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Abstract

This paper discusses the methods of flight simulation; specifically
real-time simulation of airplanes. The paper describes methods to
form a minimal, but complete, flight simulator. The simulator basi-
cally operates by solving the airplane’s equations of motion of the air-
plane in real time. The major part of solving the equations of motion
is determining the total force and moment on the airplane. There are
many ways to model aerodynamic forces. This paper describes three
general models: polynomial modeling, where each resultant force and
moment is expressed as a polynomial function; multipoint modeling,
where different parts of the aircraft are modeled separately; and tab-
ular modeling, where the forces and moments are looked up in tables.
The simulator must also calculate forces and moments produced by
the engine and landing gear. The simulator solves the equations of
motion in a real-time loop. In each loop, outputs the scenery based
on the state, inputs the control positions and settings, calculates the
state at the next time step, and finally pauses to synchronize the loop
to real time.
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1 Introduction

Airplane flight is expensive. For activities such as pilot training, flight re-
search, and recreation, flight simulation can provide a suitable, and less
expensive, alternative to real airplane flight.

For the flight simulator to be effective, it must convey some degree of
realism to the user. The simulator conveys realism in two ways: first, by
accurately modeling the behavior of the real airplane, and second, by re-
sembling, to some degree, the cockpit and surroundings of the airplane. In
today’s flight simulators, digital computers handle the task of determining
the aircraft’s motion, while various hardware imitates the environment of
the cockpit.

This paper describes methods in implementing a basic flight simulator.
The paper tries not to present a detailed analysis of a specific example, nor
to be a tutorial on implementing a flight simulator. Rather, its purpose is to
describe the mentality of flight simulation, which is often different from the
mentality of related fields such as stability and control. This paper takes a
broad look at simulation, often exploring different ways for a simulator to
accomplish a given task.

The methods presented in this paper are mostly applicable to propeller-
driven, subsonic airplanes. Most of the equations and methods described
in this paper can be used, with straightforward modifications, for any rigid
airplane. However, the equations require extensive modification to model
flight vehicles other than airplanes, or airplanes with elastic modes, be-
cause many of the assumptions made about the aircraft are no longer valid.

The rest of the introduction describes the virtual world of the flight sim-
ulator, and how it represents the airplane and its environment internally.

1.1 The Environment

One cannot simulate an airplane without modeling the environment through
which it flies, that is, the Earth and the atmosphere.

1.1.1 Earth-Fixed Coordinate Systems

From our human perspective, we define location relative to the Earth.
Therefore, in a flight simulator, the location of the airplane and every other
object is specified relative (directly or indirectly) to a coordinate system
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fixed to the Earth. The following paragraphs describe various Earth-fixed
coordinate systems.

Geocentric Cartesian Coordinates. Geocentric Cartesian coordinates are
fixed to the rotating Earth, originating from the Earth’s center. The z-axis
points through the geographic North Pole (and coincides with the Earth’s
axis of rotation). The z-axis points through the intersection of Equator
and Prime Meridian (0° longitude by 0° latitude). The y-axis completes the
right-handed system.

Geocentric Spherical Coordinates. Because the Earth is spherical, it makes
sense to define spherical coordinates for the Earth. The spherical coordi-
nates (r, 0, ¢') are radius from Earth’s center, longitude, and geocentric lat-
itude, respectively. The range of # is —180° to 180°, while the range of ¢ is
—90° to 90°.

The relation between geocentric spherical and geocentric Cartesian co-
ordinates is:

x = rcosfsin ¢’ y = rsinf sin ¢’ z=rcosq (1)

Geodetic Coordinates. Spherical coordinates can be inconvenient for two
reasons. First, the geocentric latitude, ¢/, is not exactly the same as the ge-
ographic latitude used in navigation. This is because the Earth is actually
an oblate spheroid, slightly flattened at the poles. And second, radius from
the Earth’s center is an unwieldy coordinate.

Geodetic coordinates are often more convenient than spherical coordi-
nates. In the geodetic coordinate system, the coordinates (h, 0, ¢) are alti-
tude, longitude, and latitude. The geodetic latitude and longitude are the
same latitude and longitude used in navigation and on maps. The geodetic
and geocentric longitudes are the same.

The transformations to and from geodetic coordinates are complex. Ref-
erence 1 (pp. 809-810) gives formulas for the transformation from geodetic
to geocentric coordinates. The opposite transformation, from geocentric to
geodetic coordinates, is very tricky, as it requires the solution of a quartic
equation and selection of the proper root. References 2 and 3 give closed-
form formulas for this transformation.
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Because of the complexity in transforming to and from geodetic coor-
dinates, a flight simulator usually does not use geodetic coordinates inter-
nally. Rather, it uses geodetic coordinates only for input and output, and
uses a geocentric system internally.

Flat-Earth Coordinates. In many flight simulators, global navigation is
not important. For example, the range of flight could be limited to a small
area, or the simulator might not care about the airplane’s location.

In such cases, it is appropriate to model the Earth as a plane half-space
rather than an oblate spheroid. Then, the simulator need not worry about
how the local horizontal plane changes as the airplane flies around the
Earth. This simplifies the bookkeeping in the simulator considerably.

The flat-Earth coordinate system is a Cartesian system, which originates
at the surface. The z-axis points vertically down, the z-axis points north,
and the y-axis points east.

1.1.2 Atmospheric Modeling

Obviously, the local atmospheric conditions affect the airplane. Air density
and the wind speed are the most important conditions. Other conditions,
such as pressure and temperature, affect some of the instruments.

The Standard Atmosphere model* gives the average temperature, pres-
sure, and density (over time) at any point in the atmosphere, as a function
of altitude. For altitudes less than 36000 ft, the average temperature as a
function of altitude (which is an empirical formula) is:

T = 518.69°R — (0.003566 °R/ft)h )
5.262
p = (2116. -
P = (21168 psi) (518.69°R> (3)
—
P=pT 4)

Equations 2-4 only give the average conditions at a point in the atmo-
sphere, hence the overbars. Depending on the weather, the temperature
and pressure could be much higher or lower than the average. Many flight
simulators have meteorological models to simulate these fluctuations.

Unlike density, there is no standard model for wind; it is (almost) en-
tirely dependent on the weather. Again, a meteorological model can be
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used. In the absence of a meteorological model, the user could simply in-
put a velocity vector for the wind he or she wants to fly in (this could be
useful to practice landing in a crosswind, for instance).

Some types of wind are easily predictable and not much dependent on
the weather. For example, thermal updrafts and downdrafts occur over
specific locations at specific times of day.

1.2 The Airplane

This paper treats the airplane as a symmetric, rigid body. The simulator
calculates its motion by solving the rigid-body equations of motion.

1.2.1 Airplane-Centered Coordinate Systems

Airplane-centered coordinate systems originate at a fixed point in the vehi-
cle, called the reference point. The choice of the reference point is arbitrary,
but it must be fixed point. In particular, the center of gravity (CG) cannot
be the reference point because, over time, the CG does change in an air-
plane. Instead, a point such as the leading edge of the root chord, the tip
of the nose, or the aerodynamic center of the wings serves as a reference
point.

Body Axes. Body axes are fixed with respect to the airplane. If the air-
plane moves, the body axes move with it.

The orientation of the body axes with respect to the vehicle frame is
arbitrary. However, by convention, the z-axis points towards the front of
the airplane, the y-axis points to the right, and the z-axis points to the
bottom.

A special case of body axes is when they coincide with the vehicle’s prin-
cipal axes. This simplifies the equations of motion, because the airplane’s
products of inertia become zero. In most aircraft, the z-z-plane is a plane of
symmetry, and so the y-axis is automatically a principal axis. While many
simulators align the z- and z-axes with principal axes, some do not due to
practical considerations. In many cases, it is simpler to make the z-axis
parallel the horizontal reference axis from the blueprints, or some other
line.
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The z-z-plane in body axes is called the reference plane. This plane is
useful for defining other vehicle coordinate systems.

Wind Axes. In wind axes, the x-axis directly points into the relative wind.
The z-axis remains in the reference plane, but rotates so that it remains
perpendicular to the z-axis. The y-axis completes the right-handed system.

The transformation from body to wind axes consists of two rotations.
First the body axes are rotated about the y-axis through the angle of attack
a; the axes are then rotated about the z-axis through the angle of sideslip
(3, yielding the wind axes. The angle of attack and the angle of sideslip are
defined respectively by

tan ™! (wg/u,) (5)
sin™! (v, /V) (6)

«

g

The main reason for the wind axis system is that it is more convenient
for calculating aerodynamic forces. For instance, lift is, by definition, per-
pendicular to the relative wind, while drag is parallel. With wind axes,
both lift and drag resolve into a force parallel to one of the axes.

1.2.2 The Local Coordinate System.

Humans tend to think of an airplane’s orientation relative to the horizon-
tal, and instruments such as the artificial horizon bear this out. In addition,
many calculations (for example, gravity force) require the airplane’s orien-
tation relative to the local horizontal plane. There is not, however, much
direct physical meaning to the aircraft’s orientation relative to geocentric
axes.

Therefore, the simulator specifies the aircraft’s orientation relative to
an intermediate axis system, rather than directly to geocentric axes. This
intermediate system is referred to as the local axis system, sometimes called
the local horizontal axis system. In local axes, the z-axis always points
vertically down, while the z- and y-axes are always aligned with the local
horizontal plane. Usually, the z-axis points north and the y-axis points east,
but in some cases (such as near the poles) it may be convenient to have the
x- and y-axes point in other directions.

Generally, it doesn’t matter where the local axes originate, so long as the
x-y-plane is parallel to the local horizontal plane. The local axes could be
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centered at the airplane’s CG. They could originate directly below the air-
plane, at sea level. They could originate at a fixed point on the Earth’s sur-
face, close to where the airplane is flying. If the simulator uses a flat-Earth
model, then the flat-Earth coordinate system serves as the local system.

Once the local reference frame is defined, the orientation of the airplane
is given by the orientation of body axes relative to the local axes. The rela-
tive orientation is specified by a direction cosine matrix, whose components
are the cosines of the angles between the respective body and local axes.
The airplane’s direction cosine matrix can transform a vector from the body
reference frame to the local reference frame by premultiplying it. (Some
references define the cosine matrix to do the opposite: to transform vectors
from the local frame into the body frame. The orthogonality property of the
cosine matrix, [C]~! = [C]?, obviates the need to invert the cosine matrix,
and so it does not matter which definition is used.)

Due to its orthogonality condition, the direction cosine matrix can be
represented in general by three independent quantities. Euler angles and
quarternions are two common ways to represent orientation. Flight simu-
lators prefer Euler angles and quarternions over the direction cosine matrix
for storing aircraft orientation, because there are fewer quantities to keep
track of, and fewer constraints to satisfy.

1.2.3 State Variables

To represent the airplane at a point in time, the flight simulator uses a set
of state variables. The state variables completely determine the state of the
airplane. The flight simulator simulates the airplane’s motion by calculating
the time derivatives of the state variables, using the equations of motion.
Using the time derivatives, it numerically integrates the state variables in
real time.

The airplane exists in three dimensions; thus three state variables (z., v, 2.
in a Cartesian system) determine the position of the CG, relative to a local
or Earth-fixed coordinate system.

Three Euler angles (®, 0, V) or four quarternions (e, e1, €2, €3) deter-
mine the airplane’s orientation relative to local axes; these are state vari-
ables.

In dynamics, the velocity (linear and angular) of a body is part of
the state as well. Thus, the three components of linear velocity in body
axes (u,v,w), and the three components of angular velocity in body axes
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(p, q,r), are state variables.

There are other state variables, as well. The mass of the airplane affects
its dynamics, and the mass does change as the fuel burns. Thus, the mass
of the fuel in the tanks in a state variable. The engine speed and manifold
pressure are state variables. Additionally, other state variables can emerge
as the complexity of the airplane model increases.

1.2.4 Control Variables

Control variables serve as the inputs to the simulator. The user has more
or less complete control over the values; the simulator sets these variables
based on input from the user. For example, if a control stick is attached to
the simulator, the simulator sets the elevator deflection variable to corre-
spond to the stick’s position.

The basic airplane control variables include the aerodynamic surface
deflections (elevator, ailerons, rudder, and flaps), and the engine controls
(throttle, blade pitch, mixture). Other control variables include the brake
pressure, trim tab deflections, the position of the landing gears (retracted,
extended, or in transition), whether carburetor heat is on, etc. There are
far too many to list.

Even some values which are not normally considered to be controls
can be control variables. For example, payload mass is a variable directly
controlled by the user, and so the flight simulator considers it a control
variable.

Note that there is no requirement that a particular variable be of a cer-
tain type. A quantity could be a control variable in one flight simulator,
and a state variable in another. For example, a flight simulator could treat
force on the control stick as the control variable, with the control surface
deflections being state variables. (This is a convenient way to model stick-
free flight.) Some engines have governors on them the fix the RPM; in this
case, the RPM is a control variable while the blade pitch is a state variable.

Other variables. The state and control variables are sometimes inconve-
nient to use directly in calculations. For example, aerodynamic forces are
more directly expressed as a function of the angle of attack « than of the
state variables u and v. Variables such as « are neither state nor control
variables, but are calculated as closed functions of the state and control
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variables each time step.

1.3 Coordinate Transformations

Because of the many coordinate systems used in the flight simulator, the
simulator makes extensive use of coordinate transformations. Most coordi-
nate systems in the simulator are Cartesian, so that the transformation is
linear.

(A word on notation: this paper indicates which coordinate system a
component belongs to by a superscript. For example, the velocity com-
ponents of the airplane in body axes are u” v®,w”. In local axes, the
components are u”, v’ w”¢. The superscript is not used where there is no
confusion about what coordinate system a quantity belongs to.)

To transform a velocity, or some other vector quantity, from one coor-
dinate system to another, only a rotation is required. For example, the
transformation of the wind velocity vector from local axes to body axes is
simply:

a? =[O u* (7)
where @ = [u v w]T.

Transforming points requires a rotation and translation. Transforming
points between body and local axes has an additional complication as well.
The body axes originate from the reference point of the airplane; however,
because of dynamic considerations, the airplane’s location is specified by
the coordinates of its CG. This requires an additional translation from the
CG to the reference point. The transformation of a point from body to local
coordinates is:

it = [0)(zP — 7P) 4 2~ (8)
where # = [ x y z |7 is the point in question, and 7, is the coordinates of
the CG in the indicated coordinate system. The opposite transformation is:

P =[O (7" — z) + 2P ©))
2 Airplane Dynamics
“Flight dynamics courses are exiting to the student and to the teacher, ex-
cept for the initial portion where the equations of motion are derived.”

-S. Pradeep’®
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Many references derive the equations of motion for a rigid airplane 578,
This paper will not duplicate the derivation.

The flight simulator ultimately uses the equations of motion to calculate
the time derivatives of the state variables. As such, this paper presents the
equations in state variable form, where the equations are solved for the
time derivatives.

2.1 Dynamic Equations

The dynamic equations derive from Newton’s Second Law, F = md and the
analogous equation for angular motion. Resolving these equations along
body axes, and including terms to account for centrifugal forces due to the
rotating body reference frame, yields the dynamic equations of motion. For
a symmetric airplane (I, = [,, = 0), the dynamic equations are given by
Equations 10-15.

U = rv—quw+ X/m (10)
v = pw—ru+Y/m (1D

w o= qu—pv+Z/m 12)
. I. L'+ I,;N'

. M_ [:Ea:_[zz +[xz 2 —r?
i = ( )rp + Loz (p” = 17) 14)

vy

. L.L'+ I, N
ro= T I 2 (15)

Tz

The L’ and N’ from Equations 13 and 15 are given by:

L/ = L— (Izz - [yy)qr - Izzpq
N, = N-— (Iyy - ]xx)pq - ];Equ

Equations 10-15 introduce forces and moments (X, Y, Z, L, M, N). Be-
cause of these terms, the simulator must calculate the resultant force and
moment on the airplane before it can calculate the time derivatives.
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2.2 Kinematic Equations

The kinematic equations relate the velocities (angular and linear) of the
airplane to the time derivatives of the position and orientation.

2.2.1 Euler Angles

The orientation of an airplane, relative to local axes, can be specified by the
three sequential rotations about the body axes. Starting with the body axes
aligned with the local axes, the first rotation is about the z-axis through
an angle VU, followed by a rotation about the y-axis through an angle O,
followed by a rotation about the x-axis through an angle ®. These angles
of rotation are the Euler angles, and can represent any possible orientation
of the airplane.

Equation 16 lists the airplane’s direction cosine matrix constructed from
the Euler angles.

cos®cosV sinPsin®cos¥ —cosPsinV  cosPsin® cos VU + sin ®sin ¥

[C]= | cosOsinV¥ sin®sinOsin ¥+ cosPcos¥ cosPsinOsin ¥ — sin P cos U
—sin© sin ® cos © cos ® cos O
(16)

Equations 17-19 represent the kinematic equations for the Euler angles,
relating the Euler angle time derivatives to the angular velocity.

d = p+gsin®tan© + rcos P tan © (17)
© = gcos® —rsind (18)
¥ = gsin®secO® + 7 cos Psec © (19)

2.2.2 Quarternions

Euler angles have two disadvantages. First, the Euler angle equations con-
tain many trigonometric functions. Trigonometric functions are very slow
compared to basic arithmetic operations such as addition and multiplica-
tion. For computational efficiency, it is almost always better to choose a
method using only simple arithmetic operations.

The more important disadvantage is the numerical singularity appear-
ing in Equations 17 and 19 when©® = 490°, that is, when the airplane’s
nose points straight up or down. While not a problem in normal, level
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flight, the singularity can present numerical problems when the airplane
performs maneuvers such as loops.

Replacing the three Euler angles with four quarternions alleviates both
difficulties. Because only three parameters define any possible rotation, the
quarternions need a constraint so that there are only three independent
variables. This constraint is:

eo+el+es+es=1 (20)

One nice feature of quarternions is that numerical integration of their
time derivatives tends not to destroy the constraint. Thus, a flight simulator
only needs to normalize the quarternions occasionally. With high enough
numerical precision, it may not ever have to normalize them.

The direction cosine matrix for the airplane, constructed from the four
quarternions, is given by Equation 21°.

e2+e? —ex—e2  2(eien + eges) 2(ere3 — eges)
[Cl=| 2(ereq—ege3) €2—e?+e2—e2  2(eres + eper) (21)
2(erez + eges) 2(ege3 —ege1) €3 — el — e+ el

The kinematic equations for the quarternions are given by Equations 22-
259,

éo = —y(ep+eaq+esr) (22)
&1 = 3(eop —esq+ ear) (23)
é2 = 3(esp+eoq—err) (24)
és = (—ewp+eiq+eor (25)

Quarternions are more computationally efficient than Euler angles, and
do not exhibit singularities. Furthermore, the kinematic equations using
quarternions are hardly more complex then the corresponding equations
using Euler angles; some might say that the quarternion equations are sim-
pler. In fact, the only drawback to using quarternions is that they have no
useful physical meaning.

In practice, this is not a serious drawback. Only a human can bene-
fit from the direct physical meaningfulness of the Euler angles. Humans
can use Euler angles to visualize an aircraft’s orientation, but computers
determine the orientation by mathematical computation. Thus, it is only
important to use Euler angles when transferring information to and from
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a human, i.e., for input and output. It is not important at all to use Euler
angles internally.

When a simulator using quarternions inputs the initial orientation of
an airplane as Euler angles, it must convert them to quarternions. Equa-
tions 26-29 give the formulas for this®.

€y = COs % cos % cos % + sin % sin % sin % (26)

er = cosycos9sin? —sin¥sincos? (27)

e; = sin¥cos9sin?2 + cos Lsin g cos 2 (28)
S = SN N Y-

e3 = sin3 cos s cos — cos 5 sin g sin g (29)

The reverse process, obtaining the Euler angles from quarternions, is
done indirectly, after calculating the cosine matrix. By inspection of Equa-
tion 16, the following relations yield the Euler angles:

o = tan_l(ng/ng) (30)
0 = sin_l(—Cgl) (31)
U = tan71<021/011) (32)

One reason for the simulator to calculate the Euler angles is to display the
instruments properly. For example, the heading indicator requires the value
of W.

2.2.3 Position

The time derivative of the position is simply the velocity, rotated into the
coordinate system of the position variables. For simulators that store the
aircraft’s CG position in local coordinates, the kinematic equations for po-
sition are:

t. = Cru+ Civ+ Cizw (33)
yc = 021u + CQQU + 02311) (34)
ZC = Cglu + CgQ’U + ngw (35)

Simulators that store position in a Cartesian coordinate system other than
local coordinates substitute components of the appropriate rotation matrix
into Equations 33-35.
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Simulators that store aircraft position in geocentric spherical coordi-
nates can calculate the spherical coordinate time derivatives using the us-
ing the local coordinate time derivatives as intermediate variables'’:

o= —3F (36)
H = yL /(rcos @) (37)
o = it/r (38)

2.3 Forces and Moments

The equations of motion have reduced the solution of aircraft motion from
determining the time derivatives of the state variables to determining the
resultant forces and moments on the aircraft. The external forces and mo-
ments on the aircraft come from four general sources: aerodynamic force,
propulsive force, force on the landing gear, and body forces (mostly grav-
ity). The simulator calculates these separately and then adds them together.
For example, the force in the x-direction is given by:

X=Xa+Xp+Xg+ X5 (39)

There are other minor sources of forces and moments, such as internal
damping, but this paper does not consider them.

Of the different types of force, calculation of body forces is the most
straightforward. The most important body force in flight simulation is grav-
ity. Gravity acts parallel to the local z-axis. Thus, the components of gravity
force along body axes is the component in the local z-direction are:

Xp = mgCs = —mgsin© (40)
Y = mgCss = mgcos©Osin® 41)
Zg = mgCss = mgcos© cosd (42)

There are no body moments.

Another body force on the airplane is the Coriolis force due to the
Earth’s rotation. This force is important for high-speed, high-altitude flight,
but is not that important for low-altitude, low-speed flight.

Calculation of the other types of force is difficult. The following two
sections describe in detail the calculation of these forces.
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3 Airplane Aerodynamic Modeling

Precise modeling the aerodynamic forces is very difficult indeed. Aerody-
namic forces and moments are complex functions of the airplane’s state
and control variables, and the local environment. The important state and
control variables are the airspeed along body axes (u,, v,,w,), the angular
velocity components (p, ¢, 7), and the control deflections (d,, d., 6., d, etc.).
Aerodynamic interactions between different components of the airplane
(wing and stabilizer, for example) can complicate the relationships. Exter-
nal interactions such as ground effect complicate these relationships even
more.

There are many models for the aerodynamic forces and moments. Most
aerodynamic models are accurate only in a restricted domain. The very
simplest models, for example, are accurate only near a certain trim condi-
tion. More sophisticated models are accurate for normal flight conditions,
but not for post-stall situations or other unusual situations. Very detailed
simulations can be accurate for almost the entire flight envelope.

The rest of this section describes three general models: polynomial
models, multipoint models, and tabular models.

3.1 Polynomial Models

Polynomial models represent the resultant aerodynamic forces and mo-
ments at the CG as polynomial functions of state variables and control vari-
ables, or values derived from these. The coefficients of the polynomials are
constant parameters, defined to fit the aerodynamics as closely as possible
for the flight conditions of significance. The polynomials can have terms in
more than one variable.

One of the amazing things about airplane aerodynamics is that, for all
of its inherent complexity, a mostly linear polynomial model can be fairly
accurate for a wide range of flight conditions. Certain phenomena cause
the relative linearity of the airplane to break down; accurate prediction of
aerodynamic forces and moments in these situations require a higher-order
model. The two most important phenomena that require the higher-order
models are stall (high angles of attack) and drag divergence (high Mach
numbers). But in flight regimes not involving stall or drag divergence, a
mostly linear model can be quite accurate.
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In order for a polynomial model to work well, it must do three things.
First, the model must calculate aerodynamic moments about the reference
point (or some other convenient fixed point). Calculating the moment
about the non-fixed CG requires the polynomial model to incorporate CG
location as a variable, an unnecessary complication. After the moments
about the fixed point have been calculated, the moments are transfered to
the CG for use in the equations of motion.

Second, the model must calculate forces and moments in wind axes.
After the forces are determined in wind axes, they are rotated to body axes
using Equation 43.

X% cosf@sina —sinfsina —sina XV
Yi | = sin 3 cos 3 0 YX/ (43)
7B cosffcosa —cosfsina  cosa zv

Moments are transformed similarly.
Third, the model must use nondimensionalized forces and moments.

3.1.1 Nondimensionalization

Nondimensionalization reduces the dependence of all aerodynamic forces
and moments on density and airspeed to a simple factor. Without nondi-
mensionalization, almost every term in the polynomial equations would
include V and p as variables.

The nondimensional forces and moments are defined by Equations 44-
49.

Cx = X/(5pV?S) (44)
Cy = Y /(3pV29) (45)
Cy = Z](3pV?5) (46)
Cr = L/(3pV2Sb) (47)
Cu = M/(3pV2Sc) (48)
Cn = N/ (3pV25b) (49)

The angle of attack and angle of sideslip, defined by Equations 5 and
6, are the nondimensional replacements for the dimensional wind-relative
velocity components (ug, Vg, Wy).
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Equations 50-52 define nondimensional angular speeds.

p = pb/V (50)
7 = qc/V (51)
7 rb/V (52)

Unfortunately, there is not a standard definition of nondimensional angular
speeds. Some references define the nondimensional speeds with a 2 in the
denominator.

One other nondimensional parameter is defined analogously to the nondi-
mensional angular speeds. &, the time derivative of a, is used to account
for the effect of downwash lag. Its nondimensional form is:

a = aclV (53)

The control deflections, which are angles, are already nondimensional.

3.1.2 Basic Polynomial Model

Aerodynamic models rely on wind tunnel and flight test data for their accu-
racy. However, many references list formulas for estimating stability deriva-
tives based on geometry and mass properties alone 71!, These stability
derivatives can serve as the coefficients in a basic polynomial model.

Many stability derivatives are constant for any trim point or transient
point of significance. The polynomial model does not require higher-order
terms to represent such relationships. However, some stability derivatives
(for example, Cx_ ) vary with flight condition. The model requires higher-
order terms to account for the variation.

Obviously, not all forces depend on all variables. Linear stability analysis
decouples longitudinal motion from lateral-directional motion. Many of
these coupled terms are not needed. However, in flight simulation, there
are some coupled terms. Some of these terms, such as Cx, 3 and Cx; 6,
are fairly significant terms that stability analysis neglects to decouple the
motions. Other terms, such as Cy; d,, depend on the lift coefficient, which
is considered constant in stability analysis. The equivalent term in flight
simulation is a mixed coupled term: Cy;, o, 0,C7.

There are several nonlinear terms. Arguably, the most important re-
lationship is C'; versus «. While this relationship is linear for low angles
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of attack, the onset of stall destroys this linearity. Modeling stall requires
higher order terms; probably at least fifth-order for a close match. The
relationship between C), and « is also nonlinear beyond stall; if the flight
simulator models C; beyond stall, it should model C'; beyond stall also.
(Other relationships may lose their linearity beyond stall also; however, it is
not considered worthwhile to model these in a simple polynomial model.)

Another nonlinear relationship is C'x versus «. Basic airplane perfor-
mance calculations treat this relationship as quadratic, which is sufficient
for a polynomial model, also.

Equations 54-59 present a basic polynomial model, with some nonlinear
terms.

Cz; = Oz +0z a0+ C'ZQQ o + 0203043 + CZQ4 ot + CZQE, a’ (54)
+C7,q+ Cz; 0c + Czéf oy

CX = CXO + Cxaa + CXaz 042 + Cxﬁﬂ -+ CXﬁQ ﬁQ (55)
+Clx, 05 + Cix,, 8 + iy 30

Cy = CMO +C’Maoz+CMa2a2+C’Ma3a3+C'Ma4a4+C’M&5a5 (56)
+C,0 + Crty & + Oy, e + Chy Oy

Cy = Oy, + Cyﬁﬁ +Cy. T+ OY(;T Oy (57)

Cr = CLO + CL@ﬁ + CLTF + CLTCZFOZ + CLpﬁ (58)
+CL5T 57“ + CLga 5(1

Cn = OCn,+ CNﬁﬂ +CN, T+ ONPCZT?CZ (59)

+Cny 0 + Oy, 0aCz

This model’s domain of accuracy extends through angles of attack sev-
eral degrees beyond stall. Beyond this, the accuracy diminishes rapidly.
This model is accurate for moderate values of sideslip, angular velocity,
and control deflection. This model doesn’t consider the effects of Reynolds
number on drag or maximum lift, nor does it consider compressibility ef-
fects. In short, the model’s accuracy is quite limited. Even so, a low-speed,
subsonic airplane will spend most of its flying time within this model’s do-
main of accuracy.

The major benefit of the basic model is that its coefficients are simple
to calculate. Most coefficients stem from basic stability and performance
equations, while a simple polynomial curve fit determines the higher order
terms in Equations 54 and 56.
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3.1.3 Compressibility Correction

The polynomial model described above is valid only for Mach numbers be-
low about 0.3. Compressibility effects become important above Mach 0.3.
For subsonic flight, before the onset of drag divergence at about Mach 0.7,
a simple correction is to divide each force coefficient by a compressibil-
ity correction factor 3. For example, the equation to correct C'; is Oy =
CZ,incomp./ﬁ'
The simplest correction is the Prandtl-Glauert factor (Reference 7, p. 212):

5= VI—IP (60)

This relation is derived for isentropic flow. Most of the time, this is a rea-
sonable assumption, as the flow around the streamlined aircraft is mostly
isentropic. However, in conditions where isotropy is dubious (such as ad-
vanced stall, where there is substantial separation, and drag divergence,
when shock waves appear), the correction is not valid.

3.1.4 More Complex Polynomial Models

The basic model described above has two restrictions. First, its domain of
accuracy is small; it cannot correctly model flight conditions such as ad-
vanced stall and spins. Second, the basic model cannot simulate the many
subtle effects (for example, how C7; changes with angle of attack), because
there are no terms to account for such effects. These subtle effects are small
compared to lift versus angle of attack, and are not easy to calculate, and
so they are not used in the basic model. However, these effects are real,
and not accounting for them limits the maximum accuracy of the model.

The obvious solution to these problems is to use more terms in the poly-
nomials. More terms can make the model more accurate, as well as increase
its domain of accuracy. Unfortunately, as more terms are added, it becomes
increasingly difficult to calculate the coefficients. Therefore, complex poly-
nomial models use numerical methods of parameter fitting to determine
the coefficients. The parameter fitting methods rely on test data (either
from flight tests or wind tunnel tests).

However, before parameter fitting, one must choose which parameters
are needed. One possibility is to use brute force; simply choosing any de-
sired polynomial terms, and letting the optimizer decide whether there is
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any relationship of significance. This method is problematic for two rea-
sons. First, the memory and computer time required for this is very large.
Second, as the degree of the polynomials increase, it becomes increasingly
likely that two terms may be nearly linearly dependent with the given test
data'?. This creates an ill-conditioned problem.

Reference 12 presents a method to determine a set of terms that are
not linearly dependent. It derives a method of selecting terms that are
orthogonal to each other based on the given data set. (Suppose there are N
data points, with each data point listing the force I’ and the state variables
a,b,c,...at some point in time. Two terms P;(a,b,c¢,...) and P(a,b,c,...)
are orthogonal if

N
Z (Fn - Pl(a/na bnacTH .. ))(Fn - PQ(an7bn7C7l7 ce )) - 07
n=1

where the subscript n indicates the nth data point.) The method pre-
sented in Reference 12 does not yield polynomial terms; however, a well-
conditioned polynomial can be derived from the orthogonal terms.

3.1.5 Ground Effect

One major factor affecting the aerodynamics is ground effect. There are
two approaches to capture this effect.

One approach is to incorporate distance from the ground as a variable
in the polynomials. For example, let £ be some nondimensional parameter
representing the distance from the ground. This parameter might be de-
fined as & = b/h, where b is the wingspan and h is the distance from the
wing root chord to the ground. (The reason that 4 is in the denominator is
so £ can go to zero far from the ground.)

Then, to capture ground effects, there could be terms such as C, and
CLe,&®. The latter term introduces something that is not seen outside of
ground effect. Typically, the aerodynamic force and moment depends only
on wind-relative speed; however, in ground effect the force depends on
orientation as well, hence the Euler angle . (To be more exact, it depends
on orientation relative to the ground. Thus, the Euler angle & could not be
used to simulate landing on surface that is not level.)

The other approach to ground effect is to use corrections. Reference 7
(pages 359-360) lists empirical corrections to lift and drag in ground effect.
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These corrections are not as accurate as incorporating ground distance into
the polynomials; however, they are useful for basic, hand-calculated mod-
els.

3.1.6 Domain of Accuracy Checking

Every polynomial model has a domain in which it is accurate. (The domain
of accuracy could be the set of possible flight conditions, but probably is
not.) Because polynomials generally approach infinity, the model can yield
ridiculous values for the force and moment coefficients when outside its
domain of accuracy. It is therefore important to detect when the aircraft
exceeds the model’s domain of accuracy, especially with variables involved
in high-order terms.

Depending on its purpose, the simulator may choose to abort or reset
the simulation, informing the user that the airplane encountered a flight
condition that the simulator could not handle. Or, the simulator could
choose to use reasonable values for the force and moment coefficients, per-
haps by setting them to an upper or lower bound, or perhaps by setting
them to zero.

Flight conditions outside of the domain of accuracy often happen unex-
pectedly. For example, suppose an airplane is sitting on a runway, heading
north, while a breeze crosses the airplane in a direction one degree north
of east. Relative to the wind, the airplane’s angle of sideslip is 89°. Because
of terms such as C; ;3 and Cy, 3, large forces and moments can result from
this small breeze, especially when 3 appears in higher powers.

3.2 Multipoint Models

The polynomial models described above, as well as many other models, are
single point models. Such models treat the aerodynamic forces and mo-
ments as point forces and moments acting through the reference point of
the airplane. However, there are situations where it is useful to model dis-
tributed aerodynamic forces, because of the radical difference in conditions
that appear in different parts of the aircraft in certain flight conditions. This
can have drastic effects on the resultant aerodynamic force and moment. A
spin is a good example of a flight condition where this occurs; among other
things, the outer wingtip has a significantly higher airspeed than the inner
wingtip due to the high yaw rate.
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Because of their complexity, capturing these effects using a single point
model is tricky. It can be done using enough terms. However, it is often to
better to model phenomena as they really are. That is, if local variations in
force cause complex behavior, it makes sense to consider these local varia-
tions, rather than to force single-point polynomials to model their effects.

A simple multipoint approach is to use a separate polynomial model for
each lifting surface. Thus, the individual aerodynamic force and moment
on the wing, horizontal tail, vertical tail, and fuselage is summed to yield
the total aerodynamic force and moment. A slightly more complex model
considers the left and right halves of each lifting surface separately. A still
more complex model separates each lifting surface, and the fuselage, into
lengthwise panels, calculating the force and moment produced by each
panel. For example, the wing may consist of eight panels, the horizontal
tail four, the vertical tail two, and the fuselage six.

The logical extreme of the multipoint model is to consider infinitely thin
panels. This can be done using strip theory !3!4 where the resulting force
on a lifting surface is the integral of force per unit length along the span.
The force can be evaluated analytically by expressing the components of
the integral as Taylor-expanded polynomials. For example, the lift of the
right half of the wing could be represented by Equation 61:

b/2
Z = /O c(a(y)) qly) c dy (61)
where
dq dQQ 2
qy) = q0)+ — y+7 y
W = a0+ v
aly) = oz—l—dﬂ +1£ 2
vro= dy :Oy 2 dy? Oy

c.(a) = Co+Cra+Cha® + ...

Note that ¢(y) and «a(y), and therefore the Taylor expanded coefficients,
can be determined from the airplane’s velocity and angular velocity. The
parameters cj, ¢y, etc., are unknown parameters. Integrating Equation 61,
and rearranging, the equation for for Z-force becomes:

Z = Coko + Ciky + Cokoy + ... (62)
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where kg, ki, ko, ... are functions of «(0), ¢(0), and their derivatives at
y = 0. Then, using flight test or wind tunnel data, a numerical optimizer
can determine values for Cy, C}, etc. Reference 14 reports that the aero-
dynamics forces in a spin are modeled very well by this model, even when
simulating one type of spin with a model with parameters identified using
data from a different type of spin.

One problem with multipoint models is that they usually have a large
number of parameters. The large number of parameters can lead to an ill-
conditioned problem, very similar to the ill-conditioned problem of single-
point polynomial models, making numerical parameter identification diffi-
cult. A possible remedy for this is to collect data on the distributed force,
rather than just the resultant force.

3.3 Tabular Data Models

Often, it is not worth it to try to find a closed function modeling the aerody-
namics. In such cases, the the simulator can obtain the forces and moments
from a tabular data obtained from flight or wind tunnel tests.

Table 1 lists a simple example of a table. The table lists a drag polar
typical of a wing with a laminar flow airfoil. To determine the drag, the
simulator determines which two points in the table the angle of attack is
between, and then calculates the drag by linear interpolation. To speed
up the interpolation, the slope of each segment is often precomputed and
stored in the table as well '°.

Aerodynamic force is generally a function of more the one variable;
therefore, flight simulators use multidimensional tables. Theoretically, the
table could have a dimension for each variable the force coefficient is a
function of. For example, C; may be expressed as

C(]\4 = CM[Q7B75675f767 ML (63)

where the square bracket notation indicates a tabulated function. However,
the memory and testing time required for a table with many dimensions is
extremely large. (If each variable of the table in Equation 63 takes on 20
different values, which is a typical number, then the table will have 64
million data points.)

Fortunately, the effects of some variables are not influenced, or are in-
fluenced only weakly, by other variables. For example, the effect of §; on
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Table 1: Sample table of C'y versus «, with plot.

nnnnnnnnn

(0 CX
(deg)

-10 -0.0134
-8 -0.0108
-6 -0.0094
-4 -0.0082
-2 -0.0072
0 -0.0052
2 -0.0053
4 -0.0055
6 -0.0116
8 -0.0175
10 -0.0230

-.004

———————

———————

——————

——————

31



pitching moment is not influenced by g, and vice versa. Thus, J; and g
never need to appear in the same table. This allows the large table to be
broken into several smaller tables, each limited to three or four dimensions.
The tabular model sums the contributions from each table.

A tabular aerodynamic model has been used to simulate an F/A-18'°.
Equation 64 presents an example of an extremely simplified version of the
model for the yawing moment:

Cy = OnlB,a,M] + CN5f 3, a, M] (gg) + C, (8, a, M] (gg)

+ACN6a [5(17 Q, M] + ACN(ST [57,, «, M] + CNp [Oé, M}T? -+ CN,« [Oé, l\@ﬁ)

The main problem with tabular models is the lack of smoothness. For
example, the Cx curve from Table 1 is nondifferentiable at the tabulated
points, and its derivative is discontinuous. Flight simulators can remedy
this somewhat by using tables with smaller increments. Another technique
is to use higher-order interpolation.

4 Airplane Subsystem Modeling

While aerodynamics is the major contributor to the forces and moments
on an aircraft, some of the systems, the propulsion system and the landing
gear in particular, can contribute as well.

4.1 Piston Engine Modeling

This section describes a model for a non-supercharged piston engine with
a variable pitch propeller.

Piston engine manufacturers provide charts of engine power output for
different flight conditions. To use the information in these charts in the
flight simulator, data fitting techniques can yield closed form equations for
the engine performance!”. Unfortunately, the charts give engine perfor-
mance as a function of instrument readings (tachometer, manifold absolute
pressure), while a flight simulator must calculate the engine performance
as a function of the engine controls (throttle, propeller pitch, and mixture).

Thus, the engine speed and the manifold pressure appear as interme-
diate variables in the calculations of engine power. In fact, the simulator
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introduces manifold pressure and engine speed as state variables of the en-
gine (which are numerically integrated in real time, like the airplane state
variables).

Given the manifold pressure, engine speed, and outside air density, one
can calculate the shaft power delivered by the engine.

4.1.1 Manifold Pressure Calculation

Equation 65 presents the quasi-static differential equation for manifold
pressure'®,

. 2mthRTm — andem
- 2V,,

For high speed engines, this equation could be numerically unstable with
the simulator’s time step size; in such cases, it is appropriate to ignore the
transients by setting p,, to zero and solving Equation 65 directly for p,,.
(Reference 18 reports that the time constant of the Equation 65 is 2 to 4
times the length of an intake stroke. At 2400 RPM, twice the intake stroke
is 0.025 seconds. A typical time step size for a flight simulator is 0.01
seconds.)

In Equation 65, the volumetric efficiency 7, is only weakly dependent
on the manifold pressure; this paper assumes it to be independent of p,),.
The manifold temperature 7,, is assumed known; an adequate estimate is
to use outside air temperature. V, and V,, are constants for the engine,
and N is the engine speed. Only 7y, is left to be determined.

If p,, > 0.528p, then the flow is not choked at the throttle. The mass
flow rate past the throttle is given by Equation 66'%:

. CoAmp (v | 29 <pth> =

T T URT <p> 7—1(1 p (00)
The coefficient of discharge Cp in Equation 66 is an empirical, engine-
dependent parameter, which accounts for the pressure loss due to all of the
obstacles in the intake (air filter, throttle, venturi, etc.). It is a function of
the engine speed and throttle plate open area. One can obtain a first-order
estimate of C'p by setting it so that Equation 65 yields the observed mani-

fold pressure drop at steady state with a wide-open throttle at a high engine
speed. py, is the pressure at the throttle. It is not clear from Reference 18

(65)

Prm
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how to determine this; however, it seems that, although technically invalid,
the manifold pressure is used for p;,.

If p,, < 0.528p, then the flow is choked at the throttle. In this case, mass
flow rate is given by Equation 67*%:

741

. CpAwmp 2y \20D
= 67

4.1.2 Propeller Modeling

Many thrust and power calculations use nondimensional parameters; these
are defined by Equations 68-70.

T
P
Op = ,ON3D5 (69)
\%4

Propeller efficiency charts, which are useful in performance analysis of
steady, level flight, are not sufficient for flight simulation. The reason is
that, in performance calculations, thrust is considered equal to drag. This
is not true in general for a flight simulator.

Therefore, to model the propeller, one needs to determine the thrust
produced. The thrust produced by the propeller is a function of the for-
ward airspeed, the air density, the blade geometry (including the variable
pitch setting), and the propeller’s angular speed. The thrust can be calcu-
lated with a theory such as blade-element theory or vortex theory. One can
also use empirical data (such as the chart on Page 306 of Reference 7) to
determine the thrust.

Once the thrust is determined, the power consumed by the propeller can
be found using the propeller efficiency charts in tabular form, by solving the
following relation for Cp:

Ty = CTJ/CP (71)

Or, the power consumed can be calculated directly, much as the thrust was,
as a function of airspeed, density, blade geometry, engine speed, and thrust.
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Note that the power consumed by the propeller does not necessarily
equal the power delivered to it by the engine. Any excess power delivered
through the shaft increases the propeller’s angular speed. Similarly, if the
propeller does not receive enough power from the engine, its angular speed
decreases.

Newton’s Second Law for angular momentum, applied to the propeller,
is Q, = [pN . The excess power is related to the propeller torque by the
relation P, = ),N. Combining the two equations yields the differential
equation for engine speed: .

I,N

Using this equation, the simulator calculates N each time step by numerical
integration.

Assuming the shaft axis is parallel to the body z-axis, and lies in the
x-z-plane, the propulsive force and moment components are:

N = (72)

Lp = +Q, 74)
Mp = T(zF —z) (75)

The sign in front of ), in Equation 74 depends on which way the propeller
spins.

4.1.3 Mixture

The engine performance charts do not factor in mixture setting, assuming
that the pilot will keep the mixture near optimal. Any effects the mixture
has on the power or behavior of the engine can be modeled as corrections.

An important effect of mixture setting is the rate of fuel consumption.
The rate of fuel burn is given by:

my = —(F/A)rg, (76)

where (F'/A) is settable with the mixture control. Of course, a flight simu-
lator uses a negative sign because it is interested in the actual fuel weight,
which decreases as the fuel burns.
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4.2 Landing Gear Modeling

Two phenomena result in force on the landing gear. The first is the normal
force exerted by the ground; the second is the friction on the tires. Either
way, the tire must contact the ground for the force to be generated. Thus,
the simulator tests whether the extreme point of the fully extended landing
gear is below the ground. If it is, the tire is touching the ground, with the
strut and tire compressed.

The landing gear model in this section is mostly a simplified version of
the model found in Reference 19. Each gear is considered separately in
calculating landing gear force.

4.2.1 Ground Normal Force

For simplicity, assume that the strut is parallel to the airplane’s body z-
axis, and that the landing surface is level. If the tire has made contact, its
z-coordinate in local axes would be greater than the z-coordinate of the
ground (remember, the z-axis points down).

The tire’s coordinates in body axes are (v,,y,,2;)). Using these to-
gether with Equation 8, the tire’s local z-coordinate is given by:

B ,B _B

zgf = ZCL + C31($9B - xf) + 032(345 - yf) + 033(35 - ZCB) (77)

Let zX be the ground’s local z-coordinate (the r means runway). If
zl > zl, then the tire touches the ground. Of course, the tire cannot
actually be located below the ground; the ground compresses the tire and
landing gear strut.

The compressive force in the strut depends on the total gear displace-
ment Az, This is found by replacing 2 in Equation 77 with =}, and solv-
ing for z;g, to yield zf ’, the actual position of the compressed gear where it
touches the ground. The difference between the uncompressed and com-

pressed tire locations is Az. Equation 78 gives the formula for this.

L L B B B B

20—z + O (x, —a;) — C: —

AZgB _ ZgB B ZgB’ _ ZgB _ c 31( g - c ) 32(yg Ye ) (78)
33

Because the strut is damped, the force also depends on the rate of landing
gear displacement. Taking the time derivative of Equation 78, the only
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non-constant term on the right side is z./C33. Therefore, the displacement
rate is given by:

5 _ e
Az = o (79)

A simple model for landing gear displacement force is to assume a linear
damped elastic strut, and ignore the tire compression. Then, the compres-
sive force in the strut is:

Faru = K(AZ)) + C(AZ]), (80)

where K and C are the spring and damping constants for the strut. The
strut force acts along the axis of strut; however, the force exerted by the
ground acts vertically upward. The value of the total ground normal force
is the value where the component along the strut axis is the strut force.
That is,

Fn = Fstrut/033 (81)

More advanced models consider the tire deflection as well as the the
strut deflection in calculating ground normal force.

4.2.2 Friction Force

A tire is designed to roll easily in one direction, while sliding with difficulty
in the perpendicular direction. It makes sense to resolve the friction force
into a forward rolling friction and a sideward sliding friction. This paper
assumes that the plane of the tires is parallel to the body z-z-plane (i.e., no
steering).

Because friction always acts in a direction opposite the velocity, the cal-
culation of friction force requires the velocity of the tires resolved into those
directions. The velocity of the tire in body coordinates is the velocity of the
CG plus contributions due to angular rates:

uf = u—{—q(zf/ — 2B —T(yf —y2) (82)
vl = v+r(al —al) - p(zf/ — 25 (83)
wi = w+pyl —yP) - qlaf —2P) (84)

These can be transformed to local coordinates with the airplane direction
cosine matrix. Then, the tire velocity in local coordinates are transformed
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into the ground-path coordinate system by Equations 85 and 86:

u; = ug cos W + u;; sin ¥ (85)

= —olsinv + ng cos ¥ (86)

v g

QTR

The ground-path coordinate system is like local coordinates in that the z-
axis points vertically down. However, in ground-path axes, the z-axis points
in the direction of travel along the ground (while remaining in the horizon-
tal plane). The x- and y-components of the tire’s velocity in ground-path
coordinates are, in fact, the forward and sideward components.

For the rest of the section, the superscript on uf and vf is dropped; all
tire velocities are in ground-path coordinates.

Sideward Force. First, v,, the sideward groundspeed component, is com-
pared to a threshold velocity, Vj,. If —v,—¢ Vi, then a kinetic coefficient of
friction applies. If |v,| < V4, the static coefficient of friction applies'®. The
friction force in the sideward direction is given by Equation 87.

Yg
T SFTH > V
Fs — { ‘./klu |/Ug‘ k (87)
sisn(o,)uFn o] < Vi

Both the static and kinetic coefficients are functions of both the tire and
landing surface. Note that the force of static friction is proportional to the
negative velocity.

There is one factor which has been neglected above. A rolling tire has a
relieving effect on the sideward friction, meaning that if the tire is rolling,
the sideward friction force of a tire will be somewhat lower than calculated.
The method of calculating this effect is not very transparent. Reference 19
presents a more sophisticated method for calculating side force of a rolling
tire.

Forward Force. The forward force calculation resembles to the sideward
force calculation. One complication seen with forward force calculations is
the possibility of braking.

Braking changes both the threshold velocity and the kinetic friction co-
efficient. We assume the effect varies linearly with brake pressure. Equa-
tions 88 and 89 give formulas for the threshold velocity and kinetic friction
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coefficient under different braking conditions, where the brake pressure
varies from no brake pressure (0, = 0) to full pressure (6, = 1).

V;c = Vk,roll + 5b(‘/k,slide - ‘/kmoll) (88)
Wi = Hkroil + Ob( Mk stide — Hiroll) (89)

Using these definitions of V};, and puy, the forward friction force is as
listed in Equation 90

Uy

Y5 an7 > Vi

Fy= { v il = 1 (90)
_Slgn(ug)Mka |ug| < Vi

The forward friction, sideward friction, and ground normal forces are
the z-, y-, and z-components of force in the ground-path coordinate system.
(F,, could have been written Z5.) The forces are transformed first into local
coordinates:

Xt = FpcosVU — F,sin¥ (91)
YG@ = FysinW¥ + F;cos W (92)
7tk = F, (93)

Then, the components of force are transformed from local to body coordi-
nates. The moments are obtained from multiplying the force components
in body coordinates by the appropriate moment arms:

Lo = Ya(zl' = 28)— Za(yl —yP) (94)
Mg = Zg(al —al) - Xg<25/ —25) (95)
Ne = Xo(y) —vl) = Yol(z] — 7)) (96)

5 The Simulator Program

After modeling the aircraft and its environment, the next task is implement-
ing those models in a computer. This section describes the implementation
of the flight simulator program.

The flight simulator program internally has five different tasks: input,
calculations, output, time synchronization, and support tasks. Input refers
to getting the control values from the user, such as positions of the yoke,
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Figure 1: Flowchart of the simulator’s main loop.

throttle, and pedals, or whether a button has been pressed or a switch has
been toggled. Calculations refer to the process of numerically integrating
the state variables. Output refers to displaying the aircraft and its surround-
ings in the current state, as in drawing the scenery and instrument panel.
Time synchronization code makes sure virtual time is the same as real time.
Support tasks refer to tasks that are not directly involved in flight simula-
tion, such as loading the scenery from a file. This paper does not cover
support tasks.

5.1 Main Loop

The main loop of the program repeatedly executes tasks in the proper se-
quence to simulate the airplane. Each iteration of the loop is called a frame,
and a frame occupies a fixed length of time. Figure 1 presents the main
loop.

Before the main loop begins, the simulator sets the state variables of the
airplane based on the initial conditions. The flight simulator may have to
convert the initial conditions to its internal format; for example, converting
Euler angles to quarternions using Equations 26-29, or converting geodetic
to geocentric coordinates using the equations from Reference 1.

The frame begins with the flight simulator performing output based on
the current aircraft state. (The loop is timed so that the output step finishes
at the exact time represented by the state variables.) Following output, the
simulator inputs the control positions and settings, and sets the control
variables accordingly.

Following the input, the simulator calculates the state of the airplane
for the beginning of the next frame. This is done using a finite-difference
numerical integration of the state variables. The time step in the numerical
integration must be small enough to capture the shortest time scales in
airplane motion. The short period mode and roll mode have very short
half-damping times for many aircraft. For example, Reference 7 reports
a roll mode half-damping time of 0.13 seconds for a Piper Cherokee 180.
Thus, the time step should be somewhat smaller than 0.1 seconds.

However, output, which is usually by far the most time consuming task
of the flight simulator, often requires more time than is available in a single
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time step. To accommodate the output, one frame can have multiple time
steps. For example, if the time step size is 0.01 seconds, and the simulator
takes about 0.03 seconds to perform all output for a single frame, then the
frame length would be 0.04 seconds, with 4 time steps per frame. (Output
dominates processing time so much that the time required by other tasks is
often considered negligible.)

The actual time to output a frame can vary. The plain landscape of
Nebraska has much fewer polygons than the mountainous landscape of
Colorado, and thus requires much less processing time. As an airplane flies
from Colorado to Nebraska, the simulator might be able to decrease the
number of time steps per frame, and thus get a better frame rate. Con-
versely, when flying from Nebraska to Colorado, the simulator might have
to increase the time steps per frame. Therefore, the simulator periodically
adjusts the number of steps per frame to optimize the frame rate.

After all tasks in the frame have been completed, the simulator pauses.
The purpose of the pause is to maintain a fixed frame length. For example,
if the processing time for a frame is 0.03 seconds, and the frame length is
0.04 seconds, then the simulator pauses for 0.01 seconds. The pause varies
in duration to accommodate any fluctuations in the processing time.

Following the pause, the simulator loops back to the output step.

The rest of the section describes the output and calculation tasks in
more detail.

5.2 Output

A real-time flight simulator is a virtual reality program. It presents the user
with an environment that mimics, to some degree, the environment of a
real airplane. A very expensive flight simulator might rest on a full-motion
platform, and have a cockpit identical to the simulated aircraft’s cockpit,
identical controls and instruments, a realistic view of the scenery, and sim-
ulated engine noise. On the other hand, an inexpensive flight simulator
running on a PC might display the scenery and instruments on the monitor,
and employ the keyboard for airplane controls.

The output of the flight simulator is what gives the user the perception
that he or she is flying a real aircraft. There are many ways to contribute to
the overall experience of flying, including very subtle effects such as cockpit
ventilation. This paper covers only the most basic form of output, namely,
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Figure 2: Wireframe scene of Downtown Pittsburgh, Pennsylvania.

drawing the scenery. Reference 15 details some more advanced methods of
output.

Wireframe Scenery. The simplest type of scene is a wireframe scene. A
wireframe scene is a scene drawn using only straight line segments. Fig-
ure 2 depicts a wireframe scene of Pittsburgh, Pennsylvania, as it might
appear from an aircraft.

The description of a wireframe scene consists simply of a list of line
segments in 3-D space. For example, in a Cartesian coordinate system, a
cube could be represented by the following twelve line segments:

(1,1,1) — (0,1,1) (1,1,1) — (1,0,1)
(1,1,1) — (1,1,0) (0,1,1) — (0,0,1)
(0,1,1) — (0,1,0) (1,0,1) — (0,0,1)
(1,0,1) — (1,0,0) (1,1,0) — (0,1,0)
(1,1,0) — (1,0,0) (1,0,0) — (0,0,0)
(0,1,0) — (0,0,0) (0,0,1) — (0,0,0)

Because scenery is (usually) fixed relative to the Earth, the endpoints of the
line segments are stored in an Earth-fixed coordinate system.
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To draw the scene, the flight simulator transforms each endpoint in the
scene into eye coordinates. The eye coordinate system is a Cartesian coordi-
nate system based on the pilot’s view. The eye axes originate approximately
at the pilot’s eyes. The z-axis points along the pilot’s line of sight, the y-axis
points to the right as seen by the pilot, and the z-axis points down as seen
by the pilot.

After the endpoints have been transformed to eye coordinates, the flight
simulator calculates their projections onto the 2-D plane of the screen. Fig-
ure 3 illustrates this. The location at which to draw the object on the screen
is where the line of sight intersects the plane of the screen. Given the
distance from the eyes to the screen (z,), and eye coordinates of a point
(¥, y*, 2F), the screen coordinates can be obtained using similar triangles.
(The screen coordinate system is the 2-D coordinate system of the physical
plane of the screen, originating at the screen’s center, with the y-axis point-
ing to the right, and the z-axis pointing down.) Equations 97 and 98 list
the formulas for the projection.

yS = xsyE/xE 97)
25 = g2 )2 (98)

The projection yields the screen coordinates of the endpoint. The screen
coordinates are actual lengths. Thus, if an endpoint’s z,-coordinate is -1
inch, and its y,-coordinate is zero, the flight simulator draws the endpoint
one inch above the screen’s center.

So, to draw the wireframe scene, the simulator transforms the end-
points of every line segment into screen coordinates, and then draws a
straight, 2-D line segment on the screen connecting the endpoints of each
segment.

Clipping. There is one problem, however. A point in eye coordinates is
not always within the field of view. Projecting such a point would lead to
incorrectly rendered images. Therefore, the simulator must draw only the
part of the line segment within the field of view. Before it transforms an
endpoint into screen axes, the simulator must detect when an endpoint is
not visible, and use the endpoint of the visible part of the segment instead,
if there is one. This process is called clipping. To draw the scene correctly,
the flight simulator must clip every line segment to the visible region®.
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Eye axes

Projection

Figure 3: Schematic of a projection. The screen coordinate, y°, is deter-
mined by similar triangles.

44



Figure 4: Polygon scene of Penn State’s University Park Campus, State Col-
lege, Pennsylvania.

Polygon Scenery. Wireframe scenery is not realistic. It is bland and color-
less, and surfaces do not hide objects behind them. Using polygons instead
of line segments increases the realism of the scenery. Figure 4 depicts a
polygon scene of Penn State.

Drawing polygons is not much different than drawing line segments.
(In fact, one can think of a line segment as a degenerate polygon with
two vertices.) A polygon is described by a sequence of 3-D points, which
represent the vertices. For example, in Cartesian coordinates, a square
might be described this way:

(0,0,0) —(1,0,0) — (1,1,0) — (0,1, 0)

To draw the polygon, the simulator transforms these points into screen co-
ordinates, and then draws the polygon described by the screen coordinates,
filling its interior.

The most important difficulty arising from polygon scenery is how to
draw the scene so that distant polygons do not obscure close ones. One
algorithm that accomplishes this is Painter’s Algorithm, which draws the
most distant polygons first, and the closer polygons afterward. Thus, the
closer polygons obscure the more distant ones.
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File View Presets Autopilot Help

Figure 5: Textured polygon scene of an area near San Francisco.

Texturing. Monocolor polygons, although much better than wireframes,
are still not very realistic. Textures can give the scene structure at scales
much too small to efficiently model as polygons. Figure 5 depicts a textured
polygon scene of the outskirts of San Francisco, captured from Flight Gear
Flight Simulator. In the scene, the the variation in color is not represented
by many different polygons, but rather is part of the ground’s surface tex-
ture. (Figure 5 exhibits some other advanced rendering techniques, such
as fogging.)

5.3 Time Step Calculation

Using the current state and control variables of the airplane, the flight sim-
ulator calculates, by finite differences, the state of the airplane a small time
increment in the future.

The first task for the time step calculation is to calculate variables de-
pendent on the environment, including the air density and wind velocity;
perhaps using Equations 2-4 to determine density.

46



The second task is to calculate the variables that depend on the state
and control variables. The simulator calculates the cosine matrix using
Equation 16 or Equation 21, depending on how it stores orientation. If the
simulator stores orientation with quarternions, it then calculates the Euler
angles using Equations 30-32. It transforms the wind velocity to body axes
using Equation 7, and then subtracts this from the aircraft velocity to yield
the airspeed components (u,, vy, w,). If it is important, the simulator may
use the formulas from Reference 3 to calculate the geodetic coordinates
(h,0,9).

The flight simulator calculates o and ( using Equations 5 and 6. It
calculates nondimensional parameters like § using Equations 50-53. To
calculate &, it uses the chain rule with @ and v:

d 1 <wa>  Ugl — Wall

& = —tan~ = (99)

Codt Uq u2 4 w?

Equation 99 assumes , ~ u and w, ~ .

Once the necessary variables are calculated, the flight simulator uses the
aerodynamic, landing gear, engine, and body force models from Sections 2,
3, and 4 to calculate the total resultant force and moment on the airplane.

Then it employs the the rigid body equations of motion (Equations 10-
15, 17-19 or 22-25, and 33-35 or 36-38) to calculate the time derivatives
of all the rigid-body state variables. Additionally, it uses Equations 65, 72,
and 76, to calculate the time derivative of other state variables within the
airplane.

Having determined the time derivatives of all state variables, the simu-
lator is ready to use a finite-difference scheme to calculate the future state
of the airplane. Generally, schemes that require only one calculation of the
time derivatives per time step are preferred.

Reference 21 recommends using the predictive Adams-Brashford method.
For a given state variable s, the method is given by Equation 100, in which
At is the step size.

s(t+ At) = s(t) + A;(Bé(t) —§(t — At)) (100)

The method is second-order accurate. Another second order accurate method
from Reference 21 is the trapezoidal method, given by Equation 101.

s(t+ At) = s(t) + A;(s(t) + 5(t — At)) (101)
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Reference 21 reports that both methods have acceptably low phase errors.
Note that both methods require the time derivatives from the previous time
step.
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