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Preface 

• 

Complu A1I(llyaia has successfully maintained its place as the sta.ndsrd 
elementary text on functions of one complex varisble. There is, never­
theless, need for a new edition, pa.rtly because of changes in current mathe­
matical terminology. partly because of differences in student preparedness 

· and aims. 
There aTe no radical innovations in the new edition. The author still 

believes strongly in a geometric approach to the b!lSics. and for this reason 
the introduetory chapters are virtually unchanged. In a few places, 

:throughout the book, it was desirable to clarify certain points thst ex­
f'perience has shown to have been a source of possible misunderstanding or 
• • 
,-difficulties. Misprints and minor errors that have come to my attention 
"have been corrected. Oth~I wise, the main differences between the second 
r'~d third editions can be summarized as follows; 
• 
:. 1. Notations and terminology have been modernized, but it did not 

necessary to cha.nge the style in any significant way. 
Z. In Chapter 2 a brief section on the change of length and area under 

mapping has been added. To some degree this infringes on the 
self-contained exposition, for it forces thc reader to fall back on 

for the definition and manipulation of double integrals. The 
• • 
IS mmor. 

4 there is a new and simpler proof of the general form of 
theorem. It is due to A. F. Beardon, who has kindly ~I witted 

to reproduce it. It complements but does not replace the old proof. 
has been 1 etained and improved. 

,. A short on the Riemann zeta function he" been included . 

.. 
. . 
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This always fascinates students, and the proof of the functional equation 
illustrates the UBe of in a less trivial situation than the mere 
computation of definite integrals. 

5. Large parts of Chapter 8 have been eompletely rewritten. The 
main purpose WIlB to introduce the reader to the terminology of genllB and 
sheaves while emphllBizing all the classical concepts_ It goes without 
saying that nothing beyond the basic notions of sheaf theory would have 
heen compatible with the elementary nature of the book. 

S. The author hIlB successfully resisted the temptation to include 
Riemann surfaces IlB one-dimensional complex manifolds. The book 
would lose much of its usefulness if it went beyond its purpose of being 
no more than an introduction to the basic methods and results of complex 
funetion theory in the plane. 

It is my pleasant duty to thank the many who have helped me by 
pointing out misprints, weaknesses, and errors in the second edition. 
I am partieularly grateful to my eolleague Lynn Loomis, who kindly let 
me share student reaction to a recent based on my book. 

LaTif V. AM/Drs 
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1 PLEX NU 

• 

L THE ALOE.ItA OF COMPLEX NU •• EItI 

It is fundamental that real and complex numbers obey the sarne 
basic laws of arithmetic. We begin Our study of complex fWle­
tion theory by stressing and implementing this analogy. 

1.1. ..4ritiunetJe Operations. From elementary algebra the 
reader is acquainted with the imaginlJf1l unit i with the property 
," = -1. U the imaginary nnit is combined with two real num­
bel8 a, fl by the proce:aaes of addition and multiplication, we 
obtain B compw number a + ifl. a and II are the r~al and 

'; pari of the complex number. If '" = 0, the number il 
to be """,Zy imaginlJf1l; if fl - 0, it is of C01l1Be real. Zero i8 

the only number which is at once real and purely imaginary. 
Two complex numbers are equal if and only if they have the same 
res] part and the 88me imaginary part. 

Addition and multiplication do not lead out from the system 
of oomplex nnmbers. Ae,nming that the ordinary rules or 

. arithmetic apply to complex numbers we find indeed 

(1) (a + ill) + ('"( + sa) - (a + '"() + i(fl + /I) 
and 

(2) (a + iII}(., + i.) - (..., - (l6) + i(a. + fl.,). 
In the identity IU, have made lI'e of the relation " - -1. 

It is .. obvioua that division ill We wi&h to 
1 

. 
, ., -' - -,'~ .... . .-,- -, ".-:, ;- .. --

, . -- -' - " - . - - , . 
";~<"'-'" ___ '~::""., __ ~',: ",,-', __ - I __ '-. ':.<',. ," •• :,~':; ___ ,.' ' .. _. '_.'.' .• -.;.:.'-' - ... ~. ,'" -~- '-'-~ 



2 COMPLEX "NA~ VSI. 

ahow that ( .. + ifJ)/h + if) is a complex number .• provided that 'Y + 
if ¢ O. If the quotient is denoted by x + i1/, we must have 

a + ifJ = (-y + i6)(x + iy). 

By (2) this condition can be written 

.. + ifJ - ('Yz - 6y) + i(1x + 'VY), 

and we obtain the two equations 

a~'Yz-6y 

fJ = 3x + 'VY· 

This system of simultaneous linear equations has the unique solution 

. ...,+fJi 
x = 'Y" + 0" 

fJ'V -ao 
11-'1"+3" 

for we know that '1' + 6· is not zero. We have thus the 

(3) a + i(j _ (JI.'Y + fJ3 + i fI'Y - ai. 
'Y + i6 - 'Y. + 01 '1' + 01 

Once the existence of the quotient has been proved, its value can be 
found in a simpler way. If numerator and denominator are multiplied 
with '1 - io, we find at once 

(JI. + i(j (a + ifJ)( 'Y - i3) (a-y + (ja) + i(fJy - ai) 
'Y+ ii = h + ia)('Y - io) = 'Y' + 6" .. 

As a special the reciprocal of & complex number ¢ 0 is given by 

1 a-i/J 
a+ifJ=a'+fJ" 

We note that i" has only four possible valuee: 1, i, -1, -i. They 
correspond to values of 11 which divided by 4 leave the remainders 0, 1, 
2,3. 

EXERCISES 

I. Find the values of 

I) 
(1 + 2i)', 

-3 + 4i' 
2 +i I 

3 - 2i ' 
(1 + i)' + (1 - ,)-. 



· . 
• 
• 

Z. If Z 0= Z + i1l (z and 11 real), find the real and imaginary parts of 

So Sbow that 

-1 ± i 
2 

3 • ~1 

1 • - 1 1 -
z ' z + l' 

_. 
Z" 

and 
• 
=1 

for all combinations of signs. 

1.%. Squa .... Roots. We she!) now show tbai the square root of II 
complex number can be found explicitly. If the given number is a + i/J. 
we are looking for a number x + ill such that 

(x + i1/)' = a + ip. 

Thill is equivalent to the ByBtem of equatioll8 

<") 
ZI - y~ = a 

2zy = /J. 

From theee equations we obtain 

(x' + 1/')' - (x' - y')' + ","'y' ~ a' + P'. 

we must have 

x' + II' = Va' + pI, 
· tbe square root is positive or zero. Together with the first equa.-
· . (") we lind 

z· = l(a + V Ot' + p') 
1/' = l( -Ot + Va' + P·)· 

that tbeee qnantities are positive or zero regardJeIl8 of the sign 

• • 

..... •. , The equations (5) yield, in general, two opposite values for :t and two 
. . . Butth .Be values cannot be combined arbitrarily, for the aeoond 

(4) is not II cppeequence of (5). We must therefore be careful 
andy BO that their product bas the Bign of p. This leads to the 

-± + . fJ . • jjj 
-a 

. . (fitlo;;' For' .;. 0' theviilues are ± va if a ;;: 6, ± i v::; 

. . - -' 

,.' " .• ". 'C', <i~' •. ·'_. _." .'. __ 
-."-, . ,. , ., .. ,' -, ... 

"':;:"'::':.: ",.-:<.'.' '"'" , ..... : :":, "', -., - - - .-



if a < O. It is understood that all square roots of positive numbelll are 
taken with the positive sign. 

We have found that the square root of any complex number exists 
and hall two oppoeite VJLlues. They coincide only if .. + ifJ - O. They 
are real if fJ - 0, a ~ 0 and purely ima,giuary if fJ ~ 0, .. ;:ii O. In other 
words, except for zero, only positive numbers have real square roots and 
only negative numbers have purely imaginary square roots. 

Since both square roots are in ,eneral complex, it is not poBBible to 
distinguish between the positive and negative square root of a complex 
number. We could of course distinguish between the upper and lower 
sign in (6), but this distinction is artificial and should be avoided. The 
corlect way is to treat both square roots in a symmetric manner. 

EXERC.SES 

I. Compute 

Vi, VI + i, 
2. Find the four values of {I-I. 
S. Compute {Ii and {I-i . 
... Solve the quadratic equation 

1 - i 
2 

a' + (a + i/3). + "I + i~ = 0, 

1.tI. JlUt4/I .... tio... So far our approach to complex numbers has been 
completely uncritical. We have not questioned the existence of a number 
system in which the equation'" + 1 = 0 hall a solution while all the rules 
of arithmetic remain in force. 

We ocgin by 1'8('8 !Jing the characteristic properties of the real-number 
IlYlltem which • B denote by R. In the first place, R i8 a jield. This 
means that addition and multiplication are defined, aatiafying the IJUOCi,­
alive, conlmutGtWe, and law. The numbers 0 and 1 are neu­
tral elements under addition and multiplication, respectively: a + 0 = a, 
a • 1 - .. for all... l\(oreover, the equation of IlUbtraetion fJ + z = a 
bae alWA)'ll & solution,and the equation of division (lz - .. baa a solution 
whenever·fJ ~ O. t 

One shows by elementary reasoning that the neutral elements and the 
results of 8Ilbtraction and division are unique. Also, every field is an 
intefITal domaiA: a{J - 0 if and only if .. ~ 0 or /3 = O. 

t We uoume that the reodor ...... working lmowleclp of e1emeatary algebra, 
Alth<nqrh tho above ch ... ctorizatioD of a field is eomplete, it obvioUlly d_ DO\ 
coa.vey muah to .. student who is not aJready at Ie 5 -t vapeIy lammar trit.b the concept. 

. . , ' ... 



COIIPLEX NUIIBERS 5 

These properties are common to all fields. In addition, the field R 
has an tmkr relatWA ex < (J (or fJ > a). It is most eMily defined in terms 
of the set R+ of poMtiDe real numbers: ex < (J if and only if fJ - a e R+. 
The set R+ is characterized by the following properties: (1) 0 is not a posi­
tive number; (2) if ex '" 0 either ex or -a is positive; (3) the 8UD\ and the 
product of two positive numbers are positive. From theoe conditioDl! one 
den ves all the usual rules for manipulation of inequalities. In particular 
one finds that every square a' is either positive or zero; therefore 1 .. l' 
is a positive number. 

By virtue of the order relation the sums 1, 1 + 1, 1 + 1 + 1, ... 
are all different. Hence R contains the natural numbers, and aince it is a 
field it must contain the subfield formed by all rational numbers. 

Finally, R satisfies the following eomplolene88 ctmdition.: every incre8&­
ing and bounded sequence of real numbers has a limit. Let a, < al < 
a. < . . . < a. < . . . ,and "'''Slime the existence of a real number B 
such that ex. <: B for all... Then the completeness condition reqnires the 
existence of a number A .. lim. •• a. with the following property: given 
any. > 0 there exists a natural number ... such that A - • < a. < A for 
all .. > .... 

Our disell"8ion of the reaI-number systsm is incomplete inasmuch as 
we have not proved the existence and uniqueness (up to isomorphisms) of 

. a Bylltem R with the postulated properties. t The student who is not 
thoronghly (amiliar with one of the constructive procesees by which real 
numbers can be introduced should not fail to fill this gap by consulting any 
textbook in which a full axiomatic treatment of real numbers is given. 

The equation ",I + 1 ~ 0 has no solution in R, for a l + 1 is always 
>positive. ':luppose now that a field F can be found which cont'inB R as a 
',aubfieId, and in which the equation:r" + 1 .. 0 can be solved. Denote a 
(BOlution by i. Then ,,' + 1 .. (:r + .)(" - .), and the equation 
!.:r' + 1 .. 0 has exactly two roots in F, i and -i. Let C be the subset of 
':: consisting of all elements which can be expreosed in the form a + i(J 
. real a and (J. This reprnentation is unique, for ex + ifJ .. eI + i(J' 

a - eI .. -i({J - ,8'); hence (ex - eI)' .. - «(J - ,8')', and this is 
only if a .. a', fJ .. ,8'. 

The 8ubeet C is a subfield of F. In f&Clt, except for trivial verifica­
the Ieader is asked to earry out, this is exactly what was shown 

. Sec. 1.1. What is more, the strueture of C is independent of F. For if 
. is another field containing R and a root i' of the eqnation ,,' + 1 - 0, 

, '... ' , 
tAn u.m'p'lIAi.tm. belw!eq two 6.elda is a one-to 0"8 aouwpondenoe which pte 

.. '01''''' alid . .. The waid ia !lIed quite. puraIJy to indicate a ........ 
v'e S;;d ....... d'leIath·.1h·" .... OopAidered ilDpocl.nt 

. . - ., 

.. 

• 
- - - . - , --.' ',' ,- , 

,-,,-.:-:-- .", -" -."" ,;.,~:;.~~ .. -, .... -.:-.~ .. ,.·~··.-·:;:.,;-','-.,i',;·::·,~:·'·- ,:-," .. :."(,',.,,. . . ,.:"". ,- .. ,._ .. ". ___ . ,'" . _.v __ '_.' ... , ...... - _". _ ... '.,""'.,_ .......... :;.., __ "._ .. ,,_.', .. _~-< - ,. " •• " ". """', •. , __ -_.', •. _ •• '\"'1(,,,,. .•. -,'._ ........ ,,, ,' ..... <.--, .... ,,','.~-,-_,,_ •••• , ........ - , 



• COIIPLEX ANALYS'S 

the subset C' is formed by all elements .. + i'/J. There is 
a one-to-one correspondenee between C and C' which .. + ifJ 
and .. + i'fJ, and this correspondence is evidently a field isomorphism. 
It is thus demonstrated that C and C' an) isomorphic. 

We now define the field of compln numbers to be the subfield C of an 
a.rbitrarily given F. We have just BOOn that the choice of F makes no 
difference, hut we have not yet shown that there exists a field F with the 
required properties. In order to give our definition a meaning it remains 
to exhibit a field F which contains R (or a subfield isomorphic with R) 
and in which the equation ",I + 1 ~ 0 bas a root. 

There an) many ways in which such a field can be constructed. The 
simplest a.nd most direct method is the foUowing: Consider all expre:::ions 
of tbe form a + ifJ where .. , fJ arere·l numbws while theBigns + and i are 
pure aymbols (+ does not indicate addition, and i is not an element of a 
field). These expressions an) elements of a field F in which addition and 
mwtiplication &nl defined by (1) and (2) (observe the two dift'erent mean­
i!J&ll {If the sign +). The elements of the pa.rticula.r form a + 10 are seen 
to constitute a subfield isomorphic to R, and the element 0 + i1 satisfies 
the equation x" + 1 = 0; we obtain in fact (0 + i1» - - (1 + 10). 
The field F bas thus the required properties; moreover, it is identical with 
~ conuponding subfield C, for we can write 

a + ifJ = ( .. + 10) + fJ(O + il). 

The existence of the complex-number .field is now proved, and we can go 
baCk to the simpler notation a + ifJ where the + indicates addition in C 
and i is a root of the equation ",' + 1 = O. 

-- . ' 

· 
EXIERC:ISIES (For students with a h.okground in algebra) 

:L Show that the Bylltem of all matrices of the special f6rm 
• 

a fJ 
-fJ a 

, 
• . . 

G!l!Jibined by matrix addition and matrix multiplication, is isomorpbie to 
. the field of complex numbers. 
•. 2. Show that the complex-number system can be thought of as the 
~d of all .polynomials with real coefficients modulo the irreducible 
polynomial ",' + 1. 

1.4. Co.vugation, Ab"olute Yahle. A complex number can be 
denoted either by a single letter a, representing an element of the field C, or 
in the fornl a + ifl with real .. ....d fl. Other standa.rd notations &nl 

z = X + iv, r - ~ + 1'1, 1.11 = u + iv, and when ,.,ed in this conneotion it 

• - - - . 
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is tacitly undel'lltood that z, y, ~, 'I, ", V are real numbers. The real and 
ime.giuary part of a complex number a will also be denoted by Re a, 1m a. 

In deriving the rules for complex addition and multiplication we used 
only the fact that i! ~ -1. Since -i has the same property, all rules 
must remain valid if i is evelY where replaced by - i. Direct verification 
shows that this is indeed so. The trlVlBformation which replaces .. + i/3 
by a - ifl is called complex Clmjugation, and a - ill is the clmjugale of 
.. + ifl. The conjugate of a is denoted by ii. A number is real if and 
only if it is equal to its conjugate. The conjugation is an involulory 
transformation: this meaDS that " ~ a. 

The formulas 

Re a+4 
II = 2 t 

A-a 
Ima - 2i 

the real and imaginary part in terms of the complex number and 
its conjugate. By systematic use of the notatioDS a and Ii it is hence 
possible to dispense with the use of separate letters for the real and 
imaginary part. It is more convenient, though, to make free lI'e of both 
notations. 

The fundamental property of conjugation is the one already referred 
to, namely, that 

a+b~ii+ii 
(iij = a . Ii. 

The corresponding property for quotients is a coll8equence: if 4Z = b, 
then Iii = Ii, and hence (bla) - Ii/a. More generally, let R(a,b,c, .•• ) 
stand for any rational operation applied to the complex numbers a, b, c, 
.... Then 

R(a,b,c, . • .) = R(4,Ii,c, . • .). 

As an application, consider the equation 

coli" + CIZ"-I + . . . + c.-~ + c. = o. 
U t' is a root of this equation, thtn f is a root of the equation 

cor + c¢' I + . . . + c._~ + c. = O . 
. 

tn particIIJ8I', if the coefIicients are reo/, rand r are roots of the same equa­
li$D, and we have the familiar theorem that the noDnlal roots of an eque -

~OD with real ooeflicients occur in paire ofoonjugate roots. 
. The product 44 - a l + fJ' is alays positive or zero. Its Donnega-

. . the modllZua or of the DUID-

•. a; it -ne't&t1Iljnoloi,i" bJ' 
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the fact that the modulus of a real m.mber coincides with its numerical 
value taken with the positive !lign. 

We repeat the definition 
. ad ~ lal', 

where lal ~ 0, and observe that 141 ~ lal. For the absolute value of a 
product we obtain 

labl' ~ ab· iili ~ abclii ~ a4bb ... lal'lb\", 
and hence 

• 

labl = la\ • Ibl 
since both are ~ o. In words: 

TM absolute value of a product is equal to tM product of tM abeol~ 
of tM f~tor8. 

It is clear that this property extends to arbitrary finite products: 

la,a, .•• a,,1 = la.1 . 11121 ••• 1a,,1· 
The quotient alb, b F 0, satisfies b(a/b) = a, and hence we have also 
Ibl . la/bl GO lal. Of 

or 
(7) 

The formula for the absolute value of a Bl1m is not as simple. We find 

la + bl" = (a + b)(<< + b) = ad + (ab + 1>4) + bb 

la + bl' = lal" + Ib\" + 2 Re abo 
The conesponding formula for the difference is 

(7') la - bl" = lal" + Ib\" - 2 Re ab, 
and by addition we obtain the identity 

(8) 10 + bl' + la - hl" = 2{lal' + Ibl'). 

EXERCISIS 

L Verify by calculation that the values of 

z 
. . 

z'+ 1 

for Z = :E. + ilJ and II = :E - ilJ are conjugate. 
2. Find the absolute values of 

-2i{3 + .)(2 + 4J)(1 + .) and 
(3+41)(-1 +2.) 
(-1-1)(3-1) . 



L Provetb&t 
a-b 
1-a/) =1 
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if either lal - lor Ihl = 1. What exception must be made if lal - Ibl = 1? 
4. Find the eonditions under which the equation az + hi + c = 0 

in one complex unknown has exaetiy one SDlution, and compute that 
SDlution. 

L Prove lAgrange's identity in the complex form 

1.$. Ineq .. aliti.... We shall now prove SDme important inequalities 
which will be of consta.nt use. It is perhaps well to point out that there 
is nO order relation in the complex-number system, and henee all inequali­
ties must be between real numbers. 

From the definition of the absolute value we deduce the ineq"alities 

-Ial ;l!! Re a ;l!! lal 
-Ial :ii 1m a :;; lal· (9) 

The eqnality Re a = lal holds if and only if a is real and ;;:; O. 
If (9) ill applied to (7), we obtain 

la + bl" ~ (Ial + lb/)' 
, and hence 
, 

" (10) la + bl ;l!! lal + Ibl· 
i This ill called the triang~ iMqUGlitll for reMOns which will emerge later. 
, By induction it can be extended to arbitrary BUmB: 

;' 
i. (11) la, + a. + . . . + aal ~ la,1 + laol + .'. . + laal. 
I. ' 
" 

" The abeolute 1IGl~ 0/ a &'Um Ut at tI163t equal to IAe 114m o/1Ae ab,olute I:. . _ 
;, o/Ihe It:rmo. 
~ 
, The reader ill well aware of tbe importance of (11) in the 
.,: ~ case, and we .haJJ find it no Ie. imporlant in the theory of complex 
t:;.-. bnmbu 
t', Let\JJl detbjmine a.ll of equality in (11). In (10) the equality r holds if and only if ali ~ 0 (it is convenient to let c > 0 indicate that 
f ill is real and~). If b pi 0 , oondition can be written in the 
:: form Ibll(a/b) ~ 0, and it ill bellee!!CtiliWlleDt to alb ;; O. In ' ' 

"1 ' . 
", ", 

," , 
. . '- . . ' . .-
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we proceed 88 follows: Suppose that equality holds in (11); tben 

la.1 + la,l + ... + 1 ... 1 = I(a. + a,) + a, + ... + ... i 
:;; la. + a,l + la,l + . . . + 1 ... 1 :;; la.1 + la,1 + . . . + la.l. 

Hence la. + a.1 = la.1 + 11101, and if a, ~ 0 we conclude that a./a, iii: O. 
But the nnmbering of the terms is arbitrary; thus the ratio of any two 
nonzero terlll8 must be positive. Suppose conversely that this condition 
is fulfilled. ABsuming that a, ~ 0 we obtain 

. . . + ... 1 = la.l· 1 + ~ + . . . + ~ 
41 o. 

1 + a, + . . . + ~ = la,l 1 + la.1 + . . . + I ... 
a, a, la.1 a. 

= la.1 + la.1 + ... + la.l. 
To sum up: 1M sign of equalitylwlds in (11) if and mUy if 1M ratio oj any 
huo nonzero terms is pOBitive. 

By (10) we have also 

lal = I(a - b) + bl ~ la - bl + Ibl 
or 

la! - Ibl ~ la - bl· 

For the Same reason Ibl - lal :;; la - bl, and these inequalities can be 
combined to 

(12) la - bl .. lIal - Ibll· 
Of course the same estimate can be applied to la + bl. 

A special case of (10) is the inequality 

.613) la + i.61 ~ lal + IIlI 
which expressee that the absolute value of a complex number is at most 
equal to the sum of the absolute values of the real and imaginary part. 

Many other inequalities whose proof is less immediate are a1AO of fre ' 
.ent llBe. Foremost is Caudal! 3 inequality which states that 

,da,b, + ... + a.b.I' :;; (ja,l' + ... + 1 ... I')(lb1I' + ... + Ib.l") 
n,. in shorter notation, 

• 

t t J. a eonven;eot s .. mmation index and, nsed sa & subscript, cannot. be O()nfqzed 
:"ith the bnaFnary unit.. It. e--,.,ms poin~lesa f,o bcm ita 13". 

, ,,' , ," 
,,' " '".,,:,.~,: 
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To prove it, let;>. denote an arbitrlll'Y complex number. We obtain 
by (7) 

" " .. .. 
(15) k 140 - ;>.ii,I' = k 1401· + 1;>.1' k Ib,I' - 2 Re}; }; 11,'1>,. 

i-I ~_1 ,-1 '-I 
This expreBBion is ~ 0 for all;>.. We can choose 

for if the denominator should vanish there is nothing to prove. This 
choice is not arbitrary, but it is dictated by the desire to make the 

(15) as small as possible. Substituting in (15) we find, after 
Bimplifieations, 

which is equivalent to (14). 
From (15) we conclude further that the sign of equality holds in (14) 

if and only if the a. are proportional to the ii,. 
Cauchy's inequality can aIao be proved by means of Lagrange's 

'. identity (Sec. 1.4, Ex. 4). 

, 
, 

, 

, 

EXERCISES 

I. Prove that 

\' If lal < 1 and 1"1 < 1. 

a-b 
1- db <1 

I' " 2. Prove Cauchy's inequality by induction. 
t ," U 1a.1 < 1. >-. ii:; Ofori = 1, •..• nand;>., +;>.. + •.• +}... = I, 
Callow that 
,: J 

" ,', . !}...a, + }.. .... + . . . + }...o.! < l. 
, , 4. Show t!)attbml are complex 111!mberu satisfying 

- '. '- '. ' -'. - '. '." -., 

, . . 
,,- .~, ,." 
'.' .. : .•.. , .. , 
" ,. .. .­
• 
~-. 

.,.i,:,·,;,,:I· ..... ,-t+,!-+oI-2Iol· " '. '" 

--,: ... ,,- '--' 

_ '-:;', '.: .. ;, -:' -. .-, . ,,< -: .-:";' ,:: ' ' :: ,<:_::.,:::~":J ::.:(' ~ .~:-:;7~,~~::L-:. >..' ::.'~ .:~ -'i~'- ~,,~,;,~ ,..: 
, -"". 
-, ... : .... -, , ,- ..'.:: .. -,~,-",'- . ;-,.-' 
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if and only if lal ;:;; lei. If this condition is 
and values of Izl? 

2. THE CEOMETRIC REPRESENTATION OF 
COMPLEX NUMBER. 

what am the smallest 

With respect to a given rectangular coordinate system in a plane, the 
complex number a = a + ill can be represented by the point with coordi­
nates (a,Il). This representation is constantly and we shan often 
speak of the point a as a synonym of the number a. The first coordinate 
axis (z-axis) takes the name of real aai8, and the second coordinate axis 
(y-axis) is called the imaginary 1IriB. The plane itself is referred to as the 
compln plane. 

The geometric representation derives its usefnlness from the vivid 
mental pictures 1W3ociated with a geom~tric language. We take the point 
of view, however, that all conclusions in analysis should be derived from 
the properties of real numbers, and not from the axioms of geometry. 
For this reason we shall nee geometry only for descriptive and 
not for valid proof, unIe8B the language is so thinly veiled that the analytic 
interpretation is self-evident. This attitude relieves us from the exigencies 
of rigor in cODllectioD with geometric considerations. 

2.1. C.ometric Addidora orad The addition of com­
ple:J: nlJmbers MIl be visualized as vector addition.. To this end we let a 

. number be not only by a point, but also by a vector 
from the origin to the point. The Dumber, the point, and the 

vector will all be denoted by the same letter IJ. As usual we identify all 
vectors which can be obt.ained from each other by parallel displacements. 

Place a second vector b so that its initial point coincides with the end 
point of a. Then a + b is represented by the vector from the initial point 
01 a to the end point of b. To cOnstruct the difference b - a we draw 
bo~ vectors a and b from the I!&me initial point; then b - a points from 
the end point of a to the end point of b. that a + b and a - b 
are the diagonals in a parallelogram with the sides a and b (Fig. 1-1) • 

. An additional advantage of the vector repreeentation is that the length 
of the vector a is equal to lal. Hence the distance between the points a 
and b is la - bl. With this interpretation the triangle inequality 
la + bl ;:;; tal + Ibl and the identity la + bll + la - bl' ~ 2(lal' + Ibll

) 

become familiar geometric theorems. 
The point a and its conjugate « lie By I ometrically with to the 

real The symmetric point of a wi~ respect to the imaginary exis is 



P". 1-' Veetc>r addition. 

-4. The four points a, -ii, -a, 4 are the vertices of a rectangle which 
is BY rometnc with re8pect to both &Xes. 

In order to deri"" a geometric infAlrjlletation of the product of two 
complex numbers we introduce polar coordinafAls. If the polar coordinafAls 
of the point (a,/J) are (r,'P), we know that 

a=rCOll'P 
fl ~ rain 'P. 

• 
Hence we can write a = a + ifl = r{c08 'P + i RiD ",). In thia trigo­
nometric fO''IIl of a complex nllm ber r is alway8 £; 0 and equal to the 
modulua lal. The polar angle", is called the argument or amp/iltMie of the 
complex number, and we denote it by arg a. 

Consider two complex numbera II, ~ r,(coB '1" + i sin tpJ and 
a, - r,{c08 '1'1 + i sin 'P')' Their product can be written in the from 
II,/It = T,rll{coa "', cos 'PI - ain 'P,8in 'PI) + .(ain '1',_ 'PI + C08 '1" sin '1'.)]. 
By meana of the addition tbeoreI1l8 of the cosine and the sine this 
lion can be simplified to 

. (Ui) , , 
, , 

We recogoize that the product haa the modulus "T, and the argument 
'1'1 + '1'" The latter result is new, and we expreBB it through the equation 

(17) 
f· 

'.' It is clear that. this formula can be extended to arbitn.ry products, and 
L, We can therefore state: " --

:; TM lD'IIumem of II product ia eqUIIllo lite aum of lite argument8 of lite 
1. -
'. fat:tma. 
: Tbia is fundamental. The rille that we have just formwated give/! a 
; deep and IIne*pcdted justification of the geometric rep_tation of com­
i }>lex numhera. We must be fully aware, however, that the manner in 
;:.·wLioh we have .. tlIe!OImula (l7).vioIatee our prineiplell. In the 
~: \ .. 
" ,.,¥. ' 
':i. t, 
~;":. . .' . . " 

. .. . -- '. -
.. -:':"~' .-: .. , .'", 

. . . , . 
, "..". ' ., " .' --: ,'.'-~. ".' ',. ".'".". . . ' ... - .. 

. 
.' , '. . ". '- ,- '-' , 

.' " ... .' " 



first place the equation (17) is between tlnglu rather than between num­
bers, and secondly its proof rested on the III!e of trigonometry. Thus it 
remains to define the argument in analytic terms and to prove (17) by 
purely analytic means. For the moment we postpone this proof and 
shall be content to dismlf", the of (17) from a less critical 
standpoint. 

We remark first that the argument of 0 is not defined, and hence (17) 
has a meaning only if til and a. are #- O. Secondly, the polar angle is 
deterillined only up to multiples of 360°. For this reason, if we want to 
interpret (17) numerically, We must ag.ee that multiples of 360° shall not 
count. 

By Dltl&llB of (17) a simple geometric construction of the product ala. 
r.a.o be It folloWD indeed that the with the vertices 
0, 1, til is similar to the triangle whoae vertices are 0, a., ala.. The points 
0, 1, tI" &lid a. being given. this similarity detbzmines the point ala. (Fig. 
1-2).ln the case of division (17) is replaced by 

(18) a. arg- = arg a. - arga,. a, 

The geometric construction is the eame, except that the similar triangles 
are now 0, 1, tI, and 0, tI./tll, al. 

Reliltlrk: A perfectly acceptable way to define angles and arguments 
would be to apply the familiar methods of calculns whioh permit US to 
e:xpreA8 the length of a circular arc SII a definite integral. This leads toa 
correct definition of the trigonometric functions, and to a computational 
proof of the addition theorems.-

The reason we do not follow this path is that complex analysis, as 

PlO. w, vector multiplication. 
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opposed to real analysis, offers a much more direet approach. The clue 
lies in a direet oonneetion between the exponential function and the 
trigonometrie functions, to be derived in Chap. 2, Sec. 5. Until we 
reach this point the reader is asked to subdue his quest for complete rigor. 

EXIRelns 

1. Find the symmetric points of a with respect to the lines which 
bisect the angles between the coordinate axes. 

2. Prove that the points 4., /It, 4. are vertices of an equilateral triangle 
if and only if 4: + a: + a: = a./It + a,a. + aall •. 

1. Suppoee that II and b are two vertices of a square. Find the two 
other vertices in all poesible cases. 

4. Find the center and the radius of the circle which eircuID8Cribes 
the triangle with vertices a., /Is, a.. ExprMl the result in symmetric fom •. 

11.11. The Binomial Equation. From the preceding results we derive 
that the powers of a = r(cos'P + i sin 'P) are given by 

(19) a" = r>(COII "" + i sin Ikp). • 

This formula ;8 triyially valid for .. = 0, and 8ince 

, it holds also when 11 is a negative integer. 

, . 
. ,' 
.,' , 

For r = 1 we obtain de M oivr6' 8 !I1rnl1l1a 

(20) 
, . 

which provides an extremely simple way to cos Ikp and 8in 1Itp in 
I., . . 

" terms of cot! 'P and sin 'P. 

'. To find the nth root of a complex number a we have to solve the 

:, Biipposing that a ¢ 0 we write a = ,(cos 'P + i sin "') and .. 
z = p(008 B + iBin B}. 

(21) takes the fonn 

p"«()011 ,,/} + fain.,) - r{cos tp + i sill 'P). 

, , 
" , ",-, .',' 

"""""-', --.-,"'--", 
'" -"c'. -" -"", .. '.-"­.-', . , 

.' , 

- - ,'.;. ," .... :.',. 
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This equation is certainly 
obtain the root 

if p. = r and A' = 'P. Hence· we 

.'P+ •. tp 
008- ISln- I 

n n 

where .y;: denotes the positive nth root of the positive number r. 
But this is not the only solution. In fact, (22) is also fnJfiJ1ed if n8 

diJfelll from " by & multiple of the full anp. If ang\eB are eJ:preBBed in 
the full angle is 2Ir, and we find that (22) is Il&tisfied if and only if 

8 _ ! + k. 2Ir, 
n n 

k is any . However, only the values k = 0, 1, • • . • n - 1 
give values of r. Hence the complete solution of the equation 
(21) is given by 

+ i sin ! + k ~ I k .. 0, 1, ... , A-I. 
n n 

Tllenl (Ire n nth roots of any compiez number ¢ O. Tiley 1r.avs Ute 
modulus, and their arguments arB equally epaced. 

Geometrically, the nth roote are the vertices of a regnlar polygon 
with n sides. 

The (I = 1 is particularly important. The roots of the equation 
z" - 1 are called nth roots of unity, and if we set 

(23) .2r+ .. 2Ir 
Cd = COB , 81D -

n A 

all the roote can be by 1, (oJ. (oJ', ••• , ",_1. It is alAO quite 

evident that if Va denotes any nth root of (I, then all the nth roots can be 

exp..-d in the fOlln ",. . Va, k = 0, 1, . . . , n - 1. 

EXERCI .. , 

L Eqlreee C08 31', COB 4." and sin 5., in terms of COB ., and sin .,. 
Z. Simplify 1 + C08 I' + 008 2., + . . . + COB RIp sin ., + 

ain 2" + . . . + sin RIp. 

I. the fifth and tenth roots of unity in algebraic form • 
.. If til is given by (23), prove that 

1 + ... + ",tA + . . . + ",<_1)1 = 0 

for any integer It. which is not a multiple of n. 
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S. What ill the valUll of 

1 - ... + .... - ... + (-1)-",(0-1)'1 

1.3. A.nalytic GfH1_try. In classical anaJytic geometry the equation 
of a loous ill as a relation between:l: and y. It can juat as well 
be in tenruJ of z and i, sometimes to distinct advantage. The 
thing to remember is that a complex equation ill ordinarily equivalent to 
two rea1 equations; in order to obt.ain a genuine locua these equations 
should be the same. 

For instance, the equation of a circle is III - 01 ~ r. In algebraic 
form it can be rewritten as (z - a){l! - 4) ~ r". The fact that this equa­
tion is invariant under complex conjugation is an indication that it 
repreeents a single real equation. 

A Bkaight line in the complex plane can be given by a parametric 
equation z '" a + bt, where a and b are complex numbers and II ,& 0; the 
parameter t nIDS through all real values. Two equations II '" II + bt and 
II ~ a' + b't represent the same line if and ouly if a' - a and h' are real 
multiples olb. The Ii"'" are parallel wbenever II' ja a ree ' multiple of b, 
and they are equally directed if b' ill a pOBitive multiple of b. The direc­
tion of a directed line can be identified with arg b. The sngle between 
• = a + bt and It ... a' + b't is a.rg b'/b; observe that it depends on the 
order in which the line. are named. The lines are orthogonal to each 
other if b' /II is purely imaginary. 

Problema of finding int..reeetioDS between lines and circles, parallel 
or orthogonal Jines, tangents, and the like usually become exceedingly' 
simple when expreaaed in complex form. 

An ineqlla1ity I_ - al < r the inside of a circle. Similarly, 
a d irooted line II - a + bt determines a right half plane consisting of all 
pointuwithIm {. - a)/b < o and a left half plane with 1m (11- a)/b > O. 

· An easy argument shows that this distinction is independent of the 
· 

p.,.,.metric representation. 
' . 
.... aXERC.SES 
· 
• 

· 
.' 

L When <II: + bi + C = 0 represent a line? 
z. Write the equation of an ellipse, hyperbola, parabola in complex 

fOlm. 
.. Prove that the of a parallelogram bisect each other and 

~t the dial'luals of a rhombus are orthogonal. 
· " .... Prove .u·lytieilUy that themidpointa of parallel choMs to a circle 
··Iie on a . petpmidicmJar to the chorda. 
· ", L BhDWttr.pt aD .~ that' pus t.hroilgh II and 1/4 intereect the "'-t' I" ""1" . .', .. "", .'. . .. · .. -.'.t-ul_·" ""~""" ;. -, . 

-. , ' 

• • 
#.: . 
:.;' . . ..... ,.-.,. 

. .'·1,~ .. ,;,t , ' .. .'. . -.-- ..... ~ .. , .. 
:,-,," '" ._", ,,'.-., •. ,'., -""'~-·'<V!: .... ,'-', :,-.... '."" . " ," . ". , .- " . - - , 
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2.4. The Sphericol Representation. For many purposes it is useful to 
extend the system C of complex numbers by jntroduction of a symbol 00 

to repre!!ent infinity. Ita connection with the finite numbers is estab­
lished by setting a + 00 ~ 00 + a == 00 for all finite a, and 

/)'00 == oo'b== 00 

for all b ~ 0, inchuJing b == 00. It is irnpOSllible, however, to define 
00 + 00 and O· 00 without violating the laws of arithmetic. By special 
convention we shall write alO = 00 for a ~ 0 and bloo = 0 
for b ~ 00. 

In the plane there is no room for a point to 00, but we 
r.an of comw introduce an "ideal" point which we call the point at infinity. 
The points in the plane together with the point at infinity form the 
extended COtI'plex plane. We agl ee that every straight line shall 
through the point at infinity. By contrast, no half plane shall contain 
the ideal point. 

It is desirable to introduce a geometric model in which all points of 
the extended plane have a concrete repre!lentatiw. To this end we con­
sider the unit sphere S whose equation in three-dimensional space is 
x~ + x~ + x: = 1. With every point on S, except (0,0,1), we can associ­
ate a complex number 

(24) x, + ix, z; J 
1 - x, 

and this conespondence is one to one. Indeed, from (24) we obtain 

and hence 

(25) 

Izl" = x~ + x: = 1 + x., 
(1 - x.)' 1 - x. 

Izlt - 1 
x, = Izl' + t' 

Further computation yields 

(26) 

z+ll 
x, = 1 + Izl' 

z-j 

x, == i(l + Izl')' 

The ean be completed by letting the point at infinity 
couespond to (0,0,1), and we can thus teglll'd the sphere as a repre­
!!entation of the extended plane or of the exteDded number system. We 
note that the hemisphere x. < 0 c<Jtlesponds to the disk Iz\ < 1 and the 
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hemisphere %. > ° to its outside Izl > 1. In function theory the sphere 
S is referred to as the Riemann sphere. 

If the complex plane is identified with the (%.,x.)-plane with the 
%,- and %.-axis to the real and imaginary axis, respectively, 
the transCormation (24) takes on 'I simple geometric ml'8.ning. Writing 
,. = Z + iI/ we caD verify that 

(27) z:I/:-l = Z,:ZI:Z. - 1, 

and this means that the points (z,I/,O) (z"z.,x.), and (0,0,1) are in a 
straight line. Hence the is a central projection from the 
center (0,0,1) 88 shown in Fig. 1-3. It is called a lllereograpkic pr(}jeetion. 
The context will make it clear whether the stereographic projection is 
regarded 88 a mapping from S to the extended complex plane, or via _Ba. 

In the spherical representation there is no Hi mple interpretation of 
addition and multiplication. Its advantage lies in the fact that the point 
at infinity is no longer distinguished. 

It is geometrically evident.that the stereographic projection traQ8-
forms every straight line in the z-plane into a circle on S which 
through the pole (0,0,1), and the is also true. More generally, 
any circle on the sphere corresponds to a~le or straight line in thez-plane. 
To prove this we observe that a circle on the aphere liee! in .. plane 
a,%, + a,xl + a,xl - ao, where we can 8'sume that at + a~ + ai - 1 
and ° ;:i! ao < 1. In terms of z and i this equation takes the form 

a,(,. + i) - ati(,. - t) + a.(W - 1) = ao(W + 1) 
or 

(a. - a.)(z· + y') - 2 .. ,z - 2a.y + ao + a. - O. 

For a. ~ a. this is the equation of .. circle, and for a, = a. it represents 
a straight line. CODveISely, the equation of any circle or straight line 

N 

... ~W, 

. . 
", . " . . '. . . . " . .' . . " ' 

- . - , 



cen be written in this f()ml. The ooi1espondence is coll8equently one 
to one. ' 

It is easy to calculate the distance d("t) between the stereographic 
of IS and i. H the points on the sphere are denoted by 

(ZI,3:"Z.), (z;,:/:;,z;), we have first 

(ZI - za' + (z, - zJ' + (z. - Z~)I ~ 2 - 2(z1:l:; + x.z; + Z1:l:'). 

From (35) and (36) we obtain eIter a short computation 

z,Z; + z,z; + Z1:l:; 
(, + 1)(:1 + I') - (z - 2)(:1 - 2') + (1aI' - 1)(lz'I' - 1) 

.. (1 + W)(1 + Iii") 
(1 + lal ')(1 + la'I') - 21a - " • 

. ~ 1 + Iz!')(l + la' I) • 

Aa a result we find thet 

(28) d(z,.') .. ...., 

For II - GO the corresponding formula is 

2 d(z GO) ~ " .. 
, VI + Izli 

EXERCISES 

• 

J. Show that z and :I to diametrically opposite points on 
the RiP-mann sphere if and only: if Ii.' = -1. 

I. A cube has its v!lrlices on the sphere S and its edges parallel to the 
coordinats axes. Find the stercographic projections of the vertices. 

J. . problem for a regUlar tetrahedron in general position . 
... Let Z, Z' denote the stereographic projectiollB of z,:I, and let N be 

the north pole. Show that the triangles NZZ' and Nze are similar, and 
use this to derive (28). 

s. Find the radius of the spherical image of the circle in the plane 
whoes center is a and radius R. 

, 
'. . , 
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2 PLEX FUNCTI s 

1. INTRODUCTION TO THE CONCEPT OF 
ANALYTIC FUNCTION .. 

The theory of functions of a complex variable aims at extending 
calculus to the complex domain, Both differentiation and inte­
gration acquire new depth and signifiMIIll8; at the sam" time the 
range of applicability becomes radically Indeed, ouly 
the analytic Dr holomorphic functions MIl be freely differentiated 
and integrated. They are the Dnly true "functions" in the sense 
of the French "Thoorie des fonctions" or the German 
"Funktionentheorie.'J 

N everthelees, we sball use the term "functiDn" in its modem 
meaning. Therefore, when stepping up to oomplex nwnbers we 
haw to eonsider four different kinds of functions: real functions 
of a real variable, reAl functions .nf a complex variable, complex 
functions of a real variable, and complex functions of a complex 
variable. As a practical matter we that the letters. and ID 

,ball always denote complex variables; thus, to indicate a complex 
function of a complex variable we use the notation ID = !(z). t 
The notation 11 - J(z) will be Jlsed in a neutral manner with the 
UIlderstMding that z and 1/ can be either rea! or complex. When 
_ want to indicate that a variable is definitely restricted to real 
values, _ shall usually denote it by t. By these we 

t Modem .tudOllla &Ie "ell .ware that f It"Ddo for the runntjpn aDd J{a) 
··for. * .. -'01. fn..,OD. &.e,_, "",')eta are taAitioDally minded and 
wntJnue1O,~·.,·,·t"tba"DoteOiiJf..)." :;- ' 
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do not wish to cancel the earlier convention whereby .. notation z = x + iy 
automatically implies that x and 11 are real. .. 

It is CBsentia! that the law by which a function is defined be formulated 
in clear and unambiguoup terms. In other WOrdB, aD functioDB mut be 
weU defined and consequently, until further notice, Mngl£-oalued. t 

It is 1Wl necessary that a function be defined for aD values of the 
independent variable. For the moment we shall deliberately under­
emph&Bive the role of point set theory. Therefore we make merely an 
informal agreement that every function be defined on an open 1Iflt, by 
which we mean that if I(a) is defined, then f{x) is defined for all " suffi­
ciently cloBe to a. The formal treatment of point set topology is deferred 
until the next chapter. 

1.1. Limits and Continuity. The following basic definition will be 
adopted: 

(1) 

TM Jundion f(,,) itt 84id to have the limit A IJII " tmda to a, 

lim I(x) = A, ..... 
iJ '. only if the loUOOIing is I!:m: 

Far tJVeTY • > 0 there exittls a number II > 0 with the property tIwl 
1/(:) - AI < ,for all values of x such tIwllx - al < II and:r >" a . 

. !'-.,. . ' . 

. "'l'!rla definition makes decisive liRe of the absolute value. 8ince the 
notion' of absolute value has a meaning for complex as well 88 for real 

we can UBe the same definition regardless of whether the variable 
the function J(,,) are real or complex. 

an alternative simpler notation we sometimes write: f(x) --> A for . . ....... ' ... 
. ' ''l'bere are some familiar variants of the definition which correspoud 
.. . eere where a or A is infinite. In the real. case we can distinguish 

the limits + '" and - "', but in the complex case there is only 
~infinite limit. We truet the reader to formulate COllect definitions 
tci' Cover all the possibilities. 
' .. '" 'The well.known results concerning the limit of a'sl1m, .. product, and 
a ,qilotient continue to hold in the complex Indeed, the proofs 
depend only on the properties of the absolute value expreesed by 

labl - lal . Ibl and la + bl :!Ii lal + Ibl. 

t We eb·D IIOmetim e& IISD the plecm'.mc term .in;. ,.sd/flAditJlt& to un_line 
that the f1"'efiou has cmly one yalue for: elM vr'u of the ~ 

.. 
. . . : -... .. : .,: .. 
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Condition (1) is evidently eqwvalent to 

lim i(x) = A. ...... 
From (1) and (2) we obtain 

lim Re I(x) = Re A .-4 
(3) lim 1m I(x) = 1m A. ...... 

(1) is a con""quence of (3). 
The function I(x) is said to be continuous at a if and only if 

lim I(x) = I(a). A conlin"""" ,unction, without further qualification, ..... 
is one which is continuous at all points where it is defined. 

The sum/(x) + g(x) and the product/(x)g(x) oftwo continuousfune­
tions are continuous; the quo\ient I(x)/g(x) is de1ined and continuous at 
a if and only if I/(a) 'J"f o. If I(x) is continuous, so arc· Be I(x), 1m I{x), 
and 11(x)l. , 

The derivative of a function is defined as a particular limit and can be 
'; considered regardless of whether the variables are real or complex. The 

forn1a.l definition.is 
" , 
, ' 

(4) I'(a) = lim I(x) -/(a). 
..... z-Q 

The usual rules for forming the derivative of a sum, a product, or a 
". quotient are all valid. The derivative of a composite function is deter­

mined by the chain rule. 
There is nevertheless a fundamental difference between the of a 

',real and a complex independent variable. To illustrate our point, let 
/fII) be a r«Jl function of a complex variable whose derivative exists at 

," Then I'(a) is on one side real, for it is the limit of the quotients 

, 

I(a + 1) -/(a) 
Ii. 

Ii. tends to zero through real values. On the other side it is also the 
of Uw quotients 

I(a + ih) - lea) 
= .. 

iii. 

118 such purely imaginary. Therefore f(G) must be zero. Thus a 
of & oomiMex variableeitber hIIII the derivative zero, or eLte 

does DOt 1IliiIt.' , "~"'" .. ' 

, 
, , 
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of a complex function of & real variable CM be reduced to the 
real II we write z(t) = :I:(t) + iy(t) we find indeed 

ret) = :1:'(1) + iv'(t), . 

and the existenee of s'(I) is equivalent to the simuItaruloU8 existenee of 
:e'(0 and TI(t). The complex notation hIlS nevertheless certain formal 
advantages which it would be unwise to give up. 

In contrast, the existence of the derivative of a complex function of a 
complex variable has far-reaching consequences for the structural proper­
ties of the function. The investigation of these consequences is the cen­
tral theme in complex-fllnction theory. 

1.2. Ancdytfe Functio...... The class of aMlgticfunctioot is fom.ed by 
the complex fllnctions of a complex variable which a derivative 
wherever the function is defined. The term holDlltorphic fumlirm is nsed 
with identical meaning. For the purpose of this preliminary investiga­
tion the reader may think primarily of functioU8 which are defined in the 
whole plane. 

The 811m and the product of two analytic functions are again analytic. 
The same is true of the quotient f(z)/g(%) of two analytic functions, pro­
vided that I/(z) does not vanil!h. In the general calle it is to 
exclude the points at which g(z) = O. Strictly speaking, this very typi­
cal case will t.hus not be included in our considerations, but it will be clear 
that the results remain valid except for obvious modifications. 

The definition of the derivative can be rewritten in the form 

fez) _ lim fez + 11) - fez) • 
~o h 

All a first consequence fez) is continuous. Indeed, from 
f(1l + 11) - fez) - h· (f(z + h) - f(z»/II we obtain 

lim (J(z + h) - f(z)) = 0 . fez) ... o. 
~o . 

If we write fez) = v(s) + w(z) it follows, moreover, that v(z) and II(Z) 
are both continuous. 

The limit of the difference quotient must be the same regardless of 
the way in which h approaches lIero. If we choose re.a\ values for h, 
then the imaginary part 'I is kept constant, and the derivative becomes 
.. partiaJ derivative with respect to:e. We have thus 
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Similarly, if we substitute purely imaginary values ik for h, we obtain 

fez} _ lim I(z + i~) -/(z) "" -i ~ ~ -i ~ + ~. 
~o ik ay ay ay 

It follows that I(z) must satisfy the partial difterential equation 

(5) ~ - -i~ 
iIz ay 

whioh resolves into the real equations • 

(6) 
au av 
-=-J 
iIz ay 

are the Caw:hy-Riemmr.n differential equations which must be 
satisfied by the real and imaginary part of any analytic function. t 

We remark that the existence of the four partial derivatives in (6) is 
implied by the existence of fez). Using (6) we can write down four 
form81Jy difterent expressions for fez); the simplest is 

fez} - ~ +i~. az az 
For the quantity If(z)I' we have, for instance, 

au • au' au' av' auav 
If(z)I' = ax + au = ax + ax = axay 

The last expression shoWl! that If(z)I' is the Jacobian of u and v with 
respect to z and II. 

We shall prove later that the derivative of an analytic function is 
itself analytic. By this fact u and v will have continuous partial deriva­
tives of all orders, and in particnl .... the mixed derivatives will be equal. 
Using this information we obtain from (6) 

a'v a'v 
AU=8z.+ay.-O 

a'u a", 
Av=az·+ayt=O. 

A function u which satisfies LGp/<M:e', equation Au = 0 is said to be 
laarmtmie. The real and part of an analytic function are thus 
hi monic. If two .harmonic functions u and " satisfy the Cauchy­
lliemann equations .(6),. then v is to be the coniWl'lle IIormonie lu-

tA--"· 
.Mibe . . 
met.ria 

. 

• ~ :. ..' 
. . 
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tibn of u. Actually, v is detem';ned only Up to an additive coDStant, 80 

that the Il8e of the definite article, although traditional, is not quite aceu­
rate. In the same sense, u is the conjugate h8Jmonic function of - •. 

o 

This is not the place to iliscuss the weakest conditions of regularity 
which CILll he imposed on harmonic functions. We wish to prove, how­
ever, that the function 1£ + ill determined hy a pair of conjugate har­
monic functions is always analytic, and for this purpose we make the 
explicit assumption that 1£ and v have continuousfil"ilfnlrder partial 
derivatives. It is proved in calculus, under exactly these regularity con­
ditions, that we can write 

au au 
u(x + 1.,1/ + k) - u(x,1/) = az I. + a k + 6, 

. Y 

. v(x + h,y + k) - .(z,1/) = ii II +~ k + to, 

-
where the remainders "" " tend to zero more rapidly than I. + ik in the 
lienee that 6,/(1. + ik) -+ 0 ILlld .. /(1. + iTe) -+ 0 for I. + ik ..... O. With 
the notation fez) = u(x,1/) + iv(z,y) we obtain by virtue of the rela­
tions (6) 

J(z + I. + ilc) - fez} = ~ + i ~ (h + ik) + I. + iI, iJz ax 

and hence 

fun f(. + I. + ilc) - f(z) = ~ + i ~. 
.H~ ,0 h. + ik ilz ax 

, 

.e conclude that f(l) is analytic. 
-,.-- If u(x,1/) and v(x,1/) have rontmOOWl jiTBt-order partial derivatives wh.ich 
j,aliwf1/ the Cauchy-Riemann differential equation" then J(z) = u(z) + w(z) 

_ .. tmallltic with rontinU0U8 derivative /'(.), and COIWerMIII. 
The conjugate of a harlllonic function can be found by integtation, 

and in simple caseo the computation can be made explicit. For inst;a.nr,e, 
U = ",' - y' is harmonic and au/ax = 2x, au/ ay = - 21/. The conju­
'pte function must therefore satisfy 

iN 
- ~ 21/, a", 

-

a. ay = 2",. -

From the first equation v = 2:I:y + <p{y), where tp(Yl is a function of 1/ 
alone. Substitution in the second equation yields tp'(y) - O. Hence 
.,(Y) is a and the most general function of ",' - 1/' is 
2:I:y + e where" is a consta.n~. Obeerve tha~:r:" - 1/' + 2izy - z". The 
analytic function with the real pa. -t "," - 11' is- hence z' + te. 

- . . --,-"', 
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There is an interesting formal procedure whieh throws considerable 
light on the nature of analytic functions. We present this procedure 
with an explicit warning to the reader that it is purely fonnal and does 
not any power of proof. . 

Consider a complex function/(.:z:,II) of two real variables. Introducing 
the complex variable z = .:z: + i,l and its conjugate z = .:z: - iy, we 'can 
write x ~ t(z + i), y = -!i(z - I). With this change of variable we 
can consider 1(.:z:,II) as a function of z and li which we will treat as inde­
pendent variables (forgetting that they are in fact conjugate to each 
other). If the rules of calculus were applicable, we would obtain 

ill 1 ill . iJf -=---'1-, 
ilz 2 ax ~ 

iJf 1 iJf • iJf -'--+1-· ill 2 ax ~ 

These expressions have no convenient definition as limits, but we can 
nevertheless introduce them as symbolic derivatives with respect to z 
and!. By comparison with (5) we find that analytic functions are ch ...... 
acterized by the condition ill/ilt = 0. We are thus tempted to say that 
an analytic fMetion is independent of I, and a function of 0 alone. 

This formal reasoning supports the point of view that analytic funll­
tions are true functions of a complex variable as opposed to functions 
which are more adequately de.cribed 88 complex functions of two real 
variables. 

By similar fonnal arguments we can derive a very simple method 
which allows us to compute, withont use of integration, the analytic 
function I(z) whoae real part i8 a given ·harmonic function u(.:z:,I/). We 
remark first that the conjugate function I(z) has the derivative zero with. 
respect to 0 and may, therefore, be considered as a function of !; we 
denote this function hy J(I). With this notation We can write down the 
identity 

u(.:z:,y) - t!/(.:z: + il/) + l(x - il/)]. 

It i8 reasonable to expect that this is a formal identity, and then it holds 
even when z and 1/ are complex. If we substitute z = z/2, 1/ - z/2i, 
iie obtain 

1I(z/2,0/2i} - l!f(z) + J(O)]. 
• 

Since /(%) is only determiMd up to a purely imaginary constant, we may 
• weU aliSume that 1(0) ill real, which implies J(O) = u(O,O). The funD­
tlon /(0) can thus be computed by means of the fannula 

1(') = 2u(a/2, z/'a) - u(O,O) • 
. 

A pqrely imegiDMY oo.8ten t.':an ~ &d~~at-·"iU.: 
. In this form the method is definitely limited to functions u(%",I/) wMeIl 

~ . 
,.'-'-".-, 
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are rational in :I: and tI, for the function must have a meaning for com­
plex values of the argument. Suffice it to say that the method can be 
extended to the general caee and that a complete justification can be , 

• given. 

EXERCISI;S 

L If g(w) and fez) Me analytic functions, show that g(J(z» is also 
analytic. 

:&. Verify Canchy-Riemann's equations for the functions Zl and t l • 

I. Find the most general harmonic polynomial of the form azl + 
b:l:"y + czyt + dy'. Determine the conjugate harmonic function and the 
corresponding analytic fnnction by integration and by the formal method . 

... Show that an analytic function cannot have a constant absolute 
value without reducing to a constant. , 

.. Prove rigorously that the functionsj(z) and'"'(B"') Me simultaneously 
analytic. 

L Prove that the functions u(z) and uti) are simultaneously harmonic. 
7. Show that a harmonic function satisfies the fOfmal differential 

equation 
a'" a,ai = o. 

1.3. PolynomialB. Every oonstant is 8D analytic function with the 
derivative o. The simplest nonconstant analytic function is Ie whose 
derivative is 1. Since the sum and product of two analytic functions are ' 
again analytic, it follows that every polynomial 

(7) pe,) = a. + a,z + . . . + a,r 
is an analytic function. Its derivative is 

P'(z) = 4, + 2a.z + ... 
The notation (7) shall imply that a,. F 0, and the polynomial is then 
said to be of 1l. The constaDt 0, considered as a polynomial, is in 
many respects exceptional and will be excluded from our oonsiderations. t 

For 1l > 0 the equation pe,) = 0 has at least one root. This is the 
~ed /nDdamentaI theorem of algebra which we shall prove later. 
If pea,) ... 0, it is shown in elementary algebra that pe,) = (z - a,)p ,(z) 
where P,(z) is a polynomial of deglee 1l - 1. Repetition of this 
finally leads to a complete factorization 

(8) P(z) = a,.(z - ",){z - al) • . . (z - ... ) 
, 

t For formal reaSDns, if the constant Oiarel&rded M a polynomi&l, itadell'ee is. 
equal to - ... 
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where the (I., aI, • . • , .... are not distinct. From the fac­
toriz"tion we conclude that P(z) does not Vlmish for any value of z 
different from a" a., ... ,..... Moreover, the factorisation is uniquely 
determined except for the order of the factors. 

If exactly h of the (lj coincide, their common value is called a zero of 
P(z) of the order h. We fiud tbt the 8Um of the orders of the zeros of a 
pcIynom;a] is equal to its degJee. More simply, if each zero is counted 
as ma.oy times as its order indicates, a polynomial of degJee n has exactly 
n zeros. 

The order of a zero a can also be determined by consideration of the 
8ucceeeive derivatives of P(z) for z = a. Suppose that a is a zero of 
order h. Then we can write P(z) = (z - a)·P.(z) with P.(a) ¢ O. SUIl­
ceseive derintion yields Pea) = pI(a) = . . . - pel-li{a) = 0 while 
pel)(a) ¢ O. In other words, the order of a zero equals the order of the 
first nonvanishing derivative. A of order 1 is called a simple zero 
and is characterised by the conditions Pea) = 0, pI(a) ¢ O. 

As an application we shall prove the fonowing theorem, known as 
L'l.laJI' ~ 

Theorem 1. If allll~08 oj a poll/flOmiol P(z) lie in a hnlJ plane, !hell all 
zeroB oj the derivative pI (z) lie in the same hnlJ plane. 

(9) 

From (8) we obtain 

P'{z) _ 1 + 
P(II) - z - a, 

1 . . . + -,-----=._. 
z- .... 

Suppose tbt the half plane H is defined as the part of the plane where 
1m (z - a)/b < 0 (see Chap. 1, Sec. 2.3). If ... is in H and z is not, we 
have then 

But the imegin&Iy parts of reciprocal numbers have opposite sign. 
Therefore, under the same 1m bez - ... )-1 < O. If this is 
true for all k we conclude from 

bP'(II} L" b 
1m P( r - 1m < 0, s Z-Cl,t 

I-I 
. 
and coDBequently P' (_) ¢ O. 

In a sharper fonnwation the theorem tells WI that the smaUest convex 
polygon tbt contains the aeroe of P(.) also contains the zeros of PI(Z). 
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1.4. RatiolMJl Functions. We turn to the ""_'Al of a rational function 

(10) 
P(z) 

R(z) = Q(z)' 

given lIB the quotient of two polynomials. We and this is ell89n­
tial, that P(o) and Q(z) have no common factors and hence no common 
zeros. R(z) will be given the value QD at the zeros of Q(z). It must 
therefore be considered as a function with values in the extended plane, 
and as such it is continuous. The zeros of Q(z) are called poles of R(z), 
and the order of a pole is, by definition equal to the order of the corre­
sponding lero of Q(z). 

The derivative 

(11) R
'( ) _ P'(z)Q(o) - Q'(z)P(z) 

• - Q(.). 
• 

, 

exists only when Q(z) ~ O. However, as a'rational Iunction defined by 
the right-hand member of (11), R'(z) has the same poles as R(z), the order 
of each pole being increased' by One. In case Q(z) has multiple zeros, 
it should be noticed that the expression (ll) does not appear in reduced 
form. 

Greater unity is aOOieved if we let the variable z 88 well 88 the values 
R(z) rang<! over the extended plane. We may define R( QD) as the limit 
of R(o) as z ....... , but this definition would not determine the order of a 
zero or pole at ... It is therefore preferable to consider the function 
R(l/z). which we can rewrite as a rational function R,(z), and set 

R( QD) = R,(O). 
.-

n R,(O) = 0 or .. , the order of the zero or pole at .. is defined as the 
order of the zero or pole of R,(z) at the origin. 

With the notation 

R a.+ a,z + ... +a".-
(.) = b. + b,z + . . . + b ..... 

we obt.ain 

• 

where the power .. ' • belongs either to the numerator or to the denomi­
nator. Accordingly, if m > 11 R(z) has a zero of order III - 11 at QD. if 
III < 11 the point at .. is a pole of order,1I - tn, and if III = 11 

R(oo) = a./b. ~ 0,00. 

, 
.". ,. 

-, . ''"' .. , .. 
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We can now count the total number of zeros and poles in the extended 
plane. The count shows that the number of zeros, including thoee at 00, 

is equal to the gIeater of the numbers m and n. The number of poles is 
the same. This common number of zeros and poles is called the ~ of 
the rational funetion. 

If a is any constant, the function H(,,) -' Q has the 8&me poles as R(o), 
and consequently the same order. The zeros of R(o} - Q are roots of 
the equation R(o} - a, and if the roots are counted as many times 88 the 
order of the zero indicates, we can state the following result: 

A rational function. R(o) of order p 11M p zer/HI and p pole8, and every 
equation. R(z} = a has e:MCtIy p roota. 

A rational function of order 1 is a linear fraction 

8(z) -; t~ 
with a8 - fh ;F O. Such fractions, or linear will be 
studied at length in Chap. 3, Bee. 3. For the moment we note merely 
that the equation." = 8(z) has exactly one root, and we find indeed 

z = 8-1(w) = aw - fJ • 
-'\'VI + a 

The transformations 8 and 8-1 are inverse to each other. 
The linear transformation z + a is called a parallel tr~, and 

l/z is an ~simI. The fOlmer has a fixed point at CD, the latter inter­
changes 0 and 00. 

Every rational function has a representation by parti6l ff'tJdiorul. In 
order to derive this representation we first that R(z) has a pole 
at DO. We carry out the division of P(z) by Q(z) until the of the 
remainder is at mOllt equal to that of the denominator. The result can 
be written in the form 

(12) R{z) = G(z} + H(z) 

where G(z) is a polynomial without constant teno, and H{.) is finite at DO. 

The of G{:.) is the order of the pole at GO, and the polynomial G(z) 
is called the ri~ part of R{z) at ... 

Let the distinct finite poles of R(z) be denoted by fJ., fJ.. • • • , fJ •• 

The function H fJi +} is a rational function of r with a pole at r = "'. 

By une of the decomposition (12) we can write 

• 

"',,,-,:. ' 

• • 
• ,".,-," - .,'j ,',,,-',- ,"'-.'", ,- ,,"- ,-., '; - -,.,- -·'t .""-" . . - '- .. ~ .. - •• ', 

• 
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or with a change of variable 

R(o) = Gj 
1 

+H; z - fl; 

Here G; 
• - fl; 

1 
is a polynomial in s ~ fJ; without constant term, called 

the singular part of R(z) at flj. The function Hi 

z = flj. 
C(lnsider now the expression 

(13) 
• 

R(z) - G(z) - I Gj 

;-1 

1 ---'--". . 
Z - fJ; 

1 is finite for 
z - /l; 

This is a rational function which cannot have other poles than fl., fl" 
. . . , fl. and ... At z = fJ; we find that the two terms which become 

infinite have a difference Hj z ~ fJ; with .. "finite limit, and the same 

is true at ... Therefore (13) has neither any finite poles nor a pole at ... 
A rational function without pole. must reduce to a constant. ""d if this 
constant is absorbed in G(z) we obtain 

• 1 
(14) R(.) = G(z) + L Gj z - fJ •• 

. 1 ' ,-
This representation is well known from the calculus where it is use<! 

as .. technical device in integration theory. However. it is only with the 
introduction of complex numbers that it becomes completely SIlccessf!!1. 

EXERCISES 

1. Use the method of the text to develop 

0' 1 
and 

z' - 1 z(z + 1)'(0+ 2)' 

in partial fractions. . 
2.. If Q is a polynomial with distinct roots "'1. . • . ....... and if P is a 

polynomial of d"gree < fl. show that 

3. Use the formula in the preeedingexe..,ise to prove that there existe 
a unique polynomial P of degI ee < fI with given values c. at the pointe 
ott (I.agrange·s interpolation polynomial). 

. ," -.:' 
. 

'. . .-,. . . 
-~.'".~, .. -' ..•... ,: ..... 
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... What is the general form of a rational function which has absolute 
value Ion the cirrJe Izi ~ 11 In particular, how are the zeros and poles 
related to each other? 

s. If a rational fllnction is real on Izl = I, how are the zeros and poles 
oituated? 

6. If R(z) is a rational function of order n, how large and how small 
can the order of R'(z) be? 

Z. ELEMENTARY THEORY OF POWER SI!RIES 

Polynomials and rational functions are very special analytic functions. 
The easiest way to achieve peater variety is to form limits. For 
instance, the slim of a convergent aeries is such & limit. If the terms are 
functions of a variable, so is the sum, and if the tern.s are analytic func­
tions, chances are good that the 8Um will also be analytic. 

Of all aeries with analytic u,nns the power aeries with complex 
coefficients are the simplest. In this section we study only the most 
elementary properties of power aeries. A strong motivation for taking 
up this study when we are not yet equipped to prove the most general 

(thoae that depend on integration) is that we need power aeries 
to construct the exponential function (Sec. 3). 

2.1. Sequences. The sequence {a..1 r has the limit A if to every. > 0 
there exists an n. such that Ia.. - AI < • for n ~ no. A sequence with a 
finite limit is said to be ~, and any sequence which does not con­
verge is divergent. If lim. ,. ... = .. , the aequence may be said to 
diverg4 II) infinity. 

Only in rare C88eS can the convergence be proved by exhibiting the limit, 
so it is extremely important to make use of a method that JK>lmits proof 
of tbe existence of a limit even when it cannot be determined explicitly. 
The test that serves tbi. purpose hears the name of Cauchy. A seqilence 

. will be called or a Cav.chy ~, if it satisfies the follow-
ing condition: given any I > 0 there exists an n. such that I ... - a..1 < • 
whenever n ~ n. and m ~ nO. The test reads: 

A "'tIIcnu i. Cl)f/.vergent i/ and I)f/.ly i/ it il a Cauday.eq_. 
The neceeaity is immediate. If a.. --+ A we can find n. such that 

< ./2 for n iii!: n.. For tn,n ~ n. it fonows by the triangle 
that Ia.. - a..1 :i Ia.. - AI + Ia.. - Al < •. 

The 8ufficiooey is closely connected with the definition of real num­
.\I:eIs, 8!ldOIll! way in which real numbers can be introduced is indced to 

c!)ndition.However, wewiah to lise 
bou~e!lrqonOto"'~uenc:eof real num. 

. - -, -

f ' .. 
- ~ , " 

. - . -. . . 
", .' -', '-',", .,- . ',",-,.'., .,',' .. ' .... '.'. -,', r-... - . .<- "-', -.-."<;.' .... '.,- . .- . -:.-. ,~'_;_.- .. ,~" .. ". -m..-'--'~"''''~' ,:., ... " ... -.•. ~.-,~." .. ';.,"~,;-;.--,,'.,,-...... ;., 
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The real and imaginary parts of a Cauchy sequence are again Cauchy 
aequence., and if they converge, SO does the original aequence. .. For this 
reason we need to prove the sufficiency only for rel!l sequences. We use 
the opportunity to recall the notions of limes IlUperior and lime8 inferior. 
Given a real sequence \a.lr we shall set a. = ma.x \a., ... , ... 1, that 
is, a. is the greatest of the numbers a" .... ,.... The sequence la.lr is 
nondecn-smng; hence it has a limit A, which is finite or equal to + 00. 

The nnmber A. is known as the leasl upper bouM or IlUpre",um (l.u.b. or 
IlUp) of the numbers ... ; indeed, it is the least Dumber which is ~ all a:". 

Construct in the same way the least upper bound A. of the sequence 
\ ... ,: obtained hom the original sequenee by deleting a" • • • , ..... 
It is clear that \ A.I is a nonino easing sequence, and we denote its limit 
by A. It may be finite, + GO, Or - GO. In any case we Mite 

A=limsup .... ...... 
It is easy to characterUe the limes superior by its properties. If A is 

finite and I > 0 there exists an n. such that A.. < A + ., and it follows 
that "'.:;; A... < A + & for .. $; .... In the opposite direction, if 
"'. :;; A - • for n ~ "0, then A .. :;; A - ., which is impossible. In 
other words, there are a.rbitrarily large n for which CI_ > A -.. If 
A = + CD there are a.rbitrarily large ... , and A = - CD if and only if ". 
tends to - CD. In all cases there caonot be more than one number A with 
these properties. 

The liMes inferi()r cao be defined in the Mme ma·nner with inequalities 
reversed. It is quite clear that the limes inferior and limes superior will 
be equal if and only if the sequence converges to a finite limit or diverges 
to + GO or to - GO. The notations are frequently simplified to lita and 

The reader should prove the following relati9ns: 

lim a. + lim fl. ;li lim ( ... + (1.) :> lim ... + lim (1. 
'" -

lim a. + lim fl. ;li ffiii ( ... + fl.) ~ lim ... + lim fl •. 

Now we return to the sufficiency of Cauchy's condition. From 
I ... - a .. 1 < • we obtain 1 ... 1 < 1 .... 1 + • for n $; n., and it follows that 
A = lim ". and a = lim ... are both finite. If a ;of A choose 

(A .;.. a) 
0= 

3 
and deu,m.ine a corresponmng no. By definition of a and A there exists 
an a. < a +. and an a. > A - 0 with m,n i1:; no. It follows that 
A - a - (A - .... ) + ( .... - a.) + (a. - a) < 3.,eontrarytothechoi~ 
of.. Henee a - A, and the sequence converges. . 

. . 

. . . ." . - ", '" ... -'. "., 
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2.2. Series. A very simple appli~tion of Cauchy's condition permits 
\18 to deduce the convergence of one sequence from that of another. If it 
is true that lb. - b.1 :; 1"- - ""I for all pairs of subscripts, the sequence 
Ib.1 may be termed a c<mtroction of tbe sequence 1",,1 (this is not S 

standard term). Under this condition, if {a.l is a Cauchy sequence, 80 is 
{b.l. Hence convergence of {a.l implies convergence of {b.}. 

An infinite series is a formal infinite sum 

. 
(15) 1I1+a.+··· +11.+ .... 
Associated with this series is the sequence of its partial sums 

B. - a, + a. + . . . + a... 
The series is aajd to converge if and only if the cotlesponding sequence is 
conveJ&ent, and if this is the case the limit of the sequence is the sum of 
the series. 

Applied to a aeries Cauchy's convergence test yields the following 
condition: The aeries (15) converges if and only if to every , > 0 there 
exists an n. such that la.. + II" 11 + . . . + a..+,1 < • for all n ~ n. and 
p ~ O. For p = 0 we lind in particular that 111.1 < I. Hence the gen­
eral term of a convergent series tends to aero. This condition is , 
but of course not 1I11fficient. 

If a finite number of the terms of the aeries (15) are omitted, the new 
series converges or diverges together with (15). In the C9lJe of conver­
gence, let R. he the Slim of the series which begillB with the term a"." 
Then the SUm of the whole series is S = a.. + R •. 

The series (15) can be compared with the series 

(16) 11111 + la.1 + . . . + 111.1 + . . . 
fomltlli by the absolute values of the terms. The sequence of partial 
sums of (15) is a contraction of the sequence con esponding to (16), for 
III. + a..+1 + . . . + a..+o\ :; 111.\ + 1a..+,1 + . . . + 11.1" ,,1· There­
fore, convergence of (16) implies that the original series (15) is convergent. 
A series with the property that the series forllled by the abeolute values 
of the terms converges is said to be oollOlut611l Clll'Wtrgent. 

1.J. Uniform eo .... ",eJIee. Consider a sequence of functions f.(",), 
aDiii!fined on the _e set E. If the sequenile of values If.("'» con­
~ for eveJj z that belcmgs to E, then the limit f(z) is egeiu a function 

,> ' . 

dn·B';';" By'ileliDition, if c> 0 and '" . 'toE· ·exiots aDllti sucb 
that 1/.(z) -/(z)1 < • for fa ~ 1It, but llti is allowed to depend on z. 

,. , 
": . . 
,.).... . ' .............. ; ...... ' ,,. '." ' .. , .. :' 
" ", .... ,',", .... ,,', .' ' ... ' .... , 
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For instance, it is true that 

lim 
1 1+- x=x .. • 

for all x, but in order to have 1(1 + l/n)x - xl = lxl/n < s for n l?; n. 
it is necessary that n. > lxi/eo Such an no exists for every fixed x, but 
the requirement cannot be met s; multaneously for all x. . 

We Bay in this situation that the sequence converglls pointwise, but 
not uniformly. In Positive fonnulation: TIuJ sequence (f.(x) I convergea 
..... iJolfnly to J(x) on IIuJ aet E iJ to every , > 0 ~re exiaIB an n. BUCk thai. 
If. (x) - f(x)1 < • for aU n l?; no and aU x in E. 

The most important consequence of uniform convergllnce is the 
following: 

TIuJ limit Iunaion f1j a uniformly c_rgenl sequence f1j conIinuOUI 
funclion& ia itself conIinuoua. . 

Suppose that the functions f.(x) are continuous and tend uniformly 
to f(x) on the set E. For any • > 0 we are able to find an n such that 
If.(x) - l(x}1 < e/3 for all zin E. Letxo be a point in E. Becausef.(x} 
is continuous at Xo we can find Ii > 0 such that II. (x) - f.(x.) I < _/3 for all 
x in E with Ix - x.1 < a. Under the same condition on x it follows that 

IJ(x) - l(xo)1 ~ I/(x) - [.(:c)1 + I/.(x) -J.(x.)1 + If.(x.) - l(zo)1 < " 
and we have proved that f(z) is continuous at :c •• 

In the theory of analytic functions we shall find uniform convergence 
much more important than pointwise converg1lnce. However, in most 
eases it will be found that the convergence is uniform only on a part of 

• 

the set on which the functions are originally defined. " 
Cauchy's necessary and sufficient condition has a counterpart for 

uniform convelgllnce. We assert: 
The sequence (f.(x) I c07lllergea unilorllllyon E if and only if to every 

a > 0 ~e exial8 an no BUCk thall/.(z) - f.(x}1 < afar all m,n l?; n. and aU 
zinE. 

The neceMity is again trivial. For the sufficiency we remark that 
the limit function fez) exists by the ordinary form of Cauchy's test. In 
the ineqnality If.(z) - I.(x) I < & we can keep n fixed and let m tend to 
GO. It follows that 1/(:e) - f.(x) I ~ e for n l?; n. and -all z in E. Hence 
the convergence is uniform. 

For practical use the following test is the most applicable: If a 
sequence of functions 11.(:&) \ is a contraction of a convergllnt sequencc of 
constants (0,,\, then the sequencc (f.(:e)1 iSllniformly convergent. The 
hypothesis means that 1/ .. (x) - I.(x)\' ~ law. - 0,,1 on E, and the, con-

. . 
.' 

-. . . d ' 
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clusion follows immediately by Cauchy's condition. 
In the case of series this criterion, in a somewhat weaker fonn, becomes 

particularly simple. We say that a series with variable terms 

j,(1') + ft(1') + . . . + 1.(1') + . . . 
has the series with positive terms 

a,+a.+··· +a.+'" 
for a majortmt if it is true that 1/.(x)1 ~ M a. for some eonstant M and 
for all sufficiently large .. ; converaely, the first series is a minoran! of the 
second. In these circumstances we have 

I/.(x) + 1.+,(1') + ... + 1.+,(x)1 ~ M(a. + a.+l + ... + "-+.). 

Therefore, if the majorant the minorant oonverges uniformly. 
This condition is frequently refened to as the WeierstI'dB8 M lest. It has 
the slight weakness that it applies only to series which are also absolutely 
convergent. The general principle of contraction is more eomplicated, 
but has a wider range of applicability. 

EXERCISES 

I. Prove that a convergent sequence is bounded. 
2. If lim z. ~ A, prove that ...... 

lim .! (z, + z. + . . . + z.) = A· ......... 
3, Show that the sum of an absolutely convergent seriee does not 

change if the terms are rearranged. 
4. Disc"'" completely the convergence and uniform convergence of 

the sequence Inz-Ir. 
50 Discuss the uniform convergence of the series 

for real values of x. 
c. If U = v, + u. + ... , V = v, + v. + ... are convergent 

oeries, prove that UV = u.v, + (u,v, + UoV.) + (v,v, + u,v, + v,v.) + ... 
provided that at least One of the oeries is abeolutely convergent.. (It is 
easy if both mes are abeolutely convergent. Try to arrange the proof so 
economically that the absolute convergence of the second series is not 
needed.) 

. . .-. -, 

" -' -
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:4.4. P01fIer Series. A power seriu is of the fonll 

(17) a.+a.z+a,z' + ... + a.z" + ... 
where the coefficients a- alld the variable z are complex. A little more 
generally we may consider series 

which are power series with respect to the center z., but the difference is so 
slight that we need 1I0t do so in a formal manner. 

As an almost trivial example we consider the geomelric IlerU8 

1+"+.'+,,, +1"+ • • • 

whose partial sums can be written in the form 

1-1" 
1 + z + . . . + z"-' = . 

l-z 

Since I" -> 0 for \z\ < 1 and \1"\ ~ 1 for \z\ ~ 1 we conclude that the 
geometric series converges to 1/(1 - z) for Izi < I, diverges for Izl ;;,. 1. 

It turns out that the behavior of the geometric series is typical. 
Indeed, we shall find that every power series converges inside a circle and 
diverges outside the same circle, except that it may happen that tltEl 
aeries converge. only for z = 0, Or that it converges for all values of z. 
More precisely, we shall prove the following theorem due to Abel: _ .. 

-

Theorem 2. For ellery power aeria (17) tAere eziMa a number R, 0 ~ 
R ;l! 00, called 1M rodiua oj , IlIith 1M JollOVJing properlie8: 

(i) .TM 8eMa ronv ... gu absolutely Jor ellery Z fDith \z\ < R. IJ 0 ;:;; 
p < R 1M convergen<:e is uniJ •• HI Jor \z\ ;:;; p. 

(ii) IJ Izl > R 1M leall8 oj 1M senu are unbounded, and 1M IleN8 i& 
conaequently divtrgtllt. , 

(iii) In 1.1 < R 1M aum of 1M aeria is an analylic fufldioo. TM 
derivative can be obtained by lermwiBe differtlltiation, and 1M derived aeria 
haa 1M same radius oj CUTIIIergenee. 

" 

-, 
The circle It I .. R is called the circle oj _ ... ge'/lC6; nothing is claimed 

about the convergence on the circle. We shall show that the assertionein 
the theorem are true if R is chosen according to the formula 

(18) l/R = lim sup v\a-I. --
• . -

-

--C_."'. 
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This is known as Hadamard'sfof'WIlJla for the radius of convergence. 
If 1.1 < R we can find p 80 that 1.1 < " < R. Then IIp> l/R, and 

by the definition of limes superior there exists an 110 such that 1a.1 1/" < 1/ p, 

1a.1 < IIp"forn ~ n •. Itfollowsthat!a"z"1 < (1'lIp)"forlargen,sotbat 
the power series (17) bas a convergent geometric series as a majorant, 
and is consequently convergent. To prove the uniform convergence for 
Izi ;:;; p < R we cboose a 1" with p < l < R and find 10,,"1 ~ (P/ l)" for 
n S: n.. Since the majorant is convergent and has coutant term~ we 
conclude by Weierstrass's M test that the power series is uniformly 
convergent. 

If I_I > R we choose I' 80 that R < " < 1.1. Since III' < llR there 
are arbitrarily large n such that 1a.11I· > 1/ p, 1a.1 > l/pa• Thus 
la"zal > (1.1/1')' for infinitely many n, and the terms are unbounded . 

• 
The derived series r 110,,,---1 has the same radius of convergence, 

1 

because Vn --+ 1. Proof: Set Vn = I + 3,. Then ba > 0, and by use 

of the binomial theorem n = (1 + 6.)" > 1 + ! n(n - 1)8~. This gives 
i! < 2/n, and hence i, --+ O. 

For I_I < R we shall wtite 

• 
• /(.) = r aoZ- = B.(.) + R.(.) 

• 
where 

• ( ) + + . + • ·1 R ( ) ~ • 8 •• =a. al' .. a._IZ,.' = 4 aoZ • . -. 
and also 

• 
!t(z) = r na"zo-I = lim B~(Z), 

1 ...... 

We have to show that 1'(.) = ft(-). 
Cl'nsider the identity 

(19) B.(.) - Sa("'~ _ 8~('.) + (.~(".) - ft( •• » 
Z - 20 

+ RaC.) - R.( •• ) , 
.2 -.I. 

where we a&IIUIlle thah ". " and 1.1. 1 •• 1 < I' < R. The last u,lin eat> be 

. . . . . . . . . 

. , , .. :.' -' " 

• 
'}; Il10( ....... ' + .......... + ot-. ' + et-'), . 

. '. ,., 
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and we conclude that 

The expression On the right is the remainder term in a convergent series. 
Hen"" we can find no such that 

~ •. (8) - R.(z.) <! 
z - z. 3 

for 11 ~ 11 .. 

There is also an 11, such that Is~(z.) - 1.(z.)1 < ./3 for 11 ~ 11,. 
Choose a fixed 11 ;0:; 110, 11.. By the definition of derivative we can lind 
o > 0 such that 0 < II - %.1 < 0 implies 

8.(Z) - 8.(Z.) '("j I < • - & z. -a 

Z - Zo • 3 
. 

When all these inequalities are combined it follows by (19) that 

I(z) ..,. I(zo) _ /t(Zo) <. 
z - %0 

when 0 < Iz - z.1 < o. We have proved that {(zo) exists and equals 
it~OJ. 

Since the reaeoning can be repeated we have in reality proved much 
more: A power series with positive radius of convergence has derivatives 
of all orders, and they are given explicitly by 

I(z) = ao + a,z + a,z' + . ; . 
f(z) = a, + 2a.z + 3a,z' + ... 
f"(%) = 2,.. + 6a,z + 12aot' + ... . . .. .. .. . .. .. .. .. .. .. .. .. . .. .. .. .. . .. .. .. .. .. .. .. .. .. . . .. 

(k+1)1 (k+2)! 
f Ci) (z) = k 'a. + a,+12 + a~tZ' + . . . . I! 21 -T 

In particular, if we look at the last line we 
the power series becomes 

that a. = jC"(O)/Ic!, and 

J(z) = J(O) + {(O)z + {,(OJ Zl + ... + J(O) (0) ZO + ... 
2 ! 11! 

" 

Thie is the familiar Taylor-Maclaurin development, but we have proved it 
only under the assumption that/(z) has a power development. We 
do know that the is uniquely determined, if it exists, but 
the main part is still namely that every analytic function has a 
Taylor development. 

• 
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EX ERe I SES 

L Expand (1 - z)-, m a positive integer, in powel'8 of z. 

2. Expand ~ :: 13 
in powel'8 of • - 1. What is the radius of 

convergence? 
.. Find the radius of convergence of the following power series: 

L "Pz', L :r, L n!zo, L q"%"(lql < 1), L %"' 

.. If %a.z" has radius of convergence R, what is the radius of con­
vergence of %/J,.!t.? of ~~Z"? 

S. If f(z) = %a.%", what is %n'II,,"'? 
.. If %110%" and %b .. ' have radii of convergence R 1 and R., show that 

the radius of convergence of %a.bo%" is at least R.R,. 
7. If Iim. __ 111.1/111.+11 = R, prove that %a.z" has radius of COn­

vergence R . 
.. For what values of • is 

- • 

convergent? 
• 

t. Same question for 

J.5. Abel'. Limit Theorem. There is a secoild theorem of Abel's 
which refere to the case where a power series conwrges at a point of the 
circle of convergence. We lose no generality by 888Uming that R = 1 
and tbat the convergence takes place at z = 1. 

- -
Theorem 3. If}; a. convergea, IAen f(ts) = ! 0.J" tenda tD J(1) aa z 

o 0 

IIppr0acAe8 1 in """" II UNJfI tMt 11 - zl/ (1 - 1_1> remllim bounded. 

HemIIrk. Geometrically, the condition means that" stays in an angle 
< lSO° with vertex 1, symmetrically to the part (- 00 ,1) of the real axis. 
It is euatomary to sa,y that the approach place in a SUlk IJfI9k. 

-Proof. We may assume, ~t.I a. ":" 0, for thisean bea.ttNned by adding 
"""',. - -. - . 

• • 
- . . , .'. 

' .... ,;.-,-'.. . --,,-'.,- ' ... ',' "- ,'" ... , __ ,.-" ':. ___ -"_",'" __ " ' •. "',,'" , .. ,' .......... -,,' t 
..... ,".,~.,'_._ •• '.,.>,_" _" _ '.' .... ,. -.'._,.','":.,,. _"···:"'·A"" __ ~_'~··">·'-'.-·".-.,· .. "~,,, " 'lQ~"".',' ","c":"',,· .... - .. _ .. ~ 

, - "':,' -' . : , .. "-,'--,:'. :"; .' - " " ':-", .. ",,,~, ,.~, .. , ~ , ...... ~ ,_.' ':"'; .. '" ~ ... ' .. ,:. ,~,: .""~"'. ' .. _- '-'" .:~ , .. ,:,' -.~ 
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a constant to a.. We write Sa = a. + a, + ... + tIa and make use of 
the identity (summation by parts) 

8a (Z) = 4. + aiZ + ... + a.r = 8. + (81 - 80)' + ... + (8. - s __ .)z· 
= 8.(1 - z) + 8,(, - Zl) + ... + 8._,(,-' - r) + s.r 
= (1 - ,) (80 + 8iZ + ... + 8._1"-') + S,$' •. 

But 8.," -> 0, so we obtain the representation . 

• 
I(z) = (1 - z) L Sal'. 

o . 

We are assuming that \1 - z\ ;:;; K(l - It\), say, and that 8. -> O. 
Choose m so large that \s,l < 8 for 11 !5;. m. The remainder of the 
series 2:8,$', from 11 = m on, is then dominated by the geometric series 

• • L \z\" = _\z\"/(l - \zl) < _/(1 - \z\}. It follows that .. 
..-1 

\/(z) \ ;:;; \1 - z\1 L 8~i I + KE. 
o 

The first tenn on the right cail be made arbitrarily small by choosing z 
sufficiently close to 1, and we conclude thatf(z) -> 0 when z ..... 1 subject to 
the stated restriction. 

3. THE EXPONENTIAL AND TRIGONOMETRIC FUNCTIONS 

The person who approaches calculus exclusively from the point of view of 
real numbers will not expect any relationship between the exponential 

• 

function e" and the trigonometric functions cos z and sin z. Indeed, these 
functions seem to be derived from completely different sources and with 
djil'erent purposes in mind. He will notice, no doubt, a similarity between 
the Taylor developments of these functions, and if willing to use imaginary 
arguments he will be able to derive Euler's lonnula e;Z = cos Z + i sin z 
as a formal identity. But it took the genius of a Gauss to analyze its full 
depth. ' 

With the preparation given in the preceding section it will be easy to 
Jefine e', cos z nnd sin z for complex z, and to derive the relations between 
these functions. At the same time we can define the' logarithm as the 
in verse function of the eXpOnential, a.nd .the logarithm leads in tum to the 
correct definition of the argument of a complex number, and hence to the 
nongeometrie definition of angle. 

S.l. TIuJ Exponential_ We may begin by defining the ~ial 
function as the solution of the differential equation 



COIIPLEX FUNCTIONS 

(20) 1'(&) = 1(,,) 

with the initial value 1(0) = 1. We solve it by setting 

I(z) = a. + a,z + . . . + a"Z" + . . . 
I'(z) = a, + 2asz + ... + 1Ia"z .... , + ... 

If (20) is to be satisfied, we must have a.-I = 1ICI., and the initial condition 
gives IJo = 1. It foTIows by induction that a. = 1/1I!. 

The solution is denoted by e' or exp II, depending on purely typo­
graphical cODsiderations. We must show of CoUl"l!e that the series 

(21) 
Z Zl srt 

e' = 1 + Ii + 2! + ... + ni + ... 

converges. It does 80 in the whole plane, for Vni..... 00 (proof by the 
reader). 

It is a consequence of the differential equation that e' satisfies the 
addition tIoearem 

(22) ee I i = e- . ~. 

Indeed, we find that D(e" e-') = e' . e-' + e' • (-e-') - O. Hence 
eo . e' 'is eo constant. The value of the constant iafound by setting .. = o. 
We conclude that e" e-' = e<, and (22) follows for Z = fI, C = a + b. 

Remark. We have used the fact thatj(z) is constant ilf'(2) is identically 
zero. This is eertainly 80 il!is defined in the whole plane. Foril! = u+ W 

. au clu iIIJ iIIJ 
we obtam - = - = - = - - 0, and the real version of the theorem a", iJy iJz iJy 
shows that! is constant on every horiJJOntal and every vertical line. 

As a particul&r case of the addition theorem eo· r' = 1. This showa 
that e' ill r&eVeJ zero. For real :z: the aeries development (21) ahows that 
e" > 1 for:z: > 0, and since eo and .,. are reciprocals, 0 < e" < 1 for:z: < O. 
The fact that the aeries bas real coefficients shows that exp il is the complex 
conjugate of eJql z. Hence 1_"1" = e'" r" - 1, and le<i"1 = e'. 

1.2. The Tri601Wmemc Funcrio7U. The trigonometric functions are 
defined by 

(23) 
of< + r i,. IV - .,.. 

COs .. = 2 ,SID2= 2': . 

Substitution in (21) showB that they have the aeries developments 

. 
, " ., . .1 . '.:," 

. .. ... . '.. . '~, 
. . ,' ',--'-' • '. , '.. .. , •• r , 

',," .. ", " ·,w ... "' .... """"--""-.... _"'. _~ ~ •• p". "',~ :fI, W~ ~ 
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. ,I Zi 
81DZ=Z-3j+51- .•• 

For real z they reduce to the familiar Taylor developments of cos x and 
sin x, with the significant diJference that we have now redefined these 
functions without use of geometry. 

From (23) we obtain further Euler's formula . 

e"=cosz+isinz 
• 

as well as the identity 

80S' z + sin' Z = 1. 

It follows likewise that 

DC08.= -sinz, 

The addition formulas 

Dsinz=cosz. 

cos (a + b) = cos a cos b - sin a sin b 
sin (a + b) = cos a sin b + sin a Co! b 

are direct consequences of (23) and the addition theorem for the exponen­
tial function. 

The other trigonometric functions tan z, cot %, sec %, cosec z are of 
secondary importance. They are defined in temlll of cos z snd sin • in the 
customary manner. We find for inetance 

.~H _ c .. 
tan z = -. '. . 

eU + e-<-
Observe that sJl the trigonometric functions are rational functions of .... 

• 

EXERCISES 

1. Find the values of sin i, cOS i, tan (1 + J'). 
2. The hyperbolic cosine and sine are defined by cosh % = (e' + e-')/2, 

sinh % = (e' - ,,')/2. Express them through cos it, sin iz. Derive the 
addition formulas, and formulas for cosh 20, sinh 2z. 

S. Use the addition formulas to separat~ cOS (x + ill), sin (x + ill) in 
real and imaginary parts . 

... Show that , 

Icos -I' = sinh'lI .+ cos' x = cosh'lI - sin' '" = ~ (cosh 21/ + cos 2;1;) 

and 

lsin _" = sinh'1I + sin' x = cosh'lI - COS' x ~ ~ (cosh 211 - C08 2;1;). 

8.8. TMP.,.iodidcy. Weeaythat/(z)bae.theJl'llMJdcif/(8+'O:) -/~) 



COMPLEX FUNCTIONS 

for all z. Thus a period of e' satisfies eO>' = 6', or e' = 1. It follows that 
c = i .. with real .. ; we prefer to say that .. is a period of e'-. We ohaIi 
show that there are periods, and that they are all integral multiples of a 
positive period "'" 

Of the many ways to prove the existence of a period we choose the 
following: From D sin II = cos II ~ 1 and sin 0 = 0 we obtain sin II < 1/ 
for y > 0, either by integration or by use of the mean-value theorem. In 
the same way D cos 1/ = - sin II > -II and cos 0 = 1 gives cos 1/ > 1 -
11'/2, which in tum leads to sin 1/ > y - 1/'/6 and fiDally to cos 1/ < 1 -
y'/2 + 1/'/24. This inequality show. that cos va < 0, and therefore 
there is a II. between 0 and va with cos II. = O. Because 

COS'1/. + sin'lI. = 1 

we have sin II. = ±1, that is, ..... = ± i, and hence ."" - 1. We have 
sho wn that 411. is a period. 

Actually, it is the smallest positive period. To see this, take 0 < II 
< II.. Then sin II > y(1 - y'/6) > 11/2 > 0, which shows that cos 1/ is 
strictly decreasing. BecaUse sin 11 is positive and COS'1/ + sin'1/ ~ 1 it 
follows that sin II is strictly increasing, and hence sin II < sin 1/. = 1. 
The double inequality 0 < sin II < 1 guarantees that ei • is neither ± 1 nor 
±i. Therefore e"· .., 1, and 4y. is indeed the smallest positive period. 
We denote it by .... 

Consider now an arbitrary period "'. There exists an integer n such 
that n",. ~ '" < (n + 1)"". If .. were not equal to ""'0, then '" - n",. 
would be a positive period < .... Since this is not possible, every period 
must be an integral multiple of "'" 

The 81IUIl/es/ plMitive period of fi' is denoted bll 2..-. 
In the course of the proof we have shown that 

en/S = i, 

These equations demonstrate the intimate relationship between the nUrn­
bers e and 11'. 

When 1/ increases from 0 to 2..-, the point 111 = e'· descri bee the unit circle 
Iwl = 1 in the positive sellll6, namely from 1 over i to -1 and back over 
-i to 1. For every w with Iwl = 1 there is one and only one 1/ from the 
half-open interval 0 ~ II < 2..- such that w = e'v. All this follows readily 
from the elltablisbed fact that cos II is strictly decreasing in the "first 
quadrant," that is, between 0 and 11'/2. 

Froman algebraic point of view the mapping w= .i. establishes a 
M'IOIIIOI'JIM8"~ . between the additiw group of real numbers and the 
muitipUClMive"aroupof,«lOinp!eJ; Rumbas with ab80lutevalue 1. The 
~ IIf·tM;· . ..~~. fo"i\V~ by all integral 
mul~ 211&. .... . .' . .. , 
,', ,. . ", .. : ' ... ~.. . '".::::' . ,' . .);~~. ~,:' ,"~"':~I' ,).::~.~::.\,'. '. i .. . ': "": "' ..... ',' . ',.,,: .. , '." , :, , '._ 

,-,- " .. " ..... . 
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3.4. The Logarithm. Together with the exponential function we must 
slso study its inverse function, the logarithm. By definition, z - log w is 
a root of the equation 6' = w. First of all, since 8' is always ,-!O, the 
number 0 MIl no logarithm. For w ... 0 the equation.- - w is equiva­
lent to 

(24) .,. = Iwl, .;0 = 1It/lwl . 
. 

The first equation has a unique solution % = log Iwl, the r.allogarithm of 
the positive number liDl. The right-barul member of the second equation 
(24) is a complex number of absolute value 1. Therefore, &8 we have just 
seen, it has one and only one solution in the interval 0 ;;; 'II < 2-r. Inaddi­
tion, it is satisfied by all 'II that differ from this solution by an integral 
multiple of 2-r. We see that every comple:e number other than 0 MIl i.nJiniW.'II 
man'll whiM di.ffer from each other btl multip!e8 of 2-ri. 

The imasjnary part of log w is also cal.led the argument of w, arg w, and 
it is interpreted geometrically 88 tbe angl6, measured in rsdiallB, between 
the positive real axis and the balf line from 0 through the point ID. Accord­
ing to this definition the argument has infinitely many values whicb differ 
by multiples of 2-r, arul 

log ID = log Iwl + i arg lit. 

With a change of notation, if Izl = rand arg z = 8, then II - re". This 
notation is 80 convenient that it is used constantly, even wben the expo­
nential function is not otherwise involved. 

By convention the logarithm of a positive number shall always mean 
the real logarithm, unIese the contrary is stated. The symbol a', where 
a and b are arbitrary complex numbers except for the condition a ... 0, is 
always interpreted as an equivalent of exp {b log a). If a is restricted to 
positive numbers, log a shall be real, and a> has a single value. Otherwi.., 
log a is the complex logaritbm, and a> has in general infinitely many values 
which differ by factors e·..... There will be a single value if and only if b 
is an integern, and then a" can be interpreted as a power of aora-'. Ifbis 
a rational number with the redueed form pig, then a> has exactly g values 
and can be represented as W. 

The addition theorem of the exponential function clearly implies , . 

, 

log (%,%.) = log B, + log z, 
arg (z,z.) = arg %, + arg z" 

• 

but only in the sense that both sides represent the same infinite !let of 
complex numbers. If we want to compa.te a value on the left with a value 
on the right, then we can merely assert that they differ by a multiple of 
2-ri (or 2-r). (Compare with the remarks in Chap. I, Sec. 2.1.) ", .,\ 

-'.'," ",:, '"." '-'~''''-':-. , 
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Finally we discuss the 
the equation 

cosine which is obtained by solving 

COB ~ .. ~ (e" + rI') = w. 

This is a quadratic equation in 6" with the roots 

~ .. =- to ± VWt - 1, 
and 

:e =arc cos w - -ilog (w ± ";w' - 1). 

We can also write these values in the form 

arc cos w = ± i log (w + v' w' - 1), 

for w + v' w' - 1 and w - V w' - 1 are reciprocal nnmbers. The 
infinitely many values of arc cos w retIed the evenneBII and periodicity of 
eos :e. The sine is most eflSi1y defined by 

• fr 
arc SID UI = 2" - arc cos w. 

It is worth emphasizing that in the theory of complex analytic func­
tions all elementary transeendental functions can thus be 
through t;* and its log z. In other words. there is 
one elementary transcendental function . 

.. XIRCIIII 

L For real 1/, show that every remainder in the series for COS 1/ and 
sin 1/ has the 88me sign as the leading term (this generalizes the inequali­
ties used in the periodicity proof, Sec. 3.3). 

2. Prove, for instance, that 3 < fr < 2 va. 
IL Find the value of e' for z = - i, : ri, i rio 

.. For what values oiz is t;* equal to 2, -1, i, - i/2, -1 - i, 1 + 2i? 

.. Find the real and imaginary parts of exp (e') • 

.. Det6t1line all values of 2', i', (-1)". 
"I. Determine the real and parts of %". 

L ExpreBII arc tan w in terms of the logarithm. 
,to Show bow to define tbe "angles,f in a triangle, bearing in mind that 

they $hould lie between 0 and fr. With thiB definition, prove that the 811m 

of the angles i, fr. 

Jt. Show tba\ ,he lOOts of the binomial 
tiUI of a recuJar po!;y&Oll (equal eidee and 
," 

.. - aarethever-

'. -. 
'.' .. " ' - . ,-
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AS APPINGS 

A function tD - fez) may be viewed 88 a mapping which repre­
sents a point z by its image tD. The purpot!e of this chapter is to 
study, in a preliminary way, the special properties of 
defined by analytic functions. 

In order to carry out this program it is desirable to dewlop 
the underlying concepts with sufficient generality, for otherwise 
we would soon be forced to introduce a great number of ad hoe 
definitions whose mutual relationship would be far from clear. 
Since present-day students are exposed to abstraction and gen­
erality at quite an early stage, no apologies are needed. It is 
perhaps more appropriate to sound a warning that gJ eatest possi­
ble generality should not become a purpose. 

In the firat section we develop the fundamentals of point set 
topology and metric spaces. There is no need to go very far, for 
our main concern is with the properties that are essential for the 
atudyof analytic functions. If the student feela that he is already 
thoroughly familiar with this material, he ahould read it only for 
terminology. 

The author believes that proficiency in the study of analytic 
functions requires a mixture of geometric feeling and computa­
tioDAlakill. The second and third aections, only loosely connected 
with the firat, are expressly designed to develop geometric feeling 
by way of detailed study of elementary mappings. At the 88me 
time we try to stress ri&or in geometric thinking, to the point 
where the geometric imap becomes the suide but not the found .... . . 
tion of reaa9J'jDg~ 

• 

• . . . -. ' , :.,.- ...... " .. -,., .,' .. - ,'-,~ - " ' 
'-_.' .. -. --", -
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:L ELEMENTARY POINT SET TOPOLOGY 

The brancb of mathematics which goes under the name of t01W/ogy is con· 
cerned with all questions directly or indirectly related to continuity. The 
term is traditionally used in a very wide sense and without strict limits. 
Topological considerations are extremely important for the foundation of 
tbe study of analytic functions, and the first systematic study of topology 
was motivated by this need. 

The logical foundations of set theory belong to another discipline. 
Our approach will be quite naive, in keeping with the fact that all our 
applications will be to very familiar objects. In this limited framework no 
logical paradoxes can occur. 

1.1. Sets .. nd Elements. In our langnage a lUll will be a collection of 
identifiable objects, its ekments. The reader is familiar with the notation 
'" e X which expresses that", is an element of X (as a rule we denote sets 
by capital letters and elements by smallletteJ:s). Two sets are equal if 
and only if they have the some elements. X is a subset of Y if every ele­
ment of X is also an element of Y, and this relationship is indicated by 
X C Yor Y J X (we do not exclude the possibility that X = Y). The 
empty set is denoted by !If. 

A set can be referred to as a space, and an element as a poiR!. 
Subsets of a given space are usually called point sets. This lends a 
geometric lIavor to the language, but should not be taken too literally. 
For instance, we shall have occasion t., consider spaces whose elements a .... 
functions; in that case a "point" is a function. 

The imerlNJCtioo of two sets X and Y, denoted by X () Y, is formed by 
all points which are elements of both X and Y. The unioo X U Y con· 
sists of all point.s which are elements of either X or Y, including those which 
are elements of both. One can of course form' and union 
of arbitrary collections of sets, whether finite or infinite in number. 

The compl£menl of a set X consists of all points which are not in X; 
it will be denoted by ~X. We note that ,the complement depends on the 
totality of points under consideration. For instance, a ""t of leal numbers 
has one complement with respect to the real line and another with respect 
to the complex plane. More generally, if X C Y we can consider the 
relative complement Y ~ X which oon$ists of all points that are in Y but 
not in X (we find it clearer to lise this notation only when X C Y) • 

. 

It is helpful to keep in mind the diatnDUtive lowl 

XU (Y ("\ Z) = (X V Y) {"\ (X U Z) 
X () (Y U Z) = (X ("\ Y) U (X () Z) . 

._...' -
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and the De M twgan laws 

~(X V Y) = ~X fi-Y 
-(X fi y) = -X V -Yo 

These are purely logirAl identities, and they have obvious generalizations 
to arbitrary collections of sets. 

1.:1. Me",", Spaces. For all considerations of limits and continuity it 
is essential to give a precise meaning to the terms "sufficiently near" and 
"arbitrarily near." In the spaces Rand C of real and complex numbers, 
respectively, such nearness can be expressed by a quantitative condition 
Iz - yl <.. For iostance, to say that. a set X contains all :t 1lU1/lIMntiti 
near to y meaDS that there exists an $ > 0 suoh· that z E X whenever 
Iz :"'111 < II. Similarly, X c01llains poifItIJ a,bil,ariltlma, to tI if to every 
• > 0 there exists an z E X such that Iz - 111 < •. 

What we need to describe neam""" in quantitative terms is obviously 
a d~ d(z,y) between any two points. We say that a set S is a marie 
3pQU if there is defined, for every pair Z E S, 11 E 8, II nC)Dnegative real num­
ber d{Z,II) in such a way that the followiog conditions are fulfilled: 

1. d(z,y) = 0 if and only if x = y. 
2. dCy,z) = d{z,y). 
3. d{z,.) ~ d(x,y) + dCy,')' 

The last condition is the triangle inequality. 
For instance, R and C are metric spaces with d(x,y) = 13: - til. 

The n-dimensional euclidean space Re is the set of real ... tuples 

x = (x" •.. ,xe) 

• 
with a distance defined by d(3:,y)' = ! (Xi - y.)'. We rcr&! tbat we 

1 
have defined a distanee in the extended complex plMe by 

(8ee Chap. I, Sec. 2.~); Bioce this represents the euclidean dista.nee between 
the stereoglapbic images on the Riemann sphere, the triangle inequ.ljty is 
obviously f"lIi1Ied. An example of a function space is given by C[a,bl, 
the set of all continuous functions defined on the ioterval a ;:ii z ~ h. It 
beOOmes a metric space if we define dist··"ee by dC/,g) = max If(z) - g(x) I· 

In '. of distance, we introduce the following termjnology: For 
any. > 0 and~YII e8,.thB!I8~ B(V,4}ota,U x e~with II(z,l/) < 'is r&!ed 

"', . ," ., ,.J. ", "~: __ ': .• _. _",,", .' _.. ", _. , 
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the baa with center y and radius 8. It is also refeIled to as the oS-neighbor­
hood of y. The general definition of neighborhood is as follows: 

A Bet N C 8 ia called II neighborhood of YES 'f it contain8 

• 

In other words, a neighborhood of y is a set which contains all points 
sufficiently nAIIT to y. We use the notion of neighborhood to define 
open, set: 

Definition 2. A sel is open if it ia II neighborhood of each of iU element8. 

The definition is interpreted to mean that the empty eet is open (the 
condition is heeanee the set has no elements) .. The following is an 
innnediate consequence of the triangle inequality: 

Every baa ia an IJPell Bet. 

Indeed, if Z E B(y,Ii), then 6' = a - d(y,z) > O. The triangle in­
equality shows that B(z,f,) C B(y,a), for d(x,z) < 8' gives d(x,y) < 8' + 
d(y,z) '" o. Hence B(y,a) is a neighborhood of z, and since Z was any 
point in B(y,f) we conclude that B(y,a) is an open set. For gJ eater em­
phasis a ball is sometimes referred to as ILIl open ball. to distinguish it 
from the cklsed baa fonned by all XES with d(x,y) :i! 8. 

In the complex plane B(z.,f) is an OpM diak with center z. and radius 8; 
it consists of all complex numbers z which satisfy the strict inequality 
Iz - z.1 < o. We have ju$ proved that it is an open set, and the reader 
is urged to interpret the proof in geometric tefillS. 

The complement of an open set is said to be ckI81ld. In any metric 
space the empty set and the whole space are at the same time open and 
closed, and there may be other sets with the same property. 

The following properties of open and closed setH are fundamental: 
The intersecliun of II finite number of open 8e18 i$ open. 
The uniun of any collectiun of open seiIt i8 open. 
The union of II finite number of cl08ed sels is clolted. 
The inter 8ectiun of any collection of closed 8818 is closed. 

The proofe are so obvious that they can be left to the reader. It 
should be noted that the last two statements follow from the first two by 
use of the De Morgan laws. 

There are many tenus in common usage which are directly related to 
the idea of open sets. A complete list would be more confusing than 
helpful, and we shall limit ourselves to the following: i!'lel'ior, cklBurll, 
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b&ufldary, ez!eriM. 
(i) The interior of a set X is the largest open set contained in X. It 

exists, for it may be characterized as the union of all open sets ex. It 
can also be described as the set of all points of which X is a neighborhood. 
We denote it by Int X. 

(ii) The closure of X is the smallest closed set which contains X, or 
the intersection of all closed sets "JX. A point belongs to the closure of 
X if and only if all its neighborhoods intel/loot X. Tbe clOlllll'e is usually 
denoted by X-, infrequently by Cl X. 

(iii) The boundary of X is the closure minus the interior. A point 
belongs to the boundary if and only if all its neighborhoods intersect both 
X and ~X. Notation: Bd X or ax. 

(iv) The exterior of X is the interior of ~X. It is also the oomph,. 
ment of ~e closure. As such it can be denoted by ~X-.. 

Observe that Int X e X e X- and that X is open if Int X = X, 
closed if X- = X. Also, X e YimplieslntX e lnt Y,X- e Y-. For 
added convenience we shall alSl) introduce the notions of iaolated point 
and auumulatioo poi"'. We say that :I: ~ X is an isolated point of X if :t 
has a neighborhood whose intersection with X reduces to the point x. 
An accumulation point is a point of X- which is not an isolated point. 
It is clear that z is an accumulation point of X if and ouly if every 
neighborhood of x contains infinitely many points from X. 

EXERCISES 

L If S is a metric space with distance function <1(:1:,1/), show that 8 
with the distance function a(z,1/) = d(:I:,1/)/[1 + d(x,1/)] is also a metric 
space. The latter space is bounded in the sense that all distances lie 
under a fixed bound. 

2. Suppose that there are given two distance functioll8 d(z,1/) and 
tlt(x,1/) on the same space S. They are said to be equivalent if they deter· 
mine the same open sets: Show that d and il, are equivalent if to every 
e > 0 there exists a & > 0 such that d(z,y) < & implies d,(z,1/) < " and 
vice versa. Verify that trus condition is fulfilled in the preceding exercise . 

.. Show by strict application of the definition that the closure of 
Iz - z.\ < aislz - z~ ~ a . 

.. If X is the set of complex nnmbers whose real and parts 
are rational, what is Int X, X.,., aX? 

s. It is sometimes typographically simpler to write X' for ~X. With 
this notation, how is X'-' related to X? Show that X-'-'-'-' = X-'-'. 

.. A set is said to be discrete if all its points are isolated. Show that 
a discrete . ""tin R or C is countable . . ".,- .-.-.- -,' . '-". . , 

7. Shol" that the. accmriulation points of any set form a closed set. 
. . <.;. ,-.-.. ,: '."-.' 

:'.'~ . - ',-:-

-"-"~" , , ,-" - • 
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1.1. Conneeledneo. If E is any nonempty subset of a metric space S 
;Fe may consider E as a metric space in its own right with the same dis­
tance function d(:Z:,lI) all on all of S. Neighborhoods and open sets on E 
are defined as on any metric space, but an open seton E need not be open 
when regarded as a subset of S. To avoid confusion neighborhoods and 
open sets onE are often to as relative neighborhoods and relatively 
open sets. As an example, if we regard the closed interval 0 ;:it :z: ;$ 1 as 
a subspace of R, then the semiclosed interval O·:::i! :z: < 1 is relatively open, 
but not open in R. Henceforth, when we say that a subset E has some 
specific topological property, we shall always mean that it has this prop­
erty as a 8Ilbspace, and its 8ilbspace topology is called the relative topology. 

Intuitively speaking, a space is connected if it consists of a Bingle 
piece. This is meaningness unless we define the statement in terms of 

The easiest way is to give a negative characterisation: 8 i8 not 
if tllMe uiat3 II pa,tition 8 = A V B into Opel~ aOOset3 A lind B. 

It is understood that A and B are di8joint and nfnIemPIy. The connected­
neN of a space is often used in the following manner: Suppose that we are 
able to construct two complementary open subsets A and B of 8; if S is 
conn'Mlted, we may conclude that either A or B is empty. 

A subset E C S is said to be connected if it is connected in the rela­
tive topology. At the risk of being pedantic we repeat: 

Definition 3. A aOOHt of II 'IMtric. $p4C6 i8 conneded if it cannot be r6Fe-
86fIted (JI the union of tfDO disjoint ,ellltively open 8eta none of fDhillll. i8 6"'pl'/l. 

If E is open,· a subset of E is relatively open if and only if it ie-open .. 
Similarly, if E is closed, relatively closed means the same as closed. We 
can therefore state: An open ad i8 connected if it cannot be decomposed into 
lIDO opm ad8, and II closed 8e1 i. connected if it C/lnnot be decompow ink) tlDO 
c/ow Beta. Again, none of the sets is allowed to be empty. 

Trivi&! examples of connected sets are the empty set and any set 
that consists of a single point. 

In the case of the real line it is possible to name all connected sets.· 
The most important result is that the whole line is connected, lind this is 
indeed one of the fundamental properties of the real-number system. 

An i1lterval is defined by an ineqllality of one of the four types: 
a < ~ < b, a;:it ~ < b, a < ~ ~ b, II. ~ :z: ;:it b. t For· a - - GO or 
b - + .. this includes the semi-infinite interv&!s and the whole line. 

, 

t We denote open iRte.vals by (0,6) and cloBed intervals by [ ... 61. Another common 
practice i •. to denote open intervals by Ia,b[ and 8emic1.....l intervals by ]a,bl or 1 .. ,6[, 
It is alwa undentood that" < 6. . 
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Theorem 1. The nonemply connuted ~ oj the real line or, the 
intervaU. 

We reproduce one of the classic'" proofs, based on the fact that any 
monotone sequence has a finite or infinite limit. 

Sup~ that the rett.lline R is represented 88 the union R ~ A V B 
of two disjoint closed sets. If neither is empty we rAD find a' E A and 
b, E B; we may !l8SUme that a' < bt. We bisect the interval (o"b,) and 
note that one of the two halves has its left end point in A and its right end 
point in B. We denots this interv'" by (a2,b.) and continue the process 
indefinitely. In this way we obtain a sequence of nested inte'."'s 
(a.,b.) with a. E A, b. E B. The sequences (a.1 and (b.1 have a common 
limit c. Since A and B are closed c would have to be a common point of 
A and B. This contradiction shows that either A or B is empty, and 
hence R'is connected. 

With minor modifications the same proof applies to any interval. 
Before proving the converse we make an important remark. Let E 

be an arbitrary subset of R and call a a lmDer bound of E if co ~ It for all 
:u E. Consider the set A of all lower bounds. It is evident that the 
complement of A is open. As to A itself it is easily seen that A is open 
whenever it does not contain any largest number. Because the line i. 
connected, A· and its complement cannot both be open unless one of them 
is empty. There are thus three possibilities: either A is empty, A con­
tains a largest number, or A is the whole line. The largest number a of 
A, if it exists, is called the greatest IOt.Der bound of E; it is commonly 
denoted as g.l.b. x or inf x for x E E. If A is empty, we ""glee to set 
a ~ - 00, and if A is the whole line we set a ~ + 00 • With this con­
vention every set of real numbers has a uniquely determined greatest 
lower bound; it is clear that a ~·+oo if and only if the set E is empty. 
The 1to8! upper bound, denoted 118 tu.b. x or sup x for x E E, is defined in a 
corresponding manner. t 

Returning to the proof, we assume that E is a connected set with the 
greatest lower bound a and the least upper bound b. All points of E lie 
between II and II, limits included. Suppose that a point ~ from the open 
interval (11,11) did not belong to E. Then the open sets defined by:t: < ~ 
and:t: > f cover E, and because E is connected, one of them must fail to 
meet E. Suppose, for instance, that no point of E lies to the left of t· 
Then ~ would he a lower bound, in contradiction with the fact that II is the 
greatest lower bound. The opposite assumption would lead to a similar 
contndietiol), and we cooclude that ~ must belong to E. It follows that E 
is an open, cJ.08ed, or ... interval with. the end points II and b; the 
__ II .;,' ..;:~., aDd fi .. , .. are to be1nCluded . .. ~. ",.,'- --,.-
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In the course of the proof we have introduced the notions of gteatest 
lower bound and least upper bound. If the set is closed and if the bounds 
are finite, they must helong to the set, in which cere they are called the 
minimum and the maximum. In order to he sure that the bounds are 
finite we must know that the set is not empty and that there is some 
finite lower bound and some finite upper bound. In other words, the eet 
must lie in a finite interval; such a set is said to be botmded. We have 
proved: 

Theorem 2. Any cloaed and bounded _pty 3d of real numbers htJg 

a minimum and a mazimum. 

The structure of connected sets in the plane is not nearly 80 simple as 
in the MOO of the line, but the foUowing charact.eJUation of open con­
nected sete contains essentially all the information we shall need. 

Theor .. .m 3. A -ply open 36/ in tile plane ill conmcted if and only 
if any tVlO of ita points can be joined by a polygon which lies in tile 8Ot. 

The notion of a joining polygon is so simple that we need not give a 
formal definition. 

We prove first that the condition is neceBBarY. Let A he an open con­
nected oot, and choose a point a fA. We denote by A, the subset of A 
whose pointe can be joined to a by polygons in A, and by A. the subset 
whOile pointe <,annot he 80 joined. Let us prove that A, and A. are both 
open. First, if a, fA, there e. jsis a neighborhood \z - a,\ < a contained 
in A. AU points in this neighborhood can be joined to a, by a line seg­
ment, and from there to a by a polygon. Hence the whole neighborhood 
is contained in A " and A, is open. Secondly, if a. fAt, let \z - a.[ < • 
be a neighborhood contained in A. If a point in this neighborhood could 
be joined to a by a polygon, then a. could be joined to this point by a line 
segment, and from there to a. This is contrary to the definition of A., 
and we conclude that A. is open. Since A was connected either A, or 
A. must be empty. But A, contains the point a; hence A. is empty, and 
all pointe can be joined to a. Finally, any two points in A can he joined 
by way of a, and we have proved that the condition is neceaeary. 

For we remark that it is even poaeible to join any t.to points 
by a polygon whose aides are parallel to the coordinate axes. The proof 
is the same. 

• 

.In order to prove the sufficiencY we MOUrne that A has a representa-
tion A = A. V Alas the union of two disjoint open sete. ChOOllea, fA" 
as E A. and suppose that these pointe can be joined by a jIOlygon in A. 

, . .' , 
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One of the sides of the polygon must then join a point in A, to a point in 
A" and for this re'son it is ,mffieient to consider the case where a, and a. 
are joined by a line segment. This segment has a pa.rametric representa­
tion z = a, + I(a, - a,) where t nms through the interval 0 :;; t :;; 1. 
The subsets of the interval 0 < t < 1 which conespond to points in At 
and A., respectively, are evidently open, disjoint, and nonvoid. This 
contradicts the conneetednel!8 of the interval, and we have proved that 
the condition of the theorem is sufficient. 

The theorem generalizes easily to Ro and Co. 

Definition 4. A fI01Iem¢lI connected open set i8 called a regiqn. 

By Theorem 3 the whole plane, an open disk I .. - al < p, and a half 
plane are regions. The same is true of any 6-neighborhood in R". A 
region is the-more dimensional analogue of an open interval. The closure 
of a region is called a cloaed region. It should be observed that di1ferent 
regions may have the same closure. 

It happens frequently that we have to analyze the structure of sets 
which are defined very implicitly, for instance in the course of a proof. 
In such cases the first step is to decompoee the set into its maximal con­
nected comptmenl3. As the name indicates, a component of a set is a 
connected subset which is not contained in any larger connected subset. 

If E is the given set, consider a point 0 E E and let C(a) denote the 
union of aU connected subsets of E that contain a. Then C(o) is sure to 
contain a, for the set consisting of the single point a is connected. If we 
. can show that C(a) is connected, then it is a maximal connected set, in 
other words a component. It would follow, moreover, that any two 
components are either disjoint or identical, which is preeisely what we 
want to prove. Indeed, if e E C(o) (\ C(b), then C(o) C C(e) by the 
definition of C(e) aod the conneotedness of C(o). Hence a" C(e) , and by 
the same reasoning C(e) C C(a), so that in fact C(/I) = C(e). Similarly 
C(b) = C(e), and consequently C(a) = C(b). We call C(/I) the com­
ponent of a. 

Suppose that C(a) were not conneeted. Then we could find relatively 
open sets A, B '" JJ Buch that C(a) - A V B, A (\ B = S. We may 
8SS'llnp. that II" A while B contains a point b. Since b E C(/I) there is a 
connected set E. C B wbinb contains II aod b. The representation 
B, .. (E. (\ A) V (8. f"\ B) W(Mlid be a decomposition into relat.iveIy 
open subsets, and B.n A, beE.f"\ B Dei~ would be 
emptY'. 'tbis is a and we oonclude that 

'.. . 
.... ,-- ,. . . 

:. ',. ""--'" 
.... ,.," '., .......... , .. ,:, . 
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Theorem 5. In R" the components of any opIln Mare opIln. 

This is a CODBequence of the fact that the ~neighborhoods in R· are 
connected. Consider a ! C(a) C E. If E is open it contains B(a,8) 
and bec&l1!!R B(a,8) is connected B(a,&) C C(a). Hence C(a) is open. A 
little more gene~aIly the is true for any space S which is looally 
connected. By this we mean that any neighborhood of a point a contains 
a connected neighborhood of a. The proof is left to the reader. 

In the case of R" we can conclude, furthermore, that the number of 
components is countable. To see this we observe that every open set 
must contain a point with rational coordinates. The set of points with 
rational coordinates is countable, and may thWl be exprewted as a sequence 
(p.l. For each component C(a), determine the smallest 1c such that 
p. E O(a). To difierent component.s correspond difierent 1c. We con­
clude that the componentS are in one-to-one correspondence with a 
subset of the natural numbers, and consequently the set of components is 
COlmtable. 

For instance, ~ opIln 3Ubaet uJ R ia a countable "nion oj dia,ioint 
interval,. 

Again, it is possible to analyze the proof and thereby arrive at a 
more general result. We shall say that a set E is denae in S if E- = 8, 
and we sball say that a metric space is separabk if there exists a countable 
s .. bset which is dense in S. We are led to the following result: 

In a locally 8epaf'abk spaC6 we'/I opIln &Ill is a CQUfIIabk union 
oj di8joint regions. 

EXEaCISES 

L If xes, show that the relatively open (closed) subsets of X are 
precisely those sets that can be expressed as the intersection of X with an 
open (closed) snbset of S. 

2.. Show t bat the union of two regions is a region if and only if they 
have a common point. 

S. Prove that the closure of a connected set is connected. 
4.. Let A be the set of points (x,1/) E R" with x = 0, 1111 ~ I, and let B 

he the set with x> 0, 1/ = Bin l/x. Is A V B connected? 
s. Let Ebe the set of points (x,/I) E Rlsuch that 0 ~ x ~. 1 and either 

y = 0 or y = l/n for some positive ~teger n. What are the com­
ponents of E? Are they all dosed? Are they relatively open? Verify 
that E is not locally connected. 

'" Prove that the components of a dosed set are closed (use Ex. 3). 
7. A set i8 said to be diM:rele if all its Points are isolated. Sbo" that a 

set in a separable metric space is countable. 
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1.4. Compactne... The notions of convergent sequences and Cauchy 
sequences are obviously meaningful in any metric space. Indeed, we 
would say that x ...... x if d(x.,x) ..... 0, and we would say that {x. I is a 
Cauchy sequence if d(x.,x..) ..... 0 as n and m tend to 00. It is clear that 
every convergent sequence is a Cauchy sequence. For Band C we have 
proved the converse, namely that every Cauchy sequence is convergent 
(Chap. 2, See. 2.1), and it is not hard to see that this property carries over 
to any B'. In view of its importance the property deserves a special 
name. 

Ddinition 5. A metric space i8 said w be comp/.u 'f wery Cauchy sequence 
iB convergent. 

A subset i8 complete if it is complete when regarded as a subspace. 
The reader will'find no difficulty in proving that a compleU BUb.., of a 
mell ie space iB closed, and that a tWsed BUb.oet of a compleU 8fHJI'Il iB compkle. 

We 8haJI now introduce the stronger concept of compacl'IIU'. It is 
stronger than completeness in the sense that every compact space Of set 
is complete, but not conversely, As a matter of fact it will turn out that 
the compact subsets of Band C are the closed bounded sets. In view of 
this result it would be possible to dispense with the notion of compactness, 
at least for the purposes of this book, but this would be unwise, for it 
would mean shutting our eye8 to the most striking property of bounded 
and closed sets of real or complex numbers. The outcome would he that 
we would have to repeat essentially the 8ame proof in many different 
connections. 

There are several equivalent characterizations of compactness, and it 
is a matter of taste which one to choose as definition. Whatever we do the 
uninitiated reader will feel somewhat hewildered, for he will not be able to 
di.seern the purpose of the definition, This is not surprising, for it took 
a whole generation of mathematicians to sgr<le on the hest approsch, 
The c(>nsensus of present opinion is that it is hest to focus the attention 
on the different ways in which a given set can he covered by open sets. 

Let us say that a collection of open sets is an open COVer1'11f/ of a set X if 
X is contained in the union of the open sets. A IlUbcoveri'llf/ is a 8ubcolIec­
tion with the same property, and a finite covering is one that consists of a 
finite number of sets. The definition of compactness reads: 

Definition 6. A Bel X iB compacl 'if and only if every Opll/l COIJer1'11f/ of X 
conl4im a finite BUbcovering. 

. '.- • . .... '.- . .. J. ',' .. ' . .... :-

.. . . ',' . . - .-"., .', ,.: : , -' ' .. , . 
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and the covering is by open sets of S. . But if U is an open set in S, then 
U (\ X is an open subset of X (a relatively open set), and conversely 
every open subset of X can be expressed in this fonn (Sec. 1.3, Ex. 1). 
For this reason it makes no difference whether we formulate the definition 
for a full SpllOO or for a subset. 

The property in the definition is frequently referred to 88 the HeifUl­
Borel properly. Its importance lies in the fact that many proofs become 
particularly simple when formulated in terms of open coverings. 

We prove first that every compact SpllOO is complete. Suppose that 
X is compact, and let I x.) be a Cauchy sequence in X. If y is not the 
limit of Ix.l there exists an , > 0 such that d(x.,y) > 2, for infinitely 
many ... Determine ... suchthatd(x .. ,x.) < dorm,n ~ no. Wechoose 
a fixed n ~ n.forwhichd(x.,y) > 2.. Thcnd(x .. ,y) ~ d(x.,y) - d(x .. ,x.) 
> • for all m ~ no. It follows that the .-neighborhoOd H(y,e) contains 
only finitely many x. (better: contains x. only for finitely many n). 

Consider now the collection of aU open sets U which contain only 
finitely many x.. If I x.l is not convergent, it follows by the preceding 
reasoning that this collection is an open covering of X. Therefore it 
muet contain a finite 8ubcovering, formed by U

" 
... ,UN. But that is 

clearly impossible, for since each U, contains only finitely many x. it 
would follow that the given sequence is finite. 

Secondly, a compact set is necessarily bounded (a metric space is 
bounded if all distances lie under a finite bound). To see this, choose a 
point Xo and consider all balls B(x.,r}. They fonll an open covering of X, 
and if X is compact, it contains It finite subcovering; in other words, 
X C B(xo,r,) U ... U B(x.,r .. ), which means the same as XC H(xo,r) 
with r = max (r" , .• , r .. ). For any X,y E X it follows that d(x,y) ;:;; 
d(x,x.) + d(y,x.) < 2r, and we have proved· that X is bounded. 

But boundedn", ... is not all we can prove. It is convenient to define a 
stronger property called total boundedne88: 

.. 
D,.6nitlon 7. A sel X is totally bounded iI, I'" every e > 0, X can be 
OOfI61'ed by finitely """,y ball.! 01 radim e. 

This is certainly true of any compact set. For the collection of all 
balls of radius e is an open covering, and the compactness implies that 
we can Belect finitely many that cover X. We observe that a. totslly 
bounded set is necessarily bounded, for i(X C B(xl, e) U ... U B(x.., e), 
then any two poin~ of X have a distance <2. + max d(x"xj). (The 
preceding proof that any compact set is bounded becomes redundant.) 

We have already proved one part of the following theorem: 

Theorem 6. A BIll ia cumpacl if and tmly if it ia complete and IotIJIly 
botmded. 



"N"LYTIC FUNCTIONS " •• "I'PINOS 

To prove the other part, 888lU1le that the metric space S is complete 
and totally bounded. Suppose that there exists an open covering which 
does not contain any finite subcovering. Write t. = 2-. We know 
that S can be covered by finitely many B(x,o,). If each had a finite 
subeovering, the same would be true of S; hence there exists a B(x".,) 
which does not admit a finite subeovering. Because B(x.,E,) is itself 
totally bounded we can find an x. E B(x,,!!) such that B(x"e.) has no 
finite subcovering. t It is clear how to continue the construction: we 
obtain a sequence x. with the property that B(x., E.) has no finite sub­
covering and X.+1 E B(x., •• ). The second property implies d(x.,x .... ,) < •• 
and hence d(x.,x.+p ) < o. + ..... ' + ... + .""0-1 < 2-·+1. It follows 
that x. is a Cauchy sequence. It converges to a limit 1/, and this 1/ belongs 
to one of the open sets U in the given covering. Because U is open, it 
contains a ball B(I/,8). Choose n 80 large that d(x..,I/) < 8/2 and •• < &/2. 
Then B(z., •• ) C Bty,&), for d(x,x.) < e. implies d(x,l/) ;:;; d(x,z.) + 
d(x.,I/) < 3. Therefore B(x.,e.) admits a finite subeovering, namely by 
the single set U. This is a contradiction, and we conclude that S has 
the Heine-Borel property. 

Coroll ery. A IlUb.eI of R or C is compact if and onll/ if it is closed and 
bounMa. 

We have already mentioned this particular consequence. In One 
direction the conclusion is immediate: We know that a compact set is 
bounded and complete; but R and C are complete, and complete subsets 
of a complete space are closed. For the opposite conclusion we need to 
show that every bounded set in R or C is totally bounded. Let I1B take 
the case of C. If X is bounded it is contained in a disk, and hence in a 
square. The I!quare can be subdivided into a finite number of I!quares 
with arbitrarily small side, aud the squares can in turn be covered by disks 
with arbitrarily small radius. This proves that X is totally bounded, 
except for a small point that should not be glossed over. When Definition 
7 is applied to a subset xes it is slightly IUDbiguous, for it is not clear 
whether the ... neighborhoods should be with respect to X or with respect 
to S; that is, it is not clear whether we reqnire their centers to lie on X. 
It happens that this is of no avail. In fact, suppose that we have covered 
X by ... neighborhoods whoee centers do not nece:marily lie on X. If such 
a neighborhood does not meet X it is superfluous, and can be dropped. If 
it does a point from X, then we caD replace it by a 2a-Deighborhood 
around that point, and ... e obtain a finite covering by 2 .. neighborhoods 
with centers on X. F!lrthi8 reason the ambiguity is only apparent, and 
our proof that boundedqbeet/l of. C .are totally oounded is valid. 

, , ". . ' 

t Here we eM n,hl tbe INt that any subset of a totally bonodtd set is totally 
bounded. , The ieael .. ~ PO" Ihia. 
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There is a third characterization of oompact sets. It deals with the 
notion of limit paint (sometimes called c/usler value): We say that 11 is a 
limit point of the sequence Ix.l if there exists a subsequence (x .. l that 
converges to 11. A limit point is almost the Bame as an accumulation point 
of the set formed by the points x., except that a sequence permits repeti­
tions of the ~ame point. If 11 is a limit point, every neighborhood of 11 
contains infinitely many x.. The converse is also true. Indeed, suppose 
that n -+ O. If every B(y, £.) oontains infinitely many x. we can choose 
subscripts no, by induction, in such a way that x •• E B(y, e.) and n",., > no. 
It is clear that 1z..1 oonverges to y. 

Theorem 7. A flIIJtrU! &pIJCe Ur co,npad if IJtId only if every infinite 
aeq~ Iuu a limit point. 

This theorem is usually referred to as 
The original formulation WIU! that every bounded sequence of oomplex 
numbers has a convergent subsequence. It came to be recognized 8B an 
important theorem precisely becal'''e of the role it plays in the theory of 
analytic functions. 

The first part of the proof is a repetition of an earlier argument. If 
11 is not a limit point of Ix.1 it has a neighborhood which contains only 
finitely mAny x. (abbreviated version of the conect phrase). If there were 
nO limit points the open sets containing only finitely many x. would form 
an open covering. In the compact ease we could select a finite subcover­
ing, and it would follow that the sequence is finite. The previous time we 
used this reasoning was to prove that a compact space is complete. We 
showed in that every sequence has a limit point, and then we 
observed that a Oauchy sequence With a limit point is necessarily con­
vergent. For strict economy of thought it would thus have been better to 
prove Theorem 7 before Theorem 6, but we prefened to emphasize the 
importance of total boundedness as early as possible. 

It remains to prove the converse. In the first place it is clear that the 
Bolzano-WeieistnL"8 property implies colDpletene88. Indeed, we just 
pointed out that a Cauchy sequence with a limit point must be convergent. 
Suppose now that the space is not totally bounded. Then there exists an 
• > 0 such that the space cannot be covered·by finitely many ""neighbor­
hoods. We construct a sequence (x.1 ""follows: x. is arbitrary, and when 
X" ••• ,x. have been selected we choQse X.+. 80 that it does Iiot lie in , 
B(x.,e) V ... V B(x.,e). This is always pollSible because these neigh-
borh(lods do not cQver the whole space. But it is clear that (x. I has no 
convergent subsequence, for d(x..,x.) > • for all m and fl. We conclude 
that the Bolzano-Weierstrass property implies total boundedness. In 
view of Theorem 6 that is what we had to prove. .. 

. . 
. ~ -._-, .. '." . 
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The reader should re8eet on the fact that we have exhibited three 
ch8l'acteruations of compactne:-'" whose logical equiv&lence is not at all 
trivial. It should be clear that results of this kind are particularly v&lua­
ble for the PUIpOse of presenting proofs as concisely as possible . 

. 
EXERCISES 

1. Give an alternate proof of the fact that every bounded sequence of 
complex numbers has a convergent subsequence (for instance by use of the 
limes inferior). 

2. Show that the Heine-Borel property can &leo be expretl8ed in the 
following manner: Every collection of closed sets with an empty intersec­
tion contains a finite 8ubcollection with empty intenlection . 

.. Use compactness to prove that a closed bounded set of real nllm­
ben! has a maximum . 

... If E, ::> E. ::> E.:J • . . is a decreasing sequence of nonempty 
• 

compact sets, then the interse.tion r\ E. is not I'mpty (Cantor's lemma). 
I 

Show by exl'mple that this nlled not be true if the sets are merely closed. 
50 Let S be the set of all sequences % = (%.I of real num bers such 

that only a finite number ofthe %. are ... O. Defined(%,y) = max 1%. - y.l. 
Ia the space complete? Show that the ~neigbhorhoods are not totally 
bounded. 

1.ti. Continrcou.o Functro .... We shall consider functions/which are 
defined on a metric apace S and have values in anotber metric space S'. 
Functions are also referred to as mappinga: we say that / ma}l8 B into B', 
and we write/:B .... B'. Naturally, we shall be mainly concerned with 
real or complex-valued functions; occasicoually the latter are allowed 
to take values in the extended complex plane, ordinary distance being 
replaced by distAnce on the Riemann spbere. 

The space S is the dl>lll4in of. the function. We are of free to 
consider functions / whose domain is only a subset of B, in which ease the 
domain is regarded as a subspace. In moat it is safe to slur over the 
distiDction: a function on B and its restriction to a subset are usually 
denoted by tbe same symbol. If XC Bthe set of all values/(z) for % f B 
is called the itrUlf18 of X under I, and it is denoted by I(X). The inverse 
itrUlf18rl{X') oC X' C B' conoistl!of all % e Bsuch that/(%) eX'. Observe 
that/U-,{X'» C X', and rIU(X» ::> X. 

The definition of a continuous function needs praetically no modifica.­
~on: / is continooWl at a if to every & > 0 there exists a > 0 such that 
~(z,a) < a implies d'U(z),/(a» <.. We are mainly concelD~ with 
rnnetiollS thllt'arecontiDuoua at all points in the 'domain of definition. 

. - " • . "'.,'., ' •. -,"-:' . -'f:,,-"-""'" , "'_" ',,- .:,··,',·'.~'·,~-.i·, ;,,-·.,!:·,'-~'-":"'-:1'_,·' __ I.-! ..... 1 : .. ,,', '. -,.' " ", ... " ."", ...... '--, , ..... -" '. -' .. 

. ' . -

. . .. -. -: : .. : . _ '. ," .••. ':- , ","'.' , '--,:,."r, ... :. "::i :: ~ ,,;:~~~> . (;~::-~,: .. ~:_:".,:.:):~~'.: .. _~-:.: .. ,;.(;:<''<t...-.;~~~.:~~:"j ~:;': ':' .. , ,:,,,,,, :'.', 
.,-.' .... ,'" ...... - ,-----
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The following characterizations are immediate consequences of the 
definition: 

A lundion ia contmUOUB il and tmly il tIuJ inve1"1lIJ image 01 every open 
861 's open. 

A lunction i8 continuous il and only il tIuJ invm-se image 01 every closed 
set ia closed. 

If I is not defined on ell of 8, the words "open" and "Closed," when 
referring to the image, should of course be interpreted relatively 
to the domain of I. It is very important to observe that these properties 
hold only for the image, not for the direct image. For instance 
the mapping I(x) =- x'/(1 + z') of R into R has the image f(R) = 
{y; 0 ;:> y < I} which is neither open nor closed. In tills eXll.lllple I(R) 
fails to be closed heeaWle R is not compact. In fact. the following is 
true: 

TheorelD 8. Untkr a comintuma fJUlpping tIuJ image 01 every compact set 
., and consequently clOMl. 

Suppose that I is defined and continuous on the compact set X. 
Consider a covering of I(x) by open sets U. The inverse images I-'(U) 
are open and form a covering of X. Because X is compact we "an select a 
finite sUbcovering: X C I-'(U,) U ... U I-I(U.). It follows that 
f(X) CU, V • . • V U .. , and we have proved that I(x) is compact. 

Coroll ary. A contin1WllB real-valued function on a compad set hall a marl-
mum and a minimum. . . 

.. 
The image is a closed bounded subset of R. The existence of a 

maximum and a minimum follows by Theorem 2. 

TheoreJD 9. Under a continooUB mapping the imnge 01 anll connected 8el 
ia connected. 

We may assume that I is defined and continuous on the whole space 
8, and that f(8) is ell of 8'. Suppose that 8' = A V B where A a.nd B 
are open and disjoint. Then S = f-I(A) U f-'(B) is a of 
S as a union of disjoint open sets. If 8 is connected either I-I(A) = 0 or 
l- I (B) = 0, and hence A=-O or B.~ O. We conclude that 8' is 
connected. 

A typical application is the assertion that a real-valued function 
which is continuous and never zero on·a connected set is either always 
positive or always negative. In fact, the image is connected, and hence 
an interval. But an interval which cont.ains positive and negative .011111-
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bers also contains zero. 
A mapping f:8 ..... S' is said to be one to one if I(x) = fey) only for 

x = Yi it is said to be onto if f(8) = 8'. t A mapping with both these 
properties has an inverse j'-', defined on 8'i it eatisfiesf-'(f(x» .. xand 
f(j'-'(x'» - x'. In this situation, if f and f-1 are both continuous we 
say that f is a topoWgiool mapping or a 1wmeOlllorphi8m. A property of a 
set which is shared by all topological images is called a topological properly. 
For instance, we have proved that compactneJ!S and connecrednesa are 
topological properties (Theorems 8 and 9). In this connection it is per­
haps u-eful to point out that the property of being an open subset is not 
topological. If X C 8 and Y C 8' and if X is homeomorphic to Y there is 
no resson why X and Y should he simultaneously open. It happens to be 
true if 8 .. 8' = R' (invarionce of the regirm), but this is a deep theorem 
that We shall not need. 

The notion of unilornt crmtinud1l will be in constant use. Quite 
generally, a condition is said to hold uniformly with respect to a parameter 
if it can he expwllJed by inequalities which do not involve the parameter. 
Accordingly, a function f is said to be uniforlll11l continuous on X if, to 
every • > 0, there exists a 3 > 0 such that d'(/(xl),J(z.» < • for all 
pairs (Xl,X.) with d(x,,x.) < 3. The emphasis is on the fact that a is not 
allowed to depend on x,. 

Theorem 10. On 0 ro.npact BBl every ronlinuotU function is uniforml1l 
contimroUB. 

The proof is typical of the way the Heine-Borel property can he used. 
Suppose that f is continuous on II> compact set X. For every y • X there is 
II> baIl B(y,p) such that d'(f(x)J(1I» < ./2 for x • B(1I,p) i here p may depend 
on 11. Consider the covering of X by the smaller balls B(1I,P/2). There . . 
exists a finite subcovering: X C B(1IbP,/2) V ... V B(1I.,p../2). Let 6 
be the smallest of the numbers Pl/2, .•• , p../2, and suppose that d(x"z,) < 
I. There is a y. with d(Xl,II') < p./2, and we obtain d(x',II') < p./2 + 
3 ;:iii 3.. Hence d'(/(z,).!(1I.» < ./2 and d'(f(x,),f(1I.» < ./2 80 that 
d'(f(xl),f(xi) < 1&8 desired. 

On sets which are not compact 80me continuous functions are uni­
formly continuous and otbers are not. For instance, the function z is 
uniformly continuous on the whole complex plane, but the func\ion .' 
is not. 

t TheM IiDauiatico.ll7 c1um.,. ~ c." be ... pleced b7 .Jfi .. (for on. to one) 
and Iwjsc'" (lor onto). A-.;.q·Wn& with both paoperi.tM ia..ned. wjn'":" 
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EXlRella 

1. Construct a topological mapping of the open diu Izi < 1 onto the 
whole pl&ne. 

2. Prove that a subset of the real line which is topologically equiva­
lent to an open interval is an open interval. (Consider the effect of 
removing a point.) 

S. Prove that every continuous one-to-one mapping of a compact 
space is topological. (Show that closed sets are mapped on closed sets.) 

4. Let X and Y be compact sets in a complete metric space. Prove 
that there exist x E X, 1/ E Y such that d(x,y) is a minimum. 

s. Which of the foUowing functions are uniformly ,continuous on the 
whole real line: sin x, x ain x, x sin (x'), Ixlt sin x? 

1.6. Topofogialf SPOC6IJ. It is not necessary, and not always con­
venient, to express nearness in terUlsof distance. The observant reader 
will have noticed that most results in the preceding sections were fOrInu­
lated in terms of open sets. True enough, we used distances to define 
open sets, but there is really no strong reason to do this. If we decide to 
consider the open sets as the primary obieets we must postulate axioms 
that they have to satisfy. The following axioms lead to the commonly 
accepted definition of a topologirol space: 

Definition 8.,' A topologirol space ill a set T togotlter with a colled:ian of its 
Btlb8et8, called open sel8. The JoUlllJ!ing coMtlilmB have 10 be fuljUled: 

(i) The emply set {lJ and !he whole apace Tare open w. 
(ii) The inUrsectWn of Imy lIDO upM Btll. ill an open set. " 

(iii) The union of on arbitrary co/led.ion oJ open set. ill an open set. 

We recognize at once that this terminology is consistent with our 
earlier definition of an open subset of a metric space. Indeed, properties 
(ii) and (iii) were strongly emphasized, and (i) is trivial. 

Closed sets are the complements of open sets, .... d it is immediately 
clear how to define interior, closure, boundary, and 80 on. Neigbbor­
hoods could be avoided, but they are rather convenient: N is aneighbor­
hood of x if there exists an open set U such that x E U and U C N. 

Connectedness was defined purely by means of open sets. ' Hence the 
definition carries over to topological spaces, and the theoreJfu! remain 
true. The Heine-Borel property is alai> one that deals only with open 
sets. Therefore it,makes perfect sense to speak of a compact topological 
space. However, Theorem 6 become. meaningless, and Theorem 7 
becomes false: 

As a matter of fact, the first serious difficulty we encounter iz, with 
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convergent sequences. The definition is clear: we say that %. -> z if 
every neighborhood of % contains all but a finite number of the %.. But 
if %. -> % and %. -> Y we are not able to prove that % = y. This awkward 
situation is remedied by introducing a new axiom which characteri~e8 the 
topological space as a H ausdtJrfl opace: 

Definition 9. A topological opace ill called a HautJorfl space if any two 
distinct points are contmned in di8;joint open seta. 

In other words, if % "" Y we require the existence of open sets U, V 
such that % f U, 1/ f V and U f\ ·V = /If. In the presence of this condition 
it is obvious that the limit of a convergent sequence is unique. We shaD 
never in this book have occasion to consider a space that is not a HaU8dorfr 
space. 

This is not the place to give examples of topologies that cannot be 
derived from a distance function. Such ell'ampies would necessarily be 
very complicated and would not fUrther the purposes of this book. The 
point is that it may be unnatural to introduce a distance in situations 
when one is not really need.ed. The reasOn for including this section has 
been to alert the reader that distances are dispensable. 

2. CON FORMALITY 

We now return to our original setting where all functions and variables are 
restricted to real or complex numbers. The role of metric spaces will 
seem disproportionately small: all we actually need are some simple 
applications of connectedn""" and compactness. 

The whole section is mainly descriptive. It centers on the geometric 
consequences of the existence of a derivative. 

%.1. ,4,."" and ClDaed Cur...... The equation of an are "f in the plane 
is most conveniently given in parametric form % = %(t), y = yet) where t 
runs through an interval .. :l!! t :;; P and :ret), 1/(t) are continuous func­
tions. We can also use the complex notation. - !let) = :r(1) + iy(t) 
which has several advantages. It is also customary to identify the are "f 
with the continuous mapping of [ .. ,P]. When followiug this custom it is 
preferable to denote the mapping by. = "f(t). . 

Considered as a point set an are is the imagll of a closed finite interval 
under a continuous mapping. As such it is compact and connected. How­
ever; an are is not merely a set of points, but very Lssentially also a 8UC­

cession of points, ordered by inczening values of the parameter. Jf a 
nond_eMing function t ~ . maps an intenal .i::li .. ::Ii tJ' onto .. :i '. -. -" -- , ' ,- , . - '. ' 
I ::Ii /J, then ". = a(,,(T). ·the III'me suoceesion. cif pomts as" ~ a(t) . . " ." - -. ., , 

- - . . :., - '" ","', "'",',,:." : - .'- .. "c";"",-
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We say that the first equation arises from the second by a change 01 parame­
ter. The change is rever8ihle if and only if (1)(,,) is strictly increasing. For 
instance, the equation 11 = t' + it", 0 ~ t ;;; 1 arises by a reversible 
of parameter from the equation z = t + 11.', 0 ;;; t :iii 1. A change of 
pa.rametric interval (a,{J) can always be brought about by a li_ 
of parameter, which is one of the fonn t = 111' + b, a > O. 

Logically, the simplest course is to consider two &l'CS as difierent as 
soon as they are given by diilerent equations, of whether one 
equation may arise from the other by a change of parameter. In follow­
ing this course, as we will, it is important to show that cerf.ain properties of 
arcs are invariant under a change of parameter. For instance, the initial 
IUld tel ",ina! point of an arc remain the same after a cbal;lge of parameter. 

If the derivative t(t) - Z/(!) + iy'(t) exists and is ~O, the arc "I has 
a tangent whose direction is determined by arg t(l). We shall say that 
the arc is differentiable if t(l) exists and is continuous (the term con­
tinuously differentiable is too 1lDwieldy); if, in addition, z'(t) ~ 0 the arc 
iR said to be regular. An arc is piecetl1ise differentiable or ~ regular 
if the same conditions hold except for a finite number of values t; at these 
points z(t) shall still be continuous with left and right derivatives which 
are equal to the left and right limits of z' (t) and, in the case of a piecewise 
regular arc, ¢O. 

The diilerentiable or regular character of an arc is invariant under the 
change of parameter t = 'P(T) provided that 'P'(T) is continuous and, for 
regularity, ¢O. When this is the we speak of a difierentiable or 
regular change of parameter. 

An arc is mnple, or a Jordan arc, if z(t,) = z(/.) only for"''''' t.. An 
arc is a closed CUf'!I6 if the end points coincide: z(a) = z(ft). For closed 
curves a shift of the parameter is defined as follows: If the origin • .! equa­
tion is z = z(t), a ~ t ;;; /J, we choose a point t. from the interval (a,(:I) and 
define a new closed curve whose equation is 11 = ,et) for I. ~ t ~ fJ and 
2 = z(t - fJ + a) fol' (J :; t ;;; t. + {J - a. The purpose of the shift is to 
get rid of the distinguished position of the initial point. The correct 
definitions of a differentiable or regular cloiIed curve and of a Bimple clo8ed 
CUnJS (or Jordan cunJs) are obvious. 

The opposite arc of 2 = z(I), a ;;; t ~ /J, is the arc z ~ z( -t), - II ;:ii 
t ;;; -a. Opposite arcs are sometimes denoted by "I and -"I, sometimes 
by 'Y and "1-1, depending on the connection. A constant function z(t) 
defines a point CW'II6. ' 

A circle C, originally defined as a locus 12 - "I = r, can be considered 
as a closed curve with the equation z = a + rsu, 0 :; t :; 2r. We will 
lise this standard parametrization whenever a circle is introduced. 
This convention saves us from writing down the eqll8tion each time it is 
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needed; also, and this is it. most important purpose, it serve. as a definite 
rule to distinguish between C and - C. 

2.2. Analytic Functions In Regions. When we consider the derivative 

f'(e) _ lim !(z + h) - !(!) 
..... h 

of a complex-valued function, defined on a set A in the complex plane, it is 
of course understood that Z E A and that the limit is with respect to values 
h such that z + h EA. The existence of the derivative will therefore 
have a different meaning depending on whether. is an interior point or a 
boundary point of A. The way to avoid this is to insist that all analytic 
functions be defined on open sets. 

We give a formal statement of the definition: 

Definition 10. A complez,..valued !utICtion f(.), deji.1It!d on an open Bel n, 
is 8fJid to be analy/i£ in n if it 00s a t1.erioolive at each point of O. 

Sometimes one says more explicitly that /(z) is complex analytic. A 
commonly used synonym is holmnorphic. 

It is important to stress that the open set n is part of the definition. 
As a rule one should avoid speaking of an analytic function f(z) without 
referring to a specific open set n on which it is defined, but the rule can 
be broken if it is clear from the context what the set is. Observe that f 
must first of all be a fundion, and hence ringk-flalued. If 0' is an open 
subset of n, and if f(.) is analytic in Il, then the restriction of f to II' is 
analytic in 0'; it is customary to denote the restriction by tbe 88me letter f. 
In particular, since the components of an open set are open, it is no loss 
of generality to consider only the case where a is connected, that is to say 

• a reg1on. 
For greater flexibility of the l8ngll.g~ it is desirable to introduce the 

following complement to Definition 10: 

Definition ll. A function f(.) i. analytic on an arbitrary point let A if 
it is 1M reslridion to A of a function which is analytic in _ open 86t con­
laining A. 

The last definition is merely an to use a convenient te .... j-
nology. This i8 a ca"" in which the set Q need not be explicitly men­
tioned, for the specific choice of Q is usually immaterial as long as it contain. 
A. Another instance in which the mention of a can be 8Uppreased i.e the 
phrase: "Let I{z) be at z .. " It mean8 that .. f.mction f(z) is 
defined and hae .. of 2<> 

. <- ,.--"---
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Although our definition requires all analytic functions to be single­
valued. it is possible to consider such multiple-valued functions 88 VZ. 
log z, or e.rc cos z, provided that they e.re restricted to a definite region 
in which it is possible to select a single-valued and analytic branch of the 
function. 

For instance, we may choose for n the complement of the negative 
real axis .0 ~ 0; this set is indeed open and connected. In 0 one and 
only one of the values of vz has a positive real part. With this choice 
to ~ VZ becomes a single-valued function in 0; let us prove that it is 
continuous. Choose two points z, • .. , E 0 and denote the corresponding 
values of w by w • ., 11. + iv,. w, = u, + iv, with u,. u, > O. Then 

1.0. -- .0.1 = Iw1 - to;1 = Iw, - to,l . Iw. + w.1 

and Iw. + to.1 !l:; u, + u. > 11,. Hence 

I I < 1.0. - .0.1 w, - w. .-'--'--,----'" 
It. 

and it follows that w = VZ is continuous at .0,. Once the continuity is 
established the analyticity follows by deriV&tion of the inverse function 
• = w'. Indeed, with the notations used in calculus .<loa --t 0 implies 
aw -+ O. Therefore. 

and we obtain . 

I. aw I' ato .m .= Im-,­
At ~o Ilz .4111' .0 .4z 

dw 1 1 1 
dz=dz=2w=2VZ 

dw 

with the same branch of VZ. 

-

In the case of log .0 we can use the same region n, obtained by exclud­
ing the negative real axis. and define the printipal branch of the logarithm 
by the condition 11m log zl < T. Again,. the continuity must be proved. 
but this time we have no algebraic identity at our disposal. and we are 
forced to use a more general reasoning. Denote the principal branch by 
w = 11 + iv - log .o. For a given point w, = 11, + iv,• Iv.1 <: .... and a 
given • > O. consider the set A in the w-plane which is defined by the 
inequalities Iw - w,1 iii:; ", Ivl ;!!!! T, lu .,.. u,l ~ log 2. This set is closed 
and bounded, and for sufficiently small. it is not empty. The continu­
OUS function Ie" - e"> I has consequently a minimum p on A (Theorem 8, 
Corollary). This minimum is positive, for A does not contain any point 
w, + n . 2wi. Choose 5 ,,;. min (P,~"). and aBBume that 

IZI - ... 1 = Ie"> - e"'1 < i. 
-
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Then w. cannot lie in A, for this would make Ie ... - e"\ ~ p ~ B. 
Neither is it possible that Us < fl, - log 2 or u. > u, + log 2; in the 
former case we would obtain \e'" - 6".\ ~ eV' - 6" > jeW, ~ 4, and in 
the latter Ie'" - e"'\ ~ eO, - e"' > eO, > B. Hence w. mWJt lie 
in the disk ltD - tD.\ < c, and we have proved that w is a continuous 
function of z. From the continuity we conclude as above that the 
derivative exists and equals l/z. 

The infinitely m8.llY values of arc cos z are the same 88 the values of 
i log (z + y z· - 1). In this ease we restrict z to the complement (I' of 
the half lines z ~ -1, 11 = 0 and z ;;:; 1, 11 - O. Since 1 - 2' is never 
real and ~ 0 in 0', we ean define y1 - z· 88 in the first example and then 
set y,,' - 1 ~ iyl - %t. Moreover, % + YZ' - 1 is never real in 0', 
for z + Y zt - 1 and z - y z' - 1 are reeiprooals and hence real only if z 
and yz' - 1 are both real; this happens only when z lies on the excluded 
parts of the real axis. Because 0' is connected, it follows that all values 
of. z + Y zt - i in 0' are on the same side of the leal axis, and since i is 
such a value they are all in the upper half plane. We can therefore define 
an analytic branch of log (z + yz' - 1) whose imaginary part lies between 
o and.... In this way we obtain a: single-valued analytic function 

arc COBS = ilog ( .. + yz· - 1) 

in (I' whoBe derivative is 

D 
. 1 

arc cos % -. +. . 
z yZ'-1 

1 + Z 

yz' -1 

where yi - zi has a positive real part. 
There is nothing unique about the way in which the region and the 

single-valued branches have becn choBen in theBe examples. Therefore, 
each time we consider a function euch as log z the choice of the branch 
has to be specified. It is a fundamental fact that it is impo8lible to 
define a single-valued and analytic branch of log z in certain regions. 
This will be proved in the chapter on integration. 

All the results of Chap. II, Sec. 1.2 remain valid for functions which 
o.re analytic on. an open set. In partiClllar, the real and imaginary parts 
)f an analytic function in (I satisfy the Cauchy-Riemann equations 

i/u iIv -=-, ax ay 

Jonversely, if II and v satisfy theBe equations in. (I, and if the partial 
lerivativee are continuous, then u + iii lsan BD&Iytic (nnctijl/1 in O. 

An analytic f,",-ction in O. . . ... .. it.educee to • e6_n~ l"M! 
: - -. .,', '. . . 

. ,-.' , .:,' _ '-,,' .. "-- _ .. ,':'. ;:'-'.<·"::,:;-'::;~~'\.~:i::',·;;·".-:,:, .• ; .. ·:,.~:" 
• _ _.:,-.:;"'0;;;' _.;:,~ '":;:. ·':"";"";.:·:"~';h-"~":':~'~"~"':;::""~""·;;"-"'.l."'·<~.;o_", •. - .. , .... 



72 COMPLEX ANALYSIS 

the following theorem we shall list BOrne simple conditions which have this 
consequence: 

Theorem ll. An analytic fUndWn in a region 0 whose dMivative van­
w.a identicaUII IIlmt re8t1C1l to a eonatam. The 3IJm6 Ut truei! eilker the 
real pa1'~, the imaginary part, the flWdulm, or the argument Ut constant. 

The vanishing of the derivative implies that au/in, au/ay, ltv/in, 
ltv/ayare all zero. It follows that u and v are constant on any line seg­
ment in Il which is parallel tc one of the coordinate axes. In Sec. 1.3 we 
remarked, in connection with Theorem 3, that any two pohits in a region 
can be joined within the region by a polygon whose sides are parallel 10 
the axes. We conclude that u + ill is constant. 

If u or II is constant, 

1'( ) - au . au _ all + . ltv _ 0 z - - ~ - - J--ax ayay ax' 

and hence I(z) must be constant. If u· + 112 is constant, we obtain 

au ltv 
u-+v-=O a3: iJ3: 

and 
au ltv av au 

u- +v = -u- +11- = O. ay ay iJx a3: 
• 

These equations pCI'II1it the conclusion au/ax = ltvja:r: = 0 uDless the 
determinant u' + v' vanishes. But if u' + v' = 0 at a single point it is 
constantly zero and I(z) vanishes identically. Hence I(z) is in any case 
a constant. 

Finally, if arg I(z) is constant, we can set u = ku with constant k 
(uDless II is identically zero). But u - kv is the real part of (1 + ik)!, 
and we conclude again that I must reduce tc a constant. 

Note that for this theorem it is essential that 0 is a region. If not, 
we can oDly that 1(%) is constant on each component of O. 

EXERCISES 

L Give a precise definition of .. mngle-valued branch of Vi + II + 
VI - % in .. suitable region, and prove that it is analytic. 

2. Same problem for log log z. 
I. Suppose that !(z) is analytic and satisfies the condition \/(z)' - 1\ 

< 1 in a region o. Show that either Re I(z) > 0 or Re I(z) < 0 through­
out o. 
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2.3. Conformal Mapping. Suppose that an arc 'Y with the equation 
z = z(t), a :;; t ;;;; fl, is contained in a region n, and let I(z) be defined 
and continuous in ll. Then the equation w ~ w(t) = f(.(t)) defines an 
arc .,' in the w-plane which may he called the image of .,. 

Consider the case of an I(z) which is analytic in ll. If .'(t) exists, 
we find that ""(t) aiM exists and is determined by 

(1) w'(t) = 1'(.(I»z'(I). 
, 

We will investigate the meaning of this equation at a point Zo = z(I.) 
with z'(t.) ;!If- 0 andr(z.) ;!If- O. 

The first eonclusion is that w'(Ie) ;!If- O. Hence 'Y' has a tangent at 
w. = fC •• ), and its direction is determined by 

(2) arg w'(t.) = argl'(z.) + atg %'(1.). 

This relation that the angle between the directed tangents to 'Y 
at z. and to 'Y' at w. is equal to arg f(z.). It is hence independent of 
the curve .,. For this reason curves through ". which are tangent to 
each other are mapped onto curves with a eornmon tangent at w .. 
Moreover, two curves which form an angle at z. are mapped upon curves 
forming the same angle, in sense 88 well as in size. In view of this 
property the mapping by w = f(.) is said to be conformal at all points 
with fCz) ;!If- O. 

A related property of the mapping is derived by consideration of the 
modulus 1/'(4)1. We have 

lim If~z) - 1(4)1 = If(z.)I, 
--.. I· - •• 1 

and this means that any small line segment with one end point at ZD is, 
in the limit, contracted or expanded in the ratio If('o)l. In other words, 
the linear change of scale at 4, effected by the tranzfomlation w = f('), 
is independent of the direction. In general this change of scale will vary 
from point to point. 

Conversely, it is clear that both kinds of eonformaIity together imply 
the existence of f (ZD). It is less obvious that each kind will separately 
imply the same result, at least under additional regularity assumptions. 

To he more precise, let us asswne that the' partial derivatives iJflax 
and iJlllIy are continuous. Under this condition the derivative of 
1I>(t) = f(lI(t» can he expressed in the form 

w'(l.) - ! X' (I.) + ., 1I'(to) 
. .' ." . 

where the partial dari~ _fUkM at .0;' In 1enne of %'(to)"ftllB 

. .. • .. '. .....•. ........ ....•.. , ....•• _.c .. '.:··.;': •••• ·· ....•. ,.:,.' .. > .. ' . , :'."" . ,- '-'''-:'~ -. ,,": ;~ .. --' - "._-



74 COIIPL •• ANALYSIS 

be rewritten as 

If angles are preserved, arg [w'(to)/z'(to») must be independent of 
arg z'(to). The expression 

(3) 

must therefore have a colll!tant argument. AIl arg z'(to) is allowed to 
vary, the point represented by (3) describes a circle baving the radius 

ll(allib:) + i(fJllay)\· The argument eannot be constant on this eircle 
unlees its radius vanishes, and hence we must have 

(4) al . al -= -t-ax ay 

which is the complex form of the Cauchy-Riemann equations. 
Quite similarly, the condition that the ehange .of sceJe sheJl be the 

same in all directions implies that the expression (3) has a constant 
modulus. On a circle the modulUJl is constant only if the radius van­
ishes or if the center lies at the origin. In the fim case we obtain (4), 
and in the second case 

al . al - :;::::::. ,,_. 
ax ay 

The last equation expresses the facit that I(z) is analytic. A mapping 
by the conjugate of an analytie fnnction with a nonvanisbing derivative 
is said to be indirectly wnlllN'ilal. It evidently preserves the size but 
reverses the sense of angles. 

If the mapping of (l by '" = I(z) is topological, then tbe inverse fnnc­
tion z - I-I(w) is also analytic. This follows easily if f'(z) '" 0, for then 
the derivative of the inverse function must be equal to III' (z) at the point 
z ..; I-'(w). We shall prove later that I'(z) can never vanish in the case 
of a topo\ogiceJ mapping by an analytic function. 

The knowledge thatf'(zo) '" 0 is sufficient to conclude that the ma~ 
ping is topological if it is restricted to a sufficiently small neighborhood of 
Zo. This follows by the theorem on implicit functions known from the oal­
culus, for the Jacobian of the functions u = u(x,y), v .. v(x,y) at the point 
Zo i81/'(zo)\' and hence '" O. Later we shall present a simpler proof of this 
important theorem. .. 

But even if I'(z) '" 0 throughout the region 0, we cannot that 
the mapping of the whole region is necesse.rily topological. Toillust.mte 
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what may happen we refer to Fig. 3-1. Here the mappings of the sub-

FIG.lt Doubly oovered region. 

n' I 

regions (1, and Il, are one to one, but the images overlap. It is helpful to 
think of the image of the whole region &8 & trlUlsparent film which partly 
covers itself. This is the llimple IUld fruitful idea used by Riemann when 
he introduced the genera.1ized regions now known &8 Riemann IIUrlaus. 

. . 

11.4. Length and Ar..... We have found that under a COnfOl'lllal mapping 
I(z) the length of an infinitesimal line segment at the point z is multiplied 
by the factor If'(,,) I. Because the distortion is the same in all directions, 
infinitesimal areas will clearly be multiplied by If'(o) I'. 

Let us put this on a rigorous basis. We know from calcul\18 that the 
length of a differentiable are 'Y with the equation. = o(t) = x(l) + iy(t), 
a ;:I t ~ b, is given by 

L('Y) = J' y'",'(O· + y'(t)1 de = J' 1.'(01 dt. 
• • 

The image curve 'Y' is determined by tD = w(t) = I(.(t» with the derivative 
w(O = f(.(I»"(I). Its length is th\18 

L(..,') = I: 1f'(0(1)) 11.'(1) I tit. 

It is customary to use the ahorter notations 

(5) L('Y) = f Idol, 
T 

L(..,') = f If'(z) lldol· 
T 

Observe that in complex notation the calculus eymbol d3 for integration 
with respect to. arc length is replaced by ldo I. 

Now let E be a point set in the pilUle whose area 

A(E)= /fdz dll 

• 
- . '- . .' -, ,- ,," . - .. -..•.. , .' " ",' -.;' "-" ':.:'.',., " '.' -" '.-". '::'- ".\ ',.,~' 
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ran be evaluated as a double Riemann integral. If f(.) - u(x,y) + 
iv(z,y) is a bijective differentiable mapping, then by the rule for changing 
integration variables tbe area of the image E' = feE) is given by 

A(E') = f flu ... - .. ,.v.1 d% dy. 

" 
But if f(.) is a confol'lMI mapping of an open set containing E, then 
..... - .. ,.v. - 11'(.) I' by virtue of the Cauchy-Riemann equatiollll, and 
we obtain 

(6) A(E') = f f 11'(.) I' d% dy. 

B 

The (ol'mnl"" (5) and (6) bave important applications in the part of 
complex analyais that is frequently referred to 88 geometric function 
theory. 

I. LINEAR TRANSFORMATIONS 

Of all analytic functions the firslr<lrder rational functions have the simplest 
mapping properties, for they define mappings of the extended plane onto 
itself which are at the same time conformal and topological. The linear 
transformations have also very remarkable geometric properties, and for 
that reason their importance goes far beyond serving as simple examples of 
conformal mappings. The reader will do well to pay particular attention 
to this geometric aspect, for it will equip him with simple but very valua­
ble techniques. 

3.1. The Unear Group. We have already remarked in Chap. 2, Sec. 
1.4 that a limar fradionol tt-am!ormtJIion 

lIZ + b (7) to = 8(.) = --;----, 
cz +d 

with ad - be ¢ 0 has an inve.se 

dw - b z = 8-'(10) = ' .' -=+a 
The special values 8( co) = ale and 8,( -die) = co can be introduced 
either by convention or as limits for t ..... co and z ..... -die. With the 
latter interpretation it becomes obvious that 8 is a topological mapping of 
the extended plane onto itself, the topology being defined by distances on 
the Riemann sphere. 

For linear transformations we shall usually replace the notation S(.) 

, , 
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by Sz. The representatjon (7) is aaid to be norma1;zed if ad - bc = 1. 
It is .11'.8.1' that every linear transform soon has two normalized represen­
taoons, obtained from each other by changing the signs of the coefficients. 

A convenient way to expre88 a linear transformation is by use of 
homogeneous coordinates. If we write z = 1<,/Z2,W = w,/w, we find that 
w=Szif 

(8) 

or, in matrix notation, 

w, = oz, + bz, 
10. = "'" + dz. 

w, 
w, 

a b 
c d " z, • 

The main advantage of this notation is that it leads to a simple determina.­
tion of a composite trlUlsformation w = 8.s... If we use BUbseripts to 
distinguish between the matrices that collellD"nd to S" S, it is immediate 
that S.s, belongs to the matri~ product 

a. b, 
e, d, 

_ atilt + b,e, a,b, + b ,d. 
c,a, + d,c, e ,b, + d,d, 

• 

All linear transformations form a group. Indeed, the associative 
law (S,S.)S. = S,(S,sj) holds for arbitrary transformatjons, the identity 
w = z is a linear transformation, and the inverse of a linear transformation 
is linear. The ratios %, :z. ;0< 0:0 are the points of the complex projective 
line, and (8) identifies the group of linear transformations with the one­
dimensional projective group over the complex numbers, UBUa11y denoted 
by P(l,C). If we UIIe only normalimd representations, we can aI"" iden­
tify it with the group of two-by-two matrices with determinant 1 (denoted 
SL(2,C», except that there are two opposite matrices conesponding to the 
same linear transformation. 

We shall make no further use of the matrix notation, except for 
remarking that the simplest linear transformations belong to matrices of 
the form 

1 a Ie 0 0 1 
01'01'10· 

The first of these, to = " + ot, i8 called a parallel b"amlation. The second, 
to = lez, is a rotation if llel = 1 and a hbmothel~ trantlfONtl4tion if Ie > o. 
For arbitrary complel< Ie ". 0 We can set Ie = 1.1:1 • k/lkl, and hence w = kz 
can be represented &8 the lCSalt of a hornothetic transformation followed 
by a rotation. The third transformation, to = l/z, is called an inversion. 

If c ". 0 we can write 

, 
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and this decomposition shows that the most general linear transform&­
ion is composed by a translation, an inversion, a rotation, and a homo­
thetic tl'ansformation followed by another translation. If c == 0, the 
inversion falls out and the last tr8 muation is not needed. 

aXERCISES 

L Prove that the reflection z ..... i is not a linear transformation. 

1. If 
z+2 

T,z = z +3' 
z 

T,z = z + l' 
find T,T,z, T.T,z and T;:'TtZ, 

L Prove that the most general transforulation which leaves the origin 
fixed and preserves all distances is either a rotation or a rotation followed 
by reftexion in the real axis. 

... Show that any linear transformation which transiOIlIll! the real 
axis into itself can be written with real coefficients. 

8.2. The CrOSlt Ratio. Given three distinct points 1$0, z., z. in the 
extended plane, there exists a linear tra.nsforulation S which carries them 
into 1, 0, co in this order. If none of the points is co, 8 will be given by 

(9) 
:I - :Is %1 - %1 Bz = : . 
z - %" %2 -z. 

If %"~' or 2. == co the transformation reduces to 

respectively. 

Z - Za , 
Z - Zt 

Z2 - Zf, , 
Z - z .. 

If T were another linear tl.LDsiormation with the same property, 
then ST-' would leave 1, 0, co invariant .. Direct calculation shows that 
this is true only for the identity trausf4)nnation, and we would have 
8 - T. We conclude \hat S is uniquely deWlilined. 

Definition 12. The eros. roIw (z"z.,.,.,.,.) iB the im4(J' of z, umkr the 
linear traM/oltlilll'Wn which carriB8 z"z.,~. into 1, 0, co. 

The definition is meaningful only if Z"Z,,%, are distinct. A conven­
tional value can be introduced 88 llOon 88 any three of the points are 
distinct, but this iaunimport9u t. 
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The cross ratio is invariant under linear tran.'ormatiOIl8. In more 
precise formulation: 

Theoreln 12. 1/ Z" Zt, Za, ii, are dulind point. in the alMidod plIJne and T 
any linear tTam/ormaiian, then (Tz"Tzt,Tz"Tz.) ~ (ZI,Z.,Z,,2.). 

The proof is immediate, for if. Bz = (z,zt,z,,z,), thenBT-' canies 
Tzt, Tz" Tz. into 1, 0, 00. By definition webave hence 

(Tzl, Tz., Tz" Tz.) = BT-'(Tz,) = 8Z1 = (z,,.f.,.,,,,,.). 

With the help of this property we can immediately write down the 
linear trMsfQrmation which carries three given P<lintli Zl, ." Z, to pre 
scribed P<lsitions W" to" W" The corxe8P<lndence must indeed be given by 

In general it is of course necessary to solve this equation with toto . 
. 

Theorem IS. The or08' ratio (z"Z.,%I, ... ) i& real if and only if tM f<YUr 
points lie an a circle or an a 8!1'aight line. 

This is evident by elementary geometry, for we obtain 

and if the P<lints lie on a circle this diJJerence of angles is either 0 or ± .. , 
depending on the relative location. 

For an analytic proof we need only show that the image of the real 
axis under any linear transformation is either a circle or a straight line. 
Indeed, Tz - (z,,",,z.,z.) is real. on the image of the real. axis under the 
transfotmation T-' and nowhere else. 

The val.ues of to = T-'z for z satisfy the equation Tto = l'to. 
Explicitly, this eondition is nf the fom, 

aw+b dtO+ii = . 
C1D + d Ctli + il 

By C1'OM multiplication we .obtain 

(at - ca)lwtl + (ad.:'" ct.)w + (be - d4)1li + bd - db = o. 
If ail - CC1 = 0 this is the equation of a straight line, for under this eon­
dition the coefficient ad - eli catinot also vanish. If of - CC111" 0 we can 

:, "_:'''''''" .•. " -' . ' .. ,,- .... '. : .. ,,' _-'r: ""'~"" 
, "-, ' 

. C'" .: ';.' ... 
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divide by this coefficient and complete the square. After a simple com­
putation we obtain 

= 

which is the equation of a circle. 

ad-be 
lie-fa 

The last resalt makes it clear th.e.t we should not, in the theory of 
linear transformations, distinguish between circles and straight lines. A 
further justification was found in the fact that bo~h correspond to circles 
on the Riemann sphere. Accordingly we sha.ll'e.gl ee to UBe the word 
circle in this wider sense. t 

, 

The following is an immediate corollary of Theorems 12 and 13: 

Tbeorem 14. A linear tranaformalian carrie. circle. iNo circle.. 

EXERCISES 

L Find the linear transformation which carries 0, i, -i into 1, -1, O. 
Z. Express the cross ratios cOnesponding to the 24 permutations of 

four points in tern.s of " = (Z.,%2,%,,%,). 
a. If the consecutive vertices %1, %t, Z" z. of a qlllulrilateral lie on a 

circle, prove t.bat 

\z, - z.\·\z, - %.\ = \It. - z,\ ·Iz. - z.\ + \z. - 1t.1 . lit. - z.1 
and interpret the result geometrically . 

... Show that four distinct points can be earried by a linear 
transformation, to positions I, -1, Te, -Te, where the value of k depends on 
the points. How many solutions are tbere, and how are they related? 

3.3. Symmetry. The points z and j are symmetric with rupect to the 
real axis. A linear transformation with real coefficients carries the real 
axis into itself and z, Ii into points which- are again sym~tric. More 
generally, if a linear transformation T carries the real axis into a circle C, 
we shall say that the points 10 = Ta and 10* = Ti are symmetric with 
re8pect to C. This is a relation between 10, 10* and C which does not 
depend on T. For if S is another transformation which carries the real 
axis into C, then S-'T is a real transfornlation, and hence S-'w - S-'Tz 
and 8-'111* = S-'TJ are also conjugate. Symmetry can thus be defined 
in the following tenus: 

, 

t'I'hil eg'eement will be in foroe only when desliDC with linear t;ranefonnation
., 
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Definition 13. The points It and.* an said 10 be qmmetric wiQl rupect 
to the circle C thrMJ{/h z" Z" z, if mul onlll if (z* •••• z.,z.) = (z.z.,z,.z.). 

The points on C. and only those. are symmetric to themselves. The 
mapping which carries z into •• is a one-to-one oonespondence and is 
called reflection with respect to C. Two redections will evidently result 
in a linear transformation. . 

We wish to investigate the geometric significance of symmetry. Sup­
pose first that C is a straight line. Then we can choose " = co and the 
condition for symmetry becomes 

(10) 

Taking absolute values we obtain 1.* - •• 1 = I.r - 8.1. Here .. can be 
any finite point on C, and we conclude that. and .. are 
from all pointe on C. By (10) we have futther 

z· -., z- .. 
1m" = -1m • 

1:1-';. *1-Z, 

and hence 11 and z· are in dilferent half planes determined by C. t We 
leave to the reader to prove that C is the bisecting normal of the segment 
betWW.1. and , •. 

Consider now the case of a finite circle C of center a and radiu R. 
Sy"'sllllclmatic use of the invariance of the cross ratio allows us to conclude 
as foOows: 

(z,z.,z,,z.) = (z - a,z. - a,z, - a,z. - il) 
_R' R' It' - i-a, ..., • :C-=:,--

.11-4 &'s-a z,-a 
R" = ,z,- 0_1- Gs.-a 

'-4 ' I 

R' - ._4+ a,zI •••••• • 

This equation shows that the symmetric point ohis.* - R'/(! - a) + a 
or that. and z· aatilsfy the relation 

(11) (,. - 4)(1 - a) = R·. 

The produet 1.* - 01 . I_ - al of the distances to the center is hence R'. 
Further, the ratio (II· - a}/(. - a) is positive. whioh that z and 
z· are on the same half line from o. There is a simple geometric 
coDlltruction for the 8ymmetrie point of " (Fig. 3-2). We note that the 
eymmetric point of (I is ... 

tUDlIiII 

. 
. . .. 

", , .. -. '. . '.,. 
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ZO 
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'" 

Fl •. W. ReHection in 8 circle. 

Theor.,.,. IS. (ThB symmetry priMiple.) If a linear Irana/ormation 
carries a circle C. into a circle C., then it trana/o""'8 any pair '" SY1n'IMtric 
poinIB with """Peel to C. into a pmr of symmetric poinIB with respecl to C •. 

Briefly, linear transfonnations preserve symmetry. If C, or C, is the 
real axis, the principle follows from the definition of BY mmetry. In the 
general the follows by use of an intermedis.te transfOn.,ation 
which carries C, into the real axis. 

There are two ways in which the principle of symmetry can be used. 
If the images of z and C under a certain linear transformation are known, 
then the principle a.1lows us to find the ime,ge of ~*. On the other hand, 
if the images of z and ~. are known, we conclude that the image of C 
must be a line of symmetry of these images. While this is not enough 
to determine the image of C, the infonnation we gain is nevertheless . 
valuable. 

The principle of symmetry is put to practical use in the problem of 
finding the linear transformations which carry a circle C into a circle C'. 
We can always determine the transformation by requiring that three 
points 21" 21., z. on C go over into three points w., WI, W, on C'; the trans­
formation is then (w,w"w.,w.) = (z,z"z.,z.}. But the transformation is 
also determined if we prescribe that a point z. on C sball couespond to 
a point w. on C' and that a point z. not on C sha.1l be carried into a point 
w. not on C'. We know then that z: (the symmetric point ,of z. with 
respect to C) must correspond to w: (the symmetric point of Wt with 
rwpect to C'). Hence the trllnsformation will be obtained from the 
relation (w,w.,wo,w:) = (21,21,,210,21:). 

EXERCISES 

L Prove that every reflection carries circles into circles. • 
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2. Reflect the imaginary axis, the line :I: = 1/, and the circle Izi = 1 
in the circle Iz - 21 = l. 

I, Cany out the reflections in the preceding exercise by geometric 
construction. 

4. Find the linear transform a.tion which ca.rries the circle Izi = 2 iuto 
I. + 11 - 1, the point - 2 into the origin, and the origin into i. 

L Find the most general linear transforma.tion of the circle 1.1 = R 
into itee\f. 

8. Suppose that a linear transformation carries one pair of concentric 
circles into another pair of concentric circles. Prove that the ratioe of the 
radii must he the same. 

7. Find a linear transformation which ca.rriea 1.1 - 1 and Iz - tl ~ {­
into concentric circles. What is the ratio of the radii? 

L Same problem for Izi = 1 and z = 2 . 
. 

11.4. Oriented C ... ",.... Because S(z) is analytic and 

ad-be 
S'(.) = (cz + d). ¢ 0 

the mapping to .. S(.) is conformal fou ¢ -die and 00. ItIollows that 
a pair of intersecting circles are ma.pped on circles that include the same 
angle. In addition, the sense of an angle is preserved. From an intui­
tive point of view this means that right and left are preserved, but a more 
precise formulation is desirable. 

An orientation of a circle C is determined by an ordered triple of 
points '.,Z.,ZI on C. With respect to this orientation a point" not on C 
i8 nid to lie to the right of C if 1m (.".".".) > 0 and to the left of C is 
1m (Il,","."') < 0 (this checks with everyday .IIIA beea" .... (i,l,O, 00) = i). 
It is eesential to show that there are only two different orientatioll8. By 
this we mean that the distinction left and right is the eame for all 
triples, while the meaning may be revel sod. Since the Ct088 ratio is invari­
ant, it is sufficient to consider the ease where C is the real axis. Then 

/Ill +b 
(z, .. .,.,,") = cz + d 

coo be writtsn with real coefficients. and a simple calculation gives 

ad-be 
1m (s,z.,'.,") = I .. + dl' 1m •. 

We recognize tha~ the distinction between right and left is the same as 
. half plene. Which is which 
.:.;~.. .. 
',.- ' ",- '. .- . . ' «-" - ' - .'" '-'" ,... . 

• . .- , ' 
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A linear transformation S carries the oriented circle C into a circle 
which we orient through the triple SZl, &., Sz.. From the invariance of 
the crOM ratio it follows that the left and right of C will be mapped on the 
left and right of the image circle. 

If two circles are tang<lnt to each other, their orientatioDJ! can be 
compared. Indeed, we can use a linear transformation which throws their 
common point to GO. The circles become parallel straight lines, and we 
know how to compare the directions of parallel lines. 

In the geometric the orientation 11, Z., ZI can be indi-
cated by an arrow which points from 11 over z. to ZI. With the wrual 
choice of the coordinate system left and right will have their customary 
meaning with respect to this arrow. 

When the finite plane is considered as part of the extended plane, the 
point at infinity is distinguished. We can therefore define an absolute 
positive orientation of all finite circles by the requirement that GO should 
lie to the right of the oriented circles. The points to the left are said to 
form the imitk of the circle and the points to the right form its outside. 

EXERCISES 

:a. If Z" eo, Z" z. are points on " circle, show that Z" Z" •• and ZI, ZI, t. 
determine the same orientation if and only if (11,ZI,Z"I.) > o .. 

2. Prove ~hat a tangent to a circle is perpendicular to the radius 
through the point of contact (in this connection a tangent should be defined 
as a straight line with only one point in common with the circle). 

.. Verily that the inside of the circle Iz - al - R is formed by all 
points z with Iz - al < R. . 

4. The angle between two oriented circles at a point of inteIsection is 
defined as the angle between the tangents at that point, equipped with the 

orientation. Prove by analytic r8ll8ODing, rather thaD geometric 
inspection, that the angles at the two points of intersection are opposite 
to each other. 

3.5. Familiett of arc".. A great deal be done toward the visual-· 
ization of linear transformations by the introduction of certain families 
of circles which may be thought of as coordinate lines .. in a circular 
coordinate system. 

Consider a Iioear transformation of the form 

ID = k. I-a. 
z-b 

Here z = a to ID = 0 and 1= b to ID = GO. It follows that 
the straight lines through the origin of the tD-p1ane are-images of the 
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circles through a and b. On the other hand, the concentric circles about 
the origin, IIDI = p, correspond to circles with the equation 

~-G 
"---"";:b = pllll· z-

TheBe are the circle8 oj.ApolkmiWl with limit points a and b. By their 
equation they are the loci of points whoBe distances from a and b have 
B constant ratio. 

Denote by C, the cireles through A, b and by C. the cireles of Apol­
Ioniua with these limit points. The configuration (Fig. 3-3) formed by all 
the circles C, and C. will be referred to 88 the circulaf- 11& or the 8teiner 
circle8 determined by a and b. It has many interest.ing properties of 
which we shalIli.t a few: 

1. There is P.xa.,tly one C, and one C. through each point in the plane 
with the exception of the limit pointe. 

2. Every C, meets every C. under right angles. 
3. Reflection in a C 1 transforms every C. into itself and every C 1 into 

another C ,. lUl1Iection in a C. transfomlS every C 1 into itself and every 
C. into another C •. 

4. The limit points are symmetric with respect to each C., but not 
with l'68pect to any other cirele. 

PIG. ..... Stain !I circlM. 

.. . 
-, . , . . . . ' '. ". . , . ,- .,' "- '.' ,- -: '''--' ,-"'- "" ' ..... . 
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These properties are all trivial when the limit points are 0 and GO I 

i.e., when the a, are lines through the origin and the a. concentric 
circles. Since the properties are invariant under linear transfonnations, 
they must continue to hold in the general "&se. 

lf a transfolmation UP = T. carries G, b into G', b' it can be written in 
the f6rm 

(12) 
• 

It iB clear that T transforms the circles C, and C. into circles C; and 
a~ with the Ii mi t point. a', b'. 

The situation i8 particularly simple if G' = G, b' = b. Then a, b are 
said to be fiud points of T, and it i8 convenient to represent" and Tz in 
the· same plane. Under these circumstance. the whole circular net will 
be mapped upon itself. The value of k serves to identify the image 
circles a; and c~. Indeed, with appropriate orientations a 1 forms the 
an«le arg k with its image a;, and the quotient of the oonBtant ratios 
\. - al/lz - b\ on a; and a. iB Ik\. 

The zpeeial c&ses in which all C 1 or all C. are mAPped upon themselves 
are particularly important. We have C: = C 1 for all C 1 if k > 0 (if 
k < 0 the circles are still the same, but the orientation i. rev,,,seJ). 
The transformation is then said to be hyperbolic. When k increases the 
points T" z ~ G, b, will flow along the circles a 1 toward b. The con­
sideration of this flow provides a very elear picture of a hYPlrbolic 
transfonnation. , 

The ~.,., C; = a. oecurs when Ik\ = 1. Transformations with thi8 
property are called elliplic. When srgk varies, the points Tz move 
along the eircles C.. The eorresponding flow circulates about G and b 
in difierent directions. 

The gtlnerallinear transformation with two fixed points is the product 
of a hyperbolic and an elliptic transformation with the same fixed points. 

The fixed. points of a linear transformation are found by solving the 
equation 

(13) 

In gtlneral this is a quadratic equation with two roots; if ., = 0 one of 
the fixed points i. GO. It may happen, however, that the roots coincide. 
A linear tr&psformation with ooinciding fixed points i8 said to be parabolic. 
The condition for this i. (a - ~)' = ~.,. 

If the equation (13) i8 found to have two distinct roots G and b. the 
transformation can be written in the fom.. 
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v-a z-a , = k . 
v-b z-b 

We can then use the Steip.er circles determined by II, b to discuss the 
nature of the transformation. It is important to note, however, that 
the method is by DO means restricted to this CIlSe. We can write any 
linear transformation in the form (12) with arbitrary II, b and use the 
two circular nets to great advantage . 

. For the discussion of parabolic transfOiDIatioDS it is desirable to intro­
duce still another type of circular net. Consider the transformation 

., 
w = +c. z-a 

It is evident that straight lines in the tD-plane conespond to eircles 
through a; moreover, pareJIellines correspond to mutually tangent circles. 
In particular, if v = u + w the lines u = constant and • - constant 
correspond to two families of mutually tangent circles which intersect 
at right angles (Fig. 3-4). This configuration can be considered 88 a 
degenerate set of Steiner circles. It is determined by the Point II and 
the tangent to one of the families of circles. We shall denote the images 
of the lines v = constant by V .. the circles of the other family by V •. 
Clearly, the line v ~ 1m c conesponds to the tangent of the circles 01; 
its direction is given by arg <JI. 

. , ., , " , , . ..,' 
,~: ,.,~",;, J. 

. . . , " . 
. . . . . . 
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Any tnmsfonnation which carries a into a' can be written in the form 

'" ., =-"-::., = + c. ,.,-a z-a 

It is clear that the circles C. end C. are carried into the circles C: and 
C; determined by a' and ",'. We suppose now that a = a' is the only 
fixed point. Then., = ",' and we can write 

(14) .. .. - .. '+0. ,.,-a Z-II . 

By this transformation the configuration consisting of the circles C. and 
C. is mapped upon itsell. In (14) a multiplicative factor is arbitrary, 
and we can hence suppose that 0 is real. Then every C. is mapped upon 
itsell and the parabolic transfofillation can be comndered as a 80w along 
the circles C..-· 

A linear VaosfoIDlation that is neither hyperbolic, elliptic, nor 
parabolic is to be 

EX.RCISES 

L Find the fixed points of the linear transformations 

2z 3z - 4 II! 
,., .. 2z - I' ,., - 3z - l' to = , z-1 to= . 

2-z 

Is any of these elliptic, hYpc.'bolic, or parabolic? 
:r. Suppose that the coefficients of the transfC1rmation 

Sz=az+b 
. cz + d 

are normalised by ad. - be = 1. Show that S is elliptic if and only if 
-2 < II + d < 2, parabolic if a + d ... ±2, hyperbolic if II + d < -2 
or >2. 

L Show that a linear transformation which satisfies 8"1: .. z for 
some integer n is elliptic. 

4. If S ill hyperbolic or loxodromic, show that Soz converges to a fixed 
point as n"'" "', the Bame for all z, except when z coincides with the other , 
fixed point. (The limit ill the aUractilJf1, the other the repellent fixed point. 
What happens when n .... - "'? What happens in the parabolic case?) 

L Find all linear transformations which rotations of the 
Riem"DD sphere. 

L Find all circl!'8 which are orthogonal to \2\ -= 1 and \z - 1\ = .. 
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7. In an obvious way, which we shall not try to make precise, a family 
of transformations depends on a certain number of real parameters. How 
many real parameters are th~ in the family of all linear transformations? 
How many in the familie8 of hyperbolic, elliptic, parabolic transforma­
tions? How many linear transforma,tionsleave a given circle C invariant? 

.. ELEMENTARY CONFORMAL MAPPINCS 

Tbe conformal mapping I!JI8Ociateci with an analytic function affords an 
excellent visualisation of the properties of the latter; it can well be com­
pared with the viSUalisation of a real function by ite graph. It is there· 
fore natural that all questions connected with conformal mapping have 
received a great deal of attention; pt0gre88 in this direction has incl'eAJ!IIld 
our knowledge of analytic functions considerably. In addition, con­
formal mapping enters naturally in many branches of mathematical 
physics and in tbis way acCOunt8 for the immediate usefulness of complex­
function theory. 

One of the most importAnt problem8 i8 to determine the conformal 
mappings of one region onto another. In this section We shall eonsider 
those mappings which can be defined by elementary functions. 

4.1. The UII. oj 1...".,1 Curves. When a conformal mapping is defined 
by an explicit analytic function tD = fez), we naturally wish to gain infor­
mation about the epecific geometric properties of the mapping. One of 
the most fruitful ways is to study the cone8pondence of curves induced 
by the point transformation. The special properties of the function ".) 
may express themselves in the fact that certain simple Clayes are trans 
formed into curves of a family of well-known character. Any such infor-

t. will strengthen Our visual eonception of the mapping. 
Such was the case for mappinp by linear transformations. We 

proved in Sec. 3 that a linear tranSrotlllation carries circles into circles, 
provided that straight lines are included as a special case. By eon­
sideration of the Steiner circles it was possible to obtain a eomplete picture 
of the con oopondence. 

In more pneralcaees it is advisable to with a 8tudy of the image 
curvesofthelineu = ",.andll = 110. If we writef(_) - U("',II) + w("',II), 
the image of '" = "'0 is given by the panmetric equations 10 - u(",.,y), 
II - 1I(;¥e,II); II acte as a parlPollleter and can be eliminated or retained 
,coording to conVllllienoe.' The image of II - r,r. i8 deoorn,ined in the 
eaJI).e way. the curves form an orthogonal net in the .... p1ane. 
Bimilarly, UID"7" conejder the 1Iurve8' "(Z,II) - Uo .(Z,II) -II. in the 
... plane. They ... lII!IoortbOlJOnal.nd are o·u.d1helellWCIIInONof .. ,.ad , • 

. " . '. . . 
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In other it may be more convenient to use polar coordinates and 
study the images of concentric circles and straight lines through the origin. 

Among the simplest mappings are those by a power tD .. Z". We 
consider only the of real a, and then we may as well suppose that", is 
poaitive. Since 

ItDl = \.21-
argtD=aargz 

concentric circles about the origin are transformed into circles of the same' 
family, and half lines from the origin conespond to other half lines. The 
mapping is coruofinal at all points z ~ 0, but an angle 8 at the origin is 
transformed into an angle a8. For a ¢ 1 the tnl.nsformation of the whole 
piane is not one to one, and if a is fractional Z- is not even siDgl&-vaIued. 
In general we can therefore only coneider the mapping of an a!18nlar sec­
tor onto another. 

The sector 8(</>.,.",), where 0 < <Pt - <P. ~ 2.-, shall be formed by all 
points z ¢ 0 such tha.t one value of arg z satisfies the inequality 

(15) <p. < arg z < " •. 
It i. eMY to show that 8("',f('iJ is 8. region. In this region a unique value 
of 10 .. Z- is defined by the condition 

arglO = aargz 

where arg z stands for the value of the argument singled out by the condi­
tion (15). This function is analytic with the nonvll-Dishing derivative 

The mapping is one to one only if "'(". - "I) ~ 2.., and in this 
8( .... , .... ) is mapped onto the sector 8(a<p.,a.",) in the w-piane. It should 
be observed that 8(</>1 + n . 2 ... ,.", + n . 2 ... ) is geometrically identical with 
8(""".) but may detem.ine a different branch of Z". 

Let us consider the mapping w = z' in detail. Since 11 = z" - y' 
and v .. 2xy, we recognise that the level curves 11 ~ U. and v = v. are 
eqnil ateral hyperbolas with the diagonals and the coordinate for 
aaymptotes. They are of course orthogonal to each other. On the other 
hand, the image of z = :1:. is Ii" ... 4%:(:J:I - u) and the image of y .. y. is 
v" .. 4111(w + u). Both families represent parabolas with the focus at 
the whose &xes are pointed in the negative and positive direction of 
the 11 axil!. Their orthogonality is well;.lmown from analytic 
The families of level curves are shown in Figs. 3-5 and~. 



ANALYYIC FUNCTIONS AS MAPPINGS ., 

FIG. J i. .e-plane. 

For a dilIerent family of image curves consider the circles ltD - 11 = k 
in the tD-plane. The equation of the inverse image can be written in the 
fOnll 

(x' + 11')1 = 2(x' - y') + kl - 1 

and represents a family of lemniscates with the focal points ± 1. The 
orthogonal family is represented by 

z' - y' = 2h:ey + 1 

and consists of aJl equilateral hyperbolas with center at the origin which 
pM; through the points ± 1. 

In the of the third power VI = z' the level curves in both planes 
are cubic curves. There is no point in deriving their equations,lor their 
general shape is clear without calculation. For illl!tance, the curves 
U = Uo > 0 mu.iJt have tht. forill indicated in Fig. 3-7. Similarly, if we 
follow the change of arg VI when z traoes the line x = :0:. > 0, we find that 
the image curve must have a loop (Fig. 3-8). It is a folium of Descartes. 

-' 

..... , .-.:- '-','-.:',. ,-, ... " ,- '.-' .. "'"-,,,',",: .... ;:,,'-. .-,., -.,~ 
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FIG. J S. U>opIan •• 

The mapping by tD = e'is very simple. Thelinesz = zoand!l - !lo 
are mapped onto circles about the origin and rays of constant argument. 
Any other straight line in the z-plane· is mapped on a logarithmic spiral. 
The mapping is one to one in any region which does not contain two points 
wh08e diiferenoe is a multiple of 2ft. In particular, a horizontal strip 
!It < !I < !lz, !I. - !It ;:i 211" is mapped onto an angular sector, and if 
1/. - !It = 11" the image is a bA.]f plane. We are thus able to map a parallel 
strip onto a half plane, and hence onto any circular region. 'rhe left balf 
of the strip, cut oj{ by the im.agin sry axis, corresponds to a half circle. 

It is useful to write down some explicit formulas for the mapping. 
The function t - ~ + i., = e' maps the strip -11"/2 < !I < 11"/2 onto the 
h&lf plane ~ > O. On the other hand, . . 
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maps ~ > 0 onto Iwl < 1. Hence 

... -1 e 
VI '" e' + 1 = tanh 2 

maps the strip 11m zl < r/2 on the lInit Iwl < 1. 
4.:1. A SurrItIY oj Elementary Mappinll'" When faced with the prob­
lem of mapping a region Ol oonformally onto another region 0., it is 
usually advilsabJe to proceed in two steps. First, we map 0, onto a circu­
lar region, and then We map the circular region onto 0.. In other words, 
the general problem of conformal mapping can he reduced to the problem 
of mapping a region onto a diRk or a half plane. We shall prove, in 
Chap. 6, that this mapping problem has a solution for every region 
whose boundary consists of a simple closed curve. 

The main tooJs at our disposal are linear transformations and trawl­
formations by a power, by the exponential function, and by the loprithm. 
All these transformations have the characteristic property that they map 
a family of straight lines or circles on a 8imilar family. For this reason, 
their is limited to regions whose boundary is made up of 
circular ares and line segments. The power serves the particular purpose 
of straightening angles, and with the aid of the exponential function we 
can even transform zero angles into straight angles. 

By these means we cm for iost&nce find a st.and.rd mapping of any 

• 

.... 1-7 ....... 
• 

'".' _ . 
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region whose boundary consists of two circular arcs with common end 
points. Such a region is either a circular wedge, whose IUIgle may be 
gI eater tbeD r, or its complement. If the end points of the arcs are a and b, 
we begin with the preliminary m&pping z, = (z - a)/(z - b) which tran&­
iom.s the given region into an a.ngular sector. By an appropriate power 
w - z! this sector can be mapped onto a half plane. 

If the circles are tangent to each other at the point a, the transforma­
tion z, = 1/(z - a) will map the region between them onto a parallel 
strip, and a suitable exponential transformation maps the strip onto a 
half plane. . 

A little more generally, the same method applies to a ~cular tri­
angle with two right angles. In fact, if the third angle haS the vertex 
G, and if the sides from a meet agmn at b, the linear transformation 
z, - (z - a)/(z - b) maps the triangle onto a circular sector. By means 
of a power this sector can be transformed into a half circle; the half circle 
is a wedge· shaped region which in turn can be mapped onto a half plane. 

In this connection we shall treat explicitly a special case which occurs 
frequently. Let it be required to map the complement of aline segment 
onto the inside or outside of a circle. The region is a wedge with the 
angle 2Ir; without loS!! of generality we may 8 .... ume that the end points of 
the seglDent are ± 1. The preliminary transformation 

z+1 
21 = z-1 

maps the wedge on the full angle obtained by exclusion of the negative 
real mOs. Next we define 

Zl = vz. 
as the square root whose real part is positive and obtain a map onto 
the right half plane. The final transfonllation . 

z. --1 
w=z.'+1 

maps the half plane onto 1101 < 1. 
F. of the intermediate vanablesleads to the correspondence 

1 1 
11""- w+-

2 10 
• (16) 

10 ,;. Z - vzI - 1. 

The sign of the square root is uDiquely determined by the condition 
IIDI < 1, for (z - V Z2 - l)(z + V Zl - 1) - 1. If the sign is changed, 
we obtmn a mapping onto 1101 > 1. 



For a more 
obtain 

Elimination of 6 yields 

(17) 

and elimination of p 

(18) 
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study of the mapping (16) we set 11> = "e" and 
, 

1 p+­
p 

1 
p-­

p 

cos /I 

.,. y" 
cos" 6 - sin" 8 ~ 1. 

Hence the image of a circle iwi - p < 1 is an ellipse with the major axis 
p + p-' and the minor axis 1'-' - p. The image of a r&diU8 is half a 
branch of a hyperbola. The ellipses (17) and the hyperbolas (18) are 
confocal. The corrbspondence is illU8trated in Fig. 3-9. 

Clearly, the transformation (16) aIl0W8 us to include in our list of 
elementary conformal mappings the mapping Ot the outside of I'D ellipse 
or the region between the branches of a hype.-bola onto a circlIl at region. 
It does not, however, allow 118 to map the inside of an ellipse or the 
inside of a hyperbolic branch. 

As a final and Jess trivial example we shallstwiy the mapping defined 
by a cubic polynomial 10 ~ a .. ' + a,z" + (lIZ + a.. The familiar trans­
formation z = z, - adS ... allows us to get rid of the quadratic term, 

, 
- '.-

. '.'-~: . '. ' 

-
"~';: .. ., .... --",'.,. ,', 
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and by obvious normalizations we can reduce the polynomial to the form 
10 = Zl - 3,. The coefficient for II is chosen so as to make the derivative 
vanish for II'" ± 1. . 

Making use of the transformation (16) we introduce an auxiliary 
variable l' defined by 

Our cubic polynomial takes then the simple form 

10=1'"+:"' 

We note that each II determines two values r, but they are reciprocal 
and yield the same value of w. In order to obtain a unique r we may 
impose the condition Irl < 1, but then the segment (-2,2) must be 
excluded from the z-plane. 

It is now easy to visualize the correspondence between the II- and 
tD-planes. To the circle Irl = p < 1 corresponds an ellipse with the 
semi axes ,,-1 ± p in the II-plane, and one with the semiaxes p-I ± pi in 
the tD-plane. Similarly, a radius arg r = 9 corresponds to hyperbolic 
brenches in the II- and w-planes; the one in the z-pJane has an asymptote 
which make~ the angle - 6 with the positive real axis, and in the tD-plane 
the conesponding angle is -36. The whole pattern of confocal ellipses 
end hyperbolas remains invariant, but when II describes an ellipse VI will 
trace the oonesponding larger ellipse three times. The situation is thus 
very similar to the one in the case of the simpler mapping 10 = Z". For 
orientation the reader may again lean on Fig. 3-9. 

For the region between two hyperbolic branches whose asymptotes 
make an angle :ii 2.:/3 the mapping is one to one. We note in particular 
that the six regions into which the hyperbola Szl - II' - 3 and the :l>-axis 
divide the z-plane are mapped onto balf planes, three of them onto the 
upper half plane and three onto the lower. The inside of the right-hand 
branch of the hyperbola corresponds to the whole w-pJane with an incision 
along the negative up to the point -2. 

EXERCISES 

All mappings are to be conformal. 
1. Map the common part of the disks 121 < 1 and I. - 11 < Ion the 

inside of the unit circle. Choose the mapping BO that the two symmetries 
are preserved. 

2. Map the region bet::oon Iq - 1 and I. -II ... i on" half plane. 
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J. Map the compleme~t of the are lzl = 1. y ~ 0 on the outside of the 
unit circle 80 that the points at eo correspond to each other . 

.. Map the outside of the parabol& y' = ~ on the disk Iwl < 1 80 

that z = 0 and z = -p/2 conespond to w = 1 and w = O. (tindelof.) 
So Map the inside of the right-hand branch of the hyperbola 

:1" - II' =. a' on the disk Iwl < 1 80 that. the focus corresponds to w = 0 
and the vertex to w = -1. (LindelOf.) 

.. Map the inside of the lemniscate I.' - 0'1 = pl(p > a) on the 
disk lwl < 1 80 that aymmetries are preserved. (LindelOf.) 

7. Map the outside of the ellipse (Z/O)I + (y/b)' = 1 onto lwl < 1 
with preservation of sy mmetries. 

L Map the part of the o-plane to the left of the right-hand branch of 
the hyperbol&:I" - y' = 1 on a half plane. (Lindelof.) 

Hint: Consider on one side the mapping of the upper half of the 
region by to - z·. on the other side the mapping of a quadrant by 

to == t l - 32 . 

• 

4.3. Elementary Riemann Surf_. The visualization of a function 
by means of the corresponding mapping is completely clear only when 
the mapping is one to one. If this i. not the rsre, we can .till give our 
imagination the necessary support by the introduction of generalized 
regions in which distinct points may have the same coordinates. In 
order to do this it is necessary to suppose that points which occupy the 
same place can be distinguished by other characteristics, for instance a 
tag or a color. Point. with the same tag are considered to lie in the 
same sheet or /ayer. 

This idea leads to the notion of a Riemann avrJace. It is not our 
intention to give, in this connection, a rigorous definition of this notion. 
For Our purposes it is sufficient to introduce Riemapn surfaces in a purely 

. manuer. We are free to do 80 88 long as we use them merely 
for purposes of illustration. and never in logical pioofe. 

The simplest Riemann surface is connected with the m,.pping by a 
power w - ... where n> 1 is an integer. We know that there is a 
one-to-one correspondence between each angle (k - l)(2w/n) < arg z 
< k(2w/n), k - 1 •.•.• n, and the whole w-plane except for the posi­
ti-ve ree ! The im,.ge of each apgle is thus obtained by perforwing 
a "cut" along the positive ni,; this cut has an upper and a lower "edge." 
Conesponding to the Il anglee in the z-pl&ne we consider n identical copies 
of the w-plane with the cut. They will be the "sheets" of the Riemann 
surfaee, lind they are diPtinguiabed by a till Ie which serves to identify 
the 08ITe11pOllding angle. When z iJ!. its plane, the oou8"l!OJI4ing 

. --- - -~.'-' 

".,.~~;-:: "',,'.: " 
, ",,"'-'- --,',,', 
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point ttl should be free to move on the Rielll8.DD surface. For this ~ason 
we muat attach the lower edge of the first sheet to the upper edge of 
the second sheet, the lower edge of the second sheet to the upper edge 
of the third, and 80 on. In the lut step the lower edge of the nth sheet 
is attached to the upper edge of the first sheet, completing the cycle. 
In a physical sense tbis is not pcssible without self-intersection, but the 
idealized model shall be flee from this diacrepa.DCY. The result of the 
construction is a. Riemann mrface whose pcints are in one-to-one cOlTe­
spcndence with the points of the z-plane. What is more, this c(lne­
spcndence is continuous if continuity is defined in the sense suggested 
by the construction. . 

The cut along the pcsitive &Xi .. could be replaced by a cut along any 
simple arc from 0 to 00; the Riema.nn surface obtained in this way should 
be considered u identical with the one originally constructed. In other 
words, the cuts are in no way distingnished Jines on the mrface, but 
the introduction of specific cuts is nece888.l'Y for descriptive purposes. 

The point to = 0 is in a special position. It connects all the sheets, 
and a curve must wind n times around the origin .before it closes. A 
point of this kind is called a branch pMn'. H our Riemann surface is 
considered over the extended plane, the pcint at co is oJ"" a bra.nch point. 
In more general cases a branch point need not connect all the sheets; 
if it connects h sheets, it is sa.id to be of order h - l. 

The Riemann surface oonesponding to to = e' is of simila.r nature. 
In this case the function maps each pa.rallel strip (k - 1)2... < y < k· 2... 
onto a sheet with a cut along the positive &Xis. The sheets are attacbed 
to each other so tha.t they form an endless screw. The origin Will not be 
a pcint of the Riema.nn surface, corresponding to the fact that eo is never 
zero. 

.' 

The reader will find it easy to construct other Riemann surfaces. We 
will illustra.te the procedure by consideration of the Rielll8.nn surface 
dl>fined by ttl = cos z. A region which is mapped in 8. one-to-one ma.nner 

• • 

onto the whole plane, except for one or more cuts, is called 8. lunda_tal. 
region. For funda.mental regions of III = cos z we ma.y choose the strips 
(k - 1)..- < z < k..-. Each strip i8 mapped onto the whole ~pla.ne with 
cuts along the real axis from - 00 to -1 a.nd from 1 to 00. The line 
it = kr cOrresponds to both edges- of the pcsitive cut if k is even,a.nd 

... 

"ICo.3-lL The Riemann surfa.ce of COB~. 
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FIG. J '1 FundBJllental :cgions of 008 .I. 

to the edges of the negative cut if I: is odd. If we consider the two 
strips which are adjacent along the line z = kr, we find that the edges 
of the corresponding cuts must be joined cro88wise 80 as to generate a 

• 
simple branch point at tD = ± 1. The . surface has infinitely 
many simple branch points over tD = 1 and tD = -1 which a1ternatingly 
connect the odd and even sheets. 

An attempt to illustrate the connection between the sheets is made in 
Fig. 3-10. It cross section of the surface in the case that the cuts 
are ch08en parallel to each other. The reader should bear in mind that 
any two points on the same level can be joined by an arc which does not 
intersect any of the cuts. 

Whatever the advantage of such may be, the clearest 
picture of the Riemann surface is obtained by direct consideration of the 
fundamental regions in the z-plane. The interpretation i8 even simpler 
if, as in Fig. 3-11, we introduce the 8ubregions which oonespond to the 
upper and lower half plane. The sb.dlMl regions are those in which C08 a 
has a positive imaginary part. Each region conesponds to a balf plane 
on which we mark the boundary points 1 and -1. For any two adjacent 
regions, one white and one shaded, the half planes must be joined acro88 
one of the three intervals (- "', -I), (-1,1), (1, "'). The choios of 
the COllect junction is automatic from a glance at the corresponding 
situation in the .plane. 

EXERCI.SES 

1. Describe the surface 
·11 
tD~2z+,. 

Z. Same problem for til - (r." - 1)' . 
.. Same problem lor til - r." -&. 

" . ; , - . 

with the funotion 

• 
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L FUNDAMENTAL THEOREMS 

MallY important properties of analytic fWlctions are very diflicuU 
to prove without use of complex integration. For instance, it is 
only recently that it became possible to prove, without resorting to 
complex integrals or equivalent tools, that the derivative of an 
analytic function is continuous, or that the higher derivatives 
exist. At present the integration-free proofs are, to say the least, 
much more difficult than the cIlI88ical proofs. t 

As in the real ease we distinguish between definite and lfllllf­
inlte inteqralll. An indefinite is a function deriva.­
tive equals a given analytic function in a region; in many ele­
mentary CMeS indefinite integIals can be found by inversion of 

The definite integI alA are taken over 
differentiable or piecewioe differentiable arcs and are not limited 
to analytic functions. They can be defined by a limit 
which mimics the definition of a reaI definite integral. Actu­
ally, we shall prefer to define complex definite integrals in terms 
of real integrals. This will save us from repeating existence 
proofs which are e&.,.,ntially the same as in the real elISe. N atu­
rally, the reader must be thoroughly familiar with the theory of 
definite integrals of real continuous functions. 

1.1. U .... Inte".ar.. The most immediate generalization of a 
real integral is to the definite integral of a complex function over 
a real interval. H l(t) - u(O + iv(t) is a continuous function, 

t Without Use of integration R. L. Plunkett proVed the continuity of the 
derivative (Bull. Am. MaOt. &C. 65, 19611). E. H. Connell and P. PorN:!1i . . . 
proved tile exiotenee 'of&lfdlirivatlTm (Bull. AM. MalA. &C. 61. 1961). Both 
prooflllean on a. topo1ociea1 thunm due to G. T. Whybum. 

. 
-- ';'-,' ,-' ~ ):"~:."-:: 

. 
.' - . -,.~,' 
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defined in sn interval (a,b), we set by definition 

(1) J. ~ J.b J. • • f(l) dt.. • u(t) dl + i • 11(1) fit. 

This integral has most of the properties of tim real integral. In particu­
lar, if c .. a + ill is a complex constant we obtain 

(2) fOb cf(l) de .. c f: 1(1) de, 

for both members are equal to 

fob (au - flv) de + i f: (all + flu) fit. 

When a ~ b, the funda.mental inequality 

(3) I I.b 
I(t) fit ~ f: I/{t) 1 fit 

holds for arbitrary complex f(t). To see this we choose c ~ e-" with a 
real 9 in (2) and find 

Re [e-" f.b f(t) dt ] .. f Re [e-"/(t)l dt ~ f: 1/(1)1 dt. 

For 6 "" arg f: f(t) dethellXpre88ionontheleftreducestotheab80lute 

value of the integral, and (3) results. t 
We consider now a piecewise dilIerentisble arc 'Y with the equation , 

e .. 2(1), a ~ 1 ;::; b. If the functionJ(z). is defined and continuous on 'Y, 
then 1(2(1» is also continuous and we can set 

(4) f/(2) dz .. f: f(z(t»z'(t) fit. 

This is our definitWn of the complex line integral of 1(:) extended over the 
arc 'Y. In the right-hand member of (4), if z'(t) is not continuous through­
out, the interval of integration has to be subdivided in the obvious man­
ner. Whenever a line integral over an are 'Y is considered, let it be tacitly 
understood that "I is piecewise dilIerentisbJe. 

The most important property of the integral (4) is its invariance under 
a change of parameter. A . change of parameter is determined by an 
inCleasing function t .. t( .. ) which maps an interval a ~ .. ::0 fI onto 
a :2 t ;:iii bj we assume that t( .. ) is piecewise dilIerentiable •. By the rule 

t , is not defined if f. b I dl ~ 0, but then tbme is nothing to prove. 
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for changing the variable of integration we have 

!." f(z(I»,'(t) dl - I: f(z(I( .. »)z'(I( .. »t'(.-) d ... 

But i(I(.,.»)( .. ) is the derivative of z(l( .. » with respect to T, and hence the 
. integral (4) has the same value whether "( be represented by the equation 

z = z(I) or by the equation z = Z(I(T». 
In Chap. 3, See. 2.1, we defined the opposite are -"( by the equation 

z = ,(-I), -b :;; I::;; -II. We have thus 

I_/(z) dz = 1-:" f(z( -I»)(-i( -t)) dl, 

and by a change of variable the last integral can be brought to the form 

h" f(z(I»i(l) dt. 

We conclude that 

(5) I _/(z) dz = - IJ(z) dz. 
The integral (4) has also a very obvious additive property. It is 

quite clear what is meant by subdividing an arc "( into a finite number of 
suba.res. A subdivision can be indicated by a symbolic equation 

"( = "(1 + "(. + . . . + "(., 
and the integrals satisfy the relation 

(6) I flk - l,Jdz + I."flk + ... + !.,JIk. 
71+71+ .•• +711 ' 

Finally, the integral over a closed curve is also invariant under a shift 
of parameter. The old and the new initial point determine two subarcs 
"(" "(t, and the invariance follows from the fact that the integral over 
"(. + "(. is equal to tbe integral over"(. + "(,. 

In addition to integrals of the form (4) we can al8() consider line inte­
grals with respect to i. The most convenient definition is by double 
conjugation 

Using this notation, line integtals with respect to z or lI .... n be introduced 
by 

JJdz- H/.,f dz + liik) 
IJdfl-~(J~fdz - j,ldi). 

. 
.... -,- "".. " - ..... - . ',' " ,'-- . ',,- .. 
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With f - u + tv we find that the integral (4) can be written in the form 

(1) IT (u Q - v lIy) + i /., (u lIy + v Q) 

which separates the real and imaginary part. 
Of course we could just lIB well have started by defining integrals of 

the form 

I.,p dz + q lIy, 

in which case formula (1) would serve as definition of the integral (4). 
It is a matter of taste which one prefers. . 

An essentially different line integral is obtained by integration with 
respect to arc length. Two notations are in common use, and the defini­
tion is 

(8) 

This integral is . independent of the choice of parameter. In con-
trast to (5) we have now 

while (6) remains valid in the same form. The ineq1l8 .lity 

(9) I l.,f Ik I ~ IT III • !del 
is a consequence of (3). 

For f == 1 the integral (8) reduces to IT 11k\ which is by defi;Utio~ the 

length of 'Y. . As an Ell'ample we compute the length of a circle. From 
the parametric equation z == .i(t) == a + ¢A, 0 ~ t ~ 20-, of a full circle 
we obtain z'(t) == ipel' and hence 

10" 1z'(t)1 dt == 10"" p dl == 2o-p 

as expected. 

1.2. Rect~ble Aru. The length of an arc can also be defined as the 
least upper bound of allsurns 

(lO) Iz(t.) - a{t.)1 + Iz(ta) - z(t')l + ... + ]z(t,,) - z(t._.)1 

where II - t. < It < . . . < I,. == b. H this least upper bound is finite 
we say that the arc is rectifiable. It is quite easy to show that piecewise 
differentiable arcs are rectifiable, and that the two definitions of length 
eoincide. 
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BecaUI!Ie F(t.) - 2O(I ..... )! :> I.:(t.) - .(' ..... .)1, 1,1(t.) - ,(10-.)\ :> 
+ ly(I.) - 1/(10-.)\ Iz(t.) - ,(10-.)1 and lz(t.) - '(I ...... )! :> !z(I.) -

it is clear that the BUrns (10) and the 

Iz(h) .,.. z(lo) 1 + . . . + Iz(t..} - 20(1.-.)1 

1,1(1.) - 11(10)1 + ... + 1,I(t.} - 1I(t.-.)1 

are bounded at the Bame time. When the latter snms are bounded, one 
BaYS that the fnnctions 20(1) a.nd y(t) are of bl>llflded varil.Jti;m. An 1M: 

z = .,(t) i, rectijiabk if and only if the real and imagiMTy parts of z(t) are of 
bounded variation. 

If 'Y is rectifiable a.nd fez) continuous on "'( it is poesible to define 
integrals of type (8) as a limit 

• f/ de = fun L f(2(t.»\%(Io) - .:(It-.)\. 
'-1 

Here the limit is of the serne kind as that encountered in the definition of 
a definite integral. 

In the elementary thcory of an slytic functioDil it is aeldom nooessary 
to consider arcs which are rectifiable, but not piecewise differentiable. 
However, the notion of rectifiable arc is one that every mathematician 
should know. 
1.11. Line Integrals ,.. Funedo ... oj Are.. GenaraI line integnls of 

the form /., P cia: + q l1.y are often 88 functions (or fvrw:tionaUJ) of 

the arc"'(. It is then eem.rned that p and q are defined and continuous in 
a· 0 and that "'( is free to vary in It An important of inf.;gF .Is 
is c . ed by the property that the integral over an arc depends only 
ou its end points. In other words, if",(. and "'(I have the eeme initial point 

a.nd the same end point, We require that f p cia: + q 4y - /, p cia: + !l dy. 
T' TO 

To say that an integral depends only on the end points is equivalent to 
saying that the over any cloaed curve is sero. Indeed, if "'( is a 
closed curYe, then"'( and -"'( have the end point., and if the integral 
depends only on the end points, we obtain 

a.nd consequently IT .. 0.' Converllllly, if "'(I and 'Y. have the Berne end 

points, then 7. - "'(t is a c10aed curve, end if the oyer any closed 

l)utVe .. itfoUoWB that IT> ~ f.,; 

"-' . . . . .. " 
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--- (%.y) 

'Y 

. 
Fie. '-1 

The following theorem gives a nece"""'Y and sufficient condition 
under which a line integral depends only on the end points. 

Theorem 1. The liM ~al f, P d3; + q dy, dejimd in 0, only 

on the end points of'Y if and only if there mats a function U(Z,lI) in g 
with the partial deriv4li!IeB lIU jaz = p, lIU jlly = q. 

The sufficiency follows at once, for if the condition is fulfilled we can 
write, with the USWl.l notations, 

f J. ~ lIU lIU J.& d 
~ P d3; + q dll - • liz :I:'(t) + iJy vet) dt = • de U(z(I),y(1)} tit 

. = U(z(b),lI(b» - U(z(a},y(a», . 

and the value ·of this differenee depends only on the end points. To 
prove the necessity we choose a fixed point (z .. Yo) E g, join it to (z,y) 
by a polygon 'Y, contained in 0, whose sides are parallel to the coordinate 
axes (Fig. 4-1) and define a function by 

U(Z,lI} = J~ p d3; + q "'y. 
8ince the integral depends only on the end points, the function is well 
defined. Moreover, if we choose the last segment of 'Y horimntal, we 
can keep y constant and let z vary without changing the other segments. 
On the last segment we can choose z for parameter and obtain 

U(z,y) = r p(z,,} d3; + oonst., 

the lower limit of the integral being ineIevant. From thi. it 

.. . .. ',' 
" .... '.', . .--."''--.'' 



• ; '. ,., 

COIIPLI!lI INTEGRATION 1117 

folloW!! at once that aU laz = p. In the same way. by choosing the last 
segment vertical. we can show that au lay = q. 

It is customary to write dU = (au/az) liz + (aUlay) dy and to say 
that an expression p liz + q dy which can be written in this form is an 
ezoot differential. Thus an integral depends only On the end points if and 
only if the integre.nd is an exact difierentiBI. Observe that p. q and U can 
be either real or complex. The function U. if it exists, is uniquely deter­
mined up to an additive constant. for if two functions have the same 
partial derivatives their difference must be constant. 

When isf(e) dz = fez) liz + if(.) ay an exact difierentiBI? According 
to the definition there must exist a function F(z) in 0 with the partial 
derivatives 

a~) =f(.) 

=aF~(z::!.) = if(,,). 
ay 

If this is so, F(.) fulfills the Cauchy-Riemann equation 

aF .aF == -I • az ay' 

since fez) is by .. ",nmption continuoUB (otberwise J/ dz would not be 

defined) F(z) is analytic with the derivative fez) (Chap. 2, Sec. 1.2). 

The imegral J/ dz, IlIith continuouaf. tkpen,d& only on !he end pcnnt8 of 
7 if and only if f it! !he dzrWaIive of .... analytic fvnctitm in o. 

Under these circumstances we shall prove later that J(z) is itself 
analytic. 

AB an immediate application of the above result we find that 

(11) 
. 

for all closnd curves 7, provided that the integer .. is ~ O. In fact, 
(a - a)" is the derivative of (. - a)O+l/( .. + 1), a function which is 
analytic in the whole plane. If n is negative, but ~ -1. the same 
~t holds for all cloaed curves which do not through a, for in the 
Complementary region of the point a the indefinite integral is still 8Dalytic 
~ .sin(!le-valued. FOr." = -I, (11) docs not always hold. Consider 
i".'{~~lfC1iiththecebter a, represented by the equation " = a + pe", 
O·~., ;:ii 2tr, . We .' . 

. '. ';-':'." '-. -"" .. - :"- -" 

fe II '! a - J."" lit - 2.i. 
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This result shows that it is impoBllible to define a single-valued bnmch of 
log (z - IS) in an annulus p. < 121 - lSI < P1. On the other hand, if the 
closed curve 'Y is contained in a half plane which does not contain G, the 
integral vanishes, for in such a half plane a single-valued and analytic 
branch of log (z - G) can be defined. 

EXERCISES 

1. Compute 

J,zlk 
where 'Y is the directed line segment from 0 to 1 + i. 
. z. Compute 

Ir.,-. z Ik, 

for the positive sense of the circle, in two ways: first, by use of a parameter, 

and second, by observing that z - ~ (z + I) .. ~ z + ~ on the circle. 

I. Compute 

for the positive sense of the circle. 
4. Compute 

r 121 - 11 ·Ilkl. 11_1- 1 

s. Suppose that I(z) is analytic on a closed curve 'Y (i.e., 1 is analytic 
in a region that contains 'Y). Show that 

lJ\ziJ'(z) Ik 

is purely imagina.ry. (The continuity of f'(z) is taken for granted.) 
.. Assume that f(e) is analytic and satisfies the inequality 11(z) - 11 

< 1 in a region U. Show that 

/, 
f'(z) , 

T f(2) ,Ik .. 0 

for every closed curve in O. (The continuity ofJ'(e) is t.lcen·for panted.) 
7. If P(z) is a polynomial and C denotes the circle Iz - al .. R, what 

is the value of Ie pe,) de? . AMID8r: -27riRtp'(G). 
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L Describe a set of circumstances under which the formula 

f.IOgztk = 0 

is meaningful and true. 

1.4. Couchy'8 Theorem for,. RectaJ&6le. There are several forms of 
Cauchy's theorem, but they diJIer in thcir topological rather than in their 
analytical oontent. It is natural to begin with a ('8se in which the topo­
logical oonsiderations are trivial. 

We oonsider, specifically, a rectangle R defined by inequalities 
a ~ z ~ b,c ~ y ~ d. Itsperimetercanbeconsideredasasimpleclosed 
curve consisting of four line segments whose direction we choose 80 that R 
lies to the left of the directed segments. The order of the vertices is thus 
(a,c), (b,c) , (b,d), (a,d). We refer to this closed curve as the bouI'Idary 
CUnI6 or contour of R, and we denote it by aR. t 

We empbasize that R is chosen as a closed poini set and, hence, is not 
a region. In the theorem that follows we consider a function which is 
analytic on the rectaogJe R. We recall to the reader that sueh a fllne­
tion is by definition defined and analytic in an open set which contains R. 

The following is a preliminary version of Cauchy's 

Theorem 2. IJ the JuflCtioo J(z) i& analytic on R, then 

(12) I..J(z) tk = O. 

The proof is baaed on the method of bise<ltion. Let us iniroduce the 
notation 

,,(R) = /.1</(z) tk 

which we will also use for any rectaogJe contained in the given one. If 
R is divided into four congruent reet.a.ngJes RCll, RCIl, RC,), RCQ, we find 
that 

(13) ,,(R) = ,,(RU» + ,,(RIIl) + ,,(R('» + ,,(R(Q), 

for the integrals over the common sides caneel each other. It is impor­
tant to note that this fact can be verified explicitly and d08ll not make 
illicit use of geometric intuition. Nevertheless, a refereooe to Fig. 4-2 is 
helpful. 

t Thia is standard notation, and we "hall "511 it repe.tM1:r. Note that by earlier 
... n_tion "It is .1'0 tho bounduy of It .. a pom .. (Cb.p, 3, Sec. 1.2). 

. . 
~~.'.::",~ , 
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• . • 

• 
RUl t ! R(2) t 
:::!:. :.!:. 4 • 

l R(·) t l R(4) t 
~ . • 

( ... ) (6,.) 
. 

Fie. 4 .. 2. Bbection of rectaogle. 

. Itfollows from (13) that at le88t oneofthe rectangles Rei), k ~ 1,2,3, 
4, must satisfy the condition 

1,(Rei)1 ~ il .. (R)I. 

We denote this rectangle by R,; if several RU.) have this property, the 
choice shall be made according to 80me definite rule. 

This proCe88 can be repeated indefinitely, and we obtain a sequence of 
nested rectangles R J R, J R. J . . . :::> R.:::> . . . with the property 

and hence 
",(R.)I ~ il.,(R.-,)1 

(14) 

The rectanglee R. converge to a point z* e R in the sense that R.. will 
be contained in a prescribed neighborhood Iz - 21*1 < 6 88 soon 88 n is 
sufficiently Ia.rge. First of all, we chOOlle 6 80 small that J(e) is defined 
and in Iz - z*1 < 6. Secondly, if • > 0 is given, we can choose 
680 that 

J(tz) - J(z*) _ l'(z*) < a 
tz - z* 

or 

(15) IJ(.;) - J(z*) - (tz - z*)f(z·)1 < .Iz - %*\ 
for \. - z*1 <.. We assume that. satisfies both conditions and that 
R. is contained in Iz - z·\ < I. . 

We make now the ob.eer9"ation that 

( dz = 0 J ,a,. 

. r zdz=O. 
J'B. 
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These trivial special of our theorem have already been proved in 
Sec. 1.1. We recall that the proof depended on the fset that 1 and, are 
the derivatives of • and "/2, respectively. 

By virtue of equations we are able to write 

7J{R.) - ( [fC,,) - f(" *) - (0 - • *)/'(" *) 1 liz, '.ft. 
and it follows by (15) that 

(16) I~(R") I ~ ~ ( I. - .*1, Idol· 
J "1." 

In the last integral I. - 0 * I is at most equal to the length d,. of the 
diagonal of R.. If L. denotes the length of the perimeter of H., the 
integral is hence ;:ii d,.L.. But if d and L are the corresponding quantities 
for the original rectangle R, it is clear that d,. = 2-"d and L. = 2-"L. 
By (16) we have hence 

[,,(R.) [ ~ 4-0 dL ., 

and comparison with (14) yields 

[,,(R)[ ~ dL e. 

Since. is arbitrary, we can only have ,,(B) - 0, and the theorem is proved. 
This beautiful proof, which could hardly be simpler, is due to ~. 

Goursat who disoovered thst the cJassical hypothesis of a continuous 
nz) is redundant. At the same time the proof is simpler than the earlier 
proofs inasmueh 88 it leans neither on double intelll'ation nor on dllIerentia­
tion under the integral sign. 

The hypothesis in Theorem 2 can be weakened considerably. We 
shall prove at once the following stronger theorem which will find very 
important 

Theorem 3. Lit f(z) b. analllt;., on the sa H' obtained /rot/I a rectafl{/16 R 
by omittifl{/ a finm number of interior points t/' 1/ it i8 true that 

lim" 'f,(' - t/)/(.) - 0 
for aU j, then 

• 

It is sufficient to comrider the of a point r, for 
oividently R be divided into smaller rect""gIes which contain at most 

• 
'.: -'.-' • •• . ", . . . • • . , 

. . We 

. . . . '. 

, .. ,." . :::"', : :~' '. .. ':';' -, .. - .' '--. 
',_ -_, .. - ";.". ",,,._, •• -".' '" ..... . ... "~':1."" ,."'.·f"··.,., .. ····· '-.. ' ..... ',' ' .. " " ... 
,' .. , ' ...... -.. -', - -" ' .. " ' ,,"'-' ... ,,",' .,,' .. ,' •... ".', ... :;,':', .•.. ~ ...... ~.;. -.... ,;.' ....... "' •.. {:~". ~~".-.,.. ...... _,., "~., .~. ":;',', -.~.' ~;:~.' .. , ~.,:.~.'., ..• " -. ... , .. --.,'~.--"-. __ .. _~.»_.,, .. __ .. ~ .. , 7. ___ v~ --. ---'--- .- .. --, .. ,-." .......... , . ",~, .. , .... - .'. 
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Theorem 2 to all but the rectangle R. in the center. If the coneaponding 
equations (12) are added, we obtain, after C&Dcellations, 

(17) 

If , > 0 we C&D chooee the rectangle R. so small that 

I/(z}1 ~ Is '::"i"1 
on aR.. By (17) we have thns 

• 

If we IIJ!(IUme,88 we may, that R. is a square of center t, elementary esti­
mates show that 

r IIUI 
JfBolz - 1"1 < 8. 

Thus we 

and since I is arbitrary the theorem follows. 
We observe that the hypothesis. of the theorem i8 certainly fulfilled if 

fez) is analytic boI'nded on R'. 

1.5. Cauchy's Theorem in a Disk. It is not true that the 
of an analytic function over a closed ourve is al ways aero. 
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Indeed, we have found that 
• 

J. dz - 2ri 
cz - Q- -

when C is a circle about a. In order to make sure that the integral 
vanishes, it is necessary to make a special assumption concerning the 
region II in which I(z) is known to be analytic and to which the curve 'Y is 
restricted. We are not yet in a position to formulate this condition, and 
for this reason we must restrict attention to a very special case. In 
what follows we MBUlne that u is an open disk \z - z.\ < " to be de -
noted by 4. 

Theorem.. I/I(z) u analytic in an open diak 4, IAen 

(18) 

lor eve"y cloud curve 'Y in 4. 

The proof is a repetition of the argument need in proving the second 
half of Theorem 1. We define a function F(z) by 

(19) 

where <T oonsists of the horizontal line segment from the center (~.,y.) 
to (x,y.) and the vertical segment from (x,y.) to (~,II); it is immediately 
seen that aF I iJy = i/(z). On the other hand, by Theorem 2 <T can be 
replaced by a path oonsisting of a vertieal segment followed by a hori­
zontal segment. This choice defines the same function F(z), and we 
obtain aF lax = 1(2). Hence F(z) is analytic in 4 with the derivative 
I(z), and 1(,) dz is an exact differential. 

Clearly, the same proof would go through for any region which oon­
tains the rectangle with the opposite vertices 2. and 2 as 800n as it con­
tains z. A rectangle, a balf plane, or the inside of an ellipse all bave 
thia property, and hence Theorem 4 holds for any of these regions. By 
this method we cannot, reach full generality. 

For the applications it is very important that the conclusion of 
Theorem 4 remains valid under the weaker condition of Theorem 3. We 
state this as a separate theorem. 

Theorem 5. Let /(,) lie afl4lylic in lite regUm 4' oblaintltl by oll,iltifl(l a 
jI:IIW number oj paim. t I from an ope .. disk 4. IJ I(z) satiaJi.u the con­
d~ Ii"", 'r,{s - t;)J(s) - 0 Jor aU i. IAen (18) IIolm Jor IJtlfI cloaed 
_"linK. . 

. . 
-, -. 

" . '. . . .. " .. " .• -:'.,.-: ...•.......... , .. :'-, ..... _",.- ",:"'-"-"'-'-';""",'.'-_____ "._" ... " ... ,.,-',: .;', .": .,. : .. ·-;·.-"_",·',c .. ·.··:· 
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T~ proof must be modified, for we cannot let IT pS1!8 through the 
exceptionel points. Assume first that no t; lies on the lines x = Xo and 
'I = Yo· It is t~n possible to avoid t~ exceptional points by letting IT 

consist of three segments (Fig. 4-4). By an obvious application of 
Theorem 3 we find that the velue of F(z) in (18) is independent of the 
choiee of the middle segment; moreover, the last segment can be either 
vertical or horizontal. We conclude as before that F(z) is an indefinite 
integral of l(z) , and the theorem follows. 

In case t~re are exceptionel points on the lines x = x. and y = yo 
the reader will easily convince himself that a similar proof canbe carried 
out, provided that we "Be four line segments in t~ place of three • 

. 
J. CAUCHY'S INTEGRAL FORMULA 

Through a very simple applieation of Cauchy's theorem it becomes 
poesible to represent an analytie function f(z) as a line integral in which 
t~ variable z enters as a parameter. This representation, known as 
Caoohy'. integral f(Hunda, has numerous important applications. Above 
all, it enables us to study the local properties of an analytic fUIlction in 
gI eat detail. 

. 

1.1. The Indes of 4 Point Ulith Rupeet to 4 Cloud CUI'G6. As a 
preliminary to the derivation of Cauchy's formula we must define a notion 
which in a precise way indicates bow many times a closed curve winds 
&rOund a fixed point not on t~ curve. If the curve is piecewise differ­
entiable, as we BhaIl _ume without eerioUB 1088 of generality, the defi­
nition can be based on the following lemma: 
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Lemma I. If Ike pieceume diJIerenl.iabk clo8ed curve "I doea not pa •• 
through Ike point a, then the value of Ike integral 

Lz~a 
i8 a multiple of 2ft. 

This lemma may seem trivial, for we can write 

r dz. = f d log (z - a) ~ f d log Is - al + if d arg (z - a). J.,z - a ., .,. ., 

When z describes a closed curve, log I" - al returns to its initial value and 
arg (z - a) inCiease& Or decreases by a multiple of 20-. This would _m 
to imply the lemma, but more careful thought shows that the reowning ill 
of no value unle88 we define arg (z - a) in a unique way. 

The simplest proof is computational. If the equation of "I is" = s(I), 
a ~ I ~ p, let US consider the function 

Jr.(t) - f' ret) tU • 
• z(t) - a 

It i. de6ned and oontinuous on the closed interval [a,III, and it bu the 
derivative 

Jr.'(!) = ret) 
,,(t) - a 

whenever "'(1) is continuous. From this equation it follows that the 
derivative of "'<') (z(l) - a) vanishes except perhaps at a finite nnmber of 
points, and since this function is continuous it must reduce to 8 constant. 
We have thus 

#l'1t) = set) - a .. 
zeal - II 

Since z({J) = ,,(a) we obtain #/'Iftl - I, and therefore h({J) must be a multiple 
of 2ri, " This proves the lemma. 

We caD now define Ike irulez l1j Ike point a witI& rupee! to Ike _ ., 
by the equation 

1 f dz n("(,a) = 2ri . 
"1'" - a 

With & tl>tRlioology the index is also called the windiflll"umber 
of "I with reapeot to a. 

It is clentbat n( ~"I,a) - -n("(,a). 
;a 1111 immediate coiI8equenoe of Theorem 4: 

"' -'. . '.' 

_..n . :.;:~~ <~f. ' .. '·;'~<i:' ': ::';'i,_::. ,::,.,'. :., .. ' ". ". :~~~.i:.~r.\.,.: . __ .~':: ;' «::>. .. _ < ):~._>.'~ ; -;.~:(=i':ii#.i:; i~.:;:~i~'i~~ 
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(i) If'Y liea imide of 4 circle, then n(.,,4) ... 0 for all pointB a otltride of 
Ike sallie circle. 

As a point set 'Y is closed and bounded. Its complement is open and 
can be reprCllented 88 a union of disjoint regions, the components of the 
complement. We shall say, for short, that 'Y delellninu these regions. 
If the complementary regions are considered in the extended plane, there 
is exactly one which contains the point at infinity. Consequently, 'Y 

determines one and only one unbounded region. 
(li) AI a fumtWri of 4 Ike index n('"(,a) 1$ oonMnt i1l «Jck of Ike regiona 

d8termimd by 'Y, and uro in Ike uooou1Uled region. 
Any t wo points in the Bame region determined by 'Y can be joined by a 

polygon which does not meet 'Y. For this reason it is sufficient to prove 
that n('"(,a) ... n('Y,/) if 'Y does not meet the line seglllent from a to b. 
Outside of this segment the function (~ - a)/(z - b) is never real and 
~ O. For this reason the principal branch of log [(a - a)/(8 - II») is 
analytic in the complement of the segment. Its derivative is equal to 
(III - a)-1 - (z - b)-I, and if,. does not meet the segment we must have 

( 1 _ 1 de - O. 
ly Z - 4 IS - b -, 

hence n('"(,a) ... 11('"(,/). If \a\ is sufficiently large, 'Y is contained in a 
disk \2'\ < p < \a\ and we conclude by (i) that n{,.,a) = O. This proves 
that n('"(,4) = 0 in the unbounded region. 

We shall find. the case n('"(,a) = 1 particularly importAllt. and it is 
desirable to formulate a geometric condition which leads to this conse 
quence. For simplicity we take 4 = 0. 

Lemma 2. Let 21, 2t be IUlO poinl8 on a clotwl· CW'IIe 'Y whick dOfl8 not 
pa88 tkrough Ike origin. Denote ihe aubarc Iroo. 2, to Zo in the dirm.ion of 
Ike ctU'Ve by 'Y., and Ike aOOarc frotlO III. to III. by 'YO. SUppOIlil that III, liu in 
Ike lower half plane and z. in the upper half plane. If 'YI /lou not m«llke 
negative real axi8 and 'Y. doe8 not meet the p~ real axi8, then nh,O) ... 1. 

" : 

For the proof we draw the balf lines L, and Lt from the origin through 
III, and 2, (Fig. 4-5). Let it, r. be thil points in which L" L. intersect a 
circle C about the origin. If C is described in the positive sense, the 
arc C1 from r, to r. does not intersect the negative axi~, and the arc C. 
from 1". to 1"1 does not intersect the positive exiR Denote the directed 
line segments from III to h And from lis to r. by f., 60. Introducing the 
cIosed curves 0". = 'YI + f. ~ Cl - I" .. , ~ 'Yo + a. - c. - 60 we find 
that n(."O) = ,,(C,O) + "("1,0) + 11(".,0) because of C1LIIoollations. But 
'" does not meet the axis. Hence the origin belonga to the 
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" 

~ 
c. 

---- o 

t, 

' . 

...... -5 

unbounded region determined by 0"., BIld we obtain n( ... ,O) - 0. For a 
similar reason n( ... ,O) = 0, a.nd we conclude that n(-y,O) = n(C,O) = 1. 

oEXERCISES 

These are not routine exercises. They serve to illustrate the topo-
10gica1 n 'le of winding numbers. 

1. Give an alternate proof of Lemma 1 by dividing T into a finite 
number of oubarcs such that there exists a singl&-valued branch of 
arg (z - II) on each subarc. Pay particular attention to the compact­
De8S arpment that i8 needed to prove the existence of such a oubdivision. 

a.. It is poaaible to deliDe nh ,a) for any continuous cloeed curve T 
that does not pass through a, whether piecewise differentiable or not. For 
thia purpoee T is divided into subarcs T., ••• , To, each contained 
in a :disk that doe8 not include II. Let cr. be the directed line segment 
from the initial to the terminal point of T., and set .. - 0', + . . . + fT •• 

We definenh,a) to be the value of n( .. ,II). 
To justify the definition, prove the foUowing: 
(a) the reBUlt is independent of the subdivision; 
(b) if 'Y is piecewise differentiable the new definition is equivalent to 

the old; 
(c) the propertiee (i) 'u4c('li) of the t.u!:tcontinue to bold. 

. .'" .... . . .-

, , 

-,,-.. ~.~' . " 
\ '. : . , ' 

", - :"" .", -" - ' . 
• ;' ,;~ .:>.:. ... ~ ,.; ..••. -' .' •.. ,' -, -. "., .• ,~, -,',." -.:. -. 'I' :~" '.'~'-'", '~'. . . .. ,: .'" ,,;" - ". ; .. ;- .- -'-,' - ': ~::;t~ '~"" ."'\: ·'-t·,:,:.""·'-,"·--'--- ...... -_. ".,." .. , .. '\' ....... ,'''.''', .. ,.", .. ,.; .... , , • .... ." " . ": ' .. J.::. '" '.' . ":" .' '':;'' ',':.,"~". :,' .• ', .. " :. ~~.: ~.:,'~ : ',:':~ ; ;"';-':",.r~ J',:. ". ".' •. ' .,:,;.' ... .,.,.... .... .~,. . , .• ;. :t '0, , ... . 
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FICi~. I. Part. of the Jordan c\Uve theorem. 

J. The J orOOn CIU'IIe thwren. IIS8erts that every Jordan curve in the 
plane determines exaetly two regions. The notion of winding number 
leads to a quick proof of one part of the theorem, namely that the comple­
ment of a Jordan curve 'Y has at le88t two components. This will he so if 
there exi8ts a point a with n('Y,a) ¢ O. 

We may assume that Re z > 0 on 'Y, and that there are points Z" 

z. E 'I' with 1m 81 < 0, 1m z. > o. These points may he chosen 80 that 
there are no other points of 'Y on the line segments from 0 to ,. and from 0 
to z,. Let '1'1 and 'YI be the arcs of 'I' from 8, to 8, (excluding the end 
points). 

Let .. , be the closed curve that consists of the line segment from 0 to 
81 followed by 'Y' and the segment from z. to 0, and let v. be cowitructed in 
the same way with 'Y' in the place of 'Y\. Then ... - ... = 'Y or -'Y. 

The positive real axis intersects both 'Y1 and '1', (why?). Choose the 
notation 80 that the inte. section %. farthest to the right is with 'Y. (Fig. H). 

Prove the following: 
(a) n(v,,%.) ... 0, hence n( ... ,z) = 0 for 8 e 'Y'; 
(b) n(v,,%) ... n(vI,z) = 1 for small z > 0 (Lemma 2); 
(e) the first %. of the positive real axis with 'Y lies on '1"; 
(d) n(v.,z,) .. 1, henee n(""z) = 1 for z E '1"; 
(e) there existe a segment of the.positive real axis with one end point 

on '1'" the other on 'Y •• and no other points on '1'. The points z between 
the end points satisfy nh ,z) = 1 or -1. 

1.3. The Ir&Ufral Formula. Let J(z) be analytic in an open disk 4. 
Consider a closed curve 'Y in4 and a point a E 4 which doetl not lie on 'Y. 
We apply Cauchy's theorem to the fun,*on 

F(z) = J(,,) - J(a). 
z-a 
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This function is analytic for z ... a. For. e = a it is not defined, but it 
satisfies the condition 

lim F(zHz - a) = lim (f(z) - f(a» - 0 .... ..... 
which is the condition of Theorem 5. We conclude that 

( fez) - f(a). dz = O. 
J., Z - a 

This equation can be written in the form 

( fez) dz = f(a) ( dz, 
J.,z-a J"Iz-a 

and we obel,rve that the integral in the right-hand member is by defi­
nition 2ft. ,,(-y,a). We have thus proved: 

Theorem 6. 8141'1'_ that fez) iB a1llJlytic i" an ope1I diBk 4, and kt "'( 
be a clOBtld curve i" 4. For ""1/ point a not Oft "I 

(20) "("I,a) • f(a) = 1. ( fez) dz, 
. 2ft J? - a 

tlJhere ,,(-y,a) •• 1M index of a toith "."eel to 'Y. 

In this statement we have the requirement that a be a 
point in 4. We have done so in view of the obvious interpretation of 
the formula (20) for the (llk"l) that a is not in 4. Indeed, in this cSSP. 
n('Y,a) and the integral in the right-hand member are both zero. 

It is cIoor that Theorem 6 remains valid for any region 0 to which 
Theorem 5 ean be applied. The PIest:Dee of exceptional pointe r; is per­
mitted, provided none of them coincides with a. 

The most common application is to the caae where 8("'(,a) - 1. We 
have then 

(21) J( ) - 1 /, fez) dz a - ,,_. , 
mo- .,s-o 

and this we interPi et as a repreaelltalion formula. Indeed, it permits us 
to compute f(a) as soon as the values of fee) on "'( are given, together 
with the fact that fez) is analytic in 4. In (21) we may let a take differ­
ent values, provided that the order of a with respect to "'( remains equal 
to 1. We may thus t~t a as a variable, and it is convenient to cbange 
the notation and rewrite (21) in the form 

, 

(22) . 'J(I)·~1/f~~:· 
----"---

, -':''.'-"--'--''-. ,- -;..,.'- .... - ........ __ .... _- .. -
,',",' .~. . .. '-':' .. '.:--!'j-.,~.-.",-'.': ,",j " • ...• ' .. ,.' .. '~~ .. ~~¥' .... '-.... 
_.~ , .. ", :. ( ... , . " ._"".,_ .,~.." \ .", ,~¥,v."""r..x~ .,. >,:1. '.> "_-fn" "." 
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It is this formula which is llBually refetred to as Cauchy's integral 
fm·jj,"la. We must remember that it is valid only when n(oy,z) = 1, and 
that we have proved it only when I(z) is analytic in a disk. 

2. Compute 

l.l2Z' + 1 

by decomposition of the integrand in partial fractions. 
3. Compute 

under the condition lal "p. Hint: make of the equations zJ = p' and 

Ilkl = -ip~. 
z 

:.8. Hi,her Deritl4ti~. The formula (22) gives us an 
ideal tool for the study of the local properties of analytic fnnctions. In 
particular we can now show that an analytic function has derifatives of 
all orders, which are then also analytic. 

We consider a fnnctionf(e) which is analytic in an arbitrary f(\gion O. 
To a point a E 0 we determine a a-neighborhood 11 contained in 0, and in 
11 a circle C about a. Theorem 6 can be applied to fez) in 11. Since 
n(C,a) = 1 we have n(C,z) = 1 for all points z inside of C. For such :8 

we obtain by (22) 

fez) = 1. ( 1m 41'. 
21rilcr-z 

Provided that the integral Can be difl'erentiated ,.nder the sign of 
integration we find 

(23) 

and 

(24) 

1'(,) = 1 J. fCr> Ill' 
21ri c (f - e)1 

I '.l{e) = nl J. J(r) af . 
21ri c (r - 2)-+1 
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If the differentiations can be justified, we shall have proved the existence 
of all derivatives at the points inside of C. Since every point in 0 lies 
inside of some such circle, the existence win be proved in the whole 
region o. At the ",,10k) time we phaJ] have obtained a convenient repre­
sentation formula for the derivatives. 

For the justification we could either refer to corresponding theorems in 
the real Or we could prove a general theorem concerning line inte­
grals whose integrand depends. analytically on a parameter. Actually, 
we shall prove only the fonowing lemma. which is all we need in the 
present c .... <e: 

Lemma 3. Suppose that ,,(t) is continuoua on 1M an: "I. Thm 1M 
fumlion 

F.(2) = f ,,(r) di 
T <r - z)" 

;. analytic in 64C1I of 1M region. tkltlHline/l bu "I, and iJs derivative ;. 
F~(z) - nF .... ,(z). 

We prove first that F,(2) is continuous. Let z. be a point not on "I, 
and choose the neighborhood 12 - z~ < B so that it does not meet "I. 
By restricting 'I to the smA.lJer neighborhood I. - 2.1 < 6/2 we attain 
that Ii" - -I > 3/2 for all r • "I. From 

f tp(l") rJl" 
F.(z) - F,(2o) - ('I - 20) T <r - z)<r _ Ie) 

we obtain at once 

IF .('1) - F .(2.ll < Iz - 2~ . i. IT 1<PIlrJrl, 

and this inequality proves the continuity of F.(.) at '" 
From this part of the lemma, applied to the function ,,(l") / (r - I.), 

we conclude that the difference quotient 

F ,(2) - F ,(I.) _ f ,,(r) rJl" 
% - '10· - dr - .)(r - z~) 

tendatothe]jrnitF.(zo)asz-+zo. Hence it is proved thatF;(z) = F.(,,). 
. The general case is proved by induction. Suppose we have shown 
that F~_l(Z) = (n - lW.(.). From the identity 

F.(.) - F.( .. ) 

, '"' . . '. 

, .' . . 
" .:-.. :-:).:,1;',.\::- .. ,_. "C"",., ,','~'-. " 

- ." . ., "'-' -," ... , .. , "',- ""-,' ',' -'.:"::"'.': ....... ::>:;.. :,' .... ",'-." --., .. -, .. ,.-,.- •••• ~ •. " .... ,~.",. ,'~"" ~""- : " 
, ,.,,'_', - " __ -",-., ,.' , ...... -.,',," "".~ ••• 7), ..... \-... -_ ., _ "_._~.- -', 



we can conclude that FA(z) is continuous. Indeed, by the induction 
hypothesis, applied to ,,(r)/(r - z.), the first term tends to zero for 
z -+ z., and in the second term the factor of z - z. is bounded in a 
neighborhood of Zo. Now, if we divide the identity by z - Zo and let z 
tend to z., the quotient in the first term tends to a derivative whicb by 
the induction hypcthesis equals (n - l)F.+l(zo). The remaining factor 
in the second term is continuous, by what we have already proved, and 
has the limit F.+.(zo). Hence F~(zo) exists and equals nFA+'(zo), 

It is clear that Lemma 3 is just what is needed in order to deduce 
(23) and (24) in a rigorous way. We have thus proved that an analytic 
function has derivatives of all orders which are analytic and can be 
represented by the formula (24). 

Among the oon!lequences of this result .we like to single out two c)NJ;!­
cal thcorems. The first is known as Morert&3 theorem, and it can be 
stated as follows: 

II fez) is defined and contintwU8 in a r~ 0, and il IT f liz ~ 0 for 

all clo8ed curves or in 0, then f(z) ill analytic in O. 
The hypothesis implies, as we have already remarked in Sec. 1.3, that 

fez) is the derivative of an analytic function F(z). We know now that 
fez) is then itself analytic. 

A second classical result goes under the name of LiotwilW8 theorem: 
A function which is analytic and bounded in the tohole plane mUllt redUC6 

to a oonatant. 
For the proof we make use of a simple estimate derived from (24). 

Let the radius of C be r, and that I/WI ~ M on C. If we apply 
(24) with z = a, we obtain at once 

(25) Ir")(a)l ~ Mnlr--. 

For Liouville's theorem we need only the _ n ~ 1. The hypothesis 
means that l/(r)! ::; M on all circles. Hence we can let r tend to "", 
and (25) leads to f'(a) = 0 for all a. We conclude that the function is 
constant. . 

Liouville's theorem leads to an almost trivial proof of the/undamental 
the()1'6ln of algebra. Suppose that pea) is a polynomial of degree> O. If 
P(z) were never zero, the function l/P(z) would be analytic in the whole 
plane. We know that pea) --+ 00 for z -> 00, and therefore l/P(z) tends 
to zero. This implies boundedness (the absolute value is continuous on 
the Riemann sphere and has thus a finite maximum), and by Liouville's 
theorem l/P(z) would be constant. Since this is not 80, the equation 
pete) ~ 0 mnst have a root. 

The inequality (25) is known as CtwdIy' 8 estimaU. It sho'U8 above 
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all that the succewi~e derivatives of an analytic funetion cannot be 
.... bitmry; there must always exist an M and an • 8() that (25) i8 fulfilled. 
In order to make the best use of the inequality it i8 important that r be 
judiciously chosen, the object being to minimize the function M(r). A, 
where M(r) is the maximum of If I on It - al = r . 

EXERCISES • 

1, Compute 

I ]. - al-'Id.e] (Ial ~ ,,). 
I'!-p 

2. Prove that a function which i8 analytic in the whole plane and 
satisfies an inequality ]f(.) 1 < I.]A for !lOme n and all 8ufficiently large ].] 
reduces to a polynomial. 

S. If f(.) is analytic and If(2)1 ~ M for I.] ~ R, find an upper bound 
for If(A)(.)1 in ].1 ~ " < R. 

4. If f(.) is analytic for I_I < 1 and If(')1 ;>; 1/(1 - i.]), find the best 
estimate of 1f(A)(0)1 that Cauchy's inequality will yield. 

s. Show that the successive derivatives of an analytic function at a 
point Can never satisfy If A)(Z) I > ninA. Formulate a sharper theorem of 
the llame kind . 

• " A more general fonn of Lemma 3 reads as follow.: 
Let the function <p(.,t) be continuous as a function of hoth variables 

when Z lies in a region Q and a ~ t ~ fl. Suppose further that ,,(.,t) is 
aDalytic as a function of • f Q for any fixed t. Then 

F(.) = I: <p(.,t) dt 

is analytic in • and 

(26) F'(.) = J.- a,,~,t} cit. 

To prove this represent ,,(.,t) as a Cauchy integral 

tp(z,t) ~ 1 .. J. <p(i,t) di. 
2ri ei-" 

Fill in the necessary details to obtain , 

. ,-. . . 
. 1 /.' F(z) = Ie 2ri .. <p(i,t) dt 

and use Lemma 3 to prove (26). . ., 
. . ' .. :.:.-.,-;-,-

',' '. - . " .,.-.,,' . . ""--'"-.' • •• 
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L LOCAL PROPERTIES OF ANALYTIC FUNCTIONS 
. 

We have alreBdy proved that an analytic function has derivatives of 
all orders. In this section we will make a closer study of the local 
properties. It will include a clasmication of the isolatecl Bingularitus of 
analytic functions. 

8.1. Removable Singrdaritle". Taylor'" Theorem. In Theorem 3 
we introduced a weaker condition which could be substituted lor ana­
lyticity at a finite nnmber of points without affecting the end result. We 
showed moreover, in Theorem 5, that Cauchy's theorem in a circular disk 
remains true under these weaker conditions. This was an essential point 
in our .derivation of Cauchy'S integral formula, for we were required to 
apply Cauchy's theorem to a function of the form (f(e) - I(a»/(e - II). 

Finally, it was pointed out that Cauchy'S integral formula remains 
valid in the presence of a finite number of exceptional points, all satis­
fying the fundamental condition of Theorem 3, provided that none of 
them coincides with II. This remark is more important than it may seem 
On the surface. Cauchy's formula provides us with a 
tation of fez} through an integral which in its dependence on z has tile 
same charac~r at the exceptional points as everywhere else. It follows 
that the exceptional points are such only by lack of infol'lllation, and not 
by their intrinsic nature. Points with this character are called renullllJl>le 
ringullJritie&. We shall prove the following precise theorem: 

•• 

Theorem 7. SUPP086 that fez) is "ntIlytic in the r~ n' obtained by 
II point a from a region n. A nece88ary and sujfi.cient condition 

that there exist .4n analytic function in n which coincides with fez) in n' is 
that lim (z - a)f(z) ~ O. The e:dmded furw:tion is uniquely dder,,,ined • ..... 

The necessity and the uniqueness are trivial since the extended fune­
tion must be continuous at II. To prove the sufficiency we draw a circle 
C about II so that C and its inside are contained in O. Cauchy's formula 
is valid, and we can;;rite .. 

I(z) ~ 1. ( fer) elr 
'hi}c r - B 

• 

for all • ;0" II inside of C. But the integral in the right-band member 
repre!lents an analytic function of 8 throughout the inside of C. Conse 
quently, the fUMuon which is eqnal to 1(.) for B ;0" CJ and which has the 
vaIue 

(27) 1 /. 1m dr 
'hi cf-a 
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for • = a is analytic in 11. It is natural to denote the extended function 
by fez) and the value (27) by f(a). 

We apply this reeul.t to the function 

F(z) = fez) - f(a) .-a 
used in the proof of Cauchy's formula. It is not defined for ... a, but 
it satisfies the condition lim (. - a)F(.) .. O. The limit of FCz) as II ..... 
tends to a is f'(a). Hence there exists an analytic fUDction which is 
equal to F(.) for • .,. a and equal to f'(a) for II .. Go Let US denote this 
function by h(')' Repeating the process we can define an analytic func­
tion J.(z) which equals (f,(z) - f,(a»!Cz - a) for z .,. a and fl.{a) for 
• = a, and 80 on. 

The recursive scheme by which f.(') is defined can be written in the 
form 

J(z) - J(a) + (. - a)j,(.) 
j,(.) .. f,(a) + (. - a)J.(.) 

4 • • • • • • • • • • • • • • • • • 

From these equations which are trivially valid also for. = a "de obtain 

. 

f(z) - f(a) + (. - a)j,(a) + (II - a)2ft(a) + . . . + (. - a)-'1 ..... '(a) 
+ (z - a)"I.(2). 

DiJferentiating n times and setting II .. a we find 

'01 (a) .. nlf.(a). 

This deter ... ines the coefficients f.(a), and we obtain the foUowing form 
of Taylor' 8 themem: 

Th .... rem 8. If J(z) is analytic in a region 11, containing a, it is poaltibl. 
to tDriU 

(28) J(z) = f(a) +J'(a~ Co - a) +I"(a) (z - a)' + ... 
11 21 , 

. , 
.. ' "--" ........ ,'.' . '. '.' . -', . " . . --.-, , "",- ...... ' 

"". ____ . ','.,:' ' •.• u_'.~~. " .•.• ""7 ..•• __ ", ): .• ""', :: .. ' ",:,n,',." ~'".,'~,,,, , ... ~,''' •. :.:"w~'':.; " ", ', .. ;,.", .-:-. :-) '-',; . , .. " ..... , " .. ,;~ , ."";-. "_N'''_~'_ ._., ....... _,,_,~ ... -....... , •... _ .... , •. 
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This finite development must be well distinguished from the infinite 
Taylor 8MU8 which we will study later. It is, however, the finite develop­
ment (28) which is the most useful for the study of the local properties )f 
J(a). Its usefulness is enhanced by the fact that/.(a) has a simple explicit 
expression as a line integral. 

Using the same circle C as before we have first 

f, ( ) = 1 (f.m dr . 
• z 2ri Jc r - z 

For f.(r) we substitute. the expression obta.ined from (28). There will 
be one main term containing fer). The remaining terms are, except for 
constant factors, of the form 

/. 
dr 

F,(a).. c (I - a)'(r - z)' • !; 1. 

But 

1 /. 1 1 F ,(a) = c r - i dr .. 0, 
~-a -a -a 

identicBllyforallainsideofC. ByLemma3webaveF,+I(a) = FI'I(a)/.1 
andthIlBF,(a) - Of oral I. ~ 1. Hencetheexpressionforf.(z)reduceeto 

(29) 1 /. I(r) dr 
I.(z) = 2ri c <r - a)·(r - zf 

The representation is valid inside of C. 

3.%. Zeros and Poles. If f(a) and all derivatives 1(')(11.) vanish, we ca.n 
write by (28) 

(30) fez) .. J.(z)(z - a)' 

for any n. An estimate for f.(z) can be obtained by (29). The disk 
with the circumference C has to be conta.ined in the region 0 in which 
J(z) is defined and analytic. The absolute value I/(a) I has a maximum 
M on C; if the radius of C is denoted by R, we find 

for I. - 11.1 < R. By (30) we have thus 

I/(z) I s III - a\ •• MR . 
- R R-Iz-al 

But (Iz - al/R)· -+ 0 for n -+ GO, since \a - a\ < R. Hence I(z) = 0 
iMide of C. 
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• 

We show now thatf(z) is identically zero in all oUl. Let E, be the 
set on which fez) and all derivatives vanish and E. the set on which the 
function or one of the derivatives is different from zero. E, is open by 
the above resaoning, and E. is open because the function and all deriv&­

. tiveB are continuous. Therefore either E, or E. must be empty. If E. 
is empty, the function is identically zero. If E, is empty, fez) never 
vanish together with all its derivatives. 

ASSl1me that fez) is not identically zero. Then, if f(a) = 0, there 
exists a first derivative 11Jo)(a) which is different from zero. We IlAY then 
that a is a _0 01 order h, and the result that we have just proved expresses 
that· there are no zeros of infinite order. In this respect an analytic 
function hIlS the same local behavior lIS a polynomial, and just as in the 
case of polynomials we find that it is poesi.ble to write f(.) = (z - a)'/>(z) 
where I,(z) is analytic and Ma) ¢ O. 

In the same situation, sincel-(z) is continuous,f.(z) ¢ 0 in a neighbor­
hood of a and z = a is the only zero of f(.) in this neighborhood. In 
other words, the zeros of an analytic function whiclt does not V'Di.b 

identically are iaolal«L This property can alen be formulated as a 
uniqueness theorem: If f(z) and q(z) are anaJlllie in 0, and if I(z) - q(.) 
on a ut which has an IJCCUmt.ilaRon poinl in 0, then fez) ia ~U1/ 
eql!(ll to g(z). The conclusion follows by consideration of the dilIelence 
f(z) ... g(z). 

PartieuIar instances of tbis result which to be quoted are the 
following: If fez) is identically zero in a subregion of 0, then it ill identi­
cally zero in 0, and the same is true if fez) V8n j.mes On an arc whiclt 
does not reduce to a point. We can aleo say that an analytic function is 
uniquely determined by its values on any set with an accumulation point 
in the region of analyticity. This does not mean that we know of any 
way in which the values of the function can he computed. 

We consider now a function fCz) whiclt is analytic in a neigltborltood 
of a. except perhaps at a itself. In other words, 1(=) shall he analytic In 
a region 0 < Iz - al < f. The point a is called an riftgularily 
of f(=). We have already tieated tile CIL'C of a removable llinplarity. 
Since we can then define f(4) eo that I(z) becomes analytic in the dillk 
1.- al < " it needs no further considruation. t 

If lim fez) - co, the point a is said to be a pol8 of f("), and we set _. 
I(a) - .... Thereexistsaf'.~ huchthat/(z) '" Of orO < I_ - al < I'. 
In this the function g(,,) - 1ff(lf) is defined and ..... alytic. But 
the singularity of g(lI) at /I ill removable, and g(.) bas an analytic exten-
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sion with g(a) = O. Since g(a) does not vanish identically, the zero at 
a has a finite order, and we can write g(z) = (z - a)'g.(e) with g,(a) ,. O. 
The number h is the tWder of the pole, and I(z) has the 
fez) = (z - a)-lf.(a) where j.{a) = 1/g.(z) is analytic and different from 
sero in a neighborhood of a. The nature of a pole is thus exactly the 
same as in the ease of a rational function. 

A functionl(z) which is analytic in a region 0, except for poles, is said 
to be meromurphic in O. More precisely, to every a e 0 there shall exist 
a neighborhood ]z - 0] < a, contained in 0, such that either fez) is ana,.. 
lytic in the whole neighborhood, orelsel(z)is analytic forO < Iz - 01 < 8, 
and the illOlated singularity is a pole. Observe that the poles of a mero­
morphic function are isolated by dejinitiun. The quotient fCe)/g(a) of 
two analytic functions in 0 is a meromorphic function in 0, provided 
that gee) is not identically zero. The only possible poles are the zeros of 
g(a), but a common zero of f(a) and g(a) can alllO be a removable singu­
larity. H this is the case, the value of the quotient must be deu,tlnined 
by continuity. More generally, the snm, the product, and the quotient 
of two meromorphic functions are meromorphic. The case of an identi­
cally vanishing denominator must be excluded, unless we wish to con­
sider the constant QO as a meromorphic function. 

For a more detailed discussion of isolated singularities, we consider 
the conditions (1) lim la - al-]f(a)] = 0, (2) lim ]e - o]-]f(z)]= "', for .... .... 
real values of a. If (1) holds for 8. certain a, then it holds for sIllarger a. 
and hence for BOme integer m. Then (a - a)"1(z) has a removable singu­
larity and vanishes for e = a.. Either fez) is identically zero, in which 
cue (1) holds for aU a, or (z - a)"1(a) has a zero of finite order t. In 
the latter case it followa at once that (1) holds for all a > h = m - k, 
while (2) holds for all a < h. AllBume IlDW that (2) holds for BOme a; 
then it holds for all smaller a, and hence for some integer n. The func­
tion (8 - a)"/(') has a pole of finite order I, and setting h "" n + I we 
find again that (1) holds for a > h and (2) for a < h. The discul!8;on 
ahowa that there are three possibilities: (i) condition (1) holds for all a, 
and fez) V&nishes identically; (ii) there exists an integer h such that (1) 
holds for .. > hand (2) for a < h; (iii) neither (1) nor (2) holds for any a. 

Case (i) is uninteresting. In cere (ii) h may be called the algebraic 
order of fez) at 4. It is positive in CIL"C of a pole, negative in CII8e of a 
sero, and aero if 1(2) is analytic but,. 0 at a. The remarkable thing is 
that the order is always an integer; there is no single-valued analytic 
function which tends to 0 or .. like a fractional power of ]z - al. 

In the case of a pole of order h, let us apply Theorem 8 to the analytic 
funetion (2 - a)·f(2). We obtain 8. development of the form 

(I: - a}'1{z) .. B~ + B ..... (8 - 0) + ... + 8.(111 - /1)'-' + .p{z)(z - a)' 
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where ",(%) is analytic at % == a. Fot" % 7" a we can divide by (% - a)l 
and find 

'f(,) ... B,(, - a)-l + B~.(' - a)-H. + ... + B.(, - a)-' + ",(,). 
The part of this development which preeedea ",(e) is called the eingular 
part of f(%) at z - a. A pole h!L8 thus not only an order, but also a well. 
defined singullLl part. The difference of two functions with the same 
singular PlLlt is analytic at a. 

In (iii) the point a is an eaamtial i80lated eingulantll. In 
the neighborhood of an essential singularity f(,) is at the same time 
unbounded and cemes ILlbitre.rily close to zero. As a. charactemation 
of the complicated hehavior of a function in the neighborhood of an e_n· 
tial singularity, we prove the following classical theorem of Weierstrass: 

Theorem 9. An analytic funclilm come, arbitrm'ily d_ 10 anll complez 
valVA! in every neighborhood of em 

If the IIFOOrtion were not true, we could find a complex number A and 
a a > 0 such that If(%) - AI > I in a neighborhood of a (except for 
z == a). For any a < 0 we have then lim I. - al"lf(') - AI = ... .... 
Hence a would not be an essential singullLlity of fez) - A. Accord. 
ingly, there exists a P with lim Iz - al-If(z) - AI - 0, and we are free ..... 
to choose II > o. Since in that case lim 1% - ailiA I = 0 it would follow ..... 
that lim I. - alllf(')1 - 0, and a would not he an singularity of ...... 
fez). The contradiction proves the theorem. 

The notion of isolated singularity applies also to functions which are 
..nalytic in a neighborhood 1'1 > R of ... Since f( .. ) is not defined, we 
treat ao as an isolated singularity, BDd by convention it has the same 
eharacter of removable singularity, pole, or singularity as the 
1ingularity of g(8) == f(l/z) at z == O. If the singularity. is nonessential, 
fez) has an algebraic order h such that lim z-lf(z) is neither zero nor ...... 
nfinity, and for a pole the singullLl part is a polynomial in.. If .. is 
m essential singularity, the function bas the property expressed by 
rbeorem 9 in every neighborhood of infinity. 

tXERCISES 

~ If f(') and ,,(e) have the algebraic orders h and Ie ~t 
bat j" h!L8 the order h . Ie, f /" the order A -'" J:, -?,cU -t" an 

_ . , _. ,"",' _ I, ,., . __ 



130 COMPLEX ANALYSIS 

2. Show that a function which is analytic in the whole plane and has 
a nonelL-:ential singularity at '" reduces to a polynOmial. 

S. Show that the functions.,., sin 0 and cos. have essential singularities 
at 00. 

4. Show that any funetion which is meromorphic in the extended 
plane is rational. 

s. Prove that an isolated singularity of 1(0) is removable 88 800n 88 

either Re I(z) or 1m fez) is bounded above or below. Hint: Apply a 
frsetionallinear transformation. 

s. Show that 8lI isolated singularity off(z) ~,lIImot be a pole of exp/(z). 
Him: I and"' CAnnot have a common pole (why?). Now apply Theorem 9. 

, 

3.3. The Local Moppin.g. We begin with the proof of a general for­
mula which enables us to determine the number of zeros of an analytic 
function. We are considering a function I(z) which is analytic and not 
identically zero in an open disk 4. Let 'l' be a closed curve in 4 such 
that I(z) "" 0 on,., For the sake of simplicity we suppose first that "z) 
has only a finite number of zeros in 4, and we agree to denote them by 
'" .0, ••. , o. where eseh zero is repeated 88 many times aaits order indicates, 

By repeated applications of Theorem 8, or rather its corS'lquence (30), 
it is clear ~hat we can write f(.) = (. - .,)(z -.,) , . '. (0' - z.)g(.) 
where gee) is analytic and "" 0 in 4. Forming the logarithmic derivative 
we obtain 

1'(.) 1 + 1 + ... + 1 + 9'(0' 
1(0) = • - z, 0 - .. 0 - z. g(.) 

for 0 ;o! Z;, and particularly on 'Y. Since g(z) ;o! 0 in 4, Cauchy's theorem 
yields 

, 
f 9'(e) dz = o. 
~ g(') 

Recalling the definition of n(-y,z;) we find 

(31) 
'. 1 (r(te) 

nh ",) + n(,.,z.) + . . . + nh,z.) = 2ri J ~ I(z) liz. 

This is still true if 1(') has infinitely many zeros in 4. It is clear that 
,. is contained in a concentric disk 4' "mailer than Il. Unloos/(') is 
identically zero, a """" which must obviously be excluded, it has only a 
finite number of zeros in Il'. This is an obvious consequence of the 
Bolzano-Weierstr .. "" theorem, for if there 'were infinitely roMY zeros 
they would have an accumulation point in the closure of Il', and this is 
impossible. We can now apply (31) to the disk 4'. The zeros outside 
of 4' satisfy n(,.,'i) = 0 and hence do not contribute to thel",m in (81). 
We have thus proved: 
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Theorem 10. Let z; be the aer03 of a funclwn fez) which 4 analytic in 
a dial< .1 and doea not oanish each zero being counted (J8 many 
lima (J8 its order indicates. For ellery closed curve -y in .1 which d.oe8 not 
pa., Ihrough a zero 

(32) " 1 f f'(z) 4 n(-yoZi) - 2ri y f(z) th, 
• 

where the 811m /la8 only a finite number of tern.. p6 O. 

The function w = f(z) maps 'Y onto a closed curve r in the 1D-plane. 
and we find . 

f, dvI - f 1'(.) th 
r w 'Y f(.) . 

The formula (32) hBS thus the follOwing interpretation: 

(33) n(r,O) - r n(-y,r;). 
j 

The simplest and moat useful application is to the where it is 
knowll beforehand that each n(-y,,,;) must be either 0 or 1. Then (32) 
yields a formula lor the total number of _08 encloeed by 'Y. This is 
evidently the case when 'Y is So circle. 

Let a be an arbitrary complex value, and apply Theorem 10 to f(z) -
a. The zeros of f(o) - a are the roots of the equation fez) = a, and we 
denote them by o;(a). In the place of (32) we obtain the formula 

• 

1 f /'(2) 1 n('Y,r;(a» ~ 2ri T fez) _ a th 
; 

and (33) takes the form 

n(r,a) = r n(-Y"/(a». 
1 

It is neeessary to that fez) p6 a on 'Y. .' 
If a and b are in the same region determined by r, we know that 

n(r,a) = n(r,b), and hence we have al80 }; n(-Y,2;(4» = }; n(-y,z;(b». 
. 1 1 

If 'Y is a cirele, it follows that f(.) takes the values a and b equally many 
times inside of -y. The lollowing theorem On local is an 
immediate ccmsequenoe of" this 

Theorem 11. BtIJIPCI'. 1(0) W analytic at I., f( •• ) = 1110, ad 11·.7! 
f(.} .... 1110 Aoa."_ oJ. MYler" at It. .1/. >t."~ • ..,.oU,t4t.;-. 
"i.t, a • > 0 "reA IMt J",. .. 1riI1I I .. - w., < • the eqtIG-. . -. ,. -

... /I Aoa . '. ". ..• ..' ......... . . ' .. -.- ,-.--, - ",- -',. --,,~-"" .. '" ,,-..... _.- .. -'. -, "." .. -.:.~;.;r,~~~,';....,·."<'''lU~ . . . '·.r ..... ..,~_.". ... ·.~ < •• ~ 
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We can choose t 80 that I(z) is defined and analytic for Iz - z.1 ;!i; • 
and I!O that Zo is the only ~ oC I(z) - Wo in this disk. Let 'Y be the 
circle Iz - zol = a and r its image under the mapping W - I(z). Since 
Wo belongs to the complement of the closed set r, there exists a neighbor­
hood Iw - wol < 0 which does not intcrsect r (Fig. 4-7). It follows 
immediately that all values a in this neighborhood are taken the !l8.Dle 
number of times inside of 'Y. The equation 1(71) = Wo has exactly n 
coinciding roots inside of 'Y, and hence every value II is taken n times. 
It is understood t·hat multiple roots are counted according to their multi­
plicity, but if • is sufficiently small we can _t that all roots of the 
equation I(z) = II are !!imple for a ~ We. Indeed, it is sufficient to 
choose & I!O that I'(z) docs not vanish for 0 < Is - .1101 < t. 

Corollary 1. A 
sm. 

This is merely another way of saying that the image of every suf­
ficiently amall disk Is - .110\ < ~ contains a neighborhood Iw - wol < 6. 

In the case 11 = 1 there is one-to-one COlI eap.>ndcnce between the disk 
lw - w.1 < 6 and an open subset .01 of Iz - z.\ <.. Since open set ... in 
the z-plane . to open sets in the w-plane the . function 
of I(z) is continuous, and the mapping is topological. The mapping can 
be restricted to a neighborhood of Zo contained in .01, and we are able to 
state: . 

Corollary 2. If fez) i3 analytic at t •. lDith f(z.) ~ 0, it map, a 1I6ig~ 
hood 01 z. CtmlOTIIllilly ood t&pologicaJ.ly tmlo a region. 

From the continuity of the inverse function it follows in the usual way 
that the inverse function is analytic, and hence the invelw mapping is 

• 
~o 

, 

,. 

• 

." 

... plane ",. plane 

FIG. 4-7. Local oorres 011"""". 

r 
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~-"'ne 

F.e. 4-1. Branch point: n = 3. 

likewise conformal. Convewely, if the local mapping is one to one, 
Theorem 11 Can hold only with n ~ 1, and hence 1'('0) must be differ­
ent from zero. 

For n > 1 the local C6n espondence can still be described in very pre­
cise terms. Under the a88Umption of Theorem 11 we can wlite 

f(,) - ID. ~ (" - ,.)"v(") 

where V(z) is analytic at " and V(z.) -F o. Choose £ > 0 ... that 
Ig(z) - g(,.) I < Ig(z.) I for 1% - •• 1 <.. In this neighborhood it is possi­
ble to define" single-valued SIIalytic branch of -vgw, which we denote 
by h(z). We have thus 

• 

fez) - ID. = r(z)" 
t(z) ~ (. - •• )h(.). 

Since r'(,.) = Ia(,.) ,. 0 the mapping r ~ fez) is topological in " neigh­
borhood of z.. On the other hSlld, the mapping W "" WI + r" is of an el&­
menta.y character and determinES n equally sp&ced values r for each 
value of w. By performing the mapping in two steps we obtain a very 
illllminating picture of the Jocal correspondence. Figure 4~ shows the 
inverse imBp of "amell disk and the n arcs which are mapped onto 
the positive radius. 

IEXIERCISES 

2. Determine explicitly the largest disk about the origin whose im"p 
under the mapping ID - st + z is one to one. 

20 problem for tD = e'. 
. . . L Apply the representation f(.) = Wo + f(z)" to cos z with •• - o. 

H,) uplicitly. 
.. If f(.) is analytio at the origin and f (0) ,. 0, prove the existenee of 

an enalytic v(.) that 1(.-) - /(0) + v(.)" in .. of O • 
. 

CoJollary 1 of TbllOrem 11 has a vlliIy 

• • - , '. ") , 

• 

..•.. .' , .. - , ',- , 
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lUlalytic functions. Because of its simple and explicit fonnulation it is 
one of the most useful general theorems in the theory of funr.tions. As a 
rule aU proofs based on the maximum principle are very straightforward, 
and preference is quite justly given to proofs of this kind. 

Theorem 12. (The mazimum principle.) If fez) i& analytic aM non­
coo8tant in a region 0, then il8 ab80lute value If(z) I ha3 no maximum in o. 

The proof is clear. If too = 1(4) is any value taken in 0, there exists 
a neighborhood ltD - tool < e contained in the image of 0. In this 
neighborhood there are points of modulus> ltool, and hence If(zo) I is not 
the maximum of If(z)l. 

In a positive formulation the same theorem can be stated 
in the form: 

Theorem 12'. If fez) i& defined and rontinuous on a closed bounded Bel E 
and ooalytic on 1M interior of E, then the maximum of If(z) I 011 E i& a88U1IIM 
on the boundary of E. 

Since E is compact, II(z) I has & maximum on E. Suppose that it is 
AAAumed at z.. If Zo is on the boundary, there is nothing to prove. If Zo 

is an interior point, then lI(zo) I is alao the maximum of If(z) I in a disk 
Iz - zol < 6 contained in E. But this is not possible unlessf(z) is constant 
in the component of the interior of E which contains z.. It follows by 
continuity that If(z) I is equal to its maximum on the whole boundary of 
that component. This boundary is not empty and it is contained in the 
boundary of E. Thus the maximum is always assumed at a boundary 
point. 

The maximum principle can also be proved analytically, as a conse 
quence of Cauchy's integral formula. If the formula (22) is speeialized 
to the where 'Y is 8. circle of center 20 and radius T, we can write 

• r = Zo + r~", dr = ire" d6 on 'Y and obtain for z = z • 
. 

(34) f(z.) = ;.. /0 h fez. + re") d6. 

This formula shows that the value of an analytic function at the center 
of a circle is equal to the arithmetic me8.n of its values on the circle, 
subject to the condition that the cl086d disk la - z.1 ~ .. is contained in 
the region of analyticity. 

From (34) we derive the inequality 

(35) 1 {"" If(zo)1 ~ 2r}o If(z. + rei') I d6. 
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Suppose that If(z.)1 were a maximum. Then we would have Ifez. + ~,)I 
;:> If(z.) I, and if the strict inequality held for a single va.\ue of II it would 
hold, by continuity, on a whole arc. But then the mean value of 
If(z. + re',)1 would be strictly less than If(2.)I, and (35) would lead to 
the contradiction If(z.)1 < If(z,)I. Thus If(z)1 must be constantly equal 
to If(z.)I on all sufficiently small circles I. - 2,1 = • and, hence, in a 
neighborhood of z.. It follow. easily that fez) must reduce to a con­
stant. This reasoning provides a second proof of the maximum princi­
ple. We have given preference to the first proof because it shows that 
the maximum principle is a consequence of the topological properties of 
the mapping by an analytic function. 

Consider now the cue of a function f(z) which is analytic in the open 
disk 1,,1 < R and continuous on the closed disk I_I ;a; R. If it is known 
that IfCz)l ~ M on 1-<1 = R, then If(z) I ;a; M in the whole disk. The 
equality can hold only if f(.) is a constant of absolute value M. Therefore, 
if it is known that fez) takes some va.\ue of modulus < M, it may be ex­
pected that a better estimate can be given. Theorems to this effect are 
very U8eful. The following particular result is known as the lemma of 
Schwa ... : 

11.eo ....... 13. If fez) u anal'lll;'; for 1"1 < 1 and BOI:i.sfies the conditions 
If(z)l ;;; 1, flO) = 0, then I/(z)l ~ 1,,1 and 1f(0) I ;;; 1. If If(-)I = /.1 lor 
_Ie z ;I'! 0, or if /nO)l = 1, then fez) = "" with a constant c of absolute 
value 1. 

We apply the maximum principle to the function b(z) which is equa.l 
to f(.)/. for" ;I'! 0 and to frO) for z = o. On the circle 1.1 -= • < 1 it is 
of absolute value :=;; 1/., and hence Ift(')1 ;;; 1/. for 1.1 ;;; ..Letting r 
tend to 1 we find that Ib(z) I :Ii 1 for .n z, and this is the assertion of 

. the theorem. If the equality holds at a single point, it means that 1M.)! 
attains its maximum and, hence, that ftC.) must reduce to a constant. 
. The rather spwisJized III!IIIImPtions of Theorem 13 are not 
but should be looked upon 88 the result of a normalization. For instance, 
if I(~) is known to satisfy the conditiona of the tbeol'em in a disk of radius 
B, the orilinai form of the theorem be applied to the Cunction I(Rz). 
As a resuJtweobtain 11(&)1 ;:;; 1 .. 1, which (Ian be rewritten 8811( .. )1 :! 1.1/ R. 
Similarly, if the upper bound of the modulus is M oC 1, we apply 
the theoJ"ftID to J<1)/M or, in the more general caae, to !(Bz)/M. The 
nlBUltinainequaIity is 11( .. )1 ;fi M/cl/B . 

. . St.iIlffilll6 . i.erep!ace the oondition /(0) - 0 by an 

"." . 
. ",-,. ,-. -" ..... , .. 

• 

. 1 •• 1 < B and /",1 < M. Let t - T. 
DlltPS I_I < Q. onto Ir~ <'1 with. .. 

..... lI"bieh. 
8J(T-lf) 
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B&tisfies the hypothesis of the original theorem. Hence we obtain 
1Sf(T-Jr)1 ~ Ir!, or 18f(z)1 ~ ITzl. Explicitly, this inequality can be 
written in the form 

(36) M(f(z) - w.) ,. ~ 
M' - wo/(z} 

R(z - z.) 
R' - i.z 

• 

EXERCISES 

and 

L Show by use of (36), or directly, that If(z)1 ~ 1 for Izl ~ 1 implies 

II'(z)1 < 1 . 
(1 - If(z)\I) = 1 - Izl' 

2. If fez) is analytic and 1m fez} ~ 0 for 1m z > 0, show that 

If(lt) - f(z.) I :s; Iz - zol 
If(z) - !(zo) I - Iz - 10\ 

If'(z) Is! 
Imf(z) - 11 

(z = z +iy). 

. 

3. In EX. 1 and 2, prove that equality implies that fez) is a linest 
transformation . 

... Derive corresponding inequalities if fez) maps Izi < 1 into the 
upper half plane. - __ 

s. Prove by use of Schwarz's lemma that every one-to-one conformal 
mapping of a disk onto another (or a half plane) is given by a linear 
transformation. 

.. If 'Y is a piecewise differentiable arc contained in Izi < 1 the integral 

is called the nlmfUClidean length (or hyperbolic length) of 'Y. Show that 
8J} analytic function fez) ~th If(z)1 < 1 for tzt < 1 maps every 'Y on an 
arc with smaller or equal noneuclidean length. 

Deduce that a linear transformation of the unit disk onto itself pre-
serves noneuclidean and check the result by explicit computation. 

-7. Prove that the arc of smallest noneuclidean length that joins two 
given points in the a circular are which is orthogonal to the unit 
circle. (Make use of a !inest transformation that carries one end point 
to the origin, the other to' a point on the positive real axis.) 

The shortest noneuclidean length is called the noneuclidean diatl11l« 
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between the end points. Derive a formula for the noneuclidean distance 
between %, and Zo. AnBIDer: 

1 
-log 
2 

1+ 

1-

~t - %1 

1 - i,z, 
• 

Zl - Zt 

1 - li1Z. 

"L How should noneuclidean length in the upper half plane be defined? 

... TH£ GENERAL FORM OF CAUCHY'S THEOREM 

rn our preliminary treatment of Cauchy's theorem and the integral 
formula we considered only the ease of a circular region. For the pur­
pose of studying the local properties of analytic functions this was quite 
adequate, but from a more general point of view we cannot be satisfied 
with a result which is I!O obviously incomplete. The generalisation can 
proceed in two directions. For one thing we can to characterize 
the regions in which Cauchy's theorem has universal validity. Secondly, 
we can consider an arbitrary region and look for the curves 'Y for which 
the _mon of Cauchy's theorem is true. 

4.1. Chains arad CycleB. In the first place we must generalise the 
notion of line integraI. To this end we examine the equation 

(37) J fdz = !,/dz + Lfdz + ... + !,Jdz 
')'l +.,.+ •.. +.,. 

which is valid when 'Y', 'Yo, •• , , 'Y. form a subdivision of the are 'Y. 
Since the right-hand member of (37) has a meaning for any fiuite collec­
tion, nothing prevents us from considering an arbitrary formal sum 
'Y, + 'Yo + . . . + 'Y., which need not be an arc, and we define the cor­
responding integral by meaDS of equation (37), Such formal sums of 
arcs are called cheri"" It is clear that nothing is lost and much may be 
gained by considering line integral. over arbitrary chains. 
. .. Just as there is not.hing unique about the way in which an arc ""n be 

subdivided; it is clear that difret eat fOlIllN 811mB .an the 
ehaiP. The guiding principle is that two chains be oopejdered 
identieal if they yield the! Ierne line intega .Is for all functions f. H this 
ruinolple !!I we find that the following operations do not change 
the Identity· of a ohain: (l) permutation of till) aree, (2) wbdiviaion of 
. an ant, (3) fwlionohubarce to a lingle arc, (4) an 
»c,{ii) c&iiCilllatiop of oppollite arca.On thiB b"~ it be BIIsy to . 

-' ... ' -' .... . 
........ ,'.,: .. '".-." ',. , .,' .... ,,0.' "'''' __ ",0'", '. ..' _"., ,- '., - ""-'~'''''-l:<' ""'-",' , ... ", ' . -".,,, ""~'.'- "," ", "-."',. 

. " " -. ". . - ,_ _ :'.:"; ...:~ :''; ~ ••. ,.!" ~,~;'·i;',,:· .... ' .:, >;. ..... ,. -.+i. ~i. ~L,,; ~:: .: .:: :' :.~ "- ". , ............... \._ "M~':<1 -, ••.• '. ,,~~ ,~ ... "... . 
, ,---- . ',-.\: •.. , ..... , ,"", '- . ' , ~ ,,""-",""'-" 
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formulate a logical equivalence relation which defines the identity of 
chains in a formal manner. InBSmuch as the situation does not involve 
any logical pitfalls, we shall dispeW18 with this formalization. 

The sum of two chains is defined in the obvious way by juxtaposition. 
It is clear that the additive property (37) of line integrals remains valid 
for arbitrary chains. When identical chains are added, it is convenient 
to denote the sum as a multiple. With this notation every "ha,in can be 
written in the form 

(38) 

where the ai are positive integers a.nd the 'Yi are all different. For opposite 
arcs we are allowed to writ.e a( - "1) = -G'Y and continue the reduction of 
(38) until no two 'Yi are opposite. 'The coefficients will be' arbitrary 
integers, and terms with zero coefficients ean be added at will. The last 
device enables US to express any two chains in terms of the same arcs, and 
their BUm is obtained by adding coefficients. The zero 
chain is either an empty sum or a sum with all coefficients equal to zero. 

A chain is a cyd£ if it can be represented as a sum of closed curves. 
Very simple combinatorial considerations show that a chain is a cycle if 
and only if in any representation the initial and end pointe of the indi­
vidual arcs are identical in pairs. Thus it is immediately poBBible to tell 
whether a chain is a cycle or not. 

In the applicati9DS we shall consider chaiDS which are contained in a 
given open set 0. By this we mean that the chains have a representation 
by arcs in I) and that only such reprel!entations will be considered. It is 
clear that all theorems which we have heretofore formulated only for 
closed curves in a region are in fact valid for arbitrary cycles in a region. 
In particular. the integral of /Jfi e$<Jd differential OIJer any cycle i. zero. 

The index of a point with respect to a cycle is defined in exactly the 
same way as in the C&l!e of a single clOBedcurve. It has the same proper­
ties, and in addition we can formulate the obvious but important additive 
Jaw by the equation n( "11 + 'Ys,a} =- n("(l,a) + n("(s,a). 

4.2. Sbnple Connecti1>it,Y. There is little doubt that all will 
know what ,we mean if we speak about a region without Such 
regions are said to be Bimply cormected, and it is for simply connected 
regions that Cauchy's theorem is universally valid. The 
language we have used cannot take the place of a mathematical clefi­
nition, but fortunately very little is needed to make the term precise. 
Indeed, a region without holes is obviOusly one whose complement con­
sists of a single piece. We are thus led to the following definition: 



COIIPLEX INTEGRATtON 1. 

Definition 1. A region " simply connected if il3 complement tDit1a reaped 
to 1M e.tmded plam " cormedBd. 

At this point we warn the reader that this definition is not the One 
that is commonly aooepted, the main reason being that our definition 
cannot be used in more than two reaI dimensions. In the COU1SC of our 
work we sha1lfind, however, that the property by Definition 1 is 
equivalent to anum her of other properties, more or less equally important. 
One of these states that any closed curve can be contracted to a point, and 
tbis condition is usually chosen as definition. Our choice has the advan­
tage of leading very quickly to the leSults in complex integration 
theory. 

It is easy to see that a disk, a half plane, and a parallel strip are 
simply connected. The last exB.mple shows the importance of taking the 
complement with respect to the extended plane, for the complement of the 
strip in the finite plane is evidently not connected. The definition can be 
applied to regions on the Riemann sphere, and this is evidently the most 
symmetric situation. For Our it is neverthelees better to 
that all regions lie in the finite plane unless the contrary is explicitly 
stated. According to this convention the outside of a circle is not simply 
connected, for its complement consists of a closed disk and the point 
at infinity. 

Theorem 1.. A regitm 11 " &imply con1UlCted if and only if "('Y,a) = 0 
far all cvcleB 'I' ,n n and all poifll8 a uhich do flOC belanq to I). 

This alternative condition is also very suggestive. It states that 8. 

closed curve in a simply connected region cannot wind around any point 
which does not belong to the region. It seems quite evident that this 
condition is not fnlfilled in the of a region with a hole. 

The necessity of the condition is al roost trivial. Let 'I' be any cycle in 
n. If the complement of I) is connected, it must be contained in one of 
the ngi·lOs dew mined by 7. and inasmuch as .. belonp to the OOlDpl~ 
lDent this lDust be the unbounded region. Consequently 1Ih,0) = 0 for 
all finite points in the complement. 

For the precisc proof of the sufficiency an explicit construction is 
needed. We as.!tIme that the complement of I) can be represented as the 
union A V B of two disioint closed sets. One of sets contains "', 
and the otberia coneequeiltly bounded; let A be the bounded set. The 
sets A and B have a shortest distance a > O. Cover the whole plane 
pith &~et of ... . Q of side < '/....;2. We!llll flee to choosll the net 
.·tW.a . poijntGe A lies at the oenterofll> "'lU&l'fl. The boundary . . - -:0 ,'-- •.. - . _ -. - . - - ' - - - '. -
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FIG. ...... Curve with index I. 

..--

curve of Q is denoted by aQ; we 888Urne explicitly that the squares Q 
are closed and that the interior of Q lies to the left of the directed lib.e 
aegments which make up ilQ. 

Consider now the cycle 

(39) 

where the INm ranges over all squares Q; in the net which have a point 
in common with A (Fig. 4;.9). Because a is contained in one and only 
one of squares, it is' evident that n(-Y,a) = 1. Furthermore, it is 
clear that 'Y does not meet B. But if the canceUations are carried out, 
it is equally clear that 'Y does not meet A. Indeed, any side which meets 
A is a common side of two squares included in the Slim (39), and since 
the directions are opposite the side does not appear in the reduced 
expression of"t. Hence"t is contained in D, and our theorem is proved. 

We remark now that Cauchy's theorem is certainly not valid for 
regions which are not simply connected. ' In fact, if there is a cycle 'Y in n 
such that n{"(,a) F 0 for seme a outside of n, then 1/(8 - a} is analytic in 
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f dz = 2.in(-y,a) ,.& O • ..,z - a 

4.3. Homology. The characterization of simple connectivity by Theo­
rem 14 singles out a property that is commOn to all cycles in a simply 
connected region, but which a cycle in an arbitrary region Or open set may 
or may not have. This property plays an important role in topology and 
therefore has a special name. 

Definition 2. A cycle 'Y in an open 861 0 i8 said w be lunnowgom w ~ero 
willi respoBct to 0 if n(-Y,a) = 0 for aU points" in the complement of n. 

In symbols we write 'Y ~ 0 (mod D). When it is clear to what open 
Bet we are referring, n need not be mentioned. The notation 'Yl ~ "Y. 
sball be equivalent to"Y, - 'Y. ~ O. Homologies can be added and sub­
tracted, and"y ~ 0 (mod n) implies"Y ~ 0 (mod Il') for all Il' :) D. 

Again, our terminology does not quite aglee with standard usage. 
It W88 Emil Artin who diseovered that the characterization of homology 
by vanishing winding numbers ties in precisely with what is needed for 
the general version of Cauehy's theOiem. This idea has led to a re­
markable simplification of earlier proofs. 

4.4. The Ge .... ra' Statame ... oj G.llehy'. Theorem. The definitive 
fotin of Cauchy's theorem is now very e-sy to state. 

Theorem 15. If f(~) if analytic in n, then 

(40) f. ,,-) dz ~ 0 

for etlery cycle 'Y which i8 honwlogom to ~ero in D. 

In a dilIerent fonnul-tion, we are claiming that if "Y is such that (40) 
holds for a certain collection of analytic fnnctions, namely those of the 
form l/(e - a) with a not in 0, then it holds for all analytic functioll8 in O. 
. . In combination with Thcotem 14 we have the following corollary: 

. 

COl'OlIary 1 •. If J(~) i8 analytic in a simply connllll/ed region 0, then (40) 
Iaolda for aU cyclu l' in O. 

theorem, we mek., an observation which ties up 
~ 1~3i 4B~1IIIiiId· :. . 

._ '-. " '_I~" )', -,' : ...•. -.,'" " ,I _. " .; 
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the validity of (40) for all closed curves .., in a region meaDs that the line 
integral of I dz is independent of the path, or that I dz is an exact differ­
ential. By Theorem 1 there is then a single-valued analytic function F(z) 
such that F'(z) = I(z) (the pleonastic term "single-valued" is used for 
emphasis only). In a simply connected region every analytic function 
is thus a derivative. 

A particular application of this fact occurs very frequently: 

. 
Co .... llary 2. III(z) i8 analytic and ,.. 0 in a ~mplll oonMCted ~ 0, 
then it is PQ88ih~ to define ~ngle-ilalued analytic branch68 01 log I(z) and 
(YKz) in O. 

In fact, we know that there exists· an analytic function F(z) in 0 such 
that F'(z) = F(z)ll(z). The function l(z)I>F(') has the derivative zero 
and is therefore a constant. Choosing 8. point Zo EO and one of the in­
finitely many values log I(zo), we find that 

eF(.j-F(·ol+I .. /(·ol = I(z), 

and consequently we can set log I(z) = F(z) - F(z.) + log f(z.) • . To 
define (YKz) we merely write it in the f(lml exp «lin) log fez»~. 

4.5. Proof of Callchy'. Theorem.t We begin with 8. construction that 
p8.raIlels the one in the proof of Theorem 14. Assume first that 11 is 
bounded, hut otherwise arbitr&ry. Given 3 > 0, we cover the plane hy a 
net of squares of side 3, and we denote by QI, j E J, the cl08ed.Bqllares in 
the net which are contained in 11; bllC8.use 0 is bounded the set J is finite, 
8.nd if 8 is sufficiently small it is not empty. The union of the Bqll8.1'e8 
Qft j E J, consists of closed regions whose oriented boundaries make up the 
cycle 

Clearly, r. is a sum of oriented line segments which are sides of exactly 
one Q;. We denote by 0, the interior of the nnion V Q; (Fig. 4-10). 

Let .., he a cycle which is homologous to zero in 0; we choose 6 80 

small that 'Y is contained in 0.. Consider a point i E 0 - 0.. It belongs 
to at least one Q which is not a Q;. There is a point i. E Q which is not in O. 
It is possible to join l' and i. by a line segment which lies in Q and therefore 
does not meet 0.. Since 'Y, considered as a point set, is eontained in 0. it 
follows that n( 'Y ,i) = n( 'Y ,i.) = O. In particular, n( 'Y ,t) = 0 for all 
points i on r •. 
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........... 

Suppose now that f is analytic in ll. If z lies in the interior of Q; •• 
say, then 

and hence 

(41) 

J(z) ifj = i. 

o if i "" i. 

J(z) = 1. r J(t) dr. 
2n}r, t-z 

. Since both sides are continuous functions of z, this equation will hold for 
all z. f no. 

As. a consequence we obtain 

(42) . 
•• 

" ~, 

IJ(z) liz = J, .2~fr.J?~~ liz. 
, , . 

is a'. continuous l ...... n «both 
.. ' .. oIi1'l, ..... '." .11he~1. 

... -. , ' 
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order of integration can be reversed. In other words, 

fy 2~ fro ~(r~ d~ liz = fro 2~ fy r ~ z 1m dr. 
On the right the meide integral is -nh,r) = O. Hence the integral (42) is 
zero, and we have proved the theorem for bounded Il. 

If Il is unboUllded, we replace it by its intersection Il' with a disk 
121 < Rwhich is large enough to contain 1'. Any point a in the complement 
of st is either in the complement of II Or lies outside the disk. In either 
case n(1',a) = 0, so that l' - 0 (mod st). The proof is applicable to st, 
a.nd we conclude that the theorem is valid for arbitf8l'Y ll. 

4.6. Locally Esact Differentials. A differential p th + q dy is said to 
be locally ~act.in II if it is exact in some neighborhood of each point in ll. 
It is not difficult to see (Ex. 1, p. 148) that this is so if and only if 

(43) 

for all "I - iJR where R is a rectangle contained in ll. This condition is 
certainly fulfilled if p dz + q dy = fez) liz with f analytic in ll, and by 
Theorem 15, (43) is then true for a.ny cycle l' - 0 (mod ll). 

Theorem 16. If P dx + q dy u locally exact in Il, tIIen 

fyPth + qdy = 0 

for every cycle l' ~ 0 in ll. 

. 

There does not seem to be any direct way of modifying the proof of 
Theorem 15 80 that it would cover this more general situation. We shall 
therefore end up hy presellting two different proofs of Cauchy's general 
theorem. As in the earlier editions of this book, we shall follow Artin's 
proof of Theorem 16. The ·sepa.rate proof of Cauchy's theorem has been 
included because of its speeial appeal. 

For the proof of Theorem 16 we show first that 'Y can be replaced by a 
polygon ff with hcrizontal and vertical sides such that every locally exaCt 
differential has the same integral over ff as over"(. This property implies, 
in particlllar, n(ff,a) = n('Y,a) for a in the complement of D, and hence 
" - O. It will thus be sufficient to prove the theorem for polygons with 
sides parallel to the axes. 

We OOD8truct " 88 an approximation of 1'. Let the distance from "( to 
the complement of II be p. If l' is given by 2 ~ z(!), the .. fUllction z(1) is 
uniflJrlnly continuous on the cloeed interval (4,b). We determlne , > 0 so 
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ibat, Iz(t) - z(t') I < p for It - 1'1 < hnd divide [a,bl into subintervals of 
length <~. The corresponding aubarcs 1" of l' have the property that 
each is contained in a disk of radius p which lies entirely in a. The end 
points of 7' can be joined within that disk by a polygon ft, CODBisting of 
a horizontal and a vertical segment. Since the differential is exaet in 
the disk, 

i., pdx +qdy = J,. pdx + qdy, 

and if ft = 2:0'" we obtain 

88 desired . 
. To continue the proof we extend all segments that make up 0' to 

infinite lines (Fig. 4-11). They divide the plane into some finite rectangles 
H, and BOrne unbounded regioDB R; which may be regarded as infinite 

. Choose a point a; from the interior of each R" and fonn the cycle 

(4.4) ". = L "( ... ,a;) aR, 
; 

where the 8UIIl ranges over all finite rectangles; the coefficients n( .. ,a;) are 
well det~IDlined, for no a,.lies on... In the that follow8 we 
shall also make nse of points ~ chosen from the interior of each R; . 

. . It is clear. that ,,(88,,0.) - 1 if II: == j and 0 if II: .~ i; airoilarly, 
.. (~R"a;) .60 fotlUl j. With tbis in. mind it follows from (4.4) tllat 

, . . I'" .' ".' 

.. ( ... ,,0,) - n( .. ,CI,) and n(,,,CI/) - 0.· It is aIIIO true n("Cls) \",. 0; for .. . 
-. , . 

", .... '". '--. - - ----", . .. . '." .. , ..... ,", ", . ',,' 

.. ":. :-.;: : .. ;--, ';':":'-',"." :;-.:,-:--;~-,.:;.-.' ... ":-:,:""-,,.-,,,-,':.>::,,";";"-~",~-,";\'-~';:, .. ~~.: ... .- .. '.)$-: 
.• ,; ;{ ~ •. A';,'. ':; '1/;"\ :;;.;~ • .-.. ,: . -. _; - .. "';;~;~~ ,.~:.'. ':'~,;; .... ' A';.,.·.~-:· . . : ,.,.: "f:. :;':~ .. :-~j.; . .'~.~~ • .;~:'" ~:i -i.1;',{"r, .:::'~:_: .. .- ' ., 
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the interior of Rj belongs to the unbounded region determined by fT. 

We have thus shown that n(fT - .... a) = 0 for all a - a, and a = ~. 
From this property of " - "'0 we wish to conclude that fT, is identical 

with fT up to ~egnlents that cancel against each other. Let a,. be the 
common side of two adjacent reetangies R"R.; we choose the orientation 
so that R, lies to the left of ... ,.. SUppose that the reduced of 
a - cr. contains the multiple ca,.. Then the cycle er - ero - C iJR, does not 
contain er,., and it follows that a, and a. must have the same index with 
respect to this cycle. On the other hand, these indices are -c and 0, 
respectively; we conclude that c = O. The same reasoning applies if 
fT'i is the common side of a finite reetangle R, and an infinite rectangle R~. 
Thus every side of a finite reetangle OceUlS with coefficient zero in a - ao, 
proving that 

(45) ... = r n(fT,a;) <JR,. , 
We prove now that all the R, whose coefficient n(er,a,) 

is different from zero are actually contained in I}. Suppose that a point a 
in the closed rectangle R, were not in ll. Then n(a,a) = 0 because er ,.., 0 
(mod ll). On the other band, the line segment between a and a; does not 
intersect .. , and hence n(er,a,) = n(a,a) = o. We conclude by the local 
exactness that the integral of p dx + q dy over any <JR, which occurs 
effectively in (45) is zero. CoIl8equently, 

J.pdx + qdy = 0, 

and Theorem 16 is proved. 
. 

4.7. Multiply Co_ted ReBioru. A region which is not simply eon­
nected is called multiply connected. More precisely, I} is said to have 
the finite connectivity n if the complement of I} has exactly n components 
and infinite conneetivity if the complement has infinitely many \lOrn­
ponents. In a less precise' but more suggestive language, a region of 
connectivity n arises by pllnching n holes in the RiemllllJl sphere. 

In the CI\8e of finite connectivity, let AI, A., ... , A .. be the com­
ponents of the complement of 0, and I\88Ume that .. belongs to A.. If 
'Y is an arbitrary cycle in 0, we can prove, just as in Theorem 14, that 
n(-y,a) is constant when a varies over anyone of the components A, and 
that n(,.,a) = 0 in A.. Moreover, duplicating the construction UBed. in 
the proof of the same theorem we can find cycles 'r" i = 1, . • . ,n -1, 
such that n('Y"a) .. 1 for IH A, and n('Y~,a) .. 0 for all other points out-
~~~ , 
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For a given cycle '1 in Q, let c.be the constant value of n('I',o) for 
G. AI. We find that any point outside of 0 has the index 'ero with 
respect to the cycle 'f - C."Y' - Ct"Y1 - • • • - C.-.T_.. In other words, 

'f "" CI"Y. + CI"YI + . . . + c-."Y_t. 

Every cycle is thus homologous to a linear combination of the cycles 
'fl, "YI, • • • ,'10-" This combination is uniquely determined, for 
if two linear combinations were homologous to the same cycle their 
dilference would be a linear combinat,ion which is bomologous to IBrO. 

But it is clear that the cycle C,Tl + CI"Y. + . . . + C. ''1'.-. winds c; 
times around the points in A.; hence it cannot be homologous to SBrO 

unleBB all the c. vaniIIh. 
In vie .. of the cycles 'f., '11, • • • , 'Y ... ' are said 

to form a homologfl !HJBia for tbe region 0. It is not the only homology 
but by an elementary theorem in linear al&ebra we may conclude 

that every homology basi, bas the same Dnmber of elements. We find 
that every region with a finite homology basil has finite connectivity, 
and the number of basis elements i8 one 1_ than the connectivity. 

By Theorem 18 we obtain, for any analytic function fez) in 0, 

/ Ilk=c./ flk+ •• / flk+'" +c •• / Ilk . 
., 'YI 1'. ",--1 

Thenumbere 

depend only on the function, and not on '1'. They are called of 
".,-iodieily of the difFerential f d:I, or, with accuracy, the pe.lada of 
the jDdefjDite integral. We have found that the inlLpai of fez) over any 
cycle is a linear combination of the periods with integers as coefficients, 
and the intepal along an arc from z. to " is deterlnjued up to additive 
mUltiples of the periods. The vanishing of the periods is a neceasary 
and aufficient condition for the existenile of a sinIfle-valued indefinite 
in~ . 

In order to illustrate, let us consider the exla emely simple case of an 
. defi" ed by" < 1.1 < rl. The complement hae the components 

\1\ ;Ii " ,nd 121 il: '"; we inclnde the . " - 0 anJ," - GO. 

The is doubly connected, and .. homology 'b,';8 is formed by 
any circle I_I - ", " < , < rio If this circle is denoted by C, any cycle 
in the annulus satiefiee ., ~ nC where n = "(-r,O). The integ. al of an 
analytic fnnction over a cycle is a multiple of the period . '. 
. ..' . 
• • 
'J.~ .. . .. .' "" , . . . ~-' . .. . 

. , . 



whose value is of independent of the nulius r. 

EXERCIS'S 

L Prove without use of Theorem 16 that p dx + q dy is looaIly exact 
in !l if and only if 

! .. Pdx+qdy=O 

for every rectangle R C !) with sides parallel to the ""'68. 

2. Prove that the, obtained from a simply connected regi-Dn by 
removing m points has the connectivity m + 1, and find a homology basis. 

J. Show that the bounded regionll determined by a closed curve are 
simply connected, while the unbounded region is doubly connected. 

4. Show that single-valued analytic branches of log z, ,. and Z' can be 
defined in any si mply connected region which does not contain the origin. 

s.. Show that a single-valued analytic branch of. VI - z' Mn be 
defined in any regi'Jn such that the points ± 1 are in the 88.me component 
of the complement. What are tbe possible values of 

! Vl
dz

_ z' 

over a closed curve in the region? 

5. THE CALCULUS OF RESIDUES 
The results of the preceding section have sbown that the deteiD,lnation 
of line integrals of analytic functions over closed curves can be reduced 
to the determination of periods. Under certain circumstances it turns 
out that the periods can be found without or with very little computation. 
We are thllB in possession of a method which in many ,,_ permits us to 
evaluate integrals without resorting to explicit calculation. This is of 
great value for practical purposes as well as for the further development 
of the theory. 

In order to make this method more systematic a simple formalism, 
k,nown as the calculllB of residues, was introduced by Cauchy, the founder 
of complax integration theory. From the point of view adopted in this 
book tc.~ uee of residues amounts e_ntially to an application of the 
resw.ts proved in Sec. 4 under particularly simple 

S.l. The Relrid"" Theorem. Our first· task i. to review earlier results 
in the light of the more general theorems of Sec. 4. Clearly, all _alts 
which were derived as consequences of Cauchy's theoreln for a disk 
remain valid in arbitrary regions for all cycles which are 

•• 
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to..ero. For iDstanee, and this application is typical, Cauchy's integral 
fotmuis ca.D now be in the following f"ru': 

If fez) is analytic in a region {I, then 

n("( a)f(a) = 1. f fez) dz 
, 2ri YZ-a 

fur em"y cycle "( whi<:h u 1wmolog0Ul/ to zero in 1I. 
. The proof is a repetition of the proof of Theorem 6. In this con­

nection we point out that there is of COlll8EJ no longer any need to give 
a separate proof of Theorem 15 in the presence of removable singularities. 
Indeed, our discll! .. ion of the local behavior h8ll already shown that all 
removable singularities can simply be ignored. 

We tum now to the discll!!!Uon of a functionf(z) which is analytic in a 
region II except for isolated singularities. For a first orientation, let us 
Ram,me that there ate only a finite number of singular points, denoted by 
a" a" • . . ,4". The region obt.ained by excluding the points a; will he 
denoted by 11'. 

To each a; there exists a Ii > 0 such that the doubly conneeted region 
o < I_ - 11;1 < &; is contained in ll'. Draw a circle 0; about 01; of radius 
<ai, and let 

(46) Pi = r fez) dz le, 

be the corresponding period of fez). The particular function 1/(z - ail 
has the period 2ri. Therefore, if we 8EJt R; = P;/2ri, the combination 

f(z) _ R; 
%-aj 

hB8 a vanishing period. The constant RI which produces this result is 
called the reBid"", of f(z) at the point 01;. We repeat the deli nition in the 
following form: 

Definition 3. The residue oj fez) at an i80lat~ Bingul4rily a u Ike unique 
cqmp~ number R wAi<:h makelJ fez} - R/(z - a) lhe dmvat~ uja Bingle­
valued anal¢ic funmon. in an annulus 0 < Iz - al < I. 

It is helpful to W!e such notations as R - Res, .f(z). 
Let 'I' bell. cycle in ll' which iii homologo\J8 to zero with respect to 1I. 

Then 'I' satisfies the homology 

., ~r n(-Y,ai)CI . 
i 
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By virtue of the homology we obtain, with the notation (46), 

f/ tk ~ ~ nC"(,O;)PI, , 
and since Pi "" 2wi' Ri finally 

in f.t liz = l n("(,0;)R1• 
i 

Thill is the rtllid~ except for the restrictive 8SS11mption that 
there are oo1y a finite Dumber of singularities. In the general case we 
need oo1y prove that n("(,a;) = 0 except for a finite nnmber of points 0;, 

for then the 83me proof can be applied. The 8I<sertion follows by routine 
reMOning. The set of all points a with n("(,a) = 0 is open and contsins 
all points outside of a large circle. The complement is consequently a 
compact set, and as such it fl8Ilnot contain more than a finite number of 
the isolated points 0;. Therefore n('Y,O;) .,. 0 only for a finite number of 
the singularities, and we have proved: 

Theorem 17. Ld fez) ~ a1l4lytre urepl fur UtolaJed singularitiu 4; in a 
region 0. Then 

(47) 

lor any cycle 'Y which i8 homologom to W'Q in " ....a dou not pa83 WaUgh 
any t1/ the pointa a;. 

In the applications it is frequently the case that each n(y ,11,) is either 
o or 1. Then we have simply 

in f. fez) liz = ! Res._. f(a) , . 

where the sum is extended over all singularitiesencloaed by 'Y. 
The residue theorem is of little value unless we have at our dillJlOl'pl a 

simple procedure to determine the residues. For el!OO1ltial singularities 
is no such procedure of any practical value, and thus it is not sur­

prieing that the .... lJue theorem is compa.ratively seldom used in the 
of singularities. With respect to poles the situation is 

entirely different. We need only look at the expansion 

fez} = B.(s - aJ'" + ... + B.Cs - 4)-' + ,,(.) 
to recognize that the reeidue equals the coefficient~l. Indeed, when the 
term B .(z - a)""" is omitted, the is evidently . . .. .. . • . . 

. 
,.-- -~ . --. "-- .. 
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Since the principal part at a pcle is always either given Or ean be t!&8ily 
found, we have thus a very simple method for finding the residues. 

For simple pcles the method is even more immediate, for then the 
residue eqU8.lS the value of the function (z - a)/(z) for • ~ a. For 
ill8tance, let it be required to find the residues of the function 

6' 

(z - aHz - 0) 

at the pcles a and 0 F a. The wodue at a is obviously I1"/(a - 0), and 
the residue at b is "'/(b - a). H b = a, the situation is slightly more 
complicated. We must then expand 6' by Taylor's theorem in the form 
II" = 6" + 6"(z - a) + ft(zHz - al·. Dividing by (z - al· we find that 
the residue of 6' I(z - al· at z = a is 6". 

Remark. In presentations of Cauchy's theorem, the integral formula 
and the residue theorem which follow mOre classical lines, there is no 
mention of homology, nor is the notion of index used explicitly. Instead, 
the curve 'Y to which the theorems are applied is suppcsed to form the 
complete boundary of a subregion of D, and the orientation is chosen so 
that the subregion lies to the left of D. In rigOrous texts considerable 
effort is spent on proving that these intuitive notions baYe a precise 
meaning. The main objection to this procedure is the necessity to allot 
time and attention to rather delicate questions which are peripheral in 
comparison with the main issues. 

With the general pcint of view that we have adopted it is still pcssible, 
and indeed quite easy, to isolate the classical case. All that is needed is 
to accept the following definition: . 

Definltlon 4. A tgcle 'Y ia said to bound IAe rtgion n if and onl1l if 1&('Y,a) 
ia defirud and equal to 1 fqr all poin.tB a E 0 and either undEfirud qr equal to 

. _0 for all poin.tB a not i1& n. 

If 'Y bounds n, and if n + 'Y is contained in a larger region fI', then it 
is clear that 'Y is homologous to zero with respect to 11'. The following 
lltaternents are therefore trivial consequences of 15 and 17: 

If 'Y 'b~ 0 and fez) ia ataal¢ic on IAe 861 n + 'Y, then. 

Iy/(z) tl2. = 0 

. . 

!\.-'. -, 
~~-, : - - _ .~"'; '. -;:/:, '_ 0,.-: ,-. .;.,,;~_~~.i,:- .. ;,.~·.:;.i..~-~_"~:'-'::'-.:':" __ -
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If fez) i8 analytic on 0 + 'Y except for isolated Bingttlaritita in 0, then 

in //(z) dz = L R~s,...J(2) 
; 

.1we the aum rangea over the Bingularitiea a; E o. 
We observe that", cycle 'Y which bounds 0 must contain the set' 

theoretic boundary of o. Indeed, if z. lies on the boundary of 0, then 
every neighborhood of z. contains points from 0 and pointa not in 0. 
If such a neighborhood were free from points of '1, nh,z) would be defined 
and constant in the neighborhood. This contradicts the definition, and 
hence every neighborhood of Zo mllBt meet '1'; sinee 'I' is closed, Zo mllBt 
lie on '1'. 

The convenj() of the preceding statement is not true, for", point on '1 
msy well have a neighborhood which does not meet o. Normally, one 
would try to choose '1 80 that it is identical with the boundary of 0, but 
for Cauchy's theorem and related considerations this assumption is not 
needed • 

• 

S.J. The Argument Principle. Cauchy's integral fonnula can be con· 
sidered as a special case of the residue theorem. Ip.deed, the function 
f(z)/(z - a) has a simple pole at z = a with the residue 1(11.), and when 
we apply (47), the integral formula results. 

Another application of. the residue theorem occurred in the proof of 
Theorem 10 which served to determine the number of zeros of aqanaIytic 
function, For a zero of order 11. we CAD write fez) = (z - a)"!.(z), with . . 

f.(a) ;01 0, and obtain I'(z) = h(z - a)A-lj.(z) + (z - a),,!Hz). Conse" 
quently f'(z)/f(z) = h/(z - a) + f~(z)/f.(2), and we see that f' /f has a 
Bimple pole with the residue h." In the formula (32) this residue is 
acconnted for by a corrEl8}N)nding repetition of terms. 

We can now generalize Theorem 10 to the case of a meromorphic -function. If I has a pole of order 11., we find by the same calculation as 
above, with - 11. replacing h, that f' /f has the residue - h~ The follow­
ing theorem results:" 

Theorem 18. If fez) i8 meromorphic in 0 IDith the aer 08 a; and the polu 
b., then 

(48) 1 f f'(z) . ~ ~ 
2ft • fez) dz = f n('Y,a;-) - fnh,b.) 

lor every cycle '1 whUh i8 homologom 10 uro in 11 and doea MI pa88 through 
any 01 the urlM or polu. 
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It is understood that multiple zeros and poles have to be repeated 88 

many times as theit' order indicates; the sums in (48) are finite. 
Theorem 18 is usually referred to as the argument prineipk. The 

Dame refers to the interpretation of the left-band member of (48) as n(r,O) 
where r is the image cycle of "(. If r lies in a disk which does not con­
tainthe origin, then n(r,O) = O. This observation is the basis for the 
following corollary, known 88 R()1JJ;M 8 ti&eM"fJIII: 

Corollary. Let "( be lumwlog0U8 10 ",,·0 in g tmd /lUck thai, nh,z) i8 either 
o or 1 for any point z not on "(. Suppose thai, fez) and lI(z) are analytic in n 
and BtJti8fy the inequality If(2) - g(.)1 < If(2I)I on "(. Then fez) and g(z) 
h(IIJe the 20"'" flumber of zero. entJlosed by "(. 

The assumption implies thatf(z) and g(2I) are zero-free On 'Y. More­
over, they satisfy the inequality 

g(z) _ 11 < 1 
fez) 

on "(. The values of F(z) = g(z)lf(2I) On 'Y are thus contained iri the 
open disk of center 1 and radiUs 1. When Theorem 18 is applied to 
F(z), we have thus nCr,O) = 0, and the assertion follow •. 

A typical application of RoucM's theorem would be the following. 
Suppose that we wish to find the number of zeros of a funetion fez) in 
the disk Izl ;:;; R. Using Taylor's theorem we can write 

fez) = p ._,(21) + z"f.(z) 
. 

where p._, is a polynomial of degree n - l. For a snitably chosen n 
it may happen that we can prove the ineqnality R·lf.(z)l < IP~,(z)l on 
1211 = R. Then fez) has the same number of zeros in 1211 ;:;; R as P_,(z), 
and this number can be determined by approximate solution of the poly-

. nomial equation P _,(21) = o. 
". Theorem 18 can be generalized in the following numner. If 11(.) iii 

analytie iri 0, then g(.) ~(~i has the residue Ag(a) at a zero a of order 11 

and the residue -Ag(a) at a pole. We obtain thus the formula 
. , , 

(49) ~ f. 11(21) ~(~~ de - ! nh,a;)II(a,) - l n("(,b.)g(b.). 
.' .. J • 

This is unporbnt fol' the study of the inverse fUnction. With 
the notations of ~ 11 we know that the equation !(~) = tD, 
. ,1tfj , ~--· •• r <' J'. hu'~, ~ ··i(~~a:~.: ~~f':~1~.TtJf::,:f~:,~·'~~.::::.!/~ .~~,. 

. . . 

iI~t., . , .. . .,' . , . 
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(49) with I/(z) = z, we obtain 

(50) 

For 11 = 1 the inverse fUDctionr'(w) can thUll be represented explicitly by 

!-I(W) = 1. f - !'(z.) z Ik. 
2ri I._'~ _. f(a) - w 

If (49) is applied with 1/(2) = Z"', equation (50) is repl&ced by 
. 

~ .. 1 f f'(a) -
L. zJ(w) = 2ri fez) _ w Z'" Ik. 
i-I '--•• l--

The right-hand member represents an analytic function of w for Iw - w.1 < 
6. Thus the power sums of the roots aJ(w) are single-valued analytic 
functions of w. But it is well known that the elementary symmetric 
functions can be 88 polynomials in the power sums. Hence 
they are analytic, and we find that the z;(w) are the roots of a poly­
nomial equation 

, 

z~ + a.(w)z .... 1 + ... + II" .(w)z + a.(w) = 0 

whose coefficients are analytic funetions of w in Iw - wol < a . 

. 
EXERCISES 

-

1- How many roots does the equation z' - 2z' + &' - z + 1 = 0 
have in the disk Iz I < 11 H in!: Look for the biggest term when Iz I = 1 
and apply Rouch~'8 theorem. ' 

2. How many roots of the equation z' - 6z + 3 = 0 have their modu­
lUll between 1 and 21 

3. How many roots of the equation Zl + Sz' + &' + 8z + 3 = 0 lie 
in the right half .plAne? -mn!: Sketch the intage of the . . axis -
and apply the argument principle to a large balf disk. 

S.iI. EIIO'"atWn 0/ Definite Integra". The calculUll of residues pro­
vides a very efficient tool for the evaluation of definite integrals. It is 
particularly important when it is impossible to find the indefinite inte­
gral explicitly, but even if the ordinary methods of calculUll can he applied 
the use of residues is frequeJ).tiy a laborsaving device. The fact that the 
ealculUll of residues yields. complex rather than real integrals is no dis­
advantage, for clearly the evaluation of a complex integral is equivalent 
to the evaluation of two definite integJ81s. 
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There are, however, some serious limitations, and the method is far 
from infallible. In the first place, the integrand must be closely con­
nected with some analytic function. This is not very serious, for usually 
we are only required to integrate elementary functions, and they can all 
he extended to the complex domain. It is much more serious that the 
technique of complex integration applies only to closed curves, while a 
real is alwaya extended over an interval. A special device mu.st 
be ured in order to reduce the problem toll one which concernB integration 
over a elosed curve. There are a number of ways in which this can be 
accomplished, but they all apply under rather special circumstances. 
The technique can be learned at the hand of typical examp1e8. but even· 
complete mastery does not guarantee success. 

1. All integrals of the form 

(51) 10 So R( cos 9, ";n 8) d8 

where the integrand is a rational function of C08 8 and sin It can be easily 
evaluated by mean" of residues. Of course these integ! a1s can also be 
computed by explicit integration, but this technique is usually very 
laborious. It is very natural to make the substitution z = e" which 
immediately transforms (51) into the line integral 

z 
• 

-$ 
1 1 1 1 

R-z+-,~z--
2 Z 21 Z 

I_ -1 
-. 

It remains only to determine the residues which correspond to the poles 
of the intep and inside the unit circle. 

As aD example, let us compute 

· ; , 
i..- (. d8 

Jo 0 + C08,' 0> 1. 

. , 

• 

, 

This integral is not extended over (O,~), but since cos 9 takes the same 
values in the intervals (0,11') and (11',~) is is clear that the integral from 
o to 11' is one-half of tbe integral from 0 to~. Taking this into account 
we find that the integral equals 

• 
' . 

• 

• 

l'be' denominator can be factored into (z - a) (z - (J) with 

.. = -o':-voo-l, . (J= -0...,."';00 -1 .. 

. .~ently lal < I, Itli > 1, and at a is l/(a - tI) • • • 
The value 

. 
:(';''''''.-, -...... -!' ... ' .. - ..... - .. ,. • ....... ">.:, :._:.; "", • • . ;-

. . . ..' .'. .'. .' ., .... ,.. . ", "'.' ...... , ... ::.": ... .": .... . .. .... , ..... '". . .;.~ ... ; .... " ..... , . 
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of the integral is found to be 'r Iv' a l - 1. 
2. An integral of the form 

converges if and only if in the rational function R(",) the dE®'ee of the 
denominator is at least two unite higher than the degree of the numerator, 
and if no pole lies on the real &Xis. The standard procedure is to inte­
grate the complex function R(z) over a closed curve consisting of a line 
segment (-p,p) and the semicircle from p to -p in the upper half ptene. 
If p is large enough this curve encloses all poles in the upper half ptene, 
and the integral is equal to 2ri times the 8um of the 
residues in the upper half plane. All p -> .. ·obvious estimates show that 
the integral over the semicircle tends to 0, and we obtain 

f _ .... R(",) Ik = 2ri L Res R(~). 
.>0 

• 

3. The 8BT1'e method caD be applied to an integral of the form 

(52) 

whose real and imaginary parts determine the important integrals 

(53) f:.R(:I:) coulk, f _". R(:I:) sin '" Ik. 

Since 1"'1 = e-" is bounded in the upper half plane, we can con­
clude that the integral over the semicircle tends to provided that 
the rational function R(z) has Ii zero of at order two at infinity. We 
obtain 

f _ .... R(",)e'" tb = 2ri L Res R(.),... 
0>0 

It is less obvious that the ume result holds when H(z) has only a 
simple zero at infinity. In this case it is not convenient to use semi­
circles. For one thing, it is not 80 easy to estimate the integral over the 
semicircle, and secondly, even if we were successful we would only have 
proved t.b At the integral 

t.R("'~tb 
over a symmetric interval has the desired limit for p.... 00. In reality 
we are of course required to prove that -
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has a limit when Xl and X. tend independently to 00. In the earlier 
examples this question did not arise because the convergence of the inte­
gral was &l!8W'ed beforehand. 

For the proof we integrate over the perimeter of a rectangle with the 
vertices X" X. + iY, -X, + iY, -Xl where Y> O. loB soon as X" 
X. and Y are sufficiently large, this rectangle contains all the poles in 
the upper half plane. Under the hypothesis IzR(z)1 is bounded. Henee 
the integral over the right vertical side is, except for a consta.nt factor, 

less than 

I.Y c.~ < i.g c·dy. 

The last integral can be evaluated explicitly and is found to be < 1. 
Hence the integral over the right vertical side is less than a constant 
times l/X" and a cotlesponding result is found for the left vertical side. 
The integeal over the upper horizontal side is evidently less than 
CY(X, + X.)/Y multiplied with a constant. For fixed X" X. it tends 
to 0 88 Y ..... 00, and we conclude that 

I z. R(x)'" da; - 2ri ~ Res R(z)e" 
-~I ~_ 

0>0 

<A 1 + 1 
X, X. 

where A denotes a ClI?nstant. This inequality proves that 

f--- R(x)'" da; = 2.i l Res R(z)e" 
1'>0 . 

.... . under the sole condition that R( 00) = O. 
In the discussion we have '!(!Ilmed, tacitly, that R(,,) has no poles on 

• 
, ~he real axis since otherwise the integral (52) has no meaning. How-
• 

ever, one of the integral8 (53) may well exist, namely, if R(z) h88 simple 
pioles which coincide with leros of ain x or COB x. Let us for 

c. instancej· that R(,,) has a simple pole at z = O. Then the second inta-
, . gral (53) has a and calls for evaluation. 
: . \ We II ... the same metl!od as before, but we nse a path which avoids 
.h the oricin by following a wall semicircle of radius , in the lower half 
;' .... (Fig. 4-12). It is easy to see that this closed curve.enclllses the poles 
· . . upPet· half plane, th8' pole at the . and DOotheril, .as lOOn as 

. l' 'are euffiaiently • is that 
. . .. B;·aothatui"e ... Write .beie ,. · . . 

7,8.(.), 
'"' . " ' .. 
. ~ ... .. . 
• • • .. ' . 
~:"""" .(,:- "c.. .,_. . .. . -, - ." 
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-X1+iY X.+iY 

---~---

.".442 
It is clear that we are led to the result 

~ f _-: + f, -R(z)e'" dz .. 2.ri [L Res R(z)e" + j-B l 
.:>0 , 

The limit on the left is called the CaucAy priflCipal value of the integral; 
it exists although the integral has no meaning. On the right-hand 
side we observe that one-half of the residue at 0 has included; this 
is as if one-half of the pole were counted 118 lying in the upper half plane. 

In the general case where several poles lie on the real axis we obtain 

pr.v. f--- R{z)e" dz:' 2.ri L Res R(z)e" +..-i L Res R(z)e" 
1'>0 .-0 

where the notations are self explanatory. It is an hypothesioJ 
that all the poles on the real ms be. simple, and 118· before we must 

that R( "") = o. • • 

As the simplest example we have 
, 

f - e" . pr.v. -dz ~ n. 
-. z 

Separating the real and imaginary part we observe that the real part C1f 
the equation is trivial by the fact that the integland is odd. In the • • 

imaginary part it is not necessary to take the principal value. IIDd sinllO 
the integrand is even we find 

• ,-81nz dz =!. 
J~ z 2 

We remark that integrals containing a factor ooS" :I: or sina:lt ('lID be 
evaluated by the same technique. Indeed, these (actors Cllll be wlitten 
asllnear combinations of terDls cos mz and sin mz, and the eorresponding 
integrals can be reduced to the form (52) by a ohange of ,variable: 
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/ - . 1/- z. R(z)e- dz = - R - fI'dz. -. m -. m 

4. The next category of integrals have the form 

10- zoR(z) dz 

where the exponent <It is real and may be supposed to lie in the interval 
o < a < 1. For convergence R(o) must have a zero of at least order two 
at .. and at most a simple pole at the origin. 

The new feature is the fact that R(z)za is not single-valued. 
however, is just the circumstance which makes it possible to find the 
integral from 0 to ... 

The simplest proeedure is to start with the substitution z = t" which 
trallllforlll8 the integl"aI into 

• 

2/.· t"<'+'R(tt) til. 

For the function ." we may choose the branch whose argument lies 
between -,..<It and a.-a; it is well defined and analytic in the region 
obtained by omitting the negative imaginary axis. As long as we avoid 
the nf'.gative imaginary axis, We can apply the residue theorem to the func­
tion .'''''R(o'). We use a closed curve consisting of two line segments 
along the positive and negative axis and two semicircles in the upper half 
plane, one very large and ODe very email (Fig. 4-13). Under our 8'"Jump­
tions it i8 easy to show that the integJ als over the semicircles tend to JlBrO. 

Hence the residue theorem yields the value of the integl"a\ 

. , . . 
/: • • • .. +lR(.·) th = I.· ( ...... , + (-z)''''')R(z') liz. 

. . :aClileVer, (-a)'" = , ......... , and the integral equals 

• (1 - e' .... ) / •• z· .... 'R(zl) th • 

• 'Since the factor in front is ... 0, we are finally able to dew mine the value 
'< 'ij( the integral. 
; The evaluation calla for determination of the :renidues of j.1 +lR(.,) in 
C • upper htU}IIme. ThuG are the _0 as the residues of zaR(z) in the ,-,-
<, .. hole plene. For practieal purposes it may be preferable not to use 
~. sub.titution and integrate the function zeR(II) over the 
r curve lhawn in Fig. 4-14. ·We have then to use the branch of II' .. hose 
t.' .1:MMreeaO·pnd 21... '.[1.j'-method Metis aomejuati.&ca.tioo, 

". , . . . -. , 

.' to.. of the resUlue theotem. The - - - -
~,'. _ ,,". __ : -;j',' - - .• '.i! .... . ';,0 .- ,~.,. ' •• -,.<,,,. -.. , __ ,','". " .. ' , .. ~~'-... -.. _ ...... ~.' .. ,,'"'' ''''~ ,. .- -, 

'. '., 
"-'-!' •. '-' "'- .' -, ••. , __ , .;~:_, .'., .. -_ ":,0 ",,-. : '-.. ', • 

"--'.' 
--'-".'., . . 
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. ,.' 

.IC .... U FIC •• -14 

5. As a final eJt8.mple we compute the special integral 

10" log sin 8 d8 • 
. 

, 

ConBider the function 1 - e"" - - 2ie" Bin z. From the representation 
1 - e'" == 1 - e-"(cos 22: + i sin 22:), we find that this function is real 
and negative only for % ~ mr, 11 ~ O. In the region obtained by omitting 
these half lines the principal branch of log (1 - 6"') is hence silag!&­
valued and analytio. We apply Cauchy's theorem to the rectangle whose 
vertices are 0, r,'" + iY, andiY; however, the pointe 0 and r have to be 
avoided, and we do this by following small ciroular quadrants of radius 3. 

Because of the periodicity the integrals over the vertical sides cancel 
against each other. The integral over the upper horizontal side tends to 
o as Y -+ co. Finally, the integrals over the quadrants oan also be seen 
to approach sero as 3 -+ O. Indeed, since the imaginary part of the 
logarithm is bounded we need only consider the real part. From the fact 
that 11 - es;"l/lzl -+ 2 for 11 ,0 we see that log 11.- e"'I.beeomes in6nite 
like log 8, and since 3 log a --> 0 the integral over the quadrant near the 
origin will tend to 1Ill"O. 

The same proof applies near the vertex ... , and we obtain 

• 

If we choose log r- == i%, the imaginary part lies between 0 and r. There 
fore, in order to obtain the principal branoh with an imaginary 
between -11" and 11", we must choose log (-i) == -1I"i/2. The equation 
can now be written in the form 
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... 1012 - ~ i + !owlogsin:z:dz + ~ i = 0, 

and we fiDd 

/.,r 10g sin z. = - ... log 2. 

EXERCISES 

L Find the poles and residues of the following functions: 

( .. ) III 
z. + 5z + 6' (b) (z' _ I)" (0) sin z' (d) cot z, 

(e) .~, z' (0 .-(1 ~ z)" (m, n positive integers). 

z. Show that in Sec. 5.3, Example 3, the integral may be extended 
over .. right-angled isosceles triangle. (Suggested by .. etudent.) 

L Eva.lu.ate the following integrals by the method of residues: 

(a) ( ./. dz f" :z:1 dz 
J 0 a + sin' :z:' lal > I, (b) 0"" + 5:1:' + 6' 

(c) j" :z:. - z + 2 f- :Z:'dz _" ",. + I():Z:' + 9 dz, (d) • (:z:1 + al)" a real, 
• 

(e) fo":z::: :. dz, a real, (f) J.":' ~ :. dz, a 

j,.. XWI f" (g) . dz (h) • (1 + :z:.)-. log :z: dz, 01+:z:' ' 

(i) fo" log (l +:z:') za::.. (0 < a < 2). (Try integration by pa.rW.) 

.. Compute 

f ~~ ., lal ,. p. 
1.1-> Ie I 

Hml: Use iii = ". to convert the integral to .. line integral of .. ration .. l 
function. 

"5. Complex integr .. tion can sometime. be used to evaluate &rea 

integral.. "" an illuetration, show thai; if I(z) is analytic and bounded 
for I_I < 1 and if Iii < 1, then 

• 

/(i) - !. If j(z) ~ du. 
or (1 - zt)' . 1_1<1 

kernel formula. To prove it, 
tranef<>lm the inside 
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L HAItMONIC FUNCTIONS 

The real and imaginarypartsof an analytic function !lreconjugatehal'monic 
functions. Therefore, all theorems on analytic functions are sIS<) theorems 
on pairs of conjugate harmonic functions. However, harmonic functions 
are important in their own right, and their treatment is not always 
IlimpJified by the use of complex methods. This is particularly true when 
the conjugate harmonic function is not single-valued. 

We in this section BOrne facts about bl'lnonic functions 
tbt are intimately connected with Cauchy's theorem. The more delicate 
properties of harmonic functions are postponed to a later chl"pter. 

fJ.l. Definition and Basic Properties. A real-valued function u(~) or 
u(':,1I), defined and single-valued in a region D, is said to he harmonic in 
n, or a poIential JunctWn, if it is continuous together with its partial 
derivatives of the first two orders and satisfies Lap14c's equotiIm. 

(54) 
(IOu OOU 

4u - 0':" + oy" - O. 

We shall see later tbt the conditions can he weakened, but 
this is a point of relatively minor importance. . 

The $11m of two harmonic functions and a constant multiple of a 
harmonic function are again harmonic; this is due to the linear character 
of Laplace's equation. The simplest harmonic functions are the linear 
functions a:J: + by. In polar coordinates (r,6) equation (54) take8the form 

a iI'U (IOu 
'a;. r ar + 06" = o.t 

This shows that log r is a harmonic function and that any harmonic 
function which depends only on r must be of the form a log r + b. The 
argument 0 is harmonic whenever it can he uniquely defined. 

(55) 

If u is harmonic in Il, then 

• 

J(z) = ~ - i~ 
i/.: i/y 

• _.. k 't' U i/u V iI'U ha 
18 an ... ytic, .or wn mg = 'ii' = - iii we :ve 

t This form cannot be lISed for". - C. 
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This, it should he remembered, is the most natural way of from 
bsrmonic to analytic functions. 

From (55) we p81!8 to the dilferential 

(56) au au .au au 
fdz- azelz+aydu +. -ayelz+aidu 

In this expression the real part is the dilferential of v, 

au au 
dv - aielz + aydU. 

If u has a conjugate harmonic function v, then the imaginary part can be 
written 8B 

av av au au 
do = ai elz + au dy = - ay elz + ai dy. 

In general, however, there is no single-valued conjugate function, and in 
these circumstances it is better not to use the notation do. Instead we 
write 

au au 
"du - - - elz + - 4y a,l a" 

and call °du the conjlJ{/rJU dif!e'lentiaJ. of duo We have by (56) 

(57) f dz - dv + I. "dUo 

By Cauchy's theorem the integral of f dz vanishes along any cycle 
wbich, is homologous to Bero in 0. On the other hand, the integTal of 
the exact dilferential dv vanishes along all cyeJes. It follows by (57) that 

(58) J ' Jau au °d .. = - - elz + - dy = 0 
7 ,By a.: 

for all cycles 'Y wbich are homologous to zero in 0. 
, The,integTal in (58) has an important interpretation which cannot be 

'left unmentioned. If 'Y is B regular curve with the equation z - z(t), 
the direction of the tangent is determined by the angle" = arg ,'(t), 
a.nd we can write elz = Idzl cos ", dy = Idzl sin a. The normal which 
points to the right of the tangent has the direction {J - a - ./2, and 
thus COB a = - sin fl, sin a - COB (J. The 

av au au. 
-'- - OOB fl + - SID fl an az By 

ill B directional dsrivative of u, the: normal dmvotive with 
; respeet to the cw.e 1'. ' JV~ " , ••. "",(~/~) ~I, awl (58) C'D be 
'--- ," , .. ".," '-'-'- '. ,.... --._, ' 

, , . , 
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written in the form 
• 

(59) 

This is the notation. Its main advantage is that IN/em 
actually represents a rate of change in the direction perpendicular to 'Y. 

For instance, if "( is the circle Izl = r, described in the positive sense, 
IN/em can be replaced by the partial derivative IN/",.. It has the dis­
advantage that (59) is not expreesed &8 an ordinary line integral, but as 
an integral with respect to arc length. For this re880n the classical 
notation is less natural in connection with homology theory, and we 
prefer to U8C the notation ·du. 

In a simply connected region the integral of "du vanishes over all 
cycles, and 11 has a single-valued conjugate function v which is deter­
mined up to an additive constant. . In the multiply connected caee the 
conjugate function has peri0d8 

ccme8ponding to the cycles in a homology basis. 
There is An important generalization of (58) which deals with a pair of 

hO.l1llonic functions. If u. and Ut are h~lonic in 0, we claim that 

(60) 
• 

for every cycle ., which iB homologous to zero in O. According to 
Theorem 16, Sec. 4.6, it is sufficient to prove (60) for 'Y '" aR, where R is 
a rectangle contained in n. In R, 11. and Ut have single-valued conjugate 
functions V" v. IWd we can write 

U. "dul - UI "du. = u. dv. - u.lW. = u. dll. + O. duo - d(utV.). 

Here d(uzl/.) iB eD exact dilferential, !lJ!d u.1W1 + v,dUt is the imaginary 
perl of 

• 

• 

The laSt dilferential can be written in the form F,f. tk where F.(,) and 
/.(,) are analytic on R. The integral of F.J. tk vanishes by Cauchy'B 
theorem, and SO does therefore the integral of its imaginary perl. We 
conclude that (60) holds for 'Y = aB, and we have proved: 

Theorem 19. 

(60) 

If 14 OM Ut 1lI'~ harmonic in a region 0, tlwn 

J u. ·dUt - u. "du. = 0 
T . 
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for 6II6r'!I cyck "I which ia homologOUll to •• '0 in 11. 

For 1.£, ~ 1, u. = 1.£ the fomlUla reduces to (58). In the classical 
notation (60) would be written as 

ldel ~ O • 

. 

6.%. The Mean-tICIlue PropBrty. Let us apply Theorem 19 with 
1.£, = log, and u. equal to a function 1.1, harmonic in I_I < p. For Il we 
choose the punctured disk 0 < I_I < Po and for "I we take the cycle C 1 - C. 
where C, is a circle Izl ~ r, < p described in the positive sense. On a 
circle Izi = r we have °du = ,(au/ar) dO and hence (60) yields 

~~/.rl:~-f,u~=~~r~~~_ru. 
0, c. Jea r lea 

In other words, the expression. 

J udB - log. .:; d' 
~l-r I -r 

is constant, and this is true even if u is only known to be harmonic in an 
annulus. By (58) we find in the .sme way that 

• 

J ,:~ 
1<1-. 

is constant in the _'(I of an annulUll and PAlfO if u is hlll'Dlonic in the 
whole disk. Combining these results we obtain: 

Theorem 20. The arith.melic mean 01 a harmonic lunction 0U6'l' ~ 
circks I_I = , ia a linear lunction of log r, 

• 

~ J ud8= .. log,+JI, 
1-1-" 

(61) 

and il u ia hannonic in a diak II = 0 and the arithmetic mean ia comtcmL 

(62) 

In die latter case fJ - u(O), by continuity, and 
We find 

. 

to & new 

. . It is'cI8.r tb.:t'l\l2) G6tilchillOha'Vebeoiii derived &oin the eOrri.. 

'" - .,' .. " ",_.,:-:'''"'!';''''. """;' .. ,,.,:~'- .. ;',.,-'-._,.-', 
. .': " - . - - ' "', ,':, '" ' -... ! -" .::: ., " "~'<': -, . ";, .. :': . ::,.. : ".' i· '. , .,.::'~ ••.. '...,.,.~. ·!·..;: .. ~tfi;'·; ;:: ~~;~::,'~'" :."., .,' ~h"'4">\':; .' ..•.. , ••..•. ""~',' " .. " .•.. "', •.•. '., ...•••..••• , •.• """ .... "-"'''' •..• .0.:.'''''.' .~ .•. \ .. ,.., ...... ,,, '. . ." ...... . , ..•.•. "." . '." ·'4 .... ·H<,,·,,· .. "'~.'''~'~''.'' ~,~ •.. '" ... ,.... ~. ...... biO~"""__ . ~"!;, ...... ~ •• ~., .• ~P .. . ' . ... '.··.'i~..,._.·:..,.·: .'..~ .... .... '1' .... ~.". , ......... ,." ..... " .. -- ..... "' .... ,."""". .. •• 
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sponding formula for analytic functions, Sec. 3.4, (34). It leM! directly 
to the mGZimum principle for harmonic functions: 

Theorem 21. A nonconstant harmonic junclion has neilMr a 'mGZimum 
nor a minimum in iI..s region 01 definition. Consequently, the mGZimum 
and 1M minimum on a clcaed bounded BIlt E are taken on the boundary 01 E. 

The proof is the same as for the maximum principle of analytic func­
tiODS and will not be repeated. It applies also to the minimum for the 
reason that - u is harmonic together with u. In the CQl!e of analytic 
functions the corresponding procedure would have been to apply the 
maximum principle to 1/I(z) which is illegitimate unless I(z) pi. O. 
Observe that the maximum principle for analytic functions follows 
from the maximum principle for harmonic functions by applying the 
latter to log 1/(2)1 which is barmonic when 1(2) F O. 

EXERCISES 

:L If v is harmonic and bounded in 0 < Izi < p, show that the origin 
is a removable singularity in the sense that 11 becomes harmonic in 121 < p 

wben v(O) is properly defined. 

2. Suppose that I(z) is analytic in the annulus " < Izl < r. and 
continuous on the closed annulus. If M(r) denotes the maximum of 
I/(z) I for 121 = r, show that 

M(r) ~ M(r,)aM(r.)'-· 

where '" = log (rljr): log (TofT,) (Hadamard's three-cirele theorem). 
Discuss ca.sesof equality. Hint: Apply the mA.l(imum principle to a 
linear combination of log 1f(2) I and log Iz I· 

6.3. Poisson'. Formula. The maximum principle has the following im­
portant consequence: If 1I(z) is continuous on a closed bounded set E and 
ba.rmonic on the interior of E, then it is uniquely detenll,ined by its values 
on the boundary of E. Indeed, if v, and u. are two such functions with 
the same boundary values, then U, - u, is harmonic with the boundary 
values O. By the IIlJl.Ximllm and minimwn principle the difference 11, - u. 
must then be identically zero on E. 

There the problem· of finding u when its boundary values are 
given. At this point we shall solve the problem only in the aimplest case, 
namely for a closed disk. 

Formula (62) determines the value 0(14 at the center of the disk. But 
this i8 all we need (or there exists a linear transformation which carries 
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any point to the center. To be explicit, suppo"" that u(z) is harmonic in 
the' clooed disk Izl ;:;; R. The linear transformation 

= Set) = R(Rr + a) 
• R+lir 

IDIJ,pI! Irl;:;; 1 onto 1.1 ;:;; R with r = 0 corresponding to z = a. The 
function u(S(t» is harmonic in If I ~ 1, and by (62) we obtain 

From 

1£(0) = i; J u(B(r» d arg r· 
Ifl-l 

r ~ R(. - a) 
RJ-& 

we compute 

d r .d!" • arg = -s- = -t r 1 + " z-o R'-& dz= • + R' liz dB. '-0 -liz 

On zubstituting R' = II the coefficient of dB in the Jast exprel!Sion ean be 
rewritten as 

• + a. = R' - 101' 
z-o I-a I.-ai' 

or, equivalently, as 

!. Z+0+1+4 
2 z-o i-a 

_&'+0. 
z-o 

We obtaIn the two forms 

1 J R' - lol" 1 J Z + 0 ' (63) 1£(0) = 2ir Iz _ 0\' u(z) dl - 2;: & z _ a u(z) d6 
1<1-4 I.I_R 

of Poi88tm'a jOl'nl'l1j,q.. In polar coordinates, 

1 ,,.. R' - " . 
.. (re"') = 2;: 10 R' - 2rR C08 (8 _ '1') + r' .. (Re',) d8. 

In the derivation we have MlJumed thai v(z) is harmonic in !.be emsed 
disk. However, the result remains true under the weaker condition that 
1£(.) is harmonic in the open disk and continuous in the closed disk. 
Indeed, if 0 < r < 1, then'u(rz) is harmonic in the closed disk, and we 
obtain 

, , '. , 1 "R"- I" ", ' ",,,(,,.)... '. 'f ' . .. a ~l-')"'" , ... ,' . , ' '_' ".' .,.... -' " - ,t W\,'T ..... ' 

""' I-I-li • - a 

" .. ' .:. " 
, , 
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Now all we need to do is to let r tend to 1. Because u(z) is uniformly 
continuous on \z\ ;:i! R it is true that u(rz) -+ u(z) unifornily for \t\ = R, 
and we conclude that (63) remains valid. 

We shall formulate the result as a theorem: 

Theorem 22. Suppose that u(z) is harmlmic for Izl < R, com~f.IOU8 lor 
Iz\ ;:i! R. Then 

(64) 1 J R' - la\' 
u(a) = 2,.. Iz _ ai' u(z) d8 

I.I-R 

lor all lal < R. • 

The theorem leads at once to an explicit expression for the ~onjugate 
function of u. Indeed, formula (63) gives 

u(z) = Re ~ . J ~ + z u(r) ~ • 
.. t - z r 

Irl~R 

(65) 

The bracketed expressio.li. is an analytic function of z for \z\ < R. It 
follows that u(z) is the rcal po.rt of 

(66) 

where C is an arbitrary real constant. This formula is known as Schwarz's 
formula. 

As a special case of '(64), note that u = 1 yields 

(67) 
• 

for all \al < R. • 

f R' - Izl' . 
\.2 _ al" dO = 2Ir 

loI-R 

6.4. SchUJQrfll's -Theorem. Theorem 22 serves to expre&l a given 
harmonic function through its values on a circle. But the right-hand 
side of formula (64) has a meaning as lIOon as u is defined on Iz\ = R, 
provided it is sufficiently regular, for instance piecewise continuous. 
As in (65) the integral can be written as the real part of an analytic 
funetion, and consequently it is a harmonic function. The question is, 
does it have the boundary values u(z) on Iz\ = R? 

There is re&llOn to clarify the notations. Choosing R = 1 we define, 
for any piecewise continuous function U(6) in 0 ;:i! , ;:i! 2,.., 
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1/."" I'I'+Z Pu(Z) = 2r 0 Re ff' _ z U(9) dll 

and call this the PoiBIIDn integral of U. Observe that Pu(z) is not only a 
fWlction of z, but also a fWlction of the fWlction U; as such it is called a 
funeti01lAJ1. The functional is Ii_ inasmuch as 

Pu+v = Pu + Pv 
and 

P.u = cPu 

for constant c. Moreover, U!1; 0 implies Pu(-) ~ 0; because of this 
property Pu is said to be a positiDe linear functional. 

We deduce from (67) that P. = c. From this property, together 
with the linear and positive char!ICter of the functional, it follows that any 
inequality m ;:;; U ;:;; M implies m ~ Pu ~ M. 

The question of boundary values is settled by the following fund .... 
mental theorem that was first proved by H. A. Schwarz: 

Themem2S. 

(68) 

ThefuflditmPu(z) ia 1umnonicfor I_I < J.-' 
lim Pu(z) = U(I.} ....... 

prlJlJided that U i. continUOUB at II •. 
We have already remarked that Pu is harmonic. To study the 

boundary behavior, let C. and C. be complementarY arcs of the .. nit 
cire1e; and denote by U. the function which coincides with U on C, and 
vanishes on C" by U. the function for C,. Clearly, 
Pu - Pu, + Pu•. , 

Since Pu, can be regarded as a line integral over C, it is, by the Bame 
re880ning 88 before, b·''IDonic everywhere except on the closed arc C,. 
The expreIIIIion 

~,,+- _ l-IzI' 
Re ff"- z - \? _ zl. 

vanishes on "'I = 1 for z "" e". It follows that Pu, is zero on the open 
are Co. and since it is continuous Pu,(z) .... 0 88 z ..... elJl E C •. 

In proving (68) we may suppose that U(8.) = 0, for if this is not the 
case we need only replace U by U - U(I.). Given. > 0 we can find C, 
and C. such that ef" is an interior point of C, and I U(8} I < ./2 for .i" E C., 
Under this condition, JU.(II)I < 0/2 for all ,I, and hence IPu.(z) I < 0/2 
for all 1.1 < L ' on thl. oth~ hand;'llinee . U, iacontinoous and vanishes 

< • • , , ' 

. " ". ,,' 
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........ ___ ...... i8. 

at e'" there exists a & such that IPu,(z) I < !/2 for Iz--:e'''1 < &. It 
follows that IPu(z)1 ~ IPu.1 + IPu.1 < • as soon as Izl < 1 and 13 - 6''-1 
< I, which is precisely what we had to prove. 

There is an interesting geometric interpretation of PoiBSOn's formula, 
also due to Scliwara. Given a fixed ~ inside the unit circle we determine 
for each eI' the point el" which is such that e", ~ and eiP are in a 
line (Fig. 4-15). It is clear geometrically, or by simple calculation, that 

(00) 1 - 121' = Ie" - lillie'" - zl· 
But the ratio (e" - e}/(e"- - Ill) is negative, so we must have 

1 - I~I' = - (e" - z) (e-'" - !). 

We regard /}* as a fUDction of e and dUferentiate. Since III is cOlllltant we 
obtain 

and, on taking absolute values, 

de· e''' - III 
= • 

dB e"-1Il 
(70) 

It follows by (69) and (70) that 

and hence 

1 - \zI" dB­
k' - zit = dB 
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In other words, to find Pu(z), replace each value of U(6) by the value at 
the point opposite to II, and take the average over the circle. 

EXERCISES 

1. Assume that U(E) is piecewise continuo\18 and bounded for all real 
~. Show that 

Pu(Z) '" ~ f :~ (:I' _ ~~. + 7/' Um dE 

a harmonic function in the upper ha.If plane with bounda.ry 
values Um at points of continuity (Poiseon's integral for the half plane). 

2. Prove that a function which is ha.rmonic and bounded in the upper 
plane, continuoUB On the real axis, can be B8 a Poisson 

integral (Ex. 1). 

Rettuwl:. The point at .. presents an added difficulty, for we caunOl 
immooiately apply the maximum and minimum principle to 10 - P .. 
A good try would be to apply the maximum principle to" - P. - '7/ for 
~ > 0, with the idea of letting I tend to O. This almost works, for the 
function tends to 0 for 7/ --> 0 and to - DO for fI-+ 00, but we lack control 
when 1:1'1 --> DO. Show that the reo aoning can be cmed out sucllell8fully 
by application to " - P. - t 1m (Via). 

I. In Ex. 1, Rl4ll1me that U has .. jump at 0, for instance U( +0) - 0, 
1 

U{ -0) = 1. Show that Pu(z) - ~ arg It tends to 0 as II --> O. Gen­
r 

eralire to arbitrary jumps and to the _ of the circle • 
... If C, and C. are complemeutary area on the unit circle, set U = 1 

on Ct, U = 0 on C.. Find Pu(") explicitly and show that 2rPu(z) equals 
the length of the are, opposite to C I, cut otT by the straight lines through 
It and the end points of C,. 

L Show that the mean-value fonnula (62) remains valid for 
u= log 11 + III, I. '" 0, I' - 1, and this fact to compute 

/0· log sjD I dl • 

•. If J(z) is analytic in the whole plane and if Z-1 Re J(z) --> 0 when 
z ..... .. , show thatJis a constant. Him: Use (66). 

7. It J(z) is eneJytic in a Il(!ighborhood of 00 and if r' Re I(z) --> 0 
when z --> "', show that lim J(z) exists. (In other words, the is:;>lated 

. .,. , . . . , . 
. .. is J"8II~'I{,.hle.), . . . 

• • 

that! =:'/t + J • 

. . . ....... . ~-\- .- ..... - .. ', ,--_.-. 
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... If u(z) is baililonic for 0 < Iz 1 < " and lim zu(z) = 0, prove that u .-. 
can be written in the form u(z) = a log Izi + u.(z) where a is a constant 
and u, is harmonic in Iz 1 < p. 

Hint: Choose a as in (61). Then show that 110 is the real part of an 
analytic function /o(z) ·and use the preceding exercise to conclude that the 
singularity at 0 is removable. 

6.5. The Reflection Principle. An elementary aspect of the BYtnmetry 
principle, or reflectWn principk, has been discu8l!ed already in connection 
with linear transformations (Chap. 3, Sec. 3.3). There are many more 
general variants Drst formulated by H. A. Schwarz. 

The principle of reflection is based on the observation that if u(z) is 
a harmonic function, then u(i) is likewise harmonic, and if I(z) is an analy­
tic function, then I(Z) is also analytic. More precisely, if u(z) is harmonic 
and fez) analytic in a region then u(~) is harmonic and f(ij analytic as 
functions of z in the region (J * obtained by reflecting n in the real axis; that 
is, Z E 0* if and only if· j E 0. The proofs of these statements consist in 
trivial verifications. 

Consider the ease of a symmetric region: n* = O. Because n is 
connected it must intersect the real axis along at least one open interval. 
Assume now that fez) is analytic in (J and real on at least one interval of 
the real axis. Since fez) - fez) is analytic and vanishes on an interval it 
must be identically zero, and we conclude that fez) = Kl5 in It With 
the notation f = u + ill we have thus u(z} = u(Z), v(z) = -veil. 

This is important, but it is a rather weak result, for we are assuming 
that fez} is already known to be analytic in aU of n. Let us denote the 
intersection of 0 with the upper half plane by 0+, and the intels~ction of 0 
with the real axis by fT. Suppose that fez) is defined on n+ V fT, analytic 
in 0+, continuous and real on fT. Under these conditions we want to show 
that fez) is the restriction to 0+ of a function which is analytic in aU of {) 
and satisfies the symmetry condition f(z) = I(i). In other words, part 
of our theorem .... -"erts that fez) has an tmOlylic continualion to 0. 

Even in this formulation the assumptions are too strong. Indeed, 
the main thing is that the imaginary part ,,(z) vanishes on ", and nothing 
at all need to be M8Umed about the real part. In the definitive statement 
of the reflection principle the emphasis should therefore be on harmonic 
functions. 

Theorem 24. Let 0+ be 1M part in the uppet' half plane of a -ummetric 
region 0, and let fT be the plll"t of the real axU in 11. Suppo3e that v(:e) ill 
continUOUB in 0+ V", hamionic in 0+, ana zero on ". Then v 11m a har­
monic e:eIen8ion to 0 which willMs the 3I/ .... Il61"li relationl1(!) = -v(~). 
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In the Ball16 aituation, if. ia !he imaginary part of an analytic f'll'M1ion fez) in 
0+, !hen fez) halt an analytic extenrion which 8~8 fez) ~ f(i). 

For the prwf we construct the function V(a} which is equal to .(z) 
in 0+, 0 on." and equal to -.(i) in the mirror of 0+. We have to 
show that V is harmonic on tI. For a point z .... consider a disk with 
center z. in n, and let Py denote the Poi8llOU integral with 
respect to this disk formed with the boundary values V. The difference 
V - P y is harmonic in the upper half of the disk. It vanishes on the half 
circle, by Theorem 23, and also on the diameter, because V tends to zero 
by definition and P y vanishes by obvious symllVltry. The maximum and 
minimum principle implies that V ~ Py in the upper half disk, and the 
aame proof can be repeated for the lower half. We oonclude that V is 
harmonic in the whole disk, and in particular at z,. 

For the remaining part of the theorem, let us again consider a disk 
with center on <T. We have already extended v to the whole disk, and v 

. has a conjugate harmonic function -'II. in the same disk which we may 
normalize so that'll, = Re f(a} in the upper half. Consider 

U.(z) = Ut(z) - u,,(!). 

On the real diameter it is clear that aU./iJz = 0 and also 

a~, = 2 :J = - 2 ~ = o. 

It follows that the analytic function au./az - i au./ay vanishes On the 
real axis, and hence identically. Therefore U. is a constant, and this 
constant is evidently zero. We have proved that u,,(z) = u,,(!). 

The construction can be repeated for arbitrary disks. It is clear 
. that the u. coincide in overlapping disks. The definition can be exLended 
to all of 0, and the theorem follows. 

. The theorem has obvious generalisations. The domain Il can be 
taJren to be symmetric with respect to a circle C rather than with 
to a straight line, and when z tende to C it may be .. ,aumed that /(z) 
approaches another circle 0'. Under_such oonditionsf(a) has an analytic 
continuation which maps symmetric points with respect to 0 onto sym­
metric points with respect to C'. 

EXERC.SIIS 

L If f(,} is 
purely imaginary on the 

2. Show,that !I'et)' . 

I) be tid'~ln 'tIr.e . 

. . 

in the whole plane and real on the i~ axis, 
niB, show that I(t.) is odd. 

it '!rN)·tic in •• yllimetrio 
.' ·+fi ...... !t,'tr- _blic in I) and 

;-.... -,- -, -.,.". ... ". '. . 
. ."". .. 
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real on the real axis. 
J. If !(z) is analytic in Izl ~ 1 and sa.tisfies III = 1 on Izl .. I, show 

that J(z) is rational. 
4. Use (66) to derive & formula for /,(z) in terms of u(z). 
s.. If u(z) is benllOniC and 0 ~ v(z) ~ Ky for 11 > 0, prove that u .. ky 

with 0 ~ k ~ K. [Reflect over the real axis, complete to an' analytic 
functionJ(z} = v + iv, and use Ex. 4 to show that!'(z) is bounded.) 

• 



• 

• 
• 
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p UCT EVELO TS 

Very general theoremll have their ntural place in the theory of 
analytic functions, but it mWlt also be kept in mind that the whole 
theory originated from a desire to be able to manipulate explicit 
analytic expressions. Such expressions take the form or infinite 
series, infinite products, and other In thhl chapter we 
deal partly with the rules that IOvem BUch limits, partly with 
quite explicit of elementary tranocendental func­
tions and other opwifie functiooa. 

. 
I. P.WIEIl SIEIlIIES EXPANSI ... S 

• • 

In a preliminary way we have considered power in Chap. 2, 
mainly for the purpose of definiug the exponential and trigono­
metric function... Without 11M of integ>ation we were:not able 
to prove that every analytic function has a power· expan­
sion. This question will now be iUsolved in the affirmative, 
essentially lie an application of Cauchy's theorem. 

The first. 8ubsection dealo with more general properties of 
sequeDCIlSof 1m,Iytic functions . 

theorem conOE" nine the 
of ,nalytic functions aIIi!ert8 that the limit of 

.. unjlQPllo]y' CElU"61illODt e8qiieDee'of analytic lunctione is an 
. __ .......... ..-.; ... ' .• _ '," ..... _. __ -I...u_ ,':c. ._' ~-,.u ~ UIJ ~S&uu.J 

, ~ .. , . " .. ",~:", 

" ",----<,-, 
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We are considering a sequence If.(z) I where _hf.(.) is defined and 
analytic in & region 0... The limit function j(z) must all!() be oonsidered 
in BOrne region 0, and clearly, if j(.) is to be defined in 0, _h point of 0 
must belong to all 0.. for n greater th&D a curtain n.. In the general 

n. will not be the same for all points of 0, and for this 1"Elaaon it would 
not make sell8e to require that the convergence be uDiform in o. In fact, 
in the most typical CII88 the regions 0.. form an increasing sequence, 01 C 
n. C . . . C 0.. C . . . ,and 0 is the IInion of the 0... In these circum­
stances no single fUDctionj.(z) is defined in all of 0; yet the limitf(z) may 
exist at all points of 0, although the convergence CanDot be uniform. 

As a very simple example takej .. (z) '" z/(2z' + 1) and let 0.. be the 
disk 12:1 < 2-1". It is practically evident that lim j.(z) '" z in the disk 

" 1-

121 < 1 which we choose B8 our region o. In order to study the uni­
formity of the convergence we form the difference 

/.(2) - z '" -2z'*'/(2z" + 1). 

For any given value of z we fl&Tl make 12"1 < e/4 by taking n> 
log (4/e)flog (1/121). H • < 1 we have then 2121'*' < a/2 and 
11 + 22"1 > il!() that IMz) - 21 < e. It follows that the convergence 
is uniform in any cl"""d disk 121 ;!; T < 1, or on &Dy subset of such a closed 
disk. 

With another formulation, in the preceding example the sequence 
{J.(z) I tends to the limit function j(z) uniformly on every compact sub­
set of the o. In fact, on a compact set Izl hBIl a maximum r < 1 
and the set is thu8 contained in the closed disk Izl ;:i r. This is the 
typical situation. We shall find that we can frequently prove uniform 
colIVergence on every compact subset of 0; on the other hand, this is the 
natural condition in the theorem that we are going to prove. 

Theorem 1. Suppotre that f.(z) is analytic in the reiJion D., and that the 
uqumee 1I.(z)1 converglJll to a limit/unction/(z) in a regitm 0, uni/"'1IIIy on 
every compact BUb"t 0/ o. Then/(z) ia analytic in o. Moret1l)er, j~(z) 
CORDM'gea uneforrllly to I'(e) on eveT1/ compact aubaet of 0. 

The analyticity of fez) follows most eMily by use of Morera's theorem 
(Chap. 4, Bec. 2.3). Let Iz - al ~ r be a closed disk contained in Dj 
the BIlSumption implies that this disk lies in 0.. for all n greater than a 
certain no. t If 'I' ie any closed curve contained in 12 - al < r, we have 

//_(z) liz =0 

t In fact, the ",gio ... n.. form an open covering of I_ - "I :iii r. The disk io com­
pact and hence ba ... finite suboovering. This meena that it io COIPhiDed in " find 0",. 
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for n > no, by Csuchy's theorem. Becal'se of the uniform convergence 
on ., we obtain 

//(Z)dz - .!!'! /7/.(2) dz ~ 0, 

and by Morera's theorem it follows that 1(1l) is analytic in Iz - al < r. 
Consequently I(z) is analytic in the whole region D. 

An alternative and more explicit proof is be-oed on the integral formula 

~ ( ) . 1 r 1.Ci) dt 
Jtt. Z - 2ft lc r - z ' 

where C i. the circle It - al ~ r and Iz - al < r. Letting n tend to .. 
we obtain by uniform convergence 

I(z) = 1. r N) dr. 
2rilcl'-z 

and this formula shows that I(z) is analytic in the disk. Starting from 
the fOl'llala 

f,'(z) = 1 [I.m dr 
• 2ri Jc Ct - ,,)" 

the same teaIlOning yields 

lim f,'(,,) = 1 r J(t) dt = 1'(,,) 
__ ' 2ri Jc Ct - zl" , 

and simple estimates show that the convergence is uniform for I .. - al 
:;; p < r. Any compact subset of D can be covered by a finite number 
of Buch closed disks, and therefore the convergence is uniform on every 
compact subset. The theorem is proved, and by repeated applications 
it follows that J~)(z) converges uniformly to 1")(2) on every compact 
subset of D. 

Theorem 1 is due to in an equivalent formulation. Its 
application to series whose terms are analytic functions is particularly 
important. The theorem . then be expressed as follows: 

II a -va tDiIh analytU tsmu, 

J(z) - /t(z) + 10(") + . . . + J.(II) + . . . , 
COIIIlergq utili/IN 1111,1 OIL 6II8ry eomp~ aulnrel 01 a rogian 0, Uaen 1M ...... J(z) 
is !mal,ltie in g, and 1M -va can be differmtWMltsrna by lei hi. 

The task of proving llniform eonvugnAB on a compact point set A 
be by use of the maximum principle. In fact, with the 

.' '~illi{.,r.'Wft8 ita inezi-

.. 
"-' --.--
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mum in A on the boundsry of A. For this re880n uniform convergence 
on the boundsry of A implies uniform convergence oil A. For jD~ce, 
if the functio!ll! f.(s) Are analytic in the disk lsi < I, and if it can be 
shown that the Bequence converges Imiformly on each circle loll = r. 
where lim r. = I, then theorem applies and we can COD-

•••• 
clude that the limit function is analytic. 

The following theorem is due to A. Hurwits: 

Theorem 2. If tlle fumlicma f.(s} are analytic aM F 0 in a region Il, 
aM if f.(s} ccm~erf1e8 to fez), uniformly on ~ery compact subset of 0, then 
fez) Us either identically _0 or never equal to _0 in (). 

SUPPOBe thatf(z) is not identically zero. The zeros of f(z) Are in any 
cue isolated. For any point z. ~ 0 there is therefore a number r > a such 
that fez) is defined and Fa for 0 < 11$ - sol ;:a r. In particular, If(s) I 
has a positive minimum on the circle Iz - %.1 = r, which we denote by C. 
It follows that l/f.(s) converges uniformly to l/f(s) on C. Since it is al!!O 
true that f~(z) --> f'(z) , uniformly on C, we may conclude that 

. 1 (f!(z) 1 (I'(z) 
,!I?! 2.n J c J.(z) th = 2ri J c fez) th. 

But the integrals on the left are all zero, for they give the number of roots 
of the equation f.(ol) co a inside of C. The integral on the right is there­
fore zero, and conBequentJy f(z.) ¢ a by the same interpretation of the 
integral. Since Zt was arbitrsry, the theorem follows. 

EXERCISES. 

:L Using Taylor's theorem applied to a branch of log (1 + z/n), 
prove that . 

. lim 1+~' =1' 
.... fi 

uniformly on all compact Bets. 
I. Show that the aeries 

converges for Re ol > 1, and represent its derivative in aeries form. 
:L Prove that 

(1 - 2'-a)r(z) = I-a - 2-a + a-a - • . . 

that the latter aeries an 8nalytie function for Re II > O. 
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• 
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4. Aa a generaluation of Theorem 2, Plove that if the /,(.) have at 
moet m zeros in 0, then/(.) is either identically lero or has at moet m zeros. 

L Prove that 

• • 
~...,. ~ " 
L, 1 - ,. = L, (1 - ,.). 
"-1 a_I 

for 1.1 < 1. (Develop in a double series and reverse the order of 
summation.) 

1.:1. The Toylor Series. We show now that every analytic function qn 

he developed in a convergent Taylor series. This is an almost immediate 
consequence of the finite Taylor development given in Chap. 4, Sec. 3.1, 
Theorem 8, wgether with the coIIesponding representation of the 
remainder term. According w tills theorem, if /( .. ) is analytic in a region 
o containing ... , we can write 

!( .. ) = f(z.) + /' ~~.) (z - ... ) + • • • 

with 
1 /. fer) d~ 

f .... ,( .. ) = 20-1: c (t - ... )'+I(~ - .)" 

In the last formula C is any circle I. - ... 1 = p such that the closed disk 
I. - ... 1 ::i p is cont.aiD'ld in O. 

If M denotes the maximum of If{,)1 on C, we obtein at once tha 
estimate 

. We conclude that the remainder term tende uniformly w lero in every 
diSk I .. - ... 1 ;:;; r < p. On the other band, p can be chosen arbitrarily 
cloee to the distance from ... w the boundary of Il. We have 
proved: 

l'h..., ....... S, 1//(.) if onolgtte in lAB ~ 0, coflf4iniftg It .. tlam fIN 
"'J)NltRtatiCm 

- J(')" J(-.) + /,( ... ) (. - .. ) + ... + /«(0)( ... ) (lI) - .. ), + ... ... . 11 ,.r 
• ., ',. , -, ,_. _t,". ,'" 

'.-: " ".".' 
. . 

- <;', 

• 

. - ... 
!t':_,;' ... <:'--:, ".': ~,,;.;:.:,-., 
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The radius of convergllnce of the Taylor Beries is thU8 at least equal to 
the shortest distance from a. to the boundary of O. It may well be 
larger, but if it is there is no gus.rantee that the series still representsf(a) at 
all points which are simultaneously in 0 and in the circle of convergence. 

We recall that the developments 

Z1 zft 
~. == 1 +z+21+ ... +ni+ '" 

ZZ Z4 Z. 
cos a == 1 - 21 + 4! - 61 + ... 

. Zl Zli i' 
SID Z - Z - 3! + 51 -71 + ... 

served &8 definitions of the functions they Of cow se, 88 we 
have remMked before, every convergent power series is its own Taylor 

We gave earlier a direct proof that power series can be differ­
entiated term by telID. This is also a direct oonsequence of Weierstrass's 
theorem. 

H we want to represent a fractional power of z or log a through a power 
series, we must £lst of aJl choOBe a well-defined branch, and secondly we 
have to choose a center z ..... O. It amounts to the same thing if we 
develop the function (1 + z)- or log (1 + z) about the origin, choosing the 
bra"'ch which is respectively equal to 1 or 0 at the origin. Since this 
branch is single-valued and 8",alytic in Jz1 < 1, the radius of convergence 
is at least 1. It is elementary to compute the coefficients, and we obtain 

(1 + z)' == 1 + lIZ + ,. z· + . . . + ,. t" + . . . 
2 11 

. ZlZlZ4 Z1 
log (1 + a) == a - "2 + "3 - "4 +"5 - . . . 

where the binomial coefficients are defined by 

,. pC;. - 1) . . • C;. - 11 + 1) 
~ . 

11 1·2···n 

H the series bad a radius of convergence greater t.b.n 1, 
then log (1 + a) would be bounded for Jz1 < 1. Since this is not the 
case, the radius of convergence must be exactly 1. Similarly, if the 
binomial series were convergent in a circle of radius > 1, the function 
(I + a)' and all its derivatives would be bounded in 1al < 1. UDless,. 
is a positive integer, one of the derivatives will be a negative power of 
1 + I, and hence unbounded. ThuB the radius of convergence is pre 
cisely 1 except in the trivial eare in which the series reduces to 
a polynomial. _ 
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The series developments of the cyclometric functions arc tan z and 
are sin z are most easily obtained by oonsideration of the derived .eries. 
From the expansion 

1 ,7--.,.-I-o'+o'-z'+·· . 
1 +.' 

we obtain by integration 

Z' .. .' 
arctan·=·-3+"5-"7+·· • 

where the braneh is uniquely determined as 

/.
• tk 

arctan.= 01+,' 
for any path inside the unit circle. For justification we can either rely 
on uniform convergence or apply Theorem 1. The radius of oonvergence 
cannot be greater than that of the derived series, and hence it i. exactly 1. 

If v'1 -.' is the braneh with a positive real part, we have 

1 1 1·3 1'3'5 
'\1"1 - 0' ~ 1 + 2·' + 2 . 4 .' + 2 . 4· 6 z, + • • • 

for 1.1 < I, and through integration we obtain 

. I.' 1'3.' 1·3'5.' 
are 1llD. =. + 23 + 2· 4"5 + 2' 4' 6"7 + ••• • 

The aerie. represents the principal branch of arc sin • with a reel part 
between -r /2 and 'fT /2. 

For combinations of elementary functions it i. mostly not possible to 
find a general law for the coefficient.. In order to find the first few 
coefficients we need not, however, calculate the IlUceeesive derivative •. 
TIlere are simple techniques which allow US to compute, with a reasonable 
amount of labor, all the coeffieients that we are likely to need. 

It i.e convenient to introduce the notation [z'l for any function which is 
analytic and has a zero of at least order n at the origin; precisely, 
[Z"I denotes .. function which "contains the faetor Z"." With thi. notation 
any function which is analytic at the origin can be written in the form 

f(z} ~ Co + 01Z + . . . + 0 .... + [.-HI, 

where th~eoefficients are uniquely determ.ined and equal to the Taylor 
coeffioients of f(z). Thus, in order to find the first n coefficienis of the 
Taylor ~oi!oit ill I"fi_tto a.poI)lnomiaJ P .(,) such 

"" - "-"- , ... ,. 
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that J(te) - P .(e) has a zero of at Ieast order n + 1 at the origin. The 
depee of P.(z) d~ not matter; it is true in any C88e that the coefficients 
of z-, In ;lli n, are the Taylor coefficients of J(z). 

For instance, suppoee that 

J(II) ... II. + 4,z + 1I1Z' + . . . + 1I"z" + . . . 
g(lI) '" b. + bIZ + bIZ' + . . . + b"z" + . . . . 

With an abbreviated notation we write 

J(z) = P .(.) + [.00+']; g{z) - Q.{z) + [z·H). 

It is then clear that J(z)g{z) ... P .(II)Q.(Z) + [,-+'), and the coefficients 
of the terms of degtee ~n in P .Q. are the Taylor coefficients of the prod­
uct J(i)fJ(z). Explicitly we obtain 

!(te)g(l) - Gob. + (Gob, + lI,b.)z + ... 
+ (GA + lI,b._, + . . . + o,.b.),- + • • • • 

In deriving this expe.naion we have not even mentioned the question of 
convergence, but since the development is identical with the Taylor 
deVelopment of f(z)g(z), it follc.wB by Theorem 3 that the radius of COD­

vergence is at least equal to the smaller of the radii of convergence of 
the given eeriesJ{s) and gee). In the practical computation of P.Q. it is 
of couree not to determine the terms of degree higher than n-

In the case of a quotient J(e)/g{.) the same method can be applied, 
provided that g(O) ... b. ¢ O. By 1188 of ordinary long division, con­
tinued nntil the remainder contains the factor zO+', we i)an dererllline a 
polynomial R. such that P. = QaR. + [z·+'). Then! - Rail ... [,-H), 
and since g(O) ¢ 0 we find that fig = R.. + [zo+l). The coefficients of 
R. are the Taylor C!Oefficiente of !(z)/g(s). They can be determined 
explicitly in determjnent form, but the expre98ioDS are too complicated 
to be of help. 

It is &leo i,mportant that we know how to fc.rm the development of a 
composite function !(g(e». In this case, if g(z) is developed around z., 
the expansion of !(IIl) must be in powers of 19 - g(z.). To simplify. let 
us that z. = 0 and g(O) = O. We can then set 

few) = 00 + alw + . . . + o,.w" + . . . 
and g(8) = b.s + boZ" + . . . + bar + . . '. Using the same nota­
tioDli as before we wliteJ(w) '" P.(w) + [19·+'] and g(z) = Q.(z) + (Z·+I) 
with Q.(O) = O. Sub6tituting 19 = g(z) we have to observe that 

P.(Q. + [zo+l]) = P.(Q.(.» + [ .... +I) .. 
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and that any expression of the form [w·+I) becomes a [t"+I). Thus we 
obtain/(g(,» = p.(Q.(.» + [ .... +I). and the Taylor coefficients of /(g(.» 
are the coefficients of P .(Q.(z» for powers :! n. 

Finally. we must be ahle to expand the inverse function of an analytic 
function w = 11('). Here we may suppose that 11(0) = o. and We are 
looking for the branch of the function' = rl(w) which is aop­
lytic in a neighborhood of the origin and for ID - O. For the 
erist,ence of the inverse function it is neIlel!8ll.ry and 8IIfficient that 
v(O) ~ 0; hence we fLOsume that 

11(') = a .... + ase' + . . . = Q.(.) + (t"+'l 

with a. ~ O. Our problem ia to determine a polynomial P .(w) Buch that 
P.(Q.( .. » - z + [,.+1). In fact, under the assumption al ~ 0 the nota­
tions [t"+I] and (w .... l ] are interchangeable. and from", - P .(Q.(.» + [,·+11 
we obt·ain z = P.(,,(.) + [t"+I]) + [t"+'] - P.(w) + [w·H ]. HenceP.(w) 
determines the coefficients of r'(w). 

In order to prove the existence of a polynomi&l P .. we proceed by 
induction. Clearly. we can takeP,(w) = w/al. If P ...... is given. we set 
P. = P _1 + b.W" and obtain 

P .(Q.(.» - P ...... (Q.(,» + b,.a!," + (t"+'1 
- P ...... (Q ...... (.) + a..-) + b.ar'" + [t"+'l 

= Po-I(Q.-.(.» + ~_,(Qo_I( .. »a." + b.IJ!'" + [t"+l). 

In the last member the first two terms form a known polynomial of the 
form. + c.z' + [.OH), and we have only to take b. = -c.a,.---. 

For practical the development of tbe function is 
found by successive substitutions. To illustrate the method we deter­
mine the expansion of tan to from the series 

z' ... 
w=arctan'="-a +5'- .. " 

If we want the development to include fifth powers, we write 

Zl z' 
z=w+3'-5'+[.1) 

and substitute this expression in the terms to the right. With appro­
priate remainders we obtain 

• I , . -, .... ,'" .. ,,;,". : '"oi' . . ,.",,,~," 

_,.' "'-':~"-'-'. --';"l' .""'-'-'\-""-' 

+. (W7~. . . . ,- - , --'.- ..... -.- ... 
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Thus the development of tan to begi1l8 with the terDl8 

1 2 tanw=w+-w'+ w"+ 3 15 
• • • • 

EXERCISES 

1. Develop 1/(1 + z') in powe.'S of z - a, a being a real number. 
Find the general coefficient and for a = 1 reduce to simplest form. 

Z. The Legendre polynomials are defined 88 the coefficients P .(a) in 
the development 

(1 - 2az + Zl); = 1 + P,(a)z + P.(",)z. + .... 
Find PI, P., p., and P •. .. 

LDevelop log (sin z/z) in powers of z up to the term zO •. 
... What is the coefficient of Z7 in the Taylor development of tan sf 
s. The Fibonacci numbers are defined by c. == 0, c, = 1, 

C" = C,,_l + eft-to 

Show that the c. are Taylor coefficients of a rational function, and deter­
mine a closed expression for c •. 

1.3. The La .... ene Series. A series of the form 

(1) b. + b,z-' + b.z-· + ... + b.z • + ... 
can be considered 118 an ordinary power Beries in the variable liz. It 
will therefore converge outside of some circle lsi = R, except in the 
extreme CAse R= 00; the convergence is uniform in every region lsi ~ p 

> R, and hence the series represents an analytic function in the region 
lsi> R. If the series (1) is combined with an ordinary power series, 
we get a more general series of the form 

(2) • 

It will be termed convergent only if the parts consi$ting of nonnegative 
powers and negative powers are sep&rately convergent. Since the first 
part converges in a disk: 1:1 < R. and the second Beries in a region lsi > R I , 

there is a common region of convergence only if Rl < R
" 

and (2) repre­
sents an analytic function in the annulus Rl < lsi < R,. 

ConvCisely, we may start from an analytic function!(z) whose region 
of definition contains an annulus Rl < 1:1 < R .. or more generally an 
annulus R, < Iz - 01 < R,. We ""all ahDw that 1II10h I/o .·funetion can 



.' 

· · 
~, 
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always be developed in a general power IlIlries of the form 

+-
fez) = }; A.(z - a)' . . --. 

The proof is extremely simple. All we have to show is tha.t fez) can 
be -written a.s a sum /J(Il) + f,(z) where ft(z) is analytic for lz - 41 < R. 
a.nd ft(z) ill a.na.lytic for 12 - 41 > R, with a removable singula.rity at "'. 
Under these circumstances f,(z) ca.n be developed in nonnegative powers 
of z - a, andfo(z) can be developed in nonnegative powers of l/(z - a). 

To find the representation fez) = ft(z) + 1.(2) define ft(z) by 

f,(z) = ~ J ~(t~a; 
Ir-al-r 

for lz - 41 < r < R. a.nd /s(2) by 

f.(2) = - ~ J 1m ar r-z Ir-oI·. 

for R, < r < lz - al. In both integrals the value of r is irrelevant as long 
88 the inequality is fulfilled, for it is an immediate coreequence of 
Cauchy'. theorem that the value of the integIaI does not change with r 
provided that the circle does not pars over the point 2. For thi8 reason 
1,(,,) a.nd /s(2) are uniquely defined and represent analytic functions in 
12 - 41 < R. and Iz - al > R, respectively. Moreover, by Cauchy's 
integral theorem fez) = f,(z) + /s(z). 

The Taylor development of ft(,,) is 

-
ft(z) = }; A.(2 - 4)' ._0 

with 
• • 

1 f I(r)ar . 
A. = 2ri (t - a)a+i 

It-ol-r 

. 
(3) 

• ,;' In order to find the development of fo(z) we perform the transformation 
: r = 4 + l/t', tl = a + I/z'. This tra.nsformation NUTiee Ir - al - r 
~.·into It'l - I/r with negative orientation, and by simple caloulations we 
( -obtain 
• .. , , 
~ " 
• o· · - - . • .. 

• ,;.!' , , . 
" 

" 

I e' a+ f. d( • 

- 2ri f r A' - .. - La ... · 
k'I! .... !--.-.:".- ' ..... : ,.: " . ",.~-~ ~ , . '... . .... . , . . '.' . ....•.. ." " " ,"' . '''- '-- _. 

. '. " .' 
, -- ::"'--;",:;~;~~.,.--': --'- ;'.',-,. 
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with 

B .... ~ f 
I 11"1- -• 

This formula !!howe that we can write 

+-
f(z)... L A.(z - a)-

" ... -III 

whele all the coefficients A. are deterJ,;ined by (3). Observe that the 
integral in (3) is independent of r as long as R, < r < R •. 

II R, ... 0 the point a is an isolated singularity and A_I = Bl is the 
-rem"';'due at a, for fez) - A_l(z - a)-l is the derivative of a single-valued 
function in 0 < Iz - 61 < R •. 

EXERCISES 

L Plove that the Laurent development is unique. 
2. Let !) be a doubly connected region whose complement consists of 

the components E l , E.. Prove that every analytic function fez) in fl can 
be written in the form !.(B) + f,(z) where f.(z) is analytic outside of E. 

is analytic outside of E t. (The precise proof requires a construc­
tion like the one in Chap. 4, Sec. 4.5.) 

J. The expresaion 

f"'(:) 3 
If,:} ... /'(2) - 2 

I"(z) • 
'(z) 

is called the Sen1l)(Jfnan derivative of f. II f has a multiple zero or pole, 
find the leading term in the Laurent development of 1f,:I. Amwer: If 
fez) = a(z - :D)- + ... , then If,zl ... HI - ",I)(Z - z.)-· + .... 

4. Show that the Laurent development of (e' - 1)-1 at the origin is 
of the form 

where the numbers B. are known as the Bernoulli numbers. Calculate 
B l , B., B.. (By Sec. 2.1, Ex. 5, the B. are all positive.) 

s. Expre88 the Taylor development of tan z and the Laurent develop­
went of cot z in te!"wS of the Bernoulli numbers. 



.ERIE. AND PRODUCT DIVELOPMENTI 117 

2. PARTIAL FRACTIONS AND FACTORIZATION 

A rational function has two standard repreaentatioDl, one by partial 
fractions and the other by factorization of the numerator and the denomi­
nator. The present section is devoted to similar of 
arbitrary meromorphic functions. 

2.1. P .. rtial FI' .. ctia.... If the function/(e) is meromorphic in a regi')n 
0, there corresponds to each pole b. a singular part of 1(10) consisting of 
the part of the Laurent development which contains the negative powers 
of z - b.; it reduces to a polynomial P .(1/(10 - fl.». It is tempting to 
subtract all singular parts in order to obtain a 

(4) I(z) = L P. I' ~ b. + g(I<) 
• 

where g(2) would be analytic in O. However, the sum on the right-band 
Bide is in general infinite, and there is no guarantee that the series will 
converge. Nevertheless, there are many cases in which the series con­
verges, and what is more, it is frequently possible to determine ge,) 
explicitly from general considerations. In such C88eII the result is very 
rewarding; we obtain a simple expon.i.on which is likely to be very helpful. 

If the series in (4) does not converge, the method needs to be modified. 
It is clear that nothing essential is lost if we subtract an analytic function 
".(2) from each singular part P.. By judicious choice of the functions p. 
the series ~ (P. - P.) can be made convergent. It is even possible to 

• 
take the P.(z) to be polynomials. 

We shall not prove the most general theorem to t.bis elJect. In the 
. cue where 0 is the whole plane we ~hall, however, prove that every 

". 
i' . meromorphic function has .. development in partial fractions and, more 
, .. &.111", that the singular parts can be deseribed arbitrarily. The theorem 
•• 
; and its generalization to arbitrary regions are due to Mittag-LeIBer. 
:' . 

' •. t 'Theorem.. Let I b.1 be a ~ 01 comp'"'" number. IIIitA lim b. = OIl, 
...... --
" . and 1M P .m be polflM"'wl. wilIIout constant te, n.. TTIen there /ll'e lundiona 
: ., tDMeA anli __ orphic in 1M tDhoIo plane IIIitA polea III 1M pointa b, and 1M 
. .', . eing,dar pGm p.(t/(, - b.». Moreooa, 1M ",oct tIIII>B,a1 

-, , ...• ' . ,"c. , . . - . 
. ~ . . . 

. . . _. ~ 

- -... " 

!vmIion. ollltu kind can be mUen i~ 1M 
• 

!~}"'!'f' ~~, •. < ,,~·W f f,('!t··; ... ;.. ,J 

", .' .•.... ,," 
", "'. . .. ,'.' .. " ~'. _ .. ',' .. , ,.", -" .. ';, ".- ...... - ... ,' . , ,,, •. , .", .Vi·"'·~· 'I ' .,', .' ,- r -! ··•·· ... 1 • ',', ..... L"" ". , •. ,.:' ; ..... ,".-<r_: ... ~. "'.";-'."" ...... ,.~ ';"''''','''-' "'"'.'''''~''' .~,,,,.-.. - .• _ 

" .. ;, ,,':; .... ,;-:. "- .", -. . ",;, , ,-, .. 
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where the p.(z} are suitably chosen polynomials and g(z) is analytic in the 
whole pIlUle. 

We may suppose that no b. is zero. The function P.(l/(z - b.)} is 
analytic for Izl < Ib.1 and can thus be expanded in a Taylor series about 
the origin. We choose for P.(z} a partial sum of this series, ending, say, 
with the term of degree n.. The difference p. - p. can be estimated by 
use of the explicit expression for the remainder given in Chap. 4, Sec. 3.1. 
If the maximum of IP.I for Izi ~ Ib.1/2 is denoted by M" we obtain 

1 2181 _,+1 
(6) P. z _ b - p,(z} ~ 2M Ib.1 

for all Izi ~ Ib.1/4. By this estimate it is clear that the series in the 
right-hand member of (5) CIUl be made absolutely convergent in the whole 
plane, . except at the poles, by choosing the n, sufficiently large. For in­
stance, if we choose n. so large that 2 .. ~ M ,2', the estimate (6) will show 
that the general t&rm is majorized by 2-' for all sufficiently large •. 

Moreover, the estimate holds unifonnly in any closed disk Iz I ::ii R, 
so that the convergence is actually uniform in that disk provided we omit 
the terms with Ib.1 ~ R. By Weierstr8ss's theorem the remaining series 
represents an analytic function in Izi :;; R, and it follows that the full 
series is meromorphic in the whole plane with the singular parts 
P.(l/(z - b.)}. The rest of the theorem is trivial. 

As a first example we consider the function .... lain' W'Z, which has 
double poles at the points z = n for integral n. The singular part at the 
origin is l/z', and since ain' ,..(z '- n) = sin' W'Z, the singular part at z = n 
is l/(z - n)'. The series 

(7) 

is convergent for z ~. 11, as seen by comparison with the familiar series 
~ 

1: lin'. It is uniformly convergent on any compact set after omission of 
I • 

the terms which become infinite on the set. For this we can write 

.... +- 1 
(8) Sin' W'Z = L (I: _ n)' + g(z) w---
where g(z) is a.nelytic in the whole plane. We contend that g(z) is 
identically Bero. 

To prove this we observe that the function 'If·/sin· ... z and the series (7) 
are both periodic with the period 1. Therefore the fnnction g(,) has the 
same period. For z = z + iy we have (Chap. 2, Sec. 3.2, Ex. 4) 
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Isin "" I' = cosh' 1rlf - COS' .-x 

and hence ",'/sin' "z tends llDiformly to 0 as IYI-> DO. But it is easy to 
see that the function (7) has the same property. Indeed, the conver­
Kence is uniform for lyl ~ 1, say, and the limit for IYI-> DO can thus be 
obtained by taking the limit in each term. We conclude that fI(2) tends 
uniformly to 0 for lyl- "". This is sufficient to infer that Ig(.) I is 
bounded in a period strip 0 ~ z ~ 1, and because of the periodicity 
Ig(.)1 will be bounded in the whole plane. By Liouville's theorem g(2) 
must reduce to a constant, and since the limit is 0 the constant must 
vanish. We have thus proved the identity 

• 
(9) .. ' " 1 

sin' ... - L. (z - n)l -. 
From this equation a related identity can be obtained by integration. 

The left-hand member i8 the derivative of -11' cot "', and the terDls on the 
right are derivatives of -1/(% - n). The series with the general term 
1/(. - n) diverges, and a partial 811m of the Taylor series must be sub­
tracted from all the terms with n "" O. As it happens it is sufficient to 
subtract the constant terms, for the series 

• 
is comparable with I 1/71' and hence convergent. The convergence i. 

1 
uniform on every compact set, provided that we omit the terms which 
become infinite. For this reason termwise differentiation is permissible, 
and we obtain 

(lO) 1 III 1I'cot ... --+ +-
II z-n" 

• 

..... 
~pt for an additive constant. If the terms collesponding to" IIoIld -n 
are bracketed together, (10) can be written in the equivalent fOtlus 

(11) 
.. . 

. ~ 1 1 " 2. rcotn ... lim L. - - + L. i i' 
III •• S-fl. 1. -" 

•• -. 11-

With this way of writiDg·it,becomM mdent both members of the 
eqll&tion are odd functiollll of ., and for this _n the inte&ratinn con-

:. m_ vomieb. The equatinns (10) and (ll) are thWl l\01'ret'tIy 
'. ~ .. -.. .' . I: ~ 

L ,,', Let.,,_,._tbe, , , 
t'- ' - , . , 

t.:l.:, . . ~ , 
",' .... '.'"", ,-, 
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BUm 

(12) 
• • 

lim " (-1)- =! + "(-1)- 211 
•. ,. k z - n z ~, a' - "" -. 

. 

which evidently represents a meromorphie f'lDction. It ia very natural 
to separate the odd and even terms and write 

!HI (-1)- .. 1 • 1 L z - n - l z -- 211 - l z - 1 - 2,,' 
-(21+1) w.-..... .- -.-1 

By comparison witb (11) we find that the limit is 

! cot!! _ ! cot r(z - 1) = . 1r , 
222 2 'Sln1rZ 

and we have proved that 

(13) 

EXERCISES 

-
.• 1r = lim " (-I)- 1 .• 
Iln...a .,.i., 2-D --

L Comparing coefficients in the Laurent developments of cot 1rZ and 
of its expression as a sum of partial fractioWl, find the values of 

f .!., 
"" n

2 
1 

• 1 

Ii" 
I 

. 
Give a complete justification of the steps that are needed • 

.z. Exprei!II 

in closed form. 
• 

• 1 

l ,,& - nl -. 
J. Use (13) to find the partial fraction development of l/cos 'I'Z, and 

show that it leads to ,,/4 = 1 - ~ + j- - f + .... 
4. What is the value of 

f 1 ? 
"" (z + n)' + a" -. 

s. Using the same method 88 in Ex. I, show that 
~ 

~ 1 _ 211 1 B • .. 
L n" - (2k)''1'· 

I 

(See Sec. 1.3, Ex, 4, for the definition of B •. ) 
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2.2. In.finite Products. An infinite product of complex numbers 

-
(14) PlPt···p..···-flp. ._1 
is evaluated by taking the limit ofthe partial products p. - PIP, . . • P •• 
It is said to converge to the value P = lim P. if this limit exists and is ...... 
different from zero. There are good reasons for excluding the value zero. 
For one thing, if the value P = 0 were pe!Jllitted, any infinite product 
with one factor 0 would converge, and the convergence would not depend 
on the whole sequence of· factors. On the other hand, in ceriNn con­
nectiollli this convention is too radical. In fact, we wish to express a 
function as an infinite product, and this must be po88ible even if the 
function has zeros. For this reason we make the fonowing agreement: 
The infinite product (14) is said to converge if and only if at most a 
finite number of the factors are zero, and if the partial products formed 
by the nonvanisbing factors tend to a finite limit which is different from 
zero. 

In a convergent product the general factor P. tends to I; this is clear 
by writing p. = P./P._I , the zero factors being omitted. In view of 
this faet it is preferable to write all infinite products in the fonn 

-(15) n (1 + a.) ._1 
80 that a. ..... 0 is a necessary condition for convergence. 

If no factol' is zero, it is natUl'al to compare the product (15) with the 
infinite series 

.. 
. (16) }; log (1 + a.) . .-1 
Since the a. are complex we must on a de6nite branch of the 
IQgaritiuns, and we decide to chooee the principal bl'&nch in each term. 
DeMte the partial sums of (16) by 8.. Then P. = ea-, and if s,. ..... 8 

• it follows that p. tends to the jjrnit P - ea which is "" O. In otber 
.wds, the oonvergenee of (16) is a sufficient condition for the eonvergence 
of (15) . 

':: ' 

. . In order to prove that the condition is also n_ary, SUpp0$8 that 
P ...... P ;f' O. It is not true, in general, that the series (16), fonl1ed with 
the prinCipal values, oonv81ges to the priDcipal value of log P; what we 
Ii iet, to sho w Is that it coJlvergllt! to some value of log P. For greater 
~tt . .., ...... ' of.·decitiPI the})rinei.pa1 

• YalQeof .,lopritIiUJ .. .•. . .. . . .... 

~" ' ". .. 0.''''. . .' , 

• 

~~- . '."",", " 
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Because p.IP-> 1 it is clea.r that Log (P.IP) -->0 for n --> GO, There 
exists an integer h. such that Log (P.IP) = s. - Log P + h.·2ri. We 
p8AA to the differences to obtain (h..... - h.)2ri = Log (P ..... 1 P) -
Log (P.IP) - Log (1 + 11,,) and hence (h .... 1 - h.)2,.. = Arg (P.+I/P) -
Arg (P.I P) - Arg (1 + a.). By definition, IArg (1 + a.) 1 ::ii! ... , and we 
know that Arg (P ..... /P) - Arg (P./P) ---> O. For large n this is incom­
patible with the previous equation unless h.tl = h.. Hence h. is ultimately 
equal to a fixed integer h, and it follows from Log (P.I P) - S. - Log P + 
h·2,..i that S. -> Log P - h·2ri. We have proved: 

• 
Theorem S. The infinite produd. n (1 + a.) lDit1& 1 + a. ¢ 0 COIwerge8 

1 

• 
eimultaMl)Ijsly with the serie3 L log (1 + a.) . wlwH terms ~eprcsell.t the 

1 

values of the principal branch of the logarithm. 

The question of conwrgence of a product can thus be reduced to the 
more familiar question concerning the convergence of a series. It can be 
further reduced by observing that the series (16) converges absolutely at 
the same time as the simpler series 2: la.l. This is an immediate conse­
quence of the fact that 

lim log (1 + z) .. 1. 
.... 0 z 

-
If either the series (16) or Lla"l conwrges, we have a. ---> 0, and for a 

I 

given a > 0 the double inequality 

(1 - .)10.1 < llog (1 + 11,,)1 < (1 + .)la.1 

will hold for all sufficiently large n. It follows immediately that the two 
series are in fa,et simuitaDeously absolutely convergent. . 

An .infinite product is Mid to be absolutely convergent if and only if 
the corresponding series (16) converges absolutely. With this tA,t ... i­
nology we can state our result in the following terms: 

• 

Theorem 6. A nec6BlKJry and sujficie1lt rorulilion fM the ab80lule C0!\-
• • 

vet'~ of the. product n (1 + a.) is the convergence af the Be"ie'L 10.1. 
. I 1 

• 

In the last theorem the emphasis is on absolute convergence. By 
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• 
simple examples it can be shown that the convergence of}; a,. is neither 

1 
• 

sufficient nor for the convergence of the product II (1 + a,.). 
I 

It is clear what to understand by a unifonllly convergent infinite 
product whose factors are functions of a variable. The presence of 
zeros may cause some !!light difficulties which can usually be avoided 
by considering only sets on which at most a finite number of the factors 
can vanish, If these factors are omitted, it is I'ufficient to study the 
uniform convergence of the remaining product, Theorems 5 and 6 have 
obvious counterparts for uniform convergence. If we examine the proofs, 
we find that all estimates can be made unifOLm, and the conclusions lead 
to unifonn convergence, at least on compact sets. 

EXERCISES 

L Show that 
• 

1 n 1 1-- = -. 
n' 2 .-. 

2. Prove that for 121 < 1 

(1 + 2)(1 + z')(1 + 20)(1 + a') 
J. Prove that 

• n 1 +~ fr,l. 
n 

1 

1 
~ . 

~ .' 1 - * 

converges absolutely and uniformly on every compact set. 
.... Prove that the value of au absolutely convergent product does not 

cha.nge if the factors are reordered. 
L Show that the function 

• • 
6(.) - II (1 + hI. 'e')(l + h" 'r') 

I 

where Ihl < 1 is analytic in the whole plane and satisfies the functional 
• 

equation 
//(a + 2 log 11) = 1I-'fr' /I (2). 

z.!. C. ...... ieal Produce.. -A function which is analytic in the whole 
plane is said to be entire, or integral. The simplest entire functions 
which are not polynomials are'" sin., and cos •. 

If ,,(I:) is an . . - til") ill entire and ... O. Con-
veraeb'. if/Cz) is • ..". entire· .. which is Dever RI'O, let us "'ow· 

-""',' 
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that I(z) is of the form eo(·). To this end we ob!lerve that the function 
f(z)/l(z), being analytic in the whole plane, is the derivative of an entire 
funetion g(z). From this fact we infer, by computation, that I(z)p(') 
hae the derivative zero, and hence I(z) is a constant multiple of eo(o); tbe 
constant can be absorbed in g(z). 

By this method we can also find the most general entire function with 
a finite number of Jeros. Assume that /(z) has m :rer08 at the origin 
(m may be zero), and denote the other zeros by a" a., •.. ,all, multiple 
seros being repeated. It is then plain that we can write 

N 

I(z) "" ~e'(o) n 1 -.!... . 
1 a. 

It there are infinitely many zeros, we can try to obt,ain a similar repre­
sentation by means of an infinite product. The obvious generalisation 
would be 

(17) 
-

I(z) ~ ~e'(') n 
1 

z 1-- . a. 

This representation is valid if the iDfinite product converges unifonnJy 
on every compact set. In fact, if this is so the product represents an 
entire function with zeros at the same points (except for the origin) and 
with the same multiplicities 18/(1$). It follows that the quotient can be 
written in the form ~e'(o). 

-
The proci!lct in (17) converges absolutely if and only if L 1/\a.1 is 

1 

convergent, and in this the convergence is also uniform in every 
closed disk lal :;; R. . It is only under this special condition that we can 
obtain a representation of the form (17). 

In the general care convergence-producing factors must be introduced. 
We consider' an arbitrary sequence of complex numbers a. ~ 0 with 
lim a. "" .. , and prove the existence of polynomials ,.(z) such that ..... 
(18) 

• n 1 _.!.... e"(') 
1 a. 

to an entire (unction. The product converges together wit.h 
with the general term 

.. 
z 

I-­a. 
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whme the branch of the logarithm shall be chosen so that the imaginary 
part of r.(e) lies between -..- and ... (inclusive). 

For a given R we consider only the terms with 1a.1 > R. In the disk 
lei:;; R the principal branch of log (1 - z/a.) can be developed in a 
Taylor aeries 

" ,,1,,' 12 
log 1-0;; = -0;;-2 0;; -3 0;;._ ...• 

We revetoc the signs and choose P.(2) as a partial Slim 

,.(e) ;.,.!. + 1 .!. • + ... + 1 .!.-. 
a. 2a. m.a. 

1 Z ~+1 1 z Mft+2 

r.(z) = - m. + '1 Ii: - m. + 2 a.; 
and we obf.ein easily the estimate 

(19) 1 R-' -14.] . 

Suppose now that the series 

I~ 1 R -.+' 
(20) T::o 

m. + 1 Ja.1 .-1 

- ... 

, 
, 

converges. By the (19) it follows first that r.{z) -+ 0, and 
bmJce r.(z) has an imaginary part between -,. and ,. as soon as n is 
sufficiently large. Moreover, the comparison shows that the .eries 
l:r.(z) is absolutely and, uniformly convergent for Izl ;:;; R, and thus the 
p~uct (18) repre ..... ts an analytic function .in I_I < R. For tIie sake 
of the we to exclude the values IIIaI ;:;; R, but it is clear 
that the uniform convergence of (18) is not affected when the cono 
BpoDding factors are again tak .... into account • 

. ' ,It remains only to show that the series (20) can be made convergent 
for ,all R. But thi. is obvious, for if we take m. = n it is cle .... that (20) 
has a majorant geometric series with ratio < 1 for any fixed value of R. 

, 
; Theorem 7. There e::im an entire functUm. with arbitrarily prlJ8CTibed 
,,:' 

r:' eeloa a. prooided that, in the of in.finiMly many zeros, a. --? 00. Every 
", BnIire f'UflctWn with thue mul 110 other zeroa' Mn be 1D7'itren in the Jo,,,, '.: 
• 
~; • , 
• , (21) fez) - '-6'16) n 
, 
• 
, ' 
~" . 
• 
Ii ",her" the prod-ud'" 
" 

.-1 
~.fI(z) itfJ1Utdin fllla.:ll",,: 

, " 

.. ' .;".,:::, , "k?- -' -'" -.: '. .-.',:, ... ,.: ~, 

I: -+- - + ... +--"(')' ,(,)-. l __ fll-2o. ..... 
a. 

, 
' .. :,-. .. '. .. ,.Ji!lj.o, ·them,. are Cfrlain tnletJerl, and . ' - - -.f , , 



111 COIIPLEX ANALYSIS 

This theorem is due to Weierstross. It h88 the following importlmt 
coroll&ry: 

Coro]) • ..,.-. EVery function which iII'11UJTomorphic in the whole plane ill 
lhe quotient of two entire functions. 

In fact, if F(z) is meroDlorphic in the whole plane, we can find an 
entire function g(~) with the poles of F(z) for zeros. The product F(z)g(z) 
is then an entire function f(z), and we obtain F(z) = f(z)/g(z). 

The representation (21) becomes considerably more interesting if it is 
possible to choose all the m.. equal to each other. The preceding proof 
has shown that the product . 

(22) 
• • ,(,), 1(,)" 
II z -+-- + ... +--1--6"-'" h .. 

1 a • 
. 

converges and represents an entire function provided that the series 
• L (Rlla.[)A+'/{h + 1) converges for all R, that is to say provided that 

Jt=l 

%1/la.lA+' < ao. AMume that h is the smallest integer for which this 
series converges j the expression (22) is then called the canonical product 
associated with the sequence {a. 1, Imd h is the genUB of the clmonical 
product. 

Whenever possible we use the canonical product in the representation 
(21), which is thereby uniquely detenllined. If in this representation 
g(z) reduces to a polynomiaJ, the functionf(z) is said to be of finite genus, 
and the genusoff(z) is by definition equal to the degLoo of this polynomial 
or to the genus of the canonical product, whichever is the larger. For 

instance, lin entire function of genus zero is of the fonn 

• 
. . CZO' II 1 ~ .!. 

1 a. 

with %1/111.1 < ao. The canonical representation of 1m entire fnnction 
of genus 1 is either of the form 

• 
Cz"'6'" II , 

·z 
1--6'1 .. 

a. 

with %lfla.[· < .. , %l/la.1 - .. , or of the fonn 

• z 
I-­a. 
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with 2:1/11.1,.1 < co,,, p6 O. 
As an application we oonsider the product of sin .... 

The zeros are the integers z = ± n. Since %1/n diverges and 2:1/,,' 
converges, we must take h = 1 and obtain a representation of the form 

z 1--6"·. 

" 
In order to determine g(z) we form the logarithmic derivatives on both 
sides. We find 

1 l 1 1 r cot".. - - + 11(.) + + -z z-n ft. 
A"O 

where the procedure is easy to justify by llDifolm convergence on any 
compact set which does not contain the points z - ". By eomparison 
with the previous formula (10) we conclude that g'(z) = O. Hence g(.) 
is a constant, and since lim sin "../. = ... we must have .. (.) = r, and thus 

(23) 

• '0 

sin .. Z=1reTI 
• ..0 

In this representation the factors corresponding to n and -n can be 
bracketed together, and we the simple form 

(24) 
. , 

sinn-nn l-'!"· n' 
1 

It follows from (23) that sin. n is an entire function of genua 1 . 
• 

EXERCIS.S 

1. Suppose that G,. -> co and that the A. are arbitrary complex 
numbers. Show that there exists an entire function f(.) which satisfies 
!(a.) = A •. 

Him: Let tI(z) be a function with simple zeros at the a.. Sbo" that 
, 

lOnvergeB for some choice of the nnmbers T •• 
2. Prove that 

• 
sin r(a + «>. - .n ..... IT .~ + • 

-, ," "","': , ..... "," '," '-"";'~."', "'i,'.·,"+'.ct .. ""J.-'.:"'" •. -., ... ,., ...... ' ," , . . 

r-/CSI ) . .' 

'. ",.. .: . . .., . ., ,'.', "'."- " 

. . 
.' "., ,".' .. - .... ' .... ', .... '.~:). '... . ' , '.' '. , .... ,' ".' .,' .. ,' ..... ;,;, .... ~" .. " ", ..... ~."~"'"~.' 

',,' . ,.,' .' "'''' .. ', ... ,.:, .... ,.,' ,:.; ..••.• ,'., ....... ," ...... :.:1,\.0''' .. ,'-"'.;.;. ' ..... ;>:.'! •• '.-"""""'.' .... ·":~ .. v·~ , .. ,' • 
; ., "A ....... "... .. .... ' • .',;" •••• l:."j, .. , ... ·,-,,\Ji.,L;·<~~·.-·,' .. ~ """.-.,~".:_.,.~'-;...~_j~.-,(;',i:t', .... ",~w~ 

. . ' .. '.", ... ', '. ,'. "" ., ...... ,. ,.:: '.' '.',::: . : ' !.';; '.c . '.: ,., ... :~',.'!-"'"'.'\I~.~< ... :, ... ':'r.,' • '" ,,~,,-~, ,-,-~. • 
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whenever .. is not an integer. Hint: Denote the factor in front of the 
C&DOnical product by g(z) and determine g'(z)lg(z). 

L What is the genus of OIlS v'2? 
4. If I(z} is of genus h, bow large and how small ean the genus of I(zl) 

be? 
5. Show that if 1(1) is of genus 0 or 1 with real zeros, and if I(z) is real 

for real IS, then a111el"OS of f(z) are real. Hint: Consider 1m f(a)I/(z). 

%.4. The Gamma Function. The f"Mtion ain 'lrl has all the integers 
for .eros, and it is the simplest function with this property. We shall now 
introduce functions which have only the positive or only the negative 
integers for zeros. The simplest function with, for instance, the negative 
integers for zeros is the canonical product 

• 
(25) G(I} = n 

1 

It is evident that G( - z) has then the positive integers for zeros, and by 
comparison with the product (23) of sin ,rz we find at once 

• 

(2tI) 8J1l rz zG(z)G( -z} = • 
'Ir 

Because of thu mA.IIDer in which G(z) h .... been constructed, it is bound 
to have other simple properties. We observe tbat G(I - 1) bas the ""me 
zeros as G(z), and in addition a zero at the . It is therefore 
that we can write 

G(z - 1) = lUy(a>G(z}, 

where 'Y(z) is an entire function. In order to determine 'Y(") ;n, take the 
derivatives on both sides. This gives the equation 

• 

f 1.11, ~ 11 
(27) iJ z _ 1 + n - n =" + '1 (z) + iJ IS + ti - n . 

,,=1 ." "-1 

In the series to the left we r.8D replace n by fI + 1. By this change we 
obtain 

1 

The last series has the sum 1, and benoe equation (27) redvcea to '1'(1) - o. 
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Thus 7(Z) is a constant, which we denote by,,/, and G(z) has the reproduc­
tive property G(z - 1) = e"zG(z). It is somewhat simpler to consider 
the function H(z) = G(:).>, which evidently satisfies the functional 
tion H(: - 1) - zH(z). 

The value of "/ is easily detel mined. Taking: = 1 we have 

and hence 
1 - G(O) = .>G(l), 

-
" 1 = n 1 +.! r ' /". n .-1 

Here the nth partial product can be written in the form 

(n + 1)e-Cl+l+l+"'+'/W), 

and we obtain 

..... 1 1 1 
1+-+-+'" +--Iogn 2 3 n 7 - Jim 

The constant 7 is ealIed Euler's constant; its approximate value is .57722. 
If H(:) satisfies H(: - 1) = :H(:), then r(z) = 1/[zH(:)] satisfies 

J (2 - 1) = r(z)/(z - I), or 

(28) r(z + 1) = zr(z). 

This is found to be a more useful relation, and for this ree son it has 
become customary to implement the restricted stock of elementary func­
tions by inclusion of r(z) under the name of Eul.m-'. gamma J'U7I/ltiQn. 

. Our definition leads to the explicit representation 

(29), 
• 

r(z) = • " n 
2 

.. ~1 

% -. 
1 + - .. /. 

n ' 

and the formula (26) takes the form 

(lJO) r(z)r(1 - 2) = . r . 
8ln ,.., 

We obeerv:e that r(%) is a meromorphic function with poles at z = 0, 
-1, -2, .- .. but tDilhovt ZIlf'O'. 

We have r(l) = I, and by the functional equation we find r(2) = 1, 
r(3) - 1'2, r(4) -1'2-aandgenerallyr(n) = ( .. -I)!' TheNunc­
tion '!lin thus be eonaideted as a generalization of the factorial. From (all) 
we conclude that ~(i)=~, , . "" . , 

• - __.. • ,,0 .,' 

Other properties are' m<M.t eieiIyfOlIndby ccinaideriJi& tbe&:cond 

• 
• 

~ ... ' . - -- - . 
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derivative of log fez) for which we find, by (29), the very simple 

Ii f/(Z) ~ 1 
ik r(z) = £.. (z + n)s' .-0 

(31) 

For instance, it is plain that fez) r(z + l) and f(2z) have the same poles, 
a.nd by use of (31) we find indeed that 

Ii r'tz) -
.. .. 

Ii r'tz + i) ,,1 " 1 
+ dz f(z + l) .: L., (z + nf> + £.. (z + n + I)" liz r(z) 

_ "-0 ft=O .. .. 
I (2% ~ 211» + I (2z + in + I» ,,-0 .-0 

~ 1 
= 4.l::0 (2z '+ m» =4 

By integration we obt.ain 

f(z)r(z + i) = e-'~(2z), 

== 2.!!. r ' (22) . 
liz r(2z) 

where the constants Ii and b have yet to be determined. Substituting 
II = t and z - 1 we make use of the known values ret) == vir, f(l) = 1, 
f(ll) "" lr(t) = i"';;, r(2) "" 1 and are led to the relations 

ia+b=ilog ... , 

It follows that 

a = -2 log 2 

the final result is thus 

and 

a+b-llog ... -lag2. 

b ~ l log ... + log 2; 

, .y; r(2z) = 2s.-tr{z)r(z + t) 
which is known as Legendre's duplication formula. 

, 

EXERCISES 

1. Prove the fonnula of Gauss: 

,,-1 + 1 
(20-) • . r(z) = n"; r ! r =-Z-,:--" 

z+n-l 

2. Show that 

n 11 

1 
f 6 =2-* 

3 t - r ... 
1 • 3 . 

11 

S. What are the residues of r(z) at the poles z = -n? 

• • 
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2.5. Stirling'. Formula. In most connections where the r function 
can be applied, it is of utmost importance to have SOme infotlo9.tion on 
the behavior of r(z) for very large values of z. Fortunately, it is possible 
to calculate r(z) witb great precision and very little effort by means of a 
cJ .... ical formula which goes under the name of Stirling's formula. 
There are many proofs of this formula. We choose to derive it by use of 
the residue calculus, foDowing mainly the presentation of Lindeltif in his 
classical book on the calculus of residues. This,is a very simple &nd above 
all a very instructive proof &8 it gives us an opportunity to IlSe 
residues in less trivial cases than previously. 

The starting point is the formula (31) for the second derivative of 
log r(z), and our immediate task is to express the partial slim 

1 1 1 1 
Ii + (z + 1); + (z + 2)< + ... + (z + n)1 

&8 a convenient line integral. To this end we need a function with the 
residues l/(z + r)1 at the integral points Pi a good choice is 

ot(!") = ,.. cot "r.' 
(z + r)" 

Here r is the variable while III enters ouly as a parameter, which in the first 
part of the derivation will be kept at a fixed value III = :J: + ill with., > o. 

, We apply the residue formula to the rectangle whose vertical sides lie 
on ~ = 0 and ~ = n + * and with horizontal sides., = ± Y, with the 
intention of letting first Y and then n tend to "'. This contour, which 
we denote by K, p_ through the pole at 0, but we know that the 
formula remains valid provided that we take the principal value of the 
integral and include one-half of the nsidue at the Origin Hence we 
obtain 

• 

On the horizontal sides of the rectangle cot,..r tendsnniformly to±i 
for Y -+ "'. Since the factor 1/(11 + f)1 tends to aero, the 
integrals have tbe limit sero. We are now left with two integrals over 
in6nite vertical lines. On each line ~ = .. + i. cot Tt is bounded. and 
liecauee of the periodicity the bound is independent of ft, The integral 
over the line ~ .... + I is thus leM than a constant tirnea 

, ' 

d., 

_.L.lt + .1" 
• 
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This integral can be evaluated, for on the line of integration 

f = 2n + 1 - r, 
and we obtain by residues 

1/ dr 1/ dr 2. 
i It +'zl" = i <r + z)(2n + 1 - r + i) = 2n + 1 + 22;' 

The limit for n .... 00 is thus zero. 
Finally, the principal. value of the integral over the imaginary axis 

from - i 00 to + i 00 C8.TI be written in the form 

1 (. . 1 1 , (. 2.,z 
2 10 cot 11'1'1 (if, + Z)I - (if, _ Z)I d'l/ = - 10 ooth....,· ('1/' + ztp d'l. 

The sign has to be reversed, and we obtain the formula 

d f'(z) 1,. 2'1z 
(32) dZ fez) = 2.zt + 10 coth....,· ('1/' + z.). d'l/. 

It is preferable to write 
2 

coth....,=l+·l e'" -

and observe that the integral obtained from the term 1 has the value liz. 
We can thus rewrite (32) in the form 

d r' (z) 1 1 r- 4t,z d'l/ 
(33) dZ r(z) = Ii + 2.z' + 10 ('Is + z!), . eo.. - 1 

where the integral is now very sttongly convergent. 

For' restricted to the right balf this formula can be integrated. 
We find 

, 

r'(a) 1 r- 2., d, 
(34) fez) = C + log z - 2% - Jo 'I' + z •. eO.' - l' 

where log II is the principal. branch and C is an int"", ation constant. The 
integration of the last term needs BOrne jllBtification. We have to make 
sure that the integral in (34) be dift"etentiated under the sign of 
integration; this is I!O because the integral in (33) converges unifQrmly 
when z is restricted to any compact set in the half pl8.TIe z > o. 

We wish to integrate (34) once more. This would obviously intro­
duce arc tan (z/'I/) in the integral, 8nd although a single-valued br8Mb 
could be defined we prefer to avoid the u.ee of multiple-valued function ... 
That is possible if we first transfom. the integral in (34) by partial integra­
tion. We obtain 
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/.
- 2, d" 1 ,- 3' - ,,' 

o 'I" + z • • e"" - 1 =;: /0 (,,' + ,,')' log (1 - " ... ) a., 
where the logarithm is of real. Now We can integrate with re8pect 
to z and obtain 

(35) log r(z) 

=(J'+C_+ 1 11.-" 1 ,,- -2 logz+- "+ ,log 1 ' d" 'F.o" z -r"l1 

where (J' ill a new integration cOlll3tant and for convenience C - 1 has 
been replaced by C. The formula means that there exists, in the right 
half plane, a single-valued branch of log r(z) whose value is given by 
the right-hand member of the equation. By proper choice of C' we 
obtain the branch of log r(z) which is real for real z. 

It remains to determine the constaots C and C'. To this end we must 
fim study the behavior ot tbe integral in (35) which we denote by 

(36) 1 /.-" 1 J{z) = ;: 'I' + ",log 1 _ e-'" d". 

It is practically evident that J(z) --> 0 for z ..... "" provided that" keeps 
away from the imaginary axis. Suppose for instance that. is restricted 
to the half plane z ~ c > O. Breaking the integral into two parts we 
wlite 

I-I 

J(_) os J,"i + L- '" J,+J.. 
"i 

In the first integral 1,," + ,II ~ lzI' - 1./21' '" 3\_:1'/4, and hence 

4 ,- 1 
IJ.I ~ &rlzl Jo log 1 _ ,,--'" d". 

In the second integral I,,' + .'1 '" I. - illl . Iz + i,,1 > el.l, and we find 

• 

1 ,- 1 
IJ II <;;; hi log 1 _ e-'" d" . ... 

Since the integral of log (1 - e-h .) is obviously convergent, we conclude 
that J. and J. tend to 0 au ..... "'. 

The value of (J is found by substituting (35) in the functional equa­
tion r(_ + 1) - zf(z) or log r(z + 1) = log II + log r(z); if we resLrict, 
to positive values, DO about the branch of the logarithm. 
The 8Ubeliltution yields 
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C' + Cz + C + (z + t) log (z + 1) + J(z + 1) 
= C' + Cz + (z + t) log z + J(z). 

and this reduces to 

C = - z + ~ log 1 + ~ + J(2) - J(z + 1). 

Letting z --+ GO we find that C = -1. 
Next we apply (35) to the equation r(z)r(l - z) = 'If/sin rz. chool!­

ing Z = l + iy. We obtain 
• 

2C' --1 + iy log (t + iy) - iylog (t - iy) + J(t + iy) + J(t - iy) 
= log r - log cosh 1r!/. 

This equation, in which the logarithms are to have their principal values, 
is so far proved only up to a constant multiple of 2ri. But for y = 0 the 
equation is correct as it stands because (35) determ;ne~ the real value of 
log r(t); bence it holds for all y. As y --> co we known that J(t + iy) 
and J(t - iy) tend to O. Developing the logarithm in a Taylor series 
we :find 

1 + iy . 
iylog T • = iy t - ty 

1Vhile in tbe right-band member 

log cosh 1r!/ = If1I - log 2 + .. (y) 

with .,(y) and •• (y) tending to o. These considerations yield the value 
C' = llog 2r. We have thus proved Stirling's formula in the form 

(37) log rea) = llog 2r - 2 + (z - t) log z + J(z) 

or equivalently 

(38) 

with the representation (36) of the remainder valid in the right half plane. 
We know that J(B) tends to 0 when z --'+ co in & haJf plane x ;e:; c > o. 

In the expression for J(z) we can develop the in powers of 
l/B and obtain 

• • • 

with 



(39) 

and 
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1 h- 1 C. ~ (-l)~' - 1/'~·log d~ 
r 0 1 - ChI 

(-1)'1 I.- ,," 1 
J.(z) = Z2>+' ;: 0 1 + (1//Z).IOg 1 ._ r'" dl/. 

It can be proved (for instance by meaDS of residues) that the coefficients 
C. are connected with the Bernoulli numbers (cf. Ex. 4, Sec. 1.3) by 

(40) 

Thus the development of J(z) takes the form 

(41) • • • 

+ (-1)""" (21 ~\)21"~ 1+ J.(8). 

'rhe reader is warned not to confuse this with a Laurent development. 
The function J(z) is not defined in a neighborhood of co and, therefore, 
does not have a Laurent development; moreover, if k ..... co, the eeries 
obtained from (41) does not converge. What we can say is Uaat for a. 
fixed k the expression J .(z)z" tends to 0 for z ..... 00 (in a half plane 
x ~ c > 0). This fad, . (41) as an arymprolic 
Such developments are very valuable when z is large in compariscn witb 
k, but for fixed 8 there is no advantage in letting k become very large. 

Stirlin!'s formula can be U8ed to prove that 

(42) r(z} = f .,...,....., III 
whenever the integral converges, that is to say for :r; > o. Until the 
identity bas been proved, let the integral in (42) be denoted by F(z). 
Integrating by parte we find at once that 

. F(z + 1) = £- r't'lll - z f r.,....· III = zF(z). 

Hence F(z) satisfies the saBle functional equation as r(z), and we find 
that F(z)/r(z) = F(z + l)/r(z + 1). In other words F(.)lr(z) is 

with the period 1. This shows, incidentally, that F(z) can be 
in the whole plane although tbe integral representation is valid 

onLym 8. bUt plene. . 
border to prove that F(.)Ir(z) is constant we have to estimate IF/rl 

ina'p&riochtrlp,flll' mstanoeln the strip 1 :ii '" =;2. In tbe first place . .' --
,. ,; - ... , -: - ".' ",' ",", _. - - " -: -

.:;:-.:~ ... ": ~~·t "':', .:~ . ,:" :", ''-. '-.' . -
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IF(z)1 ~ f r't~l dt = F(x), 

and hence F(a) is bounded in the strip. Next, we use Stirling's formula 
to find a lower bound of If(z) 1 for large 1/. From (31) we obtain 

log If(z)1 = llog 2..- - :r; + (x - l) log lal - 1/ arg z + Be J(z). 

Only the term -y arg z becomes negatively infinite, being oomparable to 
- .. 1111/2. Thus IF Irl does not grow much more rapidly than e·\OIII. 

For an arbitrary function this would not Buffice to conclude that the 
function must be oonstant, but for a function of period 1 it is more than 
enough. In fact, it is clear that F If can be as a single-valued 
function of the variable r ... e"";"; to every value of r "r. 0 there coile 
spond infinitely many values of z which diller by multiples of 1, and thus 
a single vldue of Fir. The function has isolated singularities at r = 0 
and t ... co, and our estimate shows that IF If I grows at most like 111-1 
fO!" r -> 0 and Itl' for t - co. It follows that both singularities are 
removable, and henoe FIr must reduoe to a constant. Finally, the fact 
that F(l) - f(l) ... 1 shows that F(z) ... f(.). 

EXERCISES 

S. Prove the deVelopment (41). 
2. For real :r; > 0 prove that 

f(:r;) ... ~ x' Ir'e'(OI/lts 
with 0 < 6(:r;) < 1. 

I. The formula (42) perm;ts us to evaluate the probohilily integral 

r r
,t dt ... i r e ";t; I § .. if(.) - j v;:. 

, 

Use this result together with Cauchy's theorem to compute the Fruml 
inl6gral8 . 

j," sin (x") §, 10" cos (x") tn. 

An8tDel": Both are equal to i v' Kia. 

I. ENTIRE FUNCTIONS 
, 

In Sec. 2.3 we have already oonsidered the representation of enthe funo­
tions as infinite products, and, in special c'ses, as canonical products. 
In this section we study the connection between the product reprelJ8nta­
tion an.d the rate of growth of the function. Such questions were first 
investigated by Hadamard who applied the results to his celebrated proof 
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of the Prime Number Theorem. Space dOe6 not permit us to include this 
application, but the basic import'nce of BadlUDe.rd·s factorisation theo­
rem will be quite evident. 

!I.l. lemen·. Formu"'. If /(11) is an analytic function. then log \/(.)1 is 
hArmonia except at the zeros of J(II). Therefore. if /(z) is analytic and 
free from JeroII in \11\ ;a P. 

(43) log \/(0)\ = I; k log \J(.oe'') \ dS. 

aud log \/(11)1 can be exprrosed by Poi990n's forumla. 
The equ .. tion (43) rem&ins v&lid if J(II) h&a zeros on the circle \z\ ~ p. 

The simplest proof is by dividing J(z) with one factor II - pe;" for each 
zero. It is sufficient to show that 

or 

100. log \"" - ~\ dB = O. 

This integral is evidently independent of 8., and we have only to show that 

hlOg \1 - ""\ dS - O. 

But this is .. consequence of the formul .. 

hlog sin z dz = -r log 2 

proved in Cbap. 4. Sec. 5.3 (cf. Chap. 4. Sec. 6.4. Ex. 5). 
We will now investigate what becomes of (43) in the presence of zeros 

in the interior I_I < p. Denote these zeros by "1, .... . . . • a., multiple 
. zeros being repeated, and assume first that II - 0 is not a zero. Then tbe 
function 

, • n p'-4;z 
F(z) = /(z) , ( ) 

. Pll-II; ._1 
isfree frolDleros in the disk, and \1'(_) \ = 1/(11)\ On III = p. Consequently 
we obtain 

".'. , 

;of '(0),. . ...... . .. '. • • 

. '-. .. '. ,.' . ". 
'. -, '.'" ,.-, •• " . '-." ",.,.- .. ,' .,; ,:-,'---' ",',.. ",'-.' ,;::.-,,",.,'"., .,,:.' :';""-'-- ;,! .. ~~ 

;, . .": r"::;" i: ~ :~.:;, ,':" .;,~~,'·.-:'~':.i .~;,,;,- .; :.:/,:.:" .. ;,} :' 'i;.< ::; -"';;"',i,..?I~~~+.~.;-,: .:~ ,,-i'_~.~&.':::Y..-i:.:i.~ 
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(44) 
.. 

log If(O)1 = - ! log 
i-I 

+ J; 10 Jr log If(pe")1 dB. 

This is known 88 Jen .. ,.'. fm ",,,la. Hs importance lies in the fact that 
it relates the modulus 1/(z)1 on a circle to the moduli of the zeros. 

If f(O) - 0, the formula is somewhat more complicated. Writing 
fez) = ctto + ... we apply (44) to f(.)(Pf.)· and find that the left-hand 
member must be replaced by log lei + h log p. 

There is a similu generalization of PoiBSOn's formula. All that is 
needed is to apply the ordinary PoiBSOn formula to log IF(')I. We obtain 

provided that f(.) ~ O. Equation (45) is frequently referred to as the 
Pois."""'_ formula. 

Strictly speaking the proof is valid only iff ¢ Oon 1.1 ~ p. But (44) 
shows that the integral on the right ,is a continuous function of p, and 
from there it is easy to infer that the integral in (45) is likewise continuous. 
In the general case (45) can therefore be derived by letting p approach III 

limit. 
The Jensen and Poil39On-Jensen formulas have important applications 

in the theory of entire function.. -
, 

:1.:1. Hada_d's Theorem. Letf(') be an entire function, and denote 
its zeros by a.; for the aske of simplicity we will "'""ume that f(O) ¢ O. 
We recall that the genus of an entire function (Sec. 2.3) is the smalles~ 

(46) 

where g(.) is a polynomial of degree ~h. If there is no such representa­
tion, the genus is infinite. 

Denote by M(r) the maximum of If(.)1 on 1.1 = r. The order of the 
entire function f(.) is defined by 

>. = lim log lo.g M (r) . 
. ,..... log r 

According to this definition A is the smallest number such that 

(47) M (r) :r; t!'+. 
for any given • > 0 88 soon 88 r is sufficiently large. .. 
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The genus and the order are closely related, 88 seen by the following 
theorem: 

Theorem 8. TIuJ genu. and the order of an entire function salisfy the 
double inequality 11 ;:;; ). :,; " + 1. 

Assume first that fez) is of finite genus". The exponential factor in 
(46) is quite obviously of order ;:;;". and the order of 8. product cannot 
exceed the orders of both factors. Hence it is 81ifficient to show that the 
canonical product is of order ::;11 + 1. The convergence of the canonica.1 
product implies }'; la.I-.... • < 00; this is the essentia.1 hypothesis. 

" We denote the canonical product by P(z) and write the individual 
factors 88 E.(z/ a,.) where 

E.(u) _ (1 - U)e"H"+'" +11/'\10' 

with the understanding that E.(u) = 1 - u. We wiu show that 

(48) 

for all u. 
If 11£1 < 1 we have by power series development 

lui..... lui'+! 1 lui"" 
log IE.(u)1 ;lii " + 1 + " + 2 + ... ;lii" + 1 1 - 11£1 

and thus 

(49) (l - lu\) log IE.(u)1 :,; 11£1>+'· 

For arbitrary 1£ and " i1; 1 it is 8.180 clear that 

(50) log IE,(u) I ;:;; log IE .... ,(u) I + lui'· 

The truth of (48) is seen by induction. For 11 - 0 we need merely 
note that log 11 - 1£1 ~ log (1 + lui) ;lii 11£1. We 888l.1me (48) with" - 1 
in the place of ". that is to say 

(51) log IEo_.(u) I ~ (2" - 1) lul". 

It foIIows from (50) and (51) t.bat log IEo(u)1 ;:;; 2"lulo• and if lui ~ 1, 
this implies (48). But if lui < 1 we can also use (49). and together with 
(50) and (51) we obtain . 

log IE,(u)I ·:;;lullogIEA-.(u)1 + 211£1 .... • ;:::i (2,. + 1)lul .... 1• 

This t.h& induction.-
, .' " . 

,", : , -,. ~:". -.\1"' ,'". -, '\oJ ,'-:-
.~" \.,.. , .. -"." .".- .--- . 

~:", " .... ;,·, .... ·.::: .. L >-:-.. ~ .. ,;"> 
". ...., ~ " •. ;"., ,",.", 'v'" ',' ,- ... ",.' , 
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The estimate (48) gives at once 

log IP(.) I - L log E. -i. ~ (211 + 1) Izl'+I L 1a.1-'-' .. • 
and it follows that P(.) i8 at most of order II + l. 

For the opposite inequality ..... ume that I(z) is of finite order). and 
let II be the largest integer ~).. Then II + 1 > >., and we have to prove, 
first of all, that}; 1a.I-o-l converge.. It is for this proof that Jensen' • .. 
fOl'lllula is needed. 

Let us dell/)te by .(,,) the number of zeros a. with la.1 :i p. In order 
to find an upper bound for .(,,) we apply (44) with 2p in the place of p 

and omit the terlll8Jog (2,,/1a.i) with 1a.1 ~ ".' We find 

(52) .(p) log 2 ~ -l; 10 "log 1/(2".,.,) I d6 - log 1/(0) I. 

In view of (47) it follows tbat lim. .(p)p-...... = 0 for every. > O. ,..... 
We aBeume now that tbe zeros a. are ordered according to absolute 

values: la,l;:ii la.1 ~ . . • ~ lanl;:;; .. '. Then it is clear that 
.. ;:;; '(la.D, and from a certain .. on we must have, for in8tance, 

.. ~ .(Ianl) < la.I1+·· 
According to thi8 inequality the series}; 1a.I-A-' has the majorant .. . 

and if we ehooae a 80 that}. + .< h + 1 the maiorant converges. We 
have thus proved that f(z) """ be written in the form (46) where 80 far 
g(z) i8 only knawn to be entire. 

It remaiDB to prove that g(.) is a polynomial of degree :! h. For this 
purpose it is easiest to U86 the Poi880n-JeD8en formula.. If the operation 
(a/az) - ita/au) is applied to both sides of the identity (45), we obtain 

I ,,«-) .~) 

I (z) = \' (. _ a.)-' + \' q..(Pt _ 4.2)-1 
fez) f f . 

. + -l; J: 2pe"(pe" - z)-t log 1/(po") I dB. 

On differentiating II time8 with respect to z this yields 

(53) Do»f(tl) ... -h!~) (an - z)" 1 + hI~) 4!"'(pl--~) ",., 
1(.) f f 
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+ (A + 1) 1 ~ J: 2pe"(pe" - z)-' 'log IJ(pe")I d •• 

It is our intention to let p tend to co. In order to estimate the inte­
gral in (53) we observe first that 

J: pe"(pe" - z) .... -· dB = O. 

Therefore nothing changes if we subtract log M (P) from log If I· If I' > 21s1 
it follows that the lut term in (53) has a modulus at most equal to 

(II + 1) 12>+'1'->-11. f'r log M (I') dB 
2.- 10 If(po'') I ' 

for log M(P)/If(pell)l ;1:; O. But 

~ k log Ifl dll ~ log 11(0)1 

by Jensen's formula, and ,,-..... , log M(P) ..... 0 sinee A < II + 1. We con­
clude that the integral in (53) tends to O. 

All for the second 811m in (53), the same preliminary inequality 
" > 21z1 together with la.1 ;:!i I' makes eaeh term absolutely Ie. than 
(2/p)"+', and the whole sum haa modulu8 at most 2l+'.(p),. • '. We have 
already proved that this tends to O. Therefore we obtain 

• 
DIl)f(z) = -hI'\' (a - z) • I 

J(z) /:~1' . (54) 

Writing f(z) - e'ColP(z) we find 

g("+])(,,) ~ D(,\) f - D(» ;. 

However, by WeierstrASS'S theorem the quantity D(AI(P' /P) can be found 
by eeparate diJlerentiation of each faetor, and in this way we obtain 
precieely the right-band member of (54). Consequently, I/"+])(z) is 
identically zero, and g(,,) must be a polynomial of degree ;;;;A. We have 
proved Theorem 8. 

The tOOorem is .. factorisation theorem for entire functions of finite 
order A. If >. is not an integer, the genus A, and thereby the form of the 
product, is uniquely determined .. If the order is integ! al, there is an 
ambiguity. 

..•. The foUowiog impre8llive coro1Iary abo wa the strength of Hadamard'. 

. . 
., i'·:. ."' ,'.,._-,' " ... '-' ''If<~-'' " ,,,'\ "." ,- .• "',- '. _,'.,,, .'" .. ~.,..-.(. ", .1, -:' .. ;tL •• ·;-.':· ... '", '-. ;.,;1,··· "'., .,-



212 COIIPLEX ANALYSIS 

It is cle .... that 1 and f - a have the same order for any constant o. 
Therefore we need only show that f has infinitely many zeros. If f hIlS 
only a finite nnmber of zeros we can divide by a polynomial and obtain a 
function of the same order without zeros. By the theorem it must be of 
the form e' where g is a polynomial. But it is evident that the order of 
e' is exactly the degree of (I, and hence an integer. The contradiction 
proves the corollary. 

EXERCISES 

1. The chBl'acterization of the genus given in the first paragraph of 
Sec. 3.2 is not literally the same as the definition in See. 2.3. Supply the 
reasoning necessary to see that the conditions are equivalent. 

2. AsslJ!lle that f(z) has genus zero 80 that 

Compare f(z) witb 

I(z) = z· II 
• 

z 
1 - - . 

a. 

g(z) = z· ~ 1 - I~I 

and show that the maximum modulus max lI(z) I is ;:;; the maximum 
I,I-r 

modulus of g, and that the minimum modulus of f is ~ the minimum 
modulus of g. 

4. THE RIEMANN ZETA FUNCTION 

• 
The series 2: n-' converges uniformly for all real fT greater than or equal -, 
to a fixed fT. > 1 .. It is a ·majorant of the series 

(55) f(8) = L n-' (. = IT + it). .-1 
which therefore represents an analytic function of 8 in the half plane 
Re. > 1 (see Sec. 1.1, Ex. 2; the notation.. = fT + it is traditional in this 
context). 

The function f(8) is known as Riemann'. f-/tmCIioo. It pl&ys a 
central role in the applications of complex analysis to number theory. 
It would lead 118 too far astray to develop even a few of these applications 
in this book. but we can and will acquaint the reader with SODle of the 
more elementary properties of the l" -function.· 

:-'." -, " "'_,1.1;·" 

. ;. - -
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4.1. The Product De.,../opment. The nwnber-theoretic properties of 
f(8) are inherent in the following connection between the r-function and 
the ascending sequence of primes p" p" . . . , P., . . .. 

Theorem 9. For" = Re a > 1, 
1 ~ 

f(a) = IT (1 - P;:·)· 
_I 

(56) 

According to Theorem 6 the infinite product converges uniformly for 
~ ~ 

" i5: "0 > 1 if the same is true of the series 1: Ip;ol = 1: p;:'. Since 
1 1 
~ 

the latter is obtained by omitting teI1I18 of 1: n-', its uniform oonver-
1 

gence for" i5: "0 is obvious. 
Under the assumption" > 1 it is seen at once that 

where m runs through the odd integer.. By the same reasoning 

1(8)(1 - 2-)(1 - 3-) = L m-

where this time m runs through all integers that are neither divisible 
by 2 nor by 3. More generally, 

(57) r(8)(1 - 2-')(1 - 3-') . . . (I - PH) = L m-', 

.the 8um of the right being over all integers that contain none of the prime 
factors 2, 3, ... ,'PH. The first telm in the sum is I, and the next is PN~I. 
Therefore, the sum of all the tel IllS except the first tends to zero as N ---> ao, 
and we conclude that 

H 
, lim 1(8) IT (I - p;o) = l. 

N_r$> _1 

This proves the theorem. 
We have taken for granted that there are infinitely many primes. 

Actually, the reasoning can be used to prove this facl. For if PH were the 
largest prime, (57) would become 

f(.)(1 - 2-")(1 - 3-) . . . (1 - Pit') = 1 
• . . 

and it wl)uld follow t(.).,Jru a finite limit Jl'heu'::t . .l .. 'DIieooptr., 
-- " .... " -'-" 

," -."" ,;,;:~ • - ••• '" '._"'~" __ , c·_ . ',',,-=- "," .. '<':~'." -. . .•.• ';~ ...•..••...•. :.-.......... ,'" .... ,._' .," .. , .. , .•.. .,; ~ .' ~ ".'~. 
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~ 

diets the divergence of 1: n-'. 
1 

4.Z. E~EeRJJion of f(a) to the Whole Plone. Recall that 

r(8) = fo~ x .... ,e-· £Ix 

for" > 1 (See. 2.5, (42». On replacing x by nx in the integral, we obtain 

n-or(s) = f.~ x"-'e N' £Ix, 

and summation with respect to n leads to . 

(58) f
~ x"'-' 

t(8)r(8) = 1 £Ix. 
D e:t:-

Because" > 1 the integral is absolutely convergent at both ends, and this 
jll8tifies the interchange of integration and summation. We recall that 
x"" is unarobiguoUBly defined 118 eCa-lll .... 

Figure 5-1 shows two infinite paths, C and C •• both beginning and 
ending near the positive real axis. For the moment we are interested 
only in C j its precise shape is in elevant, as long lIB the radius r of the 
circle about the origin is < 2 .... 

Theorem 10. Fur" > 1, 

(59) t(8) = - r(l -: 8) f (_Z)H de 
2 .... ce'-l 

where (-z) ... , ia defined on the compkment of 1M po8ilive real tJXia as 
e<o-m .. c-.) with - ... < 1m log (-z) < .... 

• 

c • 
• 

• 2Jllri 

• 
• 21ft 

C .. .... -• . 

. 

• 

• 

• 
.... 1.1 • 
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The integral is obviously convergent. By Cauchy's theorem its 
value does not depend on the shape of C as long as C does not enc108e My 
multiples of 2..i. In particular, we are free to let r tend to zero. It is 
readily seen that the integral over the circle tende to zero with r. In the 
limit we are left with an integral back and forth along the positive real axis. 
On the upper edge (_Z)~l ~ x~le-(~Ilr' and on the lower edge (_Z)~l = 

x ...... 1e(-n.i. We obtajn 

= 2i sin (8 - I) .. j(a)r(8). 

Because sin (8 - 1) ... = -8in 81f and r(8)r(I - 8) = ... /sin 81f (Sec. 2.4, 
(30», this implies (59). 

The importance of the formul& (59) lies in the fact that the right-hand 
side is defined and meromorphic for all values of 8, 80 the formula can be 
used to extend res) to a meromorphic function in the whole plane. It is 
indeed quite obvious that the integral in (59) is an entire function of 8, 

while r(I - 8) is meromorphic with poles at 8 = I, 2, . ... Because i(8) 
is already known to be analytic for" > 1, the poles at the integers n i1:; 2 
must cancel against zel'll6 of the integral. At 8 = I, - r(I - 6) has a 
simple pole with the residue 1, as seen for instance by Sec. 2.4, (29). On 
the other hand, 

If. dz =1 
2ri C"'-1 

by residues, 90 i(8) has the residue l. We fOfmul&te the result "" a 
corollary. 

CoroJlery. The i-Iundion can be mended to a mmnnorphic Jundion in 
the whole plane whole anly pok ill a simple pok at 8 = 1 1J)1·tJa the residue 1. 

, 

The values i( -n) at the negative integers and zero can be evaluated 
explicitly. Recall the expansion (Sec. l.3, Ex. 4) 

• 

(60) 

From (59) 

e 

1 = 1 _ ! + ~ (_1) .... ' B. z" '. 
e" - 1 z 2 [., (2k) I 

1 

nl f z"' r(-n) = (-1)"2ri Ct!' -1 dz. 

1Jenoe f.( .,..a) iseq~ to (-1).,.1 . . t.beof,~j".(OO)j SlId , 
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we can read off the following values: reO) = -1/2, r( -2m) = 0, and 
f(-2m + 1) = (-I)"B .. /2m for positive integers m. The points -2m 
are called the trivial zeros of the f-function. 

4.S. TIuJ Functional Equation. In the half plane rr > 1 the r-function 
is given explicitly by the series (55), and it is therefore subject to the 
estimate Ir(s) I ~ r(rr). Riemann recognized that there is a rather simple 
relation.ship between res) and ,(I - B). As a con.sequence, one has good 
control of the behavior of the r-function 8JSO in the half plane rr < O. 

We shall reproduce one of the standard proofs of the !unctiunal 
equation, as it is commonly called. 

Theorem 11. 

(61) reB) = 2'" r 1 sin ~B r(1 - 8)i(1 - a). 

For the proof we make use of the path c~ in Fig. 5-1; we assume that 
the square part lies on the lines t = :!:(2n + 1) ... and" = ±(2n + 1) .... 
The cycle C. - C has winding number one about the points :!:2m...i with 
m = 1, ... ,n. At these points the function (-a)-'/(e' - 1) has simple 
poles with residues (=t=2mn)-'. It follows that 

. 

(62) 1 f (-z)-' [" ~. dz = [(-2mn)-t + (2mn)-'J 
2 ... , C~C e' - 1 

_I 

• • 

= 2 [ (2m ... )-' sin i. 
-, 

• 

We divideC. intoC~ + C: whereC~ is the part on the square and C: 
the part outside the equare. It is easy to see that Ie' - 11 is bounded 
helow on C~ by a fixed positive eon.stant, independent of n, while I( -a)-'I 
is bounded by a multiple of n~l. The length of C~ is of the order of n, 
and we find that 

for some con.stant A. If" < 0, the integral over C~ will thus tend to zero 
as n..... ao, s.nd the same is of course true of the integral over C::. There­
fore, the integral over C. - C will tend to the integral over -C, and by 
Theorem 10 the left-band side of (62) tends to r(B)/r(1 - s) . .. 

Under the same condition on rr the series z: m-.~ converges to 



, , 

'.< . 
': . . ' .. .... 

1(',' ' " 
-.. , 

te-,', ," 
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l'(l - 8), and the limit of the right-hand side of (62) ill,. multiple of l'(l - a). 
The equality of the limits leads directly to the equation (61), which is 
thereby proved for all a with rI < O. But two meromorphic functions 
which agree on ,. nonempty open set are identical. Hence (61) is true 
for all 8. 

There are equivalent forms of the fllnctional equation. }'or instance, 
if we UBe the identity r(s)r(l - 8) = 1t/sin ,..8 (61) implies 

(63) 

The content of Theorem 11 can also be in the following form: 

Corollary. The function 

~(8) = !8(1 - 8)r~/'r(a/2)r(s) 

U entiTO and fl(J/.4jie8 Hs) = ~(1 - 8). 

It ill evident that Hs) is entire, for the factor 1 - 8 offsets the pole 
of 1'(8), and the poles of r(s/2) cancel ~in.t the triviaizetoS of 1'(8). By 
use of (63) the assertion ~(8) = ~(1 - 8) translates to 

1 -. 
2 

1'(1 - .) 

1 - 8 '1'. 
2 ' cos Z ' 

which ill the same as 

'l'S 1-8 8 
cos "2 r(s)r 2 = 2-'r1/'r 7: . 

BecaUBe of the relation 

• r !,- a 
~2-

,..8 
= 1t/cos"2 

the·last equation is equivalent to 

and this is nothing else than Legendre's duplication f<rl'Inula (Sec. 2.4, (32». 
The corollary is proved. 

What is the order of £(s)? Bec&U8e ~(8) = E(1 - 8) it is sufficient to 
estimate IE(s) I for rI ~ t. It is an consequence of Stirling'. formula 
(Sec. 2.5, (37)) thM log Ir( _Ill)! , ~ . .4 'allos,I-1 lot' , ,co .... t .. and 

," ,:;:·;'·i:I.""""":·.~i':.·.'( ',/;l'r"I'l:""':'~ 

, . ' 

, 
- -, - -

" . . . 
'", '" ...• ~.< •••• :..-•... :.:: ...• -!.: .. \ ...... , ... .: •..•. _'," ':,.. :~:-.":'--~' 
-: ..' . '", --. ,.~ '-k~'·~; -: ~;¥f •. ;. . .~t· ..... : ",-, .. ,.J~ .~ ... ~.\;"t,w ., ·,v."-:..:..,,#·, . .:.-..,~· ....... ~sn::..... ........ ·"..,... ~ ....... ' ",-".-,-", . < 
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large lsi, and this estimate is precise for real values of 8. Therefore, if we 
can show that It(8) I is relatively small when " ~ l, it will follow that the 
order is equal to 1. 

We use the standard notation [xl for the largest integer ;;;; x. Al!8l1me 
first that" > 1. The reader will have no diflieulty verifying the following 
computation: 

• • f: [xlx-H dx = L n J:+l x-~' dx = ,r' L n(n-' - (n + 1)-') 
N N 

• 
=,r' N .,. + L n.... . 

N+l 

It follows that 
N 

(64) i(8) = ~ n-' + 1 NH _ 8 (. (x - [xJ)x • , dx. 
£., 8 - 1 iN , 

So far this is proved for" > 1, but the integral on the right converges for 
" > 0, and the equality will therefore remain valid for t1 > 0; incidentally, 
(64) exhibits the pole at 8 - 1 with residue 1. 

If " ~ t (64) yields an eetima.te of the fOI'In 

li(B) I :;; N, + A INI-'''Isl 
valid for luge 181 with A independent of 8 and N. By choosing N as the 
integer to I_I"', we find that li(s) I is bounded by a constant times 
IsI2l'.' Therefore this factor does not influence the order. ' 

4.4. The Zeros oj the Zeta Function. It follows from the product 
development (56) that i(s) has no zeros in the half plane t1 > l. With 
this information the functional equation implies that the only zeros in the 
half plane " < 0' are the trivial ones. In other words, all nontrivial zeros 
lie in the so-called critical strip 0 ;;;; " ~ 1. The famous Riemann con­
jecture, which bas neither been proved nor disproved, asserts that all 
nontrivial seros lie on the critical line " = 1. It is not too difficult to prove 
that there are no zeros on" = 1 and" = O. It is known that asymptoti­
cally more than one third of the zeros lie on the critical line. t 

Let N(T) be the number of zeros with 0 ;;;; t :;; T. For the infOrmB.­

tion of the reader we state without proof that 

T T T 
N(T) '"' 2;: log 2,.. - 2,; + OUog T). 

t Proved by Norm." Levinson in 1975. 
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s. NORMAL 'AMILIES 

In Chap. 3, Bec. 1 we have already familiarized the reader with the idea 
of regarding a function 88 a point in a space. In principle there is thus 
no di1Ierence between a set of points and a set of functions. In order to 
make a clear distinction we shall nevertheless prefer to speak of lamilu8 
of functions, and usually we • "8Ume that all functions in a family are 
defined on the same set. 

We are primarily interested in families of analytic functions, defined 
in a fixed region. Important examples are the families of bounded 
analytic functions, of functions which do not take the same value twice, 
etc. The aim is to study convergence properties within such families. 

5.1. Equieontinuity. Although analytic functions are OUr main con­
cern, it i8 expedient to choose a more general starting point. It turns out 

that our baai" theorems are valid, and equally easy to prove, for families 
of funetions with values in any metric space. 

As a besic assumption we shall let IJ denote a family of functions I, 
defined in a fixed region n of the complex plane, and with values in a 
metric apace S. As in Chap. 3, See. I, the distance funetion in S will be 
denoted by d. 

We are interested in the convergence of sequences (j.1 formed by 
functions in IJ. There is no particular reason to exPolCt a sequence 1f.1 
to be convergent; On the contrary, it i8 perhape more likely that we run 
into the opposite extreme of a sequence that does not possess a single 
convergent subsequence. In many llituations the latter poesibility is a 
serious disadvantage, and the purpose of the consideratioll8 that follow 
is to find conditions which rule out this kind of behavior. 

Let us review the definition of continuity of a function I with values 
in a metric space. By definition, I is continuous at z, if to every 0 > 0 
there exists a 8 > 0 such that dU(z),I(z.»< • 88 soon aa I. - .01 < 8. 
We recall that I is said to be uniformly continuous if we can choose 8 
independent of Zo. But in the ease of a familY of functions there is 
ano~er relevant kind of uniformity, namely, whether we can choose 8 
independent of f. We choose to require both, and are thus led to the 
following definition: 

DefiDitioD. 1. The fl.lndiom in a family iJ are said to "" eguieolNmwu. on 
a I8t E COil and only ii, lor eal!h. > 0, there exUIa 0 8 > 0 .....,Il that 
d(f(~) ,/{,,» < c tDhmeDor 18 - a.1 < 8 and "' .. E E, lor all 
/wcti.", f e 6. , 

. . . . . - -' . " - - - . ..' . ",.. " . .,' 
'observe that,; With 'tt-i. defiDi~~~' ,~,~! ~~~.~: ,?~\~~~~i~~_!J~!!~tr 

. ,. . . .. 
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is itself uniformly continuous on E. 
We return now to the question of convergent subsequences. OUf 

second definition serves to (lbaracterize families with a regular behavior: 

Definition 2. A family \J ia said 10 be normal in I) if 6Veryaequence If.} 
of functiom f. E Il' containe a sub8equence which converge, uniformly on every 
compact subset of I). 

This definition does not require the limit functions of the convergent 
subsequences to be members of Il'. 

5.2. Nor ..... Uty and Compactness. The reader cannot fail to have 
noticed the close similarity between normality and the Bolzano-W eier­
strll'lS property (Chap. 3, Theorem 7). To make it more than a similarity 
we need to define a distance on the space of functions on n with values 
in 8, and convergence with respect to this distance function should mean 
precisely the same as uniform convergence on compact !!ets. 

For this purpose we need, first of all, an exh4udion of 0 by an increas 
iog sequence of compact sets E. C I). By this we mean that every 
compact subset E of 0 shall be contained in an E.. The construction i8 
poBBible in many ways: To be specific, let E. consist of all points in 0 at 
distance ;!; k from the origin, and at distance ~ 11k from the boundary 
all. It is clear that each E. is bounded and cloeed, hence compact. 
Any compact set E C II is bounded and at positive distance from 00; 
therefore it is contained in E .. 

Let f and g he any two funetions on 0 with values in 8. We shall 
define a distance p(f,g) hetween these functWne, not to be confused with 
the distances d(f(z),g(II» between their values. To do 80 we first replace 
d by the distance function 

. d(a,b) 
&(a,b) = 1 + d(a,b) 

which satisfies the triangle inequality and has the advantage of being 
bounded (Chap. 3, Sec. 1.2, Ex. 1). Next, we set 

a.(f,g} = sup 6(f(z},g(z» 
'#.111 

which may be described B8 the distance betwoon f and g on E.. Finally, 
we agtee on the definition 

• 
(65) p(f,g) - }; a.(f,g}'};-<t. .-1 
It is trivial to verify that p(f,(J) is finite and satisfies all the conditions for 
a distanoo function (Chap. 3, Sec. 1.2). . .. 
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The distance p(J,(/) has the property we were looking for. SuPPOse 
first that f. -+ f in the sense of the p-distance. For large .. we have then 
p(f.,f) <. and consequently, by (65), a.(J.J) < 2~. But this implies 
that f. -+ f uniformly on E., tirst with respect to the O-metric, but hence 
also with respect to the d-metric. Since every compaet E is contained in 
an E. it follows that the convergence is uniform on E. 

Convetsely, suppose that f. converges uniformly to f on every com­
paet set. Then I.(f.,f) -> 0 for every k, and because the series l:a.(J.,f)2-t 

has a convergent majorant with terms independent of .. it follows readily 
(as in Weierst]'lll!!!'s M test) that p(f.,f) -+ O. 

We have shown that convergence with respect to the distance p is 
equivalent to convergenoe on compaet sets. So far we did not "88ume S 
to be complete, but if it is, it follows eaaiJ.y that the space of aIJ functions 
with values in S is complete as a metric space with the distance p. 

It can be said with some justification that the metric We have intlO 
duced is arbitrary and artificial. However, from what .. e have proved 
it follows that the open sets are independent of the choices involved in 
the construetion. In other words, the topology has an intrinsie lIlt'aning, 
tailored to the needs of the theory of analytic functions. 

We now recaIJ the Balzano-Weierstrass theorem, according to which 
a metric space is compaet if and only if every infinite sequence has a 
convergent subsequence (Chap. 3, Theorem 7). The theorem is applied 
to the set Il, equipped with the distance p, and We conclude that IJ is 
compact if and only if Il is normal, Mid if the limit functions are them­
ae\ves in Il. On the other hand, if IJ is n<>rmaI, so is its closure IJ-. 
Therefore we obbin the following characterisation of normal families: 

Theorem 12. A family Il ;. nonnal if and only if its clowTe IJ- with 
reapee! W the du.taftCe function (65) ie Ctmlpact . 

. 
It is also customary to say that jj is relatively compact if 5'- is compaet. 

Thus, nonnal and relat,jvely compact families are the same. 
We shall now relate the notion of normal families to total boundedness. 

If \1 is normal, then \1- is compaet, and according to Chap. 3, Theorem 6, 
IY- is totally bounded, and 80 is consequently IY (see the footnote on p. 61). 
By defiuition, this means that to every • > 0 there exist a finite nmnber of 
funetionsf" ... ,f • • iJ such that every f Ell satisfies ,,(I,Ii) > e for some 
fl. Conversely, if Il is totalJy bounded, so is IY-. If S is known to be 
complete, then it" is alao complete, and bence compact. In other words, 
if 8 is complete, then iJ is normAl if and only if it is totally bounded. 

'. The following theorem !lm'V6e to state ihe coMition of total bounded­
_ in ~U1l8 of :the ()IIi.pllel m~Q oJ:). S rather thl\l' in terms of.the lI1,xiliary 

, .' - .... . .. 
~'",""" ",- .- " ". , ':. :_,",., '-C". ",.,.', _ •.• "" ,,'-. . .,.. " .• "." ." ••. 

- .... ~ •• ', " ... ". '_~'.' •••••••••.•.•• ,. ',' ." •• ',. ' •• ' ••• , ___ , ___ n_ • . -, ., -, , .. "",.",., .' .... 
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Theorem 13. The family·~ i8 totally bounded if and unly if to Wf1f1I compact 
3d E C 0 and 6Vf1f1I £ > 0 it U p08,wk to find /., ••. ; f. E iJ 8!ACh that evf1f1l 
f E iJ Batujiea d(j ,fj) < £ on E frrr 8Dme /;. 

If iJ is totally bounded there exist fl' ... ,f. such th&t, for lIDy f E iJ, 
p(f,fj) < £ forBOrne/;. By(55)thisimpliesa.(j,fj) < 2*e,-ora(j,/;) < 2*£ 
on E.. If we fix k beforehand, we can thus make a(f,f;) arbitrarily small 
on E., and the same is then true of d(f,/;). This proves that the condition 
• 
lI! necef!lUlry. 

To prove the sufficiency we choose k. so that Z--*. < £/2. Byassump­
tion we can find/., ... , f. such that any f E IJ satisfies one of the inequalities 
a(j,fj) ~ d(jJ;) < e/2k. on Eta. It follows that 'nJj) < e/2k. for 
k ~ k .. while ~rivialJy 1.(jJJ) < 1 for k > k.. From (55) we obtain 

p(jJj) < k.(e/2k.) + z--o.-. + 2->0-' + ... = £/2 + 2 ...... < e, 

which is precisely what we wanted to prove. 

5.3. ArJreIo'. Theorem. We shall now study the relationship between 
Definition 1 and Definition 2. The connection is established by a famous 
and extremely useful theorem known as Arula'a theorem (or the Arzel&­
Ascoli theorem). 

Theorem. 14. A family \j of continllOUll functil¥M VIith lII.Ilue. in a ~ 
~ S i, in the region 0 uf the COII.plu plane if and only if . 

(i) \J u eq,,~ODtinUOUB on every compact 181 E CO; 
(ii) for any a E 0 the value8 fez), f E IJ, lie in a compact IIUb86l of S. 

We give two proofs of the necessity of (i). Amrume that if is normal 
and detel1lline f., . -.. ,f. 88 in Theorem 13. ellCh of these 
functions is unifonnly continuous On E we CIID find a 0 > 0 such that 
d(/;(z),fj(z.» < , for a,z. E E, Iz - z.1 < " j = ., ... ,n. For allY 
given f E \j and corresponding Is we obtain 

-
d(f(z),f(z.» ~ d(f(z),J;(z» + d(!J(z),!j(z.» + d(/;(a.),f( •• » < 3e 

and (i) is proved. 
Lees elegantly, but without use of Theorem 13, a proof can be given 

as follows: If \J fails to be equicontinuous on E there exists an • > 0, 
sequences of points %.,a~ E E, and functions f. E \j such that 1.8" - z~1 -+ 0 
while d(f.(.8,,),f.(a:» ;;;:; s for all n. Because E is compact we can choose 
subl!equence8 of 1.8,,1 and 1z:.1 which converge to a comIOOn limit ~' EE, 
and beca~ 5 is normal there e';sts 11 subsequence of 1f.1 which con­
verges uniformly on E. It is clear that we may choose-all th,w BUb-
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sequencea to have the Bame subscripts n.. The limit function I of lI .. l 
iSllniformly continuous on E. Hence we can find k such that the distancea 
from/ .. ( ... ) to I(z .. ), from I(z..) tof(z~.), and from/(z~) tof .. (~.) are all 
< a/3. It follows that d(f .. (z .. )J .. (z:'.» < c, contrary to the "'''SlImption 
that d(f.(z.),f.(~» ~ a for all n. 

To prove the necewity of (ii) we show that the closure of the set 
formed by the f(.), fE \J; is compact. Let (III.I be a sequence in 
this CIOSUle. To each III. we determine f. E IJ 80 that d(f.('),w.) < lin. 
By normality there exists a convergent subsequence If .. (z)l, and the 
sequence {tII .. 1 converges to the Mme value. 

The sufficiency of (i) together with (ii) is proved by Cantor's (amous 
di'agonal process. We observe first that there exists an evelywhere delll!e 
sequence of points l' in I), for instance the points with rational coordinates. 
From the sequence 1f.1 we 8Z'6 going to extmet a subsequence which 
converges at all points i.. To find a subsequence which converges at one 
given point is always powible because of condition (ii). We can therefore 
find an array of 8Ubscripts 

(66) 

",,<n,.<··· <n.,.<··· 
n .. <" .. <··· <n,,<'" 
.. . . . . . . .. . . . . . . .. . . . . 
".,<11>.<'" <n.,,<··· . . . . .. . . . . . . . . .. . . . .. . 

such that each row is contained in the preceding one, and such that 
1imr..I.,,(1.} exists for all k. The diagonal sequence {n;;} is strictly 
increasing, and it is ultimately a subsequence of each row in (66). Hence 
1I."l is a mbsequence of If.} which converges at all points r.. For 
convenience we replace the notation 11;; by 11;. 

Consider now a compact set Eel) and ,"",ume that ij is equicon­
tinuous on E. We shall show that (f.A converges uniformly on E. 
Given. > 0 we choose I > 0 8uch that, for :r,t E E and f E \J, I. - 'I < i 
implies d(f(.),f(t» < ./3. Because E is compact, it can be covered by 
a finite nllmber of 6j2-neighborhoods. We select a point r. from each of 
,thea. neighborhoods. There exists an io such that i.J > i. implies 
d(f .. (1.),I.,(f.» < ./3 for all theser •• For each u Eone of the r. is with­
~distanee 6 from '; hence d(/ .. (z),IO;(1.» < ./3, d(f.,(z),I.,(r.» < ./3. 
,:!'he, i!leql!alities yield d(fO;(z),I.,(z» < s. Becanae all values I(z) 
'~1lC to a,compact and, collleQu.entIy complete subset of Sit' follows that 

.' ".11.., I. llDiformly \"lDVergent on E. 

... ' , 

, , 
, 

, , - . .. . . 
J., .' ... :., ' 

5.4; Famftlell qf 
';~I; ... 1ft ,,.; " 
.l\.'~,,!,!,,%.~ .'. 

, • ~!lai~ic (unctions have their 
. '~~,+~' _1& " 

j .,.,... , R _~ tf'!', ~ 
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consideratioDll to families of anaJytic f'IDctioDB it is therefore natural to 
choose 8 = C with the usual euclidean distance. 

The compact subsets of C are the bounded and closed Bets. For 
this reason condition (n) in Arzela's theorem is fulfilled if and only if the 
va.\uesf(z) are bounded for each z to, with a bound that may depend on z. 
Suppose now that condition (i) is also satisfied. For a given z. E n 
determine p so that the closed disk Iz - 2.1 ;:;; p is contained in 11. Then 
II, the given family of functions, is equicontinuous on the closed disk. 
If in the definition of equicontinuity o( < p) corresponds to 0, and if 
1J(z.}1 ::a; M for all f E IJ, then If(z) I ;:;; M + • in Iz - 2.1 < a. Because 
any compact set can be covered by a finite Dumber of neighborhoods with 
this property, it follows that the functions are uniformly bounded on 
every compact, set, the bound depending on the set. According to 
Anela's theorem this is true for all normal fa.milies of complex-valued 
functions. 

For anaJytic functions this condition is also sufficient. 

Theorem 15. A family \J of analytic fllnctiom ill normal with rupect to 
C if and only if the f'llnctWn8 in \J are uniformly bounded On every COfIlpachet. 

To prove the sufficiency we prove equicontinuity. Let C be the 
boundary of a closed disk in 11, of radius r. If z, z. are inside C we obtain 
by Cauchy's integraJ theorem 

1 Ie 1 1 f(lI} - f(zo) = .. - . . 
2ri II t-z r-z. 

II - Zo r J(t} tit 
= 2ri Jc (t - z}(r - zo)' 

If If I ;:;; M on c., and,if we restrict II and 110 to the smaller concentric disk 
of radius r 12, it follows that 

(67) If(lI) - f(zo)1 ;:;; 4Mlz
r 
- zol. 

This proves equicontinuity on the smaller disk, 
Let E be a compact set in O. Each point of E is the center of a disk 

with radius r, as above. The open disks of radius r/4 form an open 
covering of E. We select a finite subcovering and denote the ootiespond­
inr; centers, radii, and bounds by r., r., .M.; let r be the SIl.aJIest of the 
Tland M the of the M.. For a given. > 0 let 3 be the em,Jler of 
r/4 and er/4M. If Iz - z.1 < • and Iza - 1'.1 < r./4 i~ follows that 
12- 1'.1 < 3 + r./4 ;:;; r./2 •. Hence (67) is applicable and we find 
l1(z) - f(z.}1 ;:;; 4M.alr. ;:;; 4M3/r :a e as desired. 

In view of Theorem 15 we may abandon the term . "oorm,J with 



SEIIIES ANO PROOUCr OEVELOPMENTS 2211 

respect to C" which h88 no historic justification. IT a iamily hllll the 
property of the theorem, we say instead that it is l«ally b01l.1Ukd. Indeed, 
if the family is bounded in a neighborhood of each point, then it is 
obviously bounded on every compact set. The theorem teUs us that 
every sequence h88 a subsequence which converges uniformly on compact 
sets if and only if it is locally bounded. 

An interesting feature is that local boundedneas is inherited by the 
derivatives. 

Theorem 16. A locally fo ... ilg of oMlytic fundilnulltGa locallN 
b01I.1Ukd 

This follows at Once by the Cauchy representation of the derivative. 
If C is the boundary of a closed diek in n, of radillll r, then 

f(z) = .1. ( fm dr . 
2ft 10 <r - .)" 

Hence II'(z) I ~ 4M/rin the concentric diek of nuliusr/2 (Mis the bound 
of Ilion C). We see that the f are indeed locally bounded. 

What is true of the .first derivatives is of oourse also true of higher 
derivative.. 

5.5. The Clanlcal Definition. IT a sequence tends to .. there is no 
gIeat scattering of values, and it may well be argued that for the 
of nonnaI families such a sequence should be regarded 88 oonvergeut. 
This i8 the point of view, and we shall our definition to 
conform with traditional usage. 

Definition 3. A fomilN of aI\Gl1Jlic IUfldibm in II region n ia I/Oid to ~ 
_.,,11ll if _,'11 IeIJ1"1IC6 eontaim either 0 ""b~ that _ergs. u"O­
fm'fllill on ~ «nnpaCt ott E C 0, or II tAat tendII uniformlll 
to .. on ellery «nnpael m . 

• 
We shall show that this definition ag .. ,,'16 with Definition 2 it we take 

S to be the Riemann sphere. If that is whet we do, then we can also 
allow .. l1li a pol!8ible value, which means that We may consider families 
of meromorphic functions. There is no need to rephrase the definition 
so that it covers normal families of meromorphic functions, for Definition 2 
applies without cbanp. 

It isnecessary, however, to prove al .. mm.,. which extends Weierst.rasa's 
and Hwwita's theorems to meromorphic functions (Theorems 1 and 2). 

. 
.'." :' ,.;:,.,:;;,",0 ~: ... 

"" ',,~,,~' ... ~'~" . ,.'-'.""~,,,,,, ..... , .. : .. , ... 

, , " ' 
• • " .. ,"'.~ ".>' 

, . 
.. !' 

. '. '.' .' ' '. ," .. ' ,,' ..... , .. :.:,:).~ 
, " ...... ~ .. "";'" .,.' ..... " ..... -. ... ' ."'~ ." ""·:"~'''''''''.~.·U''.'',.·.~ .•.•. ,,,,,,~~,.,,./., .. :~.,, ....... b< __ 

.• . . ,. ., .' .... ... ,. " •. -.' , .~ .. ' Q .,. " ..... , .,'.'-.' ~~" ....... ...,. •• -. 
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Lemma. 11 a .eqtlence 01 
01 apherit:al ~, em «Jef7/ 
;, or idMIlkally equal to .... 

lunctiom _apa m tk BelUe 

cet, Ihen 1M limit IUflCtion 

II ca BequeM! of CIfIalytic lumtiMUI c~gea in Ihe same _, 
limit lumtion is either CIfIalytic or idMItically equal to ... 

SUPP088 I(:e) = lim ...... 1.(,11) in the BeD"" of the lemma. We know 
that 1(") is continuous in the spherical metric. If I(z.) >F .." then fez) is 
bounded in a neighborhood of Zo, and for large n the functions I. are ~ 00 

in the same neighborhood. It follows by the ordinary form of Weier­
strass's theorem that/(z) is analytic in a neighborhood of :e.. I£/(z.) - .. 
we consider the reciprocal I/f(z) which is the limit of 111.(z) in the 
spherical sense. We conclude that 1/1(z) is analytic near z., and hence 
fez) is meromorphic. If the I. are analytic and the second case OCcurs, 
then 1/1 must be identically zero by virtue of HUJ witz's theorem, and I is 
identically....· 

The lemma makes it clear that Definition 3 is nothing other than 
Definition 2 applied to the spherical metric. 

It is not true that the derivatives of a normal family form a normal 
family. For. instance, consider the family formed by the functions 
I. = n(zl - fl.) in the whole plane. This family is normal, for it is clear 
that I ...... .. uniforn.ly on every compact set. Nevertheless, the deriv~ 
tives I! = 2m do not form a normal family, for I!(z) tends to 00 for 
z~OandtoOforz=O. 

By Arzela's theorem a family of meromorphic fUPctions is normal if 
and only if it is equicontinuou8 on compact sets, for condition (li) is now 
trivially fulfilled. The equicontinuity can be replaced by a boundedne8S 
condition. We have indeed: 

• 

TheorelD 17. A lamuy.ol cana/ytu or fMromorphic lunctiom I is normal 
in Ihe closmal _ il caM only il Ihe exp"/Uiaians 

(58) 211'(z)I 
,,(f) = 1 + I/(z)I' 

aTe /Qcally bounded. t 

The geometric meaning of the quantity ,,(f) is rather evident. 
Indeed, by use of the formula in Chap. 1, Sec. 2.4 

. 21/(%,) - I(zall 
d(J(z,),I(~}) = [(1 + I/(z,)I")(1 + I/(zl>l'>]I 

1 This theorem is due to F. Marty. 
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it is readily seen that f followed by stereographic projection maps an are 
.., on an image with length 

!, p(f(z»llkl· 

If ,,(J) ~ M on the line segment between '" and ". we conclude that 
d(f(z,),/(z.» ~ Mlz, - ... 1, and this immediately prOves the equicon. 
tinuity when p(J) is locally bounded. 

To prove the necessity we remark first that,,(J) = ,,(1/!) as a simple 
calculation shows. Assume that the family ij of meromorphic functions 
is normal, but that the p(!) fail to be bounded on a compact set B. 
Consider a sequence of I.' n such that the maximum of ,,(f.) on E tends 
to ... Let I denote the limit function of a convergent subsequence 
1f .. 1. Around each point of E we can find a small closed disk, contained 
in 0, on which either f Or 1/ f is analytic. If I is analytic it is bounded on 
the closed disk, and it follows by the spherical convergence that 1f .. 1 has 
no poles in the di .. k as soon as k is Bldliciently large. We then u ... 
Weierstrass's theorem (Theorem 1) to conclude that ,,(f .. ) ..... ,,(J), 
uniformly on a slightly smaller diRlr. Sinee p(f) is continuous it follows 
that ,,(f .. ) is bounded on the smaller disk. If l/f is analytic the 
proof applies to p(l/I .. ), which is the same as p(f .. ). In conclusion, since 
E is compact it can be covered by a finite number of the smaller disks, 
and we' find that the ,,(f .. ) are bounded on E, contrary to 
The contradiction completes the proof of the theorem. 

EX ERe I SES 

1. Prove that in any region 0 tha family of analytic functions with 
. positive part is normal. Under what added condition is it l()C8l1y 
bounded? Hint: Cowiider the functions rl, 

s. Show that the functions .. , n a nonnegative integer, form a normal 
family in 1 .. 1 < 1, also in Izi > 1, but not in any region that contains a 
point on the unit circle. 

s. If /(z) is alIalytic in the whole plane, show that the family fOimed 
by all functions/(kz) with constant k is normal in the annulus r, < IzI < r. 
if and ouly if / is a polynomial. 

4. If the family n of analytic (or meromorphic) functions is not 
normal in 0, show that there erists a point ... such that \J is not normal in 
any of z.. Hint: A oompactn_ argument. 

.,:.,. ", .•. 
" ' . 

• ' .'" .', .:.;;, ',' ,.,.: ,': ,\., ;..;., > ,' .•. 
.. ' .. ' ..... ""'.'~'" 'J ....... _ ,.. ,' ... ,.' .... ' .. ' -' ,.... . 
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D CHLET'S P 

In the geometrically oriented part of the theory of analytic func­
tions the problem of conformal mapping plays a dominating role. 
Existence and theorems permit us to define important 
analytic functions without rellOrting to analytic exp.e..nons, and 
geometric properties of the regions that are being mapped lead to 
analytic properties of the mapping function. 
. The Riemann mapping theorem deals with the mapping of 
one simply connected region onto another. We shan give a proof 
that leans on the theory of normal families. To handle the more 
difficult of multiply connected regions we shall have to IlOlve 
the Dirichlet problem, which is the boundary-value problem for 
the Laplace equation. 

L THE RIEMANN MAPPING THEOREM 

• 

We shall prove that the unit disk can be mapped conformally onto 
&lty simply connected region in the plane, other than the plane 
itself. This will imply that any two such regions can be mapped 
confonllally onto each other, for we can use the unit disk as an 
intermediary step. The t.heorem is applied to polygonal regions, 
. and in this case an explicit form for the function is 
deriVed. 

. 
1.1. Sc.ts ...... , ...... Proo/. Alth ... p theoJllID 

".dueto 
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P. Koebe. t The proof we shall 
proof. 

i. a shorter variant of the original 

Theorem 1. Given any Bimplll connooted region Il which ill not the whole 
plane, and a poinl o. E n, there exi8ts a 'Uniqla analytic 1'U1II!tWn f(tt) in Il, 
normali204 by the conditions f(o.) = 0, /'(0.) > 0, 8'UCh that 1(0) define. a 
one-!<HnIe mapping of Il onlo the disk ltD! < 1. 

The uniqueness is easily proved, for if I, and Is are two such functions, 
then l.(f.'(w)] defines a one-t()o{)ne mapping of Iwl < 1 onto itself. We 
know that such a mapping is given by a linear transformation S (Chap. 4, 
Sec. 3.4, Ex. 5). The conditions 8(0) = 0, S'(O) > 0 imply S(w) = Wj 

hencef, = f •. 
An analytic function g(.) in Il is said to be univalent if g(z,) = g(z.) 

only for " ~ z" in other words, if the mapping by g is one to one (the 
Get man word schlicht, which lacks an adequate translation, is also in 
common use). For the existence proof we consider the family lJ formed 
by all functions g with the following properties: (i) g is analytic and uni­
valent in n, (il) Jg(o)l ;:> 1 in 0, (iii) g(z.) = 0 and t1'(o.) > O. We contend 
that I is the function in lJ for which the derivative /'(80) is a m.mmum. 
The proof will consist of three parts: (1) it is shown that the family iJ is 
not emptYj (2) there existsanfwith maximal derivative; (3) thisfhas the 

• 

desired properties. 
To prove that Ii' is not empty we note that there exists, by aSSUIDp­

tion, a point a ... 00 not in O. Since n is simply connected, it is possible 
to define a single-valued branch of V z - a in OJ denote it by h(z). This 
function does not take the same value twice, nor does it take opposite 
values. The imB&" of n under the mapping h covers a disk Iw - h(o.)\ < p, 

and therefore it does not meet the disk Iw + h(z.)1 < p. In other words, 
Ih(z) + h(oo)1 ;<; p for z E 0, and in particular 2Ih(00)1 ;;: p. It can now be 
verified that the function, 

p Ih'(z.)1 h(z.) h(.) - h( •• ) 
go(z) = '4 Ih(z.)I' . h'(o;) . h(o) + h(z.) 

belongs to the family iJ. Indeed, because it is obtained from the univalent 
function h by mean. of a linear transformation, it is itself univalent. 
Moreover, g.(z.) = 0 and g~(8o) = (P/8)lh'(z.)I/lh(zli)!' > O. Finally, 
the estimate 

h(z). - h(z.) _ .1 1 _ 2 :s; 4Ih( •• )1 
11(.) + h(o.) - Ih( •• ) I h{ •• ) h{.) + h(e.> - p 

shows that I".{.)I ~ 1 in O. 

- , ,- ' 
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The derivatives g'(teo), 9 0 ~, haVl! a least upper bound B which a priori 
could be infinite. There is a sequence of functions g. 0 \J such that 
g~(zo) ..... B. By Chap. 5, Theorem 12 the family \J is normal. Hence 
there exists a subsequence Ig •• 1 which tends to an analytic limit function 
I, uniformly on compact sets. It is clear that I/(z)1 ~ 1 in D, I(~) - 0 
and f(zo) = B (this proves that B < + .. ). If we can show that I is 
univalent, it will follow that / is in \J and has a maximal derivative at ~ •. 

In the first place / is not a constant, for f (zo) - B > o. Choose a 
point %, oll, and consider the functions g,(z) = g(z) - g(z1), g. IJ. They 
are all ". 0 in the region obtained by omitting %, from o. By Hurwitz's 
theorem (Chap. 5, Theorem 2) every limit function is either identically 
sero or never sero. But fez) - f(z,) is a limit function, and it is not 
identically zero. Hence fez) ". I(z,) for z " z" and since %, was acllitrary 
we have proved that f is univalent. 

It remaina to show that I takes every value w with Iwl < 1. Suppose 
it were true that/(z) P& Wo for some",", Iw.1 < 1. Then, since n is simply 
connected, it is possible to define a single-valued branch of 

(1) F(z) = fez) - Wo 

1 -' "I1Io/(z) 

(Recall that all closed curves in a simply connected region are homologous 
to o. If ,,(z) ".0 in 0 we can define log ,,(z) by integlation of ",'(te)/,,(%), 
and v' ,,(z) = exp (t log 'PCte».) 

It is clear that F is ,mivalent and that IFI ~ 1. To normalize it we 
form 

(2) G(z) = 1F'(Zo).!. F(z) - F(Zo) 
F' (zo) 1 - JI'(ioJF(te) 

which vanishes and has a positive derivative at Zoo For its value we find, 
after brief computation, 

G'( \ 1F'(a.) _ 1 + Iw., B > B 
Zo} = 1 - F(~)' - 2 VJfD;l . 

This is a contradiction, and we conclude that fez) 81111Umes aU values rD, 

1101 < 1. The proof is nOW complete. 
At first glance it like pure luck that our computation 

yields 0'( .. ) > f(z.). This is not quits so, for the flJrmulas (1) and (2) 
permit us to as a singl .... va1ued analytic function of W - G(z) 
w~ch maps IWI< 1 ,into iteelf, 'rile ineq,,·Yty 11'( .. )1 < IO'( .. }1 is 
~Clleaof .. , ' . 

Tbe purely. 
We know now .t;ba~ "DJ . . 
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ically onto & disk (for the whole plane a very simple mapping mID be 
ClOnstructed), and hence any two simply connected regiODl! are topoJogjcally 
equivalent. 

EXERCIIES 

L If z. is real and D is symmetric with respect to the real axis, prove 
by the nniquenees that I satisfies the symmetry relation I(i) = !(z). 

2. What is the corresponding conclusion if 0 is symmetric with respect 
to the point z.? 

1.2. Boundary B~hatOOr. We are ll"S1lIDing that 1(,) defines a con­
formal mapping of a region 0 onto another region It. What happeIIB 
when, approaches the boundary? There are ca.'OeB where the boundary 
behavior can be foretold with precision. For instance, if 0 aDd 0' 
are Jordan regioIIB, t then I can be extended to a topological of 
the closure of 0 onto the closure of 0'. Unfortunately, of 
spsce do not permit us to include a proof of this important theorem (the 
proof would require a considerable amount of preparation). 

What we can and shall prove is a very modest theorem of purely 
topological content. Let us first malte it clear what we meon when we 
say that. approaches the boundary of O. There ar-e two we may 
consider Ii. sequence ('.} of points in 0, Or we may consider an arc set), 
o ;:0 t < I, such that all z(t) are in O. We shall say that the sequence or 
the are tends to the boundary if the points z. or z(t) will ultimately stay 
away from any point in O. In other words, if II E 0 there shall exist an 
E > 0 and an 110 or a It such that Ie. - 'I s:; • for " > 110, or such that 
I.(t) - zl s:; I for all t > to. 

In this situation, the disks of center z and radius« (which may depend 
on z) form an open covering of n. It follows that any compact subaet 
K C 0 is covered by a finite number of these disks.· If we consider the 
largest of the corresponding n. or t. we find that e. or z( t) cannot Irelong 
to K for ,. > n. or t > tD' Colloquially speaking, for any compact set 
K C 0 there exists a tail end of the sequence or of the arc which does not 
meet K. Conversely, this implies the original condition, for if Z E 0 is 
given we may choose K to be a closed disk with center z that is cont.ained 
in 0. If the radius of the disk is p the original statement holds fOr any 
• < p. 

After prellminery oousideratioDl! the theorem we uprn:oI'Vvee is 
almost trivial: 

t It is kac.WD, altho .... Dot 110 eoay to prove, that a Joniao COhe (Chap. ·3 
See. 2.1) divides the plane into exactl)" two regionl, ooe boundeli and one unbounded 
The bouaded rq;iOD. is called a JOidan It.ion. 
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Thool'elll 2. Let / be a topolcgicalflUJppinq 0/ a r69ion II onto a r.,wn 
0'. If (-.1 or -(0 tMda to 1M boundary oj 0, tMn If( .. ) I or f(z(t» tMda to 
1M boundary of 0'. 

Indeed, let K be a compact set in 11', Thenf-l(K) is a compact set 
in 11, and there exists n. (or t.) such that .. (or .;(t» is not in J-l(K) for 
n > no (or t > 10). But then f( .. ) (or f(.(/))) is not in K. 

Although the theorem is topological, it is the application to conformal 
mappings that is of greatest interest to Ull. 

1.3. U.e of the Rf!fIection Priruiple. Stronger statements hecome 
possible if we have more information. We are mainly interested in simply 
connected regions and may therefore that one of the regions is a 
disk. With the same notation as in Sec. 1.1, let fez) define a conformal 
mapping of the region II onto the uDit disk with the normalizationf( .. ) = 0 
(the normalizBt.ion by the derivative is irrelevant). We shall derive 
additional infc>l'mat.ion by Ulle of the reftection principle (Chap. 4, 
Theorem 26). . 

Let us 88f!\lme that the boundary of 0 contains a segment 'Y of a 
straight line. Because rotations are unimportant we may as well suppose 
that 'Y lies on the real IIJriSj let it be the interval a < ~ < b. The 
tion involves a significant simplification only if the rest of the boundary 
stays away from 'Y. For this re_1ll we shall strengthen the hypothesis 
and require that every point of 'Y has a neighborhood whooe intersection 
with the whole boundary all is the same as its intersection with 'Y. We 
say then that 'Y is a fru bOTmtlary arc. 

By this Ilsswnption every point on 'Y is the center of a disk wbosc 
intersection with ao is its real diameter. It is clear that each of the half 
disks determined by this diameter is entirely in or entirely outside of 0, 
and at least one must be illside. If only one is inside we can the point a 
one sided boundary point, and if both are.inside it is a two-ilided boundary 
point. Because 'Y is connected all its will be of the same kind, and 
We speak of a one-ilided or a boundary arc. 

Theorem'S. 8uppou that the boUM"'1I 0/ a llimply conne"'!id region II 
cootaim a liM eegtMnt 'Y ae a one-lIi<Ud fru boundary arc. Then 1M fUM­
lion fez) wllic1lmape 0 onto 1M unit dWe can be nIIm<kd to a fUflClion whid!. 
itt tmaiytic and one to one on 11 V 'Y, The image of 'Y U an MC .,. on the unil 
mrcle. 

For two-sided area the _ will be true with obvious modifications. . 
For the Ploof we oonllider & disk around "" • .., which is 80 small thllt 

the half disk ill· 0 doe. not· cont,em the point .. with /( •• ) = 0.. Then 

.,,,':. '"-.:--,' - . ---.- -- - -.:- ,,- .-.;- ;.; .. :,-, • _." ___ "._ •. '~- ~,_ •. """, .-~ •. -. c--,,~--·~- •.• -.-•. ' __ -".' ~ ,., ' - : :<",~. '; __ ~ .:,. ;, ,; .. ' .. ,_--,;~-'.: .. "W _""_-._, •• ~ ... __ ~, ,~.~ ..... ~_ • ..-.,,;,-,,"" 
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log/(~) has a sipgle-valued branch in the half disk, Bnd its real part tends 
to 0 M tl approaches the diameter, for we know by Theorem 2 that 1/(z)1 
tends to 1. It follows by the reflection principle that log fez) has an 
analytic extension to the whole disk. Therefore log/(z), and cODBequently 
/(z), is analytic at z.. The extensions to overlapping disks must coincide 
and define a function which is analytic on I) V ,.. 

WenotefurtherthatJ'(z) '" Oon,.. Indeed,J'(%,) = o would imply 
that /(zo) were a multiple value, in which caae the two subarcs of 'Y that 
meet at Zo would be mapped on arcs that form an angle r/n with n ~ 2; 
this is clearly impossible. If, for instance, the upper half disks are in 0, 
then 

a log 1/I/ay = - a argj/a:& < 0 

on ,., and arg / moves constantly in the same direction. This proves 
that the mapping is one to one on 'Y. 

The theorem can be generalized to regions with free boundary arcs 
on a circle. With obvious modifications the theorem is also true for two­
sided boundary arcs. 

1.4. A .... ,ytic Arcs.. A real or complex function ",(t) of a real variable t, 
defined on an interval (l < t < h, is said to be re(l/ (In<<Uytic (or analytic in 
the real selll3e) if, for every to in the interval, the Taylor development 
",(t) = 'I'(t.) + ",'(t.)(t - t.) + l",'(t.)(t - to)' + ... converges in some 
interval (t. - p, t. + p), p > O. But if this is so we know by Abel's 
theorem that the series is also convergent for complex values of t, as long 
as It - tal < p, and that it represents an analytic function in that disk. 
In overlapping disks the functions are the same, for they coincide on a 
segment of the real axis. We conclude that ",(I) can be defined as an 
analytic function in a region A, &y mmetric to the real axis, which contains 
the segment (a,b): 

In these circumstances we say that ",(I) deterrnines an tmalytic are. 
It is regular if 'I"(t) '" 0, and it is a simple arc if '1'(1,) = ",(I.) only when 
1,.= I •. 

We shall assume that the boundary of I) contains a regular, simple, 
analytic arc 'Y, and that it is a free one-sided arc. The definition could 
be modeled on the previous One, but to avoid long explanations we shall 
assume offhand that there exists a region A, BY JOmew to the interval 
(a,b), with the property that 'I'(t) E (1 when t lies in the upper half of A, and 
that '1'(0 lies outside 0 for t i~ the lower half. 

If /(z) is the mapping function with f(z.) = 0, and if we take care 
that i'(t) ¢ Zo in A, then the reflection principle tells us that logf(",(t», 
and hence /(tp(t», has an analytic extension from the upper to the lower 
half of A. For a real t. E (o,b) we know further that .. '(It) ~ O. There· 
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fore <p has an analytic inverse <p-1 in a neighborhood of <p(t.), and it follows 
by composition that fez) is analytic in that neighborhood. 

Theorem.. If the bounda, y of 0 conIaina a free O7'I8-llided analytu arc 
'Y, then !he mapping function hall em analytie eo:tenaion to g u 'Y, and 'Y is 
mapped on an arC of !he unit circle. 

We trust the reader to make the last statement more precise and to 
complete the proof. 

2. CONFO.MAL MAPPING OF POLYGONS 

When 0 is a polygon, the mapping problem has an almost explicit solution. 
Indeed, we shall find that the mapping function can be expressed through 
a f(>rlllula in which only certain parameters have values that depend on 
the specific shape of the polygon. 

2.1. The Be,...,,"" at an An,le. We assume that 0 is a bounded 
simply connected region whose boundary is a closed polygonal line with­
out self-intersections. Let the consecutive vertices be z" . , , , z" in 
positive cyclic order (we set Zo+' = z,J. The angle at .. is given by the 
value of &rg (zo_, - z.)/(ZI>+1 - zo) between 0 and 211'. We shall denote 
it by,.. .. , 0 < a. < 2. It is also convenient to introduce the outer angles 
fl.", = (1 - "0)"" -1 < (J. < 1. Observe that fl. + ... + fl. = 2. 
The polygon is convex if and only if all fl. > O. 

We know by Theorem 3 that the mapping function f(.) can be 
extended by continuity to any side of the polygon (that is, to the open 
line segment between two consecutive vertices), and that each side is 
mapped in a one-to-one way onto an arc of the unit circle, We wish to 
show that these arcs are disjoint and leave no gap between them. 

To see this we consider a circular sector S. which is the intersection 
of 0 with a 811f1j..:ientiy small dillk &bout z.. A single-valued branch 
of l' = (. - z.)'/GO maps S. onto a balf disk S~. A suitable branch 
of So + ro' has its values in n, Bnd we may consider the function 
g(r) = f(z. + f"") in S~. It follows by Theorem 2 that 1,,(r)I ..... 1 88 r 
approaches the diameter. The re8eetion principle applies, and we con­
elude that 1I(t} has an analytic continuation to the whole dillk. In 
particular, thjs impliea that f(a) has a limjt .... = tI4 88 , ..... I., and we 
find that the IIl\l8 that OOtieapoM to the sidell meetiog at .. do indeed 
haw a common end point. Since arg f(.) must increase as z traces the 
boundary in positive direotiou, the arc, do !lOt overlap, at least !lOt in a 
neilhborbpod of w.. ~ wa take inW ._lIt that I the b<llIndary 
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11 

FIC. C·L Conrormal mapping of a pOlygon. 

on a. curve with winding number 1 about the origin, it can easily be con· 
eluded that all the arcs are mutually disjoint. In other words, f can be 
extended to a homeomorphic map of 0- onto the closed unit disk, the 
vertices z. go into points W" and the sides conespond to the arcs 
these points (Fig. 6-1). 

2.:1. The Schwor •• Christq/fel Formula. The formula we are looking 
for refers not to the function f, but to its inverse function, which we shall 
denote by F. 

Theorem 5. The/uncliom II = F(w) which map Iwl < 1 con/onllal/II onto 
polygona with oogl& ....... (k ~ 1, ... ,n) are of the form 

• 
(3) F(w) = 0 fo" n (w - w.)-" dw + 0' 

A-I 

where fl. = 1 - a., the w. are points on the unit circle, and 0, 0' aTe c0m­

plex cona/ants. 

Because the fWlction get) = fez. + !"') considered in the last para­
graph of 2.1 is analytic at the origin, it has a Taylor development 

• 
fez. + !".) = w. + L (I" r" . 

.. -1 

Here (1, -F 0, for otherwise the image of the half disk S~ could not be 
coptained in the unit disk. Therefore the series can be inverted. and on 
setting w = fez. + !"') we obtain 

• 
r - L o .. (w - wo) .. 

• -1 
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with b, ¢ 0, the development being valid in a neighborhood of 10.. We 
raise to the power a. and find, in terms of the inverae function F, 

F(w} - 2. ~ (10 - w.}"oa.(to) 

where G. is analytic and ¢ 0 near Wi. It follows by differentiation that 
F'(w)(w - w.)~. is aneJytic and ¢ 0 at W" and therefore the product 

• 
(4) H(w) = F'(w) n (w - W.)~· 

i-I 

is aneJytic and ¢ 0 in the closed unit disk. 
We claim that H (10) is, in actual fact, a constant. For this purpose 

we examine its argument when 10 = ." lies On the unit circle between 
w. = .... and 10>+1 - .".... We know that arg F'(.',) equals the angle 
between the tangent to the unit circle at ." and the tangent to its 
image at F(."); with an abbreviated notation we express this by 
arg F' = arg dF - arg dw. But arg dF is oonstant because F describes 
a straight line, and arg dw = II + ... /2. The factor w - w. can be written 
." - .iI, _ 2i.'('+I.)" sin i(e - II.), and hence its argument is 11/2 plus a 
oonstani (this is also evident geometrically). When we add the arcu­
ments of all factors on the right--hand side of (4) we find that arg H(w) 

• 
differs by a constant from -II + 0:.11.) . 11/2 = O. Thus we conclude 

1 

that argH(w) is constant between w. and W>+I, and since it is continuous 
it must be constant on the whole unit circle. The maximum principle 
permits us to, conclude that arg H(w) = 1m log H(w) is constant inside 
the unit circle, and 80 is consequently H(to). 

We have now proved that 

• 
F'(w) = C n (w - w')--', 

, i-I 

and fOiDlUla (3) follows by integration. 
We remark that II linear transformation of the unit circle permit. us 

to place three of the points Wt, for instance, tol, W" WI, in prescribed 
positions. For n = 3 we see that the mapping function depends only 
on the angles, except for trivial variable this reflects the 
fact that triangles with the seme lingles are similar. For n > 3 the 
remaining constants to<, • • • , til., or their arguments II., are called th9 
_8801 II par""" of the plOblem. It is only in rare c' res that they can 
be determined other tluLD by numerical cOmputation. 

If we give arbitrary values to the '. it is quite easy to verify that a 
(unction of the form (3) mal'll t,ho nnit c~le on a closed (IOJygonal line, 

"'," , . - .1.1 
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but 1l8\i8.IIy we are unable to tell whether it will intelsect itself or not. 
If it does not, it is not difficult to show that F(w), as given by (3), yields 
a one-to-one mapping onto the inside of the polygonal line (the precise 
proof makes use of the argument principle). 

Formula (3) is known as the Scilwarz-Chriswjfel fOhuula. Another 
version of the same formula serves to map the upper ba.lf plane onto the 
inside of a polygon. The mapping function, from 1m w > 0 to I), can 
now be written in the form 

.-1 

(5) F(w) = C J," II (w - ~.)-IJ. dw + C' 
.-1 

where the ~. are rea.I. The last exponent fl. does not appear explicitly in 
the formula, but it is determined by fl. = 2 - (Jj, + . . . + fl.~,), and 
like the other exponents it is subject to the condition -1 < fl. < 1. It 
then follows that the integra.! (5) converges for w = "', and the point at 
00 will correspond to a vertex with angle ....... , ... = 1 - fl.. If fl" ~ 0 
the vertex is only apparent, and the polygon reduces to one with .. - 1 
sides. 

EXERCISES 

:L Show that the fJ. in (3) may be a.Ilowed to become = -1. What 
is the geometric interpretation? 

2. If a vertex of the polygon is a.Ilowed to be at DO, what modification 
does the fonnuls undergo? If in this context fl. = 1, what is the polygon 
like? 

3. Show that the mappings of a disk onto a para.lle1 strip, or onto a 
half strip with two right angles, can be obtained as specia.l cases of the 
Schwara-ChristoffeI formula . 

... Derive formula (5), either directly Or with the help of (3). 
I. Show that -

F(w) = j." (1 - W")-tl. dw 

maps Iwl < 1 onto the interior of a regular polygon with .. sides. 

•• Detennine a conformal mapping of the upper half plane on the 
region I) = 1% = X + iy; x >.0, y > 0, min (x,y) < I}. 

Z.I. Mapping on a Recf4n,le. In case I) is a we may choose 
x, = 0, :1:. = 1, :1:, = P > 1 in (5). The mapping function will thus be 
given by 

J: dtD 
F(w) = . vi w(w - 1)(. - p) 



, 
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which is an tIlip/M integral.. To be unambiguous we decide that the values 
of .yw, V w -1, and V w - p shall lie in the first quadrant. For a 
detailed study of the mapping, let us follow F(w) as u> traces the real 
axis.. When 10 is real, each of the square roots is either positive or purely 
imaginary with a positiw imaginary part (saw for the point where the 
square root is 0). As 0 < w < 1 there are one real and two 
squa.re roots. Therefore F(w) decr., .... '4ls from 0 to a value -K where 

(6) K=/:-
For 1 < w < p there is only one imaginary square root. It follows that 
the integral from 1 to 10 is purely imaginary with a negative imaginary 
part. HenceF(w) will follow a verticaleegment from -Kto -K - iK', 

K'- ~ & . 
- J1 Vt(t - 1)(P - f)' 

For w > p the integrand is positive, and FCw) will trace a horizontal 
eegment in the positive direction. How far does it extend? Since the 
imags. is to be a rectangle, it must end at the point -iK', but we prefer a 
direct verification. One way is to the length of the segment by 
the integral 

/.
• & 

• VICt - 1)(1 - p) 

and to show by the change of integration variable I = (p - u)/(1 - u) 
that the integral transforms to (6). It is easier, however, to observe that 
Cauchy's theorem yields 

= 0, 

. for the integral over a eemicircle with radius R tends to 0 as R --> GO. 

The vanishing of the real part implies the equality of the horizontal ""g­
ments, and from the vanishing of the imaginary part we deduce that 
- GO < 10 -< 0 is mapped On the ""gment from -iK' to O. The rectangle 
isoom~~. . 

. It is often preferable to u·e a formula which refteets the double 
symmetry of the rectangle. The vertices can he made to correspond to 
points :1:1 and :1:1/.1: with 0 < i: < 1. Since a constant factor does not 
matter we can choose the mapping to be given by 

, " . . . ;.: '. 

F(m) - J: .' 
. . -.. '-,,-.. ' . ." ., . , _.' .... :. . . ~ .. .' . -. 

-' - -

• 

• 
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and thj8 time we ag!fle that vi '- VI" and vi - kJwlshall have positive 

real parts. It is seen that the rectangle will have vertices at - ~, ~I 

K+'K' K+'K' he - 1 -- J W re 2 '2 
, , 

K - f~, _ d! _ 

K' ~ f,'~ dl . 
1 V(tl - 1)(1 - k'i,,} 

The image of the upper half plane is the shaded rectangle R. in Fig. 
6-2. We denote the inverse function of F by VI = f(a); it is defined in R. 
and can be extended by continuity to a one-to-one mapping of the closed 
rectangle onto the closed half plane (with the topology of the Riemann 
sphere)_ Observe that z - iK' conesponds to 00. 

, The reflection principle allows us to extend the defiuition of f to the 
adjacent rectangles R. and R., namely by setting fez) "" joo for z e R. 
and}{,} - j(K - j) for z e Rt- Similarly we can pl\8!l to R. either from 
RI or R.; the extension is given by fez) - f(K - .). The procees of 
reflection can obviously be continued untilf(z) is defined as a meromorphie 
funetion in the whole piane, It is perhaps even more convenient to 
define the extension by periodicity, for we find that the extended f,metion 
must eatiefy fez + 2K) "" f(z), fez + 2iK') - f(,). 

We have shonn that the inveIee funetion of the elliptic integral (7) 
is a meromorphic function with periods 2K and 2iK'. Such funotions nre 
known as ,Uiptic f~. The oormection between elliptic integraia 
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and elliptic functions was discovered, but not published, by Gauss; it was 
remsoovered by Abel and Jacobi. 

EXERCISES 

1. Pro.e that formula (7) giwo F( .. ) - iK'. 
1. Show that K = K' if and only if Ie = ('\1"2 - 1)1. 
3. Show that/(z),f(z + K), and/(' + iK') are odd functions of z while 

I(z + K/2) and/(z + K/2 + iK') are even. 
::.4. The Trian"le Funetioru oj SchUJONf. The upper half plane is 
mapped on 1\ tri!lngle with G11I', a .... , a .... by 

F(w) = J: ..... -1(1.11 - 1)" ... 1 JUl. 

There are no accessory parameters, as we have already noted. 
The inverse function fez) can again be extended to neighboring 

triangles by relIection over tbe sides. This process is particularly inter­
esting when it leads, as in the case of 8 rectangle, to a meromor­
phic function. In· order that this be eo it is necessary that repeated 
refiections acro88 Bides with a common end point should ultimately lead 
back to the original triangle in an even number of !tepe. In other words, 
tbe angles must be of the form "'/11" ... /n.., ... / ... with integral denominat,ors. 
Elementary reasoniJJg shows that the condition 

.!. +.!. +.!. = 1 
Al fk ft. 

is fulfilled only by the triples (3,3,3), (2,4,4), and (2,3,6). They cor­
respond to an equilatera.l triangle, an iBoBceles right triangle, and half an 
equilateral triangle. 

In each case it is e881 to verify that the reflected images of the 
triangle fill out the plane, without overlapping and without gape. This 
shows that the mappinl functions are indeed restrictions of meromorphic 
functions, known 88 the SchVHJn trimIg/s lu~. 

The re.der is urged to draw a picture of the triangle net in eaeh of 
tbe three ce.... He will then observe that each triangle function has a 
pair of periods with nonrea.l ratio, and is thus an elliptic function. As an 
exercise, the Nader should determine how many triangles there are in a 
paralleloglam by the perioda. . 

. ""-'. 
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definition, namely one that requires all IIIlcond-order derivatives to be 
continuous. This was sufficient to prove the mean-value property from 
which we could in turn derive the PoiBSOn representation and the reflec­
tion principle. We shall now show that a more satisfactory theory is 
obtained if we malre the mean-value property rather than the Laplace 
equation our· point. 

In this connection we shall also derive an important theorem on 
monotone sequences of harmonic functions, usually refened to &I! 

Harnack's principle. 

a.l. Funetiolt$ ..,ith the Meon-f14IlIe Property. Let v(z} be a real­
valued continuous function in a region 0.' We say that v satisfies the 
ml'an-value property if 

(8) 
1 :':W 

v(e.} ~ 2...10 v(%o + I'e'·) d8 

when the disklz - %01 ;:;; r is contained in 0. We showed in Chap. 4 thai 
the mean-value property implies the maximum principle. Actually, 
closer examination of the proof shows that it is $uffieient to . that 
(8) holds for suffieiently small r, r < ro, where we may even allow r. to 
depend on ZOo We repeat the conclusion: a continuous function with 
this property cannot have a relative maximum (or minimum) without 
reducing to a constant. 

We have shown earlier that every harmonic function satisfies the 
mean-value condition, snd we shall now prove the following converse: 

Theorem (i. A eonlint.lOUB fvnctifm v(z) which 3aI~8 condition (8) U 
nec8B86rily liamaonie. 

• • 

Again, the condition. need be su.tisfied only for sufficiently sIPen r. 
If v satisfies (8), 80 does the difference between u and any harmonic func.­
tion. Suppose that the disk Iz - zol ;;; p is contained in 0, the region 
where u is defined. By use of Poisson's formula (Chap. 4, Sec. 6:3) we 
can oonstruct a function v(z) which is harmonic for Iz - 1.1 < p, con­
tinuous and equal to U(2) on Iz - 801 = p. The maximum and minimum 
principle, applied to v - II, implies that v(z} - v(z} in the whole disk., and 
eOIll!equently u{z) is harmonic. 

The implication of Theorem 6 is that we may, if we ehoose, define a 
humonic function to be a oontinuous fUDction with the mean-value 
property. Such a fwu:tion has automatically continuous derivatives of 
all orders, and it satisfies LaplljOO's equation. 

An rea80ning aho" s that even without the oondition (8) 
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the Nl8Umptions about the derivatives can be relaxed to a considerable 
Suppose merely that u(z) is continuous and that the derivativE.s 

alu/az", a'u/ayl exist and satisfy ~u = O. With the same notations Nl 
above we show that the function 

V = u - v + .(s - SO)I, 

• > 0, must obey the maximum principle. Indeed, if V had a maximum 
the rules of the calculus would yield alv /azl ;:a 0, a"V /ayl ::i 0, and 
hence ~ V ;;;;' 0 at that point. On the other ba.nd, 

~V = ~u - ~ + 2. = 2. > O. 

The contradiction show. that the maximum principle obtains, We ean 
thus conclude that u - v + o(s - SO)I ;:a opl in the disk la - aul :;; p. 

Letting. tend to zero we find u ;:a v, and the opposite inequality can be 
proved in the same way. Hence u is harmonic. t 

JoZ. Hornacle's PrindpN. We recall that Poi"oon'. formula (Chap. 4, 
Sec. 6.3) permits us to express a harmonic function through its values on 
a circle. To fit our present need. we write it in the form 

1 ~ pl-rl 
(9) u(z) - 2; 10 1"./1 _ zl" u(pei') d • 

. 

where Izi = r < p and u i ...... 'med to be barmonic in Izl ;;;; p (or harlilonic 
for lal < p, continuous for 1"1 ;;;; p). Together with the second of the 
elementary inequalities 

p-., pl-rl p+., 
(10) ;. '+ ., ;:a lpe" _ zl' ;;;; ~ ,:,.' 'I' 
fot mula (9) yields the estimate 

IU(8)1 ;;;; i:: I:' + r '""lu(".")1 dB • .,.-p-rJo 

If it is known that u(pe") ~ 0 we can use the first inequality (10) as well, 
and obtain a double estimate 

• 
-211'1 p.:;: 'I' f2' u dB ;;;; u(z) ;;;; i:: p +., ,.. u dB. 

p .,10 _p-rJo 

But the arithmetic mean of u(pe;') equals u(O), and we end up with the 
follewing upper and Ion .. bounds: 

(11) '. . p :; r .(0) :;; u(,,) ;;;; p + r u(O). 
p r· p-r 

- .' . - . " ,,- -' .... ..' .' -: . . 
. , 

, ; .' . -.. 
!,_ - _' _;~.t':., ... - '. , .. 
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This is Harnack', imqualilYj we emphasize that it is valid only for 
positive harmonic functions. 

The main application of (11) is to series with positive terms or, 
equivalently, increasing sequences of harmonic functions. It leads to a 
powerful and simple theorem known as HIJT'II4Ck', pn:MP~: 

Theorem 7. Cllflllider a ,equence of fu~iom u.(z), each defined and 
hal monic in a urtain region Il... Let II be a region B1ICh lhal every point in 
o haB a neighborhood contained in all but a finiU number of lhe Il.., and 
aBBtlme moreOlJer thai in this neighborhood u..{I) ~ U"ll(l) 08 SOO7I aB n is 
8Ujficiently !Mlle. Then there are only two poaBibilitie,: either u.(z) tend8 
unifOl noly to + co on etie'f1/ COtilpacl subset of 0, or u.(z) tend, to a harmonic 
limit function u(z) in "0, uniformly on compact 8elB. 

. 

The simplest situation occurs when the functions u..(z) are harmonic 
and form a nondecreasing sequence in o. There are, however,. applica­
tions for which this case is not sufficiently general. 

For the proof, IlUppose first that lim u,,(z.) - co for at least one 

the right-hand inequality shows in the same way that u,,(z) is bounded on 
jz - z.( ~ r /2. Therefore the sets on which lim u,,(z) is, respectively, 
finite or infinite are both open, and since (} is oonnected, one of the sets 
must be empty. As BOOn as the limit is infinite at a single point, it is 
hence identically infinite. The uniformity follows by the usual com· 
pactness argument. 

In the opposite case the limit function U(I) is finite everywhere. 
With the same notations as above u,,+p(z) - U.(I) :ii 3(u.+.(zo) - u,.(I.» 
for Iz - z.1 ;!!i r /2 and n + p ~ n ~ m. Hence convergence at Zo implies 
uniform convergence in a neighborhood of Z., and use of the Heine-Borel 
pt'operty shows that the convergence is uniform on every compact set. 
The barmonicity of the limit function can be infened froin the fact that 
u(z) MIl be represented by Poisson's formula. 

EXERCISES 

LIfE is a compact set in & region 0, prove that there exists a constant 
M, depending only on E and 0, such that every positive harmonic fnnction 
u(z) in 0 satisfies u(e.) :a; Mu{z,) lor any two points '" z.e E. 
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4. THE DIRICHLET PROBLEM 

The most important problem in the theory of harmonic functions is that 
of finding a harmonic function with given boundary values; it is known 
as the Diriehlel problem. Poissou's formula solves the problem for a 
disk, but the care of an arbitrary region is much more difficult.. Many 
methods of solution are known, but none as simple and as suitable for 
presentation in an elementary text as the method of O. Perron, which is 
based on the use of subhmmonic fuMlsum. 

4.1. S .. "harmortic Funvriora.. uplace's equation in one dimension 
would have the form d'u/ tk' = o. The harmonic functions of one var­
iable would thus be the linear functions u = a.z + b. A function v(z) is 
RSid to be c"",," if, in any interval, it is at most equal to the linear func­
tion u(x) with the same values as v(z} at the end points of the interval. 

If this situation is generalized to two dimensions, we are led to the 
cl88" of subhmmonic func/ionB. Linear functions correspond to harmonic 
functions, intervals correspond to regions,. and the end points of an 
interval correspond to the boundary of the region. Accordingly, a funD­
tion v(z) of one complex Or two real variables will be called subharmonic 
if in any region .(z) is less than or equal to the harmonic function u(z) 
which coincides with v(l:} On the boundary of the region. Since this 
formulation requires that we can solve the DirichIet problem it is prefer­
able to replace the condition by the simpler requirement that v(z) ~ u(z) 
on the boundary of the region implies .(z) ~ u(o!) in the region. 

An equivalent but in 8(lrne simpler formulation is the 
foDowing: 

Defioition L A contin_ red.valw.tlfuMlion v(,), ddi'Mll. in a region 
0, .. BO.id 10 be subharmonic in I} if for any hartnonic funclion u(z) in a 
region 0' CO /lie difference v - It 8a1.isfie. IAe mozimum principle in 0'. 

The condition means that v - u cannot have a maximum in 0' with· . . 

out being iden9cally constant. In particular, v itself can lul.ve no maxi­
mum in o. It is important to note that the definition has local character: 
if. is aubharmonic in a neighborhood of each point Z E 0, tben it is BUb­

harmooic in 0. The proof is immediate. A function is said to be 8Ub­

harmonic at a point ... if it is subbarmonio in a neighborhood of z .. 
Hence a function is aubharmonic in a region if and only if it is aubharmonir. 
at allJ!9,iltts of tbe region . 
. .. ·Ali1IIol'I,,,,mc function is 

~;.,'i·· , : :' :.::.~" :-::. 
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calculus that a' /dX'(1I - u) ;:;; 0, a' I ay'(11 - u) :iI 0 at that point, provided 
that these second derivatives exist; this would imply .:\V = A(II - u) ;1; O. 
The condition is not necessary, and as a matter of fact a subbarmonic 
function need not have partial derivatives. If the function has continuous 
derivatives of the first and second order, it can be shown that the condition 
.:\11 ~ 0 is necesslll"Y and suffieient. Since we shall not need this property, 
its proof will be relegated to the exercise section. The condition yields a 
simple way to ascertain whether a given elementary function of z and y is 
8ubbanllonic. 

We show now that subharmonic functions can be characterized by 
an inequality which generalizes the mean-value property of h&mlonic 
functions: 

Theorem 8. A continuous fUnclilm 11(.8) i8 aubharmonic in I} if and only 
if it sati8jie. 1M iM-qUalilll 

(12) 

for every disk Iz - 1.1 ~ r contained in o. 

The sufficiency fo11ow8 by the fact that (12), rather than the mean­
value property, is what is actually needed in order to show that v. cannot 
have a maximum without being conBtant. Since II - u satisfies the same 
inequality, it follow8 that II is subbarmonic. 

In order to prove the necessity we form the Poil!8On integ! al P .(.8) in 
the disk Iz - z..I < r with the values of II taken on the circumference 
1& - %.1 = r. If II is subharmonic, the function II - P. can have no ms.x­
imum in the disk unless.it is constant. By Schwarz's theorem (Chap. 4, 
Theorem 25) II - p. tends to 0 as II approaches a point on the circumfer­
ence. Hence II - P. hIlS a maximum in the closed diu If the ma..nmllID 
were positive it would be taken at an interior point, and the function 
could not be constant. This is a contradiction, and We conclude that 
II :iI p.. For II = ,I. we obtain 11(110) ~ P'('.), and this is the inequality 
(12). 

We list DOW a number of elementary properties of 
functions: 

1. If II is subharmonic, I/O is kv for tmy COMtanI k S; O. 
2. If v, and v. are subharmonic, 30 is II, + II,. 
These are immediate consequences of Theorem 8. The next property 

follow. most ee.Hy from the original definition. 
3. If 0, and v. ore subharmonic in 0, IMn " -

subharmonic in o. 
(V"".) u likewise . . . .: ' 
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The notation is to be understood in the sense that ~(z) is at each point 
equal to the greater of the values ~1(Z) and u.(z). The continuity of v is 
obvious. Suppose now that v - u has a maximum at z. EO' where u is 
defined and harmonic in 0'. We may that v(z,) ~ V1(Z.). Then 

, 
for Z E 11. Hence v, - 1.1 is constant, and by the same inequality v - II 

must also be constant. It is proved that v is subbarm(lnic. 
Let .1 be a disk whose closure is contained in 0, and denote by P. the 

Poisson integral formed with the values of v on its circumference. Theu 
the following is true: 

4. II v is aubharillonic, then. t.he lmu:Mn v' cWin«l aa P. in .1 and aa u 
f1Idsi& oj .1 is alao aubharmonic. 

The continuity of v' follows by the theorem of Bchw&rJI. We have 
proved that v :;; P. in .1, and hence v :ii u' throughout O. It is clear 
that v' is subharmonic in the interior and exterior of.1. Suppose now 
that v' - tI had a maximum at a point z. On the circumference of.1. It 
follows at once that v - u would also have a maximum at z.. Hence 
v - tI would be constant, and the inequality 

v - tI :ii v' - tI ;:;; "(%0) - tI(z.) ~ v(z.) - u(z.) 

shows that v' - tI is likewise constant. We conclude that v' is 
8ubbsl'JllOniC. 

Remark. We are considering ouly continuous SUbhal"llloniC functions, 
but the generally accepted definition requires merely that the function be 
uppi: IlI!II,1cvntinuom. A real-valued function v(z) is upper semicontinuollB 
(u.s.c.) at z. if lim sup u(z) ;:fi; v(z.) and lower semicontinuous (l.s.c.}.if Jim. inf 

-~ -~ 
.(z) ~ v(z.). If in doubt, which is which, remember that upper refers to 
the upper balf and lower to the lower half of the double inequaJity u(z.) -
t < .(2) < v(z.) + t. It is aJ80 customary to aJIow an U.S.c. function to 
88SUIIle the vaJue - 00 and a I.s.c. function the vaJue + 00 • 

In aJI other' respects Definition 1 is unchanged. The maximum 
principle is.8lI meaningful for upper semioontinuoUB M for continuous 
functions due to the fact that an uppersemioontinuous function will aJ80 
attain a maximnm on any compact set (see Ex. 6). 

It l'aD al"" be shown that the inU>g. aJ in (12) has a meaning and that 
8 remain8 valid when to is ouly 1LS.C. 
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2. If f(a) is analytic, prove that 1!(a)I"(", !?; 0) and log (1 + If(z) I') 
are subharmonic. 

3. If v is continuous together with its partial derivatives up to the 
second order, prove that v is subharmonic if and only if All !?; O. Hint: 
For the sufliciency, prove first that v + u', a > 0, is subbarmonic. For 
the necessity, slww that if All < 0 the mean value owr a circle would be a 
decreasing function of the radius . 

.. Prove that a subhatmonie function remains subharmooic if the 
independent variable is subjected to a comom.al mapping. 

&. Formulate and prove .. theorem to the effect that a uniform limit 
of subhll.tln()nic functions is subbarmonic . 

•. If v(z) is upper semicontinuoll8 on the open set 0, show that it has a , 
maximum on any compact set E C 11. 

4.Z. Solution oj Diriehlet'. Problem. The first to use subbarmonic 
functions for the study of Dirichlet's problem was O. Perron. His 
method is charaetemed by extreme generality, and it is completely 
elementary. 

We consider a bounded region ° and areal-valued function!(t) defined 
on its boundary r (for clarity, boundary points will be denoted by t). 
To begin with, fa) need not even be continuous, but for the sake of 
simplicity we assume that it is b01lDded, I!m I ~ M. With each! we 
MSOciate a ba"monic function u{a) in 0, defined by a simple proOOI!ll which 
will be detailed below. If! is continuous, and jf I) &&tisfies certain mild 
conditions, the couesponding function u will solve the Dirichlet problem 
for 11 with the boundary values f. 

We define the class fI'J(f) of functions v with the following properties: 
(0) v is subharmonic in 0; 
(b) Iliii. v(a) ~ f(t) for all t E r. 

-r 
The precil!e meaning of (b) is this: glven • > 0 and a point fEr there 
existS a neighborhood fI,. of t such that v(z) < fa) + , in fI. f"I I). The 
class 18(f) is not empty, for it contains all constants ~ - M. We prow: 

'.emma 1. Tile fUMimI. u, defined /J8 u(z) = l.u.b. v(z) for " E 18(f), U 
/Jar"lonic in O. 

In the first place, each II is ~ MinD. This is a Bimple enough 
quence of the maximum principle, but because of its importance we want 
to explain this point in some detail. For a glven , > 0, let E be the set 
of points z e I) for which II(S) ~ M + a. The points II in the complement 
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~E are of three kinds: (1) points in the exterior of a, (2) points on r, 
(3) points in 0 with v(z) < M +.. In (1) z baa a neighbofhood 
contained in the exterior, in C(II!(! (2) there is a neighborhood II. with 
~ < M + ,in II. n 0, by property (b), and in c&sc (3) there exists, by con­
tinuity, a neighborhood in 11 with v < M +.. Hence -E is open, &nd 
E is closed, Moreover, since 0 is bounded, E is compact. If E were 
lIDt void, v would have a maximum on E, &nd this would also be a maxi­
mllm in 0. This is impoBllible, for beeau.ae of (b) V cannot be a constant 
> M. Hence E is void for every " and it follows that v ~ M in 0. 

Conaider a disk II. whose closure is contained in 0, and a point ao E 11.. 

There exists a sequenoe of functions v. E 0(j) such that lim v.(Zo) = v(Zo) . ...... 
Bet V. = max (Vl,V" ' •• ,v.). Then the V. form a nondecreasing 
sequence of functions in 0(j). We construct ~ equal to V. outside of 
A and equal to the Poiaoon integral of V. in A. By property (4) of the 
preceding section the ~ are still in 18(f). They form a nondecreasing 
sequence, and the inequality v.{ao) ~ V.(z.) :;; V~{z.) ~ v{z.} shows that 
lim V~(z.) - v(ao). By Harnack's principle the sequence I V~l con-..... 
verges to a harmonic limit function U in II. which satisfies U ~ v and 
U(a.) = v(z.). 

Suppose now that we stllort the same process from another point z. E A. 
We select ID. E 0(f) so that lim w.{z.) = v(z.), but this time, before pro-",. 
oeeding with the consttuction, we feplace 160 by w. ~ max (V.,fD.). Set­
ting W. = max (w., ... ,tll.) we construct the corresponding sequence 
I W~l with the aid of the Poisson integral and are led to a harmonic limit 
function U. which satisfies U ~ U. ~ v and U.(z.) - v(a.). It follows 
thai U - U. hili! the maximum zero at Zo. Therefore U is identically 
equal to U., and we have proved that v{z.) - U(z.) for arbitrary z, E 11.. 
It follows that v is barmonic in any disk II. and, consequently, in all of a. 

We will now inves~igate the cirCllmstances under which u solves the 
Dirichlet problem for continuous I. We note first that the Dirichlet 
problem does not always have a solution. For instance, if 0 is the 
punctured disk 0 < ·lal < 1, consider the boundary values 1(0) = 1 anu 
/Cf) = 0 for It! - 1. A harmonic function with these bollndary values , 
would be bounded &nd would, hence, p1'e8ent & removable singUlarity at 
the origin. But then the maximllm principle would imply that the fune-
ti~ ,..mobes identically thus could not have the bollndary value 1 at 
the oripn , It follows no soIutk>n can exiet. 

It is aieD eny to _.that a solution, if it·exiats, must be identical with 
In. fact",uU.. ia JUa.,of·aIl clear· U Ef8(j), 

• 
.,. ,t " Dm 



The existence of a BOlution can be 8Jl8erted for a wide class of regions. 
Generally speaking. the BOlution exists if the complement of !) is not too 
"thin" in the neighborhood of any boundary point. We begin by proving 
a lemma which, on the surface, seems to have little to do with the notion 
of thinDeBB. 

l.emma 2. Suppose that tAere exUta a h4rnwnicfuru;tion w(1) in 0 wMse 
continuous boundary value. <6(r) are .tridl.1J poBitWe euept at one poim 
r. wliNe ",(j 0) = O. Then. if J(r) is conUnUOUll at !' o. /he COl"'upcmcUng 
Junditm u def,erltlined b1J Pe .... m·' fMthod .ali8Ma lim u(z) = J(j.). -. 

The lemma will be proved if we show that Jljii U(I) ~ J(j.) + , and 
, -. 

lim u(z) 11; J(jo) - 6 for all 6> O. We are still assuming that n is 
• ·lIt 
bounded and If(j) I ~ M. 

Determine a neighborhood 11 of to such that IJ(j) - J(jo) I < • for 
r E 11. In 0 - 11 (\ n the function "'(I) baa a positive minimum "'0. We 
consider the boundary values of the harmonic function 

W(.) = !(jo) + • + .. (z) (M - !(jo». 
<60 

For t E 11 we h&ve W(j) !1; f(t.) + • > J(r), and for t outside of 11 we 
obt.ain W (j) ~ M + , > l(j). By the maximum principle any function 
u~(J) must hence satisfy v(z) < W(.). It follows that V(I) ~ W(.) 
and consequently Jljii u(.) ~ W(jo) = !(jo) +.. which is the first -t. 
inequality we set out to prove. 

For the second inequality we need only show that the function 

~(I) :.. l(j.) - • - ",(z) (M + J(r.» 
, ... 

is in ti(f). For i E 11 we have V(j) ~ J(jo) - • < !(i), and at all other 
boundary points V(j);:; - M - • < I(t). Since V is harmonic it 
belongs to ti(f) and we obtain v(z) !1; V(I),lim v(z) !1; V(j.) = J(j.) - •. 

This completes the proof. 
The function ",(I) of Lemm& 2 is IIOmetimesealled a barrier at the point 

to. Clearly, we can now say that the Dirichlet problem is solvable pro 
vided that there is a barrier at each boundary point. It remains to 
f(>rmuiate geometric conditions which imply the exiet.",ce of a barrier. 
Necessary and sufficient oonditions are known, but they are not purely 
geometric, and therefore difficult to apply. It is rebttively easy. however, 
to find sufficient eonditionswith a wide range' of appJimobility., .• 

" ' -':;:-._-, 



CONFORMAL MAPPING. DIRICHLET'S PROBLEM !111 

To begin with the simplest suppose that 0 V r is contained in 
an open half plane, except for B point to which lies on the boundary line. 
If the direction of this line is a (with the half plane to the left), then 
.. (z) '" 1m e ;-(z - t.) is a barrier at to-

More generally, suppoee that t. is the end point of a line segment all 
of whose points, except 1" .. lie in the exterior of 0. If the other end point 
is denoted by 1"., we know that a single-valued branch of 

can be defined outside of the segment. With a proper determination of 
the angle a the function 

1m r"' 

is easily seen to be a barrier at 1" •• 
This is not the strongest result that can be obtained by these methods, 

but it is 811 fficient· for most applications. We shan therefore be content 
with the following statement: 

Theorem 9. The Diric1Ild probleln can be 8Ol11ed for anti region 0 .uch 
that each. bouMary point is the end point of /J lim ~ tDhou other 
pointa are ezIerior to O. 

The hypothesi. is if Il and itB complement have a common 
boundary conllisting of a :finite number of simple closed curves with a 
tangent at each point. Comers and certain ty pes of CUBp8 are alBO 
permissible. t 

IEXIERCIIE 

If 0 is the pUnctured disk 0 < iz I < 1 and if I is given by 1m - 0 
for 11"1 ~ 1,/(0) = 1, show that all functions" E f6(f) are ;$0 in Il. 

o 

So CANONICAL MAPPINGS OF MULTIPLY 
CONNECTED REGIONS • 

Riemann's mapping theorem permits us to conclude that any two simply 
eonnected regions, :withthe exCeption of the whole plane, can be mapped 
COiUonlleJly onto each other, or that they are eonIoi"Wllu equiIJalM&t. 
" "'~'" ~.' '".' .'_., ' .. _. ':1 ".' _,," 

• • 
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For multiply connected regions of the 88Jlle connectivity this is no longer 
true. Instead we must try to find a system of canonical reqWn.s with 
the property that each multiply connected region is conformaJly equiv­
alent to one and only One canonical region. The choice of canonical 
regions is to a certain extent arbitrary, and there are several types with 
equally simple properties. 

In order to stay on an elementary level we will limit ourselves to the 
study of regions of finite connectivity. We shall find that the basic 
step toward the construction of CII,Ilonica1 mappings is the introduction 
of certain harmonic functions with a particularly simple behavior on the 
boundary. Of these the hanlwnic measures are related only to the region 
and one of its contours, while the Green's JUfIClion is related to the region 
and an interior point. 

$.1. HCII'monie MeGaurea. When studying the conformal 
a region II we can of course replace II by any region known to be COn­
formally equivalent to II, that is to say, we can perfOl'm preliminary con­
formal mappings at will. Because of this freedom in the choice of the 
original region it turna out that it is neVllr . to deal with the 
di1liculties which may arise from a complicated structure of the boundary. 

In the following II denotes a plane region of connectivity n > 1. The 
components of the complement are denoted by E

" 
Eo, . . . ,E., 8Ild 

we take E. to be the unbounded component. Without loss of generality 
we can and will assume that no E. reduces to a point, for it is clear that 
a point component is a removable singularity of any mapping function, 
and consequently the mappings remain the S8Jlle if this isolated boundary 
point is added to the region. 

The complement of E. is a simply connected region 0'. By Riemann's 
thcorem, 0' can be ma.pped conformaJly onto the disk Izi < 1; under 
this mapping II is transformed into a new region, and the images of 
E" ... , E~l are the bounded components of its complement. For 
the Mke of convenience we agree t~ use the same notations as before the 
mapping; in particul .... , E. is now the set Izi ~ 1. The unit circle Izi = 1, 
traced in the positive direction, will be denoted by C. and is caJled the 
outer contour of the new region II. 

Consider now the complement of E, with respect to the extended 
plane. This is again a simply. connected region, and we map it onto the 
oulBide of the unit circle with ao corresponding to itself. The image of C. 
is a directed closed analytic curve which we continue to denote by C., just 
as we keep aJl the other notations. In addition we define the inner con­
toor C 1 to be the unit circle in the new plane, traced in the negative 
direction. . .. 

• 

, , - . . . ,- -' . 
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CONFORMAL MAPPING. DIRICHLET'S PRO.LEII 

The procena can evidently be repeated until we end up with a region 
(J bounded by an outer contour C. and .. - linner contours C" ' .. ,C._l 
(Fig. 6-3). It is important to note th .. t the index of a contour with respect 
to an arbitrary point in the plane can he readily computed. For illlltance, 
at the 8tage where C., k < .. , is the unit circle, the index of C. is -1 with 
respect to interior points of E. and 0 with respect to a.I1 other points not 
on C.. The subsequent mappings will not change this state of affairs. 
The fact is clear, and a formal proof bsaed on the argument principle 
can easily be given. One show. in the same way that the outer contour 
C. has the index 0 with respect to interior points of E. and the index 1 
with respect to all other points not on C.. It follows that t.he cycle 
C = C. + C. + ... + C. bounds 0 in the 8e1llle of Chap. 4, Sec. 5.1, 
Definition 4. The distinction between outer .. nd inner contours is coin­
cidental, for evidently an inversion with respect to an interior point of 
E. will make C. the outer contour. 

It is clear that Theorem 9 applies to O. As .. matter of fact the 
exi8tence of a barrier is completely obvio\18 since any contour can he 
transformed into a circle. 

c, 

c. 
c, 

""f •. 
, . -. ," ,. . . , ., .• '"'",< ... ".-' " .... :, '.-", . 
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Suppose now that we 80Ive the Dirichlet problem in 0 with the bound­
ary values 1 on O. and 0 on the other contours. The 8OIution is denoted. 
by ... (2), and it is called the hamumk fMlJ8Un: of O. with respect to the 
region O. We have clearly 0 < ... (2) < 1 in 0 and 

",,(.8) + "'.(11) + . . . + w..(z} ... 1. 

If we map n 80 that 0, becomes a circle, then ... can be continued across 
0, according to the rellection principle. We conclude that "'l is har­
monic in the closed region n in the sense that it can be extended to a larger 

• regIOn. 

The contours CI, ..• ,C_. form a homology for the cycles in 
0, homology being understood with respect to an unspecified larger region. 
The harmonic differential of "" has periods ' 

along OJ. We that no linear combination )..",.(z} + ).,.,.(z) + ... 
+ ).,_,",...-1(2) with constant coefficients can have a single-valued conju­
gate function unlellS all the A.; are l!erO. To this, suppose that this 
expression were the real part of an analytic flmction f(z). By the reflec­
tion principle, f(ll) would have an analytic extension to the closure of n. 
The real part of f(z) would be constantly equal to A.; on Ci , i = 1, ... , 
n - 1, and l!erO on 0... Consequently, each contour would be mapped 
onto a vertical line segment. If Wo does not lie on any of these segments, 
a Bingle-valued branch of arg (f(z) - wo» can be defined on each contour. 
It follows by the argument principle that !(Il) CIIDIlOt take the value Wo in 
O. But then !(z) mnst reduce to a constant, for otberwise the image of 0 
would certainly contain points not on the line segments. We conclude 
that the real part of I(Il) is identically zero, and hence the boundary values 
A.; mWlt all vanish. 

What we have proved is that the homogeneoWl system of linear 
equstions 

(13) ).'''1./ + )..,,~ + . . . + ). .... , ... l.j = 0 (j = 1, ... ,n - 1) . 

has only the trivial 80lutinn ).i = 0, for these are the conditions under 
which ).''''' + . . . + )..-1"'_1 has a single-valued conjugate. By the 
theory of linear equstions ADy inhomogeneous system of equations with 
the same coefficients &8 (13) must have & solution. In particulv, we 
conclude that it is poBBible to solve the system 
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}.,all + }. ... " + . . . + }.._ta._,.l = 211' 
}.,au + }.,au + . . . + >..-,a. '.' = 0 

(14) . . . . . . . . . . . . . . . . . . . . . . . . . . . 

}.,a,._, + }..a ........ ' + . . . + >"-ta.-, ....... , - 0 
}.,a .. + }.oa .. + ... + >"-,a.-t .• ~ -211' 

where the last equation is a consequence of the n - 1 fim (becauae 
a.., + au + . . . + a... = 0). In other words, we can find a multiple­
valued 1(31) with periods ±2rialong C,and C. and a.II other periods 
equal to aero, the real part being constantly equal to '" on C. (we set 
>.. - 0). The function F(z) = ef(» is then single-valued. We prove: 

Theorem 10. The luncl.ion F(z} eiTedB « 0M-t1Hltle conf!W1nal f1I4pping 
of n onto the annul .... 1 < ItDl < Co. min .... n - 2 concentric aTC8 sitlUlted on 
the circl4 ItDl = e", i - 2, • . • ,n - 1. 

The mapping is illustrated in Fig. 6-4. The contours C,and C. are,in 
one-to-one correspondence with the full circles, while the other contours 
are Oattened into circular olits. It should be imagined that each olit has 
two edges which together with the end points form a closed contour. 

The proof is by of the argument principle. We know that F(z) is 
analytic with a constant modulus on each contour. The number of roots 
of the equation F(z) = tDo is given by 

{IS} 1 f F'(z) dz + .1 j.' P(:) dz + ... 
2ri le. F(z) ,- fDo 2ri c. F(z) - fDa 

+1 f F'(e}dz, 
2ri le. JI'(z} - tD. 

'at any rate if tDo is not taire'l on the boundary. For tDo = 0 tbe terma in 
(1S) are known,' being equal' to 1, 0, . . . , 0, -1, respectively. The 

c, 0 
c. 

. '-- . ' , , , 
, , 

'. "'" ' " , , 
_" , .0 .... -. , , ' 

" - .... :..'.', ,. ,",. , " . " ....... . 
, 
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integral over C 1 remains constantly equal to 1 for Iwol < (}', and it 
vanishes for Iw.1 > el'; similarly, the last integral is -1 for Iw.1 < 1 and 0 
for Iwol > 1. The integraJs over C., 1 < k < n, vanish for alI w. with 
\wol ... e~·. Suppose now that the value Wo is actualIy taken by F(z);inas­
much as (I must be mapped onto an open set, we can choose IUI.I ... all tr<. 
For this Wo the expression (15) must be positive. But that is possible 
only if 1 < IUlol < el'. Thus)., > 0 by continuity, 0 =< ).; ;:! ).,. 

From here on the proof could be completed by means of a purely 
topological argument. It is more instructiw, however, and in fact 
simpler, to draw the conclusion from the argument principle. When 
there are simple poles on the boundary, the residue theorem continues to 
hold provided that the contour is repl$ced by its Cauchy princi­
pal value, and provided that the BllD1 of the residues includea .;me-hall of 
the residues on the boundary. t In the present situation the second con­
vention means that a value taken on the boundary is counted with half 
its multiplicity. The computation of "the principal values causes no 
djfficulty. If Iwol ~ ell, we find that 

j." F(z) dz 1 r P(z) dz 
pro V. III F(z) _ Wo ~ 2 le. FCz) , 

for by elementary geometry (or direct computation) 

d arg (F(z) - wo) ~ t d arg FCz). 

Consequently, the principal values in (15) are t for k = I, 0 for 2 ~ 
k ~ n - I, -t for k = n. 

We conclude now that each value on the circle Iw.1 = lor IUlol = e~' is 
taken on&-half time, that is to say once on the boundary; this proves that 
C1 and C. are mapped in a on&-to-one manner and that 0 < ).; < )." 
i ... I, n. Next, if 1 < Iwol < (}', it follows that Wo is taken either once 
in the interior, twice on the boundary, or once on the boundary with the 
mnltiplicity 2. On each Contour C., .•• , C._1 a singl&-valued branch 
of arg F(z) can be defined, and the values of multiplicity 2 correspond to 
relative maxima and minima of arg F(z). There is at least one maxi­
mum and one minimum, and there cannot be more or else F(z) would 
PMI' more than twice through the same values. Furthermore, the differ-­
ence between the maximum and the minimum must be <2..-, which 
shows that each contour is mapped onto a proper arc. Finally, the arCB 
which correspond to different contours must be disjoint. 

t In Chap. 4, Bee. 6.3, the Cauchy principal value W8& intloduced in the C""8 of 
an intepal over a strailht line. In the M'e of a.u arbitrary an-lytio KO it is aimpleBt 
to define the principal value by melDe of lID .n.ili_ry conformal mapping which 
f,nm"orma a suharc into a line aepnent. 'I'M ... ·tE Ii aeaualisation of the nddue 
theorem folio ... quito 8Roily .... d prove. that the principal value is indeVJndent of the 
"uziJiary collformol mapping. 
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We have proved the complete Theorem 10, and in addition we have 
been able to describe the conespondence of the boundaries. The Big­
nillcance of the theorem is that we can map Q onto a canonical region 
bounded by two eircles and n - 2 concentric circular slits; by way of 
normalization the radius of the iDner circle is chosen equal to 1. For a 
given choice of C, and C. the canonical mapping is uniquely determined 
up to a rotation. This follows from the fact that the system (15) has 
only one solution. 

The shape of a canonical region of connectivity n depepds on 3n - 6 
real constants. In fact, the position and Bize of each slit is determined 
by three numbers, a total of 3n - 6; the thiclm_ of the annulus gives 
one additional parameter, but another parameter must be discounted to 
allow for the arbitrary rotation. 

EXERCISES 

:I. Prove directly that two circular annuli are conformally eqnivalent 
if and onlY if the ratios of their radii are equal. 

2. Prove that ""I = <Ij<. Hint: Apply Theorem 21, Chap. 4. 

S.2. GreeR'. FundioR. We suppose again that Q is a region of finite 
connectivity, and as preliminary conformal mappinp will he 
permissible we can 088ume that 11 is bounded by analytic contours 
C., •.. , C.; this time the case n = 1 will he included. 

We coneider a point z. E II and solve the Dirichlet problem in 11 with 
the boundary values log Ir - z.l. The solution is denoted by G(z), but 
the main is attached to the function g(z) = G(z) - lor; Ia - z~, 
known as the Green'. fWIClion of 11 with pole at Zo. When the dependence 
on z. is emphegjled, it is denoted by g(z,z.). 

The Green's function is harmonic in 11 except at z., and it vapil!hes 
on the boundary. In a neighborhood of z. it ditJers from - log I" - z.1 
by a harmonic function. By these propertiesl1(z) is uniquely determined. 
In fact, if g,(z) has the same properties, then 9 - g. is harmonic through­
out 11 and vanishes on the boundary. By the maximum principle it 
fOllows that g, is identically equal to g. • • 

If two regions are conformoUy equivalent, then the Green's functions 
with OOti esponding poles are equal at points which correspond to each 
other. To he more explicit, let 111 = z(t) define a one-to-one conformal 
mapping of a region 11' in the t-plane onto a region Q in the z-plane. 
Choose a point r. E 11' and denote by g(II .... ) the Green's function of Q 

with pole at z. - "cr.). It is claimed that g(II(I"),..) is the Green'a funo­
tiob.of 0' ... Tobep with/'if t,telid,·,'f6\:.b&1Bidatt· .. 

. _~ofo,' ... . 
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values zero. As to the behavior at to we know that g(z(i),z,) diilers from 
-log Iz(i) - z(i.) I by a harmonic function of z(f), and henee by a har­
monic function of i. But the diilerenee log Iz(j) - z(io)1 -log Ii - i~ 
is el!!() hannonic, and it foll6ws that g(z(i),z.) has the desired "behavior 
at to. We have proved that the Green's function is irlllariant lInder con­
formal mappings, and it is in view of this inv&ri&nee that preliminary 
conformal mappings can be performed at will. 

In the case of a simply connected region there is a simple connection 
between funotion and the Riemann mapping function. For the 
unit disk Iwl < 1 the Green's function with respect to the origin is evi­
dently -log Iwl. Therefore, if w = J(z) maps n onto theunit disk with 
z. going into the origin, we find by the invari&nce that 

" 

g(z,zo) = -log IJ(z)l. 

Conversely, if g(z,z.) is known, the mapping function can be determined. 
The Green'. function has an important symmetry property. Given 

two points Z" z. E 0, we write for short g(a,z,) = g" (/(z,z.) = g.. By 
Theorem 21, Chap. 4, the diilerential g. *dg. - (/. *dg. is locally exact 
in the region obtained by omitting the points II, and II, from Q. If c, and 
c. are smaU circles about z. and z" described in the positive sense, the 
cycle 0 - c. - c. is homologous to zero (as before, 0 = O. + . . . + OJ. 
Since (/. and II. van; sh on 0, we conclude that 

1+ (/' .dg. - II. -dg, = o. J,a ~ 

Introducing G, = ", + log Iz - 11,1 we have *dg. = *dG. - d arg (z - z.) 
and find 

{ (/. *dg, - g •• dg.= J.' G. *dg. - g. ·dG. - r log 111' - z.1 *dg. loa CJ J~. 

+ /.. gtd arg (z - z,). 

On the right-hand side the first integral vanishee because O. and g. are 
harmonic inside C" and the second integral vanishes because Iz - z.1 is 
constant on c. and -du. is an exact di1ferential in a neighborhood of z •. 
The last integral equals 2.-g.(z.) by the mean-value properly of h8l'lIlonic 
functions. In a symmetric way the integral over c. must equal -2.-II.(Z.), 
and it is proved that g.(z.} - (/.(z.) = 0 or 

(/(z.,z.) = g(z" •• ). 

Because of this symmetry property the Green's function II(Z,Zo) is har-
monic also in the second variable. ' 
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The conjugate function of g(2,2.), denoted by h(2,z.), is of course 
multiple-valued. It hu above all ihe period 2.- along a small circle c 
about 16.. In addition, it h88 the periods 

(II: ~ 1, ..• ,n). 

Lemma 3. The perioIlP.(ao) equ4l. the harmonk IMIJ8UI'6 ""('0) multiplied 
by 2r. 

The proof is another application of Theorem 21, Chap. 4. We 
expre88 the fact that the integral of "" *dg - g *d<.>. over C - c mllBt 
vanish. The iutegral over C reduces to P.(z,), and by the ~ame computa­
tion 88 above the inteKl'al over c equals 2,..", .(ao). Hence P.(z.) - 2.-"'.(20). 

5.8. Para.lel Silt Regio.... A little more explicitly than before, let us 
write 

(16) g(l,z.) = G(z,ao) - log Iz - •• 1 
withzo = 0:. + iYoEO. WeknowthatG(z,z.)issymmetric,andharmonic 
in each variable; as a function of z it has the boundary values log Ii - 2.1. 

Consider the difference quotient Q(a,h) .. (G(2,Z. + II) - G(z,z.»/h 
where we choose h real and 80 small that Zo + h is still in 0. Thls is 
.. h·'DloniC function of z with boundary values (log Ir - Zo - hi -
log Ir - •• j) /h. As II -4 0 these boundary values tend uniformly to 
a/inolog Ir - 201 = -Re l/(r - aD). It follows by the maximum-mini­
mum principle that Q(',h) tends to ita limit (a/iJO:o)G(z,zo) uniformly, 
not ouly on jXlmpact sets, but on all of Q. If we include the boundary 
values, we have thus uniform convergence on the closure 0-, which is a 
C!Ompact set. The conclusion is that (a/hoW(Il.z.) is hal1l1onic in 0,88 a 
f1 IDction of z, and that it has the boundary values -Re l/(f - zo). If we 
compr.re with (16) it follo .. s that u,(a) - (iJ/h.)g(z ••• ) is ha .. monic for 
~'. pf z"continuoualy zero on the boundary. and differs fromRe 1/(.- '0) 
by. a b.nlloni~ fnnction. 

- .- -. , 

" The conjugate differential of U1(') has certain periods A. along the 
. Contours C.. But it is easy to construct a linear combination of u,(.) 

the harmonic measures 6>j(z) whose conjugate differential is free from 
... periods. Indeed, U1 + ).''''' + . . . + ).~,,,,~, hu this property pro­

vid~ that 

(Ie - 1 ••.. • n - 1). 

Imow already that this inhomogeneous Bystem of equations always 
a . . .: We 'havlftBii'I! establi.shed th$ existence of a funCtion 

, ". _. -"',.' .,:' 
'. "., -" ".-.:,:-. ";-.~:~ ,'.;';: '.,.i·c' ,"",C _ ,. _. -' ,',.'.'.'- _,'"" 
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pea) which is single-valued and a.nalytic in Il, except for a simple pole 
with the residue 1 at aG, and whose real part is constant on each contour. 
By these requirements p(z) is uniquely deteI'mined up to an additive 
constant. 

By differentiation with respect to YG we conclude quite similarly that 
v.(z) = -(a/ay.)g(z,z.) vanishes on the bonndary and has the same 
singularity as 1m 1/(z - a.'. If a suitable linear combination of har­
monic measures is added, the conjugate function becomes single-valued. 

Hence there exists a single-valued analytic function g(z) with the singular 
part 1/(16 - 16.) whose imaginary part is constant on each contour. 

The fnDctions p(z) and g(z) lead to simple oanonical mappings . 
• 

Theorem II. The moppifl{/8 determined by pe,) lind g(z) are 0118 to 0118, 
and tM image oJ Q iB a alit region w1lo&e complemant con&i3t8 of 11 vertical or 
horiaontal aegrnentB, rupectWelll (Fig. 6-5a, b). 

The proof is quite similar to that of Theorem 10. This time the 
• expreBSlon 

(17) 
• 
" 1 ( p'(a) dz 
L, 2.ri fe. p(z) . - W • 

• -1 

represents the number of zeros of pea) - fD. minus the number of poles.· 
But it is easy to see that (17) vanishes for all W" including bonndary 
values. In the latter c~"6 the principal value must be formed, bui if 
w. is taken on C. the imaginary part of p'dz/(P - wG) vanishes along 
C. and there ill DO difficulty whatsoever. Since there is exactly one pole 
we conclude that pea) takes every value once in the interior of 0, twice 
on the boundary, or once on the boundary with the multiplicity 2. The 
rest of the proof is an exaet duplication of the earlier reasoning. The 
proof remains valid for q(zj without change. . 

Pil.raIleI slit regioD@ may be thought of as canonical regions, but they 
are not all confonnally inequivalent, even if it is required that the point 
at ... should correspond to itself. For instance, the mappings by pea) 

I 

22 

I 
• 

(0) (6) ..... I. 
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and iq(z) lead to vertical slit regions which are different, but confor­
mally equivalent. It is only for mappings with the same residue at 
Zo that the slit mappings are uuiquely determined, except for a parallel 
translation. 

EXERCISES 

1. Prove that g( •••• ) is simuitaneolllliy continuous in both variables, 
for z ¢,... Hinl: Apply the maximum-minimum principle to G(z,'o). 

2. Show that the function e-"'(q cos « + 'p sin «) maps Q onto a 
region bounded by inclined slits • 

... Using Ex. 2, show that p + q maps Q in a one-to-one manner onto 
a region bounded by convex contours. Comments: 

(i) A closed curve is said to be convex if it intersects every straight 
line at most twice. 

(ii) To prove that the image of C. under p + q is convex we need 
only show that for every « the function Re (p + q)e" takes nO value more 
than twice on C.. But Re (p + q)e;" dift'ers from Re (q cos« + ip sin «) 
only by a constant, Bond the desired conclusion follows by the properties 
of the mapping function in Ex. 2. 

(iii) Finally, the argument principle can be used to show that the 
images of the contours C. have winding number 0 with respect to all 
values of p + q. This implies, in particular, that the convex curves lie 
outside of each other. 

, .. ,'.':,.- .~ .--,:,:.-;~,.<. ,,-, . -. -' -':'-',-,".'-'> .~-,' -: .-- ,- - .... "- , -.- , 



7 ELLIPTIC FUNCTIONS 

1, SIMPLY PERIODIC FUNCTIONS 

.. ' ." 

A function J(z) is Mid to be periodic with period ., JO! 0 if 

J(. + .,) = J(tz) 

for all.. For inatance, ". h"" the period 2ri, and sin z and C08 Z 

have the period 2r. To be more precise, we are interested only 
in analytic or meromorphic functions I(tz), and they shall be 
considered in a n which is mapped onto it.aelf by the tranlr 
Iation ...... z + ... 

If .. i8 a period, 80 are all integral mnltiples ..... There may 
be other periods "" well, but for the present we focus our atten­
tion exelusively on the periods..... From t.bi. point of view we 
shall call J(z) a simply pe;iotlic 1'ImCtWn with period w. In par­
ticnlar, it is irrelevant whether .. is itseH a multiple of another 
period. 

1.1. Repre.entation. by &po .... ntiab. The simplest function 
with period w is the exponential e· ... I•• It is & fundamental fact 
tlui.t any (unction with .. can be expressed in terms 0( this 
particular function. 

Let n be a region with the property that II e n implies 
Ii + .. E n and " - .. E 0. We defiD\! Il' in the r-plane to be the 
m....p 0( 0 undertha r - ek"I.; it is obviously & re.ion. 
For instance, if 0 is the plane, then 0' is the plane punCo-

'lfOiaalJlll-al1ehtrip,d!'fjnellbytJ < 1m (Zrn/ .. ) < b, 

_.' -":"--"-~;~-'-" 
.. " __ ._',: -..oJ,'_'",.""" ,_, 

... t"~' ;'Ii ..... '. o· ., •... ;., ..••.. 
'pr~' •. , ~-'''' .. -,'- ",; ',> 1_.:;"'.· .. ';\'" .. 1:.1".", ,".' '; 

, ",-";---,~~-",,",,,-, ... ,.;.,; . "- " .... _. "-"~''''. ,,' .. :",--,..,- , ____ ~-''' .• ', •. , P: 

• 
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Buppose that fez) is meromorphic in g and has the period.,. Then 
there exists a unique function F in 0' such that 

(1) 

Indeed, to determine F(r) we write r == 6·ft.'M; z is unique up to an addi­
tive multiple of ." and this multiple does not influence the value fez). 
It is evident that F is meromorphic. Conversely, if F is meromorphic in 
fl', then (1) defines a meromorphic flmction / with period .,. 

1.2. TIut Fourier De .. efopment. Assume that 0' contains an annulus 
r, < Irl < r. in which F has no poles. In this annulus F has a Laurent 
development .. 

F(r) == k c..t", .--.. 
and we obtain .. 

fez) = k c.e''''''''. -. 
This is the complex Fourier development of f(z), valid in the parallel strip 
that corresponds to the given annulus. 

The coefficients (ct. Chap. 5, Sec. 1.3) are given by 

c.. == ~ lr,-r F(r)r--' dr, (r, < r < r,), 

and by change of variable this becomes 

l/.e+_ . c.. == - !(z)r'''''·'· th. 
.. G 

Here a is an arbitrary point in the parallel strip, and the integration is 
along any path from a to, a + '" which remains within the strip. If /<z) 
is analytic in the whole plane, the same Fourier development is valid 
everywhere. 

1.3. Functions of Finite Order. When 11 is the whole pIane F(r) has 
i!!Olated singularities at r == 0 and r == <0. If both th_ singuIarities are 
inessential, that is, either removable singularities or poles, then F is a 
rational function. We say in,this case that/has finite order, eqnal to the 
order of F. 

We reea1l that a rational function IL88I1III6S every complu value, 
including GO, the same numlier of times, provided that we observe the 
usual multiplicity convention. We Obt,ajD a aimilar for simply 
periodic functions of finite order if we aglee not to dlstingllish between J 
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and • +... For convenient terminology, let US say that I + "'" is 
equivalent to 2. If f is of order m we find that every complex value 
e #- 1'(0) and 1'( .. ) is at In inequivalent points, with due count 
of multiplicities. We observe further that f(.) -+ 1'(0) when 1m (./ .. ) -+ 
-.. and 1(.) -+ l' (IX» when 1m (./ .. ) -+... If we are willing to 
aglee that values are also "assumed" (with proper multiplicity), 
we can maintain that all complex values are M'lUmed In times. 

For another interpretation we may consider the period strip, defined 
by 0 ::!ii 1m (./ .. ) < 2r. Since this strip contains only one representa­
tive from each equivalence c\ess we find that f(.) assumes each complex 
value In times in the pmi.xl. strip, except that the values 1'(0) and P ( IX> ) 

require a special convention. 

2.. DOU.L Y PI!IUODIC FUNCTIONS 

The terms dliptic luneti;m and doubly periodic lu1llJlilm are interchangea­
bl .. ; we have ,already met examples of such functions in connection with 
the conformal mapping of rectangles and certain triangles (Chap. 6, 
Sec, 2). Elliptic functions have been the object of very extensive study, 
partly becaUBe of their function theoretic properties and partly because 
of their importanoo in algebra and nnmber theory. Our introduction to 
the topic covers only the most elementary aspects. 

. 

2.1. The Peri"" M""ule. Let /(z) be meromorphic in the whole piane. 
We aha!) !lumine the set M of all its periods. If .. is a period, so are all 
integral multiples ""', and if "" and "I belong to M, SO does ... + "I; 88 a 
consequence, all linear combinations ",,,, + n,." are in M. In algebra, a 
set with these properties is called a module (more precisely: a module 
over the integers), and we sbail .".11 M the period wwdvle of /. 

AJI8I't from the trivial case of a constant function, M has also a 
topological property: all its points are isolated. In fact, since/( .. ) ~ /(0) 
for aU .. E M the eDetenee of a finite accumulation point would imme­
diately imply that / is coDBtllllt. A module with isolated points is said to 
be~ 

Our first step is to determine all discrete modulell. 

Theorem 1. A .lisa de wwdule ~ eiIAer of zero alone, of 1M Wegral 
"'" of II nfl{lle eOblplez number .. #- 0, (Jt' '" aU line/Jl' cornbinatitmll 

:. "I'" + "'''a 1Dith integral '" lV10 number. "'., ... wilI& 1IOftI'eIJl '. 

• 
• 
• 

...;"',. 
i - . 

" All .[)On .. M containe a nllQ:ber .. #-. 0 it. also contain. cme, eaU it 
~ ~~. value iu ~up'- .. 1iIdIjid, if r is Jarp enouah the 

--- '-"-
, . 
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disk Izl ~ r contains a point from M, other than o. Because the points 
are il!Olated there are only a finite number of such points, and we 
... , to be one closest to the origin (the reader may show that there are always 
2, 4, or 6 points). The multiples '"'" are also in M, and these may 
be all. 

Suppose now that there exists an ... E M which is not an integral mul­
tiple of ... ,. Among alI such there is one, "" whose absolute value is 
smallest. We claim that .... / ... , is not real. If it were, there would exist 
an integer n such tbat n < ... .; ... , < n + 1. This would give 0 < 
I'"", - .... 1 < 1 ... ,1, an obvious contradiction. 

It can now be concluded that all numbers in M are of the form n, ... , + n..... First of all, because ",./ .. , is nonreal any· complex number ... can 
be wl'itten in the form ).''''' + )..",. with real )., and )... To see this we 
need only solve the equations 

.. = )., ... , + ). .... . 
0, = ).,0., + ). .... . 

Since the determinant ""0,. - ".w, is ¢ 0 the system has a unique solu­
tion (>.,,)..); but (X"A.) is also a solution, and we conclude that )., and ).. 
are real. To continue the proof, there exist integers m" m. such that 
I)., - m,l ;::a; t, I)., - mil ~ i. If '" belon~ to M, so does 

We have 1",'1 < t I"JI + 1 1 ... 1 ;:1; 1",,1 where the first inequality is strict 
because "" is not a. real multiple of...... By the way",. was chosen it 
follows that ",' must be an integral mUltiple of "'" and hence .. has the 
asserted form. 

2.2. Unimodu'- Tran¥ormatio.... We assume henceforth that it is 
the third alternative in Theorem 1 that occurs. The pair ("","J) has the 
property that any '" EM' has a unique representation of the form 
'" = fl,,,,, + n..... Any pair with this property will be ca.Ued a bafts of M 
(even if it is not determined by the construction in the proof of Theorem 1). 

We investigate the relation between two bases ("",,,,.) and ( .. ~, .. ~. 
Because ("", ... ) is a basis there exist integers a, b, c, d such that 

(2) "'~ = _. + b"" 
.. : = C<.oI. + dr.>,. 

We prefer to write these equations in matrix form 
, 

a b 
c d "" • 

"" 
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The 88me relation iB valid Cor the complex conjugates, and we have thus 
-

(3) "" ... -
(Ill """ 

• 

Since ("':''''~ is also a basis we have similarly 
• tr b' 

, -, 
(4) 

... "" "" "'--- tI rr -
"'~ 

-, 
"" "" "" 

with integral tr, b', c', d'. 
From (3) and (4) we obtain 

- rI b' b -
(5) ". "'. II ... "" • - c' d' d -

"" "" c "" "" 
Here the determinant "' ... , - ""';'. is ~O, for otherwise any two numbers in 
the module would have a real ratio, contrary to 88Sumption. A matrix 
with determinant ~O has an inverse I1l8.trix, and if we multiply (5) by the 

ab a' b' 
The matrices d and tI d' are inverse to each other. In par-. c 
ticular, their determinants must 88tisCy 

II b 
• 

c d 
= 1, 

and since both are integers we must have 

b' -rr - ± 1. 

J'near transformations of the form (2) with integral coefficients and 
determinant ±1 are eeid to be uniflWdu/ar. We have proved: 

A .. " tvJo baas. of 1M _ module ore connedM by a 
1rtm4~, 

Geometrieally, it is netural to oonsider the parallelo~ SPl.1lned by 
a beads ("' .. ..,) in ita to the lattioe formed by all in tho 
module. 'Figure 7.1_wli two b_ of the I!IIme module. Oboone that 
the paralle\op arn8 have equal area. 

.' .. We .'. • tll&t~ tbeooneapondinl 

, ': :.', '.", '. 

"':'--'--"'/,'",", ,· ... ··,": .. -':i·· ", "., 
, "1' '" ",'~'" ',: .••• 1.: - ;-.•. -,,-~;'~,' .,' , " ',"- .:" '" .," ., ,~" .... ' - .,: ,.'>. .• ' -',' -'," '. ""::.'," . ,- " ""'" ,~,_ ,_ ... _,v, 

- '~,.~: <,.' ..... ' . . " .. .. 
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FIG.7.t. Period module. 

2.3. The Canonical Basi.. Among all possible bases of M it is possible 
to si ogle out one, almost uniquely, to be called the canonical basis. It 
will not always be , or even desirable, to use such a special 
basis, but it is important to know that one exists. Except for minor 
adjustments it will be the basis introduced in the course of the proof of 
Theorem 1. 

Theorem 2. There exU!18 a ba8i8 ("",..,.) 8UCh. !hat lhe ratio l' = ",./"" 
roli8jies the followi'1l{J cundititm&: (i) 1m .,. > 0, (li) -l < Re l' ::> i, 
(iii) 11'1 ~ 1, (iv) Re .. ~ 0 if 11'1 = 1. The ratio l' i8 uniquely deWrmiMd 
by !hue conditions, and there is a choice of ttlXl, fouT, rd six cOJ"'8spoodi'1l{J 
bases. 

Proof. If we select "" and "" as in the proof of Theorem 1, then 1"',1 ::> 
1.,,1, 1 .. ,1 & I"" + ",.1, and 1 ... 1 ::> I .. , - .,.1. In tenns of ,. these condi­
tions are equivalent to 11'1 ~ 1 and IRe 1'1 ::> i. If 1m,. < 0 we replace 
("",.,.) by (-.. , .... ); this makes 1m l' > 0 without changing the condition 
on Re T. If Re .. = -t we repl&ce the basis by ("", .. , + ,,"), and if 
11'1 = 1, Re l' < 0 we repl&ce it by (-"' .... ,). After these minor changes 
all the conditions are satisfied. . 

Geometrically, the conditions (i) to (iv) mean that the point l' lies in 
the part of the complex plane shown in Fig. 7-2. It is bounded by the 
circle 11'1 = 1 and the vertical lines Re l' = ±i, but only part of the 
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boundary is included. Although the Bet is not open, it is referred to lIS the 
fundamental regi<Jn of the unimodular group. 

We have seen that the most geneml chMge of basis is by a uni­
modular transformation. If the new ratio is 1" we obtain 

(6) 

with ad - be = :1:1. Simple computation gives 

(7) 

, 

I ' ±ImT 
m .. = I~+dl. 

where the sign is the sam'3 lIS that of ad - be. 
Suppose that both l' and 1" are in the fundamental region. We shall 

show tbat they must then be equal. Our first remark is that it is the 
upper sign that is valid in (7), Md hence ad - be = 1. Second, because l' 
and .. ' play symmetric roles, we are free to &'lflume that 1m .. ' ~ 1m 1', 

It then follows from (7) tbat I.". + dl ;:!!! 1. Because c and d are integers, 
there are very few possibilities for tbis ineqUality to hold. 

One such po88ibility is to have c = 0, d = ± 1. The relation ad -
be = 1 reduces to ad = 1, and because a and d are integers either a = d = 1 
or a - d = -1. Equation (6) becomes.' = T ± b, Mdby condition (ii) 
it follows that Ibl= IRe 1" - Re 1'1 < 1. Therefore, and because b is an 
integer, b = 0 Mdr' = T. 

, Assume now that e '" O. The condition I .. + dlel ;:!!! l/lel implies 
lei = 1, for if lei were $;2, the point .. would be at a distance ;:!!!i from the 
real .... is, which is obviously impossible, the nearest point in the funda­
mental region being at a distMce 0/2. Thus IT ± dl ;:!!! 1, and a glance 
at Fig. 7-2 shows that this can occur only if d = 0 or d = ± 1. The 
inequality IT + 11 ;:;; 1 is never fulfilled, for the point ek '/. is not in the 
f\l(\damental region, and IT - 11 ;:!!! 1 only when l' = tOm. In the latter 
case Ie.. + d I = 1, and it follows from (7) thatIm r' = 1m. and hence, by 
the shape of the fundamental region, 1" = T. 

There remain. only the case d = 0, Ie I = 1. The condition I. I ~ 1 
together with (iii) .hows that 11'1 = 1. From be = -1, it follows that 
blc = -1 and.' = ::!:;a - II. = ±a - T. Hence Re (1' + 1") = ::!:;a, and 
by (ii) this is possible only for a = 0, in which cas81" = -1/1'. There is 
then a contradiction with (iv) unless. = 1" = i; 

We have proved that l' is unique. The canonical basis ("",,,,.) can 
always be replaced by (-.... - ... ). There are other bases with the same .. 

'onlyif1' is a bed point of a unimOdular trllllsformation (6). This 
only'for .. ';;" i and l' - "-'''; the former w'afix.d point of .... lh. 

'\he \Mter·oI' .... { .. + .i)/>r aud of -l/(r + 1). Theilr;_ tbomultip1e 
in the theorem. 

, , 

.. ': .... -.'.:;. 
, " , ' , 
',,"' .. '" . ' . . ~ '''I, "-. __ " .... '~, .. , ~. --: __ : 
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1 PIG. 740 . r-plane. 

:.4. Ceneral Properties oj Elliptic Functioru. In the following 1(') 
will denote a roeromorphic function which admits all numbers in the 
module M with ba.sis (""'w.) as periods. We shall not assume that the 
b .... s is canonieal, and it will not be required that M comprise all the 
periods. 

It is convenient to say th&t z, is conglUent to II., %, .. II. (mod M), 
if the difference %, - Il. to M, i.e., II, = z. + n,,,,, + n...... The 
function I taketl the ""me values at congruent points, and may thus be 
regarded &8 a function on the congl lI.ence A concrete way to 

UBe of this property ill to restrict the function to a p&rallelogram P. 
with vertices 4, 4 + "'1, a + "", a + "'1 + OIl. By including part of the 

we may represent each congruence class by exactly one point 
in p .. and then" is completely determined by its values on P.. The 
choice of a is irrelevpnt, and we leave it free in order to attain, for instpnce, 
that I has no poles on the bound8.I'Y of P .. 

3. An elliptic ftmction IlIitIwut pola ir a COIIBIcmC. 

H 1(1l) has no poles, it is bounded on the closure of p., and hence in 
the whole plane. By liOUville's theorem (Chap. 4, Sec. 2.3) it must 
reduce to & constant. 

Becau ... the poles have no accumulation point there are only finitely 
many poles in P... W heo we sp.!pk of the poles of an elliptic function we 
mean a fulleet of incongruent poles. Multiplicities are counted 
in the uaual 
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Theorem 4. Tile aum 01 tile residues of an dliptic fumtitm " ,.,.0. 
We may chooee a so that none of the poles fall on the boundary of 

P.. If the boundal"Y ap. is traced in the positive eeDee. the 811m of the 
residues at the poles in p. equals 

~ /OP. I(z) dz. 

Because I has periods "" "I the integra! vanishes, for the integrals over 
opposite sides of the parallelogram cancel against each other. 

As a consequence of the theorem there does not exist an elliptic 
function with a single simple pole. 

Theorem 5. A twncorJ8tant eUip!ic juflditm ha& 
ha& lIel·.,.. 

The poles and zeros of I are simple poles of /'11. which is iteelf an 
elliptic function. The multiplicities are the residues of !' /1. counted 
positive for zeros and negative for poles. The theorem now follows from 
Theorem 4. 

If " is any const .... t, I(z) - c has the ... me poles as fez). Therefore, 
all values are 8.88Umed equally many times. The number of inoongruent 
roots of the equations I(z) = c is called the order of the elliptic function. 

Theorem 6. Tile zer08 a" ••• ,Go and pole8 b" .•• ,b. 01 an elliptic 
luflditm 8ati8flla. + . . . + Go "" b, + . . . + b. (mod M). 

(8) 1 ( z/'(z) 
2ft loP. I(z) dz 

where we may again assume that there are no zeros or poles on the 
boundal"Y. By the ealculus of residues the integral equals a, + ... 
+ Go - b, - . . . - b. provided that we chooee the representative zeros 
and poles jnside P.. Consider the sides from a to a + "'I and from a + "I 

to a + "" +.... The corresponding part of the integral may be written 

1. (/.0+'" _ ("+"l+"') z/'(.) dz = _ "'". /..+ ... /'(1) dz. 
2ft. l.+... J(z) 2ft. J(z) 

Exc;;pt for the factor ...., ... the right-hand member tbe winding 
nnmber around . ··the ciClaed ;~·'deaoribai by J(.) when" 

. . 

, .. ::"'.,., -:~, .. :'':'" ,. 

". "'" " ". " . ,.".,.'.'" .. " ", .. , •• ~._ •• ___ • e_ •• 



varies from ato a + (0)1. It is conBequently an integer. Thesameapplies 
to the other pair of opposite sides. Therefore the value of (8) is of the 
form nl"" + n""" and the theorem is proved. 

L THE WEIERSTRASS THEORY 

The simplest elliptic functions are of order 2, and such functions have 
either a double pole with residue zero, or two simple poles with opposite 
residues. We aha]) follow the cJNlllicaI example of Weierstrass, who chose 
a function with a double pole as the starting point of a systematic theory. 

8.1. The 'Weierstroll8 ~-funetion. We may I¥I well place the pole at 
the origin, and since multiplication with a constant factor is clearly 
irrelevant, we may require that the singular part is rO. If!iselliptic and 
has only this singularity at the origin and its congruent points, it is easy 
to see that f most be an even function. Indeed, 1(21) - f( -z} has the 
same periods and no singularity. Therefore it must reduce to a constant, 
and on setting 21 = ",,/2 we conclude that the constant is zero. 
. A constant can be added at will, and we can therefore choose the 
constant term in the Laurent development about the origin to_be zero. 
With this additional normalization !{z} is uniquely determined, and it is 
traditionally denoted by a special typographical symbol ~(z). The 
Laurent development has the form 

8'(%) "" rO + a,z' + alZ' + . . . . 
So far all this is hypothetical, for we have not yet shown the existence 

of an elliptic function with this development. We shall follow the usual 
procedure in such cases, namely to postulate the existence and derive an 
explicit expression. The clue is to develop in partial fractions hy the 
method in Chap. 5, Sec. 2.. Our aim is to prove the formula 

(9) 

where the sum ranges over all '" = n,,", + n ..... except O. Observe that 
(I: - ... )-" is the singular part at .. , and that we have suhtracted ",-i in 
order to produce convergence. 

Our first task is to verify that the series converges. If 1",1 > 2[211, 
say, an immediate estimate gives 

1 1 
(21 - .,). - ;;;z 
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Therefore the series (9) 
vided tlmt 

uniformly on every eompact set, pro 

This is indeed the Because ..,.j "" is nonreal, there exists a k > 0 
such that In,,,,, + n"".1 <'= k{ln,l + In.\) for all real pairs (n"n.). If we 
consider only integers there are 4n pairs {n"nll with In,l + In.1 = ... 
This 

~ 

}; 1",1-1 ~ 4k-' }; .. -t < "' . 
• ,10 1 

The next step is to prove that the right-hand side of (9) has periods 
"" and.... Direct verification is relatively cumOO1l!ome. Instead we 
write, temporarily, 

(to) I 
f{-) = ... + -

1 1 
(z - ",)' - ;} 

and obtain by termwiae di1ferentiation 

j'{z)~ _~ _" 2 _ -2" 1 . 
lOa 4 (0 - ",)' L. (z - ",), 

UP 0 U 

The last 8um is obviously doubly periodic. Therefore f(z + "") - f{.) 
and f(z + ... ) - f(z) are oonstants. Because f(z) is even (88 _n from 
(IO», it suffices to choose z - - .. ,/2 and Z = -01./2 to conelude that tho 
constants are zero. We have thus proved thatf has the IUserted periods. 

It follows now that fI(-) - f(z) is a constant, end by the form of the 
development at the origin the eonstant is zero. We have thereby 
proved the existence of fI{z), and a1.eo that it can be represented by the 
series (9). For convenient referellce we display the important formula 

(11) fI'(z) = -2l (0 ~·",)i· 
w 

!.z. The FwoeriD ... f{z) and .. (z). Because \P(.) has zero residues, it 
is the deriv&tive of a single-valued function. It is traditional to denote 
the antiderivative of fI(z) by -rez), and to nonll8l;ze it so that it is odd. 
By nse of (9) we are led to the explicit expression 

(l2) 
• • 

"-".,. ,' .. ," 
... -..• ' :.' ., ...•...•.•...• ,-", ,>';".: ":.", ,;,-),.:,;-";, 

. ,.- _-'_-: _. v' ",._,t-',',' ,; .H _ ", '.,-." .. ~:-- .. ~ ,·_~2.· 



274 COMPLEX ANALYSIS 

The convergence is obvious, for apart from the term liz we obtain the new 
series by integration from 0 to z along any path that does not p ...... through 
the poles. 

It is clear that r(z) satisfies conditions t(z + "'1) = t(z) + 'I" 

r(z + "") ~ fez) + '10, where ". and 'I, are constants. They are con­
nected with "'" "" hy a very simple relation. To derive it we choose any 
(Z ¢ 0 and observe that 

1 
2ri I t(z) lIz = I, J,p,. 

by the residue theorem. The integral is easy to evaluate by adding the 
contributions from opposite sides of the parallelogram, and we obtain 
the equation 

'I."', - 'I ..... = 2 wi, 
known as Legendre', relaJion. 

The integration can be carried one step further provided that we use 
an exponential to eliminate the Just as easily we 
can verify directly that the product 

(13) 

converges and an entire function which satisfies 

tI'{z)ltI(z) = t(z). 

The formula (13) is a canonical product representation of tI(Il). 
How does tI(z) change when z is replaced by z + "" or z + ",,? 

"'(Il + ... l) _ "'(z) + 
tI(z + ",,) - tI(z) 'I' 

it follows at once that 
• • 

. 

From 

with constant C 1. To determine the constant we observe that tI(z) is an 
odd function. On setting z = - ",';2 the value of C. can be determined, 
and we find that "(Il) satisfies 

(14) .. (z + "'.) = - .. (z)e .. (O+~·I') 
tI(a + .,.) = -tl(Z)6,,(·h,I'). 

EXERCISES 

L Show that any even elliptic function with periods "'" ... caD bo 
expressed in the form 

(C = coust.) 
•• 
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provided that 0 is neither a zero nor a pole. What is the coflesp6nding 
form if the function either vanishes or becomes infinite at the origin? 

2. Show that any elliptic function with periods "'" "" can be written as 

(0 = COM.). 

Him: Use (14) and Theorem 6. 

3.3. The Di6erentinf &p,ntio... By use of (("mula (12) it is May to 
derive the Laurent expansion of r(z) about the origin, and differentiation 
will then yield the col1esponding expansion of ~(.). We have first 

11" z'z' --='---+-+-= ----_ ... 
z - CI) '" Wi 6)1~" 

and when we sum over ...n periods we obtain 

1 • 
r(z) = z - L 0""· .... ' 

ii-' 
where we have written 

Observe that the conesponding slims of odd powers of the periods are 
sero, as was to be expected since r is an odd function. Because 

we obtain further 

1 ~ ~(.) = Z2 + " (2); - 1)0",,'·-' • 
.. -2 

In the following computation we wIite down only the eignificant 
tenna, eince it i8 understood that the olnitted terms are of higher order: 

1 
~(,,) = Z2 + 3(}.z' + 5002' + ... 

2 GI' (z) = - Z2 + 6002 + 20002' + . . . 
4 2W. 

P'(z)' = Zi - ~ - 800. + ... 

4~(,,) I = .! + 36G. + 600. + . . . 
·.11' ~ . 

. flOG. 
OOG,"{z} ... ~. + 0 + .... 

. 
, .. ',', . _ . '-, :" :,--:: .. -. : .... ,-.":',.: ·:·.:·:~:'.~'<.(~i;, -"':':-", ,"",', 
: _.: . ~ ; _ i., _ .• : _'. i . ,., _ ~, !.{ S'~, .:' ."~'.-,: ~ .. :,~t •. )'r<f,~- ,(;"" "., '~-_'. -' -..", • -, 

. . . 

' .. ,' , 
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The lllRt three lines yield 

§I'(Z)2 - 4§1(z)' + 60G,IP(z) = -l40G. + • • • • 

Here the left-hand side is a doubly periodic function, and the right-hand 
side has no poles. We may therefore conclude that 

§I'(z)' = 4§1(z)* - 6OG.IP(z) - 1400 •. 

It is customary to set g. = 6OG., g. = 1400. so that the equation becomes 

(15) 

This is a first-order differential equation for III = lP(a). It can be 
solved explicitly, namely, by the formula 

z = J v. dw + constant, 
V4w' - gtID - g. 

Which shows that lP(z) is the invel8e of an elliptic integral. More 
accurately, this connection is expressed by the identity 

~<-) dw 
Z - 20-

. 1'<-,) V 4111' - g.w - g. 

where the path of integration is the image under IP of a path fromZo to z 
that avoids the zeros and poles of 1P'(z), and where the sign of the square 
root must be chosen so that it actnallY equals §I'(a). 

We recall that we enoountered the relationship between elliptic 
functions 8Jld elliptic integrals already in connection with the conforma.J 
mapping of rectangles and certain triangles (Chap. 6, Sec. 2). 

·EXERCISES 

The Weierstrass functions aatisfy numerous identities which are best 
dealt with in an exercise section. They can be proved either by compar­
ing two. elliptic functions with the same zeros and poles (when .. -functions 
are involved), or by comparing eUiptic functions with the same singular 
parts (when onIy IP- and r-functions are involved). The following 
sequence of formulas is 80 arranged that we need to resort to this method 
onIyonce. 

1. 

(16) lP(z) _ IPCu) ~ _ .. (z - u) .. (z + u) 
.. (z)' .. (u) , 

(Use (14) to show that the right-hand member is a periodic function 
of z. Find the multiplicative constant by comparing the Laurent 
developments. ) 



(17) 

(18) 

(19) 
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8V(z) 
9(z) _ ~(U) = t(Z - U) + t(Z + u) - 2r(z). 

(Follows from (16) by taking logarithmic derivatives.) 
L 

r(z+ u) .. r(z) + r(u) +! ,f'(z) - f'(u). 
2 fez) - f(u) 

(Tbis is a symmetrized version of (17).) 
... The addition theorem for the f-funetion: 

1 ""(0) - ''''(u) , 
f(z + u) = -fez) - feu) + _ IY' IY' • 

, 4 9(.0) - feu) 

(Differentiation of (18) leads to a formula which contains 9"(.0). It 
can he eliminated by (15) which gives 51" = 6f' - jg.. Symmetriza­
tion yields (19). Observe that this is an algebraic addition theorem, for 
8V(z) arid f'(u) can be expressed algebraically through fez) and (P(u).) 

So Prove 

f(2.o) _! (P"(z) 
- 4 f'(Z) 

, 
- 2f(.). 

.. Prove (P'(z) = -a(2.o)/f/(o)·. 
7. Prove that 

(P(z) 
feu) 

(P(u +.) 

(P'(z) 1 
f'(u) 1 .. O. 

-8V(v + .0) 1 

3.4. The Modular Function I\(~). The differential equation (l5) can 
also be written as 

(20) f'(z)' = 4«(P(z) - e,)(f(z) - .,)(f(z) - e,), , 

where e .. ,e., e, are the roots of the polynomial 4w' - g.1D - go. 
To find the values of the eo we determine the zeros of 8V (.0). The 

symmetry and periodicity of fez) imply f(." - .0) = f(z). ,Hence 
(P'(", - .0)= -(P'(z), from which it follows that f'(.,./2) - O. Simi­
larly 8V("';2) - 0, 'and also P'«"" + ",.)/2)' = O. The numbers .. ./2, 
... /2 and (." + ",.)/2 are mutually incongruent modulo the periods. 
Therefore they are precisely the,three zeros of (p', which is of order 3, and 
all the zeros are simple; When we compare with (20) it follows that we 
ean eet. ' .. ' 

, 

, 

,: ," ... -.:,:,:.;.:~\~~:;",: .. '"", ' 
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It follows, mOl'eOver, and this is very important, that fAeBe roota are 
all Indeed, (P(s) each value e. with multiplicity 2, and 
if two of them were equal that value would be four times in 
contradiction with the fact that (p is of order 2. 

If we substitute z = ",,/2, ... /2 and ("', + ",.)/2 in the definition (9) 
of (P(z) it is at once that the e. are homogeneous of order - 2 in 
10" ... (in other words, if the periods are multiplied by I, then the e. are 
mUltiplied by"""). We conclude that the quantity 

(22) 

depends only on the ratio,. '" ...; "'I, as indicated by our notation. It is 
quite clear from (9) that >.(,.) is the quotient of two analytic functions in 
the upper half plane 1m .,. > O. BecaUBe e, v£ e. it is actually analytic, 
rather than meromorphic; because e. ~ e. it is never equal to 0, and 
because e. ~ e. it is never equal to 1. 

We shall study the dependence on T in greater detail. If the periods 
are subjected to the unimodular transformation 

(23) "'; = -. + ""', 
"'; ." C<oI. + d"" • 

then, first of all, the (p-function does not change. Therefore, by looking 
at (20), tbe roots e. can at most be permuted. Let us see what actually 
happens. It is clear from (23) that .. ;/2 a ",';2 and .. ;/2 a ",';2 if 
a ... d .. 1 (mod 2) and b .. c ... 0 (mod 2). Under this condition the e. 
do not change, and we have shown that 

" 

(24) >.:; !: ." >.(,.) for ::.. ~ ~ (mod 2). 
, ' 

The transformations which satisfy the congruence relation in (24) 
form a subgroup of the modular group (cf. Sec. 2.2), knOWIl as the con­
IIruenee subgroup mod 2. Equation (24) "''OOrts that >.(,.) is invariant 
under this subgroup. Quite ~nerally, when an an&lytic or meromorphic 
function is invariant under a group of linear transformations, we call 
it an automorphic jumlion. More specificallY, a function which is auto­
morphic with respect to a subgroup of the modular group is called a 
mod11lar jumlion (or an elliptic modular !umlWn). 

We still have to determine" the behaVior of >.(,.) tinder a modular 
transformAtion that does not belong to the conglUence BUbgroup. It is 

ffi . 'd . '. d 2 to lId 0 1 su ment to conBl er matnces congruent mo 0 I an 1 0 

respectively, for all other types can be composed from theae. In the first 
" " 
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ease we obtain .. ;/2 ~ (OIl + ",.)/2 and ",:/2 = ",,/2; this means that e. 
and e, are interchanged, while e, remains fixed, and hence}. goes. over into 
(e. - e,)/(e, - e,) = 10./(10. - 1). In the second Cfl."Il .. :/2 = .. 1/2. ",:/2 = 
... /2, 80 that e. and e. are interchanged, and }. goes over into 1 - A. Sample 
transformations are l' -+ l' + 1 and 1' .... -1/1'. We find that 1o.(T)satie.fies 
the functional equations 

(25) 
A(T} 

10.( .. + 1) = }.( .. ) _ l' A -! = 1 - 10.(1'). 
l' 

3.5. The Con/armal MapJlinl by X(T). For oonvenience we &hall 
henceforth use the normalization "" = I, "'. = T. With this choice of 
periods we obtain from (9) and (21) 

1 1 -
... n- -. 

(m -l + (n + i)T)' (m + (n -l)T)' 
(26) 

• 
e. - 62 = L 

_.n"" -. 

1 1 -
(m - l + n1')' (m + (n - l)7)' 

where the double are absolutely convergent. Our first observation 
is that these quantities are real when l' is purely imaginary (this is al80 
true of the individual eo). Indeed, when we replace l' by -1' ·the 811ms 
remain the same, except for a rearrangement of the terms. We ooDclude 
that 10.(1') is real on the imaginary axis. 

Because ~ i is in the congruenee BUbgI'oup mod 2 we have 

10.(1' + 2) = X( .. ). In other words, }. has period 2. As we have seen in 
Sec. 2, this means that X(1') C&ll he expressed as a function of en', It 
would Dot he difficult to determine the Fourier development, but we shall 
be content to show that 10.(1') -> 0 &8 1m ...... 00. 

To evaluate (26) we sum first with respect to m. This summation 
can be carried out explicitly by use of the formula 

(Chap. 5, Sec. 2.1, (9». We obtain at once 

1 1 

(27) 
• __ e cos' ,..(n - i}T - sin' ... (n - l~ 

• 
,'1, ~ .2 == ... ~ I " . 

___ II 

,"., ,' .. t·,;-... ,. '; .. :/,", '. C"." ",. • . .' . ',', , . .. - . ,~, ," -.. ," . "., ..... \,' . . ' 
'. '," '.'" .. ,,'., ., ... 

, . " 
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The series are strongly convergent, ooth for 11 - .. + 00 and 11 ,- .. , for 
Ico81lllTi and I sin llllTl are comparaole to ela •• I ... ; the oonvergence is uui­
fonn for 1m T ~ ~ > o. 

The limits can now be taken tennwise, and we find that e. - e. -+ 0, 
6, - eo ..... r (from the term 11 = 0). Hence A(.) ..... 0 as 1m ,. ....... , 
uniformly with respect to the real parl of T. It follows further by the 
second equation (25) that A(T) ..... 1 when l' approaches 0 along the 
•• • unagmary !\Xu •. 

We need one more piece of information, namely the order to which 
>'(1') vanishes together with c .. •. From (27) the leading terms in e. - e. 
are the ones conesponding to n = 0 and n = 1. The Slim of terms 
• IS 

46'" 46ft 

(1 '+ e-)' + (1 - em)' 

and we conclude that 

(28) 

for 1m 1'''''' 00. 

In }'ig. 7-3 the region !l is bounded by the imaginary axis, the line 
Re l' = 1, and the circle I .. - II = i. The transforms,tion .. + 1 maps 
the imaginary axisonRe,. - 1, and 1 -l/TmapaReT - 10niT -ll = t. 
Since A(t) is rew on the imaginary axis, it follows by virtue olthe relatioJlll 
(25) that it is resI on the whole boundary of O. Furthermore, A(T) ..... 1 as 
.. tends to 0 and A(1')..... 00 as l' tends to 1 illSide 0. 

We apply the argument principle to deterilline the number of times 
}.(T) takes a nonresI vwue w. in It Cut off the comers of 0 by means of a 

o 

P.8.7-1 

------------- to 

\ 
\ 
I 

I 
/ 

D 

1 

-, 
\ , 
I ' 

" 
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horillOntalline segment 1m .. = 10 and under the transformations 
-1/1' and 1 - 1/1' (these images are circles tangent to the real axis). 
For sufficiently large to it is clear that 1<{r) ,.. w. in the portions that have 
been cut oli. The circle roear .. '" 1 is mapped by ).(r) on a curve 
). .. ).(1 -1M = 1 - 1/).{r); where r - 8 + it .. 0 ~ 8 ~ 1; in view of 
(28) this is approximately a large semicircle in the upper half plane. It is 
now evident that the image of the contour of the truncated region n has 
winding number 1 about to. if 1m to. > 0, and winding number 0 if 
1m 111. < O. As a result 1<{.-} takes every value in the upper half plane 
exactly once in n, and no value in the lower half plane. This is also suffi­
cient to guarantee that 1<{ .. ) is monotone on the boundary of O. Indeed, 
if it were not, the derivative ).'(.-) would vanish at a boWldarypoint, and 
it would be impossible for a full semiciroular neighborhood of that bound­
ary point to be mapped into the upper half plane. 

Theorem 7. Tlul modular fUnditm A(1'} eJTuU (J OM-to-one tbn./ormal 
mtJpping of the regioo Il onto the upper half p/(l...,. Tlul mtJpping ezIends 
cootinuouslll to the boundary in aucA (J -11 that T = 0, 1, .. to 
'" .. 1, 00, O. 

By re8ection the region 0' that i. symmetric to 0 with respect to the 
imaginary axis is mapped onto the lower half plane, and thus both regions 
together cOflespond to the whole' plane, except for the points 0 and 1. 

We shall also prove: 

Theorem 8. E.NJ'I/ pqinl T in the upper half plane u equiillllenl tmder the 

ItUbgr<>llP mod 2 to ezadlll one point in fi VD'. 

We refer to Fig. 7-4. The reader is asked to verify that the region 4 
is mapped on the shaded regions in the figure by means of the linear trans­
fOflnationsT, -1/.-,,, - 1,1/(1 - .. ), ( .. - 1)/ .. , T/(1 - .. ) which we shall 
denote by S" S., . . . ,S.. The matrices of the inverse transfor ..... tions 
8.' (I: '" 1, ... , 6) are in order 

1 0 0 
o l' 1 

-1 
o 

1 1 1 
, 0 l' 1 

-1 
o 

o 1 1 0 , 
-1 1 ' 1 l' 

set of mutually 
incongruent matrices in the sense that every matrix is con­
gruent mod 2 to euetly one of them. Preciaely the "amf) ran be shown 
'or tile traDalw"a&iOU 8~ (J: _lj . • • • 6) whiCh l'rAp A' on the unmeded 
IeliOIlll in the filOle (the talk of iilitiua tbem down Ia left. to tbe ....,)~ 

.. , ", - ".""". , . ". . .. 

... ' ...... ,<., .. ' •.......... 
, ,. -, -" . .-, ... '--." .. ","'.' ,-' .. \,',' -,' .-,.-,_._ '.,,:-,'-. __ , .... ·.:.;..''' .. -··'' .. '''_:;_'''':·,;;'-' .. '._',r:_'&_,~:. _ ... , ..... ; ,- "" ' . '-., - -.-' ~. - •• " , .. -- ,._-~, .... ,-~.;-" •• ,- .. - ""'::/lI....' '·'''C_.:'.);' ... ....,;-- .• '"t; 

'.,.'-', .... ". : --. - .- -. - _.;;~.,-.'"~ ... '.!', . .; ;'," '--",::,s,-_-"".: ... "."~,,,~"''''''-.~>~l't~....,,r.'''~W' ~i . ,_ - ~,. ___ • ___ •• '" __ , ____ , , ',~ .. , . ._ .' ........ __ ._n._"""""" _ 
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Together the 12 images of il and il' cover the set ii V 0' (closures should 
be taken with respect to the open balf plane). 

. Let .. be any point in the upper half plane. The set A V il' can be 
identified with the closure of the shaded region in Fig. 7~. Therefore, 
according to Theorem 2 there exists a modular transformation B such 
that Sr lies in il V A'. Suppose first that Sr is in A. We know that the 
matrix of B is congruent mod 2 to the matrix of an B.'. It follows that 
the matrix of T 0= S"s is congruent to the identity matrix; in other 
words, T belongs to the congruence subgroup. Since Srlies in 3. we know 
fnrther that T .. = B.(Sr) lies in D V iY. The same reasoning applies if 
Sr E 3,'. Thus there is always a T .. in Q V n', and a trivial consideration 
shows that it can be chosen in i1 V 0'. 

The uniqueness follows readily from the fact that the S. 88 well as 
the S~ are mutually incongruent. We shall leave it to the reader to work 
out the details. 

·EXERC.IE 

Show that the function 

4 (1 - ). + A")" 
J(-,) = 27 ).'(1 - A)' 

is automorphic with respect to the full modular group. Where does it 
take the values 0 and 1, and with what multiplicities? Show that 

J(T) = .. -4(6,61 + ese. + 606,)' 
(6, - e.)'(6. - 6.)'(e, - e.)" 

Show also that J( .. ) maps the region d in Fig. 7-4 onto a half plane . 

• 

n •. 7'" Fund.mental "'Cion of >.(~). 
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L ANALYTIC CONTINUATION 

In the preceding chapters we have stressed that all functions mllBt be 
well defined and, therefore, single-valued. In the case of functions sueb 
e.s Vz and log z which are not uniquely determined by their e.nalytic 
expressions. a special effort was needed to show that, under favorable 
circwnst.a.nces, a single-valued bre.nch can be selected. While this answers 
the need for logical clarity, it does not do justice to the fact. that the 
ambiguity of the square root or the logarithm is an essential feature which 
cannot be ignored. There is thus a clear need for a concept that empha­
sizes rather than circumvents multiple valuedness. 

1.1. T~ Weierat ....... TMory. Weierstre.ss, in contr ... t to Riemann. 
who favored a more geometric outlook, wanted to build the whole theory of 
analytic functions from the concept of power series. For the 
basic building block we.s a power series 

P(z - 1") = ... + .. G,(II - 1") + ... + a.(z - 1")" + ... 
with a positive radius of convergence reP). Such a series is determined by 
a complex number 1". the center of the power series, and a sequence 1a.I:,of 
complex coe1Iicients. The radius of is given by Hadamard's 
fOlmula r(P)~' = llin 1a.I"·. It is an requirement that rep) > 0, 

for only then does the power series define an analytio functionj(_) in the 
disk D ... ~'IIs- 1'1 < r(P)} • 

• 

. - '- _. ,:- ~'.'-.. .. . 
: " _::-_~' ,.,;;.i;';',.:C,~::';'~.'~.;i:;:'-:~'<_-"·: : -
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Given a point r, e D, the function fez) has a Taylor development 
P ,(. - tv about t,. It converges in a disk V, whose radius r(P.) is at 
least equal to r(Po) - If. - rl, but may be larger. The new series defines 
an analytic function /I(z) in D, which is said to be obtained from fez) by 
direct analytic ccmtinuation. Together, f and!, define an analytic function 
in D V D" for they are equal in the intersection D n D,. If D, is not 
contained in D, the new fUDction is an extension of! to a larger region, 
and that is the purpose of the construction. 

This process can be repeated any number of times. In the general case 
we have to consider a succession of power series Pt(z - ro), P,(. - t.), ... , 
P.(. - r.), each of which is a direct analytic continuation of the preceding 
one. In other words, if P. converges to a function!. in the disk D., then 
r. e D ..... andJ. = h-l in D!>-. n Do. It does notfoUow thatf ..... ,f. 
define a single-valued function in D. V D, V ... V D., for if D. meets a 
D. with k diJIerent from k - 1 and k + 1, there is no guarantee that 
f. = f. in D. n D.. It is precisely this po.ssibility that leads beyond the 
notion of function in the strict sense of having only one value at each point 
of its domain. 

As soon as there exist power series Po, P" ... , P. as above, one says 
that P. is an analytic continuation of P.. Weierstrass considers the 
totality of all power series PC. - r) that can be obtained from P 0(: - r.) 
by analytic continuation. This set of power series will be called an 
analytic function in the _ of Weierstrass. 

The property of one power series to be an analytic continuation of 
another is evidently an equivalence relation. An analytic function in the 
sense of Weierstrass is nothing but an equivalence clM!! with respect to this 
relation, and the initial power series p. is in no distingllished position 
within its class. The underlying idea is that two power series which belong 
to the same equivalence class are diJlerent fomlS of the same function. . . 

1.2. Gerrna and SheofJBS. The Weierstrass theory has mostly historical 
interest, for the restriction to power series and their domains of convergence 
is more of a hindrance thllJl. a help. It should, nevertheless, be recognized 
that the idea of Weierstrass is still the basis for our understanding of 
multiple-valuedness in the theory of complex analytic functions. 

We shall outline a more direct approach which is more in line with the 
somewhat sophisticated ideas tha.t dominate the recent theory of analytic 
functions of several complex variables. Because of the limited scope of 
this book we have to be content to borrow some of the tenllinology and use 
it to simplify some proofs. . 

An analytic function f defined in a region 11 will eonstitute a function 
element, denoted by (J, 11), and a global analytic function will appear as a 
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collection of function elements which 8I'e related to each other in a pre­
scribed manner. 

Two function elements (f"O,) and (f./il.) are sa.id to be diTect aruUlIUc 
continuations of each other if 0, n o. is nonempty and f,(~) = 12(~) in 
0, n 0,. More specifically, (f.,O.) is ealled a direct analytic continuation 
of (/ .. fI,) to the region fI.. There need not exist any direct analytic eon­
tinuation to fls, but if there is one, it is uniquely determined. For suppose 
that (f.,0,) and (g"O,) are two direct analytic continuations of (f"O,); then 
I. - g. in 0, no., and because 0, is connected, this implies I. = g, through­
out 0,. We note that if O. CO" then the direct analytic continuation of 
(f"O,) is (f"O,). 

As in the ease of power series we consider cha.ins (f"O,), (f.,n,), ... , 
(f.,o..) such that (/.,0.) and (f ...... O .... ,) are direct analytic continuations of 
each other, and we ssy that (f.,0.) is an analytic continuation of (f.,O.). 
This defines an equivalence relation, and the equivalence cl"'''108 are called 
global anallltie lunctions. As a typographical device the global analytic 
function determined by the function element (f,O) will be denoted by 
bold type, f. For a more lIexible terminology (f,0) is also refened to as a 
/mmeh of f. While (f,0) determines f uniquely, the convelse is not true; f 
may have several branches over the 8&I11e n. 

It is quite obvious that global analytic functions can be identified with 
ooalytic functions in the sense of Weierstrass, and we have pned almost 
nothing in generality. There is, however, a more fruitful point of view. 
Instead of pairs (f,0) we shall consider pairs (f,t) where r is a point and I is 
analytic at t, that is to say, f is defined and analytic in some open set that 
contains t. Two pairs (f"t,) and (f.,t') shall be equivalent if and only if 
t, - t. and /, = Is in some neighborhood of t.. The conditions for an 
equivalence relation are obviously fulfilled. The equivalence classes are 
called germs, or more specifieally gel 1M of analytic IWldioM. Each germ 
determines a unique i, the projection of the germ, and we use the notation fr 
to indicate a genn with projection t. A function element (f,n) gives rise to 
a germ ft for each tEO; conversely, every it is detennined by some (f,0). 

The reader will of comBe recognize that the gems fr can be identified 
with the corresponding conve~ent power series P(z - f), and we are back 
where we started. However, by introducing the notion of genn we have 
isolated an esSential property of convergent power series, namely the fact 
that two power series with the same center are identical if and only if they 

- - - . . 
represent the same funetion in some neighborhood of the center. In 
pursuit of this idea it becomes cleo' that we could eqnally well consider 
~er ... s of other cl8SlleS of functions, for 'of" 'fune:­
~ione, gt\tmli of f,mctioneof class Q ~ ", 
oower seriAift • nrr ',. '~lEl:' " ' " '··,-:o!"~;.n~~Mt~ n""!'l;"':~(~b 
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germs of analytic functions, we e.re nevertheless going to take a slightly 
more general point of view. 

Let D be an open set in the complex plane. The set of all germs Ir 
with rED is called a aheaI over D; we shall denote it by 15 or @;D. If we 
are dealing with germs of analytic functions,@;" is called the sheaf of ~tl'lll8 
of analytic functioM 0081' D. There is a projection map ... : Ci15 -> D which 
mape fr on f. For a fixed rED the image .r-'(r) is called the 
81tJlk over fi it is denoted by i5r. 

The set 15 is interesting because it carries a twofold structure: one 
topological and one algebraic. First, e can be made into a topological 
space, which enables us to speak of continuous mappings. Second, there is 
an obvious algebraio structure on each stalk, for it is clear what we mean 
by Ir + IJt or Ir . gr. .For the sake of simplicity we shall fix our attention on 
the additive strueture. In terms of this structure each stalk is an abelian 
group. 

We are ready for a fairly definition. 

. 
Definition I. A 8heoI 0081' D ill a topological BpOOt 15 and a mapping 
... ; e -> D with the following prop",/iu: . 

(i) The mapping ... i8 a local hiam; this shaU mean tJtat 
etJCh 8 E e has an open neighborhood 4 such that ... (4) is . and the restriction 
of ,.. to 4 is a homeomorphisln. 

(ii) For each fED the BIalk .r-'(f) = er hrur the 8lructurt of an abelian 
group. 

(iii) The group op81'atioM are oontmUOUB in the topoWgy of Ci15. 

Actually, D can be an arbitrary topological space, but we shall think 
of D as an open set in the complex plane. Also, the structure of an abel­
ian group can be ~placed by other algebraic structures. 

We shall now verify that the sheaf e of getlllil of analytic functions 
satisfies the conditions in Definition 1. For this purpose we must first 
introduce a topology on e. It is awkward, and unnecessary, to make @i a 
metric space. Instead, we need merely specify the subsets of @i which are 
to he the open Bets in the topology. Our characterization of open sets 
shall be as follows: A set vee is open if for every 8. E V there exists a 
function element (f,0) such that (1) .(a.) = t. EO, (2) (f,O) determines the 
germ 8. at f .. (3) all the getlns :fr determined by (f,0) are in V. The 
reader will have no difficulty verifying that the conditions of Chap. 3, Def. 
8, are satisfied. 

With s. and (f,O) as above, let.:!. be the set of all the gehllil fr determjned 
by (f,n). Owing to our definition of open set, it is quite obvious that 4 
is an open neighborhood of a., and that the mapping ".: 4 ..... n, is a homeo-
morphislO. Thus condition (i) of the definition'is f1l1611ed .. . 
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Condition (li) needs no proof. Condition (ill) is also easy, but it is 
important to unde1"8tand what is involved. Addition and subtraction 
make sense only for germs on the same stalk; it is sufficient to consider 
subtraction. Consider two germs a ... ~ with r( •• ) - 1t(a~) = j" o. Let 
them be determined by function elements (j,n) and (g,0) with l", EO; 
for the sake of simplicity we have chosen the same 11 for both function 
elements. If. E <1." 8' • <1.~ with r(8) = .. (8') = j", then 8 - i is the germ 
determined by (j - g, 0) at j". When r rs·nges over 0, • - 8' over a 
neighborhood of " - .~; moreover, r(8 - 8')= r(8) - rei). The pro­
jection maps establish homeomorphisms between <1., A., <1.~, and o. It is 
therefore clear that we can shrink <1.. and <1.~ 80 as to make <1. contained in 
any prescribed neighborhood of 8. - .o, thereby proving the continuity . 

• 

1.3. Sectio,.,. fJIUI Riemann Surfaces. Let e be a sheaf over D and 
consider an open set U C D. A continuous mapping ",: U -> @i is called a 
sect;Q7I over U if the composed mapping .. ~ '" is the identity mapping of U 
on itself. It follows from this condition that ",(l',) = ",(i.) implies 1", = i.; 
hence '" is one to one, and its inve1"8e is ... restricted to ",(U). Thus every 
section is a homeomorpbism. 

Every point 8. E@iisin the' ",(U.) of some section; we need only 
take U. = .. (4) where <1. is the neighborhood whose existence is postulated 
in (li), and", equal to the inverse of 1t as restricted to A. 

The set of all eections over a fixed U is denoted by r(U,@i). If 
nonempty, it has the structure of an abelian group, for it makes sense to 
define", - ~ as the section with values ",m - .,,(1). Let Or be the zero 
element of the stalk @ir, and define a function., by setting .,(i) = Or. We 
claim that w is continuous, and hence a section; it is called the zero section, 
and it acts as a zero element for tbe group r(U,@i). 

To prove the continuity, consider a point i •• U and an .. E ®t. (for 
instance, Or.). According to our previous remark •• is in some ",(U.). 
By condition (iii) '" - '" = '" is continuous in U.. Since r. is arbitr .... y, 
., is continuous on all of U, and hence a section. We have shown that the 
zero section always exists, and r(U,@i) is not empty. From now On the 
zero section will be denoted by O. 

If U is connected and 'P,'" E r(U,@i), then either", and ",are identical, 
or the imagll8 'PCU) and ",(U) are disjoint. Indeed, the sets with '" - ." = 0 
and 'P - ." '" 0 are both open. 

We have carried out ibis disc"nUon in some detail to sbow bow the 
postulates work. The special case of the sheaf of gel "'8 of ""alytic fune­
t.ioos.is rather trivial, ~r in that ceee r(U,@») caD be interpreted as the 
additive pup of . fUDctions on U. The sero JeCtion ill .' . . . . .<. . ... 

1J1 
, . " 
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tions over the whole complex plane. The components of e. regarded 88 

a topological space. can be identified with the global analytic fWlctions. 
To see this. let 8. ~ ~ be a genn detennined by the function element 
(J .. n.). and let (f"lJl) be a direct analytic continuation of (J .. n.); we remind 
the reader that n. and 11, are assumed to be connected. Because /. = f, 
in 11. () 11, the sets 4. and 4, of gemlS detennined by these two fWlction 
elements intersect; 88 homeomorphic images of n.,Il, the sets 4.,4, are 
connected, and the same is consequently true of their union, 4. V 4,. 
It follows that all the function elements that are obtainable from (J .,11.) 
by a chain of direct analytic continuations give rise to germs contained in 
the component e. of 8,. On the other band, let e~ be the set of gbIIiIS 
in e. which can be detennined by an analytic continuation (J,Il) of (f.,Il.). 
It is readily seen tha.t e~ and its complement in e. are both open. Hence 
15 ~ = ~o, and we conclude that ei. consists precisely of all the germs 
belonging to a global analytic function. 

. 

In spite of this identi,fication, it is more suggestive to regard eo 88 

the domain of the global analytic function, which we shall now denote by C, 
its value at Cr being nothing but the constant term in the power series 
associated· with that germ. With this interpretation eo is referred to 88 

the Riemann BltrJace of f. It is indeed quite similar to the elementary 
Riernsnn surfaces which were briefly studied in Chap. 3, Sec. 4.3, and it 
serves the sarne purpose, namely to make/single-valued. One can picture 
eo 88 being spread out in layers over the plane, and the sheets, if that is 
what one wants to call them, are images of sections. It should be noticed 
that we are not yet including the branch points, whose role will be investi­
gated later. 

For greater clarity, let the Riemann surface of a global analytic func­
tion f be denoted by e.(f). Given two global functions f and g, there may 
exist a mapping B: 150(1) = eo(g) such that (1) ... 0 B = ... , and (2) B is a 
local homeomorphism. In these circWllBtances goB is a single-valued 

• 
function on eo(J); usually, the notation is simplified and one agrees to 
write g instead of II' 0 B. In this way all the derivatives I',C", ... are 
defined on the Riemann surface of f. All entire fuilctions h are auto­
matically defined on every eo(f), and if g, h, ... are defined on e.(f), so 
is every polynomial G(C,g,h, ... ). 

There is a classical principle known as the 0/ /unditm.a1, 
relatWn8. Suppose that certain function elements (J,n), (g,Il), (h,n), ... 
can be continued analytically whenever (J,n) can be continued, directly or 
through a chain of direct continuations. Assume mOreover that 
G(f,g,h, ... ) = 0 on O. Then the same rlllation holds for all analytic con­
tinuations, a fact that may he expressed by G(C,g,h, ... ) = O. In par­
ticular, if a gf>IID satisfies a polynomial differential equation (J(z,fJ' • ... ,f(w) 
= 0, then the global function C satisfies the SNDe equation. 
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1.4. Analytic Continl'otioro along Arcs. Let 1': [a,bl -+ C be an &I'i: in 
the complex pIane. Consider a global analytic function f and its Riemann 
surface e.(f), defined, as before, to be a component of the sheaf e of all 
genlls of analytic functions. An arc 1': [a,bl -> e.(f) is said to be an 
analytic continuation of f along 'Y if 11' • l' = 'Y, i.e., if 1'(1) projects On 'Y(I) 
for aU 1 E la,bl. N atorally, by the definition of arc, 1'(1) must be con­
tinuous on [a,bl in the topology of e.(£). In another terminology, l' is 
also called a lifting of l' to 1!5.(£). 

Continuation along an arc corresponds to the intuitive notion of a 
continuously changing genn. The existence of a continuation is not 
guaranteed, but the following important uniqueness theorem is valid: 

Theorem I. Two ana4Jtu; ""nUnuat.on. 1'. and 1'. of a global anaJ.ytu; 
functiun f along the !lame arc 'Yare ciOter iden.liool, or 1'.(1) yO 'Y.(t) for aU t. 

The proof is a triviality. Because ... is a local homeomorphiBID the 
imlll¥' of 1'. - 'Y. cannot contain a point of the ~ro section without being 
contained in it. 

By virtue of this theorem a continuation is uniquely determined by its 
iuitial value, the geliil 1'(a) ; the initial germ is of the form I rto" but I may 
have several geulls of this form.. Once the initial gerJI1 1S specified we ha.ve 
the right to speak of the analytic continuation from that germ, provided 
that such a continuation exists. 

It may well happen that f does not have a continuation along 1', or 
that a continuation exists for some iuitial genllS, but not for all. Let us 
investigate the case of an iuitial gelin fn.) which cannot be continued along 
'Y. If I. > a is sufficiently close to a, tb~re will always exist a continuation 
of the initial germ along the "uhare of 'Y that conesp.lnds to the interva.\ 
[a,t.l; indeed, if fj.(.) is determined by the function element (f.,n.), this is 
trivially the case if the sub&I'i: is contained in Il.. The least upper bound 
of all such 10 is a number ~ with a < r < b, and the continuation will be 
possible for I. < ~, impoesible for I. ~~. In a certain sense the subare 
'Y[a,Tjleads to a point at which ( ccases to be defined. This subarc is 
ealled a singular path from the given initial gelill; less precisely, it is said 
to lead to a eingu./4r point over 'Y(")' Observe that when t approaches T 

from below, the radius of convergence of the power series representing the 
genu .y(I) will tend to zero. 

The connection between continuation along srcs and stepwise con­
tinuation by means of a chain of direct JUla.\ytie continuations requires 
further illumination. In the first place, if (f"Il,), U .. n,), ... , U.,Il.) is a 
chain of direet analytic eontinuations, it. is slways. poeslble to connect . 
pointt. E III ~,. POi% r •. ~,&,b~;.~e~:· .. . . . 
continuation 'Ii with initial g9rm U"f,) . 

, -. ,_. -... ".-
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it is sufficient to let 'Y be composed of a 8ubarc 'Y' in 0. from t. to a point 
r. EO. no., a second subarc 'Yo in no from t. to r. EO. r. 0" and so on. 
The continuation along 'Y is defined by 'Y(t) = (f .. r(t» on 'Y •. 

Conversely, if 'r is given, we can find a chain of direct analytic con­
tinuations which follows the arc 'Y in the same way 88 in the preceding 
construction. In fact, by Heine-Borers lemma the parametric interval 
[a,b] can be subdivided into [a,t.], [I"t.], ... , [I._"b] such that 'Y(t) = 

(f.,"(0) in [14-.,10] for suitably chosen function elements (hO.). Although 
(f.,O.) and (f .... ,O~H) need not be direct analytic continuations of each 
other, they are at least direct continuations of their common restrictions 
to a neighborhood of "(t.). 

In order to illustrate the use of continuations along 8.I'C8 we shall define 
the logarithm 88 a global ano.lytic function. For this purpose we want to 
show that the set of all function elements (f,0) with elm = t in ° is a 
global analytic function. 

We need only make sure that any two function elements (f.,o.), (f.,o.) 
in this eollection can be joined by a cbain of direct analytic continuations, 
for the permanence of functional relations will guarantee that the inter­
mediate function elements belong to the S8.me collection. Choose points 
t. EO., r. E n. and join them by an arc 'Y(t), I E [a,b] which does not pass 
through the origin; this is possible because neither r. twr i. can be zero. 
Consider the function 

f . 'Y'(t) 
'P(t) = I.(!".) + • 'Y(t)' dl. 

By differentiation, "(I)e-O<') is a constant; for t = a the value is 1, and 
hence e'O) = "(t). For a given t there exists, for instance in the disk ° = Irllt - "((01 < 1'Y(I)iI, a uniquely determined branch fer) of log r 
which takes the va)ue'P(I) for t = 'Y(t). It is clear that, 'Y(t) will be a con­
tinuation along"(. The genIl 'Y(b) at the end point may not coincide with 
the one detenuined by (f.,0.), but its value at r. will differ fromf.(r.> by a 
multiple of 2ri. In order to obtain the right value o.t i., all that remains 
is to continue from 'r(b) along a closed curve which circles the origin the 
right number of times. Finally, the arcwise eontinuation can be replaced 
by 0. finite chain of direct analytic continuations, and we have shown that 
our construction defines the logarithm as a global 8.nalytic function. 

EXERCISES 

L If a function element is defined by a power series inside its circle of 
convergence, supposed to be of linite radius, prove that at least one reitius 
is a 8ingular path for the global analytic function which it detenuineB. 
("A power series has at least one singular point on its circle of 
convergence.") 
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2.. If a function element (f,0) bas no direct analytic continuations 
other than the ones obtained by restricting I to a smaller region, then the 
boundary of 0 is caJled a natural boundary for 1. Prove that the series ., 
t z" bas the unit circle &8 a natural boundary. Hint: Show that the fWlo-.... 
tion tends to infinity on every radius whose argument is a rational multiple 
of .... 

J. Show that the function 11( .. ) introduced in Chap. 7, Sec. 3.4, bas the 
reBI axis &8 a natural boundary . 

. . -'- , 

1.5. Bomotopfe Cur"".. We must now study the topologicBI proper­
ties of closed curves in a region from a point of view which is funda­
mental for the theory of analytic continuations. The question which 
interests US is the behavior of an arc under contin_ dejm·",atIuM. 
From an intuitive standpoint this i. an extre~ly Bimple notion. If 
'Y1 and 'Yo are two area wi~h common end points, contained in a region n, 
it is very natural to ask whether 'Y1 can'be continuously deformed into 'Yo 
when the end points are kept filled and the moving arc is confined to u. 
For instance, in Fig. 8-1 the arc 'Y1 can be defoInled into 'Yo, but not into 'Y •• 
Two arcs which can be deformed into each other are said to be homotrypie 
in U. This is evidently I1dl equivalence relation. 

A precise definition must of cowse be given. Fortunately, the 
physicBI ooneeption of deformation bas an almost immediate interprets-

. ' , _,1.:;.,.,<.,., -. " 
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tion in mathematical tenus. It is indeed clear that It deformation of an 
arc can be deBCribed by means of a continuous function 'Y(t,u) of two 
variables, the point (t,u) ranging over a rectangle [a,b] X [0,1] (Fig. 8-2). 
To every fixed value u = u. there eorresponds an arc 'Y(t,u.,), and the effect 
of the defol"lnation is to change the initial arc 'Y(t,0) into 'Y(t,l). The 
defonnation takes place within Q if 'Y(t,u) t Q for all (t,u), and it is a defor­
mation with fixed end points if 'YCa,u) and 'Y(b,u) are constant. To every 
fixed value t = to there corresponds an arc "Y(t.,u), u E [0,1], which may be 
called a dejoTIIlation paOt. 

Weare led to the following formal definition of homotopy: 

Defi.oition 2. Two arcs 'Yl and"y. ooet' the 8ame parameter interval [a,b] are 
wid ItJ be homotopic in !l if Otere exist8 a continuoUB function "Y(t,I.I), defined 
on a rectangl£ [a,b] X [0,1], wUh Ote following pro'pertia: 

1. 'Y(t,u) E OfM aU (t,u). 
2. 'Y(t,0) = "Yl(t), 'Y(t,l) - "Y.(!) fM aU t. 
3. 'Y(a,u) = "y.(a) = 'Y.(a), "y(b,u) = 'Y,(b) = 'Y.(b) fM all u. 

It is only for the sIl.ke of convenience that we have required the 
parametric intervals of 'Y 1 and 'Y. to be the same. If this is not the case, 
we transform the intervals into each other by a linear change of parameter, 
and ag' ee to consider the original arcs as homotopic if they are homotopic 
in the new parametrization. 

Simple formal proofs w hieh the reader can easily supply show that the 
relation of homotopy, as defined above, is an equivalence relation. We 
can thus divide all arcs into equivalence classes, called lunnotopy c!a8se8; 
the arcs in a homotopy class have common end points and can be deformed 
into each other within D. It deserves to be pointed out that different 
parametric representations of the same arc are always homotopic. Indeed, 
'Y.(t) is a reparametrization of.'Y.(t) if and only if there exists a nondecreasing 
function T(t) such that 'Y.(t) = 'Y.(T(t). The function 'Y(t,u) = 

, 
L--L _____ t 

F.G.. • ", Deformation. 



GLO'AL ANALYTIC FUNCTIONS 

'Yt«l - u)1 + U~(t» h&s all its values on the are under consideration, 
and therefore in a. For u = 0 and u = 1 we obtain respectively 'Y(t,O) = 
'Y,(I) and 'Y(I,I) = 'Y,(T(!)) = 'Y.(t) as required, and the end points are fixed. 

If two arcs 'Y, and 'Y. are traced in succession, with ,.. beginning at 
the terminal point of "" they form a new arc which we will now denote 
by 'Y,'Y. in contrast to the notation 'Y. + 'Y. preferred in homology theory. 
The parametrization of 'Y.'Y' is not uniquely determined, but for the 
determj~ .. tion of the homotopy class this is of no importance. Very 
simple ::r~ning shows, moreover, that the homotopy clau .. of ".'Y. 
depends only on the homotopy of ,.. and 'Y.. By virtue of this 
fundamental fact we may consider the operation which leads to the 
homotopy class of "''Y' as a multiplication of homotopy c]ep-.es. It is 
defined only when the initial point of ,.. coincides with the terminal 
point of 'Y.. If we restrict our attention to the homotopy cleS8e8 of 
dosed curves which begin and end at .. fixed point Zo, the product is 

always defined and is 1>Y a curve in the 81l1DP, family. What 
is more, with this definition of product the homotopy classes of closed 
curves from Zo, with respect to the region 0, form a group. In order to 
prove this assertion we must establish: 

1. The associative lew: ("''Y.h. is homotopic to 'Y.(,..,.,). 
2. Existence of a unil curve 1 such that 'Yl and 1'Y are homotopic to 'Y. 
3. Existence of an inve<sc r' such that 'Yr' and r"Y are homotopic 

to 1. 
The associative lew is trivial since ('Y.'Y.h. is at most a reparametri.",. 

tion of 'Y,h.,..). For a unit curve we can choose the constant z = Zo; 
actually, the symbol 1 may represent any closed curve which can be 
shrunk to the point z.. Finally, the inverse 'Y-' is the curve 'Y traced in 
the opposite direction. If 'Y is represented by z = 'Y(I), I • la,bl, 'Y-' can be 
represented by z = 'Y(2b - I), I • lb, 2b - al. The equation of ,.,.-. is thus 

,.(1) for a :s: t :s: b - -• = 
'Y(2b - I) for b ;!; t ;:i! 2b - a. 

The curve can be shrunk to a point by m()8118 of the deformation 

'Y(t) 

'Y(I,u) = ,.(00 + (1 - u)b) 

'Y(2b - t) 

for a ;:i! I :iii 00 + (1 - u)b 

for 00 + (1 - u)b :I 1 ~ u(b - a) + b 
. 

for u(b - a) + b ;:> t ;:;;; 2b - a •• 

The interpretation is cleAr: we are letting the turning point recede from 'Y(b) 
to ,(a). Sinee 'Y(t,l) ~ 'Y(A) = .. f~. aIlt e [0; 2b - a) we bave prov!'<l 
that ,.,.-, is homotopic to 1. TIi.e poor. iladlpendeDt,dUbit . 
that 'Y be a .lOlled CUi'Ye; thus 'Y'I' ;'~n"'topie to 1. to.. 

, 
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The group which we have constructed is called the Mmotopy group, or 
the furulam61ltal group, of the region 0 with respect to the point e.. Ali 
an abstract group it does not depend on the point e", H r. is another 
point in 0, we join z. to z~ by an arc c in O. To every closed curve r 
from z~ corresponds a. closed curve 'Y = eoy'r' from z'" This oonespond­
ence is homotopy preeerving and may thus be regarded as a. correspond­
ence between homotopy Ali such it is product preserving, for 
(c'Y;r')(C')'r') is homotopic to c('Y;'Y~)r', by cancellation of r'c. 
Finally, the correspondence is one to one, for if 'Y is given we can choose 
'Y' - r'oye and find that the corresponding curve eoy'r' = (etr'h(etr') 
is homotopic to 'Y. It is thus proved that the homotopy groups with 
respect to z. and z~ are isomorphic. 

If "" 'YI are any two arcs with the initial Point Zo and a common 
terminal point, then ", is homotopic to ". if and only if 'Y,'\'i"' is homotopic 
to 1. For if 'Y, is homotopic to 'Y., then ",,,.' is homotopic to ')'1')'.', and 

hence to 1. Conversely, if "''Yi' is homotopic to 1, then 

(",'\'i"'h. = 'Y'(".',),.) 

is simultaneously homotopic to ", and "0, proving that ,)" is homotopic 
to 'Y.. For this reason it is sufficient to study the b.omotopy of closed 

, 

curves. 
The explicit determination of homotopy groups is simplified by the 

fact that the homotopy group is obviously a topological invariant. 
Indeed, by a topological mapping of 0 onto 0' any deformation in 0 can 
be carried over to 0' and is to determine a product preserving one­
to-one eonespondence between the homotopy classes. Topologically 
equivalent regions have therefore isomorphic homotopy groups. 

The homotopy group of a disk reduces to the unit element; this means 
that any two arcs with common end points are homotopic. The proof 
makes use of the convexity of the disk: the arc z = ",(t) can be defonned 
into z = ')'.(!) by means of the deformation 

,,(t,u) = (1 - u)",(t) + U'Y.(t) 

whose deformation paths are line segments. The same proof would be 
valid for any convex region. In particular, the whole plane has likewise 
a homotopy group wbich reduces to the unit element. 

We proved in Chap. 6, Sec. 1, that any simply connected region 
which is not the whole plane can be mapped conformally onto a disk. 
In this connection the conformality is not important, but the fact that 
the mapping is topological permits us to conclude that any simply con­
nected region has a fundamental group which reduces to its unit element. 
We shall find that the converse is also true. 
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1.6. The Monodromy Theorem. Let !l be a fixed region in the complex 
plane. We consider the case of a global analytic function f which can be 
continued along all ares 'I' contained in ll, starting from any of its gerllls 
defined at. the initial point r. of '1'. More precisely, for any function 
element (f .. fl.) of f with r. E flo, there shall exist a continuation 'i over 
'I' beginiili,g witb the germ defined by (f.,r.). 

When two arcs '1'" '1" with common end points are given, we are 
interested to know whether a common initial genu, continued along '1'1 
and '1'., will lead to the same gelm over the tenninal point. The basic 
theorem, known as the tTUmodromll fJuIorem, is the following: 

TheorelD 2. II the BTU '1'. and '1" are Iumwtl1pic in fl, and if a given geI'IIl 
01 f at the initial point can be continued along all arcs contained in fl, then 
!he continuation. of tMa venn akmg '1'1 and '1'. lead to the oame gel'lll at the 
terminal point. .. 

To begin with we note that continuation along an arc of the form n-' 
will always lead back to the initial gerlll. Similarly, continuation along 
an 8I'c of the form a.('I''I'-')a. will have the same effect 88 continuation 
along a.a.. For t.his reason, to 88y that the continuations along '1', and '1" 
lead to the 'lUIle end reBuit iB equivalent to .aying that continuation along 
'I','I','lews back to the initial genu. 

According to the aeeumption there exists a defol1l1ation 'I'(t,u) of '1'. 
into '1'.. Every are a in the deformation rectangle R - [a,bJ X [0,1] is 
carried by '1'(1, u) into an ate a' E {l, and if tI begins at the initial point of '1'1 
and 'Y" there exists a unique continuation along r from the initial genn; 
for simplicity we .ball c&ll it a continuation along fT. The theorem .... erts 
that the continuation along the perimeter r of R leads back to the initial 
genn. The .ense in which r is described is immaterial, but should be 
fixed once and for all. 

A simple proof can be based on the method of bisection. We begin 
by bisecting R horizontally, and denote by .. , the perimeter of the lower 
half R., described from the lower left-hand comer 0 and in the direction 
which coincides with the direction of r along the common side. With 
the upper half R. we aeaooiate a curve ""' which hegins at 0, leads vertically 
to the 10lier left-bAnd comer of R., describe!! the perimeter of R. in the 

which coincides with that of r along the common side, and returns 
vertieaJ.ly to 0 (Fig. 8-3). We recognize that the curve ....... differs from 
r only by an intermediate arc of the form tItI '. For this reason the 
efleet .of oontintling along ....... is the ... "'08 .... if lie 'oontinue al!JDg r. 
COJll!"(lqufirltJy;'if .... and ... i both leNl-back· ~the initW ";'rDl,80:diiee1'. 

- ...:. ... ' -,' -. '". ~. ,.-,-' ,',- ", "'-.-~- '--fJ' ,."-.J. - ,_·-'. .• _,·}-,-'.-.:.::1~l.,.i:;;.'I.-'_ :~,.·.·.,·_·--:·,·::_'_t·,;: .~>,",,;.', ... -....... -....... ..- .. ,,-: .. ,. . ' , . 

. . 
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FIG. W. 'rhe monodromy theorem. 

We JIUl,ke now the opposite flPsumption that r does not lead back to the 
initial germ. Then either .. , or ".. has the AAme property. The corre 

sponding rectangle is bisected vertically, and the same reasoning is 
applied. When the process is repeated, we obtain a sequence of rectan­
gles R ~ RC') ~ RCO) ~ ••• ~ RCo) ~ ••• and corresponding closed 
curves .. CA) such that the continuation of the initial ge/in along ,.CAI does 
not lead back to the same gelID. Each ".Cn) is of the form .-.r • .-;;-' where 
'-0 is a well-determined polygon leading from 0 to ~he lower left-hAJld 
cotner of RCn) and r. denotes the perimeter of RCA); moreover, fT. is a 
subarc of 0'0+" ' 

As n --> ao the rectangles RCol converge to a point Pm' and the polygons 
IT, form, in the limit, an are "m ending at Pm' There exists a continuation 
of the initial germ along IT .. ; it tt:rJllinates with a germ detellnined by I/o 

function element (fm,n...) over the l'm of Pm under the mapping "Y(t,u). 
For sufficiently large .. the image of r. will be contained in n..., and the 
genn obtained at t\le terminal point of ". will belong to the function element 
(f .. ,n...). When this is the case, the element (f .. ,n.,) can be used to construct 
a continuation along ... c.~ which leads bsck to the initial germ. This 
contradicts the property by which .,.e.) was chosen, and we have proved 
that the continuation along r ends with the initial germ. 

The monodromy theorem implies, above all, that any global analytic 
function which can be continued along all arCB in a simply connected 
region determines one single-valued analytic function for each choice of 
the initial branch. This fact can also be by saying that a 
RiemanD surface (without branch points) over a simply connected region 
must consist of a single sheet. 

We can further draw the consequence, already announced, that a 
region whose homotopy group' redueesto the unit element must nece. 
aarily be simply connected. For suppose that 11 is multiply connected. 
Then there exists a bounded component Eo of the complement of D, and 
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if z. f-E. we know that log (z - z.) is not single-valued in Q. By the 
monodromy theorem it follows that the homotopy group of Q cannot 
reduce to the unit element. 

This is the last step toward proving the equivalence of the following 
three characterizations of simply connected regions: (1) !1 is simply con­
nected if its complement is connected; (2) Q is simply connected if it is 
homeomorphic with a disk; (3) 0 is simply connected if its fundamental 
group reduces to the unit element. 

1.7. Branch Points. For a closer study of the singularities of multiple­
valued functions it is necessary to determine, explicitly, the fundamental 
group of a punctured disk. Let the punctured dial< be represented by 
o < 1.1 < p, and consider a fixed point, for instance the point •• - r < p on 
the positive radius. By means of a central projection, given by 

'Y(I) 
'Y(I,u) = (1 - .. MI) + ur I'Y(I)I' 

any closed curve 'Y from '. can be defc.lmed into a curve which lies on the 
circle I .. I = T. It is thus sufficient to consider curves on that circle. We 
continue to UI!8 the notation -yet). 

By continuity every t. has a neighborhood in which h(t) - ,.(t.) I < 
r; in such a neighborhood ,. (I) cannot take both the values r and - r. 
It follows , by 1_ of Heine-Borel's Iemm& or the method of bisec­
tion, that it is possible to write ,. = ,..,.. . . • ,.. where each ,.. either 
does not through r Or does not par through -r. For simplicity, 
let us refer to the points r and -r by lette:ts Po and P~ (Fig. 8-4), and let 
the end pointe of T. be denoted by p. and PO+.. Since 'Y. is contained 
in the simply ooDnected by deleting either the positive or 
negative radius, it can be defOimed into one of the two arcs PoP,,+!. As 
" reanlt ,. can be deformed into a product of simple ares with the suo­
cessive end points PoP.P. . • • P.P.. This path may in turn be replaced 
by PoP,PtPoPtP,p •... PoP..-.P.p. where each arc p.p. and PoP. is, 
for definiteness, the one which does not contain P~. In fact, the new 
path is obtalDed by inserting the doubly traced arCS PoPoP. which we 
know to be homotopic to 1. _ 

We have shown that each l' is homotopic to a product of curves 
or the form PoPoPo+,P.. If PoPO+t does not contain P~, this ow.e is 
homotopic to 1. If, on the other PoP ... , contains P~ it is by 
enumeration of the possible esses that the curve is homotopic to (J or 0-', 
w"'ere (J is the full circle. CoB8eQuently, every closM curve is homotopio 
to-"poII.'of C.· - - --

.: .. : .. -, . , .'. '. - . ',., , 
,";'-~':'-;?-,:-, ';",':.:' .".,,' 
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• 

Finally, we obaerve that C- is homotopic to 1 only if m = O. This is 
seen by the fact that 

f ~=m'2ri Jc- z ' 

while if the curve were homotopic to 1 the integral would have to vanish. 
From our results we conclude that the fundamental group of the punc­
tured disk is iaomorphic to the additilJe group oj inUgBrB. Evidently, an 
arbitrary annulus has the sa.me fundamental group . .. . 

.. We consider now a global analytic function f which can be continued 
. all arcs in the punctured disk 0 < Iz I <". We chOOlle an jnitial 

at 20 = r and continue it along all curves C". Either the con­
t~,.tion never retu,rns. to the initisl genll, or there exists a smallest positive 
intl!pr II. such that C"leads back to where we started. In the latter case, 
set m - 1Ih + q with n an ipteger and 0 ~ q < h.. If C-leads back to the 
initial genll, 80 does C'. Because of the choice of m. this is possible only if 

• 

q = O. Thus C- leads to the initial germ only if m is a multiple of h.. 
Consider the mapping z - r' of 0 < Irl <,,1/1 on 0 < lzl <". We 

claim that f can be as a single-valued analytic function F(f) in 
the following sense: For every r., 0 < Ii ,I < I"l', there exists a function 
element (f,O) E' with rt E 0, such that F(r) = /(i') in a neighborhood of i,; 
in particular, it is required that r. = r'f'corresponds in this way to the 
initial gtnn of , at Ze. 

In order to construct F(r) we join l'. to i by an arc -/ and continue the 
initial germ of r along the imagenf '1' under the mapping z = to; we define 
F(l') to be the value of the tennjnal germ under this continuation. It must 
be proved that F(r) is uniquely detennined. If r. and liare two paths 
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from t. to !, then f:(.-I can be defOimed into a power C'- of the circle 
through fo. Consequently, the image curve fill' can be defol1ned into 
the image of C", which is C". But C" leads hack to the initial g(>fm, 
and hence !. and t. detennine the value F(t). Finally, if ! is in a 
neighborhood of f .. we can first follow an arc r; from to to r. andthen a 
variable arc 'Y' from r I to t which stays within the neighborhood. If the 
neighborhood is sufficiently restricted, the continuation along the image of 
'Y' is determined by Ii single function element (l,O), and F(r) - I(t") in 
that neighborhood. 

Since F(i) is single-valned and analytic in a punctured neighborhood 
of the origin, it has a convergent Laurent development of the f01l1l 

~ 

(1) F(f) = L A.t". 

It mUBt be observed that this development depends on the choice of the 
initial germ; different choices may yield entirely different developments 
and, in particular, different values of h. Actually, even the eeries (1) 
yields II different developments, conesponding to the h initial values of 
z"·. If we write '" = e"'''', these developments are represented by 

(2) (v= 0, 1, ... , h - 1). 

When the germ (j.,z.) is continued along C it leads tc (j ... ,z.), with the 
understanding that the subscript h is identified with o. 

In special caees the Laurent development may contain only a Jinite 
Dumber of powers. Then F(t) baa either a removable singu­
larity or a pole, and the multiple-valued function 1(11) (or, mOre cOnectJy, 
the global· analytic function obtained by continning the given initial 
branch within a punctured diRk) is said to have an .brllic aingvlarity 
or brOllCh point at II = 0, provided of COUl8B that II > 1. If F(r) baa a 
removable lringularity, the branch point is an ordinary algebraic singu­
larity, in the oppositecBFe it is an .broic pole. In either case J(z) 
tends tc a definite limit Ao Or .. &8 Z tend. tc 0 along an arbitrary arc. 

Clea.rly, we could jUBt &8 well bave etudied an isolated singularity at 
an arbitrary point a or OD, and the radius of the punctured disk can be 
l1li smen l1li we wish. In the eaee of a finite h. the correspondence between 
til - J(z) and the independent variable 2 ean be expresaed ibrouch eq"a­
tions of the {"1m 

- , . 
'. . .. '... . '- -,-', 

, ',' -'. ' .. ,~---
• - r-". 

. .,. , . 
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The variable r takes the name of local uniforlnizing variable. 

In the case of an algebraic singularity it is desirable to complete the 
Riemann surface of f so as to include a branch point with the projection a. 
The branch point itself is not a genII of C, but it is fully detel1nined by a 
set of fractional power series developments 

. ~ 

(3) 1.(z) - L A.w"(z - a)-I' 
... ·0 

analogous to (2) ; for a singularity at infinity Z - a has to be replaced by lIz. 
The neighborhoods of the branch point shan include the branch point itself 
as well as, for some 6 > 0, all germs (/ .. f) with It - al < & obtained by 
substituting in (3) a single-valued branch of (z - a) 1/', defined in a neighbor­
hood of r. The resulting topological space will be a IlUrface in the selIlIe 
that every point, including the branch points, hI!.'! a neighborhood which 
is homeomorphic to a disk, 

In the Weierstrass theory it is customary to consider the totality of all 
power series developments, including the fractional ones, that are obtain­
able by analytic continuation from a single one, and to call it an analytic 
configuration (analytisches Gebilde). : 

2.. ALGEB.AIC FUNCTIONS 

An equation of the form P(w,z) = 6, where P is a polynomial in two 
variables, has for each II a finite number of solutions w,(z), ••. ,w.(z). 
We wish to show that these roots can be interpreted as values of a 
global analytic function f(z} which is then called an algtbraic luf&l!:l.Wn. 
Conversely, if a global analytic function is given, we want to be able to 
ten whether it does or does not satisfy a polynomial equation . 

• 
. 

:.1_ The R8IItdmnt oj Two Polynomials. A polynomial P(w,z) in two 
variables is i"~UC$'ble if it cannot be lIS the product of two 
polynomials DOne of which ill constant. Two polynomials P and Q are 

prifM if they have no common factor except for constants . 
. The following theorem is algebraic in character. Because of its 

fundamental importance for the theory of algebraic functions we will 
nevertheless reproduce its proof, 

Theorem 3. 11 P(w,z) and Q(w,z) are relat,iJely prillle polJl1lOf7lW, there 
are only a finite number oJ valves z. lor whieh 1M equationa P(w,z.) = 6 
and Q(w,e.) "" 6 have a common root. 



GLOBAL ANALYTIC FUNCTIONS 

We SUppose that P and Q are ordered according to decreasing powers 
of V and &etQ(tD,z) = b.(z)tD'" + ... + b.(z) where bo(.) is not identi­
cally zero. If P is divided hy Q. the division algorithm yields a quotient 
and remainder which are polynomials in v and rational fWlctions in z. 
We set up a Euclidean algorithm of the form 

(4) 

c.P = grR + R, 
c.Q = g.R. + R. 
ctE. = gtE. + R. 
a • • • • • • • • • • • • • • 

c._.R_. = q ..... R_. + R. 
where the Q. and R. are polynomials in tv and. while the c. are poly­
nomials in " used to clear the fractions The dt>gtees in 10 of the R. are 
decreasing. and R. is a polynomial in "alone. If R.(.) were identically 
zero. the unique factorization theorem implies. by the last relation in (4). 
that R ...... would be divisible by any irreducible factor of R ..... which is of 
positive degree in v. The Mme reasoning shows. step by steP. that al\ 
the R. as well as Q and P would be rovisible by the eame factor. This is 
contrary to the aB8Umption. for R .... , is of positive in 10 and mm 
therefore have an illedueible factor which contains 10. 

Suppose now that P{W.,,,.) - 0 and Q(w •••• ) = O. Substituting 
these values in (4) we obtain RI(v.,,,.) = 0, ... , R .... ,(v.,z.) = 0 and 
finally R.(z.) - O. But since R. i. not identically zero, there are only a 
finite nnmber of Zo which satisfy this conrotion. and the theorem follows. 

The polynomial R.(,,) is called the rmdtant of P and Q. More pre­
ciIeIy. if we wish the reswtant to be uniquely deterlllined. we should 
require that the exponents c. in (3) are of the lowest deg.ee possible. We 
ani not 80 interested in the as in the statement of Theorem 3. 
The theorem will be applied to an polynomial P(tD.,,) and its 
partial derivative P .(v •• ) with respect to v. These polynomials are rela­
tively prime as soon as P has positive dugl ee in v. and the resultant of 
P and P. is called the di8crimitwnt of P. The zeros of the dil!Criminant 
are the value. 10 for which the equation P(IO.",) = 0 has multiple roots. 

We note. finally, that the _ultant R(,,) of any two relatively prime 
polynom;alg P and Q can be written in the form R = pP + qQ where 
p and g are polynomia1s. This follows immediately from (4). 

Z.J. lhdinition and Prop .... ~. of A'&flbr~ Functions. We begin 
hy formulating a precise definition: 

n..6nition 3. .A global analytic ffJlfldimr. r u called an a/geb<aic fUfU>. 
Ii<m if all ihljUflCIi<m el6<nen/. (J.O) 'eatiaf1J II relGtion P(f(,,).z) = 0 ... 0, 

,-0"',." "'."._" 

'.lo')., a' '-. '-, " 

"-.,.' .. ,".' . -", _. . ':,'",' 
.... ,... ~'>'-"'- ",";' 
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where P(w,z) ill a whiM doe, 1IOt vanillA identically. 

Because of the permanence of functional relations it is sufficient to 
that one function element satisfies the equation P(/('),') = o. 

The others will then automatically satiefy the same relation. Moreover, 
it may be pe ... lmed that P(w,z) is an in educible polynomial. Suppose 
indeed that P(w,z) has the factorization P = P1P •.•• p. in ill educible 
factors. For any fixed point z e 0 one of the equations P.(f(z),z) ~ 0 
must hold. H we consider a sequence of dilferent points '. E 0 which 
tend to a limit in 0, then one of the relations P.(f(Zo),Zo) must hold 
infinitely often. It follows that this particular relation PII(f('),') = 0 is 
sstillfied identically in I) and, consequently, by all the function elements 
off. We are thus free to replace P by PIo-

It is al'lO easy to see that the ineducible polynomial P determined by 
an algebraic function is unique up to a constant factor. H Q is an 
tially dilflllfJnt irreducible polynomial, we can determjne the resultant 
R(,) - pP + qQ. If P(I(.),.) = 0 and Q(I(z),z) .. 0 for all zen we 
would obtain R(.) = 0 in 0, oontrary to the fact that R(.) is not identi­
cally zero. We note that P cannot reduce to a polynomial of % alone. 
If it conte ins ouly w, it must be of the form w - a, and the function f 
reduces to the coustaut a. . 

We prove next that there exists an algebraic function corrtsp.mding 
to any ineducible polynomial P{w,.) of positive degree in w. Suppose 
that 

P(w,') = a.(,)w· + al(z)w-l + ... + aw(,). 

H Zo is neither a zero of the polynomial a.(,) nor a zero of the disw imi­
nant of P, the equation P(w,.,.) = 0 has exactly n distinct roots Wl, WI, 

. . . ,w.. Under this condition the fonowing is true: 
• 

Lemma 1. There ez~ an open di8k 4, conl4inifl(l Zo, aM nfvnditm. 
menu (ll,A), (f.,6.), ••. ,(f.,4) with tII.S86 propertie.: 

(a) P(f,(z),z) - 0 in 6.; 
(b) t.(Zo) = W'; 
(Ol) il P(w,z) = 0, Z E 6., t1aen til -/,(%) far .01118 i. 

The polynomial P{w".) has simple Jel'OII at w = til,. We determine 
• > 0 80 that the disks Iw - 10,1 ~ • do not overlap and denote the circles 
Iw - w.1 - • by C.. Then P(tIl,'.) # 0 on C., and by the argument 
principle . 

1. ( P ,,(w;") dill = 1 
2ri }e, P(w,zu) " 
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If .. is replaced by a, the integrals become well-defined continuous func­
tions of z in a neighborhood of z.. Since they can only take integer 
values, there exists a neighborhood 11 such that 

1. ( p .. Cw,a) dw = 1 
2ri 1e, P(w,a) 

for all a E 11. This means that the equation P(w,a) - 0 has exootly one 
root in the disk 110 - 10.1 < s; we denote this root by f,{z). By the 

ca,fculus its value is given by 

. _ 1 / P.(w,z) 
!.(o) - 2ri 1e. 10 P(w,a) dID. 

This shows that j;(z) is analytic. Moreover, j;(a.) = 1/1;, 

and (e) follows from the fact that we have exhibited fa roots of the equa­
tion P(w,z) = 0, and it can have no more. 

The lemma implies at once that there exists an algebraic function f 
corresponding to the polynomial P; in foot, we can choose f to be the 
global lUIa1ytic function determined by the element (f,A) for any z. 
which does not coincide with one oC the finitely mo.ny excluded points. 
We will show , moreover, that all such fUDction elements belong to the same 
global analytic function; this will also prove that the function f that 
corresponds to P is unique. Let (f,n) be one of these function elements. 
There must exist a aD E 0 which is not one oC the excluded points; we 
determine a corresponding 11. Since P(!(,),.) = 0 for a EO it follows by (e) 
that 1(') equals BOrne ,,(.) at each point of A (\ o. But then 1(.10) equals 
the same !.C.) infinitely many times in any neighborhood of '" and bence 
(f,O) belongs to the 88Il1.e global analytic function 88 (f.,I1). 

Let the excluded points be denoted by c" cs, ... , c... We wish to show 
that a function element (f,O) which satisfies P(f(z),z) = 0 can be continued 
along any are whieh does not pass through a point c.. If this were not so, 
there would exist an arc 'Y[a,b) such that a given initial genII can be con­
tinued along all subarea 'Yia,T) with T < b, but not along the whole arc. 
We set •• = 'Y(b), detennine 11 aceording to Lemma 1, o.nd choose T 80 that 
'Y(t) E 11 for alii E IT,b). The same reasoning 88 above shows that the genII 
.y(T) obtained by contin"ation along 'Y[a,T) must be determined by one of 
the function eleillents (f.,A). But then it OlIn be continued all the way to b, 
and we have reach-ed a contradiction. 

It has not yet been proved that' all elements (f.,O) belong to the ll8II\e 
global analytic function., For this '. oC the proof it is IIllC8E&rY to etuciy 
the belta¥ior !Ii the cciti!"I' , '. ' .. , .. ,.. c." 

'. : 
~ . - , . ',~-.:", -,' : . " 

.-.- ~" -,,'.v.:~ ',- .,.,-.' --.', ,.C,"' .• 
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2.3. Behavior lit the C,.itrool Points. The points c. which 90 far have 
been excluded from our considerations were the zeros of the first coefficient 
a.(2) of P, and the zeros of the diseriminant. Let 6 be clwsen so that the 
disk Iz - c.1 < 6 contains no other critical points. We fix a point 20 -F c. 
in this disk and select one of the gel "'8 (h,z.). This germ can be continued 
along all arcs in the punctured disk. Moreover, if continued along the 
circle C of center c. through z., it leads to a germ (J;,zo). Since there are 
only a finite number of choices, there must exist a smallest positive 11 ~ n 
with the property that continuation along C' leads back to the initial 
germ (J.,z.). By the result of Sec. 1.6 we can write 

~ 

(5) "(2) = [A.(2 - C,),'l. 

Suppose first thatc. is not a zero of a.(2). Then!.(z) remains bounded 
as z tends to c.. Indeed, 88 soon 8B !.(2) -F 0 the equation P(f,(z),z) = 0 
can be written in the form 

(6) Oo(z) + o,(Z)!.(2)-1 + ... + a.(z)!.(z) ..... = O. 

If 1«21) were unbounded, there would exist points z. --+ c. with !,(Za) --+ co. 

Substitution in (6) would yield ao(z.) ..... 0, contrary to the 
ao(e.) -F O. It follows that the development (5) contains only positive 
powers, and!. has at most an ordinary algebraic singularity at c •• 

We consider now the case where a.(c.) = O. If the multiplieity of the 
zero is denoted by m, we know that lim 00(2)(21 - coy" -F O. From (6) - .. 
we obtain 

ao(z)(z - c.)-- + al(Z) (2 - c.)-"f,(Z)-1 + • • • 

+ a.(z)(z - c.)-,"!,(z)-o = O. 

If the expression "(21)(21 - .c.) .. were unbounded, we would again be led 
to a contradiction. As in Sec. 1.7 we write 

• 
F(f) = ~ A.I' -. 

and find that F(f)i'"" is bounded. Consequently F(r) has a pole of at 
most order mil, and" has at most an algebraic pole at c. or, in special 
C8BeB, an ordi11l1ol"y algebraic singularity. 

Finally, the behavior ah = co needs also to It is cle,r 
that we have a development of,the form 

• 
/.(2) = ~ A,z"\ --
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valid in a neighborhood of "'. Suppose that the polynomial a;(.} is of 
degree r. (the coefficients which vanish identically will be left out of con­
sideration). Chooee an integer m such that 

(7) 1 
m > Ie (r. - ro) 

for Ie = 1, ••• ,-.n. We contend thatf.{z}r- must be bounded asz -+ ... 
lf thiz were nofSo we would have f.(z}-'z" -+ 0 for a sequence tending to 
... Thiz would imply f;(z)-'Z-> --+ 0 and, by (7), I;(z)-·""-'· --+ 0 for 

Ie ~ 1. If (6) is multiplied by Z ... it follows that all terms except the 
first tend to zero. This is a contradiction, and we may conclude that 
j;(z) has at most an algebraic pole at infinity. 

To sum up, we have proved that an algebraie funetion has at most 
algebraic singularities in the extended plane. We will now prove a oon­
ve.se of this statement. In order to obtain a conve.se it is essential to 
add an assumption which implies that there are only a finite number of 
branehes at a given point. 

Let f be a global analytic function. For each c we assume the ex­
istence of a punctured disk 4, centered at C, such that all germs of f which 
are defined at a point Zo e 4 can he continued along all arcs in 4 and show 
algebraic character at c. The ass\lffiption ~ball be satisfied also for c = .. , 
in which case 4 is the exterior of a circle. Moreover, for one 4 it must 
be assumed that the number of dilIerent g~nD8 at '0 is finite. 

Since the extended plane can he covered by a finite number of disks 
4, the center included, it follows that only a finite number of pointe c can 
be effective singularities; we denote the>e points by c.. It is easy to prove 
that the number of germs at any point z ~ c. is constant. For every 
such point has a neighborhood in which all genus of f are single-valued 
and can he continued throughout the neighborhood. It follows that the 
set of pointe z with exaotly n genIls is open (n can he finite or infinite). 
Since the extended plane minus the pointe c. is connected, only One of 
these sets is nonempty. Hence .. is constant, by it CAnnot 
be infinite, and it cannot he zero since in that case f would he an empty 
collection of function elemente. 

The branches at any poinh ~ c. may nOw he denoted as/,(a}, . . . , 
I.("}, except that the ordering remains indeterminate. We form now the 
elementN'y SYUlaletrie functions of the f.(z}, that is to say the coefficiente 
of the polynomial 

(III - f,(Z}}(1II - /.(,» ... (1/1 - f.(,,» . 
. 

Thl!llll. \MI8f1lciente eX. far_ble 
.. , '. 

, " ":"-', " - " ,,',,"', '. '" ' .. , . "" , ;' 
'. ,'~.,.".";' ... -'.,-,-,-', ":."< ",' .', ••... , .,~v··· ... ·:, .. ·.I .• ,.'\_.,r'_"C 

'.'" , . .".,:,u """''!I-:w:-;:.;~~.,., .. ,--,~.';;.i,;.; .. ; ~'~'" q.:,.: ',.".,··,~.!t:,:::.;,::,~,·,,~ '~m''':\'' ~',.' .:'..;,': . 
, ""-'.'" \" ',\\";' ~ •. ! ...... :. _":'11= ,':.~:' <,~.y." . ...... ' <. ;", ", .. ~.j """," -- , "j ., .... , ..... _." .T,.,'''' , ... '. ,_' 
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c. we know that each I,(z) may grow toward infinity at most like a nega­
tive power of Iz - c.l. The same is hence true of the elementary sym­
metric functions. We conclude that the isolated singularities, including 
the one at infinity, are at most poles, and consequently the elementary 
symmetric functions are rational functions of z. H their common denomi. 
nator is denoted by a.(z), we find that all branches I,(z) must satisfy a 
polynomial eqUAtion 

a.(z)lD- + al(z)wa-l + ... + a.(z) = 0, 

and it is proved that f is algebraic. 
It is now easy to settle the point-which was left open in Sec. 2.2. Sup­

pose that the function element (f,O) satisfies the equation P(f(z),z) - 0 
where P is irreducible and of degree n in w. Thim the corresponding 
globs} analytic function f has only algebraic singularities and a finite 
number of branches. According to what we have just shown fwill satisfy 
a polynomial equation who« tkqree is equal to the number 01 brmu:hu. It 

will bence II&tisfy an in educible equation whose degtee is not higber. 
But the only irieducible equation it can II&tisfy is P(w,z) = 0, and its 
degIee is n. Therefore the number of branches is exactly n, and we have 
shown that a1180lutionB of P(ID,Z) = 0 are branches of the same analytic 
function. 

It remains only to collect the results: 

Theor~:m 4.. An analytic IUflo/um is an algebraic function il u haa aftniU 
number uf brIJRChu and at m08t algebraic EIIe!-y algebraic 
Iumlioo ID = f(z) aatiafteB an irreducible equalioo P( IO,Z) = 0, unique up 
to a c01l8l4n/ ladm, and every BUd! equation tklerminu a corl'8BPonding 
algebraic 1_liOfl uniquely. 

It is also customary tQ say that an weducible equation P(IO,Z) = 0 
defines an algebraic ClU'Ve. The theory of algebraic curves is a bighly 
developed branch of algebra and function theory. We have been able to 
develop only the m()8t elementary pa.rt of the function theoretic aspect. 

EXERCISE 

Determine the position and nature of the singularities of the algebraic 
function defined by w' - 3tDz +. 2.z1 = o . 

.. PICARD'S THEOREM . 

In this section we shall prove the celebrated theorem of Picard, which 
asserts that an entire function omits at JIlO8t one finite value. We shall 
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• 
prove it as an application of the monodromy theorem (Sec. 1.6), using the 
modular function ),(T) (Chap. 7, Seca. 3.4 and 3.5) in an essential way. 
This is Picard's own proof. Many other proofs have been given which 
are more elementary in that they need less preparation, but none is as 
penetrating as the original proof. 

3.1. '-acunary Pal"es. A compllllt number II is said to be a Zacunarv 
~alue of a function fez) if I(z) ¢ 0 in the regi,)D where f is defined. For 
instance, 0 is a lacunary value of e' in the whole plane. 

Theorem 5 (PitlUd). An entire fu1lCtiMr, fDij.\ more IMn one finite lacu-
1I11I"II value redUUB to a conslant. 

We recall thAt an entire function I{z) is one which is analytic in the 
whole plane. If 0 and b are distinct finite values and if f(') is different 
from II and b for all z, we are required to show that fez) is constant. 
ConRider Ia(') - (f(.) - II)/{b - a). This function is entire and ¢O 
aDd 1. If I, is constant, so is f. Therefore it is no to 
from the bE.gioning that II = 0, b ~ 1. 

We shall define a global analytic function h whose function elements 
(11,0) share the following property: 1m 11(.) > 0, and ).(II(.» = I(z) for 
z e Q. Here ).( .. ) is the modular function defined in Chap. 7, Sec. 3.5. 
It will be aho wn that h can be continued along all paths. Since the plane 
is simply oonnccted it will follow by the monodromy theorem that h 
defines an entire function 11(.). BeeallllB 11(.) hall all its values in the 
upper half plane, 6;/0 is bounded. By Liouville's theorem h must reduce 
to a constant, .. nd 80 does f(.) - Mh(,,». 

By Theorem 7 of Chap. 7 there exists II point ... in the upper half plane 
such that >"(T.) - I{O). Bees"'" >..'( ... ) ¢ 0, by the s .. me theorem, there 
exists a local inveree of >.., defined in a neighborhood &. of 1(0) and denoted 
by>...', characterized by the conditions M>.o'(w» = win &. and 

)..'(f(O» - TO-

By continuity there is a neighborhood a. of the origin in which I{.) E & .. 
and U8 can therefore define h(.) - >.o'(f(.)} in a.. We shall let h be tbe 
global apalytic function obtailled by colltinlling the function element 
(h,O.) in all poIIIlible ways. 

We have to sh..,w that the element (h,Oo) C)8lI be continued along all 
path., and that IInh remains positive. U tJPa werellQt SO, we eoul~ find a 
path ')'[0.1..) "'Ioh th"t. h can be eontinued ami 1m 11 reO)8in" . 
any f< t"w~~therA .. .. 

~~, ~.O '~;~i~" . 
__ --_0 __ ., - , • 
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plane with ~h) = fh(t,)) and a local inverse ~,' with ~,'(th(t,)]) = T" 
defined in a neighborhood A, of fh(I,)]. Let 0, be a neighborhood of 
'Y(t,) in which fez) E A" and choose I. < I, 80 that 'Y(t) E 0, for t E [t.,t,]. 
We know that A(T) hOB the same valuefh(t,)) at .. = h(-y(t.)] and at T = 
~,'Uh(t,) I). Henee, by Theorem 8 of Chap. 7, there exists a modular 
transfonllation S in the congruence subgroup mod 2 such that 

S[A,'(j['Y(t.)])] = h['Y(t.)]. 

We now define h, in Il, by h,(z) = S{A,'(f(z»). It is evident that (h"O.) 
is a continuation of h up to I, which satisfies A(h,(a» = fez) and 1m h, > O. 
We conclude that h can indeed be continued along all paths, and OB we 
have pointed out, Picard's theorem follows at once, 

We have carried out the proof in !!Uch painstaking detail in an effort 
to convince the reader that the monodromy theorem plays as essentia.l a 
role in the proof &8 the modular function . 

.. LINEA. DIFFE.ENTIAL EQUATIONS 

The theory of global analytic functions makes it po88ible to study, with 
a great degree of generality, the complex solutions of ordinary dilierential 
equations. Of all dilierential equations the linear ones' are the simplest, 
and also the most important. A linear equation of order n has the form 

d"w d-'w dw 
(8) ... (z) dzo + a,(a) lIZ" ' + . . . + a,.-,(z) dz + a,.(z)w = be,) 

where the coefficients a.(z) and the right-hand member b(z) are single­
valued analytic functions. In order to simplify the treatment we restrict 
our attention to the case where these functions are defined in the whole 
pline; they are thus assumed to be entire functions. A 8olution of (8) is 
a global ana.lytic function r which satisfies the identity 

(9) a.fC0
) + a,lIo-o + . . . + 0" ,f' + a,.C = b. 

We have already remarked that this is a meaningful equation and 
that it is fulfilled as soon as a function element (f,ll) of r satisfies the corre­
sponding equation with f replaced by J. A function element with this 
property 'will be called a local 8olutitm. 

The reader who is fa.miliar with the real case will expect the equation 
(9) to have n linearly independent solutions. This is eo as far &8 Ioca.l 
solutions are concerned, but we· must be prepared to find that dilierent 
Ioca.l solutions can be elements of the same global analytic function. 
In other words, in the complex oase part of the problem is to find out to 
what extent the local solutions are analytic continuations of each other. 

The equation (8) is homogeneOll8 if b(_} is identically sera. This is 
the most important case, and it is the only one we will ' Further-
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more, we can a""1lmo that the coefficienta 0.(2) have no common zeros; 
in fact, if z. were a common zero we could divide all coefficienta by 1 - I., 

and the solutions would remain the same. As a matter of fact, if we are 
willing to consider meromorphic coefficienta we may divide (8) by a.(z) 
from the beginning. Conversely, if an equ&tion with meromorphic coef­
ficients is given, each coefficient can be written as a quotient of two entire 
functions; after multiplication with the common denominator we obtain 
an equivalent equation with entire coefficients. It is thus irrelevant 
whether we do or do not allow the coefficientato have poles. 

In the case n = 1 the equation (8) ha.e the explicit solution 

The only problem is thus to determine the multiple-valued character of 
the integral, a question which has already been trea.ted. On the other 
band, the case ft = 2 is found to have all the characteristic features of 
the general case. For this reason we find it 8ufficient to deal with homo­
geneous linear differential equations of the second order. 

4.1. Ordinary Point.. A point z. is called an ordinary poinl for the 
equation 

.' . 

(10) a.(z)w" + al(z)w' + a.(z)w = 0 

if and only if 00(20) ;t! O. The central theorem to be proved is the 
following: 

Theorem 6. If Z. i8 aft ordiMry point few tM equatWn(lO),t/aere ~ 
a localaoltAti<m U,D), z, f 0, with arbitrarily described valma f(2o) = b. cmd 
f' (I.) = bl • The genn (f,z.) ill vniqmly detel'l","ned. 

We prefer to write (10) in the form 

(11) w" = p(z)w' + q(z)w 

where pe,) = -01/0., g(2) = -0./0.. The mea.ns that 1'(2) 
and ge,) are analytic in a neighborhood of Ze; for convenience we may 
take z. = o. Let 

. . 

(12) 
1'(2) = 1', + plZ + . . . + 1''''' + . . . 
g(z) = q. + g,2 + . . . + g",' + . . . 

be the Taylor developments of p(z) and g(2). 
In order to solve (11) we lise the method of indeterminatecoef­

ficiente. .If ·the theorem illua8, the 1I01utlon·tII -/(a) "' .... have·1I 
T 10 ... _. 10" ' - ~ , """ ... -- .. "'~ --~.~, a7 r ""''''pmen,, . '.' ".. .' '~~J:" ·,.Ct \, :.; ,- . : ~,~. ~ 

.' J,,~ f.··· .,' .,.~; )1.,) .,,~ ~r~'W'~ \-=.ht bt1j .. ( .~ ;~tl \. 
"'I . ;··'.t';. "~~''"''',.:. :' ... "\ .& _ . .. ..... . .. . . ..,....," ." " ... . 
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(13) fez) - b. + b,z + . . . + b"z" + • • • 

whose coefficient. satisfy the condition. 

2b, - b,p. + boll. 
6b. = 2b,p. + h'Pl + b,g, + boll' 

(14) .....o............................... 

n(n - l)b. = (n -l)b._,p, + (n - 2)b_.PI + ... + h,P .... . 
+ b.-s!lo + b._sq, + ... + boll .... ' 

.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . .. . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . .. .. 

This already proves the uniqueneBS. All that remains to prove is that 
the equations (14) lead to a power series (13) with a positive radius of 
convergence. It will then follow by permissible operations of term-wise 
clliferentiatiofi, muItiplieation, and rearrangement that (13) is a solution 
of the equation with desired initial values of / and /'. 

Since the series (12) have positive radii of convergence, there exist, by 
the Cauchy inequalities, constants M. and r, > 0 such that 

(15) Ip.1 ;l!; MOl." 
Ig.1 ;l!; MOl, ". 

-• 
In order to show that (13) has likewise a positive radius of convergence, 
is is sufficient to prove similar inequalities 

(16) 

for a suitable choice of M and r. 
The natural idea is to prove (16) by induction on n. In the first place 

(16) must hold for n = 0 and n = 1; this lead. to the preliminary con­
ditionslbol ~ M, lb. I => M,.---' which are satisfied for sufficiently large M 
and sufficiently small r. Assume (16) to be valid for all subscripts <no 
In order to simplify the computations we choose r < r.; then the general 
equation (14) leads at once to the estimate 

n(n - 1)lb.1 ~ MM.(I + 2 + ... + (n - l»r l -. + (n - l)r' 'J 

We have thus 

Ib.1 ;:; MM. 

= MM. n(n - 1) r + (n - I)r' ,.---0. 
2 

r r' r - + - ,.---' S MM. - + r' r 2 n - 2 
.-

and (16) follows, provided that M.(r/2 + r') ;:!O I. It is clear thatthia 
and the preceding requirements are fulfilled for all IlUfficiently am .... 1 T. 

The proof is complete. 
There elist, in particular,localsohltions/o{a) and!>(.) which 

the conditions 1.( .. > - 1, r.(~ - 0 .nd J,(si'J - 0, r.W - 1. '.~ 
- -. ' 
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of the uniqueness the BOlution with the initial values bo, b, must be 
I(z) =; bo/.(z) + 111/,(z). Hence every loeal solution is a linear combi­
nation of I.(z) and flea). Moreover, the solutions I.(z) and h(z) are 
linearly independent, for if bo/.(z) + b,h(z) = 0 we obtain first b. = 0 
by substituting z = ao, and subsequently b, = 0 since h(e) cannot be 
identieally 'WO. 

EXERCISES 

1. Find the power series developments about the origin of two linearly 
independent solutions of to" = %to. 

2. The Hermite polynomials are defined by 

d' 
H.(z) = (-1)-"" dz" (r·,). 

Prove that H .(z) is a BOlution of to" - 2zto' + 21110 = O. 

4.3. Regular Singular PointB. Any point Zo such that Go(zo) - 0 i.. 
called a ringu!ar point of the equation (10). If the equation is written in 
the form (11), the assumption means that either p(z) or q(z) has a pole 
at z., for We continue to exclude the case of commOn seros of all the 
coefficients in (10). 

There are different kinds of singular points. We begin by a p.re 
Iiminary study of the simplest case which occurs when a.(z) has a simple 
zero. Under this hypothesis the functions pee) and g(a) have at most 
simple poles, and if we choose Zo = 0 the Laurent developments are of 
the form 

p(z) - 1'-' + po + pia + . . . z 

q(z) -q-'+go+q'z+·· •. 
z 

This time, if we substitute 

to - b. + bIZ + boll' + ... 
in (11), the comparison of coeffiCients yields 

-p-,b, = bo9_' 
2(1 - 1'_,)b. = blP. + big_i + bo9o 
• • • • • • • • • .. .. • ... o. • .. .. • .. ' .. 

(17) n(1I - 1 - p-r.lb. _ ( .. -
.c..... .,' - ~":....L. , '," .;"T: 

• . , ~ " 
_. • • .. .. • .. • .. .. ."'J~ .. 

• .. .. 
,.--.~. --' , -

. ,'- .. - -" - _ .',-:,- ... -" . :--.>'~;":. 



This system of relations is essentially different from (14). In the 
first place, only b. can be chosen arbitrarily, and hence the method yields 
at most one linearly independent solution. Secondly, if p_, is zero or a 
positive integer, the system (17) has either no solution or one of the b. 
can be chosen arbitrarily. 

Assuming that p_, is not zero or a positive integer we will show that 
the resulting power series has a positive radius of convergence. As be£o", 
we use the estimates (15), choose M ~ Ib.l, and a .. ume (16) for sub­

seripts <no Under t.he auxiliary hypothesis, ;:;; r. we obtain . 

n(n - 1) 
nln - 1 - p_,I·lb.1 ~ Mr> M. 2 r + (n - 1),' + Iq-ll, . 

Inasmuch as (n - 1)/ln - 1 - p_,1 is bounded, an inequality of the form 

Ib.1 ~ Mr>(Ar + Br') 

will hold for all n. For sufficiently small r this is stronger than (16), 
and the convergence follows. 

As already indicated, the nre8.sult is of a preliminary nature. Our real 
object is to solve (11) in the presence of a regular singularity at Zo. This 
tenllinology is used to indicate that pea) has at most Ii simple and g(z) 
at most a double pole at z •. 

Under these circumstances it turns out that there are solutions of the 
form til ~ z-g(z) where g(z) is analytic and ;0<0 at zo( ~ 0). We make 
this substitution in (11) and find, after brief computation, that (/(,,) must 
satisfy the differential equation 

2« ap «(a - 1) 
g" ~ p - - g' + q + - g. 

. Z Z Z2 
(18) 

For arbitrary a this is of the same type as the original equation, and 
nothing has been gained. We may, however, choose a SO that tbe coef­
ficient of (J has only a simple pole. If q(z) has the development 

g(z) = 9-2 + ... ,,' 
this will be the CMe if a satisfies the quadratic equation 

(19) a(a - 1) -'- p_,a - q_. = 0, 

known as the indicial .guanOll. . For such ot our preliminary lesult shOWI 

that (11) has a solution of the form z-g(z), (J(O) ;0< 0, provided that 
P-l - 2a il not a integer. 

Let the roots of ·be denoted by (I, and "'". Then . 

, • . ... ',,:' 
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a,+a.=p_,+l 
or a, - a, = p_. - 2a, + 1. Hence a, is exceptional if and only if a. - a, 
is a positive integer; by symmetry, a, is exceptional if a. - a, is a negative 
integer. Consequently, if the roots of the indicia.! equation do not diller 
by an integer, we obtain two solutions ,OJg,(.) and ''''fI.(t) which are 
obviously linearly independent. If the roots are equal or differ by an 
integer, the method yields only one solution. 

Theorem 7. If %0 ;. IIlifl(lUlar poifll. for the equIItitm(IO), 0.­
~ li_ly indepella.III' eolutiOM of the fm'fI' (. - '.)"'fIl(") and 
(. - •• )"'g.(,) tDilh ,,(0), ,.(0) pO 0 oornqtmdi'llfl to Ihs, roo18 of Ihs 
indicial equotitm, protlided ~ a. - a. ;. tIOt an intetI«r. 111 the co •• of 
an integral diJler_ a, - a, !1: 0 the e:eUfImce of a BOlulion con .sptmdi'llfl 
to a, can atiU M _,'ted. 

If one solutionis known it is not djfficnlt to find another, linearly inde­
pendent of the first. The methods which lead to a second solution belong 
more properly in a textbook on differential equations. It is also impossi­
ble to treat the c· se of irregular singularities in this book. 

EXERC.SES 

1. Show that the equation (1 - ,1)vI' - 2nD' + 11( .. + I)IA> - 0, 
where 11 is a nonnegative integer, has the Le&endre polynomials 

1 d" 
p.(.) = 2 ... 1· da" (el 

- 1)' 

as solutions. 
,. Determine two linearly independent solutions of the equation 

,1(. + l)vI' - .'w' + til ~ 0 

Dear 0 and one near -1. 
So Show that Bessel's equation ltD" + vi + ZID = 0 has a solution 

which is an integral function. Determine its power series development. 

4.8. Solution. at lll/init,.. If ao(")' 111(")' 110(') are polynomials, it is 
natural to ask how the solutions behave in the neighborhood of ... The 
IDOIIt convenient way to treat this question is to make the variable trans· 
formation. = 1/ Z. Since 

"'=cc _ "';Z'''' 
/Ii dZ 

:: -2Z'~+Z.~ 
. '- - . . "., .. -, .. ,. 

, •. ~" ~'.:\'-.'" ,. 
:"'i~:'<:"'" " ... """~,,,:,.;,_-: , ...... 
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equation (11) takes the form 

(20) d'vt 1 
dZ' ... - 2Z-' + Z-Op Z 

dto 1 
dZ + Z-'q Z to. 

We say of coUJae that co is an ordinary point or a regular singularity for 
the equation (11) if the point Z ... 0 has the character for 

(20). Thus CIO is an ordinary point if the coefficients in (11) have a 
removable singularity at Z "" 0; this is the same, by definition, as saying 
that - (2z + zOp(z» and z'q(z) have removable singularities at CIO. Simi­
larly, co is a regular singularity if theBe functions have, 
most a simple and a double pole at GO. 

It is interesting to determine the equations with the fewest singu­
larities. If.., is to be an ordinary point, q(z) must have at least four 
poles, it vanishes identically. In the la.tter case pea) can have as 
few as one pole, and if the pole is placed at the origin we must have 
pea) ... -2/z. The equation 

has the general solution w ... ar' + b. -
If q(z) is not identically zero, there can be as few as two regular singu­

larities. It is evidently to place the singularities at 0 and CIO, and 
for this reason we turn immediately to the where ao is a regJllar 
singularity. If there is to be only one finite singularity, pla.ced at the 
origin, we must have p(z) = A/a, q(z) ... B/z'. With another choiee of 
constants the equation can be written in the form 

(21) a'til' - (4 + fj - 1)zur' + a{Jv1 = o. 
It has the solutions to ... Z" and 111 = #, where <II and (J are obviously the 
roots of the indicial equation. If..... (J, there must be another solution. 
To find it we write (21) in the symbolic form 

d • zik-a 10=0 

and BUbstitute to ... z«W. We obtain 

d - dW 
Z ik - a Z" W = Z" • II -"i

rk
:'-

d" d dW Z--a ... W ...... ·z- z . 
rk da rk 
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The equation :Ii ~ • W = 0 has the obvious solution W = log :II, and 

hence the desired solution of (21) is 110 = If' log •. 

4.4. The Hyper6eometrie DilTerendo' Equation. We have just seen 
that diJferential equations with one or two regular singlliarities have 
trivial solutions. It is only with the introduction of a third singularity 
that we obtain a new and clus of analytic functions. 

It is quite cletll' that a linear transformation of the variable transforms 
a second-<irder linear diJferential equation into one of the same type and 
that the character of the singularities remains the 8I>me. We can there­
fore elect to place the thtee singularities at prescribed points, and it is 
Bimplest to choose them at 0, 1, and "'. 

If the equation 
110" = p(z)tD' + q(:II} 

is to have finite regular singularitie. only at 0 and 1, we mnst have 

p(te) = ~ + B 1 + P(z} :II lI-

e D E F 
q(z} = Zi + z + (z _ 1)1 + :e _ 1 + Q(:II) 

where P(z) and Q(') are polynomials. In order to make the singularity 
at .. regular, 2z + z'p(z} must have at most a simple pole at .. and 
z'q(z} must have at most a .double pole. In view of these conditions 
P(z) and Q(z) must be identicaIIy zero, and the relation D + F = 0 muot 
hold. These are evidently the only conditions, and we can rewrite the 
expressions for p(z) and q(z} in the form 

p(z) - ~ + B 1 .. z-
e D E 

q(.) = Zi - * - 1) + (z - I)" 

The indicial equation at the origin reads 

.. (a - 1) - A .. + (J. 

30 if its roots are denoted by Cll, .. , we obtain A = Cll + Cli - 1, 
'J - -ala,. Similarly, B - fll + fl. - 1 and E = -fltfll, where II" fl. 
tore the roots of the indicial equation at 1. In order to write down the 
ndi".iaJ equation at ... Ii 8 note that the' leadiq . of;'" 2a-. - , ~ - -"," -,.,' -'.,. ", 0'.' ,. _."~"_' "", - _'. _~~- C'.,., -.,',- --_',~- "'-"'-"-'?~,::. _ .,' , .• ,·._>'~f-"-, .,"-;'-, ", , 

" 

. :-:" 
, " '. " " -" . 

-_.', -'.-,;.';':"-" .. ',- '" -' -" - " '--":-, ~ - '., 'y'- -,- •• , -
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ZOp(z) and z<q(z) are -(2 + A + B) and 0 - D + E, respectively. 
Hence the roots 'Y', 'Yo satisfy 'Y. + 'Y. = -A - B-1 and 

'Y.'Yo == -0 + D - E. 

We conclude at the relation 

(22) a. + ao + p, + (J. + 'Y, + 'YI == I, 

and we find that the equation can be 'written in the form 

=1_----=a"'.'------=a==' 1 - P. - fI, I + . 1 10 
Z z-(23) 10" + 

+ a;~1 _ a.a. !(:~.;)' 'Yl'Yt + (z ~~)I 10 = O. 

In order to avoid the exceptional we will now that none 
of the differences a. - a., fJ, - (I., 'YI - '1, is an integer. Our next step 
is to simplify the equation (23). In Sec. 4.2 We ha.ve already shown 
that the substitution w '" Z"g(z) determines for ,,(z) a similar differential 
equation, Dsmely, the equation (18). Since the original equation has 
solutionB ofthe form w = ""'I/.(z), w = Z"'g.(z), we concll).de that the trans­
formed equation (18) must ha.ve solutions of the form g(z) = Z"'-"g.(z) 
and g(z) == Z".-agl(z). Hence the indicial equation of (18) has the roots 
a, - a, a, - a, as can also be verified by computation. Simultaneously, 
the roots which coIUSJl'>nd to the singularity at 00 change from '1., 'Yo to 
'Y' +", 'Yo +... In exactly the same way we can separate a factor 
(11 - 1)- and find that the resulting equation has exponents which are 
smaller by P at 1 and larger by {J at co. The natural choice is to take 
a == a., fJ = (1.. In the final equation the six exponents are then 0, 
a. - a., 0, (1. - fl., 'Y. '+ a. + {J., 'Y. + a. + {J., respectively. In order 
to comply with time-bonored conventions we will writea == a. + P, + 'Yl, 

" - a. + P. + 'YI, C .. 1 + a. - at. Because of the relation (22) we get 
c - a - b == PI - {I,. Accordingly, the new differential equation will be 
of the form 

w"+ !:+l-c+a+" 
z z - 1 

ab 
10' + z(z _ 1) tD = 0 

or, after simplification, 

(24) z(1 - z)w" + [c - (a + b + l)zlw' - abw == O. 

This is called the differential equation, and we have proved 
that the solutions of (23) are equal to the solutions of (24) multiplied by 
Z"'(z - 1}'<. It is lU!IJI.med that none of the exponent differences e - 1, 
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a - b, a + b - c is an integer. 
According to the theory, eqnation (24) has a solution of the form 

• 
to = .. }; A",-. U this power series is substituted in (24), we find with .-0 
very little computation -thot the coefficients must satisfy the recursive 
relations 

(n + 1)(A + .)A_+! = (A + a)(A + b)A_ 

The extremely simple fonn of this relation makes it possible to write 
down the IlOlution explicitly. With the choice A. = 1 we find that the 

equation is satisfied by the function 

F(a. c ) = 1 + a • b z + a(a + 1) • b(b + 1) ,.. 
,u,,z: 1 .• 1.2·c(.+1) 

+ a(a + 1)(a + 2) • b(/) + 1)(b + 2) z. + ... 
1 ·2 ·3 . c(o + 1)(c + 2) , 

known as the hypergeomtJlNe fumlian. It is defined as soon as. is not 
zero or a negative integer. 

The radiu. of convergence of the hypergeometric series can easily be 
found by computation, but it i. mOre instructive to use pure le&llOning. 
In the first place, we know that F(a,b,c,z) can be continued analytically 
along any path which does not pass through the point 1 and does not 
return to the orisin. Hence a single-valued branch of F(a,b,.,.) can be 
defined in the unit disk IzI < 1 (because the disk is simply eonnected), 
and it foUows that the radius of convergence is at least equal to one. If 
it is greater than one, F{a,b,.,.) will be an entire function. Near infinity 
it must be a linear combination of the solutions ro//.(,), rg,(,) known 
to exist in a n,eighborhood of 00. But it is clear that a linear combination 
can be single-valued only if a or b is an integer. If a is an integer II is not. 
by assumption, and F(a,b,",.) is a mnltiple of r"11.(z). By Liouville's 
theole!ll, if a were positive F(fI,b,o,z) would vanish identically, which is 
not the case. The only case in which the radiua of convergenee is infinite 
is thus when a (or b) is a negative integer Or zero, and then the hyper­
geometric series reduces trivially to a polynomial. 

In .. neighborhood of the origin there is also a 1lO1ution of the form 
z1-,//(.). Here I/(Il) satisfies a -hypi:rgeometric differential equation with 
the six exponents ... - a., 0, 0, fl. - fl" "Y. + a. + fl., "Y. + a. + fl.. It 
follows at once that we can set l1(z) = F(l + a - c,l +b - c,2 - .,11). 
We have proved that two linearly independent solutions near the origin 
are F(a,b,c,z) and z'--<F(1 + a - e,l + ,b - c,2 -

The II!Ilutiens ne ... 1 can be . 
, .0 ••• ,_", _. '._ _ _ ' • • 

It is eaej"r, however, to l"8place. by 01. and {J'I. 

," , . .', . , " . . . ' .. , ,,,,~.,-.,, . '" , 

'-',:"~';': ., \",,~::," ';.~ '.;';" ,~'~~, - ': ',,: : ":, .,:! - -,. ," ,,~.;~/ ... : :'~<';;/.:.~:.>' 
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As a result we find that the functions F(a,b,I + a + b - c,I - z) and 
(1 - 2)' • 6F(e - b,e - a,I - a - b + c,I - z) are linearly independ­
ent solutions in a neighborhood of 1. The solutions near <10 can be 
found similarly. 

We have demonstrated that the mosigeneral linear second-order 
dlJJerential equation with three regular singularities can b" solved explicitly 
by means of the hypergeometric function. It is evidently also po8llible, 
although somewhat laborious, to deterlnine the complete multiple-valued 
structure of the solutions. 

EXERCISES 

:L Show that (1 - z)- = F(a,tI,tI,z) and log 1/(1 - z) = zF(I,I,2,z). 
:t. Express the derivative of F(a,b,c,z) as a hypergeometric function. 
L Derive the integral 

- F(a,b,c,z) = r(b)~~;) _ b) lot tb-'(l - t)· '·1(1 - zt)- tit. 

4. H w. and 10, are linearly independent solutions of the dlJJerential 
equation 10" = pw' + p, prove that the quotient" =- 10./10. satisfies 

d 'I' 

iii '1/' 

-
1 ~ • 1· - 2 '1,- = -2q - 2 p' + p'. 

4.5. Riemann's Point of View. Riemann W88 a strong proponent of 
the idea that an function C8.II be defined by its singularities and 
general properties just 88 well as or perhaps better than through an 
explicit expression. A trivial example is the determination of a rational 
function by the singular parts connected with its poles. 

We will show, with Riemann, that the solutions of a 
differential equation can be characteri ~d by properties of this nature. 
We consider in the following a collection F of function elements (f,O) 
with certain characteristio features which we proceed to enume~ate. 

1. The collection F is complete in the sense that it contains all 
continuations of any (f,n) ~ F. It is not required that any two function 
elements in F be analytic continuatioDli of each other, and hence F MS.y 
consist of several global analytic functioIl8. 

2. The collection is n-. This means that (f.,O) e F, (f.,D) E F 
implies (c,ft + cJ.,D) E F for all coDStant Cl, co. Moreover, any three 
elements (fl,fI), (f.,D), (/.,n) E F with the same n shall satisfy an identical 
relation C,fl + cJ. + cal. '" 0 in D with constant coefficients, not allllerO. 
In other wOrdB, F sh aD be at most ttDo dimenrional. 

3. The only finite singularities of the functions in F Bhall be at the 
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points 0 and 1; in addition, the point .. is also counted &8 a singularity. 
More precisely, it is required that any (f.U) E F can be continued along 
all arcs in the finite plane which do not through the points 0 and 1. 

f. As to the behavior at the singular points we &88UDle that there are 
functions in F which behave lilre prescribed powers e'" and e'" near O. 
like (z - I)'" and (z - I)'" near 1. and like rT' and Z .,. neer... In 
preciee terms. there shall nist certain analytic functions ,,(z) and ,.(%) 

defined in a neighborhood A of 0 and dilJerent from zero at that point; 
for a simply connected subregion Q of A which does IIDt contain the origin 
function elements (~"'(lI),U), ( .... ,.(.).U) can be defined. and it is required 
that they belong to F. The conwponding MSUmptions for the points 1 
and GO can be formulated in analogous manner. 

The read!llr will have recogoised that the solutions of tbe ditJerential 
equation (23) haft just properties, provided that none of the ditJer­
enees a. - a" (I. - (I., 'Yo - 'Y' is an intel!"". In addition, the relation 
a. + ao + /J, + /J. + 'Y, + 'Y. - 1 is satisfied. We ma.klil both pMump­
tions and prove, under these restrictions, that there exists one and only 
one collection F with the properties 1 to 4. Accordingly, F will be identi­
cal with the collection of local solutions of the diiferential equation (23). 

Rit'mann denotes any function element in F by the symbol 

o 1 .. 
P a, fI, 'Yl" % • 

ao fit 'Yo 

Thus P does not stand for an individual function, but this is evidently of 
little importance. Once the uniqueness is established such identities &8 

o 1 GO o 1 .. 
P a. /J, 'YI,' 

ao flo 'Yo 

= ~(z - 1)1 P a. - a /1, - /1 'Yl + a + /J, e 
a. - a /Jo - fI 'Yo + a + /1 

or 
01 .. o 1 .. 

P al /J, 'Yl. 11 - P /1, al 'Yl" 1 - Z 

ao /Jo 'Yo • a. 'Y. 

follow immediately provided that some care is given to their proper 
interpretation. The fact that- such relationships. some of them quite 
elaborate. can be so e'sily reeognized is one of the motivations for 
Riemann's point of view. 

In order to prove the consider two linearly independent 
function elements (f"O), (f.,0) E F, defined in a simply eonnectedreJion 
II which does not· cont.ain 0 or 1. There ar'B such tunctiiln .• el .... Qw in 

" " .. ,-. "", --~., 
'. ,-, .• ' •••••• T ~-H !.l".~. 

. ,.. . , 
'". .'. . . -_. . 

.: ;," 
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any 0, for the functions .e"',.(.) and .e"'g.(z) are linearly independent in 
their common region of definition; they can be continued along an are that 
avoids 0 and 1 and ends in 0, where the continuations define linearly 
independent function elements (J"O), (J.,O). By property 1 they belong 
to F. If (1,0) is a third function element in F, the identities 

imply 

c:f + e,}. + col. = 0 
c:f' + c,}; + eJ~ = 0 
c:f" + e,J',.' + cJ~' = 0 

I t. I. 
I' I; I; -0. 
J" ff' I~' 

We write this equation in the form 

J" = p(.)!' + g(.)! 
with 

(25) 

Here the denominator is not identically zero, for that would mean that 
h and I. were linearly dependent. 

We make now the observation that the expressions (25) remain invari­
ant if t. and I. are subjected to a nonsingular linear transformAtion, i.e., 
if they are replaced by Ol,}. + c.J .. eo,}. + e.,Jo with CnC .. - c.se .. ;o! o. 
This means that pes) and g(z) will he the same for any choice of f. andh; 
hence they are weU-determinoo ri1lf1~alw functions in the whole plane 
minus the points 0 and 1. . 

In order to de~rmine the behavior of p(z) and g(z) near the origin, 
we choose f. = Z"'g.(z), I. = t!"g.(z). Simple calculatioDll give 

f,f. - IJ: = (as - a.).e",I .. -·(C + ... ) 
I,};' - IJ'.' = ( ... - ... )( ... + '" - 1),..·+ .. -·(C + ... ) 
I:r.' - fif;' = ...... ( ... - ... )Z'" I .. I(C + ... ) 

where the parentheiaes stand for analytic functions with the common value 
C = g.(O),.(O) at the origin. We conclude that pea) h88 a simple pole 
with the residue ". + ... - Lwhile the Laurent development of g(z) 
hegins with the telm -a.a./,·. Similar hold for the points 1 
IUld 00. We infer that 
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(26) ( ) a. + a. - 1 + II. + II, - 1 + () pz= 1 poz z z-

where P.(z) is free from poles at 0 and 1. According to its definition (24), 
p(z) is the logarithmic derivative of an entire function; as such it has, in 
the finite plane, only simple poles with positive integers as residues. 
Moreover, the development of p(z) at '" must begin with the term 
-('Y. + 'Y, + 1)/z. Hence p(z) has only finitely many poles, and their 
residues must add up to -('Y. + 'Y. + 1). In view of the relation 
(a. + a, - 1) + (fJ, + II. - 1) = -('Y, + 'Y. + 1), it follows that there 
are no poles other than the onea at 0 and 1. A look at (26) shows that 
Po(z) is pole-free and zero at "', hence identically zero. 

Since l,f~ - 10" ¢ 0 except at 0 and 1, we conclude that q(z) is of 
the form 

q(z) = ""a. IIJj. A B 
- z' - (z - 1)' + z + z - 1 + q.(z) 

where q.(z) has no finite poles. At '" the development must begin with 
-'Yet./z·. It follows that 

A = -B = -(a.a, + IIJj. - 'Y.'Y.) 

and that q.(z) is identically zero. Collecting the results we conclude thatl 
is a solution of the equation 

1/," + 1 - a, - a. + 1 - II. - II. '/J)' 

z z-1 
+ a.a, _ a.a. + IIJJ. - 'Y.'Y' + 'YI'Y' '/J) = 0 

z' z(. - 1) (z - 1)' 

which is just equation (23). 
This completes the proofs, for it follows now that any col-

lection F which satisfies 1 to 4 must be a 8Ilboollection of the family F 0 of 
loeal solutions of (23). For any simply connected n which does not con­
tain 0 or 1 we know that there are two line8.l'ly independent function 
elements (f.,0), (f.,O) in F. Every (f,n) e F. is of the form (cJ'. + cJ.,n> 
IJld is coIll!eQ11ently contained in F. Finally, if ° is not simply con­
.ected, then (/,0) E F 0 is the analytic continuation of a restriction to a 
limply connected 8Ilhlegion of n, and since the restriction belongs to F 
10 does (f,n) because of the property 1. 

. -" -, "','''' ....... ,. 

, 
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Heine-Borel property. 60 
Holomorphic function. 21. 24 
Homologous. definition. 141 
Homology basis, 147 
Homomorphism, 45 
Homothetic transformation. 77 
Homotopy. 291- 300 . 
Hurwitz. A., 178. 225 - 226 
Hyperbola, 95-97 
Hyperbolic transfolIllation. 86 
Hypergeometric differential equa-

tion.315-321 
Hypergeometric function, 317 

Identity, Lagrange's. 9 
image, 63, 73 
Imaginary axis, 12 
Imaginary part, I 
Index of a point. 114-118 
Indicial equation, 312 
Indirectly conforlllal mapping, 74 
Inf,55 
Infinite product, 191 - 193 
Infinity, 18 
Injective, definition, 65 
Integral. 101-104 
Integral domain. 4 
Integration, 101 -173 . 
Interior, 52 
Intersection, 50 
Into, definition, 63 
Inverse function, 65 
Inverse image, 63 
In version, 77 
Involutory transfollllation 7 . , 
Irreducible polynomial, 300 
Isolated point. 53 
Isolated singularity, 124 
Isomorphism, 5 

Jacobi, K. G. J., 241 

Jacobian, 25, 74 
Jensen's formula. 207 - 208 
Jordan are, 68 
Jordan curve, 68 
Jordan curve theorem. 118 

Kernel, 45, 161 
Koebe, P., 230 

Lacunary value, 307 
Lagr,mge's identity, 9 
Laplace's equation, 25, 162 
Laplacian, 245 
Laurent series, 184 - 186 
Least upper bound (I.u.b.). 34, 

55 
Legendre polynomial, 184 
Legendre relation, 274 
Length, 75, 104 
Level curve, 89 
Limes inferior (lim inf, lim), 34 
Limes superior (lim sup, lim), 34 
Limit, 22-24 
Limit point. 62 
Lindelof, E., 97, 20 I 
Line integral, 10 1- 104 
Linear differential equation, 

306-321 
Linear group, 76- 78 
Linear transformation, 76- 89. 
Liouville's theorem, 122 
Local mapping, 130- 133 
Local solution, 308 
Locally bounded family, 225 
Locally connected set, 58 
Locally exact differential, 

144-146 
Logarithm, 46-48 
Loxodromic transfOI"Innation, 88 
Lucas's theorem, 29" 



M test, 37 
Majorant, 77 
Mapping: 

confonnal, 73 - 75, 229 - 261 
continuous, 64 - 67 
local, 130-133 
schlicht, 230 
slit. 260 
topological, 65 
univalent. 230 

Marty, F .• 226n. 
Maximum, 56 
Maximum principle, 133 - 137, 

166 
Mean-value property, 165-166. 

242-243 
Meromorphic function. 128 
Metric space, 51 
Minimum. 56 
Minorant, 37 
Mittag-Leffler, G., 187 
Modular function, 278 
Modular group, 267 
Module, 147, 265 
Modulus, 7 
Monodromy theorem, 295 - 297 
Morera's theorem. 122 
Multiply connected region. 

146-148 

Natural boundary, 291 
Neighborhood, 52 
Noneuclidean distance, 136 
Normal derivative, 163 
Normal family, 219-227 

One to one, definition, 65 
Onto. definition, 65 
:>pen covering, 59 . 
Open set, 52 , " 

, 

-' -", 

. 
,- .-

, 

INUD 

Order, algebraic, 128 
of a branch point. 98 
of entire function, 208 
of a pole, 30, 128 
of rational function, 31 
of zero, 29. 127 

Order relation, 5 
Orientation. 83 
Osgood, W, F., 230n, 

'-function, 272 - 277 
Parabola, 90 
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Picard's theorem. 306 - 308 
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Poisson formula, 166 ~ 168 
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Power series, 38 - 42 
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Probability integral, 206 
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Rational function, 30- 33 
Real number. I 
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238-241 
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c1osed,57 
determined by y, J 16 
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Regular function, 127 
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Removable singularity, 124 - 126 
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Residue theorem, 147 -151 
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Riemann mapping theorem, 
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Riemann sphere, 19 
Riemann surface, 97 - 99, 
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theorem proved by, 169 
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Scbwarz triangle function, 241 
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Square root, 3 
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Stirling's formula, 201- 206 
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Suljective, definition, 65 
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Taylor's theorem, 125 
Topological mapping, 65 
Topological property, 65 
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