 17.10 01.71 00 00.04 30 40 51.22 77 03 52.92 129 20 40. 16 173 26 34. 75 59716 51.73 52.65 40.61 34.94 00 00.02 43 44 48.93 74 24 24. 44 104 44 11.74 156 09 28. 72 59772 49.30 24.68 11.84 28.30 46 U. S. COAST AND GEODETIC SURVEY SPECIAL PUBLICATION NO. 19. Station occupied and elevation of instrument above station mark. Num- ber of direction. Object observed. Observed direction .reduced to si>;\ level. Final seconds after figure adjust- ment. Station occupied and elevation of instrument above station mark. Num- ber of direction. Object observed. Olwrad (liriM'tion reduced to sea level. Final MMOda after figure adjustment. Butte, 1.19 meters. . 243 Black 244 Rainy 245 Whetstone. 248 Lodge 247 Table Black, 1.15 meters. 257 Butte 253 Sentinel 254 Badland . . . 255 Rainy 256 Whetstone. Rainy, 1.08 meters.. 258 Whetstone. 259 Butte 260 Black 261 Sentinel 262 Badland... 263 Saddle Badland, 1.22 me- ters. 264 Rainy 265 Black... 266 Sentinel. 267 Saddle.. Sentinel, 1.20 me- ters. 274 Cook 275 Hump . . . 276 Saddle... 277 Badland. 278 Rainy 279 Black.... 273 Blue Saddle, 1.28 meters. . Hump, 1.22 meters. 272 Cook 268 Rainy 269 Badland . 270 Sentinel.. 271 Hump... 282 Cook 283 Saddle.. 280 Sentinel.. 281 Blue Cook, 1.21 meters.. Hump... Sentinel.. Blue Trotter... Flat Saddle... Blue, 1.29 meters.. Flat, 1.33 meters.. Trotter, 1.26 meters 292 Flat 293 Trotter... 294 Cook 295 Hump 296 Sentinel.. 290 Lovering. 291 Sheep 300 Cook 301 Trotter... 302 Blue 303 Lovering. 304 Sheep 299 Cook 297 Blue 298 Flat Lovering, 1.23 me- ters. 305 Jackson. 306 Buford.. 307 308 Flat.. 309 Blue. Sheep, 1.17 meters.. 310 311 312 313 313a 314 Flat Blue Lovering. Jackson.. Montana . Buford. . . Jackson, 1.30 me- ters. 330 Lovering 323 Snake 325 Lanark 324 Bainville 326 Cutoff 327 Montana 328 Buford 329 Sheep 00 59.98 52 25 12.90 98 56 10.07 160 25 54.94 223 21 05.67 000 59798 162 54 13. 57 206 49 32. 60 263 20 52.96 309 15 57.14 00 59.98 51 44 02.26 82 39 44. 04 135 50 82.53 146 15 40. 61 176 00 05. 90 00 59.95 59 52 45. 90 161 44 44. 10 239 21 03.45 00 00.02 3 38 41.07 61 19 00. 66 102 47 22. 58 110 37 51.39 137 00 08. 21 316 08 09.11 00 59797 227 58 11.52 257 34 54.46 318 30 15.01 329 06 21.73 00 00.02 73 24 55. 15 185 08 30.31 308 28 04. 85 00 00. 02 1 29 48. 36 97 01 11.35 139 34 02. 53 150 43 32. 73 284 18 30.03 00 59.97 102 54 07. 79 208 09 05. 79 00 00. 01 31 45 16.96 96 55 04.02 124 33 05. 20 159 10 11.87 00 00.02 20 50 43.31 89 01 49. 76 116 21 25.84 143 16 34.09 149 46 28.06 00 00.01 192 48 26.90 194 56 01.34 1% 07 40.19 ' 232 13 53.60 235 36 26. 65 237 32 30.81 304 14 39. 43 Buford, 1.24 meters. 317 Jackson... 318 Muntima.. 319 Bainville.. 320 Snake 321 Bull 322 Williston. 315 Sheep 316 Lovering. . Cutoff, 0.98 meter... 348 Jackson... 349 Lanark 350 Montana.. 351 Mondak... 352 Ferry 362 Montana.. Mondak, 1.25meters. { 360 Ferry 361 Cutoff Ferry, 0.28 meter.... 363 Cutofl 364 Montana.. 365 Mondak. . . Montana, 1.18 me- ters. Bainville, 1.30 me- ters. 357 Jackson... 358 Cutoff 359 Lanark 353 Buford... 354 Sheep 355 Mondak... 356 Ferry 342 Snake 343 Buford... 344 Jackson.. Lanark, 1.09 meters. 347 Jackson . . 345 Montana . . 346 Cutoff Bull, 1.32 meters 368 Will iston. 369 Buford.... 366 Gladys.... 367 Bonetraill 370 Snake Snake, 1.25 meters. 331 Bull 332 Williston. 333 Buford.... 334 Bainville., 335 Jackson... Wflliston, ters. 341 Marmon.. 336 Buford.... 337 Snake 338 Bull 339 Gladys.... 340 Bonetraill. Bonetraill, 1.27 me- ters. Gladys, 1.40 meters. 374 Marmon.. 371 Williston. 372 Bull 373 Gladys.... 375 Howard... 376 Muddy... 377 Marmon.. 378 Bonetraill 379 Williston. 380 Bull Marmon, 1.28 meters 381 Williston. 382 Bonetraill 383 Gladys... 384 Howard.. 385 Muddy... Muddy, 1.42 meters 386 Marmon.. 387 Gladys. . . 388 Howard.. 389 Stady.... 390 Crosby... Howard, 9.27 meters 391 Norge 392 Stady.... 393 Crosby... 394 Muddy... 395 Marmon.. 396 Gladys. . . 00 00.03 8 20 03.62 76 25 16. 46 87 36 54.68 110 53 52.67 154 10 39.52 280 07 05.91 334 12 44. 71 00 00.07 100 20 36.34 188 41 28.57 208 37 31.54 231 02 19.22 00 59799 223 14 56.04 274 20 C7. 65 00 59798 86 11 44.09 106 30 01.43 00 00.03 5 18 56.35 61 10 17.19 190 16 08.24 275 33 17.26 290 54 53. 26 313 51 32.05 00 00.01 135 12 00. 52 197 21 53.35 00 00.02 281 50 43. 73 317 38 29. 23 000 59797 59 45 10.05 287 55 21.16 305 24 33. 83 116 48 35.36 00 00.04 41 09 48.35 99 39 37. 74 133 16 01.06 147 18 39.80 00 00.03 186 31 01.72 241 27 31.02 263 29 08. 16 304 26 15. 67 311 29 24.32 00 00. 01 85 29 01.71 162 53 21.03 231 51 54.47 00 00. 01 30 47 24. 37 74 25 24. 06 116 10 34. 78 142 44 33. 99 209 42 46. 29 00 00.03 46 00 24. 56 56 07 07. 62 106 24 04. 09 150 14 28. 56 000 00.00 42 14 39.76 77 24 40.43 153 08 10.50 179 45 31.34 00 00.01 32 50 36.22 33 25 50.64 73 30 37.30 132 15 32.90 187 33 13.58 00.04 03.44 17.08 54.78 52.71 39.05 05.73 44.81 59.62 36.12 28.55 31.97 19.47 00.40 56.16 07.13 59777 44.36 01.36 59792 56.29 17.85 08.28 17.48 52.91 31.69 00.45 59.99 53.43 00.47 43.10 29.41 00.41 09.81 20.79 34.06 35.32 00.19 48.49 37.65 00.71 39.97 59798 02.23 30.65 08.11 15.56 24. 4 J 00.29 02.04 20.21 54.66 59.94 24.20 24.19 34.67 33.34 47.17 00.15 23.79 07.89 04.28 28.73 59.64 40.24 40.57 10.03 31.53 00.02 36.49 50.55 37. 13 32.91 13.53 PRIMARY TRIANGTJLATION. 47 Station occupied and elevation of instrument above station mark. Num- ber of direction. Object observed. Observed direction reduced to sea level. Final seconds after figure adjustment. Station occupied and elevation of instrument above station mark. Num- ber of direction. Object observed. Observed direction reduced to sea level. Final seconds after figure adjust- ment. 399 Norge Stady, 1.37 meters.. 400 Crosoy 397 Muddy '. Howard 00 59. 97 81 25 15. 10 195 58 20. 42 259 36 51. 57 Crosby, 9.25 meters. 403 Stady 00 00.03 404 Norge 63 16 36. 70 405 Bowie 100 48 59. 14 406 Ambrose south- 117 35 01.79 west base. 407 Ambrose 168 04 59. 73 401 Muddy 402 Howard 321 12 26.24 358 46 49. 88 Norge ,6.35 meters . 418 Stady 419 Howard 415 Bowie 416 Ambrose south- west base. 417 Crosby 00 59797 46 46 16. 05 241 13 49. 88 284 52 32. 85 324 41 52. 95 59.60 15.40 20.74 51.32 Ambrose, 1.35 me- ters. 59.71 36.48 59.43 02.34 Bowie, 1.27 meters. 59.65 26.22 49.67 School, 1.15 meters. 00.20 16.27 49.39 33.48 52.37 Ambrose southwest base, 9.25 meters. Ambrose southwest base. 410 Bowie 411 School 408 Crosby 420 School 421 Ambrose 422 Ambrose south west base. 56 35. 24 74 02 54. 17 267 48 51. 92 00 00.00 27 36 38. 57 28 25 26. 13 414 Bowie 412 Ambrose 413 Ambrose south- west base. 00 00.00 280 42 56. 81 332 59 22. 94 425 School 426 Ambrose 427 Crosby 428 Norge 429 Bowie 00 00.02 53 40 38. 69 90 59 32. 76 176 51 47.79 235 26 00. 16 35.31 54.04 51.67 59.64 38.84 26.05 58.96 56.50 24.29 59.71 38.33 32.57 48.22 00.57 CONDITION EQUATIONS. ONE HUNDRED AND FOURTH MERIDIAN. No. 1. 0=+1.82-(2)+(4)-(5)+(7)-(12)+(14) 2. 0= -0.81 -(6)+(7)+(8) -(11) -(12)+(13) 3. 0=+0.70-(3)+(4)-(5)+(6)-(8)+(9) 4. 0=+2.87-(10)+(ll)-(13)+(15)-(30)+(31) 5. 0=-0.33-(l)+(3)-(9)+(10)-(31)+(32) 6. 0=+0.38-(15)+(17)-(21)+(23)-(28)+(30) 7. 0=-0.85-(19)+(20)-(22)+(23)-(28)+(29) 8. 0=+0.61-(16)+(17)+(18)-(20)-(21)+(22) 9. 0=-0.62-(23)+(24)-(26)+(28)-(36)+(37) 10. 0= -0.05 -(23) +(25) -(27)+(28) -(38) +(39) 11.0= -0.96 -(26) +(27) - (35) +(37) - (39) +(40) 12. 0=-1.80-(41)+(42)-(43)+(45)-(50)+(51) 13. 0=+0.19-(33)+(34)-(44)+(45)-(50)+(52) 14. 0= 0.99-(34)+(35)-(40)+(42)-(43)+(44) 15. 0=+1.03-(45)+(46)-(48)+(50)-(57)+(58) 16. 0= +2.70 -(46) +(47) - (56) +(57) - (59) +(61) 17. 0=+1.04-(48)+(49)-(56)+(58)-(60)+(61) 18. 0=-O.33-(55)+(56)-(61)+(63)-(64)+(65) 19. 0= -0.02 - (53) +(55) -(65) +(66) -(71) +(73) 20. 0=+1.00-(53)+(56)-(61)+(62)-(72)+(73) 21. 0=-2.20-(54)+(55)-(65)+(67)-(76)+(77) 22. 0= -0.12 -(66)+(67) -(70)+(71) -(76)+(78) 23. 0=-r0.55-(67)+(68)-(74)+(76)-(87)+(88) 24. 0=+1.36-(68)+(69)-(79)+(81)-(86)+(87) 25. 0=-0.34-(74)+(75)-(80)+(81)-(86)+(88) 26. 0=-0.62-(81)+(83)-(85)+(86)-(89)+(90) 27. 0=-0.07-(82)+(83)-(89)+(91)-(96)+(97) 28. 0= -0.41 -(84) +(85) - (90) +(91) -(96) +(98) 29. 0=+0.52-(91)+(92)-(94)+(96)-(108)+(109) 30. 0=+0.62-(92)+(93)-(99)+(101)-(107)+(108) 31. 0=-0.79-(94)+(95)-(100)+(101)-(107)+(l(W) 32. 0=+1.00-(101)+(102)-(105)+(107)-(123)+(124) 33. 0=-0.52-(102)+(104)-(114)+(116)-(121)+(123) 34. 0=+2.06-(101)+(103)-(106)+(107)-(110)+(111) 35. 0=-0.74-(105)+(106)-(lll)+(112)-(122)+(124) 36. 0=+1.10-(112)+(113)-(115)+(116)-(121)+(122) 37. 0=-0.25-(116)+(117)-(119)+(121)-(127)+(128) 38. 0=+L24-(117)+(118)-(126)+(127)+(131)-(134) 39. 0=+0.05-(116)+(118)-(120)+(121)+(130)-(134) 48 U. S. COAST AND GEODETIC SURVEY SPECIAL PUBLICATION NO. 19. No. 40. 0=-2.;:5+(126)-(]29)-(131)+(132)-(150)+(151) 41. 0=-0.39-(125)+(126)-(131)+(133)-(137)+(139) 42. 0=+0.86-(132)+(133)-(137)+(141)-(148)+(15:>) 43. 0=+0.39-(140)+(141)-(148)+(149)-(152)+(154) 44. 0=+2.42-(138)+(140)-(154)+(157)-(158)+(159) 45. 0=+0.44-(155)+(157)-(15S)+(16])-(166)+(168) 46. 0=+0.13-(135)+(140)-(154)+(155)-(168)+(169) 47. 0=+0.92-(136)+(140)-(154)+(156)-(163)+(164) 48. 0=+0.01-(135)+(136)-(164)+(165)-(167)+(169) 49. = -0.41-(160)+(161)+(162)-(165)-(166)+(167) 50. 0=-].31-(140)+(142)-(153)+(154)-(170)+(171) 51. 0=+2.15-(147)+(149)-(152)+(153)-(171)+(172) 52. 0=-2.28-(141)+(143)-(146)+(148)-(174)+(176) 53. 0=-1.33-(142)+(143)+(170)-(173)-(174)+(175) 54. 0=+96.5+7.31(2)-13.75(3)+6.44(4)-0.45(5)-68.67(6)+69.12(7)-92.35(12)-94.80(13)+2.45(14) 55. 0=-9.4+2.91(l)-10.22(2)+7.31(3)-1.38(9)-3.02(10)+4.40(ll)+6.21(30)-7.68(31)+i.47(32) 56. 0=+15.8+1.73(15)-5.91(16)+4.18(17)+9.93(21)-10.84(22)+0.91(23)+6.70(28)-24.6(29)+17. 98(30) 57. 0=+4.7+4.04(23)-6.46(24)+2.42(25)+1.90(26)-1.42(27)-0.48(28)-0.40(38)-2.90(39)+3.30(40) 58. 0=+5.1+0.63(33)-3.03(34)+2.40(35)+3.39(43)-3.91(44)+0.52(45)+1.59(50)-4.02(51)+2.43(52) 59. 0=-2.3+1.16(45)-5.81(46)+4.65(47)+3.20(48)-4.12(49)+0.92(50)+2.14(56)-2.56(57)+0.42(58) 60. 0=-6.9-1.20(53)+3.21(55)-2.01(56)-4.10(61)+6.46(62)-2.36(63)-0.99(64)+3.73(65)-2.74(66)-2.89(71) +4.92(72) -2.03(73) 61. 0=-31.0-46.55(53)+47.75(54)-1.20(55)-2.74(65)+7.85(66)-5.11(67)-0.91(76)+28.28(77)-27.37(78) 62. 0=+12.0+7.57(67)-8.81(68)+1.24(69)-0.02(79)-5.91(80)+5.93(81)+0.58(86)-1.70(87)+l. 12(88) 63. 0=-0.2+0.47(81)-6.67(82)+6.20(83)+3.38(84)-4.33(85)+0.95(86)+3.10(96)-5.25(97)+2.15(98) 64. 0=+1.6-2.15(91)+2.85(92)-0.70(93)-3.48(99)+6.56(100)-3.08(101)+0.83(107)+3.34(108)-4.17(109) 65. 0=+0.2+9.67(102)-17.77(103)+8.10(104)+1.13(]14)-3.38(115)+2.25(116)+4.94(121)-9.40(122)+4.46(123). 66. 0=+23.5-0.16(101)-9.67(102)+9.83(103)+7.83(105)-11.14(106)+3.31(107)+3.92(122)-4.46(123)+0.54(124) 67. 0=-5.5+2.98(116)-2.68(117)-0.30(118)-0.91(126)-3.03(127)+3.94(128)-11.09(130)+5.53(131)+5.56(134) 68. 0=-14.3-2.67(125)+2.41(126)+0.26(129)+5.30(137)-5.55(139)+0.25(141)+1.91(148)-6.41(150)+4.50(151) 69. 0=+19.6+4.47(135)-8.42(138)+3.95(140)+2.83(154)-8.54(155)+5.71(157)-0.19(158)-2.30(159)+2.49(161) +4.62(166) -4.62(168) 70. 0=+53.5+21.65(155)-29.69(156)+8.04(157)-1.76(158)-20.31(160)+22.07(161)+20.34(166)-26.61(167)+6.27(168) 71. 0=+40.2+7.70(135)-19.73(136)+12.03(138)+3.03(159)-25.10(160)+22.07(161)+20.34(166)-19.63(167)-0.71(169) 72. O=+7.2+0.92(140)-6.48(141)+5.56(142)+5.84(147)-7.83(148)+1.99(149)+1.89(152)-3.53(153)+1.64(154) 73. 0=+15.4-6.48(141)+17.19(142)-10.71(143)-4.91(146)+12.74(147)-7.83(148)-4.67(174)+4.73(175)-0.06(176) 74. 0=+18.0-0.05(2)+0.05(3)-0.41(8)+0.41(9)+1.88(10)-1.88(12)+0.24(11)-0.24(14)+1.77(16)-1.77(18) +4.06(25)-4.06(26)+1.82(27)-2.78(54)-1.82(67)-2.91(l)+2.91(2)+2.78(4)+0.52(5)-0.52(7)+2.34(12) -2.34(14)-0.47(17)+0.43(21)-0.43(23)-2.42(24)+2.42(25)+0.48(26)-0.48(28)+1.47(30)-1.47(32)-0.63(33) +0.63(35)+1.78(36)-1.78(37)-0.40(38)+0.40(40)-1.71(41)+1.71(42)+0.52(43)-1.68(45)+1.16(47)-3.20(48) +3.20(49)+2.43(51)-2.43(52)-1.32(54)+1.32(55)+0.42(56)-0.42(58)+1.61(59)-1.61(60)-0.81(61)+0.81(63) +0.99(64)-0.99(65)-3.68(75)+4.79(76)-l.ll(77)-0.02(79)+0.02(80)-3.70(79a)+3.70(79b)-2.30(69a) +2.30(69)+1.19(433)-1.19(434)-0.67(430)+0.67(432) 75. 0=+0.32-(145)+(146)-(176)+(177)-(185)+(186) 76. 0*=-0.03-(177)+(178)-(179)+(180)-(184)+(185) 77. 0=-2.28-(180)+(181)-(183)+(184)-(187)+(188) 78. 0=-0.63-(144)+(145)+(182)-(186)-(195)+(196) 79. 0=+2.70-(189)+(191)-(193)+(194)-(197)+(198) 80. 0=+0.57-(189)+(190)-(192)+(194)-(205)+(206) 81. 0=-0.53-(192)+(193)-(198)+(199)-(204)+(206) 82. 0=+1.17-(182)+(183)-(188)+(189)-(194)+(195) 83. 0=+0.03-(199)+(201)-(203)+(204)-(207)+(208) 84. 0=-0.69-(199)+(200)-(202)+(204)-(216)+(21-) 85. 0=-0.82-(202)+(203)-(208)+(209)-(215)+(217) 86. 0=+0.97-(209)+(210)-(213)+(215)-(222)+(223) 87. 0=+l.ll-(209)+(211)-(214)+(215)-(224)+(225) 88. 0=-0.47-(210)+(211)-(221)+(222)-(224)+(226) 89. 0=+0.57-(210)+(212)-(220)+(222)-(228)+(230) 90. 0=+0.84-(220)+(221)-(226)+(227)-(229)+(230) 91. 0=+0.69-(218)+(220)-(230)+(231)-(236)+(237) 92. 0=-2.36-(219)+(220)-(230)+(232)-(238)+(239) PEIMABY TBIANGULATION. 49 No. 93. 0= -2.28 - (231) +(232) - (235) +(236) - (238) +(240) 50 U. S. COAST AND GEODETIC SURVEY SPECIAL PUBLICATION NO. 19. No. 154. 0=+3.60-0.60(192)-6.44(193)4-7.04(194)+3.14(197)-4.23(198)+1.09(199)+5.37(204)-8.43(205)+3.06(206) 155. 0=-3.00+1.41(199)-4.29(200)+2.88(201)+3.89(202)-4.16(203)+0.27(204)+0.84(207)-2.83(208)+1.99(209) 156. 0=+5.40+1.16(209)-10.43(210)+9.27(211)+7.04(213)-8.70(214)+1.66(215)+3.07(221)-2.72(222)-0.35(223) 157. 0=-0.90+10.43(210)-12.51(211)+2.08(212)+2.90(220)-5.62(221)+2.72(222)+2.53(228)-14.65(229) +12.12(230) 158. 0=+8.50+3.31(218)-10.39(219)+7.08(220)+0.80(230)-1.85(231)+1.05(232)+2.56(235)-3.69(236)+1.13(237) +3.55(238) -5.56(239) +2.01(240) 159. 0=+2.60+3.54(233)-4.53(234)+0.99(235)+1.63(240)-3.80(241)+2.17(242)+0.59(248)-3.55(249)+2.96(250) 160. 0=-3.00+1.95(243)-1.62(244)-0.33(245)+3.60(250)-5.28(251)+1.68(252)+0.27(258)-3.51(259)+3.24(260) 161. 0=-1.5-2.19(253)+3.58(254)-1.39(255)-1.58(260)+13.04(261)-11.46(262)-1.22(264)+0.78(265)+0.44(266) -15.29(277)+19.54(278) -4.25(279) 162. O=+6.20+11.46(261)-15.15(262)+3.69(263)+3.70(268)-4.87(269)+1.17(270)+2.38(276)-17.67(277) +15.29(278) 163. 0=-7.10+11.25(270)-14.77(271)+3.52(272)+33.05(274)-34.38(275)+1.33(276)+0.54(284)-81.13(285) +80.59(286) 164. 0=-25.70-1.93(273)+33.05(274)-31.12(275)-80.85(285)+80.59(286)+0.26(287)-3.44(294)+16.49(295) -13.05(296) 165. 0=-4.30+2.29(287)-12.96(288)+10.67(289)+4.50(292)-7.56(293)+3.06(294)+6.89(300)-8.68(301)+1.79(302) 166. 0=-1.50+0.99(290)-7.73(291)+6.74(292)+4.02(307)-7.07(308)+3.03(309)+5.49(310)-5.53(311)+0.04(312) 167. 0=+7.80+3.66(305)-3.40(306)-0.26(307)+4.07(312)-7.26(313)+3.19(314)+0.38(315)-4.36(316)+3.98(317) 168. 0= +58.4+4.15(313) -22.63(313a) +18.48(314) +0.07(315) - 14.36(317) +14.29(318) +61.52(327) -62.34(328) +0.82(329) 169. 0=+4.45-(136)+(143)-(162)+(164)-(174)+(178)-(179)+(181)-(187)+(191)-(197)+(201)-(207)+(212) . -(228)+(232)-(238)+(242)+(252)-(258)+(263)-(268)+(272)-(284)+(289)-(300)+(304)-(310)+(313a) -(354)+(355) 170. 0=+21.7+0.51(317)-11.15(319)+10.64(320)+36.29(323)-38.68(324)+2.39(328)+3.17(333)-11.59(334) +8.42(335) 171. 0=-1.20+4.89(320)-7.13(321)+2.24(322)+2.77(331)-2.41(332)-0.36(333)+0.49(336)-5.20(337)+4.71(338) 172. 0=+19.10+2.76(325)-38.45(326)+35.69(327)+2.92(345)-5.23(346)+2.31(347)+22.63(357)-24.06(358)+1.43(359) 173. 0=-1.50+1.89(338)-17.01(339)+15.12(340)+6.68(366)-8.18(367)+1.50(368)+4.34(378)-4.21(379)-0.13(380) 174. 0= -8.90+17 .01(339)-18.87(340)+1.86(341)+2.36(377)-6.57(378)+4.21(379)+2.03(381)-13.84(382) +11.81(383) 175. 0=+5.20+5.80(350)-10.91(351)+5.11(352)+4.38(355)-4.97(356)+0.59(358)-0.62(363)-5.69(364)+6.31(365) 176. 0=+0.7+2.94(375)-3.53(376)+0.59(377)+1.75(383)-3.94(384)+2.19(385)+0.47(386)-2.99(387)+2.52(388) 177. 0=-66.50+0.54(388)-4.73(389)+4.19(390)+202.98(392)-205.43(393)+2.45(394)+2.62(401)-98.91(402) +96.29(403) 178. 0=+0.40+0.54(388)-4.73(389)+4.19(390)+3.26(391)-5.71(392)+2.45(394)+2.62(401)-3.68(403)+1.06(404) +2.97(417)-4.95(418)+1.98(419) 179. 0=+6.90+1.51(404)-6.99(405)+5.48(406)+2.21(415)-4.74(416)+2.53(417)+5.73(422)-6.19(423)+0.46(424) 180. 0=+22.50-6.99(405)+8.73(406)-1.74(407)+0.08(408)+127.83(409)-127.91(410)-148.32(421)+154.51(422) -6.19(423) 181. 0=-14.8-6.99(405)+8.73(406)-1.74(407)+0.08(408)+0.52(4O9)-0.60(411)-1.63(412)+5.76(413)-4.13(414) -3.89(420)+10.08(422)-6.19(423) 182. 0=-1.40+4.47(135)-4.47(138)-3.78(141)+3.78(143)-2.00(145)+2.00(146)+3.43(148)-3.43(149)+0.38(152) +0.99(154)-1.37(157)+0.19(158)-0.19(159)+0.96(166)-0.96(169)-0.88(174)+0.88(176)-3.79(177)+3.79(178) +0.54(179)-0.87(180)+0.33(181)-0.65(182)+0.65(183)+2.05(185)-2.05(186)+1.68(187)-1.68(188)+2.14(189) -2.14(191)-0.08(192)+0.08(193)+1.45(194)-1.45(195)+4.23(197)-4.23(198)-2.88(200)+2.88(201)-0.27(202) +1.69(204) - 1.42(206) +0.84(207) -0.84(209) - 1 .38(210) +1 .38(212) -0.83(213)+0.83(215) +2.42(216) -2.42(217) -1.83(218)+1.83(220)+1.12(222)-1.12(223)+1.79(228)-1.79(230)-1.05(231)+1.05(232)-0.99(233)+0.99(235) +1.13(236)-!. 13(237)+0.48(238)-0.48(240)-2.17(241)+2.17(242)-1.62(243)+1.62(244)+1.08(246)-1.08(247) +0.59(248)-0.89(250)+0.30(252)-2.19(253)+2.19(254)-0.25(255)+0.25(257)+1.66(258)-1.66(259)-1.05(260) +1.05(262)+1.22(264)-1.22(265)-0.46(266)+0.46(267)+1.17(269)-3.55(270)+2.38(272)-2.19(273)+2.19(274) +3.10(277)-3.10(279)+0.48(284)-0.48(286)-1.55(287)+1.55(289)-0.99(290)+0.99(292)+2.46(294)-2.36(296) +0.91(300)-0.91(302)-1.06(303)+106(304)+0.26(305)-0.26(307)+3.05(308)-3.05(309)+0.04(310)-0.04(312) -3.19(313)+3.19(314)+0.38(315)-0.38(317)-0.91(320)+0.91(322)-2.13(323)+2.13(328)+1.43(329)-1.43(330) -2.41(331)+2.41(332)+1.92(333)-1.92(335)+1.48(336)-1.48(337)-1.44(339)+1.44(341)-0.68(366)-0.38(368) +1.06(370)-0.59(375)+0.59(377)+0.89(379)-0.89(380)+1.41(381)-1.41(383)-2.19(384)+2.19(385)+0.47(386) + -0.01(388)-0.46(390)-3.19(391)+3.19(393)+1.46(395)-1.46(396)+2.74(401)-2.74(402)-1.74(406) 1.74(407) -0.08(4O8)-0.52(409)+0.60(411)+1.63(412)-1.63(413)-2.53(416)+2.82(417)-0.29(419)+0.]5(427)-0.15(428) 183. 0=+2.49-(24c)+(24d)-(26)+(27a)-(35a)+(37) 184. 0=-2.25-(23)+(24a)-(27a)+(28)-(24b)+(24c) + 185. 0= -39.0+0.44(23)-!. 72(24) 1.28(24a)-0.07(26)-ll.OO(27a)+11.07 (28)+15.49(35a)-16.86(36)+1.37(37) PRIMARY TRIASTGULATION. 51 No. 186. 0=+4.81-(24a)+(25)-(38)+(42)-(43)+(47)-(59)+(63)-(64)+(69)-(79)+(83)-(89)+(93)-(99)+(104) -(114)+(118)+(133)-(134)+(136)-(137)+(162)-(164) 259. 0=+1.50-(69a)+(69b)-(431)+(432)+(433)-(435) 260. 0=-0.28-(79a)+(79b)-(430)+(431)-(433)+(434) 261. 0=4.2.53-(79)+(79b)-(69a)+(69)-(430)+(432) 262. 0=+11.530-0.023(69a)+2.356(69b)-2.333(69)-10.279(79)+10.316(79a)-0.037(79b)+0.065(431)-0.065(432) 257. 0=+5.36+(l)-(5)+(8)-(15)+(17)-(19)+(23)-(29)+(33)-(39)+(43)-(50)+(4)-(5)+(7)-(]2)+(17)-(21) +(24a) 258. 0=+13.4-2.02(68)-0.28(69)-0.47(81)+0.47(83)-3.38(84)+3.38(85)+4.81(86)-4.81(87)+2.80(89)-2.80(90) -2.98(92)+2.98(93)+0.82(94)+1.33(96)-2.15(98)+0.96(99)-0.96(101)-4.16(102)+4.16(104)-1.93(106) +1.93(107)+3.34(104)-3.34(109)-0.56(114)+0.56(116)-1.22(117)+1.22(118)+0.65(119)-0.65(121) +1.74(123)-1.74(124)+0.26(126)+3.03(127)-3.03(128)-0.26(129)-2.37(131)-1.83(132)+1.83(133) +2.37(134)-4.47(135)+0.25(137)+4.47(138)-0.25(141)-3.43(148)+3.43(149)+4.50(150)-4.50(151) -0.38(152)-0.99(154)+1.37(157)-0.19(158)+0.19(159)-0.96(166)+0.96(169),-1.19(433)+1.19(434) +0.67(430) -0.67(432)+3.70(79a)-3.70(79b)+2.30(69a) 187. 0=+0.68+(l)-(4)-(5)+(6) ROCKY MOUNTAIN SERIES. 188. 0=-0.22-(l)+(2)+(5)-(8)-(14)+(15) 189. 0=+0.27-(3)+(4)-(6)+(7)-(12)+(13) 190. 0=-1.08-(7)+(8)-(ll)+(12)-(15)+(16) 191. 0=-0.13-(10)+(ll)-(16)+(17)-(19)+(20) 192. 0=-1.27-(9)-!-(10)-(20)+(21)-(26)+(27) 193. 0=4-0.i9-(21)+(22)-(24)+(26)-(37)+(38) 194. 0=-0.23-(22)+(23)-(29)+(31)-(36)+(37) 195. 0=+0.61-(24)+(25)-(30)+(31)-(36)+(38) 196. 0=+0.47-(17)+(18)+(19)-(23)-(28)+(29) 197. 0=+0.61-(31)+(33)-(35)+(36)-(39)+(40) 198. 0=+l-37-(31)+(32)-(34)+(36)-(48)+(49) 199. 0=+1.13-(32)+(33)-(39)+(41)-(47)+(48) 200. 0=-1.00-(41)+(42)-(45)+(47)-(58)+(59) 201. 0=-1.44-(41)+(43)-(46)+(47)-(50)+(51) 202. 0=+0.39-(45)+(46)-(51)+(52)-(57)+(59) 203. 0=+0.76-(43)+(44)+(50)-(55)-(60) + (61) 204. 0=-0.18+(4)-(5)-(52)-(56)+(57)+(65) 205. 0=+2.31-(54)+(55)-(61)+(63)-(66)+(67) 206. 0=-1.09-(4)+(5)-(16)+(27)+(54)-(67) 236. 0=-0.79+5.52(l)-1.42(2)-1.43(3)+4.00(4)-1.72(ll)+4.30(12)-2.58(13)-1.79(14)4-4.11(15)-2.32(16) 237. 0=-0.64-1.72(9)+3.05(10)-1.33(ll)-1.45(16)+7.56(17)-6.11(18)-1.78(25)+2.21(26)-0.43(27)-6.88(28) +10.26(29) -3.38(30) 238. 0=-0.18+1.04(21)-4.09(22)+3.05(23)+3.15(24)-3.48(25)+0.33(26)+0.09(27)-1.44(30)+1.35(31) 239. 0=+2.44+4.11(31)-5.69(32)+1.58(33)+1.19(39)-4.20(40)+3.00(41)-0.10(47)-2.42(48)+2.52(49) 240. 0=+7.68+1.86(41)-5.41(42)+3.55(43)+4.71(45)-4.87(46)+0.16(47)+0.67(50)-3.14(51)+2.47(52) 241. 0=-4.36-2.24(5)-0.14(16)+1.82(27)+3.55(42)-7.97(43)+4.42(44)+2.88(56)-3.37(57)+0.49(58)+1.91(60) -2.53(61)+0.62(63)+2.38(65)+0.99(66)-2.80(67) 242. 0=+6.35+2.78(4)-0.14(5)+0.24(ll)-0.24(14)+1.91(16)-1.77(18)+1.09(25)-5.17(54)+2.39(55)+0.62(61) -3.90(62)+3.28( 63) -1.09(66) 254. 0=+5.76-1.42(l)+1.42(2)-2.56(4)-0.91(5)+0.91(6)-0.11(7)+0.11(8)-1.72(9)+1.72(10)+l.'72(ll)-l:72(12) +1.79(14)-1.79(15)-1.45(16)+1.45(17)+0.90(19)-0.90(20)-3.05(22)+3.05(23)-0.34(24)+0.77(26)-0.43(27) + +0.09(29)-1.67(31) 1.58(33)-1.63(34)+1.63(35)+2.97(37)-2.97(38)+1.19(39)-1.19(40)-3.55(42)+3.55(43) -0.16(45)+0.06(47)+0.10(49)+0.67(50)-0.67(52)+2.78(54)-2.88(56)+2.88(57)+2.04(58) -2.04(59) -2.38(65) +1.82(67)-2.78(4)+2.38(5)-0.81(3)+0.81(5)+0.41(8)-0.41(9)-1.88(10)-0.24(ll)+1.88(12)+0.24(14) + -2.85(17)+2.85(18)-3.17(25) 1. 35(27) EL PASO BASE NET. 207. 0=-0.17-(4)+(5)-(6)+(8)-(17)+(19) 208. 0=-0.76-(3)+(4)-(8)+(9)-(10)+(12) 209. 0=+0.41-(3)+(5)-(ll)+(12)-(17)+(18) 210. 0=+1.33+(l)-(4)-(7)+(8)-(22)+(23) 211. 0=+0.38+(l)-(5)-(15)+(17)-(22)+(24) 212. 0=+0.07-(l)+(3)-(12)+(13)-(21) + (22) 213. 0=+1.24-(2)+(3)-(12)+(14)-(25)+(26) 52 U. S. COAST AND GEODETIC SURVEY SPECIAL PUBLICATION NO. 19. No. 214. 0=-2.12+(2)-(5)-(16)+(17)-(26)+(27) 215. 2.6O-(l)+(2)-(;s0)+(22)-(26)+(28) 243. 0=+7.79-1.60(3)+2.91(4)-1.31(5)-5.65(10)+7.54(ll)-1.89(12)-1.65(17)+7.61(18)-5.96(19) 244. 0=+21.22-6.06(7)+6.47(8)-0.41(9)-1.89(10)+15.95(12)-14.06(13)-12.80(21)+20.22(22)-7.42(23) 245. 0= - 10.97 -0.77(6)+6.06(7)-5.29(8) -1.98(15)+3.63(17) -1.65(19) -5.41(22)4-7.42(23) -2.01(24) 246. 0=-15.94-3.30(ll)+4.33(12)-1.03(14)-8.79(16)+11.64(17)-2.85(18)-4.06(25)+23.43(26)-19.37(27) 247. 0=+1.59-3.30(ll)+4.33(12)-1.03(14)-1.98(15)+4.83(17)-2.85(18)-0.40(20)+2.41(22)-2.01(24)-4.06(25) +8.14(26) -4.08(28) COLORADO 8ERIB8. 216. 0=+1.44+(20)-(28)-(214)+(215)-(223)+(224) 217. 0=+0.10-(213)+(214)-(219)+(220)-(224)+(225) 218. 0=-3.17-(205)+(206)-(212)+(213)-(220)+(221) 219. 0=-1.59+(210)-(215)-(217)+(218)-(222)+(223) 220. 0=-2.85-(203)+(2O4)-(210)+(211)-(216)+(217) 221. 0=+3.92-(202) + (203)-(206)+(207)-(211)+(212) 222. 0=-0.20-(198)+(199)-(200)+(202)-(207)+(208) 223. 0=+0.28-(190)+(192)-(197)+(198)-(208)+(209) 224. 0=-2.21-(191)+(192)-(197)+(199)-(200)+(201) 225. 0=+1.00-(188)+(189)-(192)+(193)-(195)+(197) 226. 0=+1.59-(181)+(182)-(187)+(189)-(195)+(196) 227. 0=-1.03-(180)+(182)-(187)+(188)-(193)+(194) 228. 6=-1.18-(169)+(170)-(182)+(184)-(186)+(187) 229. 0=-0.33-(178)+(179)-(182)+(183)-(185)+(187) 230. 0=-0.42-(170)+(171)-(177)+(179)-(185)+(186) 231. 0=-2.85-(163)+(164)+(165)-(168)-(175)+(176) 232. 0=+1.57-(162)+(164)-(171)+(173)-(175)+(177J 233. 0=+0.13-(154)+(155)-(166)+(167)-(172)+(174) 234. 0=-1.61-(154)+(162)-(173)+(174) 235. 0=-0.86-(155)+(163)-(165)+(166) 248. 0=-13.3-1.34(20)-0.21(28)-2.24(202)+5.09(203)-2.85(204)-1.48(205)+2.93(206)-1.45(207)-0.98(216) +0.08(217)+0.90(218)-0.57(219)+1.95(220)-1.38(221)-3.76(222)+5.10(223)+2.03(224)-1.82(225) 249. 0=+4.9+2.94(197)-2.72(198)-0.22(199)+2.64(200)-4.53(201)+1.89(202)+l.ll(207)-4.11(208)+3.00(209) 250. 0=+3.7+2.45(180)-3.32(181)+0.87(182)+1.44(187)-3.25(188)+1.81(189)+0.45(195)-2.69(196)+2.24(197) 251. 0=+5.5+0.35(169)+2.33(170)-2.68(171)-2.40(182)+6.33(183)-3.93(184)-3.54(185)+3.85(186)-0.31(187) 252. 0=+1.4-3.23(154)+7.25(155)+7.42(163)-7.10(164)-1.90(171)4-3.22(172)-1.32(174)-7.37(175)+7.74(176) -0.37(177) 253. 0=-16.0-3.23(154)+7.25(155)+10.43(162)-10.11(163)-13.15(172)+14.47(173)-1.32(174) 255. 0=-ll.l+0.81(3)-0.81(5)-0.41(8)+0.41(9)+1.88(10)-1.88(12)-1.45(13)+1.45(14)-1.77(16)+2.85(17) -1.08(18)+2.11(20)-0.77(21)+3.17(25)-3.17(27)+1.18(154)+3.97(162) -3.97(164) -0.35(169)+0.35(171) -1.80(173)+1.80(174)+0.22(175)-0.22(177)+1.36(178)-1.36(179)+0.87(180)-0.87(182)-3.93(183)+3.93(184) -0.31(185)+0.31(187)+1.81(188)-1.81(189)+0.78(190)-0.78(171)-1.38(193)+1.38(194)-0.45(195) +0.23(197)+0.22(199)-2.64(200)+2.64(201)+2.24(202)-2.24(203)+1.48(205)-1.48(206)-l.ll(207) +1.11(209)-0.32(211)+0.32(212)+2.66(214)-2.66(215)+0.57(219)-1.96(220)+1.39(221)-1.34(223) -1.82(224)4-1.82(225) 256. 0=-3.34+(l)-(5)+(8)-(15)+(17)-(19)+(23)-(29)+(33)-(39)+(43)-(50)+(54)-(67)+(225)-(219)+(221) -(205)+(209)-(190)+(194)-(180)+(184)-(169)+(174)-(154) PBIMABY TKIANGULATION. 53 ACCURACY AS INDICATED BY CORRECTIONS TO OBSERVED DIRECTIONS. The corrections to observed directions resulting from the figure adjustments indicated by the preceding observation equations are as follows: Table of corrections to observed directions. ROCKY MOUNTAIN SERIES. Number 54 U. S. COAST AND GEODETIC SURVEY SPECIAL PUBLICATION NO. 19. Table of corrections to observed directions Continued. ONE HUNDRED AND FOURTH MERIDIAN. Number PRIMARY TRIANGULATION. 55 Table of corrections to observed directions Continued. ONE HUNDRED AND FOURTH MERIDIAN Continued. Number 56 U. S. COAST AND GEODETIC SURVEY SPECIAL PUBLICATION NO. 19. The probable error of an observed direction resulting from the figure adjustment for the entire one hundred and fourth meridian is 0".38. When considered as divided into throe sections by the base lines, the probable error of an observed direction for each section is as follows : Divide-Pikes Peak to Cheyenne base 0".41.' Cheyenne base to Provo base 0".39. Provo base to Ambroso base 0".36. ACCURACY AS INDICATED BY CORRECTIONS TO ANGLES AND CLOSURES OF TRIANGLES. The correction to each angle is the algebraic sum of the corrections to two directions. In order to make it possible to study the corrections to the separate angles, they are shown in the following table for every triangle in the primary scheme. There are shown the corrections to the angles resulting from the figure adjustment, the errors of closure of the triangles, the corrected spherical angles, and the spherical excess for each triangle. The plus sign prefixed to the error of closure of a trianglo indicates that the sum of the angles is less than 180 plus the spherical excess. The spherical excess is a convenient indication of the size of the triangle, since it is proportional to the area. Table of triangles. ROCKY MOUNTAIN SERIES. Station. Correction to angles from figure adjustment. Wasatch. Tushar Mount Nebo. . Mount Ellen. . Tushar.... Wasatch. Patmos Head. Wasatch Mount Nebo.. Patmos Head. Mount Ellen.. Wasatch. Mount Waas.. Mount Ellen. . Patmos Head. Tavaputs Mount Waas.. Patmos Head. Uncompahgre Mount Ellen. . Mount Waas. . Uncom Mount Tavaputs Treasury Mountain UMnocuonmtpWaahagrse Treasury Mountain Uncompahgre Tavaputs Treasury Mountain Mount Waas Tavaputs Mount Ouray Uncompahgre Treasury Mountain Station. Coral Blulls Divide Big Springs El Paso west base. Divide Coral Bluffs El Paso east base . Big Springs Coral Bluffs El Paso east base. Coral Bluffs El Paso west base El Paso east base. Coral Bluffs Divide El Paso east base. El Paso west base Divide El Paso east base. Divide Big Springs Holcolm Hills..... Big Springs Coral Bluffs....... Square Bluffs. Big Springs. . . Holcolm Hills. Cramer Gulch. Big Springs... Square Bluffs. Holt Square Bluffs. Holcolm Hills. Hugo Square Bluffs. Holt Adobe Cramer Gulch. Square Bluffs. Adobe Square Bluffs. Hugo Overland Adobe Hugo Aroya Adobe Hugo Aroya Adobe Overland Aroya Hugo Overland Eureka Aroya Overland Kit Carson Aroya Overland Kit Carson Aroya Eureka PRIMARY TRIANGTJLATION. Table of triangles Continued. EL PASO BASE NET. Correc- tion to angles Error of from closure of figure triangle. adjustment. Corrected spherical angles. Spherical excess. Station. +0.85 +0.48 -0.86 +1.11 +0.67 -0.44 -1.33 -0.63 +0.72 +0.28 -0.31 +0.79 +0.34 +0.13 -0.88 +0.06 +0.32 -0.21 +0.99 + 1.36 -0.23 +0.87 +0.10 +0.46 +0.47 96 29 37.91 49 54 42. 72 33 35 41. 28 +1.34 :148 54 54. 32 15 28 13. 79 15 36 52.08 [ 88 39 22. 04 27 23 26. 85 63 57 12. 21 +0.76 52 50 51.20 48 09 17.78 78 59 51.36 1111 01 24.13 { 32 32 25. 70 I 36 26 10. 65 +0.17 I 58 10 32. 93 69 55 02. 96 51 54 24. 44 [ +2.12 160 19 13. 83 13 28 32. 07 6 12 14.43 +1.43 69 51 37.90 54 42 05. 14 55 26 18. 86 Holcolm Hills Big Springs El Paso east base . 0.19 Holcolm Hills Big Springs Divide 1.10 Holcolm Hills Coral Bluffs El Paso east base. 0.34 Holcolm Hills Coral Bluffs El Paso west base Holcolm Hills Coral Bluffs Divide Holcolm Hills El Paso east base. El Paso west base. 0.33 Holcolm Hills El Paso east base. Divide Holcolm Hills El Paso west base. Divide COLORADO SERIES. -0.50 +0.34 -1.28 +0.40 -0.44 -0.06 -0.14 +0.07 +1.66 +0.29 + 1.64 +0.92 + 1.90 +0.30 +0.97. -1.61 -2.11 -0.20 +0.15 +0.17 -0.12 -1.40 +0.17 -1.06 -0.35 0.00 +0.07 + 1.05 +0.94 +0.22 -0.60 -0.11 -0.29 + 1.03 +0.41 +0.18 +0.39 +0.52 +0.12 38 21 33. 21 84 16 15. 29 57 22 14. 26 74 58 26. 45 49 05 18. 18 55 56 17. 81 (113 09 57.85 + 1.59 { 37 35 49. 93 I 29 14 13. 92 +2.85 |37 68 25 24 45. 47 60. 37 65 09 16. 38 +3.17 55 00 03. 43 56 38 46. 93 68 21 11.82 55 25 51. 10 81 20 06.86 43 14 04. 88 +0.20 58 07 43. 77 35 00 49. 39 86 51 30.20 69 40 18.42 62 08 26. 06 48 11 19.02 5 08 24. 23 27 07 36. 67 fi37 44 01.22 +2.21 45 28 05. 81 38 40 11.18 95 51 44. 99 49 18 43.05 52 45 27.41 77 55 51.33 + 1.62 32 24 49. 58 109 32 21.98 38 02 50.33 + 1.03 67 39 53. 67 56 46 54. 57 55 33 13.93 2.76 1.70 2.22 Kit Carson Overland Eureka Landsman Kit Carson Eureka First View KU Carson Eureka First View Kit Carson Landsman First View Eureka Landsman Cheyenne Wells. 2.84 First View Landsman Monotony First View Cheyenne Wells. Monotony 3.50 First View Landsman Monotony 2.12 Cheyenne Wells. Landsman Arapahoe First View Cheyenne Wells Arapahoe First View Monotony Arapahoe Cheyenne Wells. Monotony 2.17 57 Correc- tion to angles Error of from closureof figure triangle. adjustment. Corrected spherical angles. Spherical excess. +0.25 +0.73 +1.62 -0.06 +0.96 -a 80 -0.62 +0.26 +0.29 -0.32 -6.05 -0.27 -0.93 +0.39 -0.32 +0.30 -0.57 -1.06 -0.30 -0.63 +0.55 -0.61 +1.38 +0.35 +2.60 79 12 08. 36 27 18 38.29 73 29 14.31 [125 34 08. 84 +0.10 21 06 23.86 1 I 33 19 28. 39 -0.07 I 20 30. 46 I 30 53. 35 ! 08 36. 35 i 10 53. 00 i 40 11.13 ! 08 56. 59 | 55 42 30. 94 41 03 19. 05 I 83 14 11.11 IS 50 22. 54 146 00 32.45 1 09 05. 23 411 22 00. 49 86 49 59.52 48 47 60. 45 +1.12 30 31 37.94 50 45 57.73 98 42 24. 90 1.09 0.16 0.22 0.46 0.57 -0.64 -0.47 -0.48 +0.31 +0.13 -0.11 +0.10 +0.44 +0.64 +0.73 +0.31 +0.23 +0.63 -0.75 +0.54 -0.98 -1.16 -1.40 -1.31 + 0.37 +0.06 -0.56 -0.79 -0.22 +0.75 +0.92 + 1.18 -0.09 +0.62 -0.66 +0.38 +0.25 +0.98 +0.47 +0.72 -0.33 -1.59 35 15 04. 09 39 53 01. CO 104 51 56. 98 +0.33 +1.18 + 1.27 +0.42 -3.54 -1.57 +2.85 + 1.61 +0.86 58 Station. U. S. COAST AND GEODETIC SURVEY SPECIAL PUBLICATION NO. 19. Table of triangles Continued. ONE HUNDRED AND FOURTH MERIDIAN. Correc- tion to angles Error of from closure of figure triangle. adjustment. Corrected spherical angles. Spherical Station. Correc- tion to angles Error of from closure of figure triangle. adjustment. Corrected spherical angles. Elbert Divide 1'ikes Peak . miitop. Divide. Elbert.. Hilltop Divide Pikes Peak. Hilltop Elbert Pikes Peak. Morrison.. Hilltop... Elbert.... Morrison Hilltop Pikes 1'eak. Morrison Elbert Pikes Peak. Douglas.. Hilltop... Morrison. . Indian. . . Hilltop.. Douglas. Indian Hilltop.. Morrison. Indian Douglas.. Morrison. Watkins astronomic. Indian Morrison Watkins astronomic . Indian Boulder Watkins astronomic . Morrison Boulder Boulder.. Indian Morrison. Brighton.. Indian Morrison.. Brighton.. Indian Boulder.... Brighton. Morrison. . Boulder. . Horse tooth. Brighton Boulder Dewey Brighton. Boulder... Dewey Brighton.... Horse tooth. , Dewey Boulder Horse tooth. Warren Dewey Horsetooth. . -0.01 -0.59 -0.10 +0.33 -0.85 +1.33 -0.84 -1.43 +0.45 -1.17 -1.31 +0.55 -0.68 -1.76 -0.43 +0.72 -0.59 -0.74 + 1.40 -0.88 -0.19 -0.58 +0.40 -0.44 -0.22 -0.87 +0.48 -0.31 -0.47 +0.40 -0.09 +0.10 +0.84 + 1.72 -1.19 + 1.72 + 1.50 -1.01 -1.35 -0.22 -1.38 -0.89 +0.46 -0.18 +0.34 +1.23 -0.78 -0.40 +0.23 -0.60 +0.76 -1.00 +0.74 + 1.22 +0.12 +0.09 -1.21 + 1.25 +0.12 -0.38 + 1.27 +0.03 +0.50 +0.02 -0.83 +0.62 -0.96 -1.82 +0.09 ( 59 51 04.09 h02 02 23.21 I 18 06 35. 18 1 18 22.139 | +0.81 \ 1 44 40.274 (176 56 57.646 I 42 01 49.05 h03 47 03.49 I 34 11 13.20 ( 40 43 26. 91 -1.93 H23 11 58.27 I 16 04 38.02 -2.87 15 19 44. 86 129 47 58.48 34 52 19.36 -0.61 55 01 14.51 89 04 31.57 35 54 24.53 +0.33 39 41 29.65 88 19 38.91 51 58 62. 55 -0.62 122 43 40. 87 50 35 37. 78 6 40 42. 16 . -0.61 11 58 04.27 26 45 32. 34 .141 16 23. 58 -0.38 78 31 21.96 77 21 10. 12 24 07 31.00 +0.85 66 33 17. 69 95 59 55. 55 17 26 48. 84 +2.25 90 56 20. 85 78 17 40.90 10 45 59. 62 [122 06 16.48 i 50 46 52. 24 I 7 06 52. 67 31 09 55. 63 91 57 32. 95 56 52 35. 88 +0.62 49 45 43. 21 27 30 48. 68 102 43 32. 57 +0.05 64 41 56.60 68 35 22. 08 46 42 46.96 (100 39 56.33 +0.39 { 41 04 33.42 I 38 15 35.34 +0.96 35 57 59. 73 56 00 45. 61 88 01 18. 55 -1.00 40 52 37. 08 65 51 29.28 73 15 60. 97 +0.98 28 19 29. 16 116 50 20.55 34 50 16. 19 +1.80 76 02 14. 80 50 58 51. 27 52 58 61. 45 -0.19 47 42 45. 64 38 25 44. 78 93 51 38. 53 I 52 35 47. 22 1 I 61 00 08.93 \i I 66 18 11.46 I 2.48 0.06 5.74 Twin Warren Dewey Twin Warren Horse tooth. . Twin Dewey Horsetooth. . 3.20 Wadill.. Warren. Twin... 2.70 Russell . Wadill.. Warren. 10.61 Russell . Wadill.. Twin... 11.11 Russell Warren Twin 0.81 Greentop. Wadill... Russell... 0.19 Greentop. Wadill.... Twin Greentop. Twin Russell... Whitaker. Wadill.... Greentop. Ragged... Whitaker. Wadill.... Ragged... Whitaker. Greentop.. Ragged... Wadill.... Greentop . Cheyenne west base., Whitaker Wadill Cheyenne east base . . Cheyenne west base. Whitaker 5.09 Chevenne east base. Whitaker Wadill Cheyenne cast base . . Wadill Cheyenne west base. . 7.33 5.90 Chugwater. Whitaker. . Ragged Notch Chugwater.. Whitaker. . . 7.52 8.95 7.61 Notch Chugwater. . Ragged Notch Whitaker. Ragged... Coleman Chugwater.. Notch -0.69 -1.12 -0.89 +0.19 -0.16 -1.07 +AM -0.93 -0.98 -2.70 39 28 32.88 120 36 32.34 19 54 59.40 . 78 39 26.82 68 00 45. 12 33 19 52. 82 39 10 53.94 41 11 09.53 99 38 04. 28 +0.33 +0.03 -0.03 + 1.09 +0.30 -0.04 +0.33 64 44 11.88 68 54 54. 02 46 20 56. 25 +1.35 36 02 15. 11 102 14 31. 16 41 43 15. 76 -0.19 -0.03 +0.24 +0.02 82 09 06. 29 37 30 19. 28 60 20 33. 03 -1. +0.07 +0.21 46 06 51. 18 27 11 38. 26 106 41 32.31 +0.70 I -0.33 i +0.12 -0.25 66 31 40.94 22 24 26. 10 91 03 53.94 +2.10 -0.36 +0.46 +2.20 62 16 09. 59 59 54 45. 38 57 49 07.56 -1.40 -0.22 -0.44 -0.12 +0.05 -1.08 4 15 31.35 2 31 28. 50 173 13 00. 23 90 40 07.63 59 34 20. 17 29 45 33. 40 +0.38 I- -1.04 -0.70 23 39 48. 16 110 12 31.52 46 07 41. 48 +0.57 -0.92 +0.69 +0.34 74 41 55. 29 19 32 23. 89 85 45 41.54 +0.19 +0.75 -0.39 +0.55 51 02 07. 13 13 26 38.69 115 31 14.94 -0.46' -1.31 -0.76 [ -2.53 107 42 24.75 29 46 08. 36 42 31 27. 13 . +0.51 -0.05 -0.18 +0.28 60 27 51. 19 89 53 01. 93 29 39 07.08 -0.17 -1.12 -0.02 -1.31 179 21 56. 84 07 01. 29 31 01.87 -0.34 -0.75 -1.50 -0.41 [ 120 10 11.97 42 00 25.25 17 49 22.82 +0.27 +0.05 +0.30 +0.62 +0.20 +0.17 -0.30 +0.07 +0.85 -0.10 -0.34 +0.41 +0.65 +0.35 -0.04 +0.% 0.00 -0.17 -0.35 Station. Haystack... Chugwater. . Notch Haystack. . . Chugwater. . Coleman Haystack... Notch Coleman Hobbs Haystack. . . Coleman Willow Hobbs Haystack... Willow Hobbs Coleman Willow Haystack... Coleman Rawhide Haystack. . . Hobbs Rawhide Haystack. . . Willow Rawhide... Hobbs Willow Manville Rawhide... Willow Kirtley Rawhide . . . Willow Kirtley Rawhide . . . Manville Kirtley Willow Manville Alkali Kirtley Manville Parker Kirtley Manville Parker Kirtley Alkali Parker Manville Alkali Cottonwood Alkali Parker Sullivan Parker Cottonwood Sullivan.... Parker Alkali Sullivan.... Cottonwood Alkali PRIMARY TRIANGULATION. 59 Table of triangles Continued. ONE HUNDRED AND FOURTH MERIDIAN Continued. Correction to angles Error of from closure of figure triangle. adjustment. Corrected spherical angles. Spherical excess. Station. Correction to angles Error of from closure of figure triangle. adjustment. Corrected spherical Spherical excess. -0.37 -1.09 -0.47 -0.35 -0.92 +0.65 +0.02 +0.12 +0.65 -0.07 -0.42 -1.57 +0.50 -0.39 -0.43 -0.43 -0.32 + 1.49 -0.93 +0.01 -0.08 + 1.16 -0.17 +0.95 +0.25 -0.60 +0.87 -0.91 -0.50 +0.37 +0.63 -0.12 -0.26 -0.48 -0.07 +0.50 -0.33 +0.05 -0.96 +0.15 -0.76 -0.33 + 1.46 -0.19 +0.98 -0.61 +0.01 +0.99 -0.01 +0.20 -1.05 +0.60 -0.01 +0.41 -0.18 -1.16 +0.95 +0.42 +0.33 +0.56 -0.33 -0. 62 +0.50 -0.75 -0.74 -0.66 31 10 02. 08 71 39 41.09 77 10 22. 79 65 33 54. 32 35 14 55. 49 79 11 16. 52 +0.79 34 23 52. 24 34 11 05. 70 .111 25 05.89 -2.06 53 10 21. 67 94 24 03. 84 32 25 37. 22 25 16 29. 26 142 26 34. 70 12 16 56. 60 +0.74 75 40 54. 04 89 16 13. 03 15 02 54.63 . 50 24 24. 78 82 07 07. 24 47 28 31.85 + 1.94 61 42 24. 88 14 34 12. 43 103 43 23. 20 +0.52 104 48 25. 01 26 51 09. 03 48 20 27. 27 f 43 06 00. 13 -1.10 hl3 50 02.10 I 23 03 58.01 +0.25 34 46 44. 47 I 38 08 35. 60 [107 04 40. 77 20 45 25.53 [ 98 00 51. 92 61 13 44. 55 [ -1.24 41 36 24. 74 [ 59 52 16. 32 78 31 21.87 [ 20 50 59. 21 [ 45 50 56. 22 [113 18 06.34 25 05 35. 14 72 01 61.32 82 52 32. 19 +0.39 20 46 14. 29 121 00 12. 32 38 13 39. 20 . -0.86 83 15 08.97 48 58 11.00 47 46 52. 00 682 28 54. 68 +1.00 44 38 52. 99 I 7:2 52 27. 14 -0.39 100 09 43. 36 31 31 35. 76 48 18 45. 75 . + 1.31 61 37 23. 17 66 19 17.56 52 03 22. 12 146 56 03. 42 18-00 31.81 15 03 26. 58 -2.15 85 18 40. 25 48 06 21. 24 46 35 02. 34 Provo west base . . Cottonwood Parker Provo east base. . Provo west base.. Cottonwood Provo east base. . Provo west base. . Parker 2.73 Provo east base... Cottonwood Parker 0.56 Provo astronomic. Provo west base . . Cottonwood 1.70 Provo astronomic Provo west base . . Parker 3.87 Provo astronomic. Cottonwood Parker Provo astronomic. Cottonwood Provo east base... Provo astronomic. Parker Provo east base. . . Provo astronomic. Provo east base. . . Provo west base.. Elk Parker: Sullivan 2.00 Elk Parker Alkali Elk Sullivan Alkali 1.77 Cambria Elk Alkali 8.65 Crow Elk Cambria Laird Crow Cambria Inyankara 11.97 Laird Cambria Inyankara Cambria Alkali Terry Laird Inyankara Sundance Terry Laird 1.81 Sundance Terry Inyankara 3.83 Sundance Laird Inyankara -0.28 -0.96 -1.18 95 03 45. 53 56 53 22. 09 28 02 53. 75 +1.05 -0.59 -0 90 ; +1.20 -0.31 +0.96 24 28 40.05 135 17 31.94 20 13 48. 46 + 1.85 114 32 48.44 40 13 46. 41 25 13 25. 89 +0.15 -0.06 -0. 13 -0.22 [ 90 04 08. 39 36 39 33. 63 53 16 19. 64 +0.84 +0.02 -0.91 35 28 56.' 73 129 50 38. 85 14 40 24. 68 +0.58 +0.30 +0.57 (135 17 41.93 +1.45 \ 34 46 53. 32 9 55 25. 09 -0.26 -0.05 -0.61 -0.92 99 48 45. 20 42 12 57.41 37 58 18. 84 -0.37 +0.01 -0.44 155 52 39.35 5 33 23. 7S 18 33 57. 03 -0.11 +0.39 -0.29 56 03 54. 15 15- 18 00. 80 108 38 05. 42 -0.47 + 1.49 -0.61 I 0. -11 168 38 23. 92 5 54 43. 02 5 20 53. 09 +0.38 + 1.06 -0.11 + 1.33 24 16 25. 49 11 07 21.67 144 36 13.60 +0.93 +0.44 +0.91 +0.55 +0.44 +0.41 [112 35 58. 77 +2.28 { 29 07 53. 48 I 38 16 11. 76 + 1.40 88 19 33. 28 68 27 42. 98 23 12 45. 18 +0.19 -0.40 -0.11 -0.32 45 46 47. 23 87 45 17.34 46 27 58. 88 +0.05 +0.22 -0.24 +0.03 75 44 52. 92 29 04 20. 62 75 10 48. 25 +0.93 +0.59 +0.76 +2.28 51 22 49. 19 81 10 48.42 47 26 23. 21 +0.04 -0.26 -0.95 -1.17 55 24 14.64 51 41 47.21 72 53 59. 43 +0.60 +0.24 -0.21 +0.63 43 40 18. 72 118 42 01.88 17 37 41.95 -0.78 -0.89 -1.03 -2.70 26 28 13. 83 135 25 47. 38 18 05 59. 71 -0.15 -0.66 -0.79 21 25 20. 50 C2 38 01.41 95 56 40. 31 -0.17 +0.12 +0.58 +0.53 55 59 15. 04 30 09 47. 58 87 50 60. 72 -0.02 -0.10 -0.45 31 33 54. 54 39 29 07. 07 105 56 60. 43 1.37 0.74 1.66 0.26 0.34 1.45 0.16 0.37 0.03 4.01 3 45 0.82 2.55 2.22 3.34 60 Station. U. S. COAST AND GEODETIC SURVEY SPECIAL PUBUCATION NO. 19. Table of triangles Continued. ONE HUNDRED AND FOURTH MERIDIAN- continued. Correc- tion to angles Error of from closureof figure triangle. adjustment. Corrected spherical angles. Spherical Station. Correction to angles Error of from closureof figure triangle. adjustment. Corrected spherical acta. Spherical excess. Wymonkota Terry Sundance Castle Terry Sundance Castle Terry Wymonkota Castle Sundance Wymonkota Horeau Castle Wymonkota Harding Moreau Castle Harding Moreau Wymonkota Harding Castle Wymonkota Reva Castle Moreau Reva Castle Harding Reva Moreau Harding Table Reva Harding Lodge Reva Harding Lodge Reva Table Lodge Harding Table Butte Lodge Table Whetstone Lodge Table Whetstone Lodge Butte Whetstone Table Butte Rainy Whetstone Butte Black Rainy Whetstone Black Rainy Butte +0.53 +0.16 0.00 -0.53 +0.16 +0.34 +0.14 0.00 -0.04 +0.67 -0.34 +0.49 -0.06 -0.51 -0.54 +0.46 +0.23 -0.22 +0.11 +0.29 +0.21 -0.35 -0.29 -0.33 -0.14 -0.02 -0.04 -0.47 -0.24 +0.14 -0.33 -0.19 -0.32 -0.72 -0.06 +0.09 + 1.39 +1.02 -0.05 +0.61 + 1.08 +0.59 -0.78 +0.14 -0.13 +0.69 +0.72 +0.37 +0.67 +0.46 +0.28 +0.54 -0.26 -0.75 -0.13 +0.09 -0.06 -1.32 -0.66 +0.82 -1.47 -0.64 -0.52 -0.02 +0.68 -0.55 +0.6 41 01 44.61 { 56 15 62.09 I 82 42 21. 87 -0.03 31 42 38.58 92 27 15. 10 55 50 17.05 +0.10 68 19 17.31 | 36 11 13.01 75 29 39. 26 +0.82 36 36 38. 73 [ 26 52 04. 82 [116 31 23.87 67 05 55. 79 61 06 05. 85 51 48 03.05 I 37 41 41. +0.47 U30 53 39. I 11 24 39. +0.61 99 33 42. 68 63 47 44. 12 16 38 34.68 -0.97 61 51 60. 75 49 41 26.57 68 26 37. 73 -0.20 39 44 06. 99 45 16 54. 07 94 59 04. 00 -0.57 49 35 31. 12 56 41 33. 35 73 43 02. 89 -0.84 9 51 24. 13 134 07 16. 09 36 01 20. 96 -0.69 61 44 12. 66 69 16 05. 85 48 59 48. 23 ( 30 40 52. 57 +2.36 032 45 40.75 I 16 33 30. 13 77 03 53. 49 [ +2.28 < 63 29 34. 90 I 39 26 35. 22 ( 46 22 60. 92 i 32 26 18. 10 (101 10 47. 88 + 1.78 62 55 11.42 52 16 47. 96 64 48 04. 81 + 1.41 43 44 49.58 96 22 42. 29 39 52 32. 93 -0.47 74 24 24. 96 44 05 54. 33 61 29 44. 12 39 35.38 55 31.88 24 55. 54 -1.16 51 44 00.96 81 45 03.62 46 30 57. 99 -2.63 45 55 02. 71 82 39 43. 42 51 25 16.46 +0.11 96 39 07. 00 30 55 42. 46 52 25 12. 37 8.57 10.73 Black Whetstone Butte Badland.. Rainy Black 7.42 Sentinel... Badland. Rainy Sentinel... Badland.. Black Sentinel... Rainy Black Saddle. . . Rainy Badland.. 1.48 Saddle.... Rainy Sentinel. . . 5.05 Saddle. . . . Badland.. Sentinel. . . 5.06 Hump Saddle. . . . Sentinel... 7.36 1.18 Cook Saddle. . . . Hump Cook Saddle... Sentinel... 6.74 Cook Hump Sentinel. . . Blue 3.45 Cook Hump Blue Cook Sentinel... 6.90 Blue Hump Sentinel... Trotter... Cook Blue Flat Cook Trotter . . . Flat: Cook Blue 2. M) Flat Trotter... Blue levering . . Flat Blue Sheep Flat Blue Sheep Flat Lovering . . + 1.45 -0.14 +0.27 +1.58 50 44 04. 29 30 19 47. 16 98 56 10. 36 -0.26 +0.20 -0.43 -0.37 [ 59 52 45.1)9 63 35 56. 77 56 31 19. 99 -0.10 +0.08 +0.07 -0.42 +0.34 +0.90 7 50 28.71 | +0.05 {161 44 44.23 I 10 24 48. 15 +0.82 34 12 45.21 101 51 58. 54 43 55 19. 93 -0.32 +0.13 +0.53 -0.54 -1.17 -0.74 +0.34 26 22 16. 50 53 11 08.62 [100 26 39. 92 -2.45 29 36 42. 40 29 44 24. 12 120 38 55. 76 -0.32 -1.10 +0.63 -0.79 90 32 03. 17 40 09 12. 27 49 18 51.36 +0.22 +0.66 +0.73 + 1.61 60 55 20. 77 77 36 20. 01 41 28 22. 65 -0.19 +0.40 -0.71 -0.50 111 43 34.97 10 36 07. 12 57 40 18. 88 -0.25 -0.70 +0.02 -0.93 75 41 29. 74 30 53 37. 54 73 24 55. 15 +0.11 -0.30 -0.29 -0.48 77 11 18.44 41 29 44.66 61 18 60.35 +0.36 +0.17 +0.42 1 29 48. 70 H +0.95 174 51 29.88 3 38 41.47 -0.02 -0.29 -0.14 31 26 55. 93 97 01 11.04 51 31 55.03 -0.85 -0.65 -0.42 -0.83 +0.31 0.00 +0.08 +0.23 +0.49 40 36 50. 00 95 31 22. 34 43 51 50. 49 I -0.52 9 09 54. 07 123 19 34. 85 47 30 31.96 . +0.80 102 54 07. 90 42 32 51.41 34 33 01. 88 +0.13 +0.31 +0.18 +0.62 10 59 35. 45 11 09 30.51 151 50 54. 36 -0.12 +0.54 +0.18 +0. no 66 41 13.69 53 42 21. 92 59 36 26. 68 -0.25 -0.26 -0.31 +0.40 +0.42 +0.34 aa 49 41 38. 24 [ 105 14 57.74 25 03 24. 80 [ + 1.10 34 37 07. 07 80 34 28.34 64 48 28. 26 +0.10 +0.14 -0.02 -0.26 -0.28 -0.33 +0.22 20 50 43. 39 143 54 40.46 15 14 37. 17 ; -0.87 89 01 49. 48 03 20 12. 12 27 38 00. 85 2.45 3.68 5.04 6.80 3.43 0.97 2.43 3.45 0.05 0.78 3.67 Station. Sheep Blue Lovering Jackson.. Sheep Lovering. Buford . . Sheep Lovering Buford.. Sheep Jackson.. Buford . . Lovering . Jackson.. Montana. Buford.. Sheep Montana. Buford.. Jackson.. Montana. Sheep Jackson.. Lanark.. Montana. Jackson. . Cutoff... Jackson.. Lanark . . Cutoff... Lanark . . Montana. Cutoff... Montana. Jackson.. Mondak . Cutoff... Montana. Ferry Cutoff... Montana. Ferry Cutoff... Mondak . Ferry Montana. Mondak . Bainville Buford . . Jackson. . Snake... Buford.. Bainville Snake . . . Buford.. Jackson.. Snake . . . Bainville. Jackson. . Bull Buford.. Snake Williston. Buford . . . Snake PRIMARY TRIANGULATION. 61 Table of triangles Continued. ONE HUNDRED AND FOURTH MERIDIAN Continued. Correction to angles from Error of closure of figure triangle. adjustment. Corrected spherical angles. Spherical excess. Station. Correc- tion to angles Error of from closure of figure triangle. adjustment. Corrected spherical angles. Spherical -0.36 +0.36 +0.07 +0.07 68 11 06.09 49 33 51. 09 62 15 07.92 +0.59 +0.83 +0.52 + 1.94 55 45 21. 17 27 19 36. 91 96 55 0-1. 53 +0.28 +0.14 +0.04 +0.46 54 05 39. 08 60 44 38. 44 65 09 47. 10 +0.19 -0.69 I -1.46 -0.96 79 52 54.31 33 25 01. 53 66 42 07. 66 -0.09 +0.48 -0.37 +0.02 25 47 15.23 31 45 17.43 122 27 28. 83 +0.18 0.00 -0.03 -0.21 [ 85 17 09.20 88 12 57. 71 6 29 53. 76 -0.15 -0.19 +0.86 +0.52 169 43 51. 64 8 20 03. 40 1 56 05. 02 -0.33 -0.48 -0.10 84 26 42. 44 26 55 07. 77 68 38 12. 68 +1.08 +0.77 +0.21 78 09 17.37 61 10 17. 93 40 40 25.52 +0.23 +0.65 +0.27 +0.20 +0.81 +0.72 [100 20 36. 50 + 1.15 < 37 17 52.91 [ 42 21 31.06 + 1.73 88 20 52. 43 35 47 46. 31 55 51 21.56 -0.43 +0.05 -0.44 -0.82 171 18 31.07 5 18 56. 37 3 22 32. 61 +0.93 +0.45 +0.29 + 1.67 85 39 53. 27 19 56 03. 42 74 24 03. 38 +0.48 +0.27 +0.30 + 1.05 86 11 44.59 42 20 50. 92 51 27 24.60 +0.14 -0.18 -0.64 -0.68 106 30 01. 59 22 24 47. 50 51 05 10.97 -0.34 -0.01 +0.29 20 18 17.00 22 56 38. 78 136 45 04. 24 +0.61 +0. 61 +0.45 + 1.67 02 09 53.44 76 25 17.04 41 24 51.07 -0.26 -0. 52 -0.97 33 36 23. 06 11 11 37.70 135 11 59.54 +0. 20 +0.09 + 1.06 47 39 02. 32 87 36 54. 74 44 44 04. 97 +0.52 +0.36 +0.61 + 1.49 14 02 39. 26 162 38 07.02 3 19 13.90 +0.20 -0.06 -0.24 57 03 25.51 23 16 57.93 99 39 37.46 -0.88 -0.57 -0.23 -1.63 54 56 28. 42 66 33 44. 27 58 29 49. 16 5.10 Williston . Buford... Bull 2.61 Williston. Snake Bull -0.56 -0.51 1.75 -0.68 1- 76 58 05. 88 43 16 46. 34 59 45 09. 40 +0.32 -0.01 -0.48 -0.17 22 01 37. 46 41 09 48.30 116 48 34.91 4.62 Bcnetraill . Williston.. Bull -1.15 +0.14 +0.21 77 24 18. 17 48 00 16.30 54 35 26. 35 3.50 Gladys Bonetraill . Williston . . 1.49 Gladys Bonetraill. Bull 0.67 Gladys.... Williston. Bull Marmon... Williston . . Bonetraill.. -0.54 -0.14 +0.20 +0.99 + 1.01 +0.60 + 1.53 -0.06 +0.81 -0.89 -0.14 +0.05 | 26 33 58. 67 -0.48 U46 22 52.62 I 7 03 08. 85 +2.60 93 32 12. 50 68 58 34. 45 17 29 13.27 +2.28 66 58 13.83 40 57 07.45 72 04 39. 62 46 00 23.64 48 30 35.57 85 29 01.75 0.82 0.47 0.30 Marmon.. Williston. Gladys.... Marmon . . . Bonetraill. . Gladys Howard. . Marmon . Gladys... Muddy . . Marmon. Gladys... Muddy.. Marmon. Howard.. +0.15 +0.06 -0.78 + 1.04 +0.09 -0.24 -0.04 -0.08 +0.20 +0.84 -0.10 +0.30 +0.50 -0.02 +0.18 -0.57 56 07 07. 74 55 33 44.42 68 19 09. 15 10 06 44.10 +0.89 UI 28 08 05.63 I 41 45 10.48 +0.1 55 17 40.62 | < 50 16 56.39 I 74 25 24.25 + 1.04 42 14 40.60 94 07 20. 84 43 37 59.99 +0.66 77 24 40. 93 43 50 24. 45 58 44 55. 78 Muddy.. Gladys... Howard.. 0.11 Stady.... Muddy . . Howard.. -0.34 -0.10 +0.14 -0.57 -0.61 -0.44 ( 35 10 00. 33 t 30 47 24.26 (114 02 36.40 03 38 30. 58 75 41 29.46 40 40 00. 64 0.06 Crosby... Muddy.. Stady.... Crosby... Muddy.. Howard.. -0.30 +0.66 +0.02 -0.19 +0.05 -0.08 38 47 33. 49 26 39 21.50 114 33 05.34 37 34 23.45 f h02 20 50.96 I 40 04 46. 58 1.55 Crosby... Howard.. Stady.... Norge... Crosby.. Stady... 2.03 Norge Crosby... Howard.. -1.02 1 13 10.04 35 14.06 178 11 35.92 + 1.58 35 18 07.83 63 16 36. 77 81 25 15.80 +0.69 82 04 23. 90 64 29 46. 81 33 25 50.53 Norge Stady.... Howard.. +0.13 46 46 16. 07 100 23 08.28 32 50 36. 47 Bowie School Ambrose southwest base. . . i -2.83 28 25 26.41 27 00 34.67 124 33 59. 14 Ambrose Ambrose southwest base. . Bowie 56 35.04 ( {178 14 37.76 [ 48 47.21 1.62 0.67 0.82 0.14 0.22 0.90 0.96 1.31 0.21 1.43 1.16 0.99 0.68 0.33 0.99 0.02 0.40 0.82 0.22 62 Station. U. S. COAST AND GEODETIC SURVEY SPECIAL PUBLICATION NO. 19. Table of triangles- Continued. ONE HUNDRED AND FOURTH MERIDIAN Continued. I'orrtvtlon to from figure adjust- ment. Error of closureof triangle. Corrected spherical angles. Spherical Station. Correction to angles Error of from closureof figure triangle. adjust- ment. Corrected spherical angle* Spherical Ambrose Bowie School Ambrose Ambrose southwest base School Crosby Bowie Ambrose southwest base Crosby Bowie Ambrose -0.20 +0.63 -0.73 -0.30 73 06 18.73 27 36 39.20 79 17 02. 46 ; -0.43 -0.05 +1.66 +1.18 74 02 53.77 I 53 40 38.62 52 16 27.79 . +0.26 +0.32 +0.60 +1.18 16 46 02.91 18 47 29.25 144 26 28.00 -0.37 67 16 00. 22 -0.03 I -0.08 1 19 36 16.46 +0.32 93 07 43.64 Crosby Ambrose southwest base. Ambrose Norge 0.18 Bowie Ambrose southwest base. Norge Bowie Crosby Norge Ambrose southwest base. Crosby -0.63 +0.17 +0.55 + 1.12 -0.01 -0.02 -0.09 -0.33 +0.51 -1.21 +0.62 +0.77 +0.09 + 1.09 +0.1 +0.18 50 29 57.31 37 18 54.24 92 11 08.60 43 38 44.09 77 47 03.68 58 34 12.35 53 28 02.98 58 59 34.61 37 32 22.95 39 49 18.89 85 52 15.65 54 18 25.86 0.15 0.30 0.54 The maximum correction 2".39 to any angle is to the angle at School between Ambrose southwest base and Bowie. The statistics as to closures of triangles and the mean error of an angle for the sections of the one hundred and fourth meridian are given in the following table. The mean error of an angle a , in which IA 2 is the sum of the squares of the closing errors of the triangle and n is the number of triangles in the season's work or in the section. Season. PRIMAKY TRIANGULATION. 63 The comparison of the average closing errors is given below: Average closing error. Texas-California Ninety-eighth meridian One hundred and fourth meridian Transcontinental triangulation Eastern oblique California-Oregon 0. 90 0. 92 0. 99 1. 06 '. 1. 19 1. 22 No attempt has been made here to set forth the agreement of the separate measures of each direction as a criterion of accuracy, since it is well known that it is of little value for that A purpose. close agreement of the separate measures of a given direction is of little conse- quence, since such measures are usually subject to constant errors of considerable size, which become evident as soon as the closures of the triangles are studied or an attempt is made to adjust a figure. ACCORD OF BASES. As already stated, there are six bases which serve to fix the length in the triangulation under discussion. Four of these bases are connected directly by the triangles adjusted. The Salt Lake base determines the length of the line Tushar-Mount Nebo adjacent to the base net, with little loss of accuracy. The Salina base is more remote from the line Arapahoe-Mono tony, which was the fixed length in this adjustment, and the outstanding discrepancy is consequently somewhat greater than would have been the case if the intervening triangles had been readjusted. In solving the normal equations of the figure adjustment the length equation was, as usual, assigned to the last place, so that after all the conditions relating to triangle closures and ratios of lengths had been satisfied the discrepancy in length became known. In the following table the discrepancies developed between bases are given in terms of the seventh place of logarithms A and are also expressed as ratios. plus sign before the discrepancy expressed in terms of logaiithms means that the first base mentioned is longer as measured than as computed through the intervening triangulation from the second base mentioned. Arapahoe-Monotony to El Paso El Paso to Tushar-Mount Nebo (Salt Lake) El Paso to Cheyenne Cheyenne to Provo Provo to Ambrose Discrepancy in Discrepancy seventh place expressed as a of logarithms. ratio. + 31 +6 + 141 +- 108 40 1:140 000 1:724 000 1:30 800 1:40 200 1:109 000 ACCORD OF AZIMUTHS. Laplace azimuths were computed at three stations of the one hundred and fourth meridian triangulation, viz, at Watkins astronomic, Provo astronomic, and Mondak. It was reasonably certain that the Laplace azimuths computed for these stations were more accurate than the geodetic azimuth computed through the triangulation, and they were therefore introduced into the triangulation. The azimuth equations which reconciled the computed and the Laplace azimuths were placed at or near the last of the group of normal equations so that after the conditions relating to triangle closures and ratios of lengths had been satisfied, the discrepancy in azimuth became known. Tne azimuth computed to Watkins astronomic station, through the triangulation, from the North American Datum azimuth at the edge of the Salt Lake base net, was found to be too large by 5". 05 when compared with the Laplace azimuth at Watkins. The azimuth computed to Provo astronomic station, through the triangulation, from the Watkins Laplace azimuth, was too large by 2". 37 when compared with the Laplace azimuth at Provo. The azimuth computed to Mondak, through the triangulation, from the Provo Laplace azimuth, was too small by 1".08 when compared with the Laplace azimuth at Mondak. 64 U. S. COAST AND GEODETIC SUBVEY SPECIAL PUBLICATION NO. 19. STUDY OF ERRORS. While the primary triangulation done by the Coast and Geodetic Survey is sufficiently accurate for geographic and geodetic purposes, at the same time it is well to search for the causes of the larger errors and to tiy to eliminate them, if possible without an increase in the time and cost of the triangulation. Or, if the causes of the largest errors can be found and removed, it might be possible to obtain the present accuracy with fewer observations over each direction in the scheme of triangulation. It is known to all observers of experience that large errors are likely to occur in observations made on a heliotrope before the late afternoon, when the wind makes the support of the instrument vibrate badly, and when a line passes close to a steep slope or a factory or heated stack. There must be other more obscure sources of error. In the text below are given data which .may help to discover some of the sources of errors in primary triangulation. Beginning with the season of 1904 each observer on the northern portion of the ninetyeighth meridian triangulation and on the Texas-California arc kept a record, called the error "book, in which he made notes of the weather conditions, the character of the line observed over, and the appearance of the object observed upon. For each period of observations of primary horizontal angles there were entered in the record the date, with the hour; the direction of the wind; the strength of the wind; the station observed; the intensity, size, and degree of steadi- ness of the image of the heliotrope or lamp; the character of the image, whether symmetrical or asymmetrical; and the character of the line, whether high, low, grazing, or clear only at night as a result of elevation by refraction. In a column of remarks notes were made regarding the condition of the atmosphere, whether clear, hazy, or smoky. It has been impossible for the author, in the limited time at his disposal for such work, to make an analysis of all the accumulated data. 1 High, low, grazing, and refraction lines. As considered in the error book, a high line is one with it3 greater portion elevated well above the ground and obstructions. This usually A occurs when the line crosses a depression or valley. low line passes over a very flat country or just over ridges, trees, houses, or other obstructions. Grazing was the term employed to A describe a line which was barely clear during the day. refraction line was one which was A clear only at night as a result of great refraction. refraction line is, strictly speaking, a grazing line. The following table gives certain data regarding the number of high, low, and grazing or refraction lines on the triangulation along the one hundred and fourth meridian and the aver- age corrections to directions for the different kinds of lines: PKIMABY TKIANGULATION. 65 The following table gives the number of large corrections to all the directions and the number of them on the several classes of lines : % 66 U. S. COAST AND GEODETIC SURVEY SPECIAL PUBLICATION NO. 19. the observations were mainly made in the late afternoon, the west side of the instrument is undoubtedly warmer than the east side, and the resulting angles opening to the west and to the east should be subject to systematic errors of opposite signs, and therefore twist would develop. If this theory is correct, an east-and-west arc should develop only a small amount of twist, well within the limits for the expected error. Arcs on which the observing was done at night should develop no twist exceeding that allowed by the probable error, for the temperature of the east and west sides of the instrument would be equal. It is expected that this theory will be tested in the near future on all of the arcs of primary triangulation now existing in the United States. In the following tables are given the data, for each section of primary triangulation in the United States, which may throw some light upon this deviation in triangulation. It is believed that if similar data for the primary triangulation of other countries were in print it would be possible eventually to discover the cause or causes of deviation in triangulation, and with this knowlodge to carry on the work in such a way as to minimize or eliminate its effect. The sections of triangulation between Laplace stations are arranged in two tables. In the first are given data for the sections whose axes he approximately in the meridian, while in the second table data are given for those sections which run east and west or nearly so. On page 74 are given the data for three sections of the Eastern Oblique Arc. Explanation of tables. The data for any section are given in the direction south to north. In columns 1 and 2 are given the names of the Laplace stations at the south and north ends of the section, respectively. Column 3 contains the correction necessary to make the computed and adjusted azimuth agree with the Laplace azimuth at the northern end of the section in question. In each case the triangulation started with a true or Laplace azimuth at the southern end and the difference given is the amount of the accumulated systematic error or the deviation of the triangulation in azimuth at the northern end. This correction results from the figure adjustment and the adjustment for discrepancy in length between bases. It does not include the effects of any adjustment for latitude, longitude, or azimuth. Where the triangulation had been adjusted without equations for latitude, longitude, or azimuth, the values for the corrections in column 3 were taken from the table on page 20 of the "Supplementary Investigation in 1909 of the Figure of the Earth and Isostasy." Where an equation for latitude, longitude, or azimuth was used in the adjustment of the triangulation to the North American datum, various expedients were adopted to obtain the values for column 3, and the numbers given are subject to some error. Column 4 contains the values of the probable error of the adjusted azimuth. The method of deriving these values is explained below in the text relating to column 8. In column 5 are given for each section the values of the ratio of the deviation itself (col- umn 3) to the probable error of the deviation (column 4). If the deviation of triangulation in azimuth were due to accidental errors alone and the probable error in column 4 were free from errors of computation, then the values of the ratio between the value and its probable error for any section should on an average be about unity (theoretically 1.18), with few values as great as 2 or 3. It will be seen in the tables on pages 67 and 69 that the values of this ratio are frequently larger than 3 and the mean is 3.7 without regard to sign. In columns 6 and 10 is given the number of lines between the Laplace stations at the ends of the sections for the eastern and the western sides of the scheme of triangulation, respectively. In column 7 are given the corrections necessary to make the azimuth carried along the eastern side of the scheme from the south agree with the Laplace azimuth at the second or northern station. The computation starts with the Laplace azimuth at the first station and is carried through the observed directions. These directions are unadjusted, except for any local conditions at the stations at which they were observed. The above paragraph applies also to column 11, except that in this case the azimuth is carried through the unadjusted directions on the west side of the scheme of triangulation. PRIMARY TRIANGULATION. 67 oc ooo I I I + I e* I o oo + + I +i I Em 3 la -S8 S-foo t* S oo 3 OOO d d n id O -4" * (9 o 1-4 ,-4 C4 <- TO ddodo *So oo ++ I + + +++++ 1 + + I I 00 ~H o Ocod 3- to co odd d d + 11 + + . w pj o 8od3 d8 d d +++++ 5S d do + 4- I o'S .J 2 si 3 o o wScccsooio^o co 3- r- *** CO odd d d ++ I + + odd S 3 3 M --* -4 8 "-J +++++ Q 50 iO 89s d d o oo + I + +1 o-< I I I + I o i i-H I-H I + + I I 3 S -, C* + + I 1 ~h'cocn O o CO -^ to * co tN CN co S S 83 oW pi pi a. : i- is 3 5.3 to fno3 v?8 ?5 oo *W4" e4 to III + I 00 8 8 ss 5 irf ci "5 I + + I I 55 55 a ooo QQ 3 '3 9 SS gJd -: + I + +1 X 55 o -8 -8 o'd Q .2+ oSn ^- "* 3 B 1 l^pl 8 I i s s 9.-! ! s -r oi co J c* -^ -4* pi +I+ + + *coS2 5 d J N ^4* pi pi 833 3 ff ^ ^ CN g' CN + 1+ + + sss a PI PI pi pi +++++ o oo I + + I I 3 83 est si 3 3 8 S3 uj V (^ N d od co d dej ass + + + + + ?! I + + I I S 4f S> Hirid + + + 1 I *w OCO ' 00 W3 -*< 00 n J pi -J i-4 +++++ M N (D <- o B8 O PI i-H o o -b cv fcPS ilp 3| ' (^ llftao l-Ofl c3 iwSgai' WI Eh +j 3 > tog a J ej o y 'a a a a aI p-S i I :S 3 : a : 'a. a aI3a21o 1^^ I H So fl to ^ xi to g . - o.& o o 2 s 2 oaCJ (rt 3 8S5Sc3g bco ^ "^ Nw bCfc- Ph^O oo O W t< ? fc fcS U0I133S JO ON -" CCO ^* Ui 68 U. S. COAST AND GEODETIC SURVEY SPECIAL PUBLICATION NO. 19. Columns 8 and 12 contain the values of the probable error of the azimuths carried through the observed directions on the eastern and western sides, respectively, of the schemo of triangulation. These are the azimuths referred to in columns 7 and 11. The probable error, ea, of the azimuth as carried through one side of the scheme is computed by the formula where is the probable error of a single observed direction and d is the number of directions used to carry the azimuth. As there are four independent ways for carrying the azimuth through a scheme of quadri- laterals with the diagonals also observed, then the probable error of the azimuth carried through the scheme which has been adjusted for figure or for figure and length conditions is obtained by the approximate formula, eA is the probable error of the adjusted azimuth, and sa is the same as in the preceding paragraph. In column 9 are given the values of the ratio of the difference between the observed and Laplace azimuth to the corresponding probable error of the observed azimuth. The observed azimuth referred to is that carried through the observed directions on the eastern side of the triangulation. Column 13 contains similar data for the western side of the scheme. D The time at which the observing was done is given in column 14, standing for day and N for night. There are given in column 15 the apparent convergences of the two sides of the scheme of triangulation. This is the value in column 7 minus the value in column 11. In column 16 are given the values of the probable errors of the apparent convergences. The probable error is the square root of the sum of the squares of the probable errors of the corrections to the azimuth as carried by the two sides of the scheme of the triangulation. There are given in column 17 the ratios of the apparent convergence to the probable error of that convergence. The last four columns 18 to 21 give the accumulation for a single direction, in the adjusted azimuth, in the azimuth as carried through the observed directions on the eastern side of the scheme, the same for the western side of the scheme, and in the convergence. The figures are obtained by dividing the numbers in columns 3, 7, 11, and 15, respectively, by the sum of the corresponding numbers in columns 6 and 10. PBIMARY TEIANGULATION. 69 C o a g S/K B .: 5aa a .2, So* PCC~ j3 t o g a u S JS MMOfC (CCNCC'OOOCWiOO fe "ooo +++++ [-O'CN'O HCMHC1>~CC OiOi ft o'oo'oo + I I I I hv"0 mcoccfptro-2i fe oo'oo'o ++ II + lOOlWCI" NNO SCO -f -thMC0DriNt-fMCiO o+'+oo+'oI'Io XNNOW ONOhh CN CO ' Oi o'oo'oo ++ + I I HfN-C^t*Ct#WotWso Omfh o'o'o'o'o +++ I I ONW'IarMG-CICMIMCf5fDl o'oo'oo* + + I -f I >ooo t~l>iOQ0C co" r4 cm + + + II OMOCOOOONOOtOCehO^ o'oo'oo* ++ I I I NHMiSM t Q00i>O-Oiti-0O o'o'o'o'o' +++ I I NNfflmo O iOTjr-ooo -" i-i >-H i-i o'o'o'o'o +++ + I 0^N0NM0NC-OI-"CH;MM oo'oo'o ++ + 1 I 0t-00-H ' ' ++ I NHOWWO ifl ,-h -+ ooo + l l co"o*coo ,-< CM i-i ooo ++ I CO h- *< CM Si-'J- ooo ++ I 00-O* toss's a-aood odoz-3 "8*o'dfi oo'-a do d dd d o^ec^H nS3 o- n>^OH mojt .B ++II++I cicioo dnd-^m .-_0_(0-(,0 N04O4O4O4 C4 04 CN 04 04 aaooo X X f ^" (N r" Oi hCO 04 oohCvOwOh 00 31 eo* t-" r~" r-' ao SSSSoi ooooo Nt'NOH tO CO -- 33 I O p- 04 04 CO -* t- eO eo x co oi ci Ci 01 cS Si Si oS Ar- r- X CS 04 t.0. 04 "fi> x 96 ?5 co "~ os 04 rr- Q r- 04 04 T*- S 00 Jh _> CM 04 04 * ' oi ri e? " *? KJ to iq io cor- oo as JhMMV tOCOr-CCCS CO 5 r- 04 CO ec eo eo eo *- 04 04 01 OI 04 8 - !S C SCO>.C_D I- I ,. t r-ooooap q 01 co ** toor-ooo 1 nwnw O404O4O4O4 C4CO"* w io m A w 0404040404 toco t-ooo X X CO o ^- - 04 04 toi tJ-t-OeOCO co f' i- i^ 0404040404 ^i-iNM**" if 04 1- 34 CO i-l eo eo -r-r to Cl 04 tO CO pH X i ad oo e C4 04 04 CN 04 S(Dr-COOi "I)" 0i-4-OOjO-0)i0"CO*O 0<0 tO 10S ee,p t- I- oioio'oo _. 04 04 04 0404040404 Qi04W^J 0* ^.^^.3.3; *NQ

I- o oi eo eo eo SSOI40644C044 O044 Q^ojeo^ft CO totqiQ"3 ,3 X NO* X Tf cn CO eo eo 0-4 r- -j> CO CD OS CN tS4<3M 04 04 01 01 0404040404 ocot-coas =38 o o to 3 r- lO CO p- > ttO jo" CD CO CO* 0404040404 ^r04C0* co -- 00 > e e 30 00 CO 00 00 00 CO CO CO 00 ji-to4eo^ locot-ooc t- t- r- t 1 K 00 CO 04rt - 01 1*- O t- 00 00 00 C0iO4Oli-O3t(1-Ott-IO-H 00 QHOIW^ lOefit-OOOS CD x :/_ j". y: y^ O CO to ^h 31 iO tr -o O t - /. s. ~. ~. C. 71 / r- Q-tOJOO-* lOona 8 X _C SI 31 CO <-* 31 t *0 # 31 co eo Soi $ "",' e7o* Tc2o co si 07-j4:" O O CI 31 31 O P5 1 ' OI I X S 2 cc cO r- 04 r"O ^r-OleO** CO CD *OCDt-COt eo ci t-- 10 04 I-- CO CO CO 31 OI !SS8 01 r: totfii>aoo) eo oii*-o O >o OS -* 31 O O *tO-o i-< oOiioiOeioQ'eioOeOo *eo 1 01 1- >o 31 CO 00 CO 04 04 CO CO OS 04 iO 00 ^- ^ ^ eo * iq O 10 10 iC "O lOfDt-Xffl ?< t- O* CO CO iC iO ^o *o *o eNotr--rc-iCrO~ ru QH 04 60^1 iQto t-ooe 04 04 04 04 04 fCCOOtr-pOoOOSRt-O- HlOO 3 3 CO CO CD Qr-t04e0'* >o tot- 00 01 04 04 04 04 CO eo 1 01 1- >o Tf OS co 00 eo o ec8oeiCnOtCrc-O-s(c3tN1o-t0x-4 - 04C0 ^* u iOt 0f4fti- 5^-!CCOC- 1: 1. -1 /. ^CO"C^OiCQOiCoOiCOD eococor-r COCOCOCOCI "oieo^ tocot-aoc ^ -* iO U5 lO (NOX** n^ Oi-^oi-rci tQ lO tO >Q iQ O 04 CO CO t c. co 1 04 04 04 eo coeo^'-'Tt C404040404 0404040404 tO CO t-x 01 iIxficNOoQrXi-5oCoiSri^-fl q^ioxh ^iOiOCco 0404040434 t00Q44OOt-OciUCi cocor-t-i 0404040404 iflt-CCffl H ^ CO CO CO CO SOXC* O 31 ^- 31 xxxxoi 0404^10404 o04iOo4esOQeOOCOO toeot-oi ^1 co co eo o -* 3 x X CO CO o eo * -*-' ^- 04 COCOCOeOCO O X 04 CO -f X CO I- 04 t- X O O 31 31 tO CO rt tO 00 " 0..-44 0^-4^ ev.oevo. eo CCOOeT^OCCOO eOe?O Q104 MTf ' 5 A iO CD t- 00 o x t- r- r- r- t- 04 co -# :gg eo ^eO^CfOCtOQCOtCQO f t- t-t-f- ojoaocg-^ to ci o lCOeCmOc?e0CcOcCgO 5 ^ -* 0e 1 ci io SifCtO CO 1-1 0* e> S0SC1CSCS 9 ~. Tl T. 3"- * X cocor-i-x 31 04 tO ^H 04coeoeoa< 31 31 31 31 31 5-m^-? mst-xtr. O-I OS 01 CI 1- CI to cs co x 04 r- 04 r- x*eiOcjoo h- * t- H"CiOiOO Cl OS Ol Cl OS ^Hrl04^ CO O Cl CI CI CI 1 31 1- to eo 04 CO i CO t~t o 1 04 04 CO eo co ci oi O tO CD t- CO ooooo o x 01 co -r 6;9;9o3:3: T CO 'V S S3? tO 00 1 WQrH 04 e0^* iocct>xa> CO f5MXO X XX tO Cl ^- Cl * c o sgoos 0rlO4CO^* CO CO - 04 t- S0e4o Hill W o cot Cl Seo -r -^ 10 Cl 04 tO 00 I1IS 10; pi * 1111 ft" toco r- 00 m 4 04 04 040 - r- 1- c f * ? 3) C f 5 so cs r X 1 04 tO f s co co co co ir-CNeO^ co co eo co -o *Ol>ej0Cft eo eo co eo co Xr- 01 1 tO CO 04 t- 04 t- o -I -] eo co 05 04 CO ^3 CO CO Qr-OleO-* "- ci r- u OI CO t -. O O Q tO tO CO CO CO !0 *5 10 go r- ooci CO CO ^t* '* o CO co 10 eo tO OtO CO CO t r~ CO CO CS 04 QJAf S > Cl I- tO CO Qr-CMeO-* tO COt- COCA sr-IVbt-IOIW X OI 1- 04 I - fi-' 04 04 04 QrH 04 CO** CO 0* 10 eo (- co ci tO tO to t-O J 1- 2 eSaS o CM CM CM CM CM Sco t o x co so cm SO M) i CO CM CM CN CM NiaWcNo-MoftJ- t CM I CI CO SiCOS cd CM eD tO t00 CM CM CM CM CM ioo o r- io * co co r- i- CM iC 00 rH >o tO to CO CO z- 0Q^ lOCOt-OOOS m 00 CO 00 OS OS QfhCNCO* GO 10 to COt- 00 OS CO CO CO CO CO co fh os t- 5 CM t- F-> CO rH * o CO CO "J" 'V iQ 00 i t- Wco co co co rfH OS t ift CO f- iQ IQ O iQ CO CD I- t- CO CD CM IO frHCNeQ^ io cot- 00 OS 10 t t CO 00 CO S ^ O eci-crS-O-COf--O*" F- !- CO t^ t-" r^ co* oo* COCOCOCOCO CCcCfoMOOOOxO0C0CoXMO0i0CoSODOCCO-cf co x o o c cococococ iO cot- CO OS I X X X X X X (N CD *rjt x cc r- :i i- H i CM CM CM tO CO i -V XX o ~ 111-c-o -co---r : co *:* -T- to - CO CO CS CM CM* CM CM o cot- CO OS I 4 o o SHfC-StIo--It5O t oo co er 00 F Tf t- < o cot- CO OS F-i~( f- CM CM tO CO t- CO OS ttCc-M-ocfCoCiOOxoCCDOoi-Ooof fMco'coeo'co o o f o CM CO CD -t" r. O F-FCO CO CM tO ^I'>iI-*iio'io" Qt-HCNCO* CO IO cot- 00 OS t- t t CO CO CMCOM* lOCOt-OOOS ~'l X CD -t- (NI-f-COfH CO-MOr-OXOf_O-- fO- CO t- CO CO Qi-"CMeo-* CO CO toco t- 00 OS 3 S 38839 i ** rf* l - IOX-f t- i- i- r- t- CO CO CO CO CO O f- t- iQ CO X >* CO 00 CO CM rI CO CO * t- CO CO CS r- co co oo oo I- t- 1- 1- 1- ^CO CM C- CM ttO tO CO CO CM to 00 i-i *" x ~ CM CD CO fh -- r r '. I- CO CO CS co t-r- t- tCMCMCMCOCO COH^-FffHiiO 00 00 00 00 00 00 00 00 00 00 t-t- t- 00 CO fh os r- u5 CO CO CM r- CM t- SO iO CO CD 00 CO OO CO CO 00 00 00 00 f^fHCMCO^" o cot- oo os 9 I o cot- 00 OS fJH^ lOCOt-OOOS QfHCNCC^i iO cot- 00 OS GO i 0H0OCOlCfO-00O0M0 CD tO IO f- CM Ol CO CO OS CM tO CO rH iO cot- 00 OS HM lOCOt-OOOS o - OS t- tO CO 00 CM C- CM r00 CS CS CS CS CM CD f- CO f- O OS CS CM tO fh CM tO to to tO to tO IO cot- CO OS OQO-f G f- CS [- to CD iO u f- CM CM CO 9 00 F- -f I- C OfO-fc t -*" -r iQ ti CO CO OS CM ti jrHCNccr tocot-coos o i os r- eo 3 CO CO 00 CO co t- r co nost CO CM t co cs c 0-" tO cot- CO OS I a CHMOClMtC-MiOOCSM CM CO i CO r-t Ofh fh CM CM eo CM tO CO rH CM CM CM CM CM S8K8S 3S3S3 JrHCMW^ iOQ CO 5) I ' ' I nAancnnSAoA oOOo OOO S8S88 88888 r i-';-ri- 88888 8SSS NNfl.NN 54 54 54 CM 54 ofefefcfcf eoeonnn co co oo co co co oo co co eo CO CO CO CO CO _ 00 o5 CO CO SO A O CDt- 00 H koor-ooo ^^oeo^< ot-o> s ^.-tNco**' CO m oot-os I fl CH ~ i5 w ;i :i ;i ?t Q CNCO^" in cn in cn cn lOtOt-cOOS asags i~- 1- t- 1~ i- fc*cffef c:s-5_4 to o: 54 ,-_ r- i- r- r- t- oooo ScstNtoes OS 54 i co eo co co co ofcfofofef of ooo CN CN CN CN CN ^hn* H CN CN CN CN CN oct-ooos B 5 jj; r; CN CN CN CN CN Qr-CN-* CNCN CNCNCN 3 m 9 x ; i^ cj S 3 SCt---,r; t.-:eI o ob oo as en os os os cs cs jXrttXvfm iQCOt-CCO rOo- Oo5" Oot-Oh1->Oh* c4"cn"cn"cn"cn" thO- rOmO*mOr-SOQ C>fcN*eN eN"c4'' iOOt-aooi CO 5 "-^ '? *t-ocot- 38SSS oTcN^cNofoT Q.-lC4CO^< c o eo i- eo 3S388_ cn'cn'cn'cn'cn' U5 CD t-COCS >r-pcO 5 CO CO C o 5 to r- o tO CO CO OO SIO- OI t- CO frTofofefcN" CO CO h x 5 r- eo rii ~ CN OS I- tO CO tO 00 r- 5? OOOOO O CO CD X CC CO CD C3 ffl of cn'oTcn'cn* - X C l". t- 5383 CN C4CNCNCN04 Qf-tCNefl^ 3 CP CD C2S 333 CNCMCNCNCN ocDt-ooa> t-eot- X O CO tO CO r- CD t- O) v CS t- 3 *f c; -. :i t* ' * co" to" eo" <0 CD CD to" CO eO r- eo t- 00 CO iO SO O X' 54 SO ^" CN CD *P oo c> co to to jo* to' c" o to CO CD CO o 9 K S JR j C4iOt- C eococieoco r t i oo oo CD CO CD CO tD t- cot- rf-fl0O0OCD-lNO CN cS I 5 fflfflHVt- cjcncdocm co?i~c; tD cO CD CD t H^i-HCNCO^t* 10 OtDt-OOOl O CO t- CO t~ CO 00 to O w eeo-5i -*c>oc <- Q CO t- CO O iiO-CoOocio CO cvoii--> acci sooitoo t t- t~ r- 1- Qi-lCNCO* 10 otor-ooc3> aa -< CO CN Ifi CO r-* Qr-CNCO^ CO 10 o cot- oo o> o o s co t~- eo x c ; i rf t^--ooeto ot-io ^^HCNeO'* iocot-ooo> 4 eo t- eO r- * rf 00 CD eo co io en io r- too eocooor-i'* d cn "^ co cn if) cn :N eococoeoeo o eo t- eo o o tc-5oCxO^c-~n-xcCoO r- 04 oo oceom'oeocoioeicfooi cgeooo c--oj< AHIMM^i O Ot- 00 e o T lO 00 00 r-^00--"^ eo eo eo eo eo eocoeoeoco Qf-HCNCO^ 4 S t-o (33 04 io ti--OOXWCtC-iOO fiftioor- id CO CJ> t- ^piCNCO^ lOtOt-OOCft 4 0"*t-0 co t-c CN CO CO CO i HOI-M5 CO 9 t~ eo r CoDti-Q xCOcf O *r iO " p r >5 u- to 5 Ol CN -^ t- O h- CO So o XO)C 8SS t- eo co ssssl Oeor-o eo in co oo O o cn CD c&o -w cn c5 oo ^J" t- CO ; -o co --o 533 o O t- C9. fO eo Sol-OOCR tO-fCMOCS oor-^t-ci C5 CO tO* OS CN SiOlA^CoJop eo t- to t- oocD>oco-, f-iCNCO-f t- iO CO i Oi cn io oo 1 eo oOoo to" OS* 04* CD* OS CO t- t- I- O CN OS CN iO oo ssss x x oo es eh O oo CO -jr ?i C ^< t- eo t, !85| iCOt-0) iO CD 1- 00 OS o H es CO 05 eo CO CDCSCNtCOS uMfj so to CD tO CD CO to S 5 5- eo CNlOOSCNKO I r- t- co do cd co to CO to tO t- 00 OS SiCxOct-iOcec iiOcot-g 0cCo5o4 sfol osJOJ totocotot- QHriCNC0<< fOi O* tl~-tt- t- 1- 1OtOt-oOOS S cor> CO CO SesOo t<- c 2 MlOCCf-* CM54CNCOCO t t-I I-l Q^CNCO^i 0* 01 O CO ( "f 00 r- CO -9- **"- t-t-t-t-t >OPt-00OS t-O e 35 iO00r-fl- tO tO CD ci c; t-t-t-t-t "CN C0-* Stc-oOeooero -< OS 04 tO Q0 r O O * -* t- 1- t t- 00 00 t- t- t- t- r- iCOI-XC 6}M SCD^a-OC5N4CCoON * Ifliflcei- ocOcotDo eo i- eo t- co-f'O'Otp CC-O-f-?! co (O os 04 " co 3" t-" -* eorfrfrfco o^i-HCNeO'^r' Q Q eo r- eo r xc 53 ^OOrCD^ego to * t*!!ri"i coeoeortco iotDt-ooc) 2 I rf "3 O *o eo i - -T i- rr-"d* > to t-tscoeooo -teNeOT to co t- oo as * csi-toco-H CN tO 0O r-> th" e o cor- oo as t- OS 04 tO 00 ft" iO cot-. 00 OS xt-.oeo iO t- CO CD CD CS* CO CD" OS* 51 54 CO CO r0 O c7)t-io55 OS r-i ^*" t- O CN CD* OS CN CD' -f iO ^pHtNC0^< tOCOt-COCft CO Q t- co t- e; X tO CO i to 1- CS c Ci 54 IO OS CN tC o co -o t- IQOSCNIQCQ r- t- oo 00 oo ftr-KNCO^* lOCClt-CSCj) ^t8-CtxSo Ci NoTOo esopr- ci cn ?, t- to 00^*P*. CDOS 1 2855 ^* X* 00 r* OS "* X* <-"' *f t.- 540404 tOCD t-00 OS o tot- oo as CNCO^ O tOt-00 CS 1CNS0-*" *OtOt-00CS 1 PRIMARY TRIANGULATION. e o '- coro to ao co .* o i cm eo Cr tO CO -* t- eo co os q* eo' os" xicf*.otVtc-oitirco--cOoCM^-Bh CO CO CO CO CO OQ.-HCNeO'* eo co co co co x I." -: i- or-o - 00 to i5 h ift it; !C t- X ? CD T- CM X S CM tO " CO CO CO CO CO Qr-ICMeO* CO eo eo co co co u- u: i- a ?. ?86 SgSS Nx,_OxXix_Jl, i,O-4 eo eo eo eo co t- to *< CM t- CO p- p- CM CM CM CN CM CM CM CM co co co eo eo i-lCMCO* 5 to os -t- * CO CO CO rf CM CM CM CM CM eo eo eo eo co locor-xe CM CM CM CM CM eo eo eo eo eo SrHCMCO* coeoeoeoeo lOCOt-XOS CI x oc *o CM CM CM CM CM Q<-> cmco* X gco r- eo > r io co r- co co cm O O lO 00 i Tf 00 -H ( co ao ao oo ao CM CM CM CM CM toest-aoa o eo io co o co r- ao f f - OS iO " o io t- eo to H*X-t CM CM -m CO CO oo oo ao oo oo CM CM CM CM CM Qt-tOjeo^< XCO * ,-_ [_ eO -*-* tO 00 00 00 00 do CM CM CM CM CM iO eot-ao o ? eo r- b ao to >o 5 r- CM .,.3 .,l0O0iXO0'-0Ot00ot0o0 CM CM CM CM CM Qr-ieMCO^i X ro0-0 vrX-trX-- xXonx00 CM CM CM CM CM >ONC0a) & CO "* u 5XXX CM CM CM CM CM Qr-ICMCO* X X m co i x o tm x o X CO -- oo CD eo co Oo eo' ' co" co' l-H C - : J". . T: T. CM CM CM CM CM o co t-x CO OS CO _, CM CM CM CM CM 5QrHCMCO-* X CM CM CM CM CM CM lacot-xio 5 S 8 co xt X io to t- CM CD 1 to cr. 1- H 8' pcjo r-* co O) t- _ .- . .* cm" of of 24 of CM CM CN CM CM O X CO t- CS 8! -8vr88to 8O CM CM CM CM CM Qr-teMCO^l I M D co co o 5 io to io CN CM CM CM CM IO tot- CO OS t- eo r- coiOco^H o >! eo 'J1 o x x -* cm cm to co co CM CD M M H CM CO o t- '." >~ >- CM CM CM CM CM (^r^CMCO^ vbape eo t- eo r- x o cd eo i-i o x i- cs 1 co 5S i- O CM iO CM t iO o Sti" t.~ i~ to CM CM CM CM CM ujcot-aos eo t- co J-. -: i- co i cm co SflCOnCOQXt'i-H nootph OS CM id x" CM i" i" '": i" " CM CM CM CM CM z- CMeO^t I x 5 - co r- r- co io * m c u: r- O CO OS t- O -t" r- CM "Q X IO* CM CO x x x t- r- o i." i.i i" ..- CM CM CM CM CM lOCDt-XOS x a> m x cocm X i-H "Sf t- OS CM CM CM CM CM 5rHeMeo-* CO CO tO CD CD CM"cM*ofc>fef ocot-xc K5 X CO CO 59tS9 xeo r- eo rto >o CO I CM CM CM CM CM c^i-HeMcO"* deMCMeMCM C C I- T. 7. CD o eo r~ oeo co jj6 eg & Q CO t CO CD OS ** CM CM CM CM CM QH CMCO-* CO CO X M t- *d /. /. i .". r. CM CM CM CM CM Q cor- cc os CO i X CD iO CC N 3 X x 1 Tt I - as c 21 CM CM CM CM CM CM QrHCMCO'* co t- eo Sn ti oo co CM CM CM CM CM eot-X OS CO as cm o x o CM CM CM CM CM XQr-lCMeO'*' CO 2-> CO t* t- iO CO feo to cm >* " " t-* eo' r~ "* ift iCS u2> CM CM CM CM CM CM CM CM CM CM X iO CD t- OS O8eicoOoOtc-lo-oOoe- eo t- eo to to co i- t- rCM CM CM CM CM CM CM CM CM CM a^rHCMCO'^ CO CM CM CM CM CM Q CD t-00 t o Oi CO iO ^C CM 00 X XS X X OOX CM CM 2-J CO CO CO CO CO *ot-x *0 10 X X X X CO O COt- X I it iO cot- CO O CM CM n- CM CM CM CO X Qi-HCMCO'** iC t- X 10 t- CO t-o iA CO i ' i-l CM CO * IO r- io eo >-< coosoiocc SBZXX co r co t- x io eo i-i x io r- X CM iO t~< iO to "O "O CD IQr* CM CO-* 10 o t- X 2 35 25 [- 2 r- o CoO HCMCO^ Ot-00 eo r- eo t- X CO tO CO i-" x to co t- as o i-- to co <-H eo cm /_/'' io i." c"o - i". i~ r'~ QrHCMeOT 4 ; r, I- /. :, f- CO X XX tcOOojM tO CM Tf CO CO CM tn-CQSXCCO CI iO ilsiso cm tji t- e rl CM CO T i X 9 l- X CO t- X CO gco r^ X t- tO CO X t- i ""* co t- eo f O iO co oo t CM i-> CO r- tO to iQ eo CM iO 00 i-l s < cm eo ^i tQcor-x t- en t- C to to co ; S co 35 1 CM O X r- t~ r- Qr* CM CO-* to CO IO co t- ec 8N*5XfBt--OStOrSCtO CO CD CO X X X X CO Qt-icMeo^ mto 82: ft X eo cs t eo CO X X X ao IO t-x X X x ds HCMeo* io CM cc lOt-CO CO C CM CM CM C. . a Qf CM CO* CD f t eo cm CO - to X tO eo t- tO t-x j CM iO }