COMPLEX ANALYSIS




International Series in
Pure and Applied Mathematics

G. Springer and E. H. Sponier, Consulting Editors

Ahlfors: Complex Analysis

Bender and Orszag: Advanced Mathematical Methods for Scientists and Engineers

Buck: Advanced Calculus

Busacker and Saaty: Finite Graphs and Networks

Cheney: Introduction to Approximation Theory

Chester: Techniques in Partial Differential Equations

Coddirngton and Levinson: Theory of Ordinary Differential Equations

Conte and de Boor: Elementary Numerical Analysis: An Algorithmic Approach

Dennemeyer: Introduction to Partial Differential Equations and Boundary Value
Problems

Dettman: Mathematical Methods m Physics and Engineering

Golomb and Shanks: Elements of Ordinary Differential Equations

Hemming: Numerical Methods for Scientists and Engineers

Hildebrand: Introduction to Numerical Analysis

Householder: The Numerical Treatment of a Single Nonhnear Equation

Kalman, Falb, and Arbib: 'Topics in Mathematical Systems Theory

Lasa: Vector and Tensor Analysis

McCarty: Topology: An Introduction with Applications to Topological Groups

Monk: Introduction to Set Theory

Moore: Elements of Linear Algebra and Matrix Theory

Moursund and Duris; Elementary Theory and Application of Numerical Analyasis

Pearl: Matrix Theory and Finite Mathematies

Pipes and Harnll: Applied Mathematics for Engineers and Physicists

Ralsion and Rabinowstz: A First Course in Numerical Analysis

Riiger and Rose: Difierential Equations with Applications

Rudsn: Principles of Mathematical Analysis

Shapiro: Introduction to Abetract Algebra

Simmeons: Differential Equations with Applications and Histornical Notes

Simmaons: Introduction to Topology and Modern Analysis

Struble: Nonlinear Differential Equations



COMPLEX ANALYSIS

An Introduction to the Theory of Analytic
Functions of One Complex Variable

Third Edition

udﬁl‘t-i t g A
Lars V Jnmufg‘J S
ars v. s
Professor of Mathematies, Emeritus
Harvard University -

vy : i
KU Y 4

_MecGraw-Hill, Inc.

“New York St. Louis San Francisco Auckland Bogot4
‘Carscas Lisbon London Madrid Mexico City Milan
“Montreal New Delhi  San Juan  Singapore

.F
.

--}ydney Tokyo Toronto




COMPLEX ANALYSIS

Copyright © 1979, 1968 by MoGraw-Hill, Inc. All righta reserved.
Copyright 1988 by McGraw-Hill, Inc. All rights reserved.

Printed in the United States of America. No part of this publication
msay be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording, or
atherwise, without the prior writien permission of the publisher.

161718192021 BRBBRB 969876543210

This book was set in Modern 8A by Monotype Composition Company, Inc.

The editors were Carol Napier and Stephen Wagley:
the production supervisor was Jos Campanells.

Library of Congress Cataloging in Publication Data

Ahlfors, Lars Valerian, date
Complex analysis.

(International series in pure and applied mathematics)
Includes index. |
1. Analytie functions. 1. Title.
QASSL.A45 1970 515’93 78-17078 .
ISBN 0407-000857-1



S
E
w
o
o




Contents

PTER1 COMPLEX NUMBERS 1

. The Algebra of Complex Numbers

1
! 1.1 Arithmetic Operations 1
i®* 1.2 Square Roots a
= 1.3 Justification 4
% 1.4 Conjugation, Absolute Value 6
i .:’;:; 1.5 Inequalities 9

ne Geometric Repmseutatmn af Complex Numbers 12

"—,; 8.1 Geometric Addition and Multiplication 12
%33 The Binomial Equation | 15
f .8  Analytic Geometry 17

“ The Bphenical Representation 18

. ".
i 1&: --:'

ER 2 COMPLEX FUNCTIONS . | 21

tion to the Concept of Analytic Function

| Limits and Continuity
Anlbrho F‘unotmm

SR TEETTI




vill CONTENTS

2.3 Uniform Convergence
24 Power Series
2.5 Abel’s Limit Theorem

3 The Exponential and Trigonometric Functions

3.1 The Exponentisl

3.2 The Trigonometric Funetions
3.3 The Periodicity -

34 The Logarthm

CHAPTER 3 ANALYTIC FUNCTIONS AS MAPPINGS

1 Elementary Point Set Topology

1.1 Bets and Elements
1.2 Metric Spaces

13 Connectedness

14 Compactness

1.5 Continuous Functions
1.6 Topological Spaces

2 Conformality

2.1 Arcs and Closed Curves

2.2 Analytic Functions in Regions
2.3 Conformal Mapping

24 Length and Area

3 Linear Transformations

3.1 The Linear Group
3.2 The Cross Ratio
3.3 Symmetry

3.4 Orented Cireles
3.0 Families of Circles

4 Elementary Conformal Mappings

4.1 The Use of Level Curves
4.2 A Burvey of Elementary Mappings
43 Elementary Riemann Surfaces

CHAPTER 4 COMPLEX INTEGRATION

1 Fundamental Theorems

1,1 Line Integrals
1.2 Rectifiable Ares

1.3 Line Integrals as Functions of Ares
14 Cauchy’s Theorem for a Rectangle
1.5 Cauchy’s Theorem in a Disk

TRBTELTS E B8 EREE Q8 LBE&

S

3

o B

-3
N

=

REEX

89
97

101

101

101
104
106
109
112



CONTENTS ix

2 Cauchy’s Integral Formula 114
2.1 The Index of a Point with Respect to a Closed Curve 114

2.2 The Integral Formula 118

23 Hgher Denivatives 120

3 Local Properties of Analytical Functions 124
.3.1 Removable Singularities. Taylor’s Theorem 124
3.2 Zeros and Poles 126

3.3 The Local Mapping 130

34 The Maximum Principle 133

4 The General Form of Cauchy’s Theorem 137
4.1 Chains and Cycles 137

4.2 8imple Connectivity 138

4.3 Homology 141

44 The General Statement of Cauchy’s Theorem 141

4.5 Proof of Cauchy’s Theorem 142

468 Locally Exact Differentials 144

4.7 Multiply Connected Regions 146

5 The Calculus of Residues 148
5.1 The Residue Theorem 148

5.2 The Argument Principle 152

5.3 Ewvaluation of Definite Integrals 154

6 Harmonic Functions 162
6.1 Definition and Basic Properties 182

8.2 The Mean-value Property - 1685

6.3 Poisson’s Formula 166

6.4 Schwarz's Theorem 168

- 6.5 The Reflection Principle 172
CHAPTER § SERIES AND PRODUCT DEVELOPMENTS 175
L Power Series Expansions 175
1.1 Weierstrass's Theorem 175
i, 1.2 The Taylor Series 179
13 The Laurent Series 184
:i':’l ‘Partial Fractions and Factorization 187
15,21 Partisl Fractions - 187
.. 32 Infinite Products 191
X238 Canonieal Products | 193

-’34 The Gammsa Function 198
‘5""3.5 Stirling’s Formula o 201




X CONTENTS

3 KEntire Functions

3.1
3.2

Jensen’s Formula

Hadamsard’s Theorem

4 The Riemann Zeta Function

4.1
4.2
4.3
4.4

The Product Development
BExtension of {{s) to the Whole Plane
The Functional Equation

The Zeros of the Zeta Function

53 Normal Families

5.1
5.2
5.3
b4
5.5

CHAPTER 6 CONFORMAL MAPPING. DIRICHLET'S

Equcontinuity

Normality and Compactness
Arzela’s Theorenm

Families of Analytic Funetiona
The Classical Definition

PROBLEM

1 The Riemann Mapping Theorem

1.1
1.2
1.3
14

Statement and Proof
Boundary Behavior

Use of the Reflection Principle
Analytic Ares

2 Conformal Mapping of Polygons

2.1
2.2
2.3
2.4

3 A Closer Look at Harmonic Functions
3.1 Functions with the Mean-value Property

3.2

The Behavior at an Angle

The Schwars-Christoffel Formulsa
Mapping on & Rectangle

The Triangle Functions of Schwarz

Harnack’s Principle

4 The Dirichlet Problem

4.1
4.2

5 Canonical Mappings of Multiply Connected Regions

5.1
5.2
© 5.3

Subharmonic Functions
Solution of Dinchlet’s Problem

Harmonic Measures
Green’s Function
Parallel Slit Reglons

21

b
whry
w <L

RRERE

EREE B BEEEE B

=

3

E& X

252
257



CHAPTER 7 ELLIPTIC FUNCTIONS

1

Simply Periodic Functions

1.1 Representation by Exponentials
1.2 The Founer Development
1.3 Functions of Finite Order

Doubly Periodic Functions

2.1 The Period Module

22 Unimodular Transformations

2.3 The Canonical Basis

24 General Properties of Elliptic Functions

The Weierstrass Theory

3.1 The Weierstrass p-function

3.2 The Functions {(z) and o(z)

3.3 The Differentiz]l Equation

34 The Modular Function A(T)

3.5 The Conformal Mapping by A(r)

CHAPTER 8 GLOBAL ANALYTIC FUNCTIONS

1

Analytic Continuation

1.1 ‘The Weierstrass Theary

1.2 Germs and Sheaves

1.3 Sections and Riemann Surfaces
14 Analytic Continustions along Arcs
1.5 Homotopic Curves

1.6 The Monodromy Theorem

1.7 Branch Points

Algebraic Functions

2.1 The Resultant of Two Polynomials
2.2 Defimtion and Properties of Algebraic Functions
2.3 Behavior at the Critical Points

Picard’s Theorem
3.1 Xacunary Values

Linear Differential Equations

- 41  Ondinary Points

4.2 Regular Singular Points
. 43 Solutions at Infinity

4 4 The Hypergeometric Differential Equation
4.5 Riemann’s ant of View

CONTENTS

$8 8 E25 8 ¥BEEYRER 2

&9 O ) O
Sl ik i et
QD CA G

&



Preface

Complex Analysis has suceessfully mamtained its place as the standard
elementary text on functions of one complex variable. There is, never-
theless, need for a new edition, partly because of changes 1 current mathe-
matical terminology, partly beecause of differences in student preparedness

“and aims.

’ There are no radical innovations in the new edition. The author still
believes strongly in a geometric approach to the basics, and for this reason
the introductory chapters are virtually unchanged. In a few places,

5-:thmug]10ut the book, it was desirable to clarify certain points that ex-
p-penence has shown to have been a source of possible misunderstanding or
idifficulties. Misprints and minor errors that have come to my attention
hu.ve been corrected. Otherwise, the main differences between the second
tnd third editions can be summarized as follows:

. 1. Notations and terminology have been modernized, but it did not

’iIaem necessary to change the style in any signibcant way.

¥ 2. In Chapter 2 a brief section on the change of length and area under

Momal mapping has been added. To some degree this infringes on the

18¢ self-contained exposition, for it forces the reader to fall back on

us for the definition and manipulation of double integrals. The

Msadvantage is minor.

2 ° 3. In Chapter 4 there is a new and simpler proof of the general form of

Eﬁuchy 8 theorem. It is due to A. F. Beardon, who has kindly permitted

dme to reproduce it. It complements but does not replace the old proof,

Srhich has been retained and improved.

% 4. A short section on the Riemann zeta funetion has been included.

i
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This always fascinates students, and the proof of the functional equation
illustrates the use of residues in a less trivial situation than the mere
computation of defimite integrals.

5. Large parts of Chapter 8 have been completely rewritten. The
main purpose was to introduce the reader to the terminology of germs and
sheaves while emphasizing all the classical concepts. It goes without
saying that nothing beyond the basic notions of sheaf theory would have
been compatible with the elementary nature of the book.

6. The author has successfully resisted the temptation to include
Riemann surfaces as one-dimensional complex manifolds. The book
would lose much of its usefulness if it went beyond its purpose of being
no raore than an mtroduction to the basic methods and results of complex
function theory in the plane,

It is my pleasant duty to thank the many who have helped me by
pointing out misprints, weaknesses, and errors in the second edition.
I am particularly grateful to my colleague Lynn Loomis, who kindly let
me share student reaction to a recent course based on my book.

Lars V. Ahlfors
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1 COMPLEX NUMBERS

1. THE ALGEBRA OF COMPLEX NUMBERS

It 13 fundamental that real and complex numbers obey the same
basic laws of arithmetic. We begin our study of complex fune-
tion theory by stressing and implementing this analogy.

1.1. Arithmetic Operations. From elementary algebra the
reader is acquainted with the smaginary unst ¢ with the property
$? = —1. [If the imaginary unit is combined with two real num-
bers a, 8 by the processes of addition and multiplication, we
obtain a8 complexr number « + 8. a and g are the real and
smaginary part of the complex number. If & = 0, the number is
. said to be purely imaginary; if g = 0, it is of course real. Zero s
- the only number which is at once real and purely imaginary.
b Two complex numbers are equal if and only if they have the same
real part and the same imaginary part.

Addition and multiplication do not lead out from the system
of complex numbers. Assuming that the ordinary rules of
arithmetic apply to complex numbers we find indeed

(1) (a+i8) + (y 1+ 68) = (a + ¥) + (B + 3)
and
(2) (@ + i8)(y + i3) = (ay — 83) + t(ad + Bv).

A " In the second identity we ha.fa made use of the relation 1% = —1.
= It is Jess obvious that division is also possible. We wish to
’
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show that (e + i8)/{¥ + 18) 18 & complex number, provided that v +
15 # 0. If the quotient is denoted by z + iy, we must have

a+ 18 = (v + 18)(zx + iy).
By (2) this condition can be written
a+if = (yz ~ 8y) + 5z 4 vy),

and we obtain the two equations

a=yr — &
8 = 8 + vyy.

This system of simultaneous linear equations has the unique solution

= w+36
v+ 8
ﬁ‘r—aﬁ,
y ?!_I_Tal

for we know that ¥* + 52 i8 not zero. We have thus the result

at+th ay+B8, By ~—ad
(3) v+ 4T+ 8T te v+ 5

Once the existence of the quotient has been proved, its value ecan be
found in a simpler way. If pumerator and denominator are multiplied
with ¥ — 18, we find at once

a+i8 _ (@+B)(y — i) _ (v +88) +i(By — ad)

y+ 8 (v Fd)(v —i5) y: + o°
As a special casge the reciprocal of a complex number 7 0 is given by
‘ 1 _a—-1
a+i8 a4 B

We note that +* has only four possible values: 1, 3, —1, —s. They
correspond to values of # which divided by 4 leave the remainders 0, 1,
2, 3.

EXERCISES
L Find the values of

(1 + Z)?, -:3—5:47. (%_"—'—22) A+ + Q-
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2 If 2 = z + sy (z and y real), find the real and imaginary parts of

+

N
pd

1 1
zi, ; ; ;I'

N
ok

3. Show that

- 3 » é
(-1 :I:2z\/3') =1  and (i:l_izn/ﬁ) _1

for all combinations of signs.

1.2. Square Roots. We shall now show that the square root of a
complex number can be found explicitly. If the given number is a 4 8,
we are looking for a number z 4 ty sueh that

(z+ ) = « + 8.
This is equivalenf to the gyatem ﬁf equations
T 4 —
(4) Y ey = B,
From these equations we obtain

=+ ) = (2 — y")* + 4% = o + B
tHenee we must have
oty = VETT

whem the square root is positive or zero. Together with the first equa-
ftion (4) we find

'+i'

s 2 = o+ Vo B
{:. y’ = -}(—{! + V/ﬂt +- ﬂl)-

i

erve that these quantities are positive or zero regardlese of the sign
Pa.

f - < The equations (5) yield, in general, two opposite values for z and two

#v .But these values eannot be combined arbitrarily, for the second
tlon (4) is not a consequence of (5). We must therefore be careful

et t-zandymthat thmrproducthaathemgn of 8. This leads to the

sl solution -

_ at+VatB B —a+1/-a’+ﬂi)
i(\} 2 "'Tﬁi' 2

ﬂnl.tﬂﬁﬂ 'Forf = Otheviliesare + vaife = 0, +14/—

" ’:

a R

1V @

Ir 'y - I_ .. q * - -

k] v LY . _
I

. \ "i":

1l
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if @« < 0. Itis understood that all square roots of positive numbers are
taken with the positive sign.

We have found that the square root of any complex number exists
and has two opposite values, They coincide only if & 4 $8 = 0. They
are real if 8 = 0, a = 0 and purely imagmmary if 8 = 0, « £ 0. In other
words, except for zero, only positive numbers have real square roots and
only negative numbers have purely imaginary square roots.

Since both square roots are in general complex, it is not possible to
distinguish between the positive and negative square root of a complex
number. We could of course distingnish between the upper and lower
aign in (6), but this distinction is artificial and should be avoided. The
correct way is to treat both square roots in a symmetric manner.

EXERCISES
1. Compute
. — ; 1 —34/3
‘/;r “"I'j '\/1 + l’, 2 i

2. Find the four values of +/ —1.

3. Compute v/7 and v/ —1.
4. Solve the quadratic equation

s (a+if)z+v+=0

1.3. Justification. 8o far our approach to complex numbers has been
completely uncritical. We have not questioned the existence of a number
system in which the equation z* 4+ 1 = 0 has a solution while all the rules
of arithmetic remain in force.

We begin by recalling the characteristic properties of the real-number
system which we denote by R. In the first place, R is a field. This
means that addition and multiplication are defined, satiafying the assocs-
ative, commulative, and distrsbutive laws. The numbers 0 and 1 are neu-
tral elements under addition and multiplication, respectively:a + 0 = a,
«°1 = o for all . Moreover, the equation of subtraction § + z = «
has always a solution, and the equation of division fz = a has a solution
whenever 8 » 0.1 |

One shows by elementary reasoning that the neutral elements and the
results of subtraction and division are unique. Also, every field is an
inlegral domain: of = 0 if and only if e =0 or 8 = 0.

{ We assume that the reader has a working kmowledge of elementary algebra,
Although the above characterization of a field is complete, it obviously does not
convey mych t0 a student who i not already at least vaguely familiar with the concept.
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These properties are common to all fields. In addition, the field R
has an order relation a < f8 (or 8 > a). It 8 most easily defined in terms
of the set Rt of posttive real numbers: & < 8 if and only if 8 — a € R+,
The set R* is characterized by the following properties: {1) 0 is not a posi-
tive number; (2) if a 7 O either @ or —« is positive; (3) the sum and the
product of two positive numbers are positive. From these conditions one
derives all the usual rules for manipulation of inequalities. In particular
one finds that every square a? is either positive or gero; therefore 1 = 13
is a posiftive number.

By virtue of the order relation thesums 1,1 41,1 4141, . . .
are all different. Hence R contains the natural numbers, and since it 18 8
field it must contain the subfield formed by all rational numbers.

Finally, R satisfies the following eompleteness condstion: every increas-
ing and bounded sequence of real numbers has a limit. Let a; < a3 <
ay < - - L ay < ¢+ ,and assume the existence of a real number B
such that o, < Bforalln. Then the completeness condition requires the
existence of & number 4 = lim,.. a, With the following property: given
any € > 0 there exists a natural number ng¢suchthat A — 2 < o, < 4 for
all n > ne.

Our discussion of the real-number system is incomplete inasmuch as
we have not proved the existence and unigueness (up to isomorphisms) of

‘a system R with the postulated properties.t The student who is not
thoroughly familiar with one of the constructive processes by which real
numbers can be introduced should not fail to fil! this gap by consulting any
textbook in which a full axiomatic treatment of real numbers is given.

| The equation z* 4+ 1 = 0 has no solution in R, for a* + 1 is always

i pogitive. Suppose now that a field F can be found which contains R as a

:subfield, and in which the equation 22 4+ 1 = 0 can be solved. Denote a

:solution by ¢ Then z* -+ 1 = (x + 9){(z — ¢), and the equation

?:"z’ 4 1 = 0 has exactly two roois in F, ¢ and —s. Let C be the subset of
F consisting of all elements which can be expressed in the form « 4 8

yzth real « and 8. This representation i8 unique, for a + 18 = « + ¢8’
fiplies « — &/ = ~3$(8 — §'); hence (@ — o/)* = —(8 — £')3, and thisis

Possible only if « = of, § = 8.

k> The subset C is a subfield of F, In fact, except for trivial verifica-

asns which the reader is asked to carry out, this is exactly what was shown
3h Sec. 1.1.  What is more, the structure of Cig independent of F. For lf
i8 another field containing R and a root ¢’ of the equation z* 4 1 =

‘ TAnmmhumbﬁman ficlds is a one-to-one correepondence which pre-
Iummtlndpmdm The word is used quite generslly to indicate a corve-
aptndence whith is otiets one snd preserves kIl relations that are conzidered important

PR

) . - ' [ ". ' - i L .- - -_-- -t n 1
- L LI JL I m =7 . .t . - ' f ' *F ;‘._ E - ri'-. . Ju'"'." - [l . J".' .
S g i - . e 2l . ) - e b L T R . e .
TR =l el Wty SRR e BN Pty B e s TR P L Ll TP B W F nf_ﬁﬂ-—- S PR v -4
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the corresponding subset C’ is formed by all elements a« + ¢’8. There is
a one-to-one correspondence between C and C’ which associates a + {8
and o + 78, and this correspondence is evidently a field isomorphism,
It is thus demonstrated that C and C’ are isomorphic.

We now define the field of compler numbers to be the subfield C of an
arbitrarily given F. We have just secen that the choice of F makes no
difference, but we have not yet shown that there exists a field F with the
required properties. In order to give our definition a meaning it remaing
$0 exhibit a field F which contains R (or a subfield isomorphic with R)
and in which the equation 22 + 1 = 0 has a root.

There are many ways in which such a field can be constructed. The
gimpleat and mosf direct method is the following: Consider all expressions
of the form a + 18 where a, § are real numbers while the signs 4 and 1 are
pure symbols (4 does net indicate addition, and ¢ is not an element of a
field). These expressions are clements of a field F in which addition and
multiplication are defined by (1) and (2) (observe the two different mean-
ings of the sign +). The elements of the particular form « 4 0 are seen
to constitute a subfield isomorphic to R, and the element 0 <+ ¢1 satisfies
the equation z2 4+ 1 = 0; we obtain in fact (0 4 $1)2 = —(1 + 10).
The field F has thus the required properties; moreover, it i8 identical with
the corresponding subfield C, for we can write

a4+ 8 = {a + 10) 4 B0 4 +1).
The existence of the complex-number field is now proved, and we can go

back to the simpler notation a 4 ¢8 where the 4+ indicates addition in C
aid ¢ is a root of the equation z* + 1 = 0.

EXERCISES (For students with 2 background in algebra)
1. Show that the system of all matrices of the special form

(-5 <)

oombined by matrix addition and matrix multiplication, is isomorphic to
the field of complex numbers.

;.. 2 Show that the complex-number system can be thought of as the
field of all polynomials with real coefficients modulo the irreducible
polynomial »? 4 1. -

1.4. Conjugation, Absolute Value. A complex number can be
denoted either by a single letter a, representing an element of the field C, or
in the form « + 18 with real @ and 8. Other standard notations are
2=z, =+ iy, w = v 4 3, and when used in this connection it
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is tacitly understood that x, y, £, %, u, v are real numbers. The real and
imaginary part of & complex number a will also be denoted by Re a, Im a.

In deriving the rules for complex addition and multiplication we used
only the fact that ¢2 = —1. Since —¢ has the same property, all rules
must remain valid if ¢ is everywhere replaced by —s. Direct verification
shows that this 18 indeed so. The transformation which replaces o« 4 8
by a — ¢8 i8 called complex conjugation, and « — 8 18 the confugate of
a + t8. The conjugate of ¢ 18 denoted by 4. A number 18 real if and
only if it is equal to its conjugate. The conjugation is an snvolulory
transformation: this means that é = a.

The formulas

Reu==a;-'dr Ima=a§a

express the real and imaginary part in terms of the complex number and
its conjugate. By systematic use of the rotations a and & it 18 hence
possible to dispense with the use of separate letters for the real and
imaginary part. It is more convenient, though, to make free use of both
notations.

The fundamental property of conjugation 18 the one already referred
to, namely, that

a+b=a+ b
ab =a-b.
The eorresponding property for quotients is & consequence: if ax = b,

then @t = b, and hence (§/a) = b/3. More generally, let R(a,be, . . .)
stand for any rational operation applied to the complex numbers g, b, ¢,

Then
Rlade, . . .) = R(abe . . .).

As an application, consider the equation

Co® +C12» 1 - - Feu1ztCa = 0.
If { is & root of this equation, than { is a root of the equation

Ct* + ¢+ - F -zt =0

[ particular, if the coefficients are real, {* and { are roots of the same equa-
don, and we have the familiar theorem that the nonreal roots of an equsa-
ion with res] coefficients occur in pairs of conjugate roots.

. The product a8 = a + §° is always positive or zero. Its nonnegn-
ive square poot in-ealled the modulus or absoluie value of the complex num-
wx a; it is devoted by Jel. - The t«-mnolou'm&notataGnm justified by
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the faet that the modulus of & real number coineides with its numerieal
value taken with the positive sign.

We repeat the defimtion
| - ad = |a]},

where |a| 2 0, and observe that (4] = |a]. For the absolute value of a
product we obtain

lab|t = ab - &b = abab = adbb = |alMp)r.
and hence
lab| = la] - [b]

since both are 2 0. In words:

The absolule value of a product 18 equal lo the product of the absolule
values of the faclors.

It is clear that this property extends to arbitrary finite products:

@@z « ¢ ¢ aa] = j&r] - |aa| - -+ |aal.

The quotient a/b, b #= 0, satisfies d(a/b) = @, and hence we have also
[l - |a/b| = |al, or
| _ la]

i)- = Ibr
The formula for the absolute value of a sum is not as simple. We find
la + b* = (e + b)(&@ + b) = as + (ab + b3) + bb

?;) la + bl = |ai® + [b]* + 2 Re ab.
The corréaponding formula for the difference is

(7) la = bf* = |a]* + [b|* — 2 Re ab,
and by addition we obtain the identity

(8) la + b|* + |a — b|* = 2(|a|* + (b}%).
EXERCISES

L Verify by ealculation that the values of

o z‘ -~
2241
for z = z + 3y and 2z = £ — iy are conjugate.
2. Find the absolute values of

(3 4+ 49)(—1 4 2i)

-2i3+ D2+ 4)(1+7) and =i-9G=-9
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3. Prove thsat

- @I =1
if either |a] = Lor || = 1. What exception must be madeif |a] = [b| = 1?
4. Find the conditions under which the equation az + b2 4+ c = 0

in one complex unknown has exactly one solution, and compute that
golution.

S. Prove Lagrange’s identity in the complex form

1.5. Inequalities. We shall now prove some important inequalities
which will be of constant use. It is perhaps well to point out that there
I8 no order relation in the complex-number system, and hence all inequali-
¢$ies must be between real numbers,

From the definition of the absolute value we deduce the inequalities

—la| = Re a < |4
) ~la] £ Ima £ |a].

The equality Re a = |a| holds if and only if a is real and = 0.
If (9) is applied to (7), we obtain

la + b)* £ (la| + [b])®
and hence

*(10) a4+ b| = [a] 4 [b].

This is called the triangle snequality for reasons which will emerge later.
' By induction it can be extended to arbitrary sums:

A et ot oo 4ad S ek + a4+ -0 el
The absolute value of a sum is at most equal to the sum of the absolute

The reader is well aware of the importance of the estimate (11) in the
mal bﬂﬁ and we shall find it no less imporiant in the theory of complex
um

Let us determine all cases of equality in (11). In (10) the equality
* holda if and only if ab = 0 (it is convenient to let ¢ > 0 indicate that
&_tnmulmdpautm) If b s4 O this condition can be written in the
. form |bj*(a/b) & 0, and it is betice eqifivalent to a/b & 0. In the general

m&mr@ mﬁr
,r 7

L] _I I;-
- 1 el
[ . . " {I -+
" a LL] P ;
S "*..::'mﬁ
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case we proceed as follows: Suppose that equality holds in (11}; then

|“ll+|ﬂ:|+ “ e -|-|a,.|=](al-|-a.,)+a;+ v +ﬂui
Slort+a]+lasl+ - - -+ Jaul S laa] + as| + - - - + [aah.

Hence |as + asl = |ai| + la2l, and if as # O we conclude that a;/a: = 0.
But the numbering of the terms is arbitrary; thus the ratio of any two
nonzero terms must be positive. Suppose conversely that this condition
is fulfilled. Assuming that a; > 0 we obtain

]ﬂl+ﬂi+ vt +ﬂgl=|ﬂ-1lll+§z+ ¢+ +..._.
= ﬂ_: ¢ & @ & — |al| ]_!
| (1 +a1+ +ﬂ1) = a4 (1 fail l| - + Gl)

= jas| + Y6z + - - - + |ail.

To sum up: the sign of equality holds tn (11) tf and only ¢f the ratio of any
fwo nonzero terms £8 posilive.
By (10) we have also

a} = I(@ — 8) + b] S |a — bl + o

or
el = |8] < [a — bl.

For the same reason |b] — |a| = |a — b|, and these mequa.htleﬁ can be
combined to -

(12) la — 8] 2 [la] — [3]i.

Of course the same estimate can be applied to |e 4 b|.
A special case of (10) is the inequality

£13) - la + i8] = lof + (6]

which expresses that the absolute value of a complex number is at most
equal to the sum of the absolute values of the real and imaginary part.
Many other inequalities whose proof is less immediate are also of fre-

ltilfant use. Foremost 18 C'auchy’s snequality which states that

idadi + - - - Fabt S (al+ - - -+ DB+ - - -+ Y
$Y, in shorter notation,

z ot 3 (bt

i=1}

@4 | 3 abif

' t1is a convenient summation index and, used as a subscript, cannot be confused
with the imaginary unit. It seems pointless to ban its use,
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To prove it, let X denote an arbitrary complex number. We obtain
by (7)

15) Y la —abiz = Y lad® + A2 2 ]2 — 2 Re X E ab.

This expression i8 = 0 for all \. We can choose

a:b;

b4

A=

)
;

for if the denominator should vanish there is nothing to prove. This
choice is not arbitrary, but it is dictated by the desire to make the
expression (15) as small a8 possible. Substituting in (15) we find, after
simplifications,

which is equivalent to (14).

From (15) we conelude further that the sign of equality holds in (14)
if and only if the &; are proportional to the &:.

Cauchy’s inequality can also be proved by means of Lagrange’s

. identity (Sec. 1.4, Ex. 4).

. EXERCISES

1, Prove that

a—b
[ £=5] <1
if [a] <1 and |3 < 1.
2. Prove Cauchy’s inequality by induction.
& Ifjal <L, Nn20fors=1,...,na0dX s+ ¢ " + 2

{
[~ ]
-

[llﬂl'l‘lzﬂz'l' ¢ < v Aty < 1.
. ﬂhow thst thare are complex ! numbera 2 satisfying

TR TN I‘ g 'I + h*“’ - ?IGI
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if and only if |a] < |¢|. If this condition i8 fulfilled, what are the smallest
and largest values of |z|? .

2. THE GEOMETRIC REPRESENTATION OF
COMPLEX NUMBERS

With respect to a given rectangular coordinate system in a plane, the
complex number ¢ = o 4+ 1 can be represented by the point with coordi-
nates (a,8). This representation is constantly used, and we shall often
speak of the point a as a synonym of the number a. The firat coordinate
axis (z-axig) takes the name of real aris, and the second coordinate axis
(y-axa8) is called the smaginary aris. The plane itself is referred to as the
complez plane.

- The geometric representation derivea its usefulness from the vivid
mental pictures associated with a peometric language. We take the point
of view, however, that all conclusions in analysis should be derived from
the properties of real numbers, and net from the axioms of geometry.
For this reason we shall use geometry only for descriptive purposes, and
not for valid proof, unless the language is so thinly veiled that the analytic
interpretation isself-evident. This attitude relieves us from the exigencies
of rigor in connection with geometric considerations.

2.1. Geometric Addition and Multiplication. The addition of com-
plex numbers can be visualized ag vector addstion. To this end we let a
complex number be represented not only by a point, but also by a vector
pointing from the origin to the point. The number, the point, and the
vector will all be denoted by the same letter a. As usual we identify all
vectors which can be obtained from each other by parallel displacements.
Place a second vector b so that its initial point coincides with the end
pomtof a. Then a + b is represented by the veetor from the initial point
of a to the end point of b. To construct the difference b — a we draw
both vectors a and b from the same initial point; then b — a points from
the end point of a to the end point of b. Observe thata + band a — b
are the diagonals in a parallelogram with the sides ¢ and b (Fig. 1-1).
" An additional advantage of the vector representation is that the length
of the vector a is equal to |a|. Hence the distance between the points a
and b is ja — bl. With this interpretation the triangle imequality
la + b| < |a| 4 |b] and the identity e + bt + |a — b|* = 2(la|* + |b]®)
become familiar geometric theorems.
The point a and its conjugate & lie symmetrically with respect to the
real axis. The symmetric point of ¢ with respect to the imaginary axis 18
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ria. 1-L.  Vector addition.

=@&. The four points a, —3, —a, 4 are the vertices of a rectangle which
is gymmetric with respect to both axes.

In order to derive a geometric interpretation of the produet of two
complex numbers we introduce polar coordinates. If the polar coordinates
of the point {a,8) are (r,¢), we know that

a = rcos ¢
g = rsin ¢.

Hénco we can write @ = a + 18 = r(cos ¢ + i6in ¢). In this #rigo-
nometric form of a complex number 7 is always = O and equal to the

modulus {g|. The polar angle ¢ i8 called the argiment or emplsiude of the
complex number, and we denote it by arg a.

Consider two complex numbers a; = ri{cos ¢1 4+ t 8in ¢} and
a: = 73(c08 s + $8in ¢3). Their product can be written in the from
Q182 = 117s[(COB ¢} COB @3 — BIN py Bin @y) + £(8in ¢, COS 2 + COB ¢, 8IN 2)).
By means of the addition theorems of the cosine and the sine this expres-
gion can be simplified to

- (16) 610 = rir4fcos (o1 + 1) + 8in (@1 + 23)].

- We recognize that the product has the modulus r,r; and the argument
" @1+ ¢2. 'The latter result is new, and we express it through the equation

(17) arg (a.a2) = arg a: + arg @

: It is clear that this formuls can be extended to arbitrary products, and
i The argument of a product 1a equal to the sum of the arguments of the
. Jactors.

This is fundamental., The rule that we have just formulated gives a
. deep and unexpected justification of the geometric representation of com-
.. plex numbers. We must be fully aware, however, that the manner in
.. which we have arrized aé the formula (17) violates our principles. In the

g
3
B
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first place the equation (17) 18 between angles rather than between num-
bers, and secondly its proof rested on the use of trigonometry. Thus it
remains to define the argument in analytic terms and to prove (17) by
purely analytic means. ¥or the moment we postpone this proof and
shall be content to digcuss the consequences of (17) from a less critical
standpoint. |

We remark first that the argument of 0 is not defined, and hence (17)
has a meaning only if a; and @z are 0. Secondly, the polar angle is
determined only up to multiples of 360°. For this reason, if we want to
interpret (17) numerically, we must agree that multiples of 360° shall not
count.

By means of (17) a simple geometnc construction of the product a,a;
can be obtained. It follows indeed that the triangle with the vertices
0, 1, @, i8 similar to the tnangle whose vertices are 0, a;, a1a;. The points
0, 1, a1, and a; being given, this similarity determines the point a,a: (Fig.
1-2).In the case of division (17) is replaced by

(18) arg:—:= arg 6y — arg a..

The geometric construction is the same, except that the sumilar triangles
are now 0, 1, a; and 0, as/a,, a,.

Remark: A perfectly acceptable way to define angles and arguments
would be to apply the familiar methods of calculus which permit us to
express the length of a circular arc a8 a definite integral. This leads to a
correct definition of the trigonometric funetions, and to a computational
proof of the addition theorems, - |

The reason we do not follow this path is that complex analysis, as

a8, a2

0 1 riGa. 12, Vector multiplication.
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opposed to real analysis, offers a much more direct approach. The elue
lies in a direet connection between the exponential function and the
trigonometric functions, to be derived in Chap. 2, Sec. 5. Until we
reach this point the reader is asked to subdue his quest for complete rigor.

EXERCISES

1 Find the symmetric points of ¢ with respect to the lines which
bisect the angles between the coordinate axes.

2. Prove that the points a,, a,, as are vertices of an equilateral triangle
if and only if a? + a? + 6 = a16: + 6303 + a0

3. Suppose that g and b are two vertices of a square. Find the two
other vertices in all possible cases.

4. Find the center and the radius of the circle which circumscribes
the triangle with vertices ai, ay, 2. Express the result in symmetrie form.

2.2. The Binomial Equation. From the preceding results we derive
that the powers of a = r{cos ¢ + & 8in ¢) are given by

(19) a* = r*(co8 iy + 18in ny).
This formula is trivially vsalid for n = 0, and since
a~! = rYcos8 ¢ — i8in ¢) = r~Ycoa (—¢p) 1 ¢ 8in (— )]

* it holds also when » is a negative integer.
For r = 1 we obtain de Motvre’s formula

2. {20) (cog ¢ 4 £ 8in ¢)* = co8 ny + 180 Ny

PRADE B T e TR

. which provides an extremely simple way to express cos np and sin ng in
¢ terms of co8 ¢ and sin ¢.

¢ To find the nth root of a complex number a we have to solve the
- equation

1) » = a.

Bﬁppomug that @ > 0 we write @ = r(cos ¢ + ¢ 8in ¢) and

| z = p(eos & + ¢ &in 6).
- Then (21) takes the form
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This equation is certainly fulfilled if p* = r and 78 = ». Hence we
obtain the root

= o P 4 rain ?
£ \/;-(cosﬂ+tmnﬂ):

where +/r denotes the positive nth root of the positive nunber r.

But this is not the only solution. In fact, (22) is also fulfilled if n6
differs from ¢ by a multiple of the full angle. If angles are expressed in
radians the full angle 1s 2r, and we find that (22) is safisfied if and only if

¢ 4.2
0 = ; + k nl
where k is any integer. However, only the valuesk =0,1, . .. ,n — 1
give different values of z. Hence the complete solution of the equation
(21) is given by

" 2% . . 2%
g = \/F[ms(z+ k;)+1sm(§+k;)]: k=0,1, ... ,n -1,

There are n nth roots of any complex number = 0. They have the same
modulus, and their argumenis are equally spaced.

Geometrically, the nth roots are the vertices of a regular polygon
with n sides.

The case a = 1 is particularly important. The roots of the equation

g~ = 1 are called nth roots of unity, and if we set

(23) m—cos;—-+ tsin —

all the roots can be expressed by 1, @, «?, . . . , w™L It is also quite
evident that if v/a denotes any nth root of a, then all the nth roots can be
expressed in the form *- v/a,k=0,1,...,n — 1

EXERCISES

1. Express cos 3¢, cos 4¢, and sin 5¢ in terms of cos ¢ and &n ¢.

2 Simplify 14 cosp+c082¢+ **+ +cosne and 8ne¢ +
8in2¢ 4 - * + <+ gin ne. |

2. Express the fifth and tenth roots of unity in algebraic form.

4 If w is given by (23), prove that

4t dwrd o+ =0
for any integer A which is not a multiple of n.
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5 What iz the value of
1 — ot 4+ o — 0 - (_1):—10,(;—1)3.?

2.3. Analytic Geometry. In classical analytic geometry the equation
of a locus is expressed as a relation between z and y. It can just as well
be expressed in ferms of z and 7, sometimes to distinct advantage. The
thing to remember i8 that a complex equation is ordinarily equivalent to
two real equations; in order to obtain a genuine locus these equations
should be essentially the same. |

For instance, the equation of a circle is |2 — ¢| = . In algebraic
form it can be rewritten as (z — a)(2 — 8) = r2. The fact that this equa-
tion i8 invariant under complex conjugation is an indication that it
represents a single real equation.

A straight line in the complex plane can be given by a parametnec
equation z = a 4 b, where a and b are complex numbers and b £ 0; the
parameter ¢ runs through all real values. Two equations z = g 4 bf and
2z = ¢ + b’t represent the same line if and only if ' — a and b’ are real
multiples of . The lines are parallel whenever b’ i8 a real multiple of b,
and they are equally directed if b’ is a positive muitiple of & The direc-
tion of a directed line can be identified with arg b The angle between
zg=a-+ bt and z = a’ 4 V't is arg b’/b; observe that it dependa on the
order in which the lines are named. The lines are orthogonal to each
other if b’ /b is purely imaginary.

Problems of finding intersections between lines and circles, parallel
or orthogonal lines, tangents, and the like usually become exceedingly

: simple when expressed in complex form.

An inequality {2 — a| < r describes the ingide of a circle. Similarly,
a directed line z = a 4 b determines a right half plane consigting of all
points z with Im (2 — a)/d < 0 and a left, half plane with Im (z — a)/b > 0.

.. An easy argument shows that this distinction ia independent of the
- parametric representation.

- EXERCISES

1. When does az 4 bz + ¢ = 0 represent a line?
2. Write the equation of an ellipse, hyperbola, parabols in complex

% Prove that the diagonals of a parallelogram bisect each other and

:,‘ that the diagonals of a rhombus are orthogonal.

N

- & Prove analytically that the midpoints of parallel chords to s circle

- ‘o on & diaméter perpendicular to the chords.
e I.Bhoﬁthltaﬂmmleathatmthroughamd lfamtemcttha
j&ub lo|' = 1'at Fight shigles: -

WYL vak ﬂm%mvi}, ' ‘."'--f'.r.,.{.': -

' B - L - - ! L. .
! = . o Cam o w P T '_ L] . o, M
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2.4. The Spherical Representation. For many purposes it is useful to
extend the system C of complex numbers by introduction of a symbol «
to represent infinity. Its connection with the finite numbers is estab-
lished by setting ¢ 4+ «© = « 4 a = « for all finite a, and

b-0 = w0 ph =

for all b 3 0, including d = . It is impossible, however, to define
o 4 w0 and 0 - «© without violating the laws of arithmetic. By special
convention we shall nevertheless write ¢/0 = o« fora » 0 and b/ = 0
for b = o,

In the plane there is no room for a point corresponding to «, but we
can of course introduce an ‘‘ideal’” point which we call the point & infinity.
The points in the plane together with the point at infinity form the
extended complex plane. We agree that every straight line shall pass
through the point at infinity. By contrast, no half plane shall contain
the 1deal poinf.

It is desirable to introduce a geometric model in which all points of
the extended plane have a concrete representative. To this end we con-
sider the unit sphere S whose equation in three-dimensional space is
zi + z: 1+ 23 = 1. With every point on S, except (0,0,1), we can associ-
ate a complex number

_‘:t:l+l:$:
(24) r= G

and this correspondence 18 one to one. Indeed, from (24) we obtain

i + 73 14z

l2]* = : = X
(1 -— Za) l — 25
and hence
_ler—=1
(25) _ z3 2|2 + 1
Further computation yields
x, = 2+ 2
1+ [2?
(26) 2 — 2z

S (R Y

The correspondence can be completed by letting the point at infinity
correspond to (0,0,1), and we can thus regard the sphere as a repre-
sentation of the extended plane or of the extended pumber system. We
note that the hemisphere z3 < 0 corresponds to the disk }z| < 1 and the
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hemisphere z; > 0 to ifs outside |z] > 1. In function theory the sphere
S is referred to as the Riemann sphere.

If the complex plane is identified with the (z,,2:)-plane with the
zi- and T2-axis corresponding to the real and imaginary axia, respectively,
the transformation (24) takes on a simple geometric meamng Writing
z = 2 + ty we can verify that

(27) zy:=1=2:23:2;, — 1,

and this means that the points (z,5,0) (z1,72,2:), and (0,0,1) are in a
straight line. Hence the correspondence is a central projection from the
center (0,0,1) as shown in Fig. 1-3. It is called a stereographic projection.
The context will make it clear whether the stereographic projection is
regarded as a mapping from S to the extended complex plane, or vice versa.

In the spherical representation there is no simple interpretation of
addition and multiplication. Its advantage lies in the fact that the point
at infinity is no longer distinguished.

It is geometrically evident that the stereographic projection trans-
forms every straight line in the »-plane into & cirele on S which passes
through the pole (0,0,1), and the converse is also true. More generally,
any circle on the sphere corresponds to a circle or straight line in the z-plane.
To prove this we observe that a circle on the aphere lies in a pla.ne
arzy + asz: + azrs = ap, where we can assume that o} + af + of = 1
and 0 £ ay < 1. In terms of z and 2 this equation takes the form

ai(z + 2) — an(z ~ 2) + a:(|z]® ~ 1) = a{]2|® + 1)
or
(o — ap)(Z* + ¥?) — 2a12 — 2a3y + a9 + a3 = 0.

For ae # a3 this is the equation of a eircle, and for a¢ = a3 1t represents
e straight line. Conversely, the equation of any circle or straight line

RS

rig. 2-3. Btereogrsphic projection.

' . ‘p.".. .'.:’.'LL' L
N T -1 3
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can be written in this form. The correepondence is consequently one
fo one.

It is easy to calculate the distance d(z,2’) between the stereographic
projections of z and 2. If the points on the sphere are denoted by
(z1,%2,23), (1,%3,%3), we have first,

(z3 — z{)® + (@2 — 2D+ (73 — 25)? = 2 — 2(z:z] + %973 + %320).
From (35) and (36) we obtain after a short computation

21%) + 2avs + 227
_+HE+2) - :z2—-35E —2) + (13|’ = D{|'|* — 1)
QA+ /A + P
_ Q41200 + |27 — 2|z — £]*
1 + 21D Q + [

As & result we find that

(28) d(e¢) = ——22 %I

VA T+ PHA F 7D

For £ = o the corresponding formuls is

—— 2-—-—-—-——
d(z, =) ViTr
EXERCISES

1. Show that z and 2 correspond to diametrically opposite points on
the Riemann sphere if and only if 22’ = —1.

2. A cube has its vertices on the sphere S and its edges parallel to the
coordinate axes. Find the stereographic projections of the vertices.

3. Same problem for a regular tetrahedron in general position.

4. Let Z, Z' denote the stereographic projections of 2, 7/, and let N be
the north pole. Show that the triangles NZZ’ and Nzz' are mmllar, and
use this to derive (28).

$. Find the radius of the spherical image of the cirele in the plane
whose center is a and radius R.



2 COMPLEX FUNCTIONS

1. INTRODUCTION TO THE ¢0H¢EPT OF
ANALYTIC FUNCTION

The theory of functions of & complex variable aims at exteading
calculus to the complex domain. Both differentiation and inte-
gration acquire new depth and significance; at the same time the
range of applicability becomes radically restricted. Indeed, only
the analytic or holomorphtc functions can be freely differentiated
and integrated. They are the only true “functions’ in the sense
of the French ‘“Théorie des fonctions’” or the German
“Funktionentheorie.”

Nevertheless, we ghall use the term “function” in ite modern
meaning. Therefore, when stepping up to complex numbers we
have {0 consider four different kinda of functions: real functions
of a real variable, real functions of a complex variable, complex
funections of a real vaniable, and complex functions of a complex
variable. As a practical matter we agree that the letters z and w
shall always denote complex variables; thus, to indicate a complex
function of a complex variable we use the notation w = f(2).1
The notation y = f(z) will be used in a neutral manner with the
understanding that x and y can be either real or complex. When
we want to indicate that a variable is defimtely restricted to real
values, we shall usually denote it by {. By these agreements we

} Modern students are well aware that f stands for the function and f{s)

" for & value of the funetion. However, mﬂw&amtmdmonaﬂymmdedmd
continus ‘o speak of “the fanction fe).” .

1

Lo e e tede il e e
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do not wish to cancel the earlier convention whereby a notationz = z + sy
automatically impliee that z and 7 are real.

1t is esaential that the law by which a function is defined be formulated
in clear and unambiguous terms. In other words, all functions must be
well defined and consequently, until further notice, single-valued.

1t is nof necessary that a function be defined for all values of the
independent variable. For the moment we shall deliberately under-
emphasize the role of point set theory. Therefore we make merely an
informal agreement that every function be defined on an open set, by
which we mean that if f(a) is defined, then f(x) is defined for all x suffi-
ciently close to a. The formal treatment of point set topology is deferred
until the next chapter.

1.1. Limits and Continuity. The following basic definition will be
adopted:

Definition 1. The funclion f(z) te satd to have the limit A as x tends {0 a,
(1) llm f(x) =

tf ald only <f the following ¢s true:
For every e > QO there exists a number § > 0 with the property thal
U(ﬁ)*-Al < s for all values of z such thet |z — a| < 5 and z  a.

TIIJB definition makes decisive use of the absolute value. 8ince the
notion of absolute value has a meaning for complex as well as for real
numbers, we can use the same definition regardless of whether the variable
:r_‘aﬁ the function f(z) are real or complex.

'+ s an alternative simpler notation we sometimes write: f(z) — A for
#’ -"—5 &

. There are some familiar vananta of the definition which correspond
iothe case where a or A is infinife. In the real case we can distinguish
Bebween the limits + « and — «, but in the complex case there is only
on infinite limit. We trust the reader to formulate correct definitions
to' &mzr all the possibilities.

' “The well-known results concerning the limit of a sum, a product, and
& qmtlant continue to0 hold in the corplex case. Indeed, the proofs
depend only on the properties of the absolute value expreesed by

labl = la|-|ol and |a 4B S |a| + 1Bl

iWeMmmeﬁm&untheﬂeonuﬁct&mwmwundﬂﬁna
that the function has only ane value for ench value of the variable.
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Condition (1) is evidently equivalent to

(2) | lim f(z) =
From (1) and (2) we obtain
llm Re f(z)} =
(3) hm Im f(x) = Im A.

Conversely, (1) is a consequence of (3).

The function f(z) is said to be conitnuous af a if and only if
im f(z) = f(a). A contsnuous function, without further qualification,
L - |

18 one which 18 continuous at all points where 1t is defined.
The sum f(z) 4 g{z) and the product f(z)g(z) of two continuous fune-
tions are continuous; the quotient f(z)/g¢(z) is defined and continuous at
a if and only if g(a) € 0. If f(z) is continuous, so are Re f(z), Im f{z),
and [ f{z)l.
The derivative of a function i8 defined as a pa.rtlcular Iimit and can be
- considered regardless of whether the variables are real or complex. The
;. formal definition is

, | (4) f(a) = him () — f(a) .

- The usual rules for forming the derivative of a sum, a product, or a
- quotient are all valid. The derivative of a compomite function is deter-
. mined by the chain rule.

There is nevertheless a fundamental difference between the cases of a
- real and a complex independent variable. To illustrate our point, let
" () be a real function of & compler variable whose denvative exists at
¥ £ = a. Then f'(a) is on one side real, for it is the limit of the quotients

fla + h; — fa)

'hhtendatozem through real values. On the other side it is also the
3 lj.ruut of the quotients

I.(E;""‘)“f(.t‘l

'. al function ofa.mmplex varishle eltherhuthedenvatwe zero,orelaa
. damtiwdoeanotmt S
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The case of a complex function of a real variable can be reduced to the
real case. If we write z(¢) = 2(t) 4+ sy(f) we find indeed

Z(t) = 2'(t) + '),

and the existence of £'(t) is equivalent to the simultaneous existence of
’(t) and y'(¢). The complex notation hag nevertheless certain formal
advantages which it would be unwise to give up.

In contrast, the existence of the derivative of a complex function of a
complex vanable has far-reaching consequences for the structural proper-
ties of the function. The investigation of these consequencés is the cen-
tral theme in complex-function theory.

1.2. Analytic Functions. The class of analytic functions is formed by
the complex functions of & complex variable which possess a derivative
wherever the function is defined. The term holomorphic funciion is used
with identical meaning. For the purpose of this preliminary investiga-
tion the reader may think primarily of functions which are defined in the
whole plane. |

The sum and the product of two analytic functions are again analytie,
The same is true of the quotient f(2) /g(z) of two analytic functions, pro-
vided that g{z) does not vanish. In the general case it is necessary to
exclude the points at which g(z) = 0. Strietly speaking, this very typi-
cal case will thus not be included in our considerations, but it will be clear
that the results remain valid except for obvious modifications.

The definition of the derivative ¢an be rewritten in the form

i Je+ B — 1)
) = lim 222 = 10,

As a first consequence f(z) is neoemnly continuous. Indeed, from
Je@ 4B — J(2) = h- (f(z + B) — f(2))/h we oblain

lim (fz + B) — f(2)) = 0~ £'2) = 0.

If we write f(2) = u(e) 4 v(2) it follows, moreover, that u(z) and »(2)
are both continuous.

Thse limit of the difference quotient moust be the same regardless of
the way in which A approaches zero. If we choose real values for 2,
then the imaginary part y is kept constant, and the derivative becomes
a partial derivative with respect t0 z. We have thus

i
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CONMPLEX FUNCTIONS 25

Similarly, if we substitute purely imaginary values ik for 4, we obtain
fl(z) f(z + 1k) - j(z) , Of .0u , dp

b -yt Tyt
It followsa that f(z) must satisfy the partial differential equation
®) T --il

which resolves into the real equations
du v du dy

©) =W W
These are the Cauchy-Riemann differential equations which must be
satisfied by the real and imaginary part of any analytic function.t

We remark that the existence of the four partial derivatives in (6) is
implied by the existence of f'{z). Using (6) we can write down four
formally different expressions for f’(z); the simplest is

) = 3 + i

For the quantity {f’(z){? we have, for instance,

o () +(3) - () +(2) - 25 - 52

The last expression shows that |f(2)|* is the Jacobian of u and v with
respect to = and .

We shall prove later that the derivative of an apalytic funetion is
itself analytic. By this fact u and v will have continuous partial deriva-
tives of all orders, and in particular the mixed derivatives will be equal.
Using this information we -obtain from {(6)

o= 2%+ gmo
d
m=—’3+§;’i§-o

A function % which satisfies Laplace’s equation Au = 0 is said to be
harmonic. The real and imaginary part of an analytic function are thus
harmonic. If two harmonic functions u and v satisfy the Cauchy-
Riemann equations (6), then v is said to be the conjugate harmonic func-

- 1 Augushn Cauchy (1789-1857) and. Bernhard Rismann {1826-1860) are regarded
as the founders of complex-function theery. Rumm:mkamphﬁudthem
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26 COMPLEX ANALYSIS

tion of u. Actually, v is determined only up to an additive constant, so
that the use of the definite article, although traditional, is not quite accu-
rate. In the same sense, « is the conjugate harmonic function of —v.

This is not the place to discuss the weakest conditions of regularity
which can be imposed on harmonic functions. We wish to prove, how-
ever, that the function u + iv determined by a pair of conjugate har-
monic¢c functions is always analytic, and for this purpose we make the
explicit assumption that v and v have continuous first-order partial
derivatives. It is proved in caleulus, under exactly these regularity eon-
ditions, that we can write

ulz + Ay + k) — u(z,9) =%¥h+g—3k+e;

”(x + hry + k) - ”(I:y) = 'g% h +gv_yk 4~ ¢4,

where the remainders ¢, ¢, tend to zero more rapidly than & + ¢k in the
sense that ¢,/(h + k) > 0 and /(A +th) 2 0for A4+ itk — 0. With
the notation f(z) = u(z,y) 4 wiz,y) we obtain by virtue of the rela-
tiona (6)

du

fe + b + §k) — &) = §+£g—z B+ ) + & + iee

and hence

et htik) —f@)  du , .o
Moo Btk =% '

M e conclude that f(z) is analytiec.

i If u(z,y) and v(x,y) have continuous firsi-order partial dersvatives which
satisfy the Cauchy-Riemann differential equations, then f(z} = u(2) + iv(z)
38 analylic with continuous dertvalive f'(z), and conversely.

The eonjugate of a harmonic function ean be found by integration,
and in simple cases the computation ean be made explicit. For instance,
% = z' — y* 18 harmonic and du/dzr = 2z, du/dy = —2y. The conju-
gate function must therefore satisfy

¥ _ o 9 _
o2 ' 8y

From the first equation v = 2zy 4 ¢(y), where ¢(y) is a function of y
alone. Bubstitution in the second equation yields ¢'(y) = 0. Hence
¢(y) i8 a constant, and the most general conjugate function of 22 — y* is
2zy + ¢ where c is & constant. Observe that 23 — ¢? + 2izy = 2t The
analytic function with the real part 2* — y* is hence z? + +e.
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There is an interesting formal procedure which throws considerable
light on the nature of analytic functions. We present this procedure
with an explicit warning to the reader that it i3 purely formal and does
not possess any power of proof. |

Consider a complex function f(z,¥)} of two real variables. Introducing
the complex variable z = z 4 sy and if8 conjugate Z = z — ¢y, wé can
write z = 1(z + 2), ¥y = —3i(z — 2). With this change of variable we
can consider f(z,y) as a function of z and Z which we will treat as inde-
pendent variables (forgetting that they are in fact conjugate to each
other). If the rules of calculus were applicable, we would obtain

w-i(Ea) w-a(E+eR)

These expressions have no convenient definition a8 limits, but we can
nevertheless introduce them as symbolic derivatives with respect to 2
and Z. By comparison with () we find that analytic funetions are char-
acterized by the condition 4f/92 = 0. We are thus tempted to say that
an analytic function is independent of #, and a function of z alone.

This formal reasoning supports the point of view that analytic func-
tions are true functions of a complex variable as opposed to functions
which are more adequately described as complex functions of two real
variables.

By similar formal arguments we can derive a very simple method
which allows us to compute, without use of integration, the analytic
funetion f(z) whose real part is a given harmonic function u(z,y). We

remark first that the conjugate function f(z) has the derivative zero with .

respect to z and may, therefore, be considered as a function of 2; we
denote this function by f(zZ). With this notation we can write dﬂwn the
identity

ul(z,y) = }Hf(z + i) + flz — )

It 1a reasonable to expect that this is a formal identity, and then it holds
even when z and y are complex. If we substitute ¢ = 2/2, y = 2/2t,
we obtain

w(2/2, 2/2) = §(f(2) + J(0)}.

Since f(2) i8 only determined up to a purely imaginary constant, we may
as well assume that f(0) is real, which implies f(0) = %{0,0). The func-
tion f(z) can thus be computed by means of the formula

Fe) = 2u(s/2, 2/2i) — u(0,0).

A purely imaginary oonatant can be added. at will.: '
In this form the mathod is daﬁmt.ely limited to functions u(z;y) which
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24 COMPLEX ANALYSIS

are rational in z and y, for the function must have a meaning for com-
plex values of the argument. Suffice it {o say that the method can be
extended to the general case and that a complete justification can be

given.

EXERCISES

L If g(w) and f(z) are analytic functions, show that g(f(z)) is also
analytic.

2. Verify Cauchy-Riemann’s equations for the functions 2* and 23,

3. Find the most general harmonic polynomial of the form az® 4
bx*y + czy® + dy’. Determine the conjugate harmonic function and the
corresponding analytic function by integration and by the formal method.

4, Show that an analytic function cannot have a constant absolute
value without reducing to a constant.

8. Prove rigorously that the functions f(z2) and i@ (ﬁ) are mmulta.neously
analytic.

6. Prove that the functions #(z) and % (%) are simultaneously harmeonic.

7. Show that a harmonic function satigfies the formal differential
equation 2

w

0z 02 = 0.

1.3. Polynomials. Every constant is an analytic function with the
derivative 0. The simplest nonconstant gnalytic function 18 2z whose
derivative is 1. Since the sum and product of two analytic functions are
again analytie, it follows that every polynomial

7 Pz) = ap+ 8z + * * * + anz*
is an analyti¢c function. Jts derivative is

P'@@)=a142a2+ - - - + na,z*L

The notation (7) shall imply that a, £ 0, and the polynomial is then
said to be of degree n. The constant 0, considered as a polynomial, is in
many respects exceptional and will be excluded from our considerations.t

For n > O the equation P(z) = 0 has at least one root. This is the
so-cglled fundamental theorem of algebra which we shall prove later.
If P(a;} = 0, it is shown in elementary algebra that P(2) = (z — ay)P1(2)
where P,(z) is a polynomial of degree n — 1. Repetition of this process
finally leads to a complete factorization

(8) Pz) = gu(z —an){z — as) - - - (2 = au)

t For formal reasons, if the constant Oiurégardodmapobfnomisl, its degree is set
equal to — ©.
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where the a;, as, . . . , a, are not necessarily distinet. From the fac-
torization we conclude that P(z) does not vanish for any value of 2
different from a;, as, . . . , 2a. Moreover, the factorigation is uniquely
determined except for the order of the factors.

If exactly k& of the a; coincide, their common value is called a zero of
P(z) of the order h. We find that the sum of the orders of the zeros of a
polynomial is equal to its degree. More simply, if each zero is counted
a8 many times as its order indicates, & polynomial of degree n has exactly
7 Zeros. ‘

The order of a zero a can also be determined by consideration of the
successive derivatives of P(z) for z = a. Suppose that « is a zero of
order &. Then we can write P(2) = (z — a)*Pa(2) with Py{(a) = 0. Suc-
cessive derivation yields Pa) = P'(a) = ' - - = PA-D{a) = 0 while
P®™(a) 7% 0. In other words, the order of a zero equals the order of the
first nonvanishing denivative. A zero of order 1 is called & simple zero
and is characterigzed by the conditions P(a) = 0, P'(a) 7 0.

As an application we shall prove the following theorem, kunown as
Lucas’s theorem:

Theorem 1. If all 2eros of a polynomial P(z) le in a half plane, then all
zeros of the dertvative P’ (2) lie in the same half plane.

From (8) we obtain

P(2) | 1
(9) PO ~imat T Timd

Suppose that the half plane H is defined as the part of the plane where
Im (z = a)/b < 0 (see Chap. 1, Sec. 2.3). If ap isin H and 2z 18 not, we
have then

g — @ Z—G_ ar — G
z = Im 7 Im 5 > 0.

Im

But the imaginary parts of reciprocal numbers have opposite sign.
Therefore, under the same assumption, Im d(z — )™ < 0. If this is
true for all & we conclude from (9) that

bFP’ (z) c b
e D, Im—— <0,

Im
k=1

End consequently P/(z) » 0.

In a sharper formulation the theorem tells us that the smallest convex
polygon that contains the zeros of P(g) also contains the zeros of P’(z).
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1.4. Rational Functions. We turn to the case of a rational function

P(z)
Q)

given as the quotient of two polynomials. We assume, and this is essen-
tial, that P(z) and Q(z) have no common factors and hence no common
zeros. R(z) will be given the value « at the geros of Q(2). It must
therefore be considered as a function with values in the extended plane,
and as such it is continuous. The zeros of Q(z) are called poles of E(z),
and the order of & pole is by definition equal to the order of the corre-
sponding gero of Q(z).
The derivative

(10) | R(z) =

Rr(z) — P '(z)Q(Z)Q;)?’(Z)P (‘)

exists only when Q(z) 0. However, as a rational function defined by
the right-hand member of (11), R’(z) has the same poles as R(z), the order
of each pole being increased by one. 1In case Q(z) has multiple zeros,
it should be noticed that the expression (11) does not appear in reduced

form.
Greater unity is achieved if we let the variable z a8 well as the values

R(z) range over the extended plane. We may define B(«) as the limit
of B(z) as 2z — o, but this definition would not determine the order of a
zero or pole at «. It is therefore preferable to consider the function
R(1/2), which we can rewrite as a rational function R,(z), and set

R() = R)(0).

If B:(0) = 0 or =, the order of the zero or pole at « is defined a8 the
order of the zero or pole of Ri(2) at the origin.

(11)

With the notation
R(z) _Betazd - - 4 a2"
bo+biz+ + ° - + bu2™
we obtain
G2 4+ @'+ -+ 4 G,

R ¥ e Y L R 1

where the power 22" belongs either to the numerator or to the denomi-
nator. Accordingly, if m > n R(2) has a zero of order m — n at =, if
m < n the point at « is a pole of order n — m, and if m = n

R(0) = 6,/ba 7% 0, =,
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We can now count the total number of seros and polesin the extended
plane. The count shows that the number of zeros, including those at <,
is equal to the greater of the numbers m and #. The number of poles is
the same. This ecommon number of zeros and poles is called the order of
the rational function.

If ¢ is any constant, the function B(z) — o has the same poles as R(z),
and consequently the same order. The zeros of R(z) — a are roots of
the equation R(z) = a, and if the roots are counted as many times as the
order of the zero indicates, we can state the following result:

A ralyonal Juncltion K(z) of erder p has p zeros and p poles, and every
equatton K(z) = a has exactly p roots.

A rational function of order 1 is a linear fraction

« -+ B
S(Z} vz + —s
with aé — By # 0. Buch fractions, or linear fransformaitons, will be
studied at length in Chap. 3, S8ec. 3. For the moment we note merely
that the equation w = S(z) has exactly one root, and we find indeed

The transformations 8§ and S—? are inverse to each other,

The linear transformation z 4 a is called a parallel translaiion, and
1/z is an snversion. The former has a fixed point at «, the latter inter-
changes 0 and «,

Every rational function has a representation by parttal fractions. In
order to derive this representation we assume first that R(z) has a pole
at . Wae carry out the division of P(z) by Q(z) until the degree of the
remainder i8 at most equal to that of the denominator. The result can
be written in the form

(12) R(z) = G(z) + H(2)

where G(2) 18 a polynomial without constant term, and H(2) is finite at .
The degree of G(z) is the order of the pole at ®, and the polynomial G(z)
18 called the singular part of R(2) at «.

Let the distinct finite poles of R(2) be denoted by 81, s, . . . , Bs-

The function B (ﬁ, - %) i8 8 rational function of { witha poleat = o,
By use of the decomposition (12) we can write
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or with a change of variable

wo-o(c23) v )

Here Gj (z _1_ ﬂ) is a polynnnual in — 3}_ without constant term, ealled
J i

the singular part of R(2) at B;. The function H; p i ﬁ) 1s finite for

2z = ﬁj.

Consider now the expression

(13) R(z) — 6le) — Z =

This is a rational function which cannot have other poles than 8, 8.,
., Pand ©. At z = ff; we find that the two terms which become

infinite have g difference H;( ) with 4 finite limit, and the same

1
Z — ﬁj
18 true at . Therefore (13) has neither any finite poles nor a pole at =.
A rational function wmithout poles must reduee to a conatant, and if this

constant is absorbed in G(2) we obtain

(1) B =00 + Y 6(;25)

Jo=1]

This representation is well known from the caleulus where it is used
as 8 technical device in integration theory. However, it is only with the
introduction of complex numbers that it becomes completely suceessful.

EXERCISES
1. Use the method of the te£t to develop
z4 | 1
2t — 1 and z2(z + 1)*(z + 2)*
in partial fractions. '

2. If Q 18 a polynomial with distinet roots e, . . . , s, and i Pisa
polynomial of degree < n, show that

P (z) z - Plag)
Q) Q' () (2 — )

3. Use the formula in the preceding exercise to prove that there ex_iata
a unique polynomial P of degree < n with given values c; at the poinis
ay (Lagrange's interpolation polynomial).
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4. What is the general form of a rational function which has absolute
value 1 on the circle [z = 1? In particular, how are the zeros and poles
related to each other?

§. If a rational function is real on [z] = 1, how are the zeros and poles
situated?

6. If B(z) is a rational function of order n, how large and how small
can the order of R'(z) be?

Z ELEMENTARY THEORY OF POWER SERIES

Polynomials and rational functions are very special analytic functions.
The ecasiest way to achieve greater variety is to form limits. For
instance, the sum of a convergent series 18 such a limit. If the terms are
functions of a variable, so i8 the sum, and if the terms are analytic fune-
tions, chances are good that the sum wll also be analylic.

Of all series with analytic terms the power series with complex
coeflicients are the simplest. In this section we study only fhe most
elementary properties of power series. A strong motivation for taking
up this study when we are not yet equipped to prove the most general
properties (those that depend on integration) is that we need power series
to construct the exponential function (Sec. 3).

2.1. Sequences. The sequence {a,}? has the imit A if to every e > 0
there exists an no such that ja, — A} < eforn 2 no. A sequence with a
finite limit is said to be convergent, and any sequence which does not con-
verge is divergent, If limg,,e G. = @, the sequence may be gaid to
diverge {o infinsly.

Only in rare cases can the convergence be proved by exhibiting the limit,
80 it is extremely important to make use of & method that permits proof
of the existence of a limit even when it cannot be determined explicitly.
The test that serves this purpose bears the name of Cauchy. A sequence

" will be called fundamental, or a Cauchy sequence, if it satisfies the follow-

ing e¢ondition: given any & > ( there exista an ny such that [a. — ax] < ¢
whenever n 2 no and m 2 ne. The test reads:

A zequence 18 convergent ¢f and only +f i 18 a Cauchy sequence.

The necessity is immediate. If a.— A we can find no such that
la. — A| < ¢/2 for n & ne. For m,n = n, it follows by the triangle
inequality that (g, — au| < |0 — 4| + Jaw — 4] < =

The sufficiency is closely connected with the definition of real num-
bers, and one way in which real numbers can be introduced is indeed to
postulate the sufficiency of Cauchy’s condition. However, we wish to use

pnly the. property.that every bounded monotone sequence of real nums
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The real and imaginary parts of a Cauchy sequence are again Cauchy
sequences, and if they converge, 8o does the original sequence. For this
reason we need to prove the sufficiency only for real sequences. We use
the opportunity to recall the notions of limes superior and limes infertor.
Given a real sequence {a.)P we shall set ¢, = max {a;, . . . , ax}, that
18, a, 18 the greatest of the numbers «y, . . .., aa. The sequence {a.}¥ is
nondecreasing; hence it has a limit A; which is finite or equal to + «.
The number A, is known as the least upper bound or supremum (l.u.b. or
sup) of the numbers a,; indeed, it is the least number which is 2 all a,,.
Construct in the same way the least upper bound A; of the sequence
{ea} obtained from the original sequenee by deleting oy, . . . , oy,
It is clear that {A.} is a nonincreasing sequence, and we denote its limit
by A. 1t may be finite, 4- o, or — <. In any case we write

A = im sup a..
\

It i8 easy to characterize the limes superior by its properties. If A is
finite and ¢ > O there exists an n, such that 4,, < A + ¢, and it follows
that an = 4,, < A+ ¢ for n 2 ne. In the opposite direction, if
on £ A~ ¢ for n = no, then A, S A — ¢, which is impossible. In
other words, there are arbitrarily large n for which o, > A — e If
A = 4 = there are arbitranly large a., and A = — =« if and only if a,
tends to — e, In all cases there cannot be more than one number A with
these properties.

The limes inferior can be defined in the same manner with inequalities
reversed. It is quite clear that the limes inferior and limes superior will
be equal if and only if the gsequence converges {0 a finite limit or diverges
to + o or to —«. The notations are frequently simplified to im and
lim. The reader should prove the {ollowing relations:

lim a, + lim g, < lim (zs + B.) < lim au + Iim 8,
lim @, + Bm 8, < lim (. + 8.) £ Im @y + Im B,

Now we return to the sufficiency of Cauchy’s condition. From
lom — a4,] < € we obtain |a,| < |aw,| + ¢ for n 2 n,, and it follows that
A=Ima, and a = lim a. are both finite. If ¢ # A choose

_ (A =—a)
3
and determine a corresponding n,. By definition of a and 4 there exista
an an < a+ ¢ and an a. > A — ¢ with mn = ne. It follows that

A—a=(A— an) + (am — a») + (@, — a) < s, mntraryto the uhome
of e. Hence ¢ = A, and the sequence converges.
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2.2. Series. A very simple applieation of Cauchy’s condition permits
us to deduce the convergence of one sequence from that of another. If it
is true that |b,., — ba| S |am — a4 for all pairs of subscripts, the sequence
{b.} may be termed a coniraction of the sequence {a,} (this iz not a
standard term), Under this condition, if {a,.} is a Cauchy sequence, so is
{ba}. Hence convergence of {z.} implies convergence of {b.}.

An infinite series is a formal infinite sum

(15) Gtot bt
Associated with this series is the sequence of its partial sums

Ss= a1t a1t - G

The series is said to converge if and only if the corresponding sequence is
convergent, and if this is the case the limit of the sequence ig the sum of
the series.

Applied to a series Cauchy’s convergence test yields the following
condition: The series (15) converges if and only if to every ¢ > 0 there
exists an n, such that ja. + @ues + * © - + anyy] < tforaln > ngand
p=0. Forp =0 we find in particular that |a,| < s. Hence the gen-
eral term of a convergent series tends to zero. This condition is necessary,
but of course not sufficient.

If a finite number of the terms of the series (15) are omitted, the new
peries converges or diverges together with (15). In the case of conver-
gence, let R. be the sum of the series which begins with the term a.,;.
Then the sum of the whole series is S = s, + R,.

The series (15) can be compared with the series

(16) Bl + Jas| + = - -+ ]aal + - -

formed by the absolute values of the terms. The sequence of partial
sums of (15) is & oontractmn of the sequence corraspondmg to (16), for
|60 + Gaia + + - ¢+ Gaisl 2 6] + [Gaial + - 2 -+ ]anyl. There-
fore, convergence of (16} implies that the original series (15) is canvergent.
A series with the property that the series formed by the absolute values

of the terms converges is said to be absolufely convergent.

2.3. Uniform Convergence. Consider a sequence of functions f.(z),
all defined on the same set E. If the sequence of values {f.(x)}} con-
verges f for every z that belongs to E, then the limit f(z) is again & funetion
oir B By definition, if ¢ > ﬂandzhalungsmEthemmstaanmmch
that [fu(2) — f(@)| < ¢ for n & ne, but n, is allowed o depend on 2.
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For instance, it is true that

: 1
LIE 1+ i) r=2
for all x, but in order to have |(1 4 1/n)z — 2| = |z|/n < ¢ for » Z ne
it is necessary that no > |z|/e. Such an n, exists for every fixed z, but
the requirement cannot be met simultaneously for all z. -

We say in this situation that the sequence converges pointwise, but
rot uniformly. In positive formulation: The sequence {f.(z)} converges
uniformly to f(z) on the set E if lo every ¢ > O there exisis an n, such that
|fa(z) — f(x}| < eforalin = no and all z in E.

The most important consequence of uniform convergence is the
following:

The limit function of a uniformly cmwergm sequence of conlinuous
Junctions t2 itself conlinuous.

Suppose that the functions f,(z) are continucus and tend uniformly
fo f(z) on the set E. For any e > 0 we are able to find an » such that
|fu(z) — f(2x)} < ¢/3forallzinE. Letzobe apointin E. Because f.(z)
is continuous at x, we can find 5 > @ such that |f.(x) — fulze}| < €/3 for all
z in E with g — 24| < 8. Under the same condition on z it follows that

1f(x) = fze)] < [fx) — fal@)] + alz) — fa(2o)| + |Falzo) — f(20}| <

and we have proved that f(z) is continuous at x.
In the theory of analytic functions we shall find uniform convergence

much more important than pointwise convergence. However, In most’
caseg it will be found that the convergence is uniform only on a pa.rt. of
the set on which the funetions are originally defined.

Cauchy’s neceasary and sufficient condition has a counterpart for
uniferm convergence. We assert:

The sequence {f.(z)) converges uniformly an E if and only if to every
e > O there exisis an ny such that | fu(z) — fu(2)| < sfor all mm 2 no and all
zin K.

The necessity is again trivial. For the sufficiency we remark that
the limit function f(z) exists by the ordinary form of Cauchy’s test. In
the inequality |fm(z) — fa(Z)| < e we can keep n fixed and let m tend to
o, It follows that {f(x) — fu(z)| £ eforn = noandall zin E. Hence
the convergence is uniform.

For practical use the followmg test is the most applicable: If a
sequence of functions {f.(z)} i8 a contraction of a convergent sequence of
constants [a.}, then the sequence {f.(z)} is uniformly convergent. The
hypothesis means that |fa(z) — fu(z}| S |am — as| on E, and the con-

- -.‘ﬂ*
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clusion follows immediately by Cauchy’s condition.
In the case of series this criterion, in s somewhat weaker form, becomes
particularly simple. We say that a series with variable terms

h@ 4+felz) 4+ - +H2+ - -
has the series with positive terms

T ol T

for & majorant if it is true that |f.(z)| £ Ma, for some constant M and
for all sufficiently large n; conversely, the first series is a minorant of the
second. In these circumstances we have

[fa@) + farr(@) + -+ © +fass(@)] S M(an + Gapa + © - -+ uiy).

Therefore, if the majorant converges, the minorant converges uniformly.
This condition i8 frequently referred to as the Weiersirass M test. It has
the slight weakness that it applies only to series which are also absolutely
convergent, The general principle of contraction is more complicated,
but has a wider range of apphcability.

EXERCISES

1. Prove that a convergent sequence is bounded.
2 If lim z, = A, prove that
P=b o

liﬂl'!.'(ﬁl'l'zl'l' - -« 4 2,) = A
r—ra

3, Show that the sum of an sbsolutely convergent series does not
change if the terms are rearranged.

4. Discuss completely the econvergence and uniform convergence of
the sequence {nz"}?y.

5. Discuss the uniform convergence of the series

0

p 7
P

for real values of z.

& If U=u1+us+4 -, V=ov4+ve+ -+ - are convergent
series, prove that UV = uw; + (8w + usth) + (u1ws + ugvs + ustn) + - - -
provided that at least one of the series is absolutely convergent. (It is
easy if both series are absolutely convergent. Try to arrange the proof so
economically that the absolute convergence of the second series is not
needed.)

- W, elmros . - .
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2.4. Power Series. A power series is of the form

(17) a¢+alz+aazi+--.+a‘zn+...

where the coefficients a, and the variable z are complex. A little more
generally we may consider seres

i aulz = 20)"
n=0

which are power series with respect to the center z,, but the difference is 80
slight that we need not do so in a formal manner.

As an almost trivial example we consider the geomeiric serses
1+z+zl+ . + @ +zﬂ+ - 1 a

whose partial sums can be written in the form

1 -2
l1—2

1424 - 271 =

Since 2 — 0 for {z] < 1 and |z°] = 1 for |2] 2 1 we conclude that the
geometric series converges to 1/(1 — 2} for |2| < 1, diverges for |z] = 1.

It turns out that the behavior of the geometric series is typical.
Indeed, we shall find that every power series converges inside a circle and
diverges outside the same circle, except that it may happen that the
series converges only for z = 0, or that it converges for all values of 2.
More precisely, we shall prove the following theorem due to Abel:

Theorem 2. For every power series (17) there exisls a number R, 0 S
R = «, called the radius of convergence, with the following properties:

(1) .The series converges absolulely for every z with |z)| < R. If 0 =<
p < R the convergence ¢3 uniform for |z| < p.

(ii) If |z| > R the terms of the series are unbounded, and the series is
consequently divergent. k

(i) In j2| < R the sum of the series is an analytic function. The
derivative can be obtained by lermwise differentiation, and the dertved series
has the same radsus of convergence. .

The circle |z| = R is called the cirele of convergence; nothing is claimed
about the convergence on the circle. We shall show that the assertions in
the theorem are true if R is chosen according to the formula

(18) 1/R = '1.1_*111 sup v/ |Gul-
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This is known as Hadamard’s formula for the radius of convergence.

If |2| < R we can find p so that 2| < p < B. Then 1/p > 1/R, and
by the definition of limes superior there exists an 4 such that ja.|V* < 1/p,
laal < 1/p*forn = ny. Itfollows that |a.z®| < (|2|/p)* for large n, so that
the power series (17) has a convergent geometric series as a majorant,
and is consequently convergent. To prove the uniform convergence for
2| € p < R we choose a p’ mthp < p' < R and find |a.2”| £ (o/p")* for
n = ne. Since the majorant is convergent and has constant terms we
conclude by Weieratrass’s M test that the power series is uniformly
convergent.

If |z| > R we choose pso that R < p < {2|. Since 1/p < 1/R there
are arbitrarily large n such that |a.|V* > 1/p, |6.] > 1/p*. Thus
|agz® > (|2l/p)* for infinitely many n, and the terms are unbounded.

The derived series ) na,z~* has the same radius of convergence,
1

because v/n — 1. Proof: Set v/n =1 + 8,. Then §, > 0, and by use
of the binomial theoremn = (1 + 8,)* > 1 4+ 2 n(n — 1)62. This gives
31 < 2/n, and hence §, — 9.

For |2| < R we shall write

f(2) = ia,.z" = 8.(2) + R.(2)
Q
where

an(z) = Gn+ﬂlz + - +G,|_13."l, R.(Z) — E akz.p
and also

fi(2) = Ena..z"—‘ = lim &} (2),

o A

We have to show that f'(z) = fu(z).

Consgider the identity
) TE=T8 oy = (2= 200 1) (st = fuen

+ (Rn(z) el 3 COAY

2 - 24

where we assume that z 7 2, and |2|, [20] < » < R. Thelastt.enn can be
rewritien as

Y el At bt ),

bmpn
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and we conclude that

‘ Ro(2} — Ru(z0)

e =20

Z klayip*2,

k=n

The expression on the right is the remainder term in a convergent series.
Hence we can find no such that

Ru()) — Ru(zo)| _ &
Z - 2 | 3

forn & ns

There is also an n; such that [si(z¢} = fi(z0)| < /3 for n 2 N
Choose a fixed n = nq, n1. By the definition of derivative we can find
& > 0 such that 0 < |2 — 2o} < 3 implies

Jl(z) - ﬂn(i.-’q) — (3;)

& — 2o

£
<z

When all these inequalities are combined it follows by (19) that
!_ (Z) f (Eu.) f (2 )

when 0 < |2 — 20| < 8. We have proved that f'(z¢) exists and equals
J1(za).

Sinee the reasoning can be repeated we have in reality proved much
more: A power series with positive radius of convergence has derivatives
of all orders, and they are given exphcitly by

@ =ar+az+a22+ -+ -
f(2) = a1 + 283z + 3a32* + -
F7(2) = 2a3s + 6asz + 12a8* + - - -

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

() = kla, + & ’{'!1)' anz + & 42',2) Baya2? + -

In particular, if we look at the last line we see that g, = f®(0)/k!, and
the power series becomes

n)
1@ =10 +r@ + 55004+ -+ R
This is the familiar Taylor-Maclaurin development, but we have proved it
only under the assumption that f(z) has a power series development. We
do know that the develupment ig uniquely determined, if it exists, but
the main part ie still misging, namely that every analytxc function has &
Taylor development,
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EXERCISES
1 Expand (1 — z)™, m a positive integer, in powers of z.

2. Expand 2;2:13 in powera of 2 — 1. What i8 the radius of

convergence?
3. Find the radius of convergence of the following power series:

Z nez”, Z ’% Z nlzs, z ¢'z"(lg| < 1), Z P

4. If Za,2* has radius of convergence R, what is the radius of con-
vergence of Za,z2*? of Talz*?

5 If f(z) = Za.z*, what is Zn’s,z"?

& If 24,2~ and Zb.z" have radii of convergence B, and K, show that
the radius of convergence of Za.b.z2" is at least R,R..

7. If im,.a |az|/|gasdl = B, prove that Za,z* has radius of con-
vergence K.

8. For what values of 2 is

convergent?

9. Same question for

Zlfz’*'

2.5. Abel’s Limit Theorem. There is a secohd theorem of Abel’s
which refers {0 the case where a power series converges at a point of the
cirele of convergence. We lose no generality by assuming that B = 1
and that the convergence takes place at z = 1.

Theorem 3. Ifza.mm,thmf(z)—Za.z“undstof(l}aez

approaches 1 in mh a way that |1 — z|/(1 — |z1) remasns bounded.
Remark. Geometrically, -the condition means that z stays in an angle

< 180° with vertex 1, symmetrically to the part (— «,1) of the real axis.
It is customary to say that the approach takes place in & Stolz angle.

Proof. We sy sssume that 3 a. = 0, for this can be attained by adding
e | R

+

" - Y ' - -
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a constant to ae. We wnite s, = ap + a1 + - - - + @, and make use of
the 1dentity (summation by parts)

35(2) =aﬂ+alz+ - +w=30+(31_3ﬂ)3+ R +(8n_3n-1)3“
=gl —2)+s(z—20)+ - - - 4 go1(2™! — 2°) + 82"
=1 —-2)t+82z+ " + g1 D) + 82"

But s,z — 0, s0 we obtain the representation -

@ = (1 — 2) )03 32",

We are assuming that |1 — 2| £ K(1 — [2]), say, and that 3, — 0.
Choose m so large that {s.] < e« for n 2 m. The remainder of the
series Zs,2", from n = m on, is then dominated by the geometric series

e el = elel™/(L — Jol) < ¢/(L — {s]). Tt follows that

m—1

7@ < 11 — ] 20: aiz* | + Ke.

The first term on the right cah be made arbitrarily small by chooging 2
sufficiently close to 1, and we conclude that f(z) — 0 when z — 1 subject to
the stated reﬁtnctmn

3. THE EXPONENTIAL AND TRIGONOMETRIC FUNCTIONS

The person who approaches calculus exclusively from the point of view of
real numbers will not expect any relationship between the exponential
function e* and the trigonometric funetions cos z and sin z. Indeed, these
functions seem to0 be derived from completely different sources and with
different purposes in mind. He will notice, no doubt, a similarity between
the Taylor developments of these functions, and if willing to use imaginary
arguments he will be able to derive Fuler’s formula e = cos z + ¢ sin z
as a formal identity. But it took the genms of a Gauss to analyze 1ts full
depth.

With the preparall;mn given in the preeedmg gection it will be easy to
define e*, cos z and sin z for complex z, and to derive the relations between
these functions. At the sBame time we can define the logarithm as the
inverse function of the exponential, and the logarithm leads in turn to the
correct definition of the argument of a complex number, and hence to the
nongeometric definition of angle.

3.1. The Exponential. We may beﬁin by defining the exponeniial
Junetion as the solution of the differential equation i
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(20) (&) = f(z)
with the initial value f(0) = 1. We solve it by setting

&) =0+ o+ - +a2*+ - -
f’(z)=ﬂl+2ﬂgz+ st g4 s

If (20) is to be satisfied, we must have a,_y = na,, and the initial condition
gives ag = 1. It follows by induction that a, = 1/2al.

The solution is denoted by e* or exp 2, depending on purely typo-
graphical considerations. We must show of course that the series

1 o & z* 2"
(21) e=l+4mdgt ot

converges. It does 8o in the whole plane, for v/nl-» « (proof by the
reader).

It 13 a8 consequence of the differential equation that e* aatisfies the
addition theorem

(22) | e = o8 - b,

Indeed, we find that D(e*+e**) = ¢*-e~* 4+ &'+ (—e>*) = (0, Hence
ef - e *18 a copgtant. The value of the copstant is found by setting z = 0.
We conclude that e*-e¢* = ¢, and (22) follows for 2 = a, ¢ = ¢ 4 b.

Remark. We have used the fact that f(z) is constant if f'(z) is identically
zero. This is certainly so if f is defined in the whole plane, Forif f = u4 ip

. du _du_ .
we 0btam5; =% oz 0, and the real version of the theorem

shows that f is constant on every horizontal and every vertical line,

As a particular case of the addition theorem ¢*-¢~* = 1. This shows
that e* ts never zero. For real z the series development (21) shows that
e* > 1forz > 0, and since ¢* and ¢ * are reciprocals, 0 < ¢* < 1forz < 0.
The fact that the series has real coeflicients shows that exp £ is the complex
conjugate of exp z. Hence |e¥]|* = ¢ - e~ = 1, and |e=*¥| = e=.

3.2. The Trigonometric Functions. The trigonometric functions are
defined by

ge et o e —e
g SR&F= "o

Substitution in (21) shows that they have the series developments

(23) COB z =

2 4
Z A
cosSgm]l —54+5— """
31 T 3
LRGeS LT R et Lo
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. AN
8l 2 =g —ay+ 5 —
For real z they reduce to the familiar Taylor developments of cos x and
sin z, with the significant difference that we bave now redefined these
functions without use of geometry.

From (23) we obtain further Euler’s formula

e* = cosz -+ 28inz

= ¢ #%

ag well as the identity
cos?z 4 sin? z = 1.
It follows likewise that
Dcoaz= — smn z D sin 2z = cos 2.
The addition formulas |

cos{a +b) =cosacosdb —singamnb
sin (a4 b) =cosasind 4 sinacosd

are direct consequences of (23) and the addition theorem for the exponen-
tial function.

The other trigonometric functions tan 2, cot 2, sec z, cosec z are of
secondary importance. They are defined in terma of cos z and sin 2 in the

customary manner. We find for instance

, O - g8
tan 2 = —¢ -

Observe that all the trigonometri¢c functions are rational functions of ei,

EXERCISES

L. Find the values of sin ¢, cos z, tan (1 + 2).

2. The hyperbolie cosine and sine are defined by coshz = (e* + &%) /2,
sinh z = (e* — ¢7%)/2. Express them through cos 12, sin tz. Derive the
addition formulas, and formulas for cosh 2z, sinh 2z.

3. Use the addition formulas to separate cos (z + :y), gin (z 4 ¢y) in
real and imaginary parta.

4. Show that
jcos z|* = sinbh®y 4 cos*z = cosh®y — sin?z = %(cosh 2y + cos 2x)
and

|gin 2|* = minh? y 4 sin®*z = coshty — costz = 3 (cosh %2y — cos 2z).

3.3. The Periodicity. We say that f(2) has the pdnod cif f(= + ¢) = f(z)
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for all 2z Thus a period of e* satisfies e*t® = ¢, 0orec = 1. It follows that
¢ = fw with real «; we prefer to say that « is a period of ¢, We shall
show that there are periods, and that they are all integral multiples of a
positive period wy.

Of the many ways to prove the existence of a period we choose the
following: From D sin y = cos ¢y = 1 and sin ¢ = 0 we obtain sin y < g
for y > 0, either by integration or by use of the mean-value theorem. In
the same way Dcogsy = — siny > —yandcos 0 = 1 givescosy > 1 —
y*/2, which in turn leads to sin ¥ > y — /6 and finally tocosy < 1 —
¥*/2 + y4/24. This inequality shows that cos +/3 < 0, and therefore
there is a yo between 0 and /3 with cos yo = 0. Because

costyo + 8intyy, = 1

we have gin o = +1, that is, ¢% = + i, and hence ¢ = 1. We have
shovwn that 4y, 1s a period.

Actually, it is the smallest positive period. To see thlﬂ take 0 < Y

< yo. Then sin y > y(1 — #2/6) > y/2 > 0, which shows that cos y s
strictly decreasing. Because sin y is positive and cos*y + sin*y = 1 it
follows that sin y is strictly inereasing, and hence sin y < sin yo = 1.
The double inequality 0 < 8in ¥ < 1 guarantees that e' is neither +1 nor
+%. Therefore e*¥ < 1, and 4y, is indeed the smallest positive period.
We denote it by w,.

Consider now an arbitrary period @. There exists an integer n such
that nwe & w < (0 4+ Dwy. If & were not equal to nws, then w — 7wy
would be a positive period < wo. Since thig is not possible, every period
must be an integral multiple of w,.

The smallest positive period of & is denoted by 2r.
In the course of the proof we have shown that

et =4 ev=—1 =1,

These equations demonstrate the intimate relationship between the num-
bers e and .

When yincreases from 0 to 2, the point w = e describes the unit circle
lw| = 1 in the positive sense, namely from 1 over 1 to —1 and back over
—¢ to 1. For every w with |w| = 1 there is one and only one y from the
half-open interval 0 £ y < 2» such that w = ¢, All this follows readily
from the established fact that cos y is strictly decreasing in the ‘‘first
quadrant,” that is, between 0 and x/2.

From an algebraic point of view the mapping w = e establishes a
homomorphism between. the additive group of real numbers and the
multiplicative . ‘group of. mmp!m: numbers with absolute value 1. The

hmdnfﬂm yGnarpiie nmﬂm{mmmmtopal
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3.4. The Logarithm. Together with the exponential function we must
also study its inverse function, the logaritkm. By definition, z = log w is
a root of the equation ¢’ = w. First of all, since e¢* is always »0, the
number 0 has no logarithm. For w 7 0 the equation e+ = w is equiva-
lent to

(24) & =lul, & = w/l

The first equation has a unique solution z = log |w|, the real logartthm of
the positive number Jw}. The right-hand member of the second equation
(24) is & complex number of absolute value 1. Therefore, a8 we have just
seen, it has one and only one solution in the interval 0 S y < 2». Inaddi-
tion, it is also satisfied by all ¥ that differ from this solution by an integral
multiple of 2r. We see that every complez number other than O has tnfinitely
many logarithms which differ from each other by mulliples of 2xs.

The imaginary part of log w is also called the argument of w, arg v, and
it is interpreted geometrically as the angle, measured in radians, between
the positive real axis and the half line from 0 through the pointw. Accord-
ing to this definition the argument has infinitely many values whicb differ
by multiples of 2x, and

log w = log |w| + ¢ arg w.

With a change of notation, if 2| = r and arg 2 = 0, then z = re’?. This
notation is so convenient that it is used constantly, even when the expo-
nential function is not otherwise involved.

By convention the logarithm of a positive number shall always mean
the real logarithm, unless the contrary is stated. The symbol «®, where
a and b are arbitrary complex numbers except for the condition ¢ = 0, is
always interpreted as an equivalent of exp (b log @). If a is restricted to
positive numbers, log a shall be real, and g® has a single value. Otherwise
log a is the complex logarithm, and a® has in general infinitely many values
which differ by factors e*v*, There will be a single value if and only if b
is an integer n, and then a® ¢an be interpreted as apowerofaora™. Ifbis
& rational number with the reduced form p/q, then a® has exactly ¢ values

and can be represented as v/ a”.
The addition theorem of the exponential function clearly implies

log (2123) = log 21 4 log z;
arg (z12;) = arg 2; + arg 2,

but only in the sense that both sides represent the same infinite set of
complex numbers. If we want to compare a value on the left with a value
on the right, then we can merely assert that they differ by a multiple of
27t (or 2x). (Compare with the remarks in Chap. 1, Sec. 2.1. )

| g i
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Finally we discuss the inverse cosine which is obtained by solving
the equation

cosz=é(e“+¢"') = W,

This is a quadratic equation in ¢* with the roots

&= wt V-1,
and consequently |

z =arc cos w = —ilog (w + +/w® — 1).
We can also write these values in the form

arccosw = * tlog (w + VVw! — 1),

for w+ vw? ~1 and w — Vvw® — 1 are reciprocal numbers. The

infinitely many values of arc cos w reflect the evenness and periodicity of
cos z. The inverse sine is most easily defined by

. x
mmw=§—mcoaw.

It is worth emphasizing that in the theory of complex analytic func-
tions all elementary transcendental functions can thus be expressed
through ¢’ and its inverse log 2. In other words, there is essentially only
one elementary transcendental function.

EXERCISES

L For real y, show that every remainder in the series for cos ¥ and
sin i has the same sign as the Jeading term (thas generalizes the inequali-
ties used in the periodicity proof, Sec. 3.3).

2. Prove, for instance, that 3 < = < 2 /3.

3. Find the value of ¢* for z = — %‘: gﬂ', %ﬂ

4. For what valuesof zise*equal to 2, —1,¢, —i/2, —1 — ¢, 1 4 217

§. Find the real and imaginary parts of exp (¢*).

6. Determine all values of 2¢, ¢, (—1)%.

7. Determine the real and imaginary parts of z-.

8. Express arc tan w in terms of the logarithm.

8, Show how to define the “angles’” in a triangle, bearing in mind that
{hey should Lie between 0 and ». ' With this definition, prove that the sum

of the angles is .
18, Show that the roots of the binomial equation #* = g are the ver-

hmofareguhrpolnon (equnludosandmdu)
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3 ANALYTIC FUNCTIONS
AS MAPPINGS

A function w = f(2) may be viewed as a mapping which repre-
sents a point z by its image w. The purpose of this chapter s to
study, m a preliminary way, the speecial properties of mappings
defined by analytic functions.

In order to carry out this program it is desirable to develop
the underlying concepts with sufhicient generality, for otherwise
we would soon be forced to introduce a great number of ad hoc
definitions whose mutual relationship would be far from clear.
Since present-day students are exposed to abstraction and gen-
erality at quite an early stage, no apologies are needed. It is
perhaps more appropriate to sound a warning that greatest possi-
ble generality should not become a purpose.

In the first section we develop the fundamentals of point set
topology and metric spaces. There is no need to go very far, for
our main concern i8 with the properties that are essential for the
study of analytic functions. If the student feels that he is already
thoroughly familiar with this material, he should read it only for
{erminology.

The author believes that proficiency in the study of analytic
functions requires a mixture of geometric feeling and computa-
tionalskill. ‘Thesecond and third sections, only loosely connected
with the first, are expresaly designed to develop geometric feeling
by way of detailed study of elementary mappings. At the same
time we iry to stress rigor in geometric thinking, to the point
where the geometric um.go booomas the guide but not the founda-
tion of maaonmg . . |
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1 ELEMENTARY POINT SET TOPOLOGY

The branch of mathematics which goes under the name of fopology 18 con-
cerned with all questions directly or indirectly related to continuity. The
term 18 fraditionally used in a very wide sense and without strict limits.
Topological considerations are extremely important for the foundation of
the study of analytic functions, and the first systematic study of topology
was motivated by this need.

The Jogical foundations of set theory belong to another discipline.
Our approach will be quite naive, in keeping with the fact that all our
applications will be to very familiar objects. In thislimited framework no
logical paradoxes can occur.

1.1, Sets and Elements. In our language a sef will be a collection of
identifiable objects, its elemenfs. The reader is familiar with the notation
z ¢ X which expresses that z is an element of X (as a rule we denote sets
by capital letters and elements by small letters). Two sets are equal if
and only if they have the same elements. X is a subset of Y if every ele-
ment of X is also an element of Y, and this relationship is indicated by
X C Y or Y D X (we do not exclude the possibility that X = ¥). The
empty set is denoted by &.

A set can also be referred to as a space, and an element as a poini.
Subsets of a given space are usually called point sets. This lends a
geometric flavor to the language, but should not be taken too literally.
For mstance, we shall have occasion to consider spaces whose elements are
functions; in that case a “point” is a function.

The sntersection of two sets X and Y, denotedby X M Y, i8 formed by
all points which are elements of both X and Y. The union X \J Y con-
sists of all points which are elements of either X or Y, including those which
are elements of both. One can of course form the intersection and union
of arbitrary collections of sets, whether finite or infinite in number.

The complement of a set X consists of all points which are not in X;
i{ will be denoted by ~X. We note that the complement depends on the
totality of points under consideration. For instance, a set of real numbers
has one complement with respect to the real line and another with respect
to the complex plane. More generally, if X C Y we can consider the
relative complement Y ~ X which consists of all points that are in ¥ but
not in X (we find it clearer to use this notation only when X C Y).

It is helpful to lieep in mind the destrtbutive laws

XUFND=XUNNEYUZ
INYUZD ={(XAYIUIXNZ) -
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and the De Morgan laws

~MEIUY) = ~XA~Y
~MENY) = ~XU~Y.

These are purely logical identities, and they have obvious generalizations
to arbitrary collections of sets.

1.2, Metric Spaces. FYor all considerations of limits and continuity it
is essential to give a precise meaning to the terms “sufficiently near” and
“arbitrarily near.”” In the spaces R and C of real and complex numbers,
respectively, such nearness can be expressed by a quantitative condition
|t — y| < e« For instance, to say that a set X contains all & sufficiently
near {6 y means that there existes an ¢ > 0 such that z ¢ X whenever
|xr — y| < e. Similarly, X coniains posnis arbilrarily near to y if to every
e > 0 there exists an z € X such that |z — ] < .

What we need 1o describe nearness in quantitative terms is obviously
s distance d(z,y) between any two points. We say that a set S is 8 meéric
space if there 18 defined, for every pair z € S, y € S, a nonnegative real num-
ber d{z,y) in such a way that the following conditions are fulfilled:

1. d(z,y) = 0 if and only if x = y.

2, d(y:x) = d(xly)'

3. d(z,z) S d(z,y) + d{y,?).
The last condition is the lriangle tnequality.

For instance, R and C are metric spaces with d(z,y) = |2 — ¥|.
The n-dimensional euclidean space R* is the set of real n-tuples

z-'_—(ﬂh...,x.)

with a distance defined by d{z,y)* = 2 (z: — y)%. We recall that we
1
have defined a distance in the extended complex plane by

z "’I
dle) = vVIF Izl')(l a + 2

(see Chap. 1, Sec. 2.4); gince this represents the euclidean distance between
the stereographic images on the Riemann sphere, the triangle inequality is
obviously fulfilled. An example of a function apace is given by Cla,d],
the set of all continuous functions defined on the intervale S z £ b. 1t
becomes a metric space if we define distance by d(f,g) = max [f(z) — g(z)].
In terma of distance, we introduce the following termmnlogy For
any & > 0 a.ndanyy ¢S, theut B(y;ﬁ) ofall:x: eSmth d(z,y) < 3is ealled

SRS S ahhh‘\‘é’ﬁ&ﬁi‘i“:ﬁ,ﬁm L R N, B s G-
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the ball with center y and radiug 8, It is also referred to as the §-neighbor-
hood of y. The general definition of neighborhood is as follows:

Definition 1, A sel N C 8 i8 called a neighborhood of y € 8 +f it contains
a ball B(y,d).

In other words, a neighborhood of y is a set which contains all points
sufficiently near to y. We use the notion of neighborhood to define

open 8él.
Definition 2. A set 13 open if it 13 a neighborkood of each of ils elements.-

The definition is interpreted to mean that the empty get is open (the
condition is fulfilled because the set has no elements). The following is an
immediate consequence of the triangle inequality:

Every ball i3 an open set.

Indeed, if z ¢ B(y,6), then & = § — d(y,2) > 0. The triangle n-
equality shows that B(z,6") C B(y,8), for d(x,2) < & gives d(z,y) < &' +
d(y,z) = 8. Hence B(y,) is s neighborhood of z, and since 2z was any
point in B(y,3) we conclude that B(y,d) is an open gset. For greater em-
phasis a ball is sometimes referred to as an open ball, to distinguish it
from the closed bali formed by all € S with d(z,y) < é.

In the complex plane B{z(,3) is an open disk with center 2, and radius §;
it consists of all complex numbers z which satisfy the strict inequality
|2 — zo]| < 8. We have just proved that it 18 an open set, and the reader
18 urged to interpret the proof in geometric terms.

The complement of an open sef is said to be closed. In any metric
space the empty set and the whole space are at the same time open and
closed, and there may be other sets with the same property.

The following properties of open and closed sets are fundamental:
The iniersection of a finite number of open sels 18 open.

The union of any collection of open seis 1 open.

The unton of a finste number of closed sels s closed.

The intersection of any collectron of closed sels t8 closed.

The proofe are so obvious that they can be left to the reader. It
should be noted that the last two statements follow from the first two by
use of the De Morgan laws.

There are many terms in common usage which are directly related to
the idea of open sets. A complete list would be more confusing than
helpful, and we shall limit ourselves to the following: tnferior, closure,
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boundary, extertor.

(1) The interior of a set X is the largest open set contained in X. It
exists, for it may be characterized as the union of all open sets CX. Tt
can also be described as the set of all points of which X is a neighborhood.
We denote it by Int X.

(i) The closure of X is the smallest closed set which contains X, or
the intersection of all closed sets DX. A point belongs to the closure of
X if and only if all it8 neighborhoods intersect X. The closure is usually
denoted by X-, infrequently by Cl X.

(1) The boundary of X is the closure minus the interior. A point
belongs to the boundary if and only if all its neighborhoods intersect both
X and ~X. Notation: Bd X or 9X.

(iv) The exterior of X is the interior of ~X. It is also the comple-
ment of the closure. As such it can be denoted by ~X—,

Observe that Int X C X C X- and that X is open if Int X = X
closedif X- = X. Also, X C Yimplieslnt X CIntY, X~ C ¥Y-. For
added convenience we shall also introduce the notiong of tsolaled point
and accumulation point. We say that z € X is an i18olated point of X if 2
has a neighborhood whose intersection with X reduces to the point z.
An accumulation point i8 8 point of X— which is not an isolated point.
It 18 clear that z is an accumulation point of X if and only if every
neighborhood of z contains infinitely many points from X.

EXERCISES

L If S is a metric space with distance function d(z,y), show that S
with the distance function §(z,) = d(z,y)/[1 + d(z,y)] is also a metrc
space. The latter space i8 bounded in the sense that all distances lie
under a fixed bound.

2. Suppose that there are given two distance functions d(z,y) and
di(z,y) on the same space S. They are said to be equivalent if they deter-
mine the same open sets. Show that d and 4, are equivalent if to every
¢ > 0 there exists a § > 0 such that d(z,y) < 8 implies d,(z,%) < ¢, and
vice versa. Verify that this condition is fulfilled in the preceding exercise.

3. Show by strict application of the definition that the closure of
lz— 2zl < 8isjz — 2| S 8.

4. If X is the set of complex numbers whose real and imaginary parts
are rational, what is Int X, X—, 9X?

S. It issometimes typographically simpler to write X’ for ~X. With
this notation, how is X'~ related to X? Show that X" = X-'-/,

6. A set is aid 1o be discrete if all its pomt.a are isolated. Show that
a discrete set in R or C js countable.

7. Show that the accumnulation points of any set form a closed set.

.:I' L I _' _'.'_- . ) - -_-‘- ‘_.l._a _:. L - L ] _' __--_"- -
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1.3. Connectedness. If E is any nonempty subset of a metric space S
we may consider E a8 a metric space in its own right with the same dis-
tance function d(z,y) as on all of S. Neighborhoods and open sets on E
are defined as on any metric space, but an epen set- on & need not be open
when regarded as a subset of S. To avoid confusion neighborhoods and
open sets on E are often referred to as relative neighborhoods and relatively
open seta. As an example, if we regard the closed interval 0 £ z S 1 as
a subspace of R, then the semiclosed interval 0 < z < 1 is relatively open,
but not open in R. Henceforth, when we say that a subset £ has some
specific topological property, we shall always mean that it has this prop-
erty as a sitbapace, and its subspace topology is called the relative topology.

Intuitively speaking, a space i8 comnecled if it consists of a single
piece. This is meaningness unless we define the statement in terms of
nearnegs. The easiest way is to give a negative characterization: S s not
connecled if there exists a partition S = A \UJ B sndo open sudsets A and B.
It is understood that A and B are disjoint and nonempty. The connected-
ness of a space i8 often used in the following manner: Suppose that we are
able to construct two complementary open subsets A and B of S;if Sis
connected, we may conclude that either A or B is empty.

A subset E C S is s8aid to be connected if it is connected in the rela-
tive topology. At the risk of being pedantic we repeat:

Definition 3. A subsef of @ mefric space 18 connected tf it cannoi be repre-
senied as the unton of two desjoint relatively open seis none of which t8 empty.

If E 18 open, a subset of E is relatively open if and only if it i& open. -
Bimilarly, if E is closed, relatively closed means the same as closed. We
can therefore state: An open set £z connecled if st cannotl be decomposed into
fwo open sels, and a closed set 13 connected if it cannot be decomposed snio two
cloged sets. Again, none of the sets is allowed to be empty.

Trivial examples of connected sets are the empty set and any set
that consists of a single point.

In the case of the real line it 1s possible to name all connected sets.
The most important result is that the whole line is connected, and this is
indeed one of the fundamental properties of the real-number system.

An snterval is defined by an inequality of one of the four types:
a<z<b afzxz<bh a<2=<b az2z520bt For a= —o or
b = -+ = this includes the semi-infinite intervals and the whole line.

t We denote open intervals by {a,b) and closed intervals by [a,0]. Another common
practice is 10 denote open intervals by ]a,b| and semiclosed intervals by Ja,bl or ia,bi.
It is always understood that a < b. '
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Theorem 1. The nonemply connected subsets of ihe real line are the
intervals. '

We reproduce one of the classical proofs, based on the fact that any
monotone sequence has a finite or infinite Limit.

Suppose that the real line R is represented as the union R = A U B
of two disjoint closed sets. If neither is empty we can find a; € A and
b: € B; we may assume that ay < b;. We bisect the interval (as,by) and
note that one of the two halves has its left end point in A and its right end
point in B. We denote this interval by (@s,b;) and continue the process
indefinitely. In this way we obtain a sequence of nested intervals
(8n,bs) with a, € A, b, € B. The sequences {a,} and {b.} have a common
limit ¢. Since A and B are closed ¢ would have to be a common point of
A and B. This contradiction shows that either A or B is empty, and
hence R is connected.

With minor modifications the same pmnf applies to any interval.

Before proving the converse we make an important remark. Let F
be an arbitrary subset of R and call a a lower bound of E if « < z for all
z¢E. Consider the set A of all lower bounds., It is evident that the
complement of A is open. As to A itself it is easily seen that A is open
whenever it does not contain any largest number. Because the line is
connected, A and its complement cannot both be open unless one of them
is empty. There are thus three possibilities: either A is empty, A con-
tains a largest number, or A is the whole line. The largest number g of
A, if it exists, i3 called the greatest lower bound of E; it is commonly
denoted as glb. z or inf z for x€¢ E. If A is empty, we agree to set
a= —w, and if 4 is the whole line we set ¢ = 4+ . With this con-
vention every set of real numbers has a uniquely determined greatest
lower bound; it is clear that a = 4- « if and only if the set ¥ is empty.

The least upper bound, denoted as Lu.b. 2 orsup:c for z ¢ E, is defined in a
corresponding manner.§

Returning to the proof, we assume that E 18 a connected set with the
greatest lower bound a and the least upper bound b. All points of E lie
between a and b, limits included. Suppose that a point ¢ from the open
interval (a,b) did not belong to E. Then the open sets defined by x < ¢
and z > ¢ cover E, and because ¥ is connected, one of them must fail to
meet E. Suppose, for instance, that no point of F lies to the left of &
Then ¢ would be a lower bound, in contradiction with the fact that a is the
greatest lower bound. The opposite assumption would lead to a similar
contradiction, and we conclude that § must belong to E. It follows that E
is an open, cloaed or semiclosed interval with the end pomts a and b the
cases @ =" — 0 a.ndb—+== mtobe’hﬂuded '

tmmmdlmmmmmahudymcm 2,Bec 2.1.
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In the course of the proof we have introduced the notions of greatest
lower bound and least upper bound. If the set is closed and if the bounds
are finite, they must belong to the set, in which case they are ealled the
minimum and the maximum. In order to be sure that the bounds are
finite we must know that the set is not empty and that there is some
finite lower bound and some finite upper bound. In other words, the eet
must lie in & finite interval; such 2 set is said to be bounded. We have
proved.

Theorem 2. Any closed and bounded nonemply set of real numbers has
G mintmum and a maxtmum.

The structure of connected sets in the plane is not nearly so simple as
in the case of the line, but the following characterization of open con-
nected sets contains essentially all the information we shall need.

Theorem 3. A nonemply open sel in the plane i8 connected if and only
if any iwo of sts posnis can be joned by a polygon which lses in the set.

The notion of a joining polygon is so saimple that we need not give a
formal definition.

We prove first that the condition is necessary. Let A be an open con-
nected set, and choose a point a ¢ A. We denote by A, the subset of A
whose points can be joined to a by polygons in A, and by As the subset
whose points cannot be so joined. Let us prove that A, and A, are both
open. First, if a; € A, there exists a neighborhood |z — a1| < & contained
in A. All points in this neighborhood can be joined to a; by a line seg-
ment, and from there to a by a polygon. Hence the whole neighborhood
18 contained in 4., and A, is open. Secondly, if ce€ Ay, let |2 — a5 < ¢
be a neighborbood contained in A. If a point in this neighborhoed could
be joined to a by a polygon, then a: could be joined to this point by a line
segment, and from there to . This is contrary to the definition of A.,
and we conclude that A, is open. Since A was connected either A, or
A; must be empty. But A, contains the point a; hence A, is empty, and
all points can be joined to a. Finally, any two points in A can be joined
by way of @, and we have proved that the condition is necessary.

For future use we remark that it is even possible to join any two points
by a polygon whose sides are parallel to the coordinate axes. The proof
is the same. |

1In order to prove the sufficiency we assume that A has a representa-
tion A = A,\J A, as the union of two disjoint open sets. Choose @, € A4,
@z € A and suppose that these points can be joined by a polygon in 4.
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One of the sides of the polygon must then join a point in A, to a point in
A, and for this reason it is sufficient to consider the case where a; and a;
are joined by a line segment. This segment has a parametric representa-
tion z = a1 + {(az — a;) where { runs through the interval 0 £ ¢ £ 1.
The subsets of the interval 0 < ¢ < 1 which correspond to points in 4,
and A, respectively, are evidently open, disjoint, and nonvoid. This
contradicts the connectedness of the interval, and we have proved that
the condition of the theorem is sufficient.
The theorem generalizes easily to R* and C=.

Definition. 4. A nonemply connected open sel ig called a region.

By Theorem 3 the whole plane, an open disk |z — a¢| < p, and 8 half
plane are regions. The same is true of any 3-neighborhood in R". A
region is the more-dimensional analogue of an open interval. The clogure
of 3 region is called a closed regton. It should be observed that different
regions may have the same closure.

It bhappens frequently that we have to analyze the structure of sets
which are defined very implicitly, for instance in the course of a proof.
In such cases the firat step is t0 decompose the get into its maximal con-
nected componenis. As the name indicates, a component of a set i8 a
connected subset which is not contained in any larger connected subset.

Theorem 4. Every set has a unique decomposilion info components.

If E is the given set, consider a point a ¢ £ and let C{a) denote the
union of all connected subsets of E that contain . Then C(a)} 18 sure to
contain a, for the set consisting of the single point a is connected. If we

-can show that C{a) is connected, then it is a maximal connecied set, in
other words a component. 1t would follow, moreover, that any two
components are either disjoint or identical, which is preecisely what we
want to prove. Indeed, if ¢ € C{a) N C(b), then C{e) C C(c) by the
definition of C(c) and the connectedness of C(a). Hence a € C(c), and by
the same reasoning C(c) C C(a), so that in fact C{a) = C(c). Similarly
C{) = C(c), and consequently C(a) = C(b). We ecall C{a) the com-
ponent of a.

Suppose that C(a) were not connected. Then we could find relatively
open sets A, B > @ such that C{a) = A\UB, ANB =46 We may
assume that ¢ € A while B contains a point b. Since b ¢ C(a) there is a
connected set Ko C F which contains ¢ and 5. The representation
Ey= (Bo M\ A} \J (Eo N B) would be & decomposition into relatively
open subsets, and since a¢ Kol 4, be Ky B neither part would be
empty. This is a contradiction, and we conclude that C(a) is connected.

L T .
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Theorem 5. In R* the components of any open set are open.

This is a consequence of the fact that the é-neighborhoods in R* are
connected. Consider a € C(a) C E. If E is open it contains B(g,d)
and because B(a,8) is connected B(e,8) C C(a). Henee C(a) 13 open. A
little more generally the assertion is true for any space S which is lecally
connecled. By this we mean that any neighborhoed of a point 4 contains
a connected neighborhood of a. The proof is left to the reader.

In the case of R™ we can conclude, furthermore, that the number of
components i8 countable. To see this we observe that every open set
must contain a point with rational coordinates. The set of points with
rational coordinates is countable, and may thus be expressed a8 a sequence
{p:}. For each component C{a), determine the smallest k such that
pe € C(a). To different components correspond different k. We con-
clude that the components are in one-to-one corréspondence with &
subset of the natural numbers, and consequently the set of components is
countable.

For instance, every open subsei of R i3 a couniable union of disjoini
open sntervals.

Agnin, it is possible to anslyze the proof and thereby armrive at a
more general result. We ghall say that a set ¥ is denge in S if £~ = §,
and we shall say that a metric space is separable if there exists a countable
subset which is dense iIn 8. Wae are led to the following result:

In a locally connecled separable space every open sef 48 a countable union
of disgjoinl regions.

EXERCISES

L If X C 8, show that the relatively open (closed) subsets of X are
precisely those sets that can be expressed as the intersection of X with an
open (closed) subset of S.

2. Show that the union of two regions is a region if and only if they
have a common point.

8. Prove that the closure of a connected set is connected.

4. Let A be the et of points (z,y) e R*withz = 0,jy| £ 1, and let B
be the set with 2 > 0, ¥y = 8in 1/z. Is A\ B connected? -

5. Let Z be the set of points (z,5) € R?such that 0 3 z < 1 and either
y =0 or y = 1/n for some positive integer n. What are the com-
ponents of E? Are they all ¢closed? Are they relatively open? Verify
that ¥ is not locally connected.

6. Prove that the components of a closed set are closed {use Ex. 3).

7. A set is said to be discrete if all its points are isolated. Show that s
diacrete set in a separable metric space is countable.
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1.4, Compactness., The notions of convergent sequences and Cauchy
sequences are obviously meaningful in any metri¢c space. Indeed, we
would say that z, — z if d(z.,2) — 0, and we would say that {x.} i8 a
Cauchy sequence if d(za,2n) — 0 38 7 and m tend to . It is clear that
every convergent sequence i8 & Cauchy sequence. For R and C we have
proved the converse, namely that every Cauchy sequence i8 convergent
(Chap. 2, Sec. 2.1}, and it is not hard to see that this property carries over
to any R*. In view of its importance the property deserves a special
name,

Definition 5. A metric space 18 sard io be complete if every Cauchy sequence
18 convergend.

A subset is complete if it is complete when regarded as a subspace.
The reader will find no difficulty in proving that @ complete subset of a
metric space is closed, and that a closed subset of a complele space 13 complele.

We shall now introduce the stronger concept of compaciness. It is
stronger than completeness in the sensze that every compact space or set
18 complete, but not conversely. As a matter of fact it will turn out that
the compact subsets of R and C are the closed bounded sets. In view of
this result it would be possible to dispense with the notion of compactness,
at least for the purposes of this book, but this would be unwise, for it
would mean shutting our eyes to the most striking property of bounded
and closed sets of real or complex numbers. The outcome would be that
we would have to repeat essentially the same proof in many different
connections,

There are several equivalent characterizations of compactness, and it
18 & matter of taste which one to choose as definition. Whatever we do the
uninitiated reader will feel somewhat bewildered, for he will not be able to
discern the purpose of the definition. This is not surprising, for it took
a whole generation of mathematicians to agree on the best approach.
The consensus of present opinion is that it is best to focus the attention
on the difierent ways in which a given set can be covered by open sets.

Let us say that a collection of open sets i3 an open coversng of a set X if
X is contained in the union of the open sets. A subcovering is a subcollec-

tion with the same property, and a firite covering is one that consists of a

finite number of sets. The definition of compactness reads:

Definition 6. A set X is compact if and only if every open covering of X
coniains a finile subcoversng.

In this context we are thinking of X as a subset of & metric space S,

!

1 [
---------
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and the covering is by open sets of S. -But if U is an open set in S, then
UM X is an open subset of X (a relatively open set), and conversely
every open subset of X can be expressed in this form (Sec. 1.3, Ex. 1).
For this reason 1t makes no difference whether we formulate the definition
for a full space or for a subset.

The property in the definition is frequently referred to as the Heine-
Borel property. Its importance lies in the fact that many proofs become
particularly simple when formulated in terms of open coverings.

We prove first that every compact space is complete. Suppose that
X ig compact, and let {z.} be a Cauchy sequence in X, If ¢ is not the
limit of {z,} there exists an ¢ > 0 such that d(z,,y) > 2¢ for infinitely
many ®. Determine ny such that d(z.,z.) < eform,n = ns. We choose
a fixed n 2 nofor whichd(z.,y) > 2¢. Thend(zm,y) 2 A(Te,y) — A(Tw,Zs)
> € for all m = ne. It follows that the e-neighborhood B(y,e)contains
only finitely many z, (better: containg z, only for finitely many n).

Consider now the collection of all open sets I/ which contain only
finitely many z.. If {z.} is not convergent, it follows by the preceding
reasoning that this collection i1s an open covering of X. Therefore it
must contain a finite subcovering, formed by /4, . . . , Ux. DBut thatis
clearly impossible, for since each U contains only finitely many 2, it
waould follow that the given sequence is finite.

Secondly, a compaet set is necessarily bounded (a metric space is
bounded if all distances lie under a finite bound). To see this, choose &
point x, and consider all balls B(x,,r). They form an open covering of X,
and if X is compact, it contains a finite subeovering; in other words,
X C B(@or) \J -+ - + U B(Zy,rm), which means the same as X 'C B(z,,r)
with » = max (v, . . ., ¥m). For any z,y € X it follows that d(z,y) =
d(z,z0) + d{,z0) < 2r, and we have proved that X is bounded.

But boundedness is not all we can prove. It is convenient to define a
stronger property called folal boundedness:

Definition 7. A set X i2 tolally bounded if, for every ¢ > 0, X can be
covered by finitely many balls of radius «.

This is certainly true of any compact set. For the collection of all
balls of radius ¢ is an open covering, and the compactness implies that
we can select finitely many that cover X. We observe that a totally
bounded set is necessarily bounded, for if X C B(zy, e} \J - - - \J B(xm,¢),
then any two points of X have a distance <2e¢ + max d(xix;). (The
preceding proof that any compact set is bounded becomes redundant.)

We have already proved one part of the following theorem:

Theorem 6. A set is compact if and only if # 38 complete and loially
bounded.
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To prove the other part, assume that the metric space S is complete
and totally bounded. Suppose that there exists an open covering which
does not contain any finite subcovering Write ¢, = 2™ We know
that S can be covered by finitely many B(rx,e,). If each had a finite
subcovering, the same would be true of S; hence there exists a B(z),¢1)
which does not admit a finite subeovering. Because B(z,,e,) is itself
totally bounded we can find an . € B(z), =) such that B(zs,e:) has no
finite subcovering.t It 18 clear how to continue the construction: we
obtain a sequence z, with the property that B(z.,e.) has no finite sub-
covering and x..; € B(Za,ta). The second property implies d(Z,,20:1) < €a
and hence d(Zy,Tuis) < ta + copr + - F enip < 277 It follows
that z, i a Cauchy sequence. It converges to a limit y, and this y belongs
to one of the open sets U/ in the given covering. Because U is open, it
contains & ball B(y,5). Choose n s0 large that d(z.,y) < 6/2 and e, < 6/2.
Then B(z.,e.) C Byd), for d(z,z.) < e. implies d(z,y) = d(z,x.) +
d(z.,y) < 8. Therefore B(z,,e.) admits a finite subcovering, namely by
the single set U. This 18 a contradiction, and we conclude that S has
the Heine-Borel property.

Corollary. A subsel of R or C 15 compact +f and only +f 1 18 closed and
bounded.

We have already mentioned thig particular consequence. In omne
direction the conclusion is immediate: We know that a compact set 13
bounded and complete; but R and C are complete, and complete subsets
of a complete space are closed. For the opposite conclusion we need to
show that every bounded set in R or C is {otally bounded. Let us take
the case of C. If X is bounded it i8 coniained in a disk, and hence in a
square. The square can be subdivided info a finite number of squares
with arbitrarily small side, and the squares can 1n turn be covered by disks
with arbitrarily small radius. This proves that X is totally bounded,
except for a small point that should not be glossed over., When Definition
7 is applied to a subset X C 8 it is slightly ambiguous, for it is not clear
whether the e-neighborhoods should be with respect to X or with respect
to S; that is, it 18 not clear whether we require their centers to lie on X.
It happens that this is of no avail. In faet, suppose that we have covered
X by e-neighborhoods whose centers do not necessarily lie on X. If such
& neighborhood does not meet X it is superfluous, and can be dropped. 1If
it does contain a point from X, then we can replace it by a 2s-neighborhood
around that point, and we obtain a fivite covering by 2e-neighborhoods
with centers on X. For this reason the ambiguity is only apparent, and
our proof that bounded subsets of C are totally bounded is valid.

t Here we are using the fact that any subset of a totally bounded pet is totally
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There is a third characterization of compact sets. It deals with the
notion of limil point (Bometimes called cluster value): We say that y 18 a
limit point of the sequence {z,} if there exists a subsequence {z.,} that
converges fo y. A limit point is almost the same as an accumulation point
of the set formed by the points z,, except that a sequence permits repeti-
tions of the same point. If y is a limit point, every neighborhood of ¥
contains infinitely many x.. The converse is also true. Indeed, suppose
that ex — 0. If every B(y,e,) contains infinitely many z., we can choose
auhacnpts ), by induction, in such a way that z,, eB(y, ca) and 1y, > A
It is clear that {z,,} converges to y.

Theorem 7. A metric.spacciacompactifandmdy if every infintie
sequence has a limst point.

This theorem is ususlly referred to as the Bolzano- Weierstrass theorem.
The original formulation was that every bounded sequence of complex
numbers has a convergent subsequence. It came to be recognised as an
important theorem precisely because of the role it plays in the theory of
analytic functions.

The first part of the proof is a repetition of an earlier argument. If
y is not & limit point of {z,} it has a neighborhood which contains only
finitely many z, (abbreviated version of the correct phrase). If there were
no limit points the open sets containing only finitely many z. would form
an open covering. In the compact case we could select a finite subcover-
ing, and it would follow that the sequence is finite. The previous time we
used this reasoning was to prove that a compact space is complete. We
showed in essence that every sequence has a limit point, and then we
observed that a Cauchy sequence with a limit point is necessarily con-
vergent. For strict economy of thought it would thus have been better to
prove Theorem 7 before Theorem 6, but we preferred to emphasize the
importance of total boundedness as early as possible.

It rernsins to prove the converse. In the first place it is clear that the
Bolzano-Weierstrass property implies completeness. Indeed, we just
pointed out that a Cauchy sequence with a limif point must be convergent.
Suppose now that the space is not totally bounded. Then there exists an
e > 0 such that the space cannot be covered by finitely many e:neighbor-
hoods. We construct a sequence {z.} as follows: z; is arbitrary, and when
zy, . . . , T have been gelected we chogse z,.y %0 that it does not lie in
B(z,e) \J « - - U B(2.,¢). This is always possible because these neigh-
borhoods do not cover the whole apace. But 1t 18 clear that {z.} has no
convergent subsequence, for d{(zm,z.) > ¢ for all m and n. We conclude
that the Bolzano-Weierstrass property implies total boundedness. In
view of Theorem 6 that is what we had to prove.

. L -
M i *
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The reader should reflect on the fact that we have exhibited three
characterizations of compactness whose logical equivalence is not at all
trivaial. It should be clear that results of this kind are particularly valua-
ble for the purpose of presenting proofs as concisely as posaible.

EXERCISES

1. Give an alternate proof of the fact that every bounded sequence of
complex numbers has a convergent subsequence (for instance by use of the
himes inferior).

2. Show that the Heine-Borel property can also be expressed in the

following manner: Every collection of closed sets with an empty intersec-
tion contains a finite subcollection with empty intersection.

B, Use compaciness to prove that a closed bounded set of real num-
bers has 8 maximum.

IEE,DEy D EyD ¢ - - is a decreasing sequence of nonempty
compact sets, then the intersection M E, is not empty (Cantor’s lemma).

1
Show by example that this need not be true if the sets are merely closed.
5. Let S be the set of all sequences £ = {z.} of real numbers such

that only a finite number of the z,are = 0. Defined(z,y) = max |z, — yal.’

Is the space complete? Show that the 3-neighborhoods are not totally
bounded. |

1.5. Continuous Functions. We shall consider functions f which are
defined on a metric space S and have values in another metric space S'.
Functions are also referred to as mappings: we say that f maps S into S/,
and we write f:8 — 8. Naturally, we shall be mainly concerned with
real- or complex-valued functions; occasionally the latter are allowed
to take values in the extended complex plane, ordinary distance being
replaced by distance on the Riemann sphere.

The space S is the domatn of the function. We are of course free to
consider functions f whose domain is only a subset of S, in which case the
domain is regarded as a subspace. In most cases it is safe fo slur over the
distinction: a function on- S and its restriction to a subset are ususally
denoted by the same symbol. If X C 8 the set of all values f(z) forz e S
i8 called the smage of X under f, and it i3 denoted by f(X). The tnverse
smage Y X') of X’ C 8’ consists of all z € S such that f(x) e X’. Observe
that f(J-4X")) C X', and f-(f(X)) D X.

The definition of a continuous function needs practically no modifica~
lion: f is continuous at @ if to every z > 0 there exists § > 0 such that
3(z,8) < & implies d'(f(z),f(a)) < ¢. We are mainly concerned with
'unctions. that are continuous at all points in the domain of definition.
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The following characterizations are immediate consequences of the
definition:

A function 18 continuous if and only if the inverse tmage of every open
sel 18 open.

A function 18 continuous if and only if the inverse image of every closed
et 18 closed.

If f is not defined on all of S, the words “open’ and ‘“‘closed,” when
referring to the inverse image, should of course be interpreted relatively
fo the domain of f. It is very important to observe that these properties
hold only for the inverse image, not for the direct image. For instance
the mapping f(z) = 22/(1 + 2*) of R into R has the image f(R) =
{y; 0 < y < 1} which is neither open nor closed. In this example f(R)
fails to be closed because R is not compact. In fact, the following is
true:

Theorem 8. Under a continuous mapping the image of every compact set
£z compact, and consequently closed.

Suppose that f 18 defined and continuous on the compact set X,
Cousider a covering of f(X) by open sets U. The inverse images f—(1)
are open and form a covering of X. Because X is compact we can select a
finite subcovering: X Cf YUY\ - - - VUfYU.L). It follows that
fxXxyCcuo,Jv: -+« UU. and we have proved that f(X) is compact.

Corollary. A continuous real-valued Junction on 6 compact set has a mazi-
mum and a menimum.

The image is a closed bounded subset of R. The existence of a
maximum and a oummum follows by Theorem 2.

Theorem 9, Under a conlinuous mapping the 1mage of any connected sei
38 connecied,

We may assume that f is defined and continuous on the whole space
S, and that f(S) is all of §’. Suppose that S’ = A \J B where A and B
are open and disjoint, Then 8 = f~1(A) \J f~1(B) 18 a representation of
S a8 s union of disjoint open sets. If S is connected either j—(A) = O or
F(B) =0, and hence A =0 or B.=0. We conclude that S is
connected. |

A typical application is the assertion that a real-valued function
which is continuous and never zerc on-a connected set is either always
positive or always negative. In fact, the image is connected, and hence
an interval. But an interval which contains positive and negative num-
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bers also contains zero.

A mapping f:S — 8 is said to be one fo one if f(x) = f(y) only for
z = y; it is 8aid to be onlo if f(S) = 8.+ A mapping with both these
properties has an inverse f-%, defined on §’; it satisfies f~*(f(z)) = z and
Ff(fYz')) = 2’. In this situation, if f and f~* are both continuous we
say that f is a topological mapping or a homeomorphism. A property of a
set which is shared by all topological images is called a topological properiy.
For instance, we have proved that compactness and connectedness are
topological properties {Theorems 8 and 9). In this connection it i8 per-
haps useful to point out that the property of being an open subset is not
topological. If X C Sand Y C 8 and if X is homeomorphic to Y thereis
no reason why X and Y should be simultaneously open. 1t happens to be
true if § = S8’ = R*" {(tnvartance of the region), but this is a deep theorem
that we shall not need.

The notion of uniform conitnusiy will be in constant use. Quite
generally, a condition is said to hold uniformly with respect to a parameter
if it can be expressed by inequalities which do not involve the parameter.
Accordingly, a function f is said to be untformly confsnuous on X if, to
every e > 0, there exists a & > 0 such that d'(f(z),f(z;)) < s for all
pairs (2,72} with d(z1,2:) < 8. The emphasis is on the fact that § 18 pot
allowed to depend on z,.

Theorem 10. On a compact sel every conlinuous function s uniformly
eonbinuous.

The proof is typical of the way the Heine-Borel property ¢an be used.
Suppose that f is continuous on a compaect set X. For every ¢y € X there is
a ball B(y,p) such that d'(f(z),/(y)) < ¢/2 for z &€ B(y,s); here p may depend
on y. Consider the covering of X by the smaller balls B(y,p/2). There
exists a fimte subcovering: X C B(y1,0/2) \J -+« U B(Yupn/2). Let 8
be the smallest of the numbers p1/2, . . ., gu/2, and suppose that d(z;,z;) <
3. There is a yx with d(z,,yx) < p:/2, and we obtain d(zs,y:) < 02/2 +
3 S 6:. Hence d'(f(z)),f(yr) < ¢/2 and d'(f{zs),f(ys)) < €¢/2 so that
d' (f(21),f(z9)) < e as desired.

On sets which are not compact some continuous funcfions are uni-
formly continuous and others are not. For instance, the function 2 is
uniformly continuous on the whole complex plane, but the function 2*
is not.

1Thauﬂngmamdlyelnmlytermnmbemphoedhywtfnrumtounu)
and surjective (for onto). Ampmgﬁthboﬂ:mpuﬁuiaulhdm
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1L Construct a topological mapping of the open disk |z| < 1 onto the
whole plane.

2. Prove that a subset of the resl line which is topologically equiva-
lent to an open interval is an open interval. (Consider the effect of
removing a point.)

3. Prove that every continuous one-to-one mapping of a compact
space is topological. (Show that closed sets are mapped on closed sets.)

4, Let X and Y be compact sets in a complete metric space. Prove
that there exist z ¢ X, y € ¥ such that d(z,y) is & minimum,

8. Which of the following functions are uniformly continuous on the
whole real line: sin %, z 8in z, z &in (£?), |z|! sin z?

1.6. Topological Spaces. It 18 not necessary, and not always con-
venient, to express nearness in terms of distance. The observant reader
will have noticed that most results in the preceding sections were formu-
lated in terms of open sets. True enough, we used distances to define
open sets, but there is really no strong reason to do this. If we decide to
consider the open sets as the primary objects we must postulate axtoms
that they have to satisfy. The following axioms lead to the commonly
accepled definttion of a lopelogical space:

Definition 8. - A lopological space 15 a set T together with a collection of ils
subsels, called open sets. The following condstions have to be fulfilled:

(1) The empily set & and the whole space T are open sels.

(ii) The inlersection of any two open sels ta an open sel.

(iit) The union of an arbitrary collectson of open sels t8 an open sel.

We recognize at once that this terminology 18 consistent with our
earlier definition of an open subset of a metric space. Indeed, properties
(ii) and (iii) were strongly emphasized, and (1) is trivial.

Closed sets are the complements of open sets, and it is immediately
clear how to define interior, closure, boundary, and so on. Neighbor-
hoods eould be avoided, but they are rather convenient: XN 38 a neighbor-
hood of z if there exists an open sef U such that x ¢ U and U C N.

Connectedness was defined purely by means of open sets.: Hence the
definition carnies over to topological spaces, and the theorems remain
true. The Heine-Borel property is also one that deals only with open
sets. Therefore it makes perfect sense to spesk of a compact topological
space. However, Theorem 6 becomes meaningless, and Theorem 7
becomes false.

As a matter of fact, the first serious difficulty we encounter is with
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convergent sequences. The definition is clear: we say that z, — z if
every neighborhood of # contains all but a finite number of the z,. But
if z4 — z and 2, — y we are not able to prove that z = y. This awkward
situation is remedied by introducing a new axiom which charscterizes the
topological space as a Hausdorff space:

Definition 9. A fopological space is called a Hausdorf space if any two
distinct poinis are contained tn disjoint open sels.

In other words, if 2 # y we require the existence of open sets U, V
suchthat r e U,y e Vand UN V = &, In the presence of this condition
it is obvious that the limit of a convergent sequence is unique. We shall
never in this book have occasion to consider a space that is not 8 Hausdorfl
space.

This is not the place to give examples of topologies that cannot be
derived from a distance function. Such examples would necessarily be
very complicated and would not firther the purposes of this book. The
point is that it may be unnatural to introduce a distance in situations
when one is not really needed. The reason for including this section has
been to alert the reader that distances are dispensable.

2. CONFORMALITY

We now return to our original setting where all functions and vaniables are
restricted to real or complex numbers. The role of metric spaces will
seem disproportionately smsll: all we actually need are some simple
applications of connectedness and compactness.

The whole section is mainly descriptive. It centers on the geometric
consequences of the existence of a derivative.

2.1. Ares and Closed Curves. The equation of an are v in the plane
is most conveniently given in parametric form z = x(t), y = y({) where ¢
runs through an interval < ¢ £ # and z(f), y(f) are continuous func-
tions. We can also use the complex notation z = z(f) = z(t) <+ ty(f)
which has several advantages. It is also customary to identify the arc Y
with the continuous mapping of ja,8]. When following this custom it 18
preferable to denote the mapping by z = 4(2).

Considered as a point set an arc is the image of a closed finite interval
under a continuous mapping. As such it is compact and connected. How-
ever; an arc is not merely a set of points, but very essentially also a sue-
eession of points, ordered by increasing values of the parameter. If a
nondecrmlngfunctmnt = ¢(r) maps an interval &’ S 7 S f'ontoa §
! S 8, then a=z{¢(r))deﬁnesthbmesumonofpomtauz=z(t)
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We say that the first equation arises from the second by a change of parame-
ter. The change is reversible if and enly if ¢(7) is strictly increasing. For
instance, the equation z = {2 4 4, 0 < ¢ < 1 arises by a reversible change
of parameter from the equationz = { + #%, 0 S ¢ S 1. A change of the
parametric interval («,8) can always be brought about by a linear change
of parameter, which is one of the formt = ar + b, a > 0.

Logically, the simplest course is to consider two ares as different ag
soon as they are given by different equations, regardless of whether one
equation may arige from the other by a change of parameter. In follow-
ing this course, as we will, it is important to show that certain properties of
arcs are invariant under a change of parameter. For instance, the tnitial
and terminal point of an arc remain the same after a change of parameter.

If the derivative 2/(t) = 2'(t) 4 23’(t) exists and is 0, the arc y has
a tangent whose direction is determined by arg 2/(f). We shall say that
the arc i1s differentiable if Z(f) exists and i8 continuous (the term con-
tinuously differentiable is too unwieldy); if, in addition, 2’(¥) # O the are
i8 said to be regular. An arc is piecewise differentiable or piecewnise regular
if the same conditions hold except for a finite number of values {; at these
points z(Z) shall still be continuous with left and right derivatives which
are equal to the left and right limits of 2/(f) and, in the case of a piecewise
regular arc, 0.

The differentiable or regular character of an arc is invariant under the
change of parameter { = ¢(r) provided that ¢'() is continuous and, for
regularity, 0. When this is the case, we speak of a differentiable or
regular change of parameter.

An arc is ssmple, or a Jordan arc, if 2(t;) = 2z({y) only for ¢{; = £,. An
arc is s closed curve if the end points eoincide: z(a) = 2(8). For closed
curves a shift of the parameter is defined as follows: If the original equa-
tionisz = z(f), ¢ < ¢ £ B, we choose a point {, from the interval (a,8) and
define a new closed curve whose equation is 2 = z(f) for {p £ £ = 8 and
z=2(0— B+ a)forpStS th+ B8 — a The purpose of the shift is to
get rid of the distinguished position of the initial point. The correct
definitions of a differentiable or regular closed curve and of a stmple closed
curve (or Jordan curve) are obvious.

The oppogite arc of 2 = 2({), «a St < B, is the arcz = 2(—1), =8 £
{ £ —a. Opposite ares are sometimes denoted by ¥ and —+, sometimes
by ¥ and ¥}, depending on the conneclnon A constant function z(2)
defines a poini curve,

A circle €, originally defined as a Iocus |2 — a] = r, can be considered
as a closed curve with the equation z =a 4+ re®, 0 < ¢ < 2r. We will
use this standard parametrization whenever a circle is introduced.

This convention saves us from writing down the equation each time it 18
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needed ; also, and this is its most important purpose, it serves as a definite
rule to distinguigh between € and —C.

2.2, Analytic Functionsin Regions. When we consider the derivative

jr(z) - mf(z'l' h}z —f(z)

of a complex-valued function, defined on a set A in the complex plane, it is
of course understood that 2 € A and that the limif, is with respect to values

h such that 2 4+ h € A. The existence of the derivative will therefore
have a different meaning depending on whether z is an intertor point or a
boundary point of A. The way to avoid this is to insist that all analytic
funetions be defined on open sets.

We give a formal statement of the definition:

Definition 10. A complez-valued function f(z), defined on an open set 3,
is sazd to be aralytic in Q if i has a derivaisve al each potnt of Q.

Sometimes one says more explicitly that f(z) is compler analytic. A
commonly used synonym is holomorphic.

It is important to stress that the open set 2 is part of the definition.
As a rule one should avoid speaking of an analytic function f(z) without
referring to a specific open set O on which it is defined, but the rule can
be broken if it is clear from the context what the set is. Observe that f
must, first of all be a funclion, and hence singlevalued. If §) is an open
subset of @, and if f(z) i8 analytic in ©, then the restriction of f to Q° is
analytic 1n €'; it is customary to denote the restriction by the same letter f.
In particular, since the components of an open set are open, it is no loss
of generality to consider only the case where @ is connected, that is to say
a region.

For greater flexibility of the language it is desirable to introduce the
following complement to Defimition 10:

Definition 11. A function f(z) is analyiic on an arbilrary poﬁd set A &f
if 138 the restriction o A of a function which 18 analylic in some open set con-
taining A.

The last definition is merely an agreerment to use a convenient termi-
nology. This 18 a case in which the set @ need not be explicitly men-
tioned, for the speeifie choice of  is usually immaterial as long as it contains
A. Another instance in which the mention of 8 can be suppressed is the
phrase: “Let f(z) be anslytic at 2,.”’ It means that a function f(z) is
defined and has a derivative in some unsperified open neighbarbood of 2o
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Although our definition requires all analytic functions to be single-
valued, it is possible to consider such multiple-valued functions as v/z,
log 2, or arc cos z, provided that they are restricted to a definite region
in which it is possible to select a single-valued and analytic branch of the
function.

For instance, we may choose for @ the complement of the negative
real axis z < 0; this set 18 indeed open and connected. In © one and
only one of the values of 4/z has a positive real part. With this choice
w = 4/z becomes a single-valued function in Q; let us prove that it is
continuoug. Choose two points z;, z; €  and denote the corresponding
values of w by wy = u; - vy, we = us + 02 With 4,;, ¥2 > 0. Then

|2, = 2] = |6} — w}| = |w1 — we| - |01 + Wi
and lwy + we] = uy + u2 > u). Hence

131 - 31]
Uy

oy — w,l < -

and it follows that w = /z is continuous at z;. Once the continuity is
established the analyticity follows by derivation of the inverse function
z = w?. Indeed, with the notations used in caleculus A¢z — 0 implies
Aw — 0. Therefore,

and we obtain

with the same branch of 4/z.

In the case of log z we can use the same region @, obtained by exclud-
ing the negative real axis, and define the princtpal branch of the logarithm
by the condition |[Im log 2| < . Again, the continnity must be proved,
but this time we have no algebraic identity at our disposal, and we are
forced to use & more general reasoning. Denote the principal branch by
w=u-+ 1 = log 2. For a given point w, = u, + vy, |14 < =, and =
ziven ¢ > 0, consider the set A in the w-plane which is defined by the
inequalities {w — w,| 2 ¢, |?| £ 7, |[u — w1} < log 2. This set is closed
and bounded, and for sufficiently small ¢ it is not empty. The continu-
ous function |e* — em| has consequently a minimum p on A (Theorem 8,
Corollary). ‘This minimum is positive, for A does not contain any point
. + n - 2xé. Choose 5 = min (p,le*), and assume that

|22 =~ 23] = |e* — en]| < &.
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Then w; cabnot lie in A, for this would make e —em| = p 2 6.
Neither is it possible that u; < u, — log 2 or ¥ > w1 4+ log 2; in the
former case we would obfain |e*r — ¢t = e+ — e» > 3eu 2 3, and in
the latter case |¢™ — ¢*3| = e2+ — €1 > ¢ > §. Hence w. must lie
in the disk {w — w,)| < ¢, and we have proved that w is a continuous
function of z. From the continuity we conclude as above that the
derivative exists and equals 1/2.

The infinitely many values of arc cos z are the same as the values of
ilog (z + /z* — 1). In this case we restrict z to the complement Q' of
the half lines2 £ —1,y = 0andz =2 1, ¥y = (. Since 1 ~ 2% is never
real and S 0in ¥, we can define 4/1 — 22 as i the first example and then
get v/z8 — 1 = i4/1 — 2. Moreover, z + \/2z® — 1 is never real in &,
forz + +/2* — 1 and z — 4/2% — 1 are reciprocals and hence real only if 2
and 4/z* — 1 are both real; this happens only when z lies on the excluded
parts of the real axis. Because ' is connected, it follows that all values
of-z2 + 4/z2! — 1 in & are on the sams side of the real axis, and since 2 is
such a value they are all in the upper half pilane. We ¢an therefore define
an analytic branch of log (z + +/2® — 1) whose imaginary part lies between
0 and ». In this way we obtain a single-valued analytic function

arc cos z = ¢ Jog (2 4 422 — 1)

in O’ whose dertvative is

Darccosz =1 —- 1 ( = -)=-—-L—___.
e+ /7 — 1 2 — 1 V1 — 2t

where v/ 1 — 2% has s positive real part.

There i8 nothing unique about the way in which the region and the
single-valued branches have been chosen in these examples. Therefore,
each time we consider a function such as log z the choice of the branch
hag to be specified. It 18 a fundamental fact that it is impossible to
define a single-valued and analytic branch of log 2 in certain regions.
This will be proved in the chapter on integration.,

All the results of Chap. II, Sec. 1.2 remain valid for functions which
are analytic on an open set. In particular, the real and imaginary parts
f an analytic function in Q satisfy the Cauchy-Riemann equations

ou v du dv

— —ty DR e —

a &y oy oz

sonversely, if 4 and v satisfy these equations in @, and if the partial
lerivatives are continuous, then u 4 v is an analytm function in 9.
Ap analytic function in O depanmm if it redum toa oamm, :J.n

L o T ~":’*..‘E".-;-‘:-:'='|':-."_-':'-.-: .-ri" ..!....‘4‘..;“ ‘.f .T

e --.-C-H."'b*" e e N et et om0 T
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the following theorem we shall list some simple conditions which have this
consequence:

Theorem 11. An analytic funclion in a region Q whose derivalwe van-
sshes identically must reduce lo a constant. The same ¢ true if etiher the
real part, the imaginary part, the modulus, or the argument 18 constant,

The vanishing of the derivative implies that du/dz, du/dy, dv/oz,
dv/dy are all zero. It follows that w and v are constant on any line seg-
ment in Q which is parallel to one of the coordinate axes. In Sec. 1.3 we
remarked, in connection with Theorem 3, that any two points in a region
can be joined within the region by a polygon whose sides are parallel to
the axes. We eoneclude that 1 + v is constant.

If u or v is constant,

oy W W
= ‘- ntia""

and hence f(z) must be constant. If u? | »* is constant, we obtain

du v
“o2 T 0"
and
ou ov op ou
ﬂra—y-!-ﬂay— ’H»-a—x"‘l‘ﬂgiw

‘These equations permit the conclusion du/dz = /8z = 0 unless the
determinant «2 - v? vanishes. But if 4? + v2 = 0 at a single point it is
constantly zero and f(z) vanishes identieally. Henece f(z) is in any case
& constant.

Finally, if arg f(2) is constant, we can set u = kv with constant %
(unless » is identically zero). But u# — kv i8 the real part of (1 4 k),
and we conclude again that f must reduce to a constant.

Note that for this theorem it is essential that 2 is a region. If not,
we can only assert that f(z) 1s constant on each component of Q.

EXERCISES

~ L Give a precise definition of a single-valued branch of V1 4 2z +
v/1 — z in a suitable region, and prove that it is analytic.
2. Same problem for log log =.
3. Suppose that f(z) is analytic and satisfies the condition |f(z)* — 1}
< linaregion 8. Show that either Re f(z) > 0 or Re f(z) < O through-
out .
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2.3. Conformal Mapping. Suppose that an arc ¥ with the equation
z=2(f), a £t £ B, is contained in & region Q, and let. f(z) be defined
and continuous in Q. Then the equation w = w(f) = f(z(¢)) defines an
arc v in the w-plane which may be called the tmage of ~.

Consider the case of an f(2) which is analytic in 9. If 2'(§) exists,
we find that w'(t) also exists and is determined by

(1) W) = 107 O.

We will investigate the meaning of this equation at a point 2o = 2(f}
with 2’(t;) = 0 and f'(z¢) = 0.
- The first conclusion is that w’({;) % 0. Hence ¥ has a tangent a¢

= f(zs), and its direction is determined by

(2) - wE vt =) + arg (i)

This relation asserts that the angle between the directed tangents to «
at zg and to ¥ at wo is equal to arg f'(zs). It is hence independent of
the curve 4. For this reason curves through z, which are tangent to
each other are mapped onto curves with a common tangent at w,.
Moreover, two curves which form an angle at z, are mapped upon curves
forming the same angle, in sense as well a8 in size. In view of this
property the mapping by w = f(2) is said to be conformal at all points
with f'(2) = 0.

A related property of the mapping is derived by consideration of the
modulus |f'(z0)|. We have

Hm Lf (2) —f (%)l | f(z0)l,

>0 I--"'-l

and this means that any small line segment with one end point at 2z is,
in the limit, contracted or expanded in the ratio [f"(z¢)]. In other words,
the Iinear change of scale at 2o, effected by the transformation v = f(2),
is iIndependent of the direction. In general this change of scale will vary
from point to point.

Conversely, it is clear that both kinds of conformality together imply
the existence of f(z;). It is less obvious that each kind will separately
imply the same result, at least under additional regularity assumptions.

To be more precise, let us assume that the partial derivatives df/dz
and 9f/dy are continuous. Under this condition the derivative of
w(l) = f(z(1)) can be expressed in the form

W) = g2t + L
where the part.mld&nutrnu mtnhn at £¢.’ In‘!emmof z’(t.) ‘thik cah

:, - s - oo . '..‘. . _‘_ St ".‘.-u}'-." -
R T P, R T .".'- - VL VIR R
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be rewritten as

'(t.)—-(—-—i f)'(tn)+ (af+ g)?CT

If angles are preserved, arg [w/(fo}/2Z'(tp)] must be independent of
arg z'(ty). The expression

1/of  .9f af )\ Z'(%o)
@ (5 - a) +a (o +e) 7
must therefore have a constant argument. As arg 2'(fo) is allowed to
vary, the point represented by (3) deseribes a circle having the radius
1|(3f/9x) + i(8f/ay)l. The argument cannot be constant on this circle
unless its radius vanishes, and hence we must have

(4) 9_ ;9

which is the complex form of the Cauchy-Riemann equations.

Quite similarly, the condition that the change of scale shall be the
same in all directions implies that the expression (3) has a constant
modulus. On a circle the modulus is constant only if the radius van-
ishes or if the center lies at the origin. In the first case we obtain (4),
and 1n the second case

The last equation expresses the fact that f(z) is analytic. A mapping
by the conjugate of an analytic function with a nonvanishing derivative
18 said to be tndirectly conformal. 1t evidently preserves the size but
reverses the sense of angles.

If the mapping of @ by w = f(2) is topological, then the inverse func-
tion z = f~1{w) is also analytic. This follows easily if f’(z) = O, for then
the derivative of the inverse function must be equal to 1/f'(z) at the point
z = {~3(w). We shall prove later that f’(z) can never vanish in the case
of a topological mapping by an analytic function.

The knowledge that f’(z,) 7 0 is sufficient to conclude that the map-
ping is topological if it is restricted to a sufficiently small neighborhood of
zo. 'This follows by the theorem on implicit functions known from the cal-
culus, for the Jacobian of the funetions » = u(z,y), v = v(z,y) at the point
za 18 |f'(20)|? and hence = 0. Later we shall present a simpler proof of this
important theorem.

But even if f/(z) = 0 t.hroughout the region @, we cannot assert that
the mapping of the whole region is necessarily wpologlcal To illustrate
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what may happen we refer to Fig. 3-1. Here the mappings of the sub-

FiG.31. Doubly covered region.

regions {J; and £: are one to one, but the images overlap. It is helpful to
think of the image of the whole region as a transparent film which partly
covers itself. This is the simple and fruitful idea used by Riemann when
he introduced the generalized regions now known as Riemann surfaces.

2.4. Length and Area. We have found that under a conformal mapping
f(z) the length of an infinitesimal line segment at the point z is multiplied
by the factor [f'(z){. Because the distortion is the same in all directions,
infinitesimal areas will clearly be multiplied by |f’(2)[2.

Let us put this on a riporous basis. We know from calculus that the
length of a differentiable are ¥ with the equation 2 = z() = () + y(0),
a St <bh is given by -

L) = [ Vet v = [ POl a

The image curve v’ is determined by w = w(t) = f(z(t)) with the derivative
W) = f2(D)2'(f). Its length is thus

L) = [ 1reo)iZ o] a

It 1s customary to use the shorter notations

5) Loy = [ lel, L) = [ Ir@)lldzl.
Y it
Observe that in complex notation the calculus symbol ds for integration

with respect to arc length is replaced by |dz|.
Now let £ be a point set in the plane whose area

AE) - [[amay
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can be evaluated as a double Riemann mtegral. I f(z2) = u(zr,y) +
w(z,y) is a byjective differentiable mapping, then by the rule for changing
integration variables the area of the image E' = f(E) is given by

A{E") = ff [usvy — uyve) de dy.

B

But if f(z) is a conformal mapping of an open set containing E, then
u0, — U = |f(2)|t by virtue of the Cauchy-Riemann equations, and
we obtain |

(6) A®) - [[ 17 as dy.
E

The formulas (5) and (6) have important applications in the part of
complex anslysis that is frequently referred to as geometric function
theory.

3. LINEAR TRANSFORMATIONS

Of all analytic functions the first-order rational functions have the simplest;
mapping properties, for they define mappings of the extended plane onto
itself which are at the same time conformal and topological. The linear
transformations have also very remarkable geometrie properties, and for
that reason their importance goes far beyond serving as simple examples of
conformal mappings. The reader will do well to pay particular attention
to this geometric aspect, for it will eqmp him with simple but very valua-
ble techmqu&ﬂ

3.1. The Linear Group. We have already remarked in Chap. 2, Sec.
1.4 that a ltnear fractional transformaiton

I r b
(7) w = S(2) = +d
with ad — be ¢ 0 has an inverse
dw — b
— -1 — —
z = S~Yw) -

The special values S(=) = a/¢ and S(—d/¢) = «© can be introduced
either by convention or as limits for 2—— @ and z—» —d/c. With the
latter interpretation it becomes obvious that S is a topological mapping of
the extended plane onto itself, the topology being defined by distances on
the Riemann sphere.

For linear transformations we shall usually replace the notation S(2)
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by Sz. The representation (7) is said to be normslized i ad — bc = 1.
It i8 clear that every linear transformation has two normalized represen-
tations, obfained from each other by changing the signs of the coefficients.

A convenient way fo express a linear transformation is by use of
homogeneous coordinates. If we writez = 2,/2,, v = wy/w: we find that
w = Sz if

(8)

or, in matrix notation,

GZ1+bﬂl
= C2y + de _

()( ()

The main advantage of this notation is that it leads to a simple determina-~
tion of a composite transformation w = S;18;2. If we use subscripts to
distinguish between the matrices that correspond to 8,, S; it is immediate
that S;S; belongs to the matrix product

(ﬂ; 51) (II! b:) _ (ﬂiﬂ: + blcg a.bg -I- bld!)_
¢y dyf\c: d c13y + dic:  €1bs + dyd:

All Iinear transformations form a group. Indeed, the associative
law (5:8:2)8; = 8:1(S23;) holds for arbitrary transformations, the identity
w = zis a linear transformation, and the inverse of a linear transformation
is linear. The ratios z;:22 # 0:0 are the points of the complex projective
line, and (8) identifies the group of linear transformations with the one-
dimensional projective group over the complex numbers, usually denoted
by P(1,C). If we use only normalized representations, we can also iden-
tify it with the group of two-by-two matrices with determinant 1 (denoted
SL(2,C)), except that there are two opposite matrices corresponding to the
same linear transformation.

We shall make no further use of the matrix notation, except for
remarking that the simplest linear transformations belong to matrices of

the form
l a k 0y /0 1%\
0 1L/\0 1/'\1 o

The first of these, w = 2 + «, 15 called a parallel translaiion. The second,
w = kz, is a rotatton if |k| = 1 and a homothetic transformation if k > 0.
For arbitrary complex k 7 0 we can set k = |k| - k/|k|, and hence 1 = &z
can be represented as the result of a homothetic transformation followed
by a rotation. The third transformation, w = 1/2, is called an tnversson.
If ¢ # 0 we can write |
az 4+ b b¢c —ad .
cctd c’(z+d7~‘}r_"

oL ey o . o gl . Sl
AT IR :'f_“-’:.".i.l-_-'_ '5: "',_"! .-r’:r"i Seatu SniE
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and this decomposition shows that the most general linear transforma-
ion is composed by a translation, an inversion, a rotation, and & homo-
thetic transformation followed by another iranslation. If ¢ = 0, the
inversion falls ocut and the last translation is not needed.

EXERCISES

1. Prove that the reflection z — Z is not a linear transformation.
2 If

_g—l—2 _ z
le—z+3: T;z-—z_*_lr

find T'yTsz, T1Tsz and T3 7T,z

3. Prove that the most general transformation which leaves the origin
fixed and preserves all distances 18 either a rotation or a rotation followed
by reflexion in the real axis.

4. Show that any linear transformation which tm.nﬁforms the real
axis 1nfo itself can be written with real coefficients.

3.2. The Cross Ratio. Given three distinet points 2, 2;, 24 in the
extended plane, there exisis a linear transformation S which carries them
into 8, 0, « in this order. If none of the points is «, S will be given by

&% — X3 2 — z;.
(9) Sz T — 27 — o

If 2,,2; or 24 = o the transformation reduces to

Z — 23 2y — 2y 22— £
’ ’ e
e = Z4¢ s — £4 22 — 23

respectively.

If T were another linear tiunsformation with the same property,
then S7-! would leave 1, 0, « invariant. Direct calculation shows that
this is true only for the identity transformation, and we would have
S =T, We conclude that S is uniquely defermined.

Definition 12. The cross raito (21,2:,%3,2,) t8 the tmage of 2, under the
ltnear transformation which carries zs,23,240nto 1,0, o,

The definition is meaningful only if z,,2;,24 are distinct. A conven-
tional value c¢an be introduced as soon as any three of the points are
distinct, but this is unimportant. :
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The cross ratio is invariant under hnear transformations. In more
precise formulation: '

Theorem 12, If 2y, 23, 23, 2, are distinct poinis sn the extended plane and T
any lsnear iransformation, then (Tzy, Tre, T2y, T2d) = (21,22,23,24).

The proof is immediate, for if Sz = (z,2;,2:,24), then ST-! carries
Tzs, T2, T24int0 1, 0, . By definition we have hence
(T21,T24,T23,T2y) = ST-YT2z1) = 82y = (21,23,22,24).

With the help of this property we can immediately wnte down the
linear transformation which carries three given points 2), 2za, 23 t0 pre-
geribed positions w;, ws, ws. The eorrespondence must indeed be given by

" _— -
(ﬂ? w [rW‘I,w B} (z:z l}zi;z !)

In general it is of course necegsary to solve this equation with respect to w.

Theorem 13. The cross ratio (z,,z,,z.,é;) 18 real if and only if the four
points lie on a circle or on a straight line,

This is evident by elementary geometry, for we obtain

arg (2i,2s,23,2:) == :al.rg:':"r:"_"'?"rn a.rgz’“z':
) = -
W Z1 — 24 2y = 23

and if the points lie on a circle this difference of angles s either § or + =,
depending on the relative location.

For an analytic proof we need 41:)131:*,.r show that the i image of the real
axis under any linear transformation is either a circle or a straight line.
Indeed, Tz = (2,24,25,24) 18 Tenl on the i image of the real axis under the
transformation 7-1 and nowhere else.

The values of w = Tz for real z satisfly the equation Tw = Tw.
Explicitly, this condition is of the form |

m+b_&tﬁ+ﬁ_
cot+d 44

By cross multiplication we obtain

(a& — cd)|w| + (ad-— cb)w + (bt — da)o 4 bd — db = O
If aé — ¢d = 0 this is the equation of a straight line, for under this con-
dition the coefficient ad — cb cannot also vanish. If aé — c4 » O we can

N i i
™ el e ]
' I'"'- . L]
' P
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divide by this coefficient and complete the square. After a simple com-
putation we obtain

dd — b
— ca

v+ =g = | %==]

which is the equation of a circle.

The last result makes it clear that we should not, in the theory of
linear transformations, distinguish between circles and straight nes. A
further justification was found in the fact that both correspond to circles
on the Riemann sphere. Accordingly we shall agree to use the word
circle 1n this wider sense.§

The following is an immediate corollary of Theorems 12 and 13:

Theorem 14. A4 linear iransformation carries circles inlo circles.

EXERCISES

1. Find the linear transformation which carries 0, ¢, —¢into t, —1, 0.

2. Express the cross ratios corresponding to the 24 permutations of
four points in terms of A = (21,31,2;,24)

3. If the consecutive vertices 2;, 25, 23, 2 0f & qua.drlla.teral lie on &
circle, prove that

I "'3:1'13-: — 24' = lzl - ztl'lz:: - zl‘ + |3: - Z:l ‘ |31 —?—’l‘

and mterpret. the result geometrically.

4, Show that any four distinet points can be carred by a linear
transformation to positions 1, —1, &, —%, where the value of £ depends on
the points. How many aolutions are there, and how are they related?

3.3. Symmetry. The points z and Z are symmetric with respect to the
real axis, A linear transformation with real coefficients carries the real
axis into itself and 2, Z into points which are again symmetric. More
generally, if a linear transformation T carries the real axis into a cirele C,
we shall say that the points w = Tz and w* = TZ are symmetric with
respect o C. This is a relation between w, w* and € which does not
depend on T. For if 8 is another transformation which carries the real
axis into C, then S—'T is a real transformation, and hence S~w = S-1Tz
and 8-w* = S-17'2 are also conjugate. Symmetry can thus be defined
in the following terms:

t This agreement will be in force only when dealing with linear transformations.
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Definition 13. The points z and 2* are satd to be symmetric with respect
to the circle C through 2y, 22, 23 tf and only if (2%,21,21,23) = (2,2),21,%9)-

The points on C, and only those, are symmetric to themselves. The
mapping which carries £ into z* is a one-to-one correspondence and 18
called refleciion with respect to C. Two reflections will evidently result
in a linear transformation. ,

We wish to investigate the geometric significance of symmetry. BSup-
pose first that. C is a straight line, Then we can choose z; = « and the
condition for symmetry becomes

| 2* ~ 2y Z—2
1
(10) 2 — 23 21— 2y

Taking absolute values we obtain |z* — zy| = |z — 25|. Here 24 can be

any finite point on C, and we conclude that # and z* are equidistant
from all points on C. By (10)we have further

and hence 2z and 2z* are in different half planes determined by C.t We
leave to the reader to prove that C is the bisecting normal of the segment

between z and 2*.
Consider now the case of a finite circle ' of ceater g and radius R.

Systematic use of the invariance of the cross ratio allows us to conclude
a8 follows:

(2,21,22,25) = (z — 6,21 — a,2; — ﬂ;z: — @)

_ R* R |
=H( T n—dn—az— ) (g_ﬁ’zl-ﬂ,z:—az.-—n)

2:,31)‘

This equation shows that the symmetric point of zi8 2* = R'/ (Z—a +a
or that s and z* aatisfy the relation

(11} (3* — ¢)(Z — 3) = R2.

The product |[2* — a] - |¢# — a) of the distances to the center is hence R2
Further, the ratio (2* — a)/(z — a) is positive, which means that z and
z* are aituated on the same half line from a. There is a simple geometric
construction for the symmetric point of z (Fig. 3-2). We note that the
aymmetric point of g is .

§ Unleas they ﬁnda.uammc
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~7

FiG. 3-2. Reflection 1n a circle.

Theorem 15. (The symmetry principle.) If a linear lransformaiion
carries a circle 1 snto a csrele Co, then il trangforms eny pasr of symmeiric
poinis with respect o Cy tnio a pair of symmelric points with respect to Cs.

Briefly, inear transformations preserve symmetry. If C,or C;is the
real axis, the principle follows from the definition of symmetry. In the
general case the assertion follows by use of an intermediate tra.nsforma.taan
which carries €, into the real axis. '

There are two ways in which the principle of symmetry can be used
If the images of z and C under 2 certain Linear transformation are known,
then the principle allows us to find the image of 2*. On the other hand,
if the 1mages of z and 2* are known, we eonclude that the image of C
must be a line of symmetry of these images. While this is not enough
to determine the image of C, the information we gain i8 nevertheless -
valuable.

The pnuclple of symmetry is put to practical use in the problem of
finding the linear transformations which carry a circle € into a circle C'.
We can always determine the transformation by requiring that three
points z,, 23, z; on C go over into three points w,, ws, w; on C'; the trans-
formation is then (w,w, ws:w;) = (2,2;,25,25). But the {ransformation is
also determined if we prescribe that a point 2, on C shall correspond to
a point w; on C’ and that a point 2, not on C shall be carried into a point
we not on ¢'. We know then that 27 (the symmetric point of 2, with
respect to C) must correspond to wf (the symmetric point of ws with
respect to C’). Hence the transformation will be obtained from the
relation (t0,w,ws,w3) = (2,21,22,2F).

EXERCISES

L Prove that every reflection carries circles into circles.
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2. Reflect the imaginary axis, the line z = y, and the circle |z} =
in the circle |z — 2| = 1.

3, Carry out the reflections in the preceding exercise by geometnec
construction.

4 Find the linear transformation which carries the circle |z| = 2 into
|2 4 1| = 1, the point —2 into the origin, and the origin into t¢.

8. Find the most general linear transformation of the circle |z| = R
into itself.

6. Suppose that a linear transformation carries one pair of concentric

circles into another pair of concentric circles. Prove that the ratios of the
radii must be the same.

7. Find a linear transformation which carries |2| = 1 and |z — }| = L
into concentric circles. What is the ratio of the radn?
3. Same problem for |2| = 1 and 2 = 2,

3.4. Oriented Circles. Because S(z) is analytic and

ad — be
(cz + d)*

the mapping 1 = S(z) is conformal for z » —d/c and «, It follows that
a pair of intersecting circles are mapped on circles that include the same
angle. In addition, the sense of an angle is preserved. From an intui-
tive point of view this means that right and Ieft are preserved, but a more
precige formulation is desirable.

An orientation of a circle C is determined by an ordered triple of
points 2,,2s,2; on C. With respect to this crientation a point 2 noton C
is said to lie to the right of C if Im (2,2,,2s,2;) > 0 and to the left of C is
Im (2,21,23,23) < 0 (this checks with everyday use because (3,1,0,%) = 4).
It is essential to show that there are only two different orientations. By
this we mean that the distinction between left and right is the same for all
triples, while the meaning may be reversed. Since the ¢cross ratio isinvari-
ant, it is sufficient to consider the case where C is the real axis. Then

(2,21,22,23) = :: _-Il_- g

S'(z) = #= 0

can be written with real coefficients, and a simple calculation gives

Im (2,21,23,2s) = ]HF Im 2.

We recognize that the distinction between right and left is the same as
the distip ,tionbatywntheuppe:andlowerhalfplmﬂ ‘Which is which

dM%Wmﬂfm phormn 94 b6
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A linear transformation S carries the oriented circle C into a circle
which we orient through the triple Sz, Sz, Sz;. From the invariance of
the cross ratio it follows that the left and nght of C will be mapped on the
leit and right of the image ecircle.

If two circles are tangent to each other, their orientations can be
compared. Indeed, we ean use alinear transformation which fhrows their
common point to ©. The circles become parallel straight lines, and we
know how to compare the directions of parallel lines.

In the geometric representation the orientation 2;, 23, 23 can be indi-
cated by an arrow which points from z; over 23 t0.z;. With the usual
choice of the coordinate system left and right will have their customary
meaning with respect to this arrow.

When the finite plane 18 considered as part of the extended plane, the
point at infinity is distinguished. We can therefore define an absolute
positive orientation of all finite ¢ircles by the requirement that « should
lie to the right of the oriented cireles. The points to the left are said to
form the ingide of the circle and the points to the right form its outside.

EXERCISES

1. If zy, 24, 23, z4 are poinis on a circle, show that 23, z;, 24 and zs, za, 24
determine the same orientation if and only if (21,2s,25,20) > 0. .

2. Prove that a tangent to a circle is perpendicular to the radius
through the point of contact (in this connection a tangent should be defined
as a straight line with only one point in common with the circle).

3. Verify that the inside of the circle |z — a| = R is formed by all
points z with |z — a| < R. :

4. The angle between two oriented circles at a point of intersection is
defined as the angle between the tangents at that point, equipped with the
same orientation. Prove by analytic ressoning, rather than geometric
ingpection, that the angles at the two pomt.a of intersection are opposite
t0 each other.

3.5. Families of Circles. A great deal can be done toward the visual--
ization of linear transformations by the introduction of certain families
of circles which may be thought of as coordinate lines.in a circular
coordinate system.

Consider & linear transformation of_ the form

z—a
k- z—0b

WP =

Here z = a corresponds to w = 0 and z = d to w = «. It follows that
the straight lines through the origin of the w-plane are images of the
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circles through ¢ and b, On the other hand, the concentric circles about
the origin, |lw| = p, correspond to circles with the equation

£—0

z=—2p

These are the cercles of Apollontus with limit points ¢ and . By their
equation they are the loci of points whose distances from ¢ and b have
a constant ratio. .

Denote by C; the circles through a, b and by C, the circles of Apol-
lonius with these limit points. The configuration (Fig. 3-3) formed by all
the circles Cy and C; will be referred to as the csrcular netf or the Steiner
circles determined by a and 6. It has many interesting properties of
which we shall list a few: |

1. There is exactly one C; and one C: through each point in the plane
with the exception of the limit points.

2. Every C, meets every (s under right angles.

3. Reflection in a C, transforms every C; into itself and every (', into
another C;. Reflection in a C, transforms every C; into iteelf and every
Cs into another Cs.

4. The limit points arée symmetric with respect to each Cs, but not
with respect to any other circle.

= pof k|

rIO. 3-8. Bteiner circles.
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These properties are all trivial when the limit points are 0 and o,
t.e.,, when the C, are lines through the origin and the €. concentric
circles. Since the properties are invariant under linear transformations,
they must continue to hold in the general case.

If a transformation w = Tz carries @, b into a’, ¥’ it can be written mn
the form

w—a’__k_z—u_

(12) w-d = z-0

It is clear that 7 traneforms the circles €1 and (; into circles ] and
C; with the limit points a’, V.

The situation is particularly simple if a’ = 4, = b. Then e, b are
sald to be fized points of T, and it is convenient to represent £ and Tz in
the same plane. Under these circumstances the whole circular net will
be mapped upon itself. The value of k serves to identify the image
circles C] and C;. Indeed, with appropriate orientations C, forms the
angle arg k with ite image C), and the quotient of the constant ratios
|z — al/|jz — b| on C} and C, is |k].

The special cases in which all C, or all C; are mapped upon themselves
are particularly important. We have C]{ = C; for all C: f ¥ > O (if
k < O the circles are still the same, but the orientation is reversed).
The transformation is then said to be hyperbolsc, When & increases the
points Tz, 2z = a, b, will flow along the circles C, toward . The con-
sideration of this flow provides a very clear picture of a hyperbolic
transformation. .

The case C; = C; occurs when || = 1. Transformations with this
property are called elliplic. When arg k& varies, the pointe Tz move
along the circles C;. The corresponding flow circulates about a and 3
in different directions.

The general linear transformation with two fixed points is the product
of a hyperbolic and an elliptic transfermation with the same fixed points.

The fixed points of a linear transiormation are found by solving the
equation

ez 1 B
(13) 2= 1 |
In general this is a quadratic equation with two roots; if v = 0 one of
the fixed points is «. It may happen, however, that the roots coincide.
A linear transformation with coinciding fixed points is said to be parabolic.
The condition for this is (a — §)* = 484.
If the equation (13) is found to have two distinet roots a and b, the
transiormation can be written in the form .
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z—a
w—>bd z-=0

We can then use the Steiner eircles determined by a, d to discuss the
nature of the transformation. It is important to note, however, that
the method is by no means restricted to this case. We can write any
linear transformation in the form (12) with arbitrary a, b and use the
two circular nets to great advantage.

.For the discussion of parabolie transformations it is desirable to intro-
duce still another type of circular net. Congider the transformation

[
e — Q

W= -+ ¢.

It is evident that straight lines in the w-plane correspond to circles
through ¢; moreover, parallel lines correspond to mutually tangent circles.
In particular, if w = u 4 v the lines u = constant and » = constant
correspond to two families of mutually tangent circles which intersect
at right angles (Fig. 34). This configuration can be considered as a
degenerate set of Steiner circles. It is determined by the point a and
the tangent to one of the families of circles. We sghall denote the images
of the lines v = constant by C,, the circles of the other family by C,.
Clearly, the line ¥ = Im ¢ corresponds to the tangent of the circles C;;
ita direction is given by arg . -

-
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Any transformation which carries a into a’ can be written in the form
4

w—a¢ z—a

4+ ¢.

It is clear that the circles C’: and C, are carried into the cireles ¢ and
C{ determined by &’ and «’. We suppose now that a = a’ is the only
fixed point. Then w = «' and we can write

0o

(14) v — a z—a+°‘
By this transformation the configuration consisting of the circles C, and
C; is mapped upon itself. In (14) a multiplicative factor is arbitrary,
and we can hence suppose that ¢ is real. Then every C, is mapped upon
itself and the parabolic transformation can be considered as a ﬂow a:long
the circles C,.

A linear transformation that is neither hyperbelic, elhptlc nor
parabolic is said to be loxodromsc,

EXERCISES
L Find the fixed points of the linear transformations
2 22 3z — 4 | z
w = =

2—1 Y731 VvV=-7—1 Y=g

Is any of these transformations elliptic, hyperbolic, or pmbohc?
2, Suppose that the coefficients of the transformation

m:+b
cz+d

are normalized by ad — bc = 1. Show that 8 is elliptic if and only if
-2 < a+d <2 parabolic if a + d = 12, hyperbolic if a +d < —2
or >2.

Sz =

3. Show that a Jinear transformation which satisfies 8"z = z for
some integer % is necessarily elliptic.

4. If S is hyperbolic or loxodromic, show that 8% converges to a fixed
point 88 n — o, the same for all 2, except when 2 coincides with the other

fixed point. (The limit is the atiractive, the other the repellent fixed point.
What happens when n — —®? What happens in the parabolic case?)

§. Find all linear transformations whmh represent rotations of the
Riemann sphere.
& Fmdaﬂcudpswhohareorthogonalto 2l = 1and |z — 1] =4
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7. In an obvious way, which we shall not try to make precise, a family
of transformations depends on a certain number of real parameters. How
many real parameters are there in the family of all hinear transformationa?
How many in the families of hyperbolic, elliptic, parabolic transforma-
tions? How many linear transformations leave a given circle C invariant?

4, ELEMENTARY CONFORMAL MAPPINGS

The conformal mapping associated with an analytic function affords an
excellent visualization of the properties of the latter; it can well be com-
pared with the visualization of a real function by its graph. It is there-
fore natural that all questions connected with conformsal mapping have
received a great deal of attention; progress in thie direction has increased
our knowledge of analytic functions considerably. In addition, con-
formal mapping enters naturally in many branches of mathematical
physics and in this way accounts for the immediate usefulness of complex-
function theory.

One of the most important problems is to determine the conformal
mappings of one region onto another. In this section we shall consider
those mappings which can be defined by elementary functions.

4.1. The Use of Level Curves. When a conformal mapping is defined
by an explicit analytic function v = f(z), we naturally wish to gain infor-
mation about the specific geometric properties of the mapping. One of
the most fruitful ways is to study the correspondence of curves induced
by the point transformation. The special properties of the function f(2)
may express themselves in the fact that certain simple curves are trans-
formed into curves of a family of well-known character. Any such infor-
mation will strengthen our visual conception of the mapping.

Such was the case for mappings by linear transformations. We
proved in See. 3 that a linear transformation carries circles into cireles,
provided that straight lines are included as a special case. By con-
sideration of the Steiner circles it was possible to obtain a complete picture
of the correspondence.

In more general cases it is advisable to begin with a study of the i image
curvesof thelinesz = zpand ¢y = yo. If we write f(z) = ulz,y) + w(z,y),
the image of z = zo is given by the parametric equations 4 = u4{zo¥),
v = t(2o,¥); ¥ acta a8 a parameter and can be eliminated or retained
scoording to convenience. The image of y = ye is determined in the
saine way. Together, the curves form an orthogonal net in the so-plane.
Similarly, we may consider the surves u(2,y) = us and v(z,y) = v, in the
¢-plane. They are also orthogonal and are callied the level curves of uw.and o.
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In other cases it may be more convenient to use polar coordinates and
study the images of eoncentric circles and straight lines through the origin.

Among the simplest mappings are those by a power w = 2. We
consider only the case of real a, and then we may as well suppose that « is
positive. Bince

o} = el

Arg W = a AIg 2

concentric circles about the origin are transformed into circles of the same °
family, and half lines from the origin correspond to other half lines. The
mapping is conformal at all points z # @, but an angle # at the ongin i8
transformed into an angle af. For a = 1 the transformation of the whole
plane is not one {0 one, and if « is fractional 2= is not even gingle-valued.
In general we can therefore only consider the mapping of an angular sec-
tor onto anotheyr,

The sector S(¢1,vs), where 0 < ¢2 — ¢1 £ 2r, shall be formed by all
points z # 0 such that one value of arg 2 satisfies the inequality

(15) 01 < arg z < ¢s.

1t 18 eany to show that S{¢1,09) is & region. In this region a unique value
of w = z= is defined by the condition

AL W= 8IL 2

where arg z stands for the value of the argument singled out by the condi-
tion (15). This function is analytic with the nonvanishing derivative

Dedlﬂl — ﬂE‘
&

The mapping is one to one only i a(g: — ¢1) < 2x, and in this case
S{¢1,02) 18 mapped onto the sector S(cw;,am} in the w-plane. It should
be observed that S(p; + 7 - 27,09 + 1 - 2x) 18 geometrieally 1dentlcal with
S{e,¢2) but may determine a different branch of 2=

Let us congider the mapping w = 2% in detall. Since 4 = z* — »*
and v = 22y, we recognize that the level curves u = 4, and v = vy are
equilateral hyperbolas with the diagonals and the coordinate axes for
asymptotes. They are of course orthogonal to each other. On the other
hand, the image of z = z, is8 ¥* = 4x}(2} — %) and the image of y = yois
v = 4y3(ys 4+ u). DBoth families represent parabolas with the focus at
the origin whose axes are pointed in the negative and positive direction of
the u-axis. Their orthogonality is well-known from analytic geometry.
The families of level curves are shown in Figs. 3-5 and 3-8..
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FiIG. 3-5. r-plane.

For a different family of image curves consider the circles {w — 1| = &
in the w-plane. The equsation of the inverse image can be written in the
form

@ + 99t = 2" — ) + R = L

and represents a family of lemniscates with the focal pomnts +1. The
orthogonal family is represented by

gt — y* = 2hzy + 1

and consists of all equilateral hyperbolas with center at the origia which
pass through the points +1.

In the case of the third power w = z? the level curves in both planes
are cubic curves. There is no point in deriving their equations, for their
general shape is clear without calculation. For instance, the curves
% = uo > 0 must bave the form indicated in Fig. 8-7. Similarly, if we
follow the change of arg w when z traces the line = zo > 0, we find that
the image curve must have a loop (Fxg 38). Itiza fnlmm of Descartes.
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FiG. 3-§. w-plane.

The mapping by w = e7is very simple. Thelinesaz = roandy = %o
are mapped onto circles about the origin and rays of constant argument.
Any other straight line in the z-plane is mapped on a logarithmic spiral.
The mapping is one to one in any region which does not contain two points
whose difference i8 a multiple of 2x+. In particular, a horizontal strip
N <Y<Yz Y2 — 1 S 2x is mapped onto an angular sector, and if
72 — Y1 = x the image is a half plane. We are thus able to map a parallel
strip onto & half plane, and hence onto any circular region. The left half
of the strip, cut off by the imaginary axis, corresponds to a half circle.

It is useful to write down some explicit formulas for the mapping.
The function § = ¢ + tn = er maps the strip ~»/2 < y < x/2 onto the
half plane £ > 0. On the other hand,

F—1
¢+ 1
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maps £ > O onto |w] < 1. Hence

e -1 2

e+l tanh 5

mapa the strip {Im 2| < x/2 on the unit disk || < 1.

4.2. A Survey of Elementary Mappings, When faced with the prob-
iem of mapping a region I, conformally onto aunother region @, if is
usually advisable to proceed in two steps. First, we map &, onto a circu-
lar region, and then we map the circular region onto Q. In other words,
the general problem of conformal mapping can be reduced to the problem
of mapping a region onto a disk or a half plane. We shall prove, in
Chap. 6, that this mapping problem has a solution for every region
whese boundary consists of a simple closed curve.

The maln tools at our disposal are linear transformations and trans-
formations by a power, by the exponential function, and by the logarithm.
All these transformations have the characteristic property that they map
2 family of straight lines or circles on a similar family. For this reason,
their use is essentially limited to regions whose boundary is made up of
circular ares and line segments. The power serves the particular purpose
of straightening angles, and with the aid of the exponential function we
can even transform zero angles into straight angles.

By these means we can for instance find a standard mapping of any

W ==

ie. 3-7 rie. 3-8



o4 COMPLEX ANALYSIS

region whose boundary consists of two circular arcs with common end
points. Such a region is either a circular wedge, whose angle may be
greater than x, or its complement. If the end points of the arcs are @ and b,
we begin with the preliminary mapping 2, = (z — a}/(z — b) which trans-
forms the given region into an angular sector. By an appropriate power
w = z7 this sector can be mapped onto a half plane.

If the circles are tangent to each other at the point @, the transforma-
tion z; = 1/(z — a) will map the region between them onto a parallel
strip, and a suitable exponrential transformation maps the strip onto a
half plane. . - .

A little more generally, the same method applies to a circular tri-
angle with two right angles. In fact, if the third angle has the vertex
6, and if the sides from @ meet again at b, the Linear transformation
zy = (z — a}/(z — b) maps the triangle onto a circular sector. By means
of a power this sector can be transformed into a half circle; the half circle
is & wedge-shaped region which in turn can be mapped onto a half plane,

In this connection we shall treat explicitly a special case which occurs
frequently. Let it be required to map the complement of a line segment
onto the inside or outside of a circle. The region is a wedge with the
angle 2x; without loss of generslity we may assume that the end pointa of
the segment are 4+ 1. The preliminary transformation

=z—|—1

z— 1

21

maps the wedge on the full angle obtained by exclusion of the negative
real axis. Next we define ~
gy = \/;1

a8 the square root whose real part is positive and ebtain a map onto
the right half plane. The final transformation

_ ze — 1
2 + 1
maps the half plane onto |w| < 1.
Elimination of the intermediate variables leads to the correspondence

1 1
(16) ‘T2 ("’ ¥ ,5)

w=2— 2> -1,

w

The sign of the square root is uniquely determined by the condition

| < 1, for (z — /22 — 1){z + v/22 — 1) = 1. If the sign is changed,
we obtain & mapping onto |w| > 1.
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For a more detailed study of the mapping (18) we set w = pe* and
obtain ;

Elimination of ¢ yields

xl L yl _ _
un e ey

and. ehmination of p

i _ v
cost® sin2d

(18) 1.

Hence the image of a circle [w] = p < 1 i8 an ellipse with the major axis
p 4+ p~! and the minor axis p~! — p. The image of a radius is half a
branch of a hyperbola. The ellipses (17) and the hyperbolas (18) are
confocal. The correspondence is illustrated in Fig. 3-9.

Clearly, the transformation (16) allows us to include In our list of
elementary conformal mappings the mapping of the outside of an ellipse
or the region between the branches of a hyperbola onte a circular region.
It does not, however, allow us to map the ingide of an ellipse or the
nside of a hyperbolic branch.

As g final and less trivial example we shall study the mapping defined
by & cubic polynomial w = aez? + @12 + a2 + a3, The familiar trans-
formation 2z = 2, — a,/3a,s allows us to get nd of the quadratic term,

ria. 3-5, Mapping by £ = (v + v,
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and by obvious normaligations we can reduce the polynomial to the form
w = 23 — 3z2. The coeflicient for z is chosen 8o as to make the derivative
vanish for z = +1.

Making use of the f{ransiormation (16) we introduce an aumhary
variable ¢ defined by

1
3=f+E'

Our cubic polynomial takes then the simple form
1
w={* o

We note that each 2 determines two values {, but they are reciprocal
and yield the same value of w. In order to obtain a unique { we may
impose the condition |{| < 1, but then the segment (—2,2) must be
excluded from the z-plane.

It is now easy to visualize the correspondence between the 2- and
w-planes. To the circle |[t| = p < 1 corresponds an ellipse with the
semiaxes p—! %+ p in the z-plane, and one with the semiaxes p~* & p® in
the w-plane. Similarly, a radius arg = # corresponds to hyperbolic
branches in the z- and w-planes; the one in the z-plane has an asymptote
which makes the angle —# with the positive real axis, and in the w-plane
the corresponding angle is —30. The whole pattern of confocal ellipses
and hyperbolas remains invariant, but when z describes an ellipse w will
trace the corresponding larger ellipse three times. The situation is thus
very similar to the one in the case of the simpler mapping w = 2).. For
orientation the reader may again lean on Fig. 3-9.

For the region between two hyperbolic branches whose agymptotes
make an angle £ 2»/3 the mapping is one to one. We note in particular
that the six regions into which the hyperbola 32! — y* = 3 and the z-axis
divide the z-plane are mapped onto half planes, three of them onto the
upper half plane and three onto the lower. The inside of the right-hand
branch of the hyperbola corresponds to the whole w-plane with an incision
along the negative real axis up to the point —2.

EXERCISES

All mappings are to be conformal.
1. Map the common part of the disks |¢] < 1 and |z — 1| < 1 on the

ingide of the unit circle. Choose the mapping so that the two symmetries
are preserved.

2. Map the region between |z| = 1 and |z — }| = } on a half plane.
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8. Map the complement of the are |2| = 1,y 2 0 on the outside of the
unit circle so that the points at « correspond to each other.

4. Map the outside of the parabels ¥* = 2pz on the disk |w] < 1 s
that z=0and z = —p/2 correspond to w = 1 and w = 0. (Lindeldf.)

5. Map the instde of the right-hand branch of the hyperbola
2 — y? = a? on the disk |w| < 1 so that the focus corresponds to w = 0
and the vertex to w = —1. (Lindelsf.)

6. Map the inside of the lemniscate |22 — a?| = p*(p > a) on the
disk |w| < 1 so that symmetries are preserved. (Lindeldf.)

7. Map the outside of the ellipse (z/a)* 4+ (y/b)* = 1 onto |w| < 1
with preservation of symmetries.

8. Map the part of the z-plane to the left of the right-hand branch of
the hyperbola z* — y* = 1 on a half plane. (Lindeldf.)

Hint: Consider on one side the mapping of the upper half of the
region by w = 22, on the other side the mapping of & quadrant by

= 2¥ = 32z

4.3. Elementary Riemann Surfaces. The visualization of a function
by means of the corresponding mapping is completely clear only when
the mapping i8 one to one. If this is not the case, we can still give our
imagination the necessary support by the introduction of generalized
regions in which distinct points may have the same coordinates. In
order to do this it i8 necessary to suppose that points which occupy the
same place can be distinguished by other characteristics, for instance a
tag or a color. Points with the same tag are considered to lie in the
same sheet or layer.

This idea leads to the notion of a Riemann surface. It is not our
intention to give, in this connection, a rigorous definition of this notion.
For our purposes it is sufficient {0 introduce Riemann surfaces in a purely
descriptive manner. We are free to do so ag long a8 we use them merely
for purposes of illustration, and never in logical proofs.

The mimplest Riemann surface is connected with the mapping by a
power w = 2*, where n > 1 is an integer. We know that there is a
one-to-one correspondence between each angle (k — 1)(2x/n) < arg 2
< k(2x/n), k=1, ..., n, and the whole w-plane except for the posi-
tive real axie. The image of each angle is thus obtained by performing
a ‘“‘cut” along the positive axis; this cut has an upper and a lower “‘edge.”
Corresponding to the » angles in the z-plane we consider n identical eopies
of the w-plane with the cut. They will be the * ” of the Riemann
surface, and they are distinguizshed by a tag k¥ which serves to identify
the cerresponding angle. When z moves in ita plane, the corresponding

I . -. " . . . " . ..IH " - - =__rl_ _: :" - : J.-l1-_ " ._-I.- I. l- I_...-..._I-_a- _'- -.: \--. L ' r. rrl-ul \
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point t should be free to move on the Riemann surface. For this reason
we must attach the lower edge of the first sheet to the upper edge of
the second sheet, the lower edge of the second sheet to the upper edge
of the third, and so on. In the last step the lower edge of the nth sheet
is attached to the upper edge of the first sheet, completing the cycle.
In a physical sense this is not possible without self-intersection, but the
idealized model shall be free from thie discrepancy. The result of the
construction is a Riemann surface whose points are in one-to-one corre-
spondence with the points of the z-plane. What is more, this corre-
spondence is continuous if eontinuity is defined in ths sense suggested
by the construction.

The cut along the positive axis could be replaced by a cut along any
simple arc from 0 to = ; the Riemann surface obtained in this way should
be considered identical with the one originally constructed. In other
words, the cuts are in no way distinguished lines on the surface, but
the introduction of specific cuts is necessary for descriptive purposes.

The point v = 0 is in a special position. It connects all the sheets,
and & eurve must wind n times around the origin before it closes. A
point of this kind is called a branch pmni. If our Riemann surface is
considered over the extended plane, the point at < is also a branch point.
In more general cases s branch point need not connect all the sheets;
if it connects A sheets, it is said to be of order A — 1.

The Riemann surface corresponding to w = e* ig of similar nature.
In this case the function maps each parallel strip (k — 1)2x < y < k- 2r
onto a sheet with a cut along the positive axis. The sheets are attached
to each other so that they form an endless serew. The origin will not be
a point of the Riemann surface, corresponding to the fact that ¢* is never
ZETro.

The reader will find it easy to construct other Riemann surfaces,. We
will illustrate the procedure by consideration of the Riemann surface
defined by w = cosz. A region which is mapped in & one-to-one manner
onto the whole plane, except for one or more cuts, is called a fundamental
region. For fundamental regions of 1w = cos z we may choose the strips
(k — )x < z < kx. Each strip is mapped onto the whole w-plane with
cute along the real axis from — o to —1 and from 1 to . The line
z = kx corresponds to both edges of the positive cut if k is even, and

FiG, 3-10. The Riemann surface of cos z.
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FIG. 3-11. PFundamential regions of cos z.

to the edges of the negative cut if k i8 odd. If we consider the two
strips which are adjacent along the line z = kr, we find that the edges
of the corresponding cuts must be joined crosswise so as to generate a
simple branch point at v = +1. The resulting surface has infinitely
many simple branch points over w = 1 and w = ~1 which alternatingly
connect the odd and even sheets. |

An attempt to illustrate the connection between the sheets is made In
Fig. 3-10. It represents & cross section of the surface in the case that the cuts
are chosen parallel to each other. The reader should bear in mind that
any two points on the same level can be joined by an arc which does not
intersect any of the cuts.

Whatever the advantage of such representations may be, the clearest
picture of the Riemann surface is obtained by direct consideration of the
fundamental regions in the z-plane. The interpretation is even simpler
if, as m Fig. 3-11, we introduce the subregions which correspond to the
upper and lower half plane. The shaded regions are those in which cos 2
has a positive imaginary part. Each region corresponds to a half plane
on which we mark the boundary points 1 and —1. For any two adjacent
regions, one white and one shaded, the half planes must be joined across
one of the three intervals (—w,—1), (—L1), (1,). The choice of
the correct junction is automatic from a glance at the corresponding
situation in the z-plane.

EXERCISES
L Descmibe the Riemann surface associated with the function

2. Same problem for w = (2* — 1),
3 Same problem for w = 2* — 3s.
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4 COMPLEX INTEGRATION

L FUNDAMENTAL THEOREMS

Many important properties of analytic functions are very difficult
to prove without use of complex integration. For instance, it is
only recently that it became possible to prove, without resorting to
complex integrals or equivalent tools, that the derivative of an
analytic function is continuous, or that the higher derivatives
exist. At present the integration-free proofs are, to say the least,
much more difficult than the classical proofs.t

As in the real cage we distinguish between defintte and indef-
inile inlegrals. An indefinite integral is a function whose deriva-
tive equals a given analytic function in a region; in many ele-
mentary cases indefinite integrals can be found by inversion of
known derivation formulas. The definite integrals are taken over
differentiable or piecewise differentiable arcs and are not limited
to analytic functions. They can be defined by a limit process
which mimics the definition of a real definite integral. Actu-
ally, we shall prefer to define complex definite integrals in terms
of real integrals. This will save us from repeating existence
proofs which are essentially the same as in the real case. Natu-
rally, the reader must be thoroughly familiar with the theory of
definite integrals of real continuous functions.

1.1. Line Integrals. The most immediate generalization of a
real integral is to the definite integral of a complex function over
a real interval. If f() = u(f) + sv(¢) is a continuous function,

f Without use of imtegration R. L. Plunkett proved the continuity of the
derivative (Bull. Am. Math. Soc. 65, 1969). E. H. Connell and P. Porcelli
proved the existeinos 'of alf derivatives (Bull. Am. Math. Soc. 67, 1961). Both
proofz lean on s topological theorem due to G. T. Whyburn.

Ll 4]
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defined in an interval (a,b), we set by definition

(1) j 1O dt = ]:’ u() dt + ¢ f b uiz) dt.

This integral has most of the properties of the real integral. In particu-
lar, if ¢ = a + ¢8 is a complex constant we obtain |

) [[awa=c [ 5o,

for both members are equal to

f:(au—ﬁﬂ)dt -l-ff:(aﬂ + Bu) dt.

When ¢ = b, the fundamental inequality

3) | [Croa| s 150l a

holds for arbitrary complex f{(t). 'To see this we choose ¢ = ¢! with a
real 8 in (2) and find

Re[e ["fat | = ["Re eyl s [ 1S .

orv = arg the expression on the le uces e absolute
For 6 f:f(:)dth ion on the left reduces to the absolut

value of the integral, and (3) results.y

‘We consider now a piecewise differentiable arc 4 with the equation
z=2(),a =t<b If the function f(2) is defined and continuous on v,
then f(2(2)) is also continuous and we can set

(@) [ 1@y dz = [ 160)7 @ dt

This i our definition of the complex line integral of f(2) extended over the
arc 4. In the right-hand member of (4), if 2/(t) is not continuous through-
out, the interval of integration has to be subdivided in the cbvious man-
ner. Whenever a line integral over an arc vy i8 considered, let it be tacitly
understood that v 18 piecewige differentiable. |
The most important property of the integral (4) is its invarnance under
a change of parameter. A change of parameter is determined by an
increasing function ¢ = {(r) which maps an interval « S+ S # onto
g 2 ¢S b; we assume that i(r) is piecewise differentiable. - By the rule

b .
1 2 is not daﬁnedif]; f d¢ = 0, but then there is nothing to prove,
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for changing the variable of integration we have

j; *fe@)2 (@) dt = j; ? He@(eN))2 (E@)E () dr.

But 2/ (¢(r))t (r) i8 the derivative of 2({(z)) with respect to r, and hence the
“integral (4) has the same value whether vy be represented by the equation
z = z(f) or by the equation z = z(i(r)).

In Chap. 3, Sec. 2.1, we defined the oppomte arc — vy by the equation
z2=2z2(—1), -b St —a Wehave thus

[ i@y de = [ F1e—~0)(~Z(-) a,
and by a change of variable the last integral can be brought to the form

[, 1z @ a.
We conclude that

(5) [ i@ &= — | f) dz.

The integral (4) has also a very obvious additive property. It is
quite clear what is meant by subdividing an arc v into a finite number of
subarcs. A subdivision can be indicated by a symbolic equation

Yy=mtvst - + v
and the corresponding integrals satisfy the relation

®) [ gde= fdet [ fdet+ -+ [ fa

vttt tn

Finally, the integral over a closed curve is also invariant under a ghift
of parameter. The old and the new initial point determine two subarcs
v1, ¥:, and the invarignce follows from the fact that the integral over

vi + vz 18 equal to the integral over y; + ;.
In addition to integrals of the form (4) we can also consider line inte-
grals with respect to 22 The most convenient definition is by double

conjugation
f 7 Jdz = f v J de.
Using this notation, line integrals with respect to z or ¥ can be introduced

’ [ria=}(fran+ [,13)

Lta=5(fr2- [ 1T)

' ol L
. TR o et r - - G am
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With f = u + v we find that the integral (4) can be written in the form
(7) f(udz—udy)+if(udy+vd::)

which separates the real and imaginary part.

Of course we could just as well have started by deﬁning integrals of
the form

f_rzod'z-t-qdy,

in which case formula (7) would serve as definition of the integral (4).
It 18 a matter of taste which one prefers.
An essentially different line integral is obtained by integration with

respect to arc length. Two notations are 1n comumon use, and the defini-
tion is

® [ ras = [ fidel = [ sz ®)

This integral i8 again independent of the choice of parameter. In con-
trast to (5) we have now

[_ fldel = [ fide)
while (6) remaios valid in the same form. The inequality
(9) | [ 1dz] s [ i+ iae

is & consequence of (3). o
For f = 1 the integral (8) reduces to L |dz} which is by definition the

length of 4. As an example we compute the length of a circle. ¥rom
the parametric equation z = 2(f) = a + pe¥, 0 = ¢ £ 2r, of a full circle
we obtain z2'(f) = 4pe” and hence

2y 2w
Jo @l = [T pat = 2mp
a8 expected.

1.2. Rectifinble Arcs. The length of an arc can also be defined as the
least upper bound of all sums

(10)  |z(t) — 2(ta)} + |2(te) — 20D + ° - ¢ + le(ta) — 2(8-0)]

wherea = £ <, < * -+ <{, = b. If this least upper bound is finite
we say that the arc is rectéfiable. It is quite easy to show that piecewise
differentiable arcs are rectifiable, and that the two definitions of length
eoincide.
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Because |2(&) — z(ti-)| = 12(6a) — s(6-1)], lp(l) — y(te)| <
|26 — 2(ten)| and l2(t) — 2(f-2)| < |2(8) = z(La-2)] + W) — ylE-i)l
it is clear that the sums (10) and the corresponding sums

j2(ty) — z(t)] + - - - + lx(6) = z(ta—y)]
ly(ty) — gy} + © + + + |y(ts) — y(tas)|

are bounded at the sgame time. When the latter sume are bounded, one
says that the functions z(¥) and y{(t) are of bounded variation. An arc
z = z(1) is rectsfiable if and only f the real and imaginary parts of z(t) are of
bounded varsation,

If v is rectifiable and f(z) continuous on v it is possible to define
integrals of type (8) as 8 limit

[fds =tim ¥ fe@)iet) — ot

E=1
Here the limit is of the same kind as that encountered in the definition of
a8 definite integral. -

In the elementary theory of analytic funetions it is seldom necessary

to eonsider ares which are reetifiable, but not piecewise differentiable.
However, the notion of rectifiable arc is one that every mathematician

should know.
1.3. Line Integrals as Functions of Arcs. General line integrals of
the form j; p dx 4+ ¢ dy are often studied as functions (or funciionals) of

the are y. It is then assumed that p and ¢ are defined and continuous in
a region O and that vy is free to varyin 8.  An important class of integrals
18 characterised by the property that the integral over an arc depends only
onits end points. In other words, if v, and v, have the same initial point
and the same end point, we require that Ll pdr + gdy = f“ p de 4 g dy.

To say that an integral depends only on the end points 18 equivalent to
saying that the integral over any closed curve is gero. Indeed, if yis a
closed curve, then ¥ and — v have the same end points, and if the integral
depends only on the end points, we obtain

f=1.=-1,

and consequently f = (.- Conversely, if ¥; and y3 have the same end
points, then 7y, — v, i8 & closed curve, mdlfthemtogralnvermycloaed
curve vanishes, it follows that fh L‘
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FiG. l-i

The following theorem gives a necessary and sufficient condition
under which a line integral depends only on the end points.

Theorem 1. The line integral L p dz + g dy, defined in Q, depends only

on the end pownis of v ¢f und only if there exvsis a funclion U(z,y) in @
with the partial dersvatives U /dz = p, U oy = q.

The sufficiency follows at once, for if the condition i i fulfilled we can
write, with the usual notations,

[ pdz+qdy = f (— 2@) + 5 y’(t)) it = [° % UGEO0) d
U(z(®),y(b)) — Ulz(a),y(a)),

and the value of this difference depends only on the end points. To
prove the necessity we choose a fixed point (zo,30) € G, join 1t 0 (z,y)
by a polygon v, contained in &, whose sides are parallel to the coordinate
axes (Fig. 4-1) and define a function by

Uzy) = [ pde+ qdy.

Since the integral depends only on the end points, the function is well
defined, Moreover, if we choose the last segment of v horizontal, we
can keep y constant and let z vary without changing the other segments.
On the last segment we can choose z for parameter and obtain

Ulzy) = [~ p(zy) dz + const,
the lower limit of the integral being irrelevant. From this expression it
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follows at once that al//9z = p. In the same way, by choosing the last
segment vertical, we can show that al//dy = ¢.

It is customary to write dU = (8U/dz) dz + (91 /ay) dy and to say
that an expression p dxr + g dy which can be written in this form is an
exact differential. Thus an integral depends only on the end points if and
- only if the integrand is an exact differential. Observe that p, ¢ and U can
be either real or complex, The function U, if it exists, is uniquely deter-
mined up to an additive constant, for if two functions have the same
partial derivatives their difference must be constant.

Whenisf(z) dz = f(z) dx + if(z) dy an exact differential? According
to the definition there must exist a function F(z) in § with the partial

derivatives
oF (z)

= f(2)
oF (z) iy
3 #f(2).
If this is so, F(z) fulfills the Cauchy-Riemann equation
| oF g . OF
Fr i

fince f(z) is by assumption continuous {otherwise f Jdz would not be
. S
defined) F(z) is analytic with the derivative f(z) (Chap. 2, Sec. 1.2).
The inlegral Lfdz, with continuous f, depends only on the end poinis of

v +f and only +f f is the dertvalive of an analytic funclion in Q.

Under these circumstances we shall prove later that f(2) is itself
analytic,

As an immediate application of the above result we ﬁnd that

(11) L(z-—a)'dz—(}

for all closed curves vy, provided that the integer n is 2 0. In fact,

{(z — a)* 18 the derivative of (¢ — a)*'/(n + 1), a function which is
analytic in the whole plane. If n is negative, but 3 —1, the same
result holds for all closed curves which do not pass through a, for in the
mmplementary region of the point a the indefinite integral is still analytic
and gingle-valued. For = = —1, (11) does not always hold. Consider
Gircle € with the center q, represented by thaeqmtmn z = g 1 pet,
0%t 5 2x. Wa obtam
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This result shows that it is impossible to define a single-valued branch of
log (z — 1) in an annulus p; < |z — @] < ps. On the other hand, if the
closed curve v is contained in a balf plane which dees not contain g, the
integral vanishes, for in such a half plane a single-valued and analytic
branch of log (z — a) can be defined. |

EXERCISES
12, Compute

Lxdz

where # is the directed line segment from 0 to 1 + §.
2 Compute
flrl ¥ az,

for the positive sense of the cirele, in two wayas: first, by use of a parameter,
|
and second, by observing that z = 51, (z 42 = %(z 4 !-;-) on the cirele,

3. Compute
dz

sfj=2 22 — 1

for the positive sense of the circle.
4. Compute

ﬁﬂ_l lz — 1] - |dzl.

S. Suppose that f(z) is analytic on a closed curve vy (i.e., f is analytic
in a region that contains ¥). Show that

[ T@f @) de

is purely imaginary, (The continuity of f'(2) is taken for granted.)
6. Assume that f(z) is analytic and satisfies the inequality |f(z) — 1]
< 1in a region Q. Show that

'@z,
S [ Rl

for every closed curve in €.  (The continuity of f'(2) is taken for granted.)
7. If P(z) is & polynomial and € denotes the circle |z — a] = R, what

is the value of f , P(z) a2t Answer: —2xiR*P'(a).
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8. Describe a pet of circumstances under which the formula

f_r log 2dz = 0
is meaningful and true.

1.4. Couchy’s Theorem for a Rectangle. There are several forms of
Cauchy’s theorem, but they differ in their topological rather than in their
analytical content. It is natural to begin with a case in which the topo-
logical considerations are trivial.

We consider, specifically, a rectangle B defined by inequalities
a 22 =bc=y=d Iisperimeter can be considered as a simple closed
curve consisting of four line segments whose direction we choose so that R
lies to the left of the directed segments. The order of the vertices ia thus
(a,c), (b,0), (b,d), (a,d). We refer to this closed curve as the boundary
curve or contour of R, and we denote it by oR.T

We emphasize that R is chosen as a closed point set and, hence, is not
a region. In the theorem that follows we consider a function which 18
analytic on the rectangle E. We recall to the reader that such a func-
tion is by definition defined and analytic in an open set which contains K.

The following is a preliminary version of Cauchy’s theorem:

Theorem 2. If the function f(z) is analytic on R, then

(12) | Lx,f(z) dz = 0.

The proof is based on the method of bisection. Let us introduce the
notation -

2(R) = [, 1) de

which we will also use for any rectangle contained in the given one. If
R is divided into four congruent rectangles RV, R® R® R we find
that

(13) w(R) = 9(RD) + 2(R®) 4+ (R®) + n(RY),

for the integrals over the common sides cancel each other. I% is impor-
tant to note that this fact can be verified explicitly and does not make
illicit use of geometric intuition. Nevertheless, a reference to Fig. 4-2 is

helpful.

t This is standard notation, and we shall use it repeatedly. Note that by earlier
convention aRiuﬂmthabwnduyufRapapoin_tm(Ghap.a, Bec. 1.2).

L

.
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(a. d) (b d)

(s, c) (b, c)

Fi6. 4.2. Bisection of rectangle.

It follows from (13) that at least one of the rectangles R®, k = 1, 2, 3,
4, must satisfy the condition

In(R®)| = Ln(R)I.

We denote this rectangle by Ry; if several R® have this property, the
choice shall be made according to some definite rule.

This process can be repeated indefinitely, and we obtain 8 sequence of
nested rectanglea R D By D RBa D - - - D Ry D - - - with the property

Rn .2_ 3 Rn-—l
and henee In(Ra)| TI#( )

(14) m(Ra)| 2 47|a(R)].

The rectangles R, converge to a point 2* € R in the sense that R, will
be contained in a preseribed neighborhood |z — 2*| < & as soon as # is
sufficiently large. Firat of all, we choose 3 so small that f(z) is defined
and analytic in |z — 2*| < 8. Secondly, if s > 0 18 given, we can choose
6 so that

1Ty | <
or |
(15) [f@) = fz*) — (2 = 2*)(*)] < ¢fz — 2%
for |z — 2z*] < 3. We assume that 3 satisfies both conditions and that
R, is contained in |z — z%| < 8. |
We make now the observation that
dz =0

| fan.Zdz = 0.
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These trivial special cases of our theorem have already been proved in
Sec. 1.1. We recall that the proof depended on the fact that 1 and 2 are

the derivatives of z and 2*/2, respectively.
By virtue of these equations we are able to write

HE,) = (/&) — f&*) — (2 — 2*)f'(2*)] dz

IR,
and it follows by (15) that
(16) [n(R.)| = ef [z — 2% |de].
IR n

In the last integral [z — z*| is at most equal to the length d, of the
diagonal of R,. If L, denotes the length of the perimeter of R., the
integral is hence § d.L.. But if d and L are the corresponding quantities
for the original rectangle R, it is clear that d, = 27*d and L, = 2—L.

By (16) we have hence
[#(Ra)| = 47" dL ¢,

and comparison with (14) yields
In(R)| < dL e.

Sinee ¢ is arbitrary, we can only have (%) = 0, and the theorem is proved.

This beautiful proof, which could hardly be simpler, is due to E.
Goursat who discovered that the classical hypothesis of a continuous
Jf(2) is redundant. At the same time the proof is simpler than the earlier
proofs inasmuch as it leans neither on double integration nor on differentia-
tion under the integral sign.

The hypothesis in Theorem 2 can be weakened considerably. We
shall prove at once the following stronger theorem which will find very
important, use.

Theorem 3. Lef f(z) be analyiic on the set B’ oblatned from a reciangle R
by omitting a finite number of inlertor potnts §;.  If ¢ 43 true thal

lim,.;, (s — $:)f(z) = 0
Jor all 3, then

i@ dz=0.

It is sufficient to consider the case of a single exceptional point {, for
evidently R can be dmded mt.o ﬁmaller mctanglee wluch contain at most

mi‘,
Weellvideﬂmtomm;aahownmﬂs 4~3.-And lpply

"""
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riG. 4-3

Thecrem 2 to all but the rectangle B, in the center. If the corresponding
equations (12) are added, we obtain, after cancellations,

(17) mf dz = a.e.'f de.

If ¢« > 0 we can choose the rectangle By so small that

|7(2)| < 'ls—:_-ﬂ

on dR,. By (17) we have thus

\fanjdzl = Q.LR.Iz_igl}_['

If we assume, as we may, that R, is a square of center {, elementary esti-
mates show that |

L«Mzt%lﬂ < 8.
ﬂuaweobtm'n
lfmfdz] < 8s,

and since ¢ is arbitrary the theorem follows.
We observe that the hypothesis of the theorem is certainly fulfilled if
J(2) is analytic and bounded on R’.

1.5. Cauchy’s Theorem in a Disk. It is not true that the integral
of an analytic function over a closed curve 18 always sero.
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Indeed, we have found that

foriey =

s — a

when C 18 a circle about a. In order t6 make sure that the integral
vanishes, it is necessary to make a special assumption concerning the
region { in which f(z) is known to be analytic and to which the curve v is
restricted. We are not yet in a position to formulate this condition, and
for this reason we must restrict attention to a very special case. In
what follows we assume that 9 is an open disk |z — 2z¢| < p to be de -
noted by A.

Theorem 4. If f(2) 18 analylic in an open disk A, then

(18) [ s@rdz =0
for every closed curve ¥ 1n A.

The proof is a repetition of the argument used in proving the second
half of Theorem 1. We define a function F(z) by

(19) P(e) = L fdz

where ¢ consists of the horizoutal line segment from the center (zo,y0)
to (z,50) and the vertical segment from (z,y0) to (z,1); it is immediately
seen that 9F/dy = if(z). On the otber hand, by Theorem 2 ¢ can be
replaced by a path copsisting of a vertical segment followed by a hori-
gontal segment. This choice defines the same function F(z), and we
aobtain 9F'/3x = f(z). Hence F(z) is analytic in' A with the derivative
f(2), and f(z) dz is an exact differential.

Clearly, the same proof would go through for any region which con-
tains the rectangle with the opposite vertices z; and z as soon as it con-
tains z. A rectangle, a half plane, or the inside of an ellipse all have
this property, and hence Theorem 4 holds for any of these regions. By
this method we cannot, however, reach full generality.

For the applications it is very important that the conclusion of
Theorem 4 remains valid under the weaker condition of Theorem 3. We
state this as a separate theorem. |

Theorem 5. Let f(z) be analytic sn the region A’ oblasned by omiliing a
Jinste number of poinie t; from an apen dtnfc A, If f(z) saltafies the con-
dition lim.-.;,(s — $)f(8) = Q for all J, (18) holds for any closed
curve ¥ in A’, |
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Fig. 4-4

The proof must be modified, for we cannot let ¢ pass through the
exceptional points. Assume first that no {; lies on the lines z = z, and
¥ = % It 18 then posaible to avoid the exceptional points by letting o
consist of three segments (Fig. 4-4). By an obvious application of
Theorem 3 we find that the value of F(z) in (18) is independent of the
choice of the middle segment; moreover, the last segment can be either
vertical or horizontal. We conclude as before that F(2) is an indefinite
integral of f(z), and the theorem follows.

In case there are exceptional points on the lines £ = z¢ and y = yo
the reader will easily convinee himself that a similar proof can be carried
out, provided that we use four line segments in the place of three,

2. CAUCHY’S INTEGRAL FORMULA

Through a very simple application of Cauchy’s theorem it becomes
possible to represent an anslytic function f(2) as a line integral in which
the variable z enters as a parameter. This representation, known as
Cauchy's inlegral formula, has numerous important applications. Above
all, it enables us to sfudy the local properties of an analytic function in
great detail.

2.1. The Index of a Point with Respect to a Closed Curve. AsS a
preliminary to the derivation of Cauchy’s formula we must define a notion
which in a precise way indicates how many times a closed curve winds
around a fixed point not on the eurve. If the curve 18 piecewise differ-
entiable, a3 we shall assume without serious loas of generality, the defi-
nition can be based on the following lemma.:
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Lemma 1. If the piecewise differentiable closed curve v does not pass
through the potnt a, then the value of the integral

f‘rzd—zﬂ

ts ¢ mulliple of 2xs.
This lemma may seem trivial, for we can write

f_rz__a-fdlog(Z—a)=fdlog|z—a|+:fda.rg(z—u)

When z describes a closed curve, log |z — a| returns to its initial value and
arg (z — a) increases or decreases by a multiple of 2». This would seem
to imply the lemma, but more careful thought shows that the reasoning is
of no value unless we define arg (z — @) in 8 unique way.

The simplest proof is computational. If the equation of yisz = #(#),
a <158 let us conmder the function

t 2'(¢)
Al = L =

It is defined and continuous on the closed interval [o,8], and it has the
derivative

Z(0)

K@) = z{) — a

whenever 2'(f) is continuous. From this equation it follows that the
derivative of e*®(z(t) — @) vanishes except perhaps at a finite number of
points, and since this function 18 continuous it must reduce to a constant.
We have thus

2(t) —a

MO = z(a) — a

Since 2(8) = 2(a) we obtain &® = 1 and therefore A{#) must be a multiple
of 2¢¢. This proves the lemma.

We can now define the index of the point a with respect to the curve ¥
by the equation

n(v,a) = L f

With a suggestive terminology the mdex is also called the winding number
of vy with respeot to a.
- It is clear-that n{—~+,8) = —n(y,a).
- The. follcaving property is an imrsediate consequence of Theorem 4:

= 6
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(i) If vy lses inside of a circle, then n(y,a) = O for all points a outside of
the same circle.

As a point set v i8 closed and bounded. Its complement is open and
ean be represented as a union of disjoint regions, the components of the
complement. We shall say, for short, that -« defermines these regions.
If the complementary regions are considered in the extended plane, there
is exactly one which contains the point at infinity. Consequently, ¥
determines one and only one unbounded region.

(i) As a function of a the index n(y,a) ts constant ¢n each of the regions
deiermined by v, and zero in the unbounded region.

Any two points in the same region determined by + can be joined by a
polygon which does not meet 4. For this reason it is sufficient to prove
that n{y,8) = n(y,b) if ¥ does not meet the line segment from a to b.
Cutside of this segment the function (z — a)/(¢ — b) is never real and
< 0. For this reason the principal branch of log [(z — a)/(z — b)] is
analytic in the complement of the segment. Its derivative is equal to
(z — @) — (z — b)~Y, and if ¥ does not meet the segment we must have

f( 1 __! Ya—o
Y\z—a 2Z~-—2D

hence n(y,8) = nr{v,b). If |a| is sufficiently large, v is contained in a
disk |2} < p < |a} and we conclude by (i} that n{y,s) = 0. This proves
that n(y,e) = 0 in the unbounded region. |

We shall find the case n{v,z) = 1 particularly important, and it i
desirable to formulate a geometrie condition which leads to this conse-
quence. For simplicity we take a = 0.

Lemma 2, Let 2, 22 be iwo poinie on a closed curve v which does not
pass through the origin. Denote the subare from z5 to 23 tn the direction of
the curve by 4., and the subarc from zz: to z: by ve. Suppose that z, lies tn
the lower half plane and z; in the upper half plare. If 4, does not meet the
negalive real aris and vy; does not meet the possiive real aa:is,ﬂwn n(v,0) = 1.

For the proof we draw the half lines L, and L, from the origin through
2: and z; (Fig. 4-5). Laet {1, {s be the points in which L,, L, intersect a
circle C' about the origin. If C is described in the positive sense, the
arc C) from {, to {2 does not intersect the negative axis, and the arc C;
from ¢; to I, does not intersect the positive axis. Denote the directed
line segments from 2z, to {; and from 2 to {2 by &;, 8;. Introducing the
closed curves o1 = 71+ 83 — C1 — 83, 03 = y3 + 8, — O3 — 83 we find
that n(v,0) = n{C,0) 4+ n(¢1,0) + n{s:,0) because of cancellations. But
o1 does not meet the negative axis. Hence the origin belongs to the
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nG. 4-5

unbounded region determined by o3, and we obtain n»{¢,,0) = (0. For a
similar reason n(g,,0) = 0, and we conclude that n{v,0) = »n(C,0) = 1.

*EXERCISES

These are not routine exercises. They serve to illustrate the topo-
logical use of winding numbers. |

L Give an alternate proof of Lemma 1 by dividing v into a finite
number of subarca such that there exists a single-valued branch of
arg (z — a) on each subare. Pay particular attention to the compact-
nese argument that is needed to prove the existence of such a subdivision.

2. It is possible to define n{y,a) for any continuous closed curve vy
that does not pass through a, whether piecewise differentiable or not. For
this purpose v is divided into subares v, . . ., vs, each contained
in a .disk that does not include g.  Let o2 be the directed line segment
from the initial to the terminal point of v4;, and set ¢ = ez + - * * + ou.
We define n{v,a) to be the value of n(s,a).

To justify the definition, prove the following:

~ {a) the result is independent of the subdivision;
| Eb) if -y is piecewise differentiable the new definition is equivalent to

the old;

(c) the properties (i) and:(ii) of the text continue to hold.

o %
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FiG. 4-8. Part of the Jordan curve theorem .

3. The Jordan curve theorem asserts that every Jordan curve in the
plane determines exactly two regions. The notion of winding number
leads to a quick proof of one part of the theorem, namely that the comple-
ment of a Jordan curve 4 has at least two components. This will be so if
there exists a point a with n(y,a) = 0.

We may assume that Re £ > 0 on 4, and that there are points z,,
ze €y with Im 2, < 0, Im 22 > 0. These points may be chosen so that
there are no other points of y on the line segments from 0 to 2, and from ¢
to 2. Let v1 and v, be the arcs of v from 2z, to 22 (excluding the end
points). '

Let o1 be the closed curve that consists of the line segment from @ to
21 followed by v, and the segment from z: to 0, and let ¢2 be constructed in
the same way with v, in the place of vy. Then ¢y — o2 = ¥ or —¥.

The positive real axis intersects both v; and v (why?). Choose the
notation so that the intersection x, farthest to the right is with v, (Fig. 4-6).

Prove the following:

(a) n{o1,z2) = 0, hence n(ry,2) = 0 for z € vs;

(0) n(o1,z) = n(rs,z) = 1 for amall 2z > 0 {Lemms 2);

(¢) the first intersection z, of the positive real axis with y lies on v;;

(d) n(rs,xy) = 1, henee n(os,z) = 1 for 2 € v;;

(¢) there exists a segment of the positive real axis with one end point
on ¥;, the other on 4,, and no other points on 4. The points z between
the end points satisfy n(y,2) = 1 or —1.

2.2. The Integral Formula. Let f(2) be analytic in an open disk A.
Consider a closed curve v in A and a point a € A which does not lie on v.
We apply Cauchy’s theorem to the function

FP(z) = f(’l — -L(“).
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This funection 18 analytic for z % a. For z = a it is not defined, but it
satisfies the condition

lim F{z)(z — a) = lim (f(2) ~ f(a)) = 0

which ig the condition of Theorem 5. We conclude that
j f(z) "-f(ﬂ») dz = 0.

z2—a
This equation can be written in the form

1% po [ &

’
g— a

and we observe that the integral in the right-hand member 18 by defi-
nition 2»1 ° n(v,8). We have thus proved:

Theorem 6. Suppose that f(z) is analytic in an open disk A, and let v
be a closed curve in A, For any poin:amton-y

(20) n(ra) @) = 5 [ 1O,

where n{-y,a) ts the sndex of a with respect to .

In this statement we have suppressed the requirement that ¢ be a
point in A. We have done so0 in view of the obvious interpretation of
the formula (20) for the case that a is not in A. Indeed, in this case
n(y,¢) and the Integral in the right-hand member are both zero.

It ie clear that Theorem 6 remains valid for any region @ to which
Theorem 5 can be applied. The presence of exceptional points I; is per-
mitted, provided none of them coincides with a.

The most common application is to the case where n(y,a) = 1. We
have then

(21) o) = 5 [ 12,

and this we interpret as a represenialion formula. Indeed, it permits us
to compute f(a) as soon as the values of f(z) on v are given, together
with the fact that f(2) is analytic in A. In (21) we may let a take differ-
ent values, provided that the order of a with respect to v remaing equal
to1l. We may thus treat a as a variable, and it i8 convenient to change
the notation and rewrite (2];) in the form

t—s

22) .,.;_l_]ffr)dr

- . [ -
- - J;_ l .1.1 a _‘_ R T3

: : -.‘. . B R T TR v ..“ ,I'
. - et o, " : . ‘.-'L '. . -;. .. -_i- . .-I'_.,’ FAS 1“..5. . .1 '\,_
P I S o S LSRR S AR T e 5'-1:-. ’l AL, | -rn.--«;r ...‘i -'f"" a"' e T A .'-.-L:ii';".'_‘i.‘?" i A "u...' ﬁw'%
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It is this formula which is usually referred to as Cauchy’s tniegral
fJormula. We must remember that it is valid only when n(y,z) = 1, and
that we have proved it only when f(2) is analytic in a disk.

EXERCISES
1. Compute
[ Sa.
jz} =1
2. Compute
[ dz
p 3
iz 2 + 1

by decomposition of the integrand in partial {ractions.

3. Compute
/ |dz)
I — ‘I
jri=p 5 ¢
under the condition |a| > p. Hiné: make use of the equations 22 = p® and
. dz
|dz] = —ip rl

2.3. Higher Derivatives. The representation formula (22) gives us an
ideal tool for the study of the local properties of analytic functions. In
particular we can now show that an analytic function has derivatives of
all orders, which are then also analytic.

We consider a function f(z) which is analytic in an arbitrary region .
To a point a € @ we determine a 3-neighborhood A contained in f, and in
A a circle C about a. Theorem 6 can be applied to f(z) in A. Since
n(C,a) = 1 we have n(C,2) = 1 for all points z inside of C. For auch z
we obtain by (22) '

f(z) = % ,,fr(r)_&:'

Provided that the integral can be differentiated under the sign of
integration we find

(23) Fe) = % fo %i_)_ f).:
and
(24) nl ¢ f@)dr

190 = 5 o = a0
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If the differentiations can be justified, we shall have proved the existence
of all derivatives at the points ingide of C. Since every point in @ lies
inside of some such circle, the existence will be proved in the whole
region §. At the same time we shall have obtained a convenient repre-
sentation formula for the derivatives.

For the justification we could either refer to corresponding theorems in
the real case, or we could prove a general theorem concerning hine inte-
grals whose integrand depends. analytically on a parameter. Actually,
we shall prove only the following lemma which is all we need in the
present case.

Lemma 3. Suppose that o() is continuous on the arc v. Then the
funcison
_r ) dr
£ = e =
i analylic in each of the regions delermined by v, and iis derivalive 18
F'(2) = nFan(2).

We prove first that Fy(z) is continuous. Let 2o be a point not on «,
and choose the neighborhood |z — zd < 5 =0 that it does not meet .
By restricting z to the smaller neighborhood |z — 29| < 3/2 we attain
that It — 2] > §/2forall { ey. From

Pi(z) = Fi(zq) = (2 — z0) f G _'szrdr =

we obtain at once
IFie) — Fiad| < e — 2 - 3, [ lohIdt),

and this inequality proves the continuity of F,(z) at zo.
From this part of the lemma, applied to the function ¢(f)/ (T = 20),
we conclude that the difference quotient

Fi(z) — Fy(20) — o({) d¢
z— 2 v (§ = £)(t — 20

tends to the limit Fs(z,) as 2 — 20. Hence it is proved that F{(z) = Fy(2).
. The general case 18 proved by induction. Suppose we have shown
that F,_,(2) = (n — L)F.(3). From the identity

F «(2) — Pa(ze)
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we can conclude that F.(z) is centinuous. Indeed, by the induection
hypothesis, applied to ¢({)/(t — 21), the first term tends to zero for
z2-> g5, and in the second term the factor of z — 2, i8 bounded in a
neighborhood of z,. Now, if we divide the identity by z — 2 and let 2
tend to 2y, the quotient in the first term tends to a derivative which by
the induction hypothesis equals (n — 1)F,;1(20). The remaining factor
in the second term is continucus, by what we have already proved, and
has the limut F .+1(Zn). Hence F ;(Zn) exists and equa.]s nF ...,.l(zu).

It i8 clear that Lemma 3 is just what is neoded in order to deduce
(23) and (24) in a rigorous way. We have thus proved that an analytic
function has derivatives of all orders which are analytic and can be
represented by the formula (24). |

Among the consequences of this result we like to single out two classi-
cal theorems. The first is known as Morera’s theorem, and it can be
stated as follows:

If §(z) is defined and continuous in @ region 9, and if [, fdz = 0 for

all closed curves v tn Q, then f(z) 18 analylic in Q.

The hypothesis implies, as we have already remarked in See, 1.3, that
f(2) 18 the derivative of an analytic function F{z). We know now that
J(2) is then itself analytic.

A second clasaical result goes under the name of Licuvslie’s theorem:

A function which ts analyirve and bounded +n the whole plane must reduce
to a constand. _

For the proof we make use of a simple estimate derived from (24).
Let the radius of C be r, and assume that [f($)| = M on C. If we apply
(24) with z = a, we obtain at once

(25) | [f2(a)}| = Mnb—.

For Liouville's theoremm we need only the case n» = 1. The hypothesis
means that |f(})] £ M on all circles. Hence we can let r tend to o,
and (25) leads to f'(a) = O for all a. We conclude that the function is
constant, " |

Liouville’s theorem leads to an almost trivial proof of the fundamental
theorem of algebra. Suppose that P(2) is a polynomial of degree > 0. If
P(z) were never gero, the function 1/P(z) would be analytic in the whole
plane. We know that P(z) —— ® for z— «, and therefore 1/P(z) tends
to zero. This implies boundedness (the absolute value is continuous on
the Riemann sphere and has thus a finite maximum), and by Liouville's
theorem §/P(z) would be constant. Smmce this is not so, the equation
P(z2) = 0 must have a root. |

The inequality (25) is known as Caouchy's estimate. 1t shows above
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all that the successive derivatives of an analytic function cannot be
arbitrary; there must always exist an M and an r 8o that (25) is fulfilled.
In order to make the best use of the inequality it is important that r be
judiciously chosen, the object being to minimize the function M(r)r—,
where M(r) is the maximum of {f| on |} — ¢| = .

EXERCISES
1, Compute
f ez " dz, [ (1 — 2" d-, f Iz — ai~4|dz| (|la| = p).
fof =1 Jof=2 | s} =

2. Prove that a function which is analytic in the whole plane and
satisfies an inequality |f(z)] < |z|* for some n and all sufficiently large |z|
reduces to a polynomial.

8. If {(z) is analytic and |f(z}| £ M for 2| £ R, find an upper bound
for |f™(2)| in |2} £ p < R.

4. 11 f(2) is analytic for |¢] < 1 and {f{z)| < 1/(1 — |z|), find the best
estimate of |f®(0)] that Cauchy’s inequality will yield.

5. Show that the successive derivatives of an analytic function at a
point ¢an never satisfy |f™(z)| > na*. Formulate a sharper theorem of
the same kind.

*¢. A more general form of Lemma 3 reads as follows:

Let the function (2,f) be continuous as a function of both variables
when 2z lies in a region @ and « < £ < 8. Suppose further that ¢(z,t) is
analytic a8 a function of z ¢ & for any fixed {. Then

F@ = [T ot at

is analytic mn z and
(26) F@) = [° a"’;:*‘} dt.
To prove this represent ¢(z,¢) as a Cauchy integral
oed) = 5 fo 25 ap.

Fill in the necessary details to obtain

P6) = [, (o [ v @) £ 2
and use Lemma 3 to prove (26). . -

. a " -:_ P 5 w1 aeml T . ' a - r "--."' " s T -,.l";ll:l'-—h- £ . N "'I'.I"q"-: "_ " _I: -.| E -, -_L_-:-:.' -:..'-1-;.'!..1-';_'
. - _‘.::'1‘-'.'-:-‘:.-! }'_':'L:’q - 'T“"':-'l e P S ;.'_.E'-. kY ) -'-‘_"l.f-..--.-_' DR .--*—'.I-'&i.".ﬁ"':' - - O, -! H-'li?.'. "N "'E"' L q.'.-'-.\..'.‘.‘."...r m
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3. LOCAL PROPERTIES OF ANALYTIC FUNCTIONS

We have already proved that an analytic function has derivatives of
all orders. In this section we will make a closer study of the local
properties. It will include a classification of the #solaled singulariises of
analytic functions,

3.1. Removable Singularities. Taylor’s Theorem. In Theorem 3
we introduced a weaker condition which could be substituted for ana-
lyticity at a finite number of points without affecting the end result. We
showed moreover, in Theorem 5, that Cauchy’s theorem in a circular disk
remains true under these weaker conditions, This was an essential point
in our derivation of Cauchy’s integral formula, for we were required to
apply Cauchy’s theorem to a function of the form (f(z) — f(a))/{(z — a).
Finally, it was pointed out that Cauchy’s integral formula remains
valid in the presence of & finite number of exceptional points, all satis-
fying the fundamental condition of Theorem 3, provided that none of
fhem coincides with ¢. This remark is more important than it may seem
on the surface. Indeed, Cauchy’s formula provides us with a represen-
tation of f(z) through an integral which in its dependence on z has the
same character at the exceptional points as everywhere else. It follows
that the exceptional points are such only by lack of information, and not
by their intnnsic nature. Points with this character are called removable
singularittcs. We shall prove the following precise theorem:

Theorem 7. Suppose thal f(z) i3 analylic in the region Q' oblasned by

onmuiiling a point a from a region Q. A necessary and sufficient condifion

that there exist an analytic funclton in @ which coincides with f(z) in Q s

that im (2 — a@)f(z) = 0. The extended function is uniquely delermined.
r—g

The necessity and the uniqueness are trivial since the extended fune-
tion must be continuous at @. To prove the sufficiency we draw a circle
C about g so that C and its inside are contained in @. Cauchy’s formuia
is valid, and we can write

2x1 J¢ ¢ — 3

for all 2 g inside of C. But the integral in the right-hand member
represents an analytic funetion of £ throughout the inside of ¢. Conse-
guently, the function which is equal to f(z) for £ £ & and which has the
value

1 r ) de
2N P f ct—-a

r—a
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for 2 = a is analytic in ©. It is natural to denote the extended function
by f(z) and the value (27) by f(a).
We apply thus result to the function

F(Z) —_ f(Z) — f(ﬂ')

e —

used in the proof of Cauchy’s formula. It is not defined for z = 4, but
it satisfies the condition im (z — 6)F(z) = 0. The limit of F(2) as z
&

tends to a is f'(¢). Hence there exists an analytic function which is
equat to F(z2) for z 7 a and equal to f'(a) for z = a. Let us denote this
function by fi(z). Repeating the process we can define an analytic func-
tion f3(2) which equals (fi(2) — fi{a))/(z — a) for z # a and fi(a) for
z = a, and so on.

The recursive scheme by which £,(z) 18 defined can be written in the
form

1(2) = f(a) ¥ (z — a)fs(2)
J1(2) = fi(a) + (2 — a)fs(2)

..................

f l—l(z) = f n--‘l.(ﬂ') + (z — a’)f n(z)-
From these equations which are trivially valid also for z = a we obtain

f(z) = f(a) + (z — a)fs(a) + (2 — )fs(a) + - -+ + (2 — &) Yala)
4+ (3 - G)‘f.(z)-

Differentiating n times and setting z = a we find

f*(a) = nlf.(a).

This determines the coefficients f.(a), and we obtain the following form
of Taylor's theorem:

Theorem 8. If f(z) 13 analylic 1n a region Q, conlaining o, tt 18 possible
to write

@ /&) =10 +52 6 - a) + LB ¢ — gy +

j~(a)

: 1 + L= e — 0t 4 L) — o
where f.(x) is analytic in O.
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This finite development must be well distinguished from the infinite
Taylor sertes which we will study later. It is, however, the finite develop-
ment (28) which is the most useful for the study of the local properties of
f(z). Itsusefulnessis enhanced by the fact that f.(2} has a simple explicit
expression as a hine integral,

Using the same circle € as before we have first

1 7 fD)dt
o = g [, 1028

For f.(t) we substitute the expression obtained from (28). There will
be one main term containing f({). The remaining terms are, except for
constant factors, of the form

_ dt
Fr(ﬂ) = fﬂ' (r—__a_);m! [ g 1.

1 1 1
F‘(“)=z—afc(;-—z_§—a)df=0’

identically for all ¢ inside of C. By Lerama 3 we have F, . (@) = F{?(a)/»!
and thus F,(a) = Oforally = 1. Hence the expression for fu(z) reduces to

(29) 1@ = o5 fo
The representation is valid inside of C.

But

3.2, Zeros and Poles. If f(a) and all derivatives f(a) vanish, we can
write by (28) _

(30) | (@ = ful2)(z - a)*

for any n. An estimate for f,(z} can be obtained by (29). The disk
with the circumference C has to be contained in the region € in which
f(2z) is defined and analytic. The absolute value |f(z)] has & maximum
M on C; if the radius of C is denoted by R, we find

M
S = = = =

for |t — a| < B. By (30) we have thus
lz—al\" MR
|f(z)] < o3 m

But (jz — a|/R)"— 0 for n— o, gince |2 — a| < B. Hence f(z) =0
inside of C.
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We show now that f(2) is identically zero in all of . Let E, be the
set on which f(z) and all derivatives vanish and F: the set on which the
function or one of the derivatives is different from gero. E; is open by
the above reasoning, and E, is open because the function and all deriva-
‘tives are continuous. Therefore either E; or £; must be empty. If K,
18 empty, the function is identically gero. If E; is empty, f(z) can never
vanigh together with all ite derivatives,

Assume that f(z) is not identically zero. Then, if f(a) = 0, there
exists a first derivative f®(a) which is different from zero. We say then
that a is a zero of order k, and ike result that we have just proved expreases
that there are no gzeros of infinite order. In this respect an analytic
function has the same local behavior as a polynomial, and just as in the
case of polynomials we find that it is possible to write f(2) = (2 — a)*a(?)
where f)(z) is analytic and fi(a) # 0.

In the same situation, since fi(2) is continuous, fx(z) > 0in a neighbor-
hood of @ and z = a i8 the only zero of f(z) in this neighborheod. In
other words, the zeros of an analytic function which does not vanish
identically are ¢solaled. Thia property can also be formulated as a
unigqueness theorem: If f(z) and ¢(z) are analyiic tn Q, and if f(z) = g(e)
on o 3¢l which has an accumulaiion potni tn Q, then f(2) 13 tdentscally
equal to g(z). The conclusion follows by consideration of the difference
f(2) = g(2).

Particular instances of this result which deserve to be quoted are the
following: If f(z) is 1dentically zero in a subregion of @, then it is identi-
cally zero in @, and the same is true if f(z) vanishes on an are which
does not reducee to a point. We can also say that an analytic funection is
uniquely determined by its values on any set with an accumulation point
in the region of analyticily. This does not mean that we know of any
way in which the values of the function can be computed.

We consider now a function f(z) which is analytic in a neighborhood
of a. except perhaps at a itself. In other words, f(2) shall be analytic in
a region 0 < |z — al < §. The point a is called an fsolated singularily
of f(z). We have already treated the case of a removable singularity.
Since we ean then define f(a) so that f(z) becomes analytic in the disk
{¢ = a] < 3§, it needs no further consideration.$

| Hlin:f(z) = e,k the point g is said to be a pole of f(z), and we set

J(a) = . Thereexistaa §’' < &such that f(z) » Ofor0 < |z — o] < ¥'.

In this region the function g(z) = 1/f(z) is defined and analytic. But
the mingularity of g{s) at a is removable, and g(z) has an analytic exten-
1H4unmwlﬂedngu!stﬂy,ﬁ:)nﬁeqmﬂyuldtobomn¢,
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gion with g(a) = 0. Since ¢(z) does not vanish identically, the zero at
a has a finite order, and we can write g(2} = (z — a)*q\(2) with gp(a) = 0.
The number h is the order of the pole, and f(z) has the representation
f(z) = (g — @&)~*u(2) where f(z) = 1/g{(2) is analytic and different from
gero in & neighborhood of a. The nature of a pole 18 thus exactly the
same 88 in the ease of a rational funetion,

A function f(z) which is analytic in a region Q, except for poles, is said
to be meromorphic in Q. More precisely, to every a ¢ @ there ghall exist
a neighborhood |2z — @| < §, contained in 2, such that either f(2) is ana-
lytic in the whole neighborhood, or else f(2) is analytic for0 < |z — a| < §,
and the isolated singularity is a pole. Observe that the poles of a mero-
morphic function are isolated by definition. The quotient f(g)/g(z) of
two analytic functions in © is a meromorphic function in Q, provided
that g(z) is not identically zero. The only possible poles are the zeros of
g(z), but a common zero of f(2) and g(z) can also be a removable singu-
larity. If this is the case, the value of the quotient must be determined
by continuity. More generally, the sum, the product, and the quotient
of two meromorphic functions are meromorphic. The case of an identi-
cally vanishing denominator must be excluded, unless we wish to con-
sider the constant « 2s a meromorphic function. |

For a more detailed discussion of isolated singularities, we consider
the conditions (1) lim |z — a|*|f(2)] = 0, (2) lim |2 — a]?|f(2)| = =, for

real values of «. If (1) holds for a cerfain «, then it holds for all larger .,
and hence for some integer m. Then (z — a)™f(z) has a removable singu-
larity and vanishes for ¢ = a. Either f(z) is identically zero, in which
cage (1) bolds for all a, or (2 — a)=f(3) has a zero of finite order k. In
the latter case it follows at once that (1) holdsforalla > h = m — k,
while (2) holds for all &« < A. Assume now that (2) holds for some «;
then it holds for all smaller «, and hence for some integer n. The func-
tion {# — @)*f(c) has a pole of finite order I, and setting A = n 4+ { we
find again that (1) holds for & > A and (2) for « < A. The discussion
showsa that there are three possibilities: (i) eondition (1) holds for all
and f(z) vanishes identiecally; (ii) there éxists an integer 2 such that (1)
holds for « > A and (2) for « < h; (iii) neither (1) nor (2) holds for any o.

Case (1) is uninteresting. In case (i) A may be called the algebraste
order of f(z) at a. It 18 positive in case of a pole, negative in case of a
sero, and zero if f(z) is analytic but 7 0 at a. The remarkable thing 18
that the order is always an integer; there is no single-valued analytic
function which tends to 0 or « like a fractional power of |z — a|.

In the case of a pole of order A, let us apply Theorem B to the analytic

function (z — a)*f(z). We obtain a devélopment of the form
(z—a*@ =Byt Bs(z —a) 4+ * * - + Bilz — a)** 4 o(2)(z — o)t
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where ¢(z) 18 analytic at 2z = a. For 2z # a we can divide by {z — a)*
and find

(&) = Ba(z — o) + By_s(z ~a) 1 4 -+ 4 Bi(z — a)t + »(2).

The part of this development which precedes ¢(z) is called the stngular
part of f(2) at z = a. A pole has thus not only an order, but also a well-
defined singular part. The difference of two functions with the same
singular part is analytic at 6.

In case (iti) the point a is an essential tsolated singularity. In
the neighborhood of an essential sipgularity f(z) is at the same time
unbounded and comeg arbitranly close {0 gero. As a characterization
of the complicated behavior of a function in the neighborhood of an essen-
tial singularity, we prove the following classical theorem of Weierstrass:

Theorem 9. An analylic function comes arbiiraridy close to any complex
value in every nesghborhood of an essenisal singularsiy.

If the assertion were not true, we could find a complex number A and
8 § > 0 such that |f(z) — A| > & in a neighborhood of a (except for
z2=a). For any a <0 we bave then lim |z — al|*|f(z) — A| = e,

Hence ¢ would not be an essential singularity of f(z) — A. Accord-
ingly, there exists a 8 with hm |z — aff)f(z} — A| = 0, and we are free

to choose 8 > 0. Since in that case h.m |2 — alf]A| = O it would follow
that im |z — al]®|f(z){ = 0, and a would pot be an essential mngularity of

f(2). The contradiction proves the theorem.

The notion of isolated singularity applies also to functions which are
analyiic in a neighborhood |2| > R of ®. Since f(«) is not defined, we
treat « as an isolated singularity, and by convention it has the same
character of removable singularity, pole, or essential singularity as the
singularity of g(z) = f(1/2) at z = 0. If the singularity is nonessential,
{(z) has an algebraic order A such that lim z*f(z) is neither sero nor

nfinity, and for & pole the singular part is & polynomial in 2. If « is

wn essential gingularity, the function has the property expressed by
Theorem 9 in every neighborhood of infinity.

XERCISES

1. If f(2) and g(z) have the algebraic urders hand k at z = a, shnw
hat fg has the order A + k,f/gtheorderh - ka.ndj' -l- gm mgﬂ

”“P%?.Q.;;a--;w(“"
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2. Show that a function which is analytic in the whole plane and has
a nonessential singularity at « reduces to a polynomial.

3. Show that the functionse?, sin z and cos z have essential singularities
at ©,

4. Bhow that any function which i8 meromorphic in the extended
plane is rational.

5. Prove that an isolated singularity of f(z) is removable as soon as
either Re f(z) or Im f(z) is bounded above or below. Hint: Apply a
fractional linear transformation.

6. Show that an isolated singularity of f(z) cannot be a pole of exp f(z).
Hind: § and ¢/ cannot have a common pole (why?). Now apply Theorem 9.

3.3. The Local Mapping. We begin with the proof of a general for-
roula which enables us to determine the number of zeros of an analytic
function. We are considering a function f(z) which 18 analytic and not
identically zero in an open disk A. Let v be a closed eurve in A such
that f(z) » O on y. For the sake of simplicity we suppose first that f(z)
has only & finite number of zeros in A, and we agree to denote them by
21,2, . . ., 2a Where each zero is repeated as many times as its order indicates.

By repeated applications of Theorem 8, or rather its eonsequence (30),
it is clear that we can write f(2) = (2 — 2.0z — 22) - - - (2 — z2)9(2)
where g(z) is analytic and # 0in A. Forming the Iogarlthmjc derivative
we obtain

7'(2) 1 1 o 1 7(2)
@ imanti—a Tt ntw
for z # z;, and particularly on v. Since g(g) 7 0 in A, Cauchy’s theorem
yields
a’ (2
f 9(2) dz = 9.

Recalling the definition of }1}(7,;;) we ﬁnd
B nlva) +alva) + - - +alnz) = g [T e

This is still true if f(z) has infinitely many zerosin A. It 18 clear that
~v 18 contained in a concentric disk A’ smaller than A. Unless f(2) is
identically zero, a case which must obviously be excluded, it has only a
finite number of zeros in A’. This is an obvious consequence of the
Bolzano-Weierstrass theorem, for if there were infinitely many zeros
they would have an accumulation point in the closure of A’, and this 18
impossible. We can now apply (31) to the disk A’. The zeros outside
of A’ satisfy n(vy,2;) = 0 and hence do not contribute to the eum in (31).
We have thus proved:
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Theorem 10. Let z; be the 2er08 of a function f(z) which is analylic in
a disk A and does not vanish identically, each zero being counted as many

itmes as s ovder indicales. For every closed curve v sn A which does not
pass through a zero

(32) Zﬂ('nzj) = —2:—_‘ f g(f))d"

where the sum has only a fintte number of terms » Q.

The function w = f(z) maps ¥ onto a closed curve T in the w—pla.ne,
and we find

dw _ [ f @)
[ = 7 2
The formula (32) has thua the following interpretation:
(33) n(1,0) = } n(v,2).
J

The simplest and most useful application is to the case where it is
known beforeband that each n{y,z;) must be either 0 or 1. Then (32)
yields a formula for the fofal number of zerca enclosed by v. This 18
evidently the case when 4 18 a circle.

Let a be an arbitrary complex value, and apply Theorem 10 to f(z) —
a. The zeros of f(z) — a are the roots of the equation f(z) = a, and we
denote them by z;(a). In the place of (32) we obtain the formuls

Z n(v,2(a)) = ﬁl:‘ f(i;(f_)_ - dz

and (33) takes the form
#(l,a) = ;ﬂ(‘fszi(ﬂ))*

It is necessary to assume that f(2) 7 a on ¥. :
If a and b are in the same region determined by T, we know that

n(I',a) = n(I,b), and hence we have also Zn(qr,z,(a)) = Eﬂ('rﬁx(b))

Ifyis a cucle it follows that f(z) takes the valuea a and b equa.lly many
times inside of y. The following theorem on local correspondence 18 an
immediate consequence of this result.

Theorem 11. Suppose thal f(z) s analytic al 20, f(3s) = w0, and 13"
f(£) — o has a zeme of order n at gs. If s > 0 sesufficienily small, ket
MuWi)ﬂm&M}wdamﬁIa—wd(GﬂwM
hon,f(t)-ahu_"_"_'_[, urmﬁthdi&k-s.l{y el

- ".i-'-: ﬂ:ﬁm‘m il ‘*ﬂm
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We can choose e so that f{z) 18 defined and analytic for |z — z] £ ¢
and so that 2, 18 the only zero of f(2) — w, in this disk. Let vy be the
eirele |z - 20| = ¢ and T its image under the mapping w = f(z). Since
wo belongs to the complement of the closed set I', there exists a neighbor-
hood |w — wy| < & which does not intersect I' (Fig. 4-7). It follows
immediately that all values ¢ in this neighborhood are taken the same
number of times inside of y. The equation f(z2) = we¢ has exactly n
coinciding roots inside of v, and hence every value ¢ is taken n times.
It is understood that multiple roots are counted according to their mulia-
plicity, but if ¢ ig8 sufficiently small we can assert that all roots of the
equation f(2) = a are simple for a » w, Indeed, it i1s suthicient to
choose £ so that f’{z) does not vanish for 0 < |z — 2| < .

Corollary 1. A nonconsiant analytic function mape open sets onio open
sels.

This is merely another way of saying that the image of every suf-
ficiently amall disk |3 — z| < ¢ contains a neighborhood |w — we| < 6.
In the case n = 1 there is one-to-one correspondence between the disk
|0 — wol < 5 and an open subset A of [z — 2¢] < ¢. Bince open sets in
the z-plane correspond to open gets in the w-plane the inverse function
of f(2) is continuous, and the mapping is topological. The mapping can

be restricted to a neighborhood of z, contained in A, and we are able to
state:

Corollary 2. If f(z) s analytic af 20 with f'(20) #= 0, i maps a neyghbor-
hood of zo conformally and topolagically onlo a region.

From the continwity of the inverse function it follows in the usual way
that the inverse function is analytic, and hence the inverse mapping is

2- plane

FiG. 4-7. Local correspoundence.
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NCRCRI

z-plane
FiG. 4-8. Branch point: n = 3.

likewise conformal. Conversely, if the local mapping iz one to one,
Theorem 11 can hold only with » = 1, and hence f'(z,) must be differ-
ent from sero.

For n > 1 the local correspondence can still be described in very pre-
cise terms. Under the assumption of Theorem 11 we can write

J(z) — e = (2 — z4)"g(2)

where g(z) is analytic at zo and g(2o) 0. Choose ¢ > 0 so that
lg{2) — g{z0)| < lg(20)| for |2 — 2zo] < e In this neighborhood it is possi-
ble to define & single-valued analytic branch of v/g(z), which we denote
by A(z). We have thus

f(2) — wy = $(2)"
$(2) = (2 — 20)A(3).

Since {'(z0) = h(2zy) » 0 the mapping t = {(z) is topological in a neigh-
borhood of z,. On the other hand, the mapping w = we -+ {* is of an ele-
mentary character and determines n equally spaced values { for each
value of w. By performing the mapping in two steps we obtain a very
illuminating picture of the local correspondence. Figure 4-8 shows the
‘mverse image of a small disk and the n arcs which are mapped onto
the positive radius.

- EXERCISES

2, Determine explicitly the largest disk about the origin whose image
under the mapping v = ¢£? 4- z is one to one.
2. S8ame problem for w = e~ -
-+ & Apply the representation f(z) = wo 4 {(2)" to cos z with 2¢ = 0.
-~ Determine {(2) explicitly.
. & If §{e) iz analytic at the origin and f’(0) » 0, prove the existence of
an nm.lyh‘e g{z) such that f(z*) = F(0) 4 g(z)" in a neighborhood of 0.

3.4 ThMadmumPrmmph ComllnylofThaoramllhnsavm-y
| * guenge. kmwn umtho JoATInGm. pmw;plo for
.o FEERLN G v,
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analytic functions. Because of its simple and explicit formulation it is
one of the most useful general theorems in the theory of functions. Asa
rule all proofs based on the maximum principle are very straightforward,
and preference is quite justly given to proofs of this kind.

Theorem 12. (The mazimum preinciple.) If f(2) iz analylic and non-
conslant in a region Q, then sts absolute value |f(2)| has no mazémum n Q.

The proof is clear. If wo = f(2¢) i8 any value taken in 2, there exists
a neighborhood |w — w¢ < ¢ contained in the image of §. In this
neighborhood there are points of modulus > |we|, and hence |f{z,)| is not
the maximum of |f(2)].

In a positive formulation essentially the same theorem can be stated
in the form: |

Theorem 12'. If f(z) is defined and conlinuous on a closed bounded se! E
angd analylic on the inlerior of E, then the marsmum of |f(z)| on E i3 assumed
on the boundary of E.

Since E is compact, |f(2)| has 2 maximum on E. Suppose that it is
assumed at zo. If 2o is on the boundary, there is nothing to prove. 1If z,
is an interior point, then |f(zo)| is also the maximum of |f(z)| in a disk
|2 — 20| < & contained in E. But this 15 not possible unless f(z) is constant
in the component of the interior of £ which contains z,. It follows by
continuity that {f(z)| is equal to its maximum on the whole boundary of
that component. This boundary is not empty and it is contained in the
boundary of E. Thus the maximum is always assumed at a boundary
point. .

The maximum principle can also be proved analytically, as & ¢o
quence of Cauchy’s integral formula. If the formula (22) 18 specialized
to the case where ¥ is a circle of center 2o and radius r, we can write
$ = zo + re?, dt = ret? do on v and obtain for z = 2z,

(34) H(ze) = % f:’ f(z0 + re®) d8.

This formula shows that the value of an analytic function at the center
of a circle is equal to the anthmetic mean of its values on the circle,
subject to the condition that the closed disk |z — zo| < 7 i8 contained in
the region of analyticity.

From (34) we derive the inequality

(35) 19 S o £ |fes + re)] do.
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Suppose that |f(zo)| were a maximum. Then we would have |f(zo -|- re‘®)]

< |f(z0)], and if the sirict inequality held for a single value of 8 it would

bhold, by continuity, on a whole arc. But then the mean value of

|f(ze 4+ re®)| would be strictly less than {f(20)|, and (35) would lead to

the contradiction [f(zo)] < |f(ze)]. Thus }f(2)| must be constantly equal

to |f(zo)| on all sufficiently small circles {2 — 2] = r and, hence, in a

neighborhood of z,. It follows easily that f(¢£) must reduce to a con-

stant. This reasoning provides a second proof of the maximum princi-

ple. We have given preference to the first proof because it shows that

the maximum principle 18 a8 consequence of the topological properties of

the mapping by an analytic function.

| Consider now the case of a function f(z) which is analytic in the open

disk jz| < R and contmuous on the closed disk |z] £ B. If it 18 known

that |f(z)| = M on |z2| = R, then |f(z)] £ M in the whole disk. The
equality can hold only if f(2) is a constant of absolute value M. Therefore,
if it is known that f(z) takes some value of modulus < M, it may be ex-
pected that a better estimate can be given. Theorems to this effect are
very useful. The following particular result is known as the lemma of
Schwarz:

Theorem 13. If f(z) €8 analytic for |z| < 1 and satisfies the conditions
@) S 1, 0) = 0, then {f(z)| < |e| and |f(0)] S 1. If If2)] = fe] for
somez # 0, or if |[f(0)| = 1, then f(2) = ez with a constant ¢ of absolute
value 1.

We apply the maximum principle to the function fi(2) which is equal
to f(2)/z for z = 0 and to f/(0) forz = 0. On the circle |z]| = r < litis
of absolute value £ 1/r, and hence |fr(2)} = 1/rfor |3| S r. Lettingr
tend to 1 we find that |fi(z)] S 1 for all z, and this is the assertion of
. the theorem. If the equality holds at a single point, it means that | fi(2)|
attains its maximmum and, hence, that fi(2) must reduce to a constant.

The rather specislized assumptions of Theorem 13 are pot essential,
but should be looked upon as the result of & normalization. For instance,
if /() 18 known to satisfy the conditions of the theorem in a disk of radius
R, the original form of the theorem can be applied to the function f(Rz).
Asa regult we obtain |f(Rz)| S |2/, which can be rewritten as | f(2)| S [z]/R.
Similarly, if the upper bound of the modulus is M instead of 1, we apply
the theorem to f(t)/H or, in the more general case, to f(Rs)/H The
resulting inequality is |f(z)| 5 Miel/R.

- 84ill more generally, we may replace the eondition f(0) = 0 by an
arhlt.rary oondition f(z) = t, where |zo| < R and |wy] < M. Let{ = Tz
be & linear transformation which maps |s] < R onto [f|, <'1 with x, going

ini;the Wm»mmmhﬂm = @ which
maps |w|<MontoISw1{l Itm
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gatisfies the hypothesis of the original theorem. Hence we obtain

ISF(T-3)1 = (¢}, or |Sf(2)] = |Tz|. Explicitly, this inequality can be
written in the form

(36) M (j. (Z) - wﬂ) |

Rz — zn)
M? — wof(2) l =

R — 221}

EXERCISES
L Show by use of (36), or directly, that |f(z)] < 1 for |z| < 1 implies

| (2)) 1
a-vwﬁ‘ — 2P

2. If f(2) is analytic and Im f(2) = 0 for Im z > 0, show that

|f(3) ""f(zu).' < lz — zn|
If2) — fo)| = 12 — %l

and

Ill‘:; (;()z)l (z =z +1y).

3. In Ex. 1 and 2, prove that equality iraplies that f{z) is a linear
transformation.

4. Derive corresponding inequalities if f(z) maps |2| <1 into the
upper half plane.

S. Prove by use of Schwarz’s lemma that every one-to-one conformal
mapping of & disk onto another (6r s half plane) isgiven by alinear
transformation.

*6. If v is a piecewise differentiable arc contained in [z] < 1 the integral

f':rl Ifz}zl’

is called the nonsucltdean length (or hyperbolic length) of 4. Show that
sn analytic function f(2) with |f(z)] < 1 for |z} < 1 maps every 4 on an
arc with smaller or equal noneuclidean length.
Deduce that a linear transformation of the unit disk onto itself pre-
serves noneuclidean lengths, and check the result by explicit computation.
*7. Prove that the arc of smallest noneuclidean length that joins two
given points in the unit disk is a circular arc which is orthogonal to the unit
oircle. (Make use of a linear transformation that earries one end point
to the origin, the other to a point on the positive real axis.)
The shortest noneuclidean length is called the noneuclidean disiance
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between the end points. Derive a formula for the noneuclidean distance
between z; and 2., Answer:

1 — 29
llo L+ 1 ~ Z2a|
2 g 21"—2::

1
1 = 2324

*8. How should noneuclidean length in the upper half plane be defined?

4. THE GENERAL FORM OF CAUCHY'’S THEOREM

In our preliminary treatment of Cauchy’s theorem and fhe integral
formula we considered only the case of & circular region. For the pur-
pose of studying the local properties of analytic functions this was quite
adequate, but from a more general point of view we cannot be satisfied
with a result which is 80 obviously incomplete. The generalisation can
proceed in two directions. For one thing we can seek to characterize
the regions in which Cauchy’s theorem has universal validity. Secondly,
we can consider an arbitrary region and look for the curves 4 for which
the assertion of Cauchy’s theorem is true.

4.1. Chains and Cyclea. In the first place we must generalize the
notion of line integral. To this end we examine the equation

(37) [ sae= [ faet+ [ faet---+ [ sde

Nntyrd - K-y

which is valid when v1, v, . . . , ¥» form a subdivision of the arc ¥.
Sinee the right-hand member of (37) has a meaning for any finite collec-
tion, nothing prevents us from considering an arbitrary formal sum
Y14+ v+ * * + + 7. which need not be an are, and we define the cor-
respouding- integral by means of equation (37). Such formal sums of
arcs are called chains. It i8 clear that nothing is Jost and much may be
gamed by considering line mtegmls over arbitrary chains.

- - Just as there is nothing unique about the way in which an arc can be
subdlnded, it is clear that different formal sums can represent the same
chain. The guiding principle is that two chains should be considered
1dantwnhfthoymld the same line integrals for all functions f. ¥f this
principle is analysed, we find that the following operations do not change
the identity of s chain: (1) permutation of two arcs, (2) subdivision of
an arg, (3) fusion of ‘subarcs to & single arc, (4) reparametrisation of an
‘ake, {5) Medhtion ol'trppontam '‘On thig basis it would be easy to
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formulate a logical equivalence relation which defines the identity of
chains in & formal manner. Inasmuch as the situation does not involve
any logieal pitfalls, we shall dispense with this formalization.

The sum of two chains is defined in the obvious way by juxtaposition.
It i8 clear that the additive property (37) of line integrals remasins valid
for arbitrary chains. When identical chains are added, it is convenient
to denote the sum as a multiple. With this notation every chain can be
written in the form

(38) Yy=0av1+ Gy2+ ° °° T GuYa
where the g; are positive integers and the v; are all different. For opposite
arcs we are allowed to write a(—+y) = —ay and contirue the reduction of

(38) until no two #¥; are opposite. The coefficients will be  arbitrary
integers, and terms with zero coefficients can be sdded af will. The last
device enables us to expreas any two chains in terms of the same ares, and
their sum 18 obtained by adding corresponding coeflicients. The zero
chain i8 either an empty sum or a sum with all coefficients equal to zero.

A chain 18 a eyele if it can be represented as a sum of closed curves.
Very gsimple combinatorial considerations show that & chain is a cycle if
and only if in any representation the initial and end points of the indi-
vidual arcs are identical in pairs. Thus it is immediately possible to tell
whether a chain 18 a c¢ycle or not.

In the applications we shall consider chains which are contained in a
given open set . By this we mean that the chains have a representation
by ares in @ and that only such representations will be considered. It is
clear that all theorems which we have heretofore formulated only for
closed curves in a region are in fact valid for arbitrary eycles in a region.
In particular, the integral of an exact differential over any cycle s zero.

The index of a point with respect to a cycle is defined in exactly the
same way as in the case of a single closed curve. 1t has the same proper-
ties, and in addition we can formulate the obvious but important additive
law expressed by the equation n(y; + ¥3,8) = n(y1,8) + n(v,a).

4.2, Simple Connectivity, There is little doubt that all readers will
know what we mean if we speak about a region without holes. Such
regions are sald to be simply connected, and it is for simply connected
regions that Cauchy’s theorem is universally valid. The suggestive
language we have used cannot take the place of a mathematical cefi-
nition, but fortunately very little is needed to make the term precise.
Indeed, a region without holes 18 obviously one whose complement con-
sists of a single piece. We are thus led to the following definition:
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Definition 1. A region is simply connected if its complement with respect
to the extended plane ts connecied.

At this point we warn the reader that this definition is not the one
that 13 commonly accepted, the main reason being that our definition
cannot be used in more than two real dimensions. In the course of our
work we shall find, however, that the property expressed by Definition 1 is
equivalent to a number of other properties, more or less equally important.
One of thess states that any closed curve can be contracted to a point, and
this condition is usually chosen as definition. Our choice has the advan-
tage of leading very quickly to the essential results in complex integration
theory.

It 18 easy to see that a disk, a half plane, and a paralle]l strip are
simply connected. The last example shows the importance of taking the
complement with respect to the extended plane, for the complement of the
strip in the finite plane is evidently not connected. The definition can be
applied to regions on the Riemann sphere, and this is evadently the most
symmetrie situation. For our purposes it is nevertheless better to agree
that all regions lie in the finite plane unless the contrary is explicitly
stated. According to this convention the outside of a circle 12 not simply
connected, for its complement consists of a closed disk and the point
at infinity.

Theorem 14. A region Q is simply connecled if and only if n(v,a) = 0
for all cycles v tn Q and ail poinis a which do not delong lo .

This alternative condition is also very suggestive. It states that a
closed curve in a simply connected region cannot wind around any point
which does not belong to the region. It seems quite evident that this
condition ig not fulfilled in the case of a region with a hole,

The neceseity of the condition is almost trivial. Let 4 be any cycle in
Q. If the complement of @ is connected, it must be contained in one of
the regions determined by v, and inasmuch as « belongs to the comple-
ment this must be the unbounded region. Consequently n{y,a) = 0 for
all finite points in the complement.

For the precise proof of the sufficiency an explicit construction is
needed. We assume that the complement of 2 can be represented as the
union 4 \UJ B of two disjoint closed sets. One of these sets contains «,
and the other-is consequently bounded; let A be the bounded set. The
sete A and B have a shortest dlsta.nee 3 > 0. Cover the whole plane
mthsnatofaquareaQofmda<5/\/_ We are free to choose the net
loth.nu. septaly pomtae 4 Ilesﬂ.t the center ofa square. Theboundary
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FlG. &-9. Curve with index 1.

curve of @ is denoted by 3Q; we assume explicitly that the squares Q
are closed and that the interior of Q lies to the left of the directed line
segments which make up 99.

Consider now the eycle

(39) v = 2 aQ;

where the sum ranges over all squares Q; in the nef which have a point
in common with A (Fig. 4-3). Because a ig contained in one and only
one of these squares, it is evident that n(y,a) = 1. Farthermore, it is
clear that v does not meet B. But if the cancellations are carried out,
it is equally clear that y does not meet A. Indeed, any side which meets
A 18 a common side of two squares included in the sum (39), and since
the directions are opposite the side does not appear in the reduced
expression of 4. Hence v i8 contained in £, and our theorem is proved.

We remark now that Cauchy’s theorem is certainly not valid for
regions which are not aimply connected. In fact, if thereis a eycle v in @
such that n{v,a) 7 0 for some g outside of 3, then 1/(z — q)} is analytic in
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Q while its integral

dz .
f_r = 2zen(y,a) #= 0.

4.3. Homology. The characterzation of simple connectivity by Theo-
rem 14 singles out a property that 13 common to all cyeles in a simply
connected region, but which a cycle in an arbitrary region or open set may
or may not have. This property plays an important role in topology and
therefore has a specisl name.

Definition 2. A cycle v tn an open set Q $8 said to be homologous lo zero
with respect to Q ¢f n(v,a) = 0 for all poinis a in the complement of Q.

In symbols we write ¥ ~ 0 {mod Q). When it is clear to what open
set we are referring, 2 need not be mentioned. The notation yy; ~ ¢
shall be equivalent to v, — y2 ~ 0. Homologies can be added and sub-
tracted, and ¥y ~ 0 (mod Q) impliea vy ~ 0 (mod @) for all @' O Q.

Again, our terminology does not quite agree with standard usage.
It was Emil Artin who disecovered that the characterization of homology
by vapishing winding numbers ties in precisely with what is needed for
the general wversion of Cauchy’s theorem, This idea has led to a re-
markable simplification of earlier proofs.

4.4. The General Statement of Cauchy’s Theorem. The definitive
form of Cauchy’s theorem i3 now very easy to state.

Theorem 15. If f(z) t¢ analytic in Q, then

(40) [ foa =0
for every cycle v which is homologous to 2ero in Q.

In a different formulation, we are claiming that if  is such that (40)
holds for a certain collection of analytic functions, namely those of the
form 1/(¢ — a) with a not in Q, then it holds for all analytic functions in Q.

. In combination with Theorem 14 we have the following corollary:

Corollary 1. If f(2} 18 malytz'c in ¢ stmply connecled region Q, then (40)
holds for all cycles v n Q.

.. Before proving the theorem, we make an observation which ties up
with; the considliration: inﬂeuﬂnnl?- Aspoimd owmﬂmtmeem
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the validity of (40) for all closed curves v in a region means that the line
integral of f dz is independent of the path, or that f dz is an exact differ-
ential. By Theorem 1 there is then a single-valued analytic function F(z)
such that F'(z) = f(z) (the pleonastic term “single-valued” is used for
emphasis only). In a simply connected region every analytic function
is thus a derivative.

A particular application of this fact oceurs very frequently:

Corollary 2. If f(2) i3 analytic and # 0 in o simply connected ramtm Q,
then it 18 possible lo define single-valued analytic branches of log f(z2) and

v f(z) in Q.

In fact, we know that there exists-an analytic function F(2) in @ such
that ¥'(z) = f'(2)/f(z). The function f(z)e 7 has the derivative sero
and is therefore a constant. Choosing a point z; € @ and one of the in-
finitely many values log f(z0), we find that

eF (8—F(sg)tlog f(sg) — f(z) .

and conaequal;tly we can set log f(z) = F(z) — F(z) + log f(z0). . To
define v/ f(z) we merely write it in the form exp ((1/n) log f(2)).

4.5. Proof of Cauchy’s Theorem.f We begin with a construction that
parallels the one in the proof of Theorem 14. Assume first that O is
bounded, but otherwise arbitrary. Given § > 0, we cover the plane by a
net of squares of side 3, and we denote by Q,, 7 € J, the closed squares in
the net which are contained in 2; because Q is bounded the set J is finite,
and if § is sufficiently small it is not emapty. The union of the squares
Q;, 7 €J, consists of closed regions whose oriented boundaries make up the

cycle
Iy = z dQ;.

Jaf

Clearly, I is a sum of oriented line segments which are sides of exactly
one ;. We denote by Q5 the interior of the union U @; (Fig, 4-10).

Let v be a eycle which is homologous to zero in ; we choose & so
small that v is contained in ;. Consider a point { € 3 — . It belongs
to at least one Q which is not aQ);, There is a point {7y ¢ Q@ which is not in €.
It is possible to join § and {¢ by a line segment which lies in @ and therefore
does not meet §2;. Since v, considered as a point set, is contained in Q; it
follows that n(y,l) = n{y,te) = 0. In particular, n(y,) = 0 for all
poimnts { on I ._

t This proof follows a suggestion by A. F. Beardon, who has kindly permitted ita
use in this connection.
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Suppose now that f is analytic in Q. If z lies in the interior of Q;,
say, then

1 @) dt _ {f(ﬂ‘) if j = Jo

" and henee
1
(41) J@) = rs f;r_)_d:
*- Since both sides are continuous functions of z, this equation will hold for
all z € .
As a consequence we obta.in
| f@§) dt
(42) | f f(z) & = f (2ﬂ F3 r — 2 .
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order of integration can be reversed. In other words,

1 ¢ O a8y, _ 1 dz
fT(§;1_ r:;—-z)dz_ P‘(Z—"{er_z)f(f)df-

On the right the inside integral is —n{y,!) = 0. Hence the integral (42) is
zero, and we have proved the theorem for bounded 9.

If Q@ is unbounded, we replace it by its intersection Q' with a disk
|z] < R which islarge enough to containy. Any point a in the complement
of & is either in the complement of @ or lies outside the disk., In either
case n{y,a) = 0, 20 that y ~ 0 (mod Q’). The proof is applicable to &',
and we conclude that the theorem 18 valid for arbitrary Q.

4.6. Locally Exact Differentials. A differential p dz 4 g dy is said to
be locally exact in  if it is exact in some neighborhood of each point in Q.
It ia not difficult to see (Ex. 1, p. 148) that this is so if and only if

(43) | f?pdz-i-qdy:(i

for all ¥ = 0 where K is a rectangle contained in Q. This condition is
certainly fulfilled if pde + ¢dy = f(z) dz with f ansalytic in @, and by
Theorem 15, (43) is then true for any cyele ¥ ~ 0 (mod ).

Theorem 16. If p dx + q dy 23 locally exact in Q, then

[ pde+qdy =0
for every cycle y ~ 0 1n Q.

There does not seem to be any direct way of modifying the proof of
Theorem 15 so that it would cover this more general situation. We shall
therefore end up by presenting two different proofs of Cauchy’s general
theorem. As in the earlier editions of this book, we shall follow Artin's
proof of Theorem 16. The separate proof of Cauchy’s theorem has been
included beecause of its spetial appeal.

For the proof of Theorem 16 we show first that v ean be replaced by a
polygon ¢ with horizontal and vertical sides such that every locally exact
differential has the same integral over ¢ as over v. This property implies,
in particular, n{s,¢) = n(y,a) for @ in the complement of 2, and hence
¢ ~ (. It will thus be sufficient to prove the theorem for polygons with
sides parallel to the axes.

We construet ¢ as an approximation of v. Let the distance from ¥ to
the complement of @ be p. If 4 is given by z = 2(f), the function 2(?) is
uniformly continuous on the cloged interval (a,b]. We determine 3 > 0 8o
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that [z(8) — z(')| < p for |t — ¥| < & and divide [a,b] into subintervals of
length < 8. The corresponding aubares v; of ¥ have the property that
each 18 eontsined in a disk of radius p which lies entirely in @. The end
points of v; can be joined within that disk by a polygon ¢: consisting of
a horizontal and a vertical segment. BSince the differential is exaet in
the disk,

fﬂpd'c+qdy = f_ﬁ p &z + gdy,

and if ¢ = Zg;, we obtain

[ pdz+qdy= [ paz+qay,

as desired.

- To continue the proof we extend all segments that make up ¢ to
infinite lines (Fig. 4-11). They divide the plane into some finite rectangles
R; and some unbounded regions R; which may be regarded as infinite
rectangles.

Choose a point a, from the interior of each R;, and form the cycle

(4) go = z n(o,a;) IR
where the sum ranges over all finite rectangles; the coefficients n{(c,a;} are
well determined, for no a;-liea on ¢. In the discussion that follows we
aha]l also make use of points a; chosen from the interior of each R;.

It is clear that n(ﬂR,,a;) = Yifk = 4and Qif k¥ » 4; similarly,

aldR.,a) =0 for Al . With this in. mind it follows from (44) that
n(oa0:) = n(r,a;) and u(rq,n;) = 0 It 18 alao true l;hat u(r,a,) =0, fm- |

. .r '::I‘:'r- -h!‘-‘ -+ i, L . et - 4 - - :- “h-.-: ' TId.'l- L .:I -.. : dl-llr - .1ll.
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the interior of R; belongs to the unbounded region determined by v.
We have thus shown that n(c — so,a) = O foralla = g, and a = a’.

From this property of ¢ — o¢ we wish to conclude that «, I8 1dentical
with ¢ up to segments that cancel against each other. Let cu be the
common side of two adjacent rectangles R.,R.; we choose the orientation
so that E; lies to the left of ¢;x. Suppose that the reduced expression of
o — ¢pcontains the multiple coii. Then the eycle o — oy — ¢ K does not
contain o, and it follows that @; dnd ax must have the same index with
respect to this cycle. On the other hand, these indices are —¢ and 0,
respectively; we conclude that ¢ = (. The same reasoning applies if
¢:; is the common side of a finite rectangle R; and an infinite rectangle ;.
Thus every side of a finite rectangle occurs with coefficient zero in o — a,,
proving that

(46) ' ¢ = Y nloa) k.

We prove now that all the B; whose corresponding coefficient n(e,a;)
is different from zero are actually contained in 2. Suppose that a point a
in the closed rectangle R; were not in Q. Then n{e,a) = 0 because ¢ ~ 0
(mod ©). On the other hand, the line segment between a and a; does not
intersect o, and hence n(s,a;) = n(er,a) = 0. We conclude by the local
exactness that the integral of pdxr 4+ ¢ dy over any @R; which oceurs
effectively in (45) is zero. Consequently,

[ par+qay =0,
and Theorem 16 is proved.

4.7. Multiply Connected Regions. A region which is not simply con-
nected is called multiply connected. More precisely, @ is said to have
the finite connectivity n if the complement of Q has exactly n components
and infinite connectivity if the complement has infinitely many com-
ponents. In a less precise 'but more suggestive language, a region of
connectivity n arises by punching » holes in the Riemann sphere.

In the case of finite connectivity, let Ay, Ay, . . . , A, be the com-
ponents of the complement of Q, and assume that « belongs to A.. If
v is an arbitrary cycle in 2, we can prove, just a8 in Theorem 14, that
1(y,a) is constant when a varies over any one of the components A; and
that n(y,a) = 0 in A,. Moreover, duplicating the construction used in
the proof of the same theorem we can find cyclesv;, s =1, . . . ,n —1,

such that n(y,a) = 1 for @ ¢ A; and n(y;,a) = 0 for all other points out-
side of Q. -
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For a given cycle ¥ in 1, let ¢; be the constant value of n(y,s) for
acA;, We find that any point outside of O has the index zero with
respect totheeyeley — c1y1 — €yys — * * * = Cu—t¥a-1. Inother words,

y~errFerre b ¢ 0 0 CaiVamr-

Every cyele is thus homologous to a linear combination of the cycles
Y1, Y3y + + + 5 Ya—t. This linear combination is uniquely determined, for
if two linear combinations were homologous to the same cycle their
difference would be a linear combination which is homologous to zero.
But it is clear that the cycle ¢yyis + exye + * * © + Ca—tyn-1 Winds ¢;
times around the points in 4;; bence it cannot be homologous to zero
uniess all the ¢; vanish. |

In view of these circumstances the cycles 4y, vy, . . . , Y1 are said
to form a homology bass for the region . It is not the only homology
basis, but by an elementary theorem in linear algebra we may conclude
that every homology basis has the same number of elements. We find
that every region with a finite homology basis has finite connectivity,
and the number of basis elements is one less than the connectivity.

By Theorem 18 we obtain, for any analytic function f(z) in Q,

fwfdz:#lfﬂfdz'*‘c:fﬂfdz'i"”+Gn—1 f da.

Ya-3
The numbers
P; = _“,f dz

depend only on the function, and not on v. They are called modules of
persodicsty of the differential f dz, or, with less accuracy, the persods of
the indefinite integral. We have found that the integrsl of f(2) over any
cycle is a linear combination of the periods with integers as coefficients,
and the integral along an arc from 2, to z is determined up to additive
multiples of the periods. The vanishing of the periods is & necesaary
and sufficient condition for the existence of a sinqla-valued indefinite
integral, |

In order to illustrate, let us consider the extremely simple case of an
annulus, defined by r; < |£| < ry. The complement has the components
{2l S r1and |2 = 7y; we include the degenerate casésry = Oandr; = o,
The sanulus is doubly connected, and a homology basis is formed by
any circle [3| = r, ry < r < ry. If this circle is denoted by C, any cycle
in the annulus satisfies ¥ ~ nC where n = n(y,0). The integral of an
analytic function over a cycle is a multiple of the single period .
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whose value ig of course independent of the radius r.

EXERCISES

1. Prove without use of Theorem 16 that p dt 4+ ¢ dy is locally exact
in Q if and only if

ye P&+ ady =0

for every rectangle £ C Q with sides parallel to the axes.

- 2. Prove that the region obtained from a simply connected region by
removing m points has the connectivity m + 1, and find a homology basis.

3. Show that the bounded regions determined by a closed curve are
simply connected, while the unbounded region is doubly connected.

4. Show that single-valued analytic branches of log 2, z= and 2* ¢can be
defined in any simply connected region which does not contain the origin.

5. Show that a single-valued analytic branch of 4/1 — 2® can be
defined in any region such that the points +1 are in the same component
of the complement. What are the poasible values of

dz
f\/l-—z—i

over a closed curve in the region?

5. THE CALCULUS OF RESIDUES

The results of the preceding section have shown that the detemuna.tmn
of line integrals of analytic functions over closed curves can be reduced
to the determination of periods.” Under certain circumstances it turns
out that the periods can be found without or with very little computation.
We are thus in possession of a method which in many cases permits us to
evaluate integrals without resorting to explicit calculation. This is of
great value for practical purposes as well as for the further development
of the theory.

In order to make this methodi more systematic 8 simple formalisam,
known ag the caleulus of residues, was introduced by Ca.uchy, the founder
of complax integration theory. From the point of view adopted in this
book tue use of residues amounts essentially to an application of the
résults proved in Sec. 4 under particularly simple circumstances.

5.1. The Residue Theorem. Our first task is to review earlier results
in the light of the more general theorems of Sec. 4. Clearly, all results
which were derived ag consequences of Cauchy’s theorem for a disk
remain valid in arbitrary regions for all cycles which are homologous
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to zero. For instance, and this applieation is typical, Cauchy’s integral
formuls can now be expressed in the following form:
If §(2) <8 analytic in o region Q, then

n(y,8)f(6) = 5— f f@) dz

forwa'ycydeywhichuhomologmtomoinﬂ
. The proof is a repetition of the proof of Theorem 6. In this con-

nection we point out that there is of course no longer any need to give
a separate proof of Theorem 15 in the presence of removable singularities.
Indeed, our discussion of the local behavior has already shown that all
removable gingularities can simply be ignored.

We turn now to the discussion of a function f(z) which is analyl;m in a
region 2 except for isolated singularities. For a first orientation, let us
assume that there. are only a finite number of gingular points, denoted by
G, Gs, . . . ; Go. The region obtained by excluding the points % will be
denoted by ',

To each a; there exists a §; > 0 such that the doubly connected region
0 < |z — a;] < §;is contained in @'. Draw a circle C; a.bouta,nvfradms
< 3; and let

(46) P;= [ 1) de

be the corresponding period of f(z). The particular function 1/(z — a;)
bas the period 2xi. Therefore, if we set B; = P;/2xt, the combination

1e) - -

- G
has a vanishing period. The constant R; which produces this result is
" called the restdue of f(2) at the point @;, We repeat the definition in the
following form:

Definition 3. The residue of f(2) at an vsolaled singularily a ts the unique
complez number R which makes f(z) — R/(z — a) the derivative of a single-
valued analytic funciion in an annulus 0 < |z — o] < &,

It is helpful to use such self-explanatory notations as B = Res...f(2).
L&t v be a cycle in @' which iz homologous to zero with respect to n.
Then y satisfies the hnmulogy

L z ﬂ(‘?,ﬂ,)c,f
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By virtue of the homology we obtain, with the notation (48),
fodz = Zﬂ(‘frﬂ:ﬁ)Ph
J
and since P; = 2x3 * R; ﬁna.'lly

f fdz = 2 n(y,8;) Ry

This is the residue theorem, except for the restrictive assumption that
there are only a finite number of singularities. In the general case we
need only prove that n(y,a;) = 0 except for a finite number of points a;,
for then the same proof can be applied. Tlie assertion follows by routine
reasoning. The set of all points ¢ with n(y,a) = 0 is open and contains
all points outside of a large circle. The complement is consequently a
compact set, and as such it cannot contain more than a finite number of
the isolated points a;. Therefore n(y,a;) > 0 only for a finite number of
the singularities, and we have proved:

Theorem 17. Lel f(2) be analytic except for vsolated singularilies a; tn &
regton &.  Then -

(47) 2; 7@ dz = 3 nlr,a) Res,, f(2)
for any cycle v which 18 homologous {o zero tn @ and does not pass through
any of the posnts a;. .

In the applications it is frequently the case that each n(y,a,) is either
Oor1l. Then we bave simply

o [ 1@ d2 = ¥ Rescy, 15

where the sum ia extended over all singularities enclosed by .

The residue theorem is of little value unless we bave at our disposal a
gimple procedure to determine the residues. For essential singularities
there is no such procedure of any practical value, and thus it is not sur-
prising that the residue theorem is comparatively seldom used in the
presence of essential singularities. With reepect to poles the situation is
entirely different. We need only look at the expansion

f@) = Bz — @)= + * - - + By(z — o)™ + o(3)

to recognize that the residue equals the coefficient B,. Indeed, when the
termm Bi(z — a)! is omitted, the remamder is avldantly 8 damaﬁwe
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Smece the principal part af a pole is always either given or can be easily
found, we have thus a very simple method for finding the residues.

For aimple poles the method is even more immediate, for then the
residue equals the value of the function (z — a)f(z) for z = a. For
instance, Jet it be required to find the residues of the function

e#
z—a)z—b)

at the poles @ and b # a. The residue at a is obviously ¢*/{(a ~ b), and
the remidue at & is /(b — a). If b = g, the situation is slightly more
complicated. We must then expand ¢* by Taylor's theorem in the form
¢ = ¢* + e*(z — a) 4+ fx(2){(z — a)*.. Dividing by (z — g)? we find that
the residue of ¢*/(z — a)® at z = a i8 e*.

Remark. In presentations of Cauchy’s theorem, the integral formula
and the residue theorem which follow more classical lines, there is no
mention of homolegy, nor ig the notion of index used explicitly. Instead,
the curve y to which the theorems are applied is supposed to form the
complete boundary of a subregion of @, and the orientation is chosen so
that the subregion lies to the left of €. In rigorous texts considerable
effort 18 spent on proving that these intuitive notions have a precise
meaning. The main objection to this procedure is the necessity to allot
time and attention to rather dehcate questions which are peripheral in
comparison with the main issues.

With the general point of view that we have adopted it is still possible,
and indeed quite easy, to isolate the classical case. All that is needed is
to accept the following definition:

beﬁnitlnn 4. A eycle v 13 said to bound the region Q if and only if n(y,a)
is defined and equal to 1 for all points a € @ and esther undefined or equal to

. zero for all poinis a not in 9.

" If v bounds @, and if @ + v is contained in a larger region ¥, then it
is clear that 4 is homologous to zero with respect to . The following
statements are therefore trivial consequences of Theorems 15 and 17:

If 4 bounds Q and f(2) is analytic on the set @ + v, then

[fdz=0
and
. 1@ = 50 [, 525
JorallzeQ S
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If 1(2) 1is analytic on R + v except for isolated singularities in Q, then
1
5z [ 1) dz = ) Res,.., f(z)
.

where the sum ranges over the stngularsties a; € Q.

We observe that a cycle ¥ which bounds € must contain the set
theoretic boundary of 8. Indeed, if 2o lie’ on the boundary of @, then
every neighborhood of 2z, contains points from 2 and points not in Q.
If such a neighborhood were free from points of v, n(vy,z) would be defined
and constant in the neighborhood. This contradicts the definition, and
hence every neighborhood of z, must meet 1, gince v is closed, 2o must
lie on +.

The converse of the preceding statement is not true, for a peint on v
may well have a neighborhood which does not meet 8. Normally, one
would try to choose 4 so that it i8 identical with the boundary of @, but
for Cauchy’s theorem and related considerations this assumption i8 not
needed.

5.2. The Argument Principle. Cauchy’s integral formula can be con-
gidered as a special case of the residue theorem. Ipdeed, the function
f(z)/(2 — a) hag a simple pole at z = ¢ with the residue f(¢), and when
we apply (47), the integral formula results.

Another application of-the residue theorem occurred in the proof of
Theorem 10 which served to determine the number of zeros of an analytic
function, For a zero of order A we can write f(z2) = (z — a)*\(z), with
fi{a) # 0, and obtain J'(z) = k(z — a)*Yu(2) + (z — a)¥;i(2). Conse-
quently f'(2)/f(z) = h/(z — @) + Ji{z)/f(2), and we see that f'/f has &
simple pole with the residue A In the formula (32) this residue 1s
accounted for by a corresponding repetition of terms.

We can now generalize Theorem 10 to the case of a meromorphic
function. If f has a pole of order h, we find by the same calculation as
abova, with —h replacing h, that f'/f ha.s the residue —A. The follow-
ing theorem results:

Theorem 18. If f(2) is meromorphic in Q@ wilk the zeros a; and the poles
b, then

(48) o [ 58 a: 3, ) = 3

e
Jor every cycle ¥ whsch 3 homologm lo zero in @ and does not pass through
any of the zeros or poles,
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It is understood that multiple zeros and poles have to be repeated as
many times as their order indicates; the sums in (48) are finite.

Theorem 18 is usually referred to as the argumeni principle. The
name refers to the interpretation of the left-hand member of (48) as »(T',0)
whete I' is the image cycle of v. If I' lies in a disk which does not con-
tain the origin, then n(',0) = 0. This observation is the basis for the
following corollary, known as Rouché s theorem:

Corollary. Let vy be homologous lo zero in Q and such that n(y,z) is either
0 or 1 for any point 2 not on v. Suppose that f(z) and g(2) are enalytic in O

and satisfy the inequality \f(z) — g(2)| < |f(z}| on v. Then f(2) and g(z)
have the same number of zeros enclosed by «.

The assumption implies that f(z) and ¢(z) are zero-free on v. More-
over, they satisfy the inequality

g(z)
7@ ‘l <1

on 4. The values of F(z) = g(z)/f(¢) on 4 are thus contained in the
open disk of center 1 and radius 1. When Theorem 18 is applied to
F(2), we have thus n(I’,0) = 0, and the assertion follows.

A typical application of Rouché’s theorem would be the following.
Suppose that we wish to find the number of zeros of a8 function f(z) in
the disk |z| = R. Using Taylor’s theorem we can write

1z} = Pai(2) 4+ 2*fa(2)

where P,_; is a polynomig] of degr-ee n — 1. For a suitably chosen n
it may happen that we can prove the inequality B*|f.(2)] < |Px—1(?)]| on

"~ {z| = B. Then f(z)} has the same number of zeros in |z| S R as Pa(2),

and this number can be determined by approximate golution of the poly-

- nommial equation P,_1{z) = 0

Theorem 18 can be generalized in the following manner. If g(z) is

analytic in @, then g(z) % has the residuve hg(a) at a ZET0 G of order A

la.nd the residue —hg{a) at a pole. We obtain thus the formula

) 2wz, 9075 & = 3 nivadote) = ¥ ntrboon

| Thl.a reault. is important for the study of the inverse function. With
ths notations of Théedrem 11 we know that the equation f(z) = w,
' wﬂ{#huﬁmdts:;(w)mthedhklswtq}-cn. Ifweappls'

LY IS B AR
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(49) with g(z) = z, we obtain

1 I'(2)

(50) 2i(w) = — . 2 dz,

:Zl 2"|:-'L=e (&) —w
Forn = 1 the inverse function f~}(w) can thus be represented explicitly by

_ A ON
W (w) = ¢ dz.
2:1 e () —w

If (49) is applied with g(z) = 2=, equation (50) is replaced by

Z z,()"™ = % f(g). (1? e dz.

i=1 [8—3a] =

The right-hand member represents an analytie function of w for [w — we| <
8. Thus the power sums of the roots z,(w) are single-valued analytic
functions of w. But it is well known that the elementary symmetric
functions can be expressed as polynomials in the power sums. Hence
they are also analytic, and we find that the z;(a0) are the roots of a po]y-
nomial equation

2* + ay(w)zt 4+ -+ -+ @G y(w)z + au(0) =0

whose coefficients are analytic functions of win Jio — wy| < é&.

EXERCISES

1. How many roots does the equation 27 — 228 4 622 — z + 1
have in the disk |2| < 1? Hnt: Look for the biggest term when 2]
and apply Rouché’s theorem.

2. How many roots of the equation 2 — 6z + 3 = 0 have their modu-
lus between 1 and 27 .

3. How many roots of the equation 2* 4 822 + 322 + 8 + 3 = O lie
ip the right half plane? Hini: Sketch the image of thé imaginary axis
and apply the argument principle to a large half disk.

0
1

5.3. Evaluation of Definite Integrals. The calculus of residues pro-
vides 8 very efficient tool for the evaluation of definite integrals. It is
particularly important when it is impossible to find the indefinite inte-
gral explicitly, but even if the ordinary methods of caleulus can be applied
the use of residues is frequently a laborsaving device. The fact that the
calculus of residues yields complex rather than real integrals 18 no dis-
advantage, for clearly the evaluation of a complex mtegral is equivalent
to the evaluation of two definite integrals.
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There are, however, some serious limitations, and the method is far
from infallible. In the first place, the integrand must be closely con-
nected with some analytic funetion. This is not very serious, for usually
we are only required to integrate elementary functions, and they can all
be extended to the complex domain. It ia much more serious that the
technique of complex integration applies only to closed curves, while a
real integral is always extended over an interval. A special device must
be used in order to reduce the problem to one which concerns integration
over a closed curve. There are 2 number of ways in which this can be
accomplished, but they all apply under rather special circumstances.
The technique can be learned at the hand of typical examples, but even-
complete mastery does not guarantee success.

1. All integrals of the form

(51) f o" R(cos @, gin 8) dé

where the integrand is a rational funetion of cos # and sin ¢ can be easily
evaluated by means of residues. Of course these integrals can also be
computed by explicit integration, but this techmique is usually very
Jaborious. It is very natural {o make the substitution z = ¢ which
immediately transforms (51) into the line integral

A H GG

It remains only to determine the residues which correspond to the poles
of the integrand inside the unit circle.
. As an example, let us compute

r a6
fo g+ cos 6 6> 1.

~ This integral is not extended over (0,2x), but since cos 8 takes the same
wvalues in the intervals (0,x) and (r,2x) is is clear that the integral from

0 to r is one-half of the integral from 0 to 2x. Taking this into account,

- wé find that the integral equals

b
} ? +2az + 1

Thﬂ denommator can be factored into (z — a)(z — 8) with
| a=—a--\/u’—1 B= —a—+a —

Endmtly [nl < 1,181 > 1, a5d the residus ut ais 1/(a — ﬁ) ‘The value

AR

T '.'l-;*:'..l- t“'h l‘_‘:‘lhk‘iﬁ mm 14_}..--5...::‘: (’)&
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of the integral is found to be »/+v/a® — 1.
2. An integral of the form

[ .R@ s

converges If and only if in the rational function E(z) the degree of the
denominator is at least two unita higher than the degree of the numerator,
and if no pole lies on the real axis. The standard procedure is to inte-
grate the complex function RB(z) over a closed curve consisting of a line
segment { —p,p) and the semicircle from p to —p in the upper half plane,
If p is large enough this curve encloses all poles in the upper half plane,
and the corresponding integral is equal to 2»¢ times the sum of the
residues in the upper half plane. As p — « obvious estimates show that
the integral over the semicircle tends to 0, and we obtain

[ R(z) dx = 2xi Z Res R(z).

y>0

3. The same method can be applied to an integral of the form
(52) f _“_ R(z)e* dx I
whose real and imaginary parts determine the important integrals
(53) f :_'R(x) cos z dz, f _-_ R(z) sin z dx.

Since |¢*] = ¢ is bounded .in the upper half plane, we can again con-
clude that the integral over the semicircle tends to gero, provided that
the rational functlon R(z) has a zero of at least order two at infinity. We

obtain
f R(z)e* dz = 2ri ) Res R(z)ev.

>0

It is less obvious that the same result holds when R(z) has only a
simple zero at infinity. In this case it i8 not convenient to use semi-
circles. For one thing, it is not so easy to estimate the integral over the
gsernicircle, and secondly, even if we were successful we would only have

proved that the integral
:' R(z)e* dx

over a symmetric interval has the desired limit for p — . In reality
we are of course required 1o prove that -

[ R@)e= dz
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bas a limit when X, and X: tend independently to «. In the earlier
examples this question did not arise because the convergence of the inte-
gral was assured beforehand.

For the proof we integrate over the perimeter of a rectangle with the
vertices X;, Xa 4 1Y, — X, 4+ ¢Y, —X, where Y > 0. As soon as X,,
X, and Y are sufficiently large, this rectangle contains all the poles in
the upper half pilane. Under the hypotbesis |zR(2)} is bounded. Hence
the integral over the right vertical side is, except for a constant factor,

less than
f ok [zl f: ey

The last integral can be evaluated explicitly and is found to be < 1.
Hence the mtegral over the right vertical side is less than a constant
times 1/X;, and a corresponding result is found for the left vertical side.
The integral over the upper horizontal side is evidently less than
¢ ¥Y(Xy + X3)/Y multiplied with a constant. For fixed X1, X, it tends
to 0 as ¥ — o, and we conclude that

l R(z)e“dz ~26i ) ResR(z)c“,{A(%+-:l—

>0

where A denotes a constant. This inequality proves that
[ RG)dz =2 Y ResR@@es

y>0

. . under the sole condition that R(») =
In the discussion we have aasumed, tacitly, that E(z) has no poles on
the real axis since otherwise the integral (52) has no meaning. How-
ever, one of the integrals (53) may well exist, namely, if R(z) has simple
. poles which ecoincide with zeros of sin z or cos z. Let us suppose, for
. -instanos, that R(z) has a simple pole at z = 0. Then the second inte-
| gra.l (53) has a meaning and calls for evaluation.
" We use the same method as before, but we use a path which avoids
. the origin by fnllomng & small semicircle of radius 8 in the lower half
.. plane (Fig. 4-12). Tt is eagy fo see that this eclosed curve encloses the poles
' ix!the apper-half plane, the pole at, the origin, and no others, as soon as
Iﬁ.il‘ ¥ ‘are sufficiently large and § is sufficiently small. Suppose that
bmnvﬂsﬂ, 80 that vwe ean wﬂt&R[z)F— Bz 4 Biz) where
H!.(cj {8 ‘analytlo’ it the drigin.' ' Fhe Tatogral of e Rkt orm” goer the
- muimhnu! vhhthmwllntthnmdmwdqhﬂwiﬂal

- am

t H‘I ‘{*".r : ' - 11:.",',"'-:'"
LY

. _' -J.:"...-.—._._."l_" = |-|..Q_r L -.!""‘ -. e P ] 1','..'

R T Y T,




159 COMPLEX ANALYSIS

"x["‘iY X!-l»iY

FiG. §-12

It is clear that we are led to the result
lim f + f R(z)et* dz = i [ 2 Res R(z)et + 13]

The Limit on the left is called the Cauchy principal value of the integral:
it exists although the integral itself has no meaning. On the right-hand
side we observe that one-half of the residue at 0 has been included; this
is as if one-half of the pole were counted as lying in the upper half plane.

In the general case where several poles lie on the real axis we obtain

pr.v. j R(z)e dz = 2ri 2 Res R(z)e% + »i Z Res R(z)e*

=0

where the notations are self-explanatory. It is an essential hypothesis
that all the poles on the real axis be simple, and as before we must
assume that R(m) = (.

As the mmplast example we have
pr.v.f' iz = xi.

Separating the real and imaginary part we observe that the real part of
the equation ig trivial by the fact that the integrand is odd. In the
imaginary part it is not necessary to take the principal value, and since
the integrand is even we find

fo 5=

We remark that integrals containing a factor cos*  or gin® z can be
evaluated by the same technique. Indeed, these factors can be written
as linear combinations of terms cos mz and sin mz, and the corresponding
integrala can be reduced to the form (52) by a change of variable:
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* - — _1__ - _:E T
[ R@eds = [ R(Z)eede
4. The next category of integrals have the form

,];' 2=R(z) dz

where the exponent « is real and may be supposed to lie in the interval
0 < a < 1. For convergence R(z) must have & zero of at least order two
at % and at most a simple pole at the origin.

The new feature is the fact that B(z)z* is not single-valued. This,
however, i8 just the circumstance which makes it possible to find the
integrat from 0 to .

The simplest procedure is to start with the substitution z = * which
transforms the integral into

2 [ﬂ" g=1R (1) di.

For the funetion 22 we may choose the branch whose argument lies
between —ra and 3xea; it i3 well defined and analytic in the region
obtained by omitting the negative imaginary axis. As long as we avoid
the negative imaginary axis, we can apply the residue theorem to the funec-
tion z2=*'R(z%). We use a closed curve congisting of two line segments
along the positive and negative axis and two semicircles in the upper half
plane, one very large and one very small (Fig. 4-13). Under our assump-
tions it ia eagy to show that the integrals over the semicircles tend to sero.
Hence the residue theorem yields the value of the integral

[ - #HR(Y) dz = f @+ + (~2)=+)R(s") dz.

. lﬂ'owevar, (=2)i = giviaz® and the integral equals

(1 — et=) f 22e+1R(2") de.

Hinae the factor in front is = 0, we are ﬁnally able to determmr. the value
‘Of the desired integral.

- ‘The evaluation calls for determination of the residues of z2=+1R(g%) in
the upper half plane. These are the same as the residues of z*E(z) in the

whole plane. For practical purposes it may be preferable not to use any
preliminary substitution and integrate the function *R(z) over the closed

‘" gurve shown in Fig 4-14.-We bhave then to use the branch of z* whose
. sigtiment ties botween 0 and 2va.  This method needs some justification,
4—-—;-_f&:tﬂ5umtmuthshmﬂmdthmdmm The
'Wbmh h'iﬁnl R 2 S

VI e e e g *&ﬂ?"* #‘r %J‘F‘ﬂ *-.'1 WO, G
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FlE. 4-33 FiG. 4-14

5. As a final example we compute the special integral
f ; log sin & d6.

Consider the function 1 — e¥* = —2{¢* gin 2. From the representation
1 —e¥ =1 — e (cos 2z + ¢ sin 2z), we find that this function is real
and negative only forz = nx, ¥y S 0. In the region obtained by omitting
these half lines the principal branch of log (1 - €*#) is hence single-
valued and analytic. We apply Cauchy’s theorem to the rectangle whose
vertices are 0, r, » -+ iY, and 1Y ; however, the points 0 and » have to be
avoided, and we do this by following small circular quadrants of radius é.

Because of the periodicity the integrals over the vertical sides cancel
against each other. The integral over the upper horizontal side tends to
0 as ¥ — «=. Finally, the integrals over the quadrants can also be seen
to approach gero as 4 — 0. Indeed, since the imaginary part of the
logarithm is bounded we need only consider the real part. From the fact
that 1 — e**|/|z| — 2 for z — 0 we see that log [L.— €*%| becomes infinite
like lug é, and since  log & — O the integral over the quadrant near the
origin will tend to gero.

The same proof applies near the vertex r, and we obtain
fo'log (—2ie* gin z) dz = 0

If we choose log &* = iz, the imaginary part lies between 0 and ». There-
fore, in order to obtain the principal branch with an imaginary part
between —x and », we must choose log (—¢) = ~—x1/2. The equafion
¢an now be written in the form :
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r log 2 —('-é—!)i+f;logsinzdz+(’—;)i=ﬂ,

and we find

[, logsinzdz = —xlog 2.
EXERCISES
1. Find the poles and residues of the following functions:
| 1 1
(ﬂ) 22 4 5z +-é? (b) Gj — 1)‘;: ( ) E‘n; (d)' cot Z,
1 1

€ =53 O 0 — 2" (m, n positive integers).

2. Show that in Sec. 5.3, Example 3, the integral may be extended
over a right-angled isoaceles triangle. (Suggested by a student.)
3. Evsaluate the following integrals by the method of residues:

w3 dzr o 23 dx

(3) fﬂ a + BEI r’ |GI > ll (b) f " 3 55',':__'61
@ x‘ﬂ - 2 oo 2 dz

(c) o z‘ -'F_l;;it'l_' g d:ﬂ, (d) ) (xlx-l-__a.")! ; & Ieal,

@ [, praderal, © [ I ds area,
@ rli o

® [, rrat ® [ a+algd

f log (1 + a:’) (0 < a < 2). (Try mtegration by parts.)
4. Compute

£ e
——, la| # ».
I:If—# |z all

Hint: Use 22 = p? to convert the integral to a line integral of a rational
function.

*5s. Complex integration can sometimes be used to evaluate area
integrals. As an illustration, show that if f(z) is analytic and bounded
for |z| < 1 and if |¢| < 1, then

1@ = 7 [[ 250

Ill{ 1

Remark. This is known as Bergman's kernel formula. To prove it,

sxpress the area integral in polar coordinates, then transform the inside
integral to a line mtegn.lwhmhmhaevaluatedhyreﬂdum

S8y A fw ﬁm .h* ik 6 m'rrrz au**l

H ]

' . - . . r . - -,'-L;" T
L Y T AL N S SPLT I Py
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6. HARMONIC FUNCTIONS

The real and imaginary partsof an analytic function sre conjugate harmonie
functions. Therefore, all theorems on analytic functions are also theorems
an pairs of conjugate harmonic functions. However, harmonic functions
are important in their own right, and their treatment is not always
simplified by the use of complex methods. This is particularly true when
the conjugate harmonic function is not single-valued.

We assemble in this section some facts about harmonic functions
that are intimately connected with Cauchy’s theorem. The more delicate
properties of harmonic functions are postponed to a later chapter.

6.1. Definition and Basic Properties. A real-valued function u(z) or
u(z,y), defined and single-valued in a region £, is said to be harmonic in
Q, or a polential funciion, if it is continuous together with its partial
derivatives of the first two orders and satisfies Laplace’s equalton

| | oy  *u
(54) Ay = T

We shall see later that the regularity conditions can be weakened, but
this is a point of relatively minor importance, |

The sum of two harmonic functions and a constant multiple of a
harmonic function are again harmonic; this is due to the linear character
of Laplace’s equation. The simplest harmonic functions are the linear
functionsaz + by. Inpolarcoordinates (r ) equation (54) takes the form

2(%)+ G

This shows that log r is a harmonic function and that any harmonic
function which depends only on » must be of the form alogr 4+ b. The
argument @ is harmonic whenever it can be uniquely defined.

If u is harmonie in @, then

= (.

. ‘ a.u
(55) J(z) = 3; 135
18 analytic, for writing U = ‘—;-'-;; V=- g—-; we have
24 ot _ ﬂ 14
9z oz 3y* 3y
v _ ow _ - 8V
0z oYy oz

t This fortn cannot be used for r = G,
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This, it should be remembered, is the most natural way of passing from
harmonic to analytic functions.
From {(55) we pass to the differential

ou Ju i ou ou
& sae=(qeaet o) +i(-Bat Sar)
In this expression the real part is the differential of u,
du = ¥z 4+ T ay.

If u has a conjugate harmonic function v, then the imaginary pm'ﬁ can be
written as

dv dv Jou du
dv —-adz +a—ydy = —a—ydx+—a—zdy.

In general, however, there is no single-valued conjugate function, and in
these circumstances it i3 better not to use the notation dy. Instead we
write

*iy = —%n+%ay

and call "du the conjugate differential of du. We have by (56)
(57) fde = du + ¢ *du.

By Cauchy’s theorem the integral of f dz vanishes along any cycle
which-is homologous to zero in . On the other hand, the integral of
the exact differential du vanishes along all cycles. It follows by (57) that

- (58) [oau=[ -Far+Tay=0

3y

for all cycles ¥ which are homologous to zero in Q.
, The integral in (58) has an important interpretation which eannot be

left unmentioned. If v is a regular curve with the equation z = 2(2),

the direction of the tangent is determined by the angle « = arg 2'(¢),
and we can write dz = |d2] cos a, dy = |dz| sin . The normal which

points to the right of the tangent has the direction 8 = @ — x/2, and

thmooaa= —Einﬁ,sina-cosﬁ. The expression

i8 & directional derivative of u, the right-hand normal derivative with
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wnitten in the form
ou
(59) f-.- = |de] = 0.

This is the ciassical notation. Its main advantage is that du/on
actually represents a rate of change in the direction perpendiculsar to .
For instanee, if v is the circle |2| = r, described in the positive sense,
du/an can be replaced by the partial derivative du/dr. It has the dis-
advantage that (59) is not expressed as an ordinary line integral, but as
an integral with respect to arc length. For this reason the classical
notation is less natural in connection with homology theory, and we
prefer to use the notation *du.

In a simply connected region the integral of * du vanishes over all
cycles, and u has a single-valued conjugate function v which is deter-

mined up to an additive constant.  In the multiply connected case the
conjugate function has periods

ou
* — pnslione
f ¥ du vi ON ‘dZI

corresponding {0 the cycles in a homology basis.
There is an important generalization of (58) which deals with a pair of
harmonic functions. If «; and u: are harmonic in @, we c¢laim that

(60) f*r Uu; ¥dus — us *duy = 0

for every cycle ¥ which i8 homologous to sero in . According to
Theorem 16, Sec. 4.6, it is sufficient to prove (60) for ¥ = IR, where R is

8 rectangle contained in @. In R, 4, and u, have singie-valued conjugate
functions v;, v and we can write

4y *dus — s "‘d‘u; = Uy dv2 — Uz dv1 = w1 dvs + 91 dus — d(ugn).

Here d(u)) is an exact differential, and u.dvs + vidu. is the imaginary
part of | /

(H], -|- M)(dﬂl + ‘l'»dl?:)‘
The last differential can be written in the form F.f: dz where F,(2) and
fi(z) are analytic on B. The integral of F,f: dz vanishes by Cauchy’s

theorem, and so does therefore the integral of its imaginary part. We
conclude that (60) holds for ¥y = 9R, and we have proved:

Theorem 19. If u; and w; are harmonsc tn a region S, then

(60) L uy *dus — us *du; = 0
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Jor every cycle vy which 18 homologous to zero in 9.

For %, = 1, us = u the formula reduces to (58). In the classical
notation (60) would be written as

dts ou
[, (150 - w3 ladl = 0.

6.2. The Mean-value Property. Let us apply Theorem 19 wth
u: = log r and u; equal to a function ¥, harmonic in |z} < p. For @ we
choose the punctured disk 0 < |z| < p, and for ¥ we take the eycle Cy; — C;
where C; 15 a cirele |z| = r; < p desecribed in the positive sense. On a
circle |z) = r we have *du = r(du/dr) df and hence (60) yields

log r‘fmf‘%do —_ fcludo = logr,fclr,%dﬂ—- c'udﬂ.

In other words, the expression

fude—logr.'f r 2% dg
or
o= Isi=r

is congtant, and this 18 true even if % is only known to be harmonic in an
annulus. By (58) we find in the same way that

ou
lzl'[r Tor ¥

is constant in the case of an annulus and zere if 4 18 harmonie in the
whole disk. Combining these results we obtain:

"l‘hmrem 20. The arithmetic mean of a harmonic function over concenlric
circles |2| = r is a linear function of log r,

(61) il-r [utiﬂ:alogr-l-ﬂ,

] m=r

and if u 18 harmonic in g disk a = O and the arithmetic mean &s consiant.

 In the latter case # = 4(0), by continuity, and changing to a new
origin we find

(62) u(2e) = i— f:'_’l_li.(#o + re’*) db.
Tt in'clear that"(62) 6ould ‘also Yave been derived fioin the corre-
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sponding formula for analytic functions, Sec. 3.4, (34). It leads directly
to the mazsmum principle for harmonic functions:

Theorem 21. A nonconstanl harmonsc funclion has neither ¢ maximum
nor @ mintmum n ils region of definitzon. Consequently, the marimum
and the minimum on & closed bounded set E are taken on the boundary of E.

The proof is the same as for the maximum principle of analytic func-
tions and will not be repeated. It applies also to the minimum for the
reason that —u 18 harmonic together with 4. In the case of analytic
functions the corresponding procedure would have been to apply the
maximum principle to 1/f(z) which is illegitimate unless f(z) # 0.
Observe that the maximum principle for analytic functions follows
from the maximum principle for harmonic functions by applying the

latter to log |f(2)| which i harmonic when f(z} < 0.

EXERCISES

1L If u is harmonic and bounded in 0 < |z] < p, show that the origin

is a removable singularity in the sense that % becomes barmonicin |z| < p
when u(0) is properly defined.

2 Suppose that f(z) is analytic in the annulus »y < 2| < 7r; and
contimuous on the closed annulus. If M(r) denotes the maximum of
|f(z)| for 2] = r, show that

M(r) = M(r))"M(rs)*—=

where a« = log (r/7): log (ri/r1)) (Badamard’s three-circle theorem).
Discuss cases of equality. Hwni: Apply the maximum principle to a
linear combination of log |f(2)| and log [z].

6.3. Poisson’s Formula. The maximum principle has the following im-
portant consequence: If u(z) is continuous on a closed bounded set E and
harmonic on the interior of E, then it is uniquely determined by its values
on the boundary of E. Indeed, if 4, and 44 are two such functions with
the same boundary values, then 4, — u; 18 harmonic with the boundary
values 0. By the maximum and minimum prineciple the difference u; — %
must then be identically zero on E.

There arises the problem of finding » when its boundary values are

given. At this point we shall solve the problem only in the simplest case,
namely for a closed disk.

Formula (62) determines the value of u at the center of the disk. But
this is all we need, for there exists a linear transformation which carries
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any point to the center. To be explicit, suppose that %(z) is harmonic in
the closed disk |z] £ R. The linear transformation

2= 8¢) = BE 19

mape {{{ <1 onto |z] £ B with ¢ = 0 corresponding to 2z =a. The
funetion u(S({)) is harmonic in |{| < 1, and by (62) we obtain

i =1
From
R(z — a)
Y~
we compute
az
d““‘""g}g=" (z—n+R’ d;)dz (z—a+R’ )‘:ilB

On substituting £2 = z# the coefficient of d6 in the last expression e¢an be
rewritten as

z+€i‘ ~ la/*

z—a 2-—a& |z—ﬂ|'

or, equvalently, as

We obtain the two forms

©) we) = o ]R’ e u@do=5- [ ReZt2u(e)ds
IDI-R

 of Povsson’s formula. In polar coordinat-es,
— gt

ulre) = 5, f R*—2chos 0—¢)+ 1

In the derivation we have assumed that u(¢) is harmonic in the closed
disk. However, the result remains true under the weaker condition that
u(z) is harmonic in the open disk and continuous in the closed disk.
Indeed, if 0 < r < 1, then u(rz) is harmonic in the cloﬂed disk, and we
nbtaln

u(Re'?) do.
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Now all we need to do is to let r tend to 1. Because u(z) is uniformly
continuous on 12| £ R it ig true that u(rz) — u(z) uniformly for 2| = R,
snd we conclude that (83) remains vahd.

We ahall formulate the result as a theorem:

Theorem 22. Suppose that u(z) iz harmonic for |z| < B, conlinuous for
2] € R. Then

o w =gy [ g e do

for all |a| < R.

The theorem leads at once to an explicit expression for the conjugate
function of . Indeed, formula (63) gives

(65) | u(z)=Re[i ”"’um%‘f]-

“wiglgd T

The bracketed expression i3 an analytic function of z for |z < R. It
follows that u(z) is the real part of |

(66) 1@ =g [ un % 1ic
=R

where (15 an arbitrary real constant. 'This formula is known as Schwarz's
formula. | |
As a special case of (64), note that ¥ = 1 yields

‘ R - el
(67) ‘ de = 2r
A=

for all ja| < R.

6.4. Schwars’s -Theorem. Theorem 22 serves to express a given
harmonic function through its values on a circle. But the right-hand
side of formaula (64) has & meaning as soon as u is defined on |z} = R,
provided it is sufficiently regular, for instance piecewise continuous.
As in (65) the integral can again be written as the real part of an analytic
funcetion, and consequently it is & harmonic function. The question is,
does it have the boundary values %(z) on |2] = R?

There is reason to clarify the notations. Choosing B = 1 we define,
for any piecewise continuous function U{8) in 0 £ 6 < 2x,
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e"+z

Pu(z) = = [ * 2 U(6) do

and call this the Poisson iniegral of U. Observe that Pp(2) is not only a
function of z, but also a function of the function U'; as such it is called a
functional. The functional is itnear masmuch as

Pu-l-'li' = PU + Py
and

Py = cPyp

for constant ¢. Moreover, U = 0 implies Py(z) = 0; because of this
property Py is said to be a possisve linear functional.

We deduce from (67) that P, = ¢. From this property, together
with the linear and positive character of the functional, it follows that any
inequality m € U = M implieam € Py S M.

The question of boundary values is settled by the following funda-
mental theorem that was first proved by H. A. Sechwarz:

Theorem 23. The function Py(2) is harmonic for |2| < 1. and
(68) iim P U(E) — U(ﬂn)
|

provided that U ts continuous ai 9,.

We have already remarked that Py is harmonic. To study the
boundary behavior, let C, and C) be complementary arcs of the unit
circle, and denote by /1 the function which coincides with U on C; and
vanishes on (3, by U: the corresponding function for C;. Clearly,
Pg = P U, + P Ug»

~ Sinee Py, can be regarded a8 a line integral over C, it is, by the same
reasoning as before, harmonic everywhere except on the closed arc Ci.

The exprecson

vanishes on |z] = 1 for z ¢ ¢*. It follows that Py, i8 zero on the open
arc C,, and sinee it is continuous Py.(z) — 0 a8 z — e® € ;.

In proving (68) we may suppose that U(8,} = 0, for if this is not the
case we need only replace U by U — U(6,). Given ¢ > 0 we can find C,
and ('3 such that e'* is an interior point of Cy and | U/ (8)| < ¢/2 for &' ¢ C,.
Under this condition |Ux(8)| < e/2 for all 8, and hence |Py,(2)| < ¢/2
for all |z] < 1. -On the uther hand, hnﬂﬁ U; in mntlnuou! md vanishes
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FiG. 4%

at ¢ there exists a § such that |Py (2)| < ¢/2 for |[2:— | < 8. It
follows that |Py(z)| £ |Py,| + |Ps.] < = a8 s00n a3 |z] < 1 and |z — ¢
< &, which is precisely what we had to prove.

There is an interesting geometric interpretation of Poisson’s formula,
also due to Schwarz. Given a fixed 2 inside the unit circle we determine
for each &’ the point ¢** which is such that ¢*, 2 and ¢** are in a straight
line (Fig. 4-15). It is clear geometrically, or by simple calculation, that

(69) 1 — [2]2 = |6 — 2] 6" — 2].
But the ratio (e?® — 2)/(e/** — 2) 18 negative, 80 we must have
1 — |¢]2 = — (& — 2)(e** — 3).

We regard 6* as a function of 0 and differentiate. Since z i3 constant we
obtain
e'® df e do*

6 —z e —3

and, on taking absolute values,

| de* [ —z
(70) | d0 | e —z|
It follows by (69) end (70) that
1 — | _ db°
[e?* — 2* — 46
and hence

Pu(z) = Q—lr 7 U as* = % [ veor) o,
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In other words, to find Py(z), replace each value of U(8) by the value at
the point opposite to 2z, and take the average over the circle.

EXERCISES

1. Assume that U(f) is piecewise continuous and bounded for all resal
£. Show that

Po(e) = - ; UG de

. -« (& — %)' + 3
represents a harmonic function in the upper half plane with boundary
values U(%) at points of eontinuity (Poisson’s integral for the haif plane).

2. Prove that a function which is harmonic and bounded in the wpper
half plane, continuous on the real axis, can be represented as a Poisson

integral (Ex. 1).

Remark. The point at « presenta an added difficulty, for we cannot
~ immediately apply the maximum and minimum principle to 4 — P,
A good try would be to apply the maximum principle to 4 — P, — ey for
¢ > 0, with the idea of letting ¢ tend to 0. This almost works, for the
function tends to 0 for y — 0 and to — = for y — <, but we lack control
when |z] = . 8how that the reasoning can be carried out successfully
by application to u — P, — ¢ Im {4/73).

3. In Ex. 1, assume that U has a jump at 0, for instance U(4-0) = 0,
U(~0) = 1. Show that Py(z) — }arg s tends to 0 as z2— 0. Gen-
eralize to arbitrary jumps and to the case of the circle.

- & If C; and C; ave complementary arca on the unit circle, set U = 1
onCy, U = 0on €. Pind Py(2) explicitly and show that 2xPy(2) equals
- the length of the are, opposite to €, cut off by the straight lines through
z and the end points of C,.

. 85 Show that the mean-value formula (62) remains valid for
u=log |1 + 2|, 20 = 0, * = 1, and use this fact to compute

fﬂ' log sin @ do.

¢. If f(z) is analytic in the whole plane and if z—! Re f(z) — 0 when
z — o, show that f is a constant. Hent: Use (86).

7. If f(z) is analytic in a neighborhood of « and if 2! Re f(z) — 0
when 2 — w, show that. hm f(z) exists. (In other words the mla.ted

au:gulanty ab w ia ramov{ﬂbl&)
. Hink: Show ﬁrsl;_,,hy use, of. Calwhyumt.egn.l for;nula,thn.tf f1 +f:
f.wlmﬂfx&)meaj m«mu-@m,_?, Iytic in M

_"h.
'n-: -'n-

[ . ' " q‘ .l ' __.: ] n . a. mm
3t \ Lig s
~’~' A h#-’ Loty % T sﬁ'ﬁm'ﬁ ek el T
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*8. If u(z) is harmonic for 0 < |z| < p and lim zu(z) = 0, prove that «

e==0

can be written in the form u(z}) = o log [z| 4+ ue(z) where « is a constant
and wu, is harmonic in [z| < .

Hint: Choose a as in (61). Then show that wu, is the real part of an
analytic function fo{z) and use the preceding exercise to conclude that the
gingularity at ¢ is removable.

6.5. The Reflection Principle. An elementary aspect of the symmeiry
principle, or reflection principle, has been discussed already in connection
with linear transformations (Chap. 3, Sec. 3.3). There are many more
general variants first formulated by H., A. Schwars.

The principle of reflection is based on the observation that if u(z) is
s harmonic function, then %(2) is likewise harmonic, and if f(z) i3 an analy-
tic funetion, then f(Z) is also analytic. More precisgely, if (z) is harmonic
and f(2) analytic in a region then u(3) is harmonic and f(7} analytic as
funetions of z in the region * obtained by reflecting Q in the real axis; that
18, 2€ O* if and only if Ze . The proofs of these statements consist in
trivial venfications.

Consider the case of a symmetric region: 2* = 2. Because § is
connected it muat intersect the real axis along at least one open interval.
Assume now that f(2) is analytic 1n @ and real on at least one interval of
the real axis. 8ince f{z) — f(2) is analytic and vanishes on an interval it
must be identically zero, and we conclude that f(z) = f(?) in Q. With
the notation f = 4 4 v we have thus u(s) = u(?), v(z) = —v(2).

This is important, but it is a rather weak result, for we are assuming
that f(2) is already known to be analytic in all of @. Let us denote the
intersection of 2 with the upper half plane by £+, and the intersection of
with the real axis by . Suppose that f(z) is defined on Q% \U} 7, analytic
in Ot continuous and real on ¢. Under these conditions we want to show
that f(z) 18 the restriction to @+ of a function which 18 analytic m all of O
and satisfies the symmetry condition f(z) = f(z). In other words, part
of our theorem sasserts that f(z) has an analyisc continuaison to Q.

Even in this formulation the assumptions are too strong. Indeed,
the main thing is that the imaginary part #(z) vanishes on o, and nothing
at all need to be assumed about the real part. In the definitive statement
of the reflection principle the emphasis should therefore be on harmonic
functions.

Theorem 24, Letmbcthcpartmtheupperhalfplamofasymmrﬁc
region Q, and let o be the part of the real azis in Q. Suppose that v(z) 15

conlinuous in O \J ¢, harmionic tn QF, and zero on 0. Then v has a har-
monic extension lo @ which satlisfies the symmelry relation v(2) = —o(g).
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In the same sifuation, if v 28 the imaginary part of an analytic function f(z) in
G+, then f(z) has an analytic evtension which satisfies {(2) = 1(Z).

For the proof we construct the function V(z) which is equal to »(z)
in g, 0 on #, and equal to —2(2) in the mirror image of &+, We have to
show that V 18 harmonie on ¢. For a point 2, ¢ ¢ consider a8 disk with
center 7, contained in @ and let Py denote the Poisson integral with
respect to this disk formed with the boundary values V. The difference
V¥V — Py is harmonie in the upper half of the disk. It vanishes on the half
circle, by Theorem 23, and also on the diameter, because ¥ tends to zero
by definition and Py vanishes by obvious symmetry, The maximum and
minimum principle implies that V = Py in the upper half disk, and the
same proof can be repeated for the lower half. We conclude that V is
harmonic in the whole disk, and in particular at .

For the remaining part of the theorem, let us agsin consider a disk
with center on ¢. We have salready extended » to the whole disk, and v
 has a conjugate harmonic function —u, in the same disk which we may
normalize 80 that 4, = Re f(2) in the upper half. Conaider

Uo(2) = ue(2) — uo(2).
On the real diameter it is clear that 8l/,/9z = 0 and also

BU 0 aﬂn

3 2 3 2 = (.
It follows that the analytic function 3U,/8z — i 9U,s/0y vanishes on the
real axis, and hence identically. Therefore U, is a constant, and this
consiant i8 evidently gero. We have proved that ue(z) = u(2).

The construction can be repeated for arbitrary digks. It is clear

. that the 1, coincide in overlapping disks. The definition can be extended
to all of Q, and the theorem follows.

. The theorem has obvious generalizations. The domain § can be
taken to be symmetric with respect to a circle C rather than with respect
to a straight Line, and when 2 tends to C it may be assumed that f(z)
approaches another circle . Under such conditions f(z) has an analytic
continuation which maps symmetric points with respect to C onto sym-
metric pointa with respect to (.

EXERCISKS

1. Iff(z)inannlyﬁcinthewho]eplamnndma]ont.hareda.xia,
purely imaginary on the imaginary axis, show that f(z) is edd.

2. Show that every function f which is analytic in & symmetrio region
3 can b&*r!htdnin thet»m«h+#. M,ﬁ,,ﬂﬂa ml;rl;lc in ﬂ and
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real on the real axis.

3. If f(z) is analytic in |z] < 1 and satisfies |f| = 1 on |z| = 1, show
that f(z) is rational.

4. Use (66) to derive a formula for f’(z) in terms of u(z).

5 If u(z) isharmonic and 0 £ %(z) < Kyfory > 0, prove that u = ky
with 0 S k £ K. [Reflect over the real axis, complete to an:analytic
function f{z}) = u 4 v, and use Ex. 4 to show that f'(2) is bounded.)



5 SERIES AND
PRODUCT DEVELOPMENTS

Very general theorems have their natural place in the theory of
analytic functions, but it must also be kept in mind that the whole
theory oniginated from a desire fo be able to manipulate explicit
analytic expressions. Such expressions take the form of infinite
series, infinite products, and other limits. In this chapter we
deal partly with the rules that govern such limits, partly with
quite explicit representations of elementary transcendental func-
tions and other specific functions.

i. POWER SERIES EXPANSIONS

In a preliminary way we have considered power series in Chap. 2,
mainly for the purpose of defining the expenential and trigono-
metric functions. Without use of integration we were not able
to prove that every amnalytic function has a power series expan-
gion. This question will now be resolved in the affirmative,
essentially as an application of Cauchy’s theorem.

‘The first subsection deals with more general propertles of
aaqmm of analytic functions.

1.1. F’dcntuu’a Theorem. The mtnl theorem concerning the

convergence of analytic functions asserts that the limit of
s uniformly: convergent sequents of analylic functions is an

wm ﬁmmmmuﬁbaamﬁﬂly
mwmmmum R LRGN
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We are considering a sequence {fa(z)} where each f.(#) is defined and
analytic in 2 region @,. The limit funection f(z) must also be considered
in some region O, and clearly, if f(2) i8 to be defined in O, each point of &
must belong to all @, for n greater than a certain n;. In the general
case 7t¢ will not be the sams for all points of @, and for this reason it would
not make sense to require that the convergence be uniform in 2. In fact,
in the most typical case the regions 8, form an increasing sequence, @) C
0. C - C2.C - - ,and8isthe union of the 2,. In these circum-
stances no single function f,(2) is defined in all of Q; yet the limit f(z) may
exist at all points of Q, although the convergence cannot be uniform.

As a very simple example take f.(z) = z/(2z" -+ 1) and let Q, be the
disk [2| < 2-V», It is practically evident that lim f.(2) = 2 in the disk

|2] < 1 which we choose as our region . In order to study the uni-
formity of the convergence we form the difference

fu2) — 2 = —227%1/(227 + 1).

For any given value of z we can make |¢*] < ¢/4 by taking n >
log (4/¢)/log (1/|z]). If e<1 we have then 2[z[**! < /2 and
|1 4 2z7] > 4 so that |fa(2) — 2| < & 1t follows that the convergence
is uniform in any closed disk |z] = r < 1, or on any subset of such a closed
disk. ' |

With another formulation, in the preceding example the sequence
{fa(z)} tends to the limit function f{z) uniformly on every compact sub-
set of the region Q. In fact, on a compact set |z] has & maximum r < 1
and the set is thus contained in the closed disk |z < ». This is the
typical situation. We shall find that we can frequently prove uniform
convergence on every compact subset of @; on the other hand, this 15 the
natural condition in the theorem that we are going to prove.

Theorem 1. Suppose that f.(2) iz analytic in the region Q,, and that the
sequence | 1.(2)) converges to a limél function f(z) in a region Q, uniformiy on
every compact subset of Q. Then f(2) 18 analytic in Q. Moreover, f.(2)
converges unsformly to f'(z) on every compact subset of §L

The analyticity of f(z) follows most easily by use of Morera’s theorem
(Chap. 4, Bec. 2.3). Let |z — a| £ r be a closed disk contained in Q;

the assumption implies that this disk lies in @, for all n greater than a
certain no.} If v is any closed curve contained in |z — a] < r, we have

[ 1@ daz=0

f In fact, the regions £, form an open covering of |z — ¢| & r. The disk ia com-
pact and hence has a finite subeovering. This means that it is contained in s fixed ..
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for n > no, by Cauchy’'s theorem. Because of the uniform convergence
on v we obtain

[ 1@ dz = ¥m [ f.(5)de =0,

and by Morera’s theorem it follows that f(z) is analytic in |z — a] < 7.
Consequently f(z) is analytic in the whele region D.
An alternative and more exp]icit proof is based on the integral formuls

where € is the circle | — a| = r and |z — a| < r. Letting n tend to =
we obtain by uniform convergence

1) = 5 [ RS

and this formula shows that f(2) is analytic in the disk. Starting from
the formula

£ = 5 [, ERE,
the same reasoning yields
hm Ji(2) = 2“ o é(f) ‘g, 7' (2),

and simple estimates show that the convergence is uniform for |z — ¢|
= p < r. Any compact subset of 2 can be covered by a finite number
of such closed disks, and therefore the convergence is uniform on every
compact subset. The theorem is proved, and by repeated applications
it follows that f2'(z) converges uniformly to f*(z) on every compact
subset of .

Theorem 1 is due to Weierstrass, in an equivalent formulation. Its
application to series whose terms are analytic functions is particularly
rmportant. The theorem can then be expressed as follows:

If a sevies with analylic terms,

) =hH@D +HEF - +H 1)+ -

converges uniformly on every compact subset of @ region Q, then the sum f(z)
i3 analyisc in Q, and the serses can be differentiated term by ierm.

The task of proving uniform convergence on a compact point set A
can be facilitated by use of the maximum principle. In fact, with the
fotations. of, Thtrem J;: Uy diflesoi Hale) i Attifle its maxi-
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mum in 4 on the boundary of A. For this reason uniform convergence
on the boundary of A 1mplies uniform convergence on A. For instance,
if the functions f.(z) are analytic in the disk |z| < 1, and if it can be
shown that the sequence converges uniformly on each circle |z| = 7,
where lim r, = 1, then Weierstrass’s theorem applies and we can con-

clude that the limit function is analytic.
The following theorem is due to A. Hurwits:

Theorem 2. If the functions f.(2) are analytic and = 0 in a region Q,
and if fa(2) converges to f(2), uniformly on every compact subset of R, then
f(2) s8 esther tdeniscally zero or never equal to zero in Q.

Suppese that f(2) is not identically zero. The zeros of f(¢) are in any
case isolated. For any point 2, ¢ 3 there 18 therefore a number r > 0 such
that f(z) is defined and 0 for 0 < |z — 20| S r. In particular, |f(2)]
has a positive minimum on the circle |z — 2| = r, which we denote by C.
1t follows that 1/f,(z) converges uniformly to 1/f(z) on C. Since it is also
true that fl(z) — f'(2), unifornﬂy on C, we may conclude that

Fal2) 4 _ f’(z)
lim o oo [ e

But the integrals on the left are all zero, for they give the number of roots
of the equation f.(z) = 0 inside of C. The integral on the right is there-
jore zero, and consequently f(zy) ¢ 0 by the same interpretation of the
integral. Since zy was arbitrary, the theorem follows.

EXERCISES

L Using Ta.ylor’s theorem apphed to a branch of log (1 + z/n),
prove that

1+ ) e
n—lﬂ

uniformly on all compact sets. N

2. Show that the series A

$(@) = 3, n~

=]

converges for Re z > 1, and represent its derivative in series form.,
3. Prove that

(1 —-—2)@) =1+ —2++8* — - -
and that the latter series represents an analytic function for Re z > 0.
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4. As a generalization of Theorem 2, prove that if the f.(z) have at
most m zeros in §, then f(2) is either identically zero or has at most m zeros.
§. Prove that

“21 1 ﬂ_ﬂ"z‘ = .,21 ( inzn)'_i

for |2| < 1. (Develop in a double series and reverse the order of
summation.)

1.2. The Taylor Series. We show now that every analytic function can
be developed in a convergent Taylor series. This is an almost immediate
consequence of the finite Taylor development given in Chap, 4, Sec. 3.1,
Theorem 8, together with the corresponding representation of the
remainder term. According to this theorem, if f(2) is analytic in & region
£ containing 2o, we can write

J(@) = f20) + ! (z.,) (z—2)+ * - + f(.:g.) (2 — zo)"
+ fasr(e)(z — 30)*+?
with
fusi(®) = =— J($) d¢

?ﬂ @ — 2)"(§ —2)

In the last formula C is any circle |z — 2] = p such that the ¢losed disk
|2 — 20| S » i8 contained in Q.
If M denotes the maximum of |f(z)| on C, we obtain at once the
estimate
Mlz — Eu"‘”‘

asale)e = 2] 5 HE 2

" We conclude that the remainder ferm tends uniformly to zero in every

disk |2 — 20| S r < p. On the other hand, p can be chosen arbitrarily
close to the shortest distance from z, to the boundary of 2. We have
proved:

Theorem 3, If f(s) is analytic in the region Q, conlaining 2o, then the
ot

f(s)—f(z.)+"“’(s ) + - 4L fﬂ)(z RERE

Hmm&bwdmdﬂdmhomwﬁﬂ.

C ot ime e ome PR ECEET L LN am m e T LR B o Sy u'q.i_l,. = o e ! b * ta
a == = L a Lo Lt | i » - . o o~
r ' , ot _i-'- e L rl‘ - . 1.“_:.1-_;".._‘.'.‘I sl 1. b, = — - - el -
ep a7 P R R R g L B =l o o rl - '
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The radius of convergence of the Taylor series is thus at least equal to
the shortest distance from z; to the boundary of 2. It may well be
Larger, but if it i3 there is no guarantee that the series still represents f(2) at
all points which are simultaneously in  and in the circle of convergence.

We recall that the developments

l — z’ zn | ] [ ]
z¢ 24 28
. I zﬁ 31’
Sz = — a3 + 4 _‘ﬂ

served as definitions of the functions they represent. Of course, as we
have remarked before, every convergent power series is its own Taylor
scries. We gave earlier a direct proof that power series can be differ-
entiated term by termm. This is also & direct consequence of Weierstrass’s
theorem.

If we want o represent a fractional power of z or log 2z through a power
series, we must first of all choose a well-defined branch, and secondly we
have to choose a center zy » 0. It amounts to the same thing if we
develop the function (1 4+ 2)* or log (1 4+ 2) about the origin, choosing the
branch which is respectively equal to 1 or 0 at the origin. Since this
branch is single-valued and analytic in |2] < 1, the radius of convergence
i8 at least 1. It is elementary to compute the coefficients, and we obtain

(l-l-z)'=l+pz+(g)z'+ . = +(:)zu+ . . e
. b 4 3
lﬂg(1+z)=z—%'+.z§_%+%_ « o

where the binomial coefficients are defined by
() .u(n-*l) (.u—n-l-l)_
" %

If the logarithmic series had a radius of convergence greater than 1,
then log (1 4 2) would be bounded for |2{ < 1. Since this is nof the
case, the radius of convergence must be exactly 1. Similarly, if the
binomial series were convergent in a circle of radiue >1, the function
(1 4+ 2)* and all its derivatives would be bounded in |z] < 1. Unless u
is a positive integer, one of the derivatives will be a negative power of
1 + 2, and hence unbounded. Thus the radius of convergence 18 pre-
cisely 1 except in the trivial case in which the binomial series reduces to
a polynomial. S .



SERIES AND PRODUCT DEVELOPMENTS 18

The series developments of the cyclometric functions arc tan z and
arc sin 2z are most eagily obtained by consideration of the derived series.

From the expansion

1
142

we obtain by integration

—*l_z!_l_zi_z‘_l_ ‘. s oa

_ 2 & T,
arctanz—z—§+g—-.‘.7+

where the branch is uniquely determined as

dz
1 4 22

for any path ingide the unit circle. For justification we can either rely

on uniform convergence or apply Theorem 1. The radius of convergence

cannot be greater than that of the derived series, and hence it is exactly 1.
If 4/1 — 22 is the branch with a positive real part, we have

1 . ,1,,1:3, ,1:3:
i 1ttty

for |2| < 1, and through integration we obtain

.. 128, 1:325  1-3-547
arcBmz=:ta3taasTa 67

arcta.nz:f;

5
162 1

The series represents the principal branch of are sin z with a real part

between —r/2 and =/2. .

| For combinations of elementary functions it is mostly not possible to
find a general law for the coefficients. In order to find the first few

coefficients we need not, however, calculate the successive derivatives,

There are simple techniques which allow us to compute, with a reasonable

amount of labor, all the coefficients that we are likely to need.

It is convenient to introduce the notation [z*] for any function which is
analytic and has s zero of at least order n at the origin; less precisely,
{z#] denotes a function which ““contains the factor 2~.”’ With this notation
any function which is analytic at the origin can be wntten in the form

f@ =a +az+ - - - + a4+ [,

where the coefficients are uniquely determined and equal to the Taylor
coefficients of f(z). Thus, in order to find the first n coefficients of .the
Taylor expansion, it is sufficient to determine a polynomial P.(s) such
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that f(z) — P.(2) has a zero of at least order n -+ 1 at the origin. The

degree of P.(z) does not matter; it is true in any case that the coefficients
of z», m < n, are the Taylor coefficients of f(z).
For instance, suppose that

f(z)':all'l'al?--"dgz!—l— v gt - -
g(z) 2 bo+ biz+ b2+ - - - + 024 - - -

With an abbreviated notation we write

f(z) = Pa(e) 4 [z7*Y];  g(2) = Qa(2) + [2**1].

It is then clear that f(2)g(z) = Pa.(2)Qa(2) + [**1), and the coeflicients
of the terms of degree Sn in P,Q, are the Taylor coefficients of the prod-
uct f(z)g(z). Explicitly we obtain

#2)ae) = aobo + (aabs + asd)z + - -
+(atbt+ﬂlb._|+ v s s Jeaby)er 4 - - -

In deriving this expansgion we have not even mentioned the question of
convergence, but since the development is identical with the Taylor
development of f(2)g(2), it follows by Theorem 3 that the radius of con-
vergence 18 at least equal to the smaller of the radii of convergence of
the given series f{2) and ¢g(z). In the practical computation of P,Q, it is
of course not necessary fo determine the terms of degree higher than ».

In the case of a quotient f(z)/g(2) the same method can be applied,
provided that ¢(0) = by = 0. By use of ordinary long division, con-
tinued until the remainder contains the factor z**!, we can defermine a
polynomial R, such that P, = Q.R, + [¢**']. Then f — R,.g = [2*+}],
and since ¢g(0) #= 0 we find that f/g = R, + [2**1]. The coefficients of
R, are the Taylor coefficients of f(z)/g(¢). They can be determined
explicitly in determinant form, but the expressions are too complicated
to be of essential help.

It is also important that we know how to form the development of a
composite function f(g(z)). In this case, if g(z) is developed around z,,
the expansion of f(w) must be in powers of v — g(z,). To simplify, let
us assume that 2o = 0 and g(0) = 0. We can then set

fwy=ataew+ --- 4aw 4 - -

and g(2) = bz + be2* 4+ - - : + b2+ - - -+ . Using the same nota-
tions as before we write f(w) = P.(w) + [w**"] and g(z) = Qa(2) + [z"*]
with Q.(0) = 0. Substituting v = g(z) we have to observe that

Pu(Qu 3 [*1Y]) = Pa(Qu(s)) + [+*]
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and that any expresaion of the form [1w"*'] becomes a [z**Y]. Thus we
obtain f(g(2)) = Pa(Qa(2)) + [2**1], and the Taylor coeflicients of f(g(z))
are the epefficients of P.(Q,.(z)) for powers = n.

Finally, we must be able to expand the inverse function of an analytic
function w = g(z). Here we may suppose that g(0) = 0, and we are
looking for the branch of the inverse function z = g~Yw) which is ana-
lytic in a neighborhood of the origin and vanishes for w» = 0. For the
existence of the inverse function it is necessary and sufficient that
¢'(0) £ 0; hence we assume that

g(z) = az + as2* + - - © = Qu(e) + [**]

with a; 2 0. Our problem 18 to determine 8 polynomial P,{w) such that
P.(@.(2)) = z + [**Y]. In fact, under the assumption &, # 0 tbe nota-
tions [2#1!] and {w~+!] are interchangeable, and fromz = P,(Q.(2)) + [2**!]
we obtain z = P,(g(z) 4+ [**1]) + [z~ = P.(w) 4+ [w*tl]. Hence P.(w)
determines the coefficients of g—{(w).

~ In order to prove the existence of a polynomial P, we proceed by
mduction. Clearly, we can take Py{w) = w/a,. If P._y i8 given, we set
P. = P, , + b.w" and obtain

P.(Qu(2)) = Paa(Qu(2)) + baaiz® + [2*t]]
m Po 1(@n-1(2) + auz”) + buale™ -+ [2vH]
= n—-l(Ql-l(z)) -+ P:—I(Qn—l(z))w + b.d?Z"‘ -} [Z’H' l]-

In the last member the first two terms form a known polynomial of the
form z + c.z* + [2*1Y], and we have only to take by, = —c.a7™.

For practical purposes the development of the inverse function is
found by suceessive substitutions. To illustrate the method we deter-
mine the expansion of tan w from the series .

z¥ ¢
w-arctanz-z—-g-{-g— ¢
If we want the development t0 include fifth powers, we write
28 b

z—w+3 — &+

and substitute this expression in the terms to the nght. With appro-
priate remainders we obtain

ym w0+ w+§-+[w=])_'—%(w+[ﬁt1)l+[w'1

=w+£w'+lw’z' —-lw‘-l-[w']'

-wv+tga W' w’(v+Lw'J)‘——w‘+[_,w']-t¢+3w'_+ 125“’" +[wﬂ

1.r': H
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Thus the development of tan w beging with the terms
i 2
ta.nw=w+§w‘+ﬁw‘+' .

EXERCISES

1. Develop 1/(1 4+ z%) in powers of z — a, a being a real number.
Find the general coefficient and for @ = 1 reduce to simplest form.

2, The Legendre polynomials are defined as the coefficients P,(c) in
the development -

(1 —2az+ 21 =1+ Pia)z + Pa(a)2? +  * -

Find PI, P:, P;, and P..
3. ‘Develop log (sin 2/2) in powers of z up to the term 25,
4. What is the coefficient of 27 in the Taylor development of tan z?
5. The Fibonacci numbers are defined by ¢y = 0, ¢;1 = 1,

Cx = Cp-1 + Cn—9.

Show that the c, are Taylor coefficients of a rational function, and deter-
mine a closed expression for e,.

1.3. The Laurent Series. A series of the form

(1) bo+b1rl+b,z’“’+-..+bﬂz-+...

can be considered as an ordinary power series in the variable 1/z. It
will therefore converge outside of some circle |2| = R, except in the
extreme case B = « ; the convergence is uniform in every region |z| 2 »
>R, and hence the series represents an ansalytic function in the region
|2| > B. If the series (1) is combined with an ordinary power series,
we get & more general series of the form

-+ w
(2) | Yy aw~
: ==

It will be termed convergent only if the parts consgisting of nonnegative
powers and negative powers are separately convergent. Since the first
part converges in a disk |z| < R» and the second eeries in a region |z| > R,,
there is a common region of convergence only if By < R;, and (2) repre-
gents an analytic function in the annulus B; < |z| < R,.

Conversely, we may start from an analytic function f(z) whose region
of definition contains an annulus B, < [z < R, or more generally an
aonulus Ry < 12 — al < By. We ghall show that such a funetion can
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always be developed in & general power series of the form
+ e

f@) = ), A.z—oa)
The proof is extremely simple. All we have to show is that f(z) can

be written as a sum fi(2) 4- f2(2) where fi(2) is analytic for |z — a] < R,

and f»(2) is analytic for {2 — a| > R, with a removable singularity at .

Under these circumstances fy(z) can be developed in nonnegative powers

of z — a, and f3(2) can be developed in nonnegative powers of 1/(z — a).
To find the representation f(z) = fi(z) 4+ fi(z) define f1(2) by

f1(z) = —?;-; {.(I_):d:

F—a|=r

for [z — a| < r < R, and f:(z) by

__ 1 J@) at
jt(z} B 2wili‘—ll-lr =2

for B, <r < |z — a|. Inboth integrals the value of r isirrelevant as long
a8 the inequality is fulfilled, for it is an immediate consequence of
Cauchy’s theorem that the value of the integral does not change with
provided that the circle does not pass over the point 2. For this reason
f1(2) and fi(z) are uniquely defined and represent analytic functions in
|z — a8} < Bs and |z — a| > R, respectively. Moreover, by Cauchy’s
intégral theorem f(2) = f1(2) 4 fi(2).
The Taylor development of f,(z) is

fie) = 3 Aue — o)

na
with
e 1 da
(3) o= 2 li'-]nll-r @ “-ﬂ).ﬁ

In order to find the development of fi(z) we perform the transformation
§=a+ 1/, £ =a+ 1/¢. This transformation carries | — a| = r

into |¢’| = 1/r with negative orientation, and by simple calculations we
obtain
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with
i
fla+ 3 )adY
B. = % f (—‘,.f, = —2:1 f JO(E — a)* ' d8.
Iﬂ-'! lf_ﬂ-r

This formula shows that we can write

4 w
@)= ) Auz—o)

where all the coefficients A, are determined by (3). Observe that the
integral in (3) is independent of raglong as By < r < RB,.

1f By = O the point a is an isolated singularity and A_; = B, is the
residue at a, for f(z) — A_1(z — a)-! is the derivative of a single-valued
function in 0 < |z — @| < R,

EXERCISES

1. Prove that the Laurent development is unique.

2. let @ be a doubly connected region whose complement consists of
the components ¥,, £,. Prove that every ana.lytic function f(2) in 02 can
be written in the form fi(2) 4 f:(2) where fi(2) is ana.lytw outside of E;
and f2(z) 18 analytic outside of £y. (The precise proof requires a mnatruc—
tion like the one in C]mp 4, Sec. 4.5.)

3. The expression

_J"® {2\
{ £z} "fTGj“ -5 (J.r(z)

i8 ealled the Schwarzean derivative of f. If f has a multiple zero or pole,
find the leading term in the Laorent development of {f,2}. Answer: If
f{g) = a(z — zo)™ + - , then {f,z} = (1 — m*)(z — 29)"2* +

4. Show that the Laurent development of (e — 1)1 at the orlgm 18
of the form

1 1
2

. B

where the numbers B; are known as the Bernoulli numbers. Caleulate
B, B, B;. (By Bec. 2.1, Ex. 5, the B; are all positave.)

5. Express the Taylor development of tan z and the Laurent develop-
ment of cot z in terms of the Bernoulll numbers.
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2. PARTIAL FRACTIONS AND FACTORIZATION

A rational function has two standard representations, one by partial
fractions and the other by factorization of the numerator and the denomi-
nator. The present section is devoted to aimilar representations of
arbitrary meromorphie funections,

2.1. Partial Fractions. If the function f(z) is meromorphic in a region
Q, there corresponds to each pole b, a singular part of f(z) consisting of
the part of the Laurent development which containg the negative powers
of z — b,; it reduces to a polynomisal P,(1/(z — b,)). It is tempting to
subtract all sngular parts in order to obtain s representsation

@) o = 3 P.(725) + o0

where g(z) would be analytic in 8. However, the sum on the right-hand
side is in general infinite, and there i8 no guarantee that the series will
converge. Nevertheless, there are many cases in which the series con-
verges, and what is more, it is frequently possible to determine g(z)
explicitly from general considerations. In such cases the result is very
rewarding; we obtain a simple expansion which is likely to be very helpiul.

1f the senes in (4) does not converge, the method needs to be modified.
It i3 clear that nothing essential is lost if we subtract an analytic function
p»(2} irom each singular part P,. By judicious choice of the functions p,

the series Y (P, — p,) can be made convergent. It is even possible to

take the p,(z) to be polynomials,
We shall not prove the most general theorem to this effect. In the
“case where @ is the whole plane we shall, however, prove that every
- meromorphic function has a development in partial fractions and, more-
-~ over, that the singular parts can be described arbitrarily. The theorem
- aad its generalisation to arbitrary regions are due to Mittag-Leflier.

_ [ -y T .-
P e, T
I

E;'l'hmem 4. Let {b,} be a sequence of complex numbers with lim b, = =,
i .and let P(f) be polynomials without constant term.  Then there arefuucuom
. twhich are meromorphic in the whole plane with poles al the potnts b, and the
i dorresponding singular parts P.(1/(z — b,)). Moreover, the most general
t. meromorphic function of this kwnd can be writlen in the form
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where the p,{z) are suitably chosen polynomials and g(z) is analytic in the
whole plane.

We may suppose that no b, is zero. The function P,(1/(z — b,)) is
analytie for |2| < [b,| and can thus be expanded in a Taylor series about
the origin. We choose for p,(z) a partial sum of this series, ending, say,
with the term of degree n,. The difference P, — p, can be estimated by
use of the explicit expression for the remainder given in Chap. 4, Sec. 3.1.
If the maximum of |P,} for |z] £ |b,|/2 is denoted by M,, we obtain

1 2'3' n,+1
‘6’ p25) - peo| = (i

for all |z|] < |b,|/4. By thiz estimate it is clear that the series in the
right-hand member of (5) can be made absolutely convergent in the whole
plane, except at the poles, by choosing the n, sufficiently large. For in-
stance, if we choose n, so large that 2%~ = M,2’, the estimate (6) will show

that the general term is majorized by 2~ for all sufficiently large ».

Moreover, the estimate holds uniformly in any closed disk |z| € R,
s0 that the convergence ig actually uniform in that disk provided we omit
the terms with |b,| < B. By Weilerstrass’s theorem the remaining series
represents an analytie function in |z{ £ R, and it follows that the full
series i3 meromorphic in the whole plane with the singular parts
P,(1/(z — b)). The rest of the theorem is trivial.

As » first example we consider the function «?/sin® az, which has
double poles at the points z = n for integral n. The singular part at the
origin is 1/2%, and since sin? x(z — 7) = sin? a2, the singular part atz = n
181/(z — n)2%. The series

- 1
(7) “_); g

i3 convergent for z > n, as seen by comparison with the familiar geries

E 1/n It is uniformly convergent on any compact set after omission of

the terms whlch become infinite on the set. For this reason we can write

(®) T E = ,,), + ¢2)

where ¢(z) is analytic in the. whole pla.ne. We contend that g(z) is
identically zero.

To prove this we observe that the function »*/ain? 2z and the series (7)
are both periodic with the period 1. Therefore the function g(z) has the
same period. For z = z + iy we have (Chap. 2, Sec. 3.2, Ex. 4)
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sin xz|* = cosh? -— eo8® xx
| I Y

and hence »?/sin? xz tends uniformly to 0 as |yl — . But it is easy to
see that the function (7) has the same property. Indeed, the conver-
gence i8 uniform for |y| 2 1, say, and the limit for {y| = = can thus be
obtained by taking the limit in each term. We conclude that g(z) tends
uniformly te O for |y| — «. This is sufficient to infer that |g(z)| is
bounded in a period strip 0 = x < 1, and because of the periodicity
lg(2)] will be bounded in the whole plane. By Liouville’s theorem g(2)
must reduce to a constant, and since the limit is 0 the constant must
vanish. We have thus proved the identity

©) Eln’ - E—__ff)_’

From this equation a related identity can be obtained by integration.
The left-hand member is the derivative of —» cot xz, and the terms on the
right are derivatives of —1/(z — n), The series with the general term
1/(z — n) diverges, and a partial sum of the Taylor series must be sub-
tracted from all the terms with »n < 0. As it happens it is sufficient to
subtract the constant terms, for the series

_’o(z—n'l" ) Z -n(z—-n)

is comparable with 2 1/n% and hence convergent. The convergence is
1

uniform on every compact set, provided that we omit the terms which
become infinite. For this reason termwise differentiation 18 permissible,
and we obtain

1 T L1
(10) rcotrz=;+z z—n"'E)
‘ nx0

e:;:épt for an additive constant. If the terms corresponding to n and —n
are bracketed together, (10) can be written in the equivalent forms

(11) wootws = Um E z-l-n-;+zm

> B
n=—n A=l

With this way of writing it-becomes svident that both members of the
equation are odd functions of 2, and for this reason the integration con-
gtant must vanish. The eqn:‘lmms (10) . n.nd (11) are thus correctly
stited.

[¥] D - W m % . .""'l' £ e -
. - 1-...I. . . s o= [ T
. . . Fouy ML L. TR -g-:""‘l,du."ln.'
L, -.,,-..-__-‘ i T A "n.n‘-"‘. Yo, N
: LIy TR # ."" ) "-"-.r"l 5 .1*- r' .."-""' ._ : - .i r . = ’
- rafd
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Sum

(12) lim ¥ 42001 +Z (~1y 2

—s u e R
-

which evidently represents a memmofphic function. It is very natural
to separate the odd and even terms and write

2t+1 k b

z :.1(:_—-13:= z z—2n Z 3—1—211,

- (2k+4-1) A - —k
By comparison with (11) we find that the Limit is

T r(z—l) .4
5oL — S0t T =

and we have proved that

(13)

= hm Z {— 1)"

8in w2 noe

EXERCISES

1. Comparing coeflicients in the Laurent developments of cot »z and
of 1ts expression as a sum of partial fractions, find the values of

Y# Llw Ja
1 1 1

Give s complete justification of the steps that are naeded,

2. Express
e
in closed form,

3. Use (13) to find the partial fraction development of 1/cos 2, and
show that it leadstor/4 =1 -3+ 3 —3+ - -
4. What is the value of

5
L (z+n)t 4 a
5. Using the same method as in Ex. 1, show that

zl = 9¥—1 B, )

(See Sec. 1.3, Ex. 4, for the definition of B,.)
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2.2. Infinite Products, An infinite product of scomplex numbers

(14) PPy pac = |l pa

n=l
is evaluated by taking the limit of the partial products Py, = p1p: * * * Pa.
It is said to converge to the value P = lim P, if this limit exists and is

n—s

different from zero. There are good reasons for excluding the value zero.
For one thmg, if the value P = 0 were permitted, any infinite product
with one factor 0 would converge, and the convergence would not depend
on the whole sequence of factors. On the other hand, in certain con-
nections this convention is too radical. In fact, we wish to express a
function as an infinite product, and this must be possible even if the
function has zeros. For this reason we make the following agreement.:
The infinite product (14) is said to converge if and only if at most a
finite number of the factors are zero, and if the partial products formed
by the nonvanishing factors tend to a finite limit which ia different from
Zero.

In & convergent product the general factor p, tends to 1; this 18 clear
by writing p. = P./P.-), the zero factors being omitted. In view of
this fact it is preferable to write all infinite products in the form

15) i1 Q +a)

a0 that a. — () is a necessary condition for convergence.,
If no factor is zero, it is natural to compare the produet {15) with the
infinite series .

- (16) 2 log (1 4+ a,).

=]

Since the q, are complex we must agree on a definite branch of the
logarithms, and we decide to choose the principal branch in each term.
Denote the partial sums of (16) by S.. Then P, = €5, and if Sa—> 8
it followa that P, tends to the limit P = ¢# which is » 0. In other
words, the oonvergence of (18) is a sufficient condition for the convergence
of (15).

- In order to prove that the condition is also Decessary, suppose that
Py,— P (., It is not true, in general, that the series (16), formed with
the prmmpal values, converges to the prineipal value of log P; what we
wish to show is that it converges to some value of log P. Forgmater

olarity wa.ohall Sempuraiily adopt: the: usage’ ofdmotmgthewmpal

;vﬂmd&ethwm‘wiﬁwwbﬁm
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Because P,/P —1 it is clear that Log (P,/P) 0 forn —» o, There
exists an integer h, such that Log (P./F) = S, — Log P + h,-2x. We
pass to the differences to obtain (huey — k)21 = Log (Pny/P) —
Log (P./P) — Log (1 + a,) and hence (hnyg — hn)2x = Arg (Pay1/P) —
Arg (P./P) — Arg (1 + a.). By definition, |Arg (1 + @.)| £ =, and we
know that Arg (P.../P) — Arg (P,/P} — 0. For large n this is incom-
patible with the previous equation unless hny = k.. Hence &, is ultimately
equal to a fixed integer k, and it follows from Log (P,/P) = S, — Log P +
h-2x3 that S, — Log P — h-2xi. We have proved:

Theorem 5. The infinite product || (1 + a.) with 1 + a, 7 0 converges
1

simulianeously wsth the series E log (1 + @.) those terms represent the
1
values of the principal branch of the logarsihm,

The question of convergence of a product can thus be reduced to the
more familiar question concerning the econvergence of a series. It ean be
further reduced by observing that the series (16) converges absolutely at
the same time as the simpler series Z |a,]. This i an immediate conse-
quence of the fact that

lim 108 1+32) _ 1

-0 z

If either the series (16) orE.]a,l converges, we have a, — 0, and for a
1

given ¢ > 0 the double inequality
(1 — o)las] < flog (1 + au)| < (1 + ¢€)laal

will hold for all sufficiently large n. It follows immediately that the two
eeries are in fact simultaneously absolutely convergent.

An infinite product is said to be absolutely convergent if and mﬂy if
the corresponding series (16) convergea absolufely. With this termi-
nology we can state our result in the following terms:

Theorem 6. A necessary and sufficient condilton for the absolute con-
vergence of the product [[ (1 + a.) ¢s the convergence of the series 2 |a.).
‘ i 1

In the last theorem the emphasis is on absolute convergence. By
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simple examplos it can be shown that the convergence of ) a, i8 neither
1

sufficient nor ﬁeoeasary for the convergence of the product [] (1 + a.).
1

It is clear what to understand by a uniformly convergent infinite
product whose factors are fumnctions of a variable. The presence of
zeros may cause some slight difficulties which can usually be avoided
by considering only sets on which at mosat a finite number of the factors
can vanish, If these factors are omitted, it is sufficient to study the
uniform convergence of the remaining product. Theorems 5 and 6 have
obvious counterparts for uniform convergence. If we examine the proofs,
we find that all estimates ¢an be made uniform, and the conclusions lead
to uniform convergence, at least on compact sets.

EXERCISES
1. Show that

2. Prove that for |2| < 1

142004+ +29Q +2%) ... =
3. Prove that

I:l (1 + 5) e—aln

converges absolutely and uniformly on every compact set.
4 Prove that the value of an absolutely convergent product does not

change if the factors are reordered.
§ Show that the function

o) = IT (& + te)(1 + ki)
|

where {k| < 1 ig analytic in the whole plane and satisfies the functional
equation

6(z + 2 log h) = h-le 8 (2).

2.3. Canonical Products. A function which is analytic in the whole
plane is said to be enfire, or tnfegral. The simplest entire functions
which are not polynomials are e*, sin ¢, and cos 2.

If g(z) is an entire funetion, then f(s). = er® izentire and % Q. Con-
veraely, if f(e) is any entire functaoﬁ w]nch is never sero, let us show

Ty N £ ! ’ - Ir -I.‘
- l' ' " 'l|- rn " ' - ) ) ”‘
" _r.- . '.'.. ar - ) l-..- .'1‘\-.,"' . -_ i ..;_ J.‘: = -..I;!.. ‘\.“ ', :I' !:,; :-"I‘-'_",'_:“ .I'---r ._EIE. ! 1 i\.
T R S RL P E S :.-,m;..ﬁ:z«_i::‘i ia;fr}?‘-,-;.mﬁ:a!,&_-. Tei R " s
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that f(z) i8 of the form e#®@, To this end we observe that the function
1'(2)/f(2), being ansalytic in the whole plane, is the derivative of an entire
function g(z). From this fact we infer, by computation, that f(z)e—*@®
has the derivative zero, and hence f(2) is 8 constant multiple of e#¢*: the
constant can be absorbed in g(z).

By this method we can also find the most geperal entire function with
& finite number of zeros. Assume that f(z) has m zercs at the origin
(m may be zero), and denote the other zeros by a,, @s, . . . , an, multiple
zeros being repeated. It is then plain that we can write

N
f(z) = ampp(s) ]] (1 -—
1

If there are infinitely many zeros, we can try to obtain a similar repre-
sentation by means of an infinite product. The obvious generalization
would be

(17) 1) = amerce [] (1 _2

This representation is valid if the infinite product converges uniformly
on every compact set. In fact, if this is so the product represents an
enfire function with zeros at the same points(except for the origin) and
with the same multiplicities as f(z). It follows that the quotient can be
written in the form 2%es®®.

The product in (17) converges absolutely if and only if 2 1/la.| is
i

convergent, and in this case the convergence is also uniform in every
closed disk |¢| < R. It is only under this special condition that we can
obtain a representation of the form (17).

In the geperal case convergence-producing factors must be introduced.
We consider an arbitrary sequence of complex numbers a, # 0 with
lim @, = «, and prove the existence of polynomials p.(z) such that

o
[ ]

(18) I(: - ) ene

1 O

converges o an entire function. ‘The product converges together with
the series with the general term

ro(s) = log (l - -3-::) + Pal2)
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where the branch of the logarithm shall be chosen 80 that the imaginary
part of r.(2) lies between —=x and = (inclusive).

Tor a given B we consider only the terms with |a.| > R. In the disk
|2| & R the principal branch of log (1 — z/a.) can be developed in &
Taylor series

(1 -2) - & -2 (@) 3@ -

We reverse the gigns and choose p.(2) as a partial sum

o =g a(e) @)

Then r.(2) has the representation

1 z yMytl 1 2 \®ntl
ra() = m,.-i-l(an) m. + 2 a:') B

and we obtain easily the estimate

1 B \mtl1 R \!
(19) )l € iy (la,.i) (1 _ Ta_.l) ..
Suppose now that the series
c 1 R \mH1
(20) 2_:1 m, + 1 (Ia.l)

converges. By the estimate (19) it follows first that r.{z) —» 0, and
hence r,(z) bas an imaginary part between —x and x as soon as n 1s
sufficiently large. Moreover, the comparison shows that the series
Zra(z) is absolutely and uniformly convergent for |z|] £ R, and thus the
product (18) represents an analytic function in [z| < B. For the sake
of the reasoning we had to exclude the values [a,] < R, but it is clear
that the umform convergence of (18) iz not affected when the corre-
: spondmg factors are again taken into account.
» - - It remains only to show that the series (20) can be made convergent
‘* for all R. But this is obvious, for if we take m, = % it is elear that (20)
has a majorant geometric series with ratio < 1 for any fixed value of R.

Theorem 7. There exists an entive function with arbsivarily prescribed
26708 G, provided thal, tn the case of infinslely many zeros, a, — <. Every
enfire funciion with these and no other zeros can be wrislen in the form

r R e i i Tl PR

.(21) f(2) = zmes® f[ (1 — i) E(..) LA (; -

A=}

; whrammummaua.#o tﬁem.mwtmnuuegen,and
&’ p(z)ummfm ) RN |

-2,
=up -
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Thie theorem is due to Weierstrass, It has the following important.
corollary:

Corollary. Every function which s meromorphic in the whole plane is
the quotient of two enlire funclions.

In fact, if F(2) is meromorphic in the whole plane, we can find an
enfire function g(z) with the poles of F(2) for geros. The product F{z)g¢(z)
is then an entire funetion f{z), and we obtain F(z) = f(2)/g(2).

The representation (21) becomes considerably more interesting if it is

possible to choose all the m, equal to each other. The preceding proof
has shown that the product |

(22) - l'[ (1 _* ea.+§(n-) ooy (i)ﬁ

Qn

convei'ges and represents an entire function provided that the series

=

Y (B/le.))**!/{h + 1) converges for all R, that is to say provided that

n=1

Z1/|acftt! < . Assume that h is the smallest integer for which this
series converges; the expression {22) 18 then called the canontcal product

associated with the sequence {4}, and h is the genus of the canonical
product.

Whenever possible we use the canonical product in the representation
(21), which is thereby uniquely determined. If in this representation
g{2) reduces to a polynomial the funetion f(z) is said to be of finite genus,
and the genus of f(2) ia by definition equal to the degree of this polynomial
or to the genus of the canonical product, whichever is the larger. For

instance, an entire function of genus zero is of the form

Cz"n(l—-—

with Z1/las] < . The canonical representation of an entire function
of genus 1 is either of the form

Cames [1[ ( ) ¢
with 21/]a,|? < «, 21/|a,| = <, or of the form

Cz"e"I:] (1 - ai')
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with Z1/]a.] < e, a = 0.

As an application we conmder the product representation of sin »z.
The zeros are the integers z = +n. Bince Z1/n diverges and Z1/n?
converges, we must take A = 1 and obtain a representation of the form

sin wz = 2e°® [] {1 — Ez) e*ln,
ny=

In order to determive g(z) we form the logarithmic derivatives on both
gides. We find

b+ § (5 )
npi)

where the procedure is easy to justify by uniform convergence on any
compact set which does not contain the points z = n. By comparison
with the previous formula (10) we conclude that ¢'(z) = 0. Hence g(2)
is a constant, and gsince lﬁg sin 7z/2 = x we must have ¢V = x, and thus

(23) gin wz = xz [] 1-£)af=-.

n »0

In this representation the factors corresponding to n and —n can be
bracketed together, and we obtain the simple form

° s
(24) ﬂinrz=ﬂﬂ(l—-;—,-'
1
It follows from (23) that sin #2z is an entire function of genus 1.

EXERCISES

1. Suppose that @, — « and that the A, are arbitrary complex
pumbers. Show that there exiats an entire function f(z) which satisfies
J(as) = A,

Hint: Let g(2) be a function with aimple zeros at the a,. Show that

ronverges for some choice of the numbers v,
2. Prove that

; - grasotee 7 LA (>t
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whenever « i8 not an integer. Hini: Denote the factor in front of the
canonical product by g(z) and determine g’'(2)/g(z).

3. What is the genus of cos 1/2?

4. 1f f(z) is of genus h, how large and how small can the genus of f(z?)
be?

5. Show that if f(z) is of genus 0 or 1 with real geros, and if f(z) 18 real
for real z, then all zeros of f'(z) are real. Hsiné: Consider Im f'(2)/f(z).

2.4. The Gamma Function. The function asin 2 has all the integers
for geros, and it is the simplest function with this property. We shall now
introduce functions which have only the positive or only the negative
integers for zeros. The simplest function with, for instance, the negative
integers for zeros is the corresponding canonical product

(25) G(2) = lli (1 + ;f) eis,

It i8 evident that G(—z) has then the positive integers for zeros, and by
comparison with the product representation (23) of sin xz we find at once

(26) 2G(z)G(—2) = SR,

(.

Because of the manner in which G(z) has been constructed, it is bound
to have other aimple properties. We observe that G(z — 1) has the same
zeros a8 G(z), and in addition a zero at the origin. It is therefore clear
that we can write

G(z — 1) = ze"9G(2),

where 4(2) is an entire function. In order to determine v(2) we take the
logarithmic derivatives on both sides. This gives the equation

c 1 1\ 1., , o f 1 1
(27) nzl(m—ﬁ)-—-g-i-?(z)-l-nzl =+ﬂ—;).

In the series to the left we can replace n by n + 1. By this change we
obtain

(z—l-l—n_ﬁ):__.l'l-z z+n n+1)

nm}

=%“‘+.Z,(z+n-a)+,21(i

The last series has the sum 1, and hence equation (27) reducea to ¥’ (2) = 0.
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Thus ~(2) is a constant, which we denote by v, and G(2) has the reprodue-
tive property G(z — 1) = €72G(2). It 18 somewhat sgimpler to consider
the function H(z) = G(z)e which evidently satisfies the functional equa-
tion H(z — 1) = zH(2).

The value of v is easily determined. Taking z = 1 we have

1 = G(0) = e*G(1),
and hence

Here the nth partial product can be written in the form

(5 + 1)e-Q+i+i+ - +1m)
and we obtain

y=lim (L4 245+ +£—logn)

— 0

The constant v is ealled Euler’s constant; its approximate value is .57722.
If H(z) satisfies H(z — 1) = zH(z), then I'(z) = 1/[2H(z)] satisfies
I(e —-1) =T()/(z — 1), or

(28) I'(z 4+ 1) = 2T'(2).
Thig is found to be a more useful relation, and for this reason it has

become customary to implement the reatricted stock of elementary func-
tions by inclusion of I'(2) under the name of Euler’s gamma funciion.

Our definifion leads to the explicit representation

en @ =F (142 e

and the formula (26) takes the form

(30) TEHr(l —2) = —

' 80 2

We observe that I'(z) is 8 meromorphic function with poles at z = 0,
-1, ~2, . but without zeros.

We have I‘(l) = 1, and by the functional equation we find I'(2) =
I'3) =1-2, T(4) =1-2-3andgenerally’'(n) = (n — 1)!. The I'-func-
tion can thus be considered as a generalization of the factorial. ¥From (30)
we conclude that T(}) = V7,

Other properties are mout mfy fbund by considering the second

i PR R . : e g
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derivative of log I'(z) for which we find, by (29), the very simple expression
) AW S |

(31) (I‘(z)) - ‘Zo (z -+ n)z

For instance, it is plain that T'(z) T'(z + 1) and T'(2z) have the same poles,
and by use of (31) we find indeed that

d(g(f)))ﬂz(fg: f))) z et E S
=4[ Z (2:-1}%)"" Z m]_4 z (2’"*""’)’

n=i m=0
T’ (22)

=23 T(%) /

By integration we obtain
P(2)T'(z + §) = e=Pr(22),

where the constants ¢ and b have yet to be determined. Substituting
= ] and z = 1 we make use of the known values I'(3) = Vx, T(1) =1,
(1)) = §r'}) = 1 V=, I'(2) = 1 and are led to the relations

36+ b =1}logx, a+b=}logx — log 2.
It follows that
a=—2log2 and b =}logx+ log2;
the final result is thus |
V7 (22) = 2T 2)T(z + 3)
which is known as Legendre’s duplication formuls.

EXERCISES

1, Prove the formula of Gauss:

@m) 7 ) = ned r( )r GRS ELE )
2. Show that ,
T (%) = 2+ G)* r (%) .

8. What are the residues of I'(z) at the poles z = —n?
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2.5. Stirling’s Formula. In most eonnections where the I' function
can be applied, it is of utmost importance to have some information on
the behavior of T'(z) for very large values of z. Fortunately, it 18 possible
to calculate I'(2) with great precision and very little effort by means of a
classical formula which goes under the name of Stirling’s formula.
There are many proofs of this formula. We choose to denve it by use of
the residue calculus, following mainly the presentation of Lindeltf in his
clasgical book on the calculus of residues. This is a very simple and above
all a very instructive proof inasmuch as it givea us an opportunity to use
residues in less trivial eases than previously.

The starting point is the formula (31) for the second derivative of
log I'(2), and our immediate task is to express the partial sum

)| | 1 '
et terrT T teFan

as a convenient line integral. To this end we need a function with the
residues 1/(z 4+ »)? at the integral points »; a good choice is

1
?'I'

_wcot wl
24) = G+

Here { is the variable while z enters only as a parameter, which in the first
part of the derivation will be kept at a fixed valuez = = + iy withz > 0.

- We apply the residue formula to the rectangle whose vertical sides hie
on ¢ =0 and § = n 4+ § and with horizontal sides 5 = 1Y, with the
intention of letting first ¥ and then » tend to «. This contour, which
we denote by K, passes through the pole at 0, but we know that the
formula remaing valid provided that we take the principal value of the

integral and mclude one-half of the residue at the origin. Hence we
obtain

Pr.v. 5— j;.‘l’(f)d = -—‘i+'Zn (z"l" F)I
On the horizontal sides of the rectangle cot » tends uniformly to+¢
for Y — «. 8ince the factor 1/(z 4 {)? tends to gero, the corresponding
integrals have the limit sero. We are now left with two integrals over
infinite vertical lines. On each line £ = n + §, cot x{ is bounded, and
because of the periodicity the bound is independent of ». The integral
omthehnee e n+}mthuulemthanamnmnttlmea
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This integral can be evaluated, for on the line of integration

f=2ﬂ+l_rr
and we obtain by residues
f I . SR .
It +z|' C+2)2rn+1—-¢t+4+3 2n+142z

The limit for n » o« is thus gero.

Finally, the principal value of the integral over the imaginary axis
from —iw {0 +ix can be written in the form

The sign has to be reversed, and we cbtain the formula

d {T'(z)} 1 - . 22
@ &) gt h oo
It is preferable to write |
2
coth oy = 1 + o—

and observe that the integral obtained from the term 1 has the value 1/2.
We can thus rewrite (32) in t.he form

IV(2) dn
where the integra.l i8 now very strongly convergent, |

For 2 restricted to the right half plane this formula can be integrated.
We find

T'{2) _ 1 « 29  dw
(34) T(@) C + log z — 2 L 42 e —1

where log 2 is the principal branch and C is an integration constant. The
integration of the last term needs some justification. We have to make
sure that the integral in (34) can be differentiated under the sign of
integration; this i1s so because the integral in (33) converges uniformly
when z is restricted to any compact set in the half plane z > 0.

We wish to integrate (34) once more. This would obviously intro-
duce arc tan (z/9) in the integral, and although a single-valued branch
could be defined we prefer to avoid the use of multiple-valued functions.
That is possible if we first transform the integral in (34) by partial integra-
tion. We obtain
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© 20 dy 1 « 22—
f ! + 23 ) eh‘t — l (le + :3)! Iﬂg (1 - rlﬂ) d"

where the logarithm is of course real. Now we can integrate with respect
to z and obtain

(35) log I'(2)
=4 Gt (2 - g)lows 4L 7 i lon =z

where C” is & new integration constant and for convenience C ~ 1 has
been replaced by €. The formuls means that there exists, in the right
half plane, a single-valued branch of log I'(z) whose value is given by
the right-hand member of the equstion. By proper choice of €' we
obtain the branch of log I'(z) which is real for real 2.

It remains to determine the constants C and ¢’. To thisend we must
first atudy the behavior of the integral in (35) which we dencte by

1 fo 2 1

It is practically evident that J(z) — O for z— « provided that z keeps
away from the imaginary axis. Suppose for instance that z is restricted
to the half plane £ 2 ¢ > 0. Breaking the integral into two parts we
write
I
Jo=["+ [ =Ji+Js
k]

In the first integral In? 4 23| 2 [2|? — |2/2]* = 3i{z|*/4, and hence

4 - 1
|J1l s m ./0 ]Dg T—_ ﬁ_,“‘ dn.
In the second integral |5® 4 27| = |2 — #y| - |z + i3] > ¢]z|, and we find

1 ;= 1
|Jl| <;ﬂ jl-'l lﬂg'i—:-'g__—':;-‘ dﬂ.

Swce the mtegra.l oflog (1 — e %) is obﬂoualy convergent, we conclude
that J, and Je tend to 0 ag 2 — .

The value of C is found by substituting (35) in the functional equa~
tion I'(z + 1) = 2I'(2) or log I'{(z + 1) = log 2z 4 log I’(z); if we restrict 2
to positive values, there is no hesitancy about the branch of the loganthm
The subaﬂtut.lon yields

" 1 " LI 1 " ra [l * o " -
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C+Cz+CH++Dlogc+ 1)+ J(z1+1)
=C' +Cz+ (2 4+ ) log z + J(2),
and this reduces to

= — (z +%)Iog(1 +%) + J(z) - J(z+1).

Letting 2 — o« we find that & = —1.
Next we apply (35) to the equation T'(2)T(1 — 2) = x/sn 7z, choos-
ingz=§{+¢y. We oblam

2¢ - 1+iylog G +iy) —iylog @ — ) +J@ +dy) +J@ — i)
= Jog r — log cosh xy.

This equation, in which the logarithms are to have their principal values,
is 80 far proved only up to a constant multiple of 2xi. But for y = 0 the
equation is correct as it stands because (35) determinges the real value of
log T'(3); bence it holds for all y. As y — = we known that J& + ¢y)

and J(} — ty) tend to 0. Developing the logarithme in a Taylor series
we find

1
ty ¢ + log Z;y = —xy+ 1+ e(y)

1 X

r'l‘?f

Wy IOg

while in the right-hand member
log cosh xy = 7y — log 2 + es(y)

with e:(y) and es(y) tending to 0. These considerations yield the value
C' = } log 2x. We have thus proved Stirling’s formula in the form

(37) log T'(z) = 1 log 2r —z+ (2 — §) logz + J(2)
or equivalently ~
(38) I'(z) = /2% 2=l @

with the representation (36) of the remainder valid in the right half plane.
We know that J(g) tends to 0 when