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This paper presents a study of a minimum timé-to-climb trajectory analysis for aircraft flying in a two-
dimensional altitude dependent wind field. The time optimal control problem possesses a singular control
structure when the lift coefficient is taken as a control variable. A singular arc analysis is performed to obtain
an optimal control solution on the singular arc. Using a time-scale separation with the flight path angle treated

as a fast state, the dimensionality of the optimal control selution is reduced by eliminating the lift coefficient
control. A further singular arc analysis is used to decompose the original ophma] control solutmn into the flight
path angle solution and a trajectory solution as a function of the airspeed and altitade. The optimal control
solutions for the initial and final climb segments are computed using a shooting method with known starting
values on the singular are. The numerical results of the shooting method show that fhe optimal flight path
angle on the initial and final cimb segments are constant. The analytical approach provides a rapid means for

analyzing a time optimal trajectory for aircraft performance.

I. Introduction

The climb performance of an aircraft is an important design requirernent for establishing trajectories to reach a
specified altitude and airspeed after takeoff in some optimal manner. For transport aircraft, a climb segment may
follow a trajectory designed to achieve an optimal fuel consumption or a minimum time. Trajectory optimization
problems to minimize aircraft fuel consumption or time of climb had been studied by various contributors in the 70’s
and 80’s.””7 In recent years, minimum time problems have also been examined for many space systems.®" Many
approaches are found in literature for analyzing optimal flight trajectories for a minimum time-to-climb of an aircraft.
One sach method is based on the singular perturbation method that has been investigated for the minimum time-to-
climb problem.*> The singular perturbation method performs a time-scale separation of the fast and slow states in
flight dynamic equations so that the dimension of the problem is reduced by the order of the fast states. If the aircraft
is modeled as a point mass with three state variables: altitude, speed, and flight path angle, then the flight path angle is
considered as a fast state and therefore its differential equation can be treated in a quasi-steady state approximation.!*
This allows the flight path angle be treated as a control variable for the minimum time optimal control problem.

Another popular method is based on the energy state approximation method; % which-facilitates a-simple means
for computation by combining the altitude and speed variables into the energy state variable that represents the sum
of the kinetic energy and potential energy of the aircraft during climb. Because of the order reduction in the state
equations, the energy state approach enjoyed a popularity in minimum time optimal control problems. The total
energy level curves thus can be viewed as curves of sub-optimal climb path.!! Climbs or dives along the energy level
curves theoretically is supposed to take virtually little time. In some climb maneuvers, an aircraft often has to execute
an energy dive to trade altitude for speed. Once a desired speed is attained, the aircraft climbs out of the current energy
level curve and transitions into a curve that takes the aircraft to the next energy level curve. This transition curve cuts
across the energy level curves in an optimal manner such that the altitude can be gained in a minimum time. This
curve is known as the energy climb path: Fig. 1 illustrates an energy climb maneuver.

The energy climb path turns out to be a singular arc control problem that can be analyzed by the Pontryagin’s
minimum principle.'? In brief, the minimum principle introduces the concept of Hamiltonian functions in analytical
dynamics that must be minimized (or maximized) during a trajectory optimization. The optimization problems are
formulated using calculus of variations to determine a set of optimality conditions for a set of adjoint vatiables that”
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provide the sensitivity for the control problems.’® This is known as an indirect optimization method which typically
involves a high degree of analytical complexity due to the introduction of the adjoint variables that effectively doubles
the number of state variables. Furthermore, the solution method frequently involves solving a two-point boundary
value problem. Nonetheless, the adjoint method provides a great degree of mathematical elegance that can reveal the
structure of a problem. In some cases, exact analytical optimal solutions can be obtained. Except for simple problems,
many trajectory optimization problems require numerical methods that can solve two-point boundary value problems
such as gradient-based methods, shooting methods, dynamic programming, etc.

Fig. 1 - Time-Optimal Energy Climb Path

Within the framework of the Pontryagin’s minimum principle, the singular-arc optimal control method is an inter-
mediate method for the trajectory optimization. The existence of a singular arc in the time optimal control can simplify
the trajectory optimization significantly. Briefly, the singular arc is described by a switching function that minimizes
a Hamiltonian function when the Hamiltonian function is linear with respect to a control variable.

In this study, we will examine an aspect .of the minimum time-to-climb problem for an aircraft flying in the
presence of a two-dimensional atmospheric wind field. An analytical solution for the singular arc is obtained. Wind
patterns at a local airport can affect the climb performance of aircraft. While the time-optimal climb problems have
been thoroughly studied in flight mechanics, the effect of winds are usually not included in these studies. A solution
method of a minimum-time to climb will then be presented for computing 2 minimum time-to-climb flight trajectory.

II. Singular Arc Optimal Control

In our minimum time-to-climb problem, the aircraft is modeled as a point mass and the flight trajectory is strictly
confined in a vertical plane on a non-rotating, flat earth. The change in mass of the aircraft is neglected and the engine
thrust vector is assumed to point in the direction of the aircraft velocity vector. In addition, the aircraft is assumed to
fly in an atmospheric wind field comprising of both horizontal and vertical components that are altitude-dependent.
The horizontal wind component normally comprises a longitudinal and lateral component. We assume that the aircraft
motion is symumetric so that the lateral wind component is not included. Thus, the pertinent equations of motion for
the problem are defined in its the state variable form as '

hzvsin’y—l—wh (1)
. T-D—-Wsiny . L
D = e — 1), COS Y — W Sin Y @
m - -
. L—Wecos Wy sin 7y —~ Wy cOs
mu. Y
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where h is the altitude, v is the speed, v is the flight path angle, T" is the thrust force, D = Cpg¢S is the drag force,
L = CrqS isthe lift force, W is the aircraft weight, m is the aircraft mass, and w,, = w, (h) and w, = wp, (h) are
the respective temporal average horizontal and vertical wind field components as functions of the altitude. Thus, the
time rate of change of the wind field can be computed as

Uy = w,h = w,, (vsiny + wp) €y

W = wyh = w, (vsiny + wp) (5)
where the prime denotes the derivative with respect to the altitude h. The gradient of the wind velocity with respect to

the altitude is also called a vertical wind shear.!6 o
The problem is now posed as a minimization of the time-to-climb from an initial speed and an initial altitude to
a final speed and a final altitude at a final time . To formulate the time-optimal control problem, we consider the
following cost function
ts
J= dt ©)
0

‘

subject to state constraints by Egs. (1)-(3).
The boundary conditions for the problem are the initial and final altitude and airspeed of the aircraft as

h,(O) = Ay h(tf)-‘—‘h.f
’U(O) = ’U(if) = vy
M (h(0),v(0)) = My M (h(ts),v(ts)) = My

where M is the Mach number as a function of the altitude and airspeed. The flight path angle v (0) or 7y (¢¢) may be
free or fixed.

To solve for the time-optimal control problem of Eq. (6), we apply the Pontryagin’s minimum principle which can
be stated as follows: . ‘ :

Letz (t) : (0,t) — R™ be state variables and u (t) : (0,t5) — R™ be in a set of admissible control I that
guides a dynamical system described by & = f (z (t),u (¢)) from an initial state z (0) to a final state z (t5) where
f (z,u) : R™ x R™ — R"™ is some function, there exist a set of variables A (¢) : (0,t) — R", called adjoint variables,
such that we have the following necessary conditions for optimality casted in a Hamiltonian canonical structure

. BH (z(8),u(t), A1)
°e AT ; o
ERLCIRORL) .

where H (z (), u (t), A (t)) is the Hamiltonian function of the dynamical system which, for a minimum time-to-climb
optimal control problem, is defined as

H(z(®),u(t),A®) =1+ () f (= (¢),u () ©
The optimal control is given by the following necessary condition
w' (1) = argmip H (=" (1), u (1), A (1) 10

If the dynamical system is autonomous, that is f is not an explicit function of time, the Hamiltonian function is
required to be zero throughout the optimal solution®

Hz (@), u(t), ) =0 (11).

A singular control exists if the control variable v appears linearly in the Hamiltonian function H corresponding
ol K At o
0°H

= 12)

Su?
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Let S(z,A) : R™ x R® — R™ be a switching function defined by

OH
§=- (13)

Since the control u does not appear explicitly in .S, it cannot be determined explicitly. However, by differentiating
S repeatedly until the control v appears explicitly, then the control u is so determined. For the control u to be optimal,

the Kelley’s condition must be satisfied
a*s
(- 1) (dt2’° ) >0 (14)

For this problem, the Hamiltonian function is defined as

T—D— Wsinvy

— Wy COSY — Wh Siny
m

H(h,v,"/,)\h,/\v,/\,yT, Cr,Cp) =1+ Xy (vsiny -+ wp) + Ay (
4, (L—Wcos'y+ wzsinfymwhcosq/) (15)

muv v

where Ap, Ay, and A are the adjoint variables.
We define the specific excess thrust F’ and the wing loading factor n as functions of the altitude, Mach number M,
and Reynolds number Re as

F(h,v,Cr) = T[h, M (h,v)] = {Cpy [Re (5 ;;,)] +ECi}ale(h), M (h,v)] S 16
n(h,v,Cr) = Cralp <h)T;VM (h,v)] S an

where Cp o is the profile drag coefficient and K is the induced drag parameter.
Then, the necessary conditions for optimality result in the following adjoint differential equations

v

. OH : OF p N _ ) , ’
Ap = “on T —ApWp, — Av 9am ~ (w;c COS Y -+ Wy, s1n’)’> (vsiny +wp) — (wz cosy + wy, 31117) wy,
_ gon b a ) ( . l“ﬁ) LU (wwsin"y—whcosy)
Ay v 5h + (wz siny —wy, cosy | {siny + —~ )4 - (18)
. 8H . 8F , , .
Ay = 55 = —Apsiny — A, U (wz cos Y + wp sm7> sin -y
A gdn gn gcosy Wk (w;c siny + w;b COS7) ”
IR P T A 2 (19)
oH , . , ,
v T8y = —AvCosY = Ay [‘QCOS’Y —-v (w,: €o8 27 + wy, s1n27) + (wz siny - wy, cosy) wh}
i : , W, (w' cos'y—i—w;1 Sin’y)
~M 'g“Slv—nz +wy sin 2y — wy, cos 2y + E ©0)

In order to determine the extremal control to achieve a fastest climb path, we take the lift coefﬁc1ent C’ 1, as a control

vanable Then the optimal control is one that renders the Hamiltonian stauonary el
8H 2KC%qS qS ‘ A
oCy, Y m + T mu =0 2K v, @D
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subject to the inequality constraint Cr, min, < CF < Ch mag-

The optimal 1ift coefficient in Eq. (21) may be solved by a two-point boundary value problem using a numerical
method such as a shooting method or a gradient descent method. Such a numerical solution often - does not reveal a
structure of the optimal control analytically. In most cases, it is found that this problem can be approximated as a
singular optimal control problem by making an assumption that the induced drag parameter K is usually small and
therefore can be neglected. In fact, the ideal induced drag parameter for an elliptical wing loading is given by

1
— 22
TAR ©2)
where AR is the aspect ratio. For a typical transport aircraft, the wing aspect ratio is about 7 so that the ideal K

parameter is about 0.045. Thus, this assumption is reasonable.
Under this assumption, we see that 92H/8C% = 0 and so there exists a singular control with a switching function

S = ,\,,g—j—} 23)

Since ¢S/mv > 0, we then obtain a bang-bang extremal control as

. OL,ma:z: /\’y < 0 ’
Cr= C’L,ssing Ay =0 24
CL,min /\'y >0

The bang-bang control law is thus viewed as a sub-optimal solution to the minimum time optimal control problem.
Equation (24) states that the minimum-time-to-climb trajectory is approximated by three sub-optimal arcs. The first
arc is a trajectory on which the aircraft flies at some initial altitude and airspeed at 2 maximum lift coefficient until
it intercepts with a singular arc trajectory defined by the second switching condition. The singular arc is an optimal
flight trajectory for the fastest climb® and is also called an energy climbpath (ECP) since it is a path that crosses a set
of level curves of constant energy heights £ = h + v%/2g as illustrated in Fig. 1. At some point on this trajectory, the
aircraft climbs out of the singular arc and flies along a final arc with a minirmum Lift coefficient to arrive at the final

altitude and airspeed. .
To find a singular control, we use the fact that S = 0 and S = 0 on the singular arc to establish that A, = 0 and

Ay = 0. Hence, this allows us to eliminate A, in Eq. (20) by solving for As

Ay = A, |9y WaCosZyFwysinZy TR (wm tany — wh) (25)
v cosy v

The remaining adjoint equations (18) and (19) now become
N 8F ’ ! 7 1" 1 2 2 \
Ah = Ay {——g (—— + %ﬁ-) + {wzwhtanql -+ W,V CosY + wyvsiny — (wh> } (sin'y + -w;ﬁ) } (26)

- oF. s . : ' ;
Ay = Ay {—g (5[}— + —SEE—’Y—) A—!— siny <wx tany — wh> (sm’y + E;ﬁ)] @7 )

Differentiating Eq. (25), which is equivalent to computing S = 5\7, and then substituting Eq. (27) into the resulting
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expression yield

) , , SF 4 9y 4+ ! sin?2 Wh (w' tany — wé)
% {,g n <w$tan'y _ wh> wh} _OF |9, wacos2y+uwysindy i
v Ov |v cos Yy v

A=Ay

gn . 5 : W Wh 9 {. A RT
+ *— [—w_sin¥ {3 + tan + 2w, cogy — —Z—r < 3w_tany — 2w, + ————
v { ® 7( 7) n COSY UCOSQ'J + v ( Wz v h mcosv)

2
2 (w;> tan-y e 2
w. . A R
+ | (sin"/—l— %J + Zs%h (33mﬂ/+ 2—@1) — (wh> (s1n7+ Eﬁ)

cosy v cos7y.. v v

g cos2y +wfsinzy _ wn (vl tany — uj) (siny+22) 4 @8)
cosy v v

By equating Eq. (28) to Eq. (26), the singular arc for a minimum time-to-climb is now obtained as
oF .vz aF
h = (1 — F 1 _—— Logy = 29
Fhv,7,m) =(1—-a1) F+( —}—ag)’uav gah+a3n as=0 (29)

with the coefficients a1, a2, a3, and aq described by the following functions of the wind field parameters

Wh, (w; tanvy — w;>

a1 = (30)
g
v ('w; cos 2y + w;l sin 27) W, (w; tany — w;l)
az = - €Y
gcos?y g
v o+ 9 y w;wh
ag = — {w,siny (3 + tan — 2wy, cos 32
3 g_[ 28 ( 7) — 2wy co ’7%00327} (32)

. 2 | 9, (w’ tany — w;z) -,, i ‘ | 2w,
_ (vsmfy-!—wh) s\ "= —f—v(wz tan”/——'wh> _2 3w, tany — wy, + YsTh ) (33)
g cos 7y : g veosy

Equation (29) is a partial differential equation in terms of the specific excess thrust /' that describes an optimal
climb path for a minimum time-to-climb solution for an aircraft flying in the presence of an altitnde dependent at-
mospheric wind field. Examining Eq. (29) reveals that there is a high degree of cross coupling between the horizontal
wind field and the vertical wind field up to the second derivatives of the wind fields. Thus, not only the wind field
gradients affect the optimal climb path, but the wind field curvatures also play a role as well. Equation (29) results
in a parabolic equation in terms of Cf,, which can be solved to give a feedback control for the Lift coefficient on the
singular arc as a function of the three state variables A, v, and .

A certain simplification of Eq. (29) can be made by considering the concept of fast and slow states in flight
dynamics. Ardema had shown that in optimal trajectory analysis, the three-state model of a point mass aircraft exhibits
a time-scale separation behavior whereby the state variables h and v possess slower dynamics than the state variable
~.3 This time scale separation is normally treated by a singular perturbation analysis by replacing the fast state equation
with the following equation

o = L —Wecosy L Us sin -y — Wy, coSy 34)
‘ [ —— ' v

where €18 a small parameter.

Equation (34) has an inner solution and an outer solution, which is the steady state solution obtained by seffing
¢ = (0. The inner solution can usually be solved by the method of matched asymptotic expansion. The innet solution
is also called a boundary-layer solution in reference to the historical origin of the singular perturbation method in
the fluid boundary layer theory. The overall solution is dominated by the outer solution with the inner solution only
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affecting a small initial time period. As a first order approximation, the inner solution can sometimes be ignored. In
this case, Eq. (34) results in the following load factor

{(vsiny + wp) (w; sin -y — wy, cos ’y)
7= COoS"y — s (33)

Equation (35) thus dethrones the number of state equations from three to two by converting the state variable
into a control variable in place of the lift coefficient Cf,. Substituting Eq. (35) into Eq. (29) now yields the optimal
climb path function

W, (w; tany — w}t) 8F v, (w; cos 2y + w;L sin 27) W, (w; tany — w;l)
flhyv,v)=F |[1- +u— {1+
g dv gcosy g

2 / . 2
vEOF v - ’ W, W, vsiny + wp, " p
— ——— — — | 2w, sin®yt i Dy + == e £ - )
R ( w, sin®ytany + wy, cos 2y vcos'y> +v< ‘ w, tany — wy,

?

v usmy—r wh ( . N\ ,, ' 9 W W
w,tany —w —w,, tany cos 2v + 2w, co +E =0 (36
gk ) % h} k = Y 7 p COS™ 7Y p— } (36)

We have thus reduced the optimal climb path by removing the dependency on the lift coefficient. We now examine
some special cases of the general optimal climb path function f (k, v, 7):

1. Steady Wind Field:
For a steady wind field, the gradients and curvatures vanish, thereby reducing the optxmal climb path function

to the following
oF v2 oF
h F — =0 37

f ( 1 ,U) + 'U 8 g 8 h (3 )
Equation (37) is the well-known result for the ECP without an atmospheric wind field. Thus, the optimal climb
path in the presence of a steady wind field is effectively the same as that without the wind field effect. This result
is not surprising and can be explained by the fact that since the inertial reference frame is attached to the air
mass, whether the air mass is moving at a constant speed or remains stationary, the speed of the aircraft relative
to the air mass is the same, thus resulting in the same optimal climb path.

2. Horizontal Wind Field:
In the presence of a horizontal wind field only, the optimal climb path function becomes

5 oh g - ; g

i3 (1 + v, COS 2’)«) v2OF  2vw, sin®~ytany N v3w, sin® ytany
o) i

1]
Flhv,y)=F+v—
gcosy
— ———————sinvtan2fycos%/ =0 (38)

Specializing Eq. (38) for small flight path angles by invoking sin -y ~ v and cosy = 1 yields

; 2
oF (| wi\ _wor |aww, wwf ()| .
dv g Oh’ g g2 9 h

f(hov)=F+v— 7 -~ + y

3. Vertical Wind Field:
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In the presence of a vertical wind field only, Eq. (36) becomes

7 A - . 9 ’ ’ 5 7 2
F(ho,7) = F (1+ —“’h“’h> A <1+ vy st 2y, w"wh) - Te
g

ou g cosy g g

2
. : 2 2 (w;) oS Y /. a
S (vsm';+wh> _ : <vs1n7+wh> —0 (0

For small flight path angles, Eq. (40) reduces to

. F Qv "N 2 ’ ., , 2
f(h,v,7)=F(1+whwh> +v%_v (H_%’ﬂ_;_w_%> L (kum)
g

Vertical wind field is especiaily imporiant for microburst problems. A microburst is a wind shear disturbance
o

characterized by an unusually strong downdraft near the ground surface that presents an extreme hazard fo
aircraft during take-off or landing.

J. Optimal Solution

During a climb, the aircraft flies under a maximum continuous thrust from take-off to a point in the flight trajectory
envelope where it intersects with the optimal climb path. The aircraft then maintains its course along the optimal climb
path until it reaches some point on the optimal climb path where it climbs out to the final altitude and airspeed. Thus,
there exist three climb segments during a climb as illustrated in Fig. 1 labeled as A, B, and C where B is the singular
arc optimal climb path. The suboptimal solutions for the climb segments A and C may be defined by lines of constant
energy heights B = h + v2/2¢.1!

From the optimal control perspective, the initial and final climb segments are to be determined by requiring the
Hamiltonian function as defined in Eq. (15) to be zero. In addition, the adjoint variable A, is no longer restricted
to zero according to the first and last switching conditions in Eq. (24). Thus, in general, the optimal solutions for
the initial and final flight segments are considerably more complex than the optimal climb path solution and usually
involve solving a two-point boundary value problem.

First, we shall consider the singular arc optimal solution. Along this singular arc, all the state and adjoint variables
are functions of the altitude h, airspeed v, and flight path angle . However, it can easily be shown that the flight path
angle -y on the singular arc optimal energy climb path is in turn a function of the altitude h and airspeed v. Therefore,
the two variables h and v uniquely determine the optimal climb path. In particular, for the case of small flight path
angles for which Egs. (39) and (41) apply. The optimal climb function f (h,v, v) can be written as

3
Fhv,y) =) filhv)y' =0 42)

n=0

where f; are explicit functions of v and A.
The time derivative of f (h, v, v) is evaluated as

f= Z(af’h+%'>v" 43)

taking into account that the assumption ¥ = 0is built into the climb path function.
" Substituting Eqs. (1)-(3) intc Eq. (43) then yields the following polynomial equation that can be §91y.egi fo.x} the
flight path angle v R

2

3
7+ eyt + ) ci(hv)y =0 (44)
=0
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where the coefficients ¢; are

8fs
cs (h,v) = —a—;vwh (45)
a a .1 s a ’ )
ca (hyv) = 79%'0 — 5]% (vwx + wpwy, + g) — —(,_)Iv%vwh (46)
4 _Ofi | Ofs B ’ Oficr Ofim ’ / Ofi—2
ei(h,v) = T (Fg whwz) + ET " (vwx + wpwy, +g> = =5 W )

Equation (44) gives the flight path angle as a function of the altitade and speed. Thus the optimal climb surface
function f (h,v, ) can be replaced by a climb path function f (A, v,y (h,v)) upon embedding the solution of the
flight path angle from Eq. (44).

The adjoint variables along the optimal climb path are now determined from enforcing the conditions H = 0 and
Ay = 0 on the singular arc as

_ g+ vw; + 2vw;ﬂ - whw;’y + whw;b 8)
gv (F =) + (vy + wr) (g + vw),y — wawyy + wawy,)

v A
Ao gv (F = 7) + (vy + wn) (g + vw)y — wpwyy + wawy,) w.y)
The foregoing analysis has shown that the along the singular arc, the time optimal trajectory is known in the v — h
plane as well as the flight path angle and the adjoint variables. This information greatly facilitates the optimal solutions
for the climb segments on the initial and final arcs. Since the initial conditions on the initial climb segment are known
according to the problem statement and the fact that its solution must terminate on the optimal climb path function
for which all the state and adjoint variables are known, then the optimal solution for the initial arc can be computed
using a shooting technique to integrate backward from some point B on the optimal climb path to the initial point
A as shown in Fig. 1. Likewise, to compute the optimal solution for the final arc, a shooting method may be used
to integrate forward from some point C on the optimal climb path to the final point D that terminates at the desired
altitude and airspeed. A shooting method may be established as follows:
The flight path angle v not on the optimal climb path function can be solved by setting the Hamiltonian in Eq. (15)
to zero with the usual small angle assumption, thus resulting in the following quadratic equation

/\1,vw;l'y2 + [)\hv - Ay (g -+ vw; - whw;L)} Y4+ 14 Apwn + Ay (Fg — whw;> =0 - (50)
Equation (50) is then used to eliminate the flight path angle expression in the adjoint equation in the adjoint

differential equations (18) and (19), which can then be parameterized in terms of the altitude as the independent
variable instead of time using the following transformation with the small angle assumption

Xy An _ —Apwy — Ay [Q%Ihz - (w: + wg'y) (vy +wp) — (w; + w;ﬂ) w;b]

= 51
dh h vy + wh 613
Dy “An = e [g%% - (w; + w;p/) 'y] 52)
dv f - vy + wp (
In addition, the airspeed can also be parameterized as a function the altitude as
d y F— ' ,

dh h vy + wp

Equations (50)-(53) are then integrated either forward or backward using the known state and adjoint variables on
the optimal climb path as the starting values at points B and C. The shooting method then iterates on these known
values on the optimal climb path until the conditions at points A and D are met.
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IV. Numerical Example

We compute the time optimal climb trajectory of a transport aircraft in a horizontal wind field. The aircraft has a
maximum thrust T}, .. Which varies as a function of the altitude as

T = Thos (£'> (54)
Po

where p is the density, pg is the density at the sea level, and @ is a constant.
~ Using Eq. (35) with the small flight path angle approximation, the specific excess thrust is computed as

Tnaz [ P ¢ Cp %_p,UQS
- i I i 55
F w (Po W )

The optimal climb path function, Eq. (39), is equal to

2 : 2 C 1 25 ) 2 9 /
f(vyh)xz%lg<—@> (1_22%)_ D3PY (Q_U__cfg+ 'uwz)
£o pg an W \ pgdh g '

2
) .
B e . RN ) ¥ =0 (56)

The aircraft has the following values: 77,5, =40000 Ib, W =200000 b, § =1591 ftz, Cp = 0.0343,and a = 0.7.
We will compute the singular arc for two typical horizontal wind field problems. The first wind field problem is a
low-altitude wind shear disturbance described by the following model

s s
Wy = a1e” *1 — age 2 (57

where, for the problem, a; = 250 ft/sec, ay = 200 ft/sec, hy = 6000 ft, and hg = 1000 ft.
The second wind field problem is a high-altitude wind field problem described by the following power law model

Wy = ag (h ;4}13) (58)

where, for the problem, ag = 250 ft/sec, hg = —1000 ft/sec, hy = 30000 ft, and @ = —17
The two types of wind field are plotted in Fig. 2.

x10°

T T T 7 7
— Wind Shear Profile < :
~— Power Law Profile - B B

Fig. 2 - Wind Shear and Power Law Models
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As can seen, the wind shear profile is characterized by a strong wind field gradient near the ground which can be
hazardous to aircraft during take-off and landing. i

To find the singular arc, we decompose the optimal climb path function, Eq. (56), in the individual functions
fi (R, v) according to Eq. (42). For a horizontal wind field problem, Eq. (44) is then formulated as a 4** degree
polynomial function in terms of the flight path angle -y. A physically correct root is obtained that yields the flight
path angle on the singular arc. The singular arc function f (A, v) then becomes a nonliniear function in terms of s
and v. To compute the singular arc trajectory in the v — h plane, we find the zero solution of this function using a
Newton-Raphson method as follows:

. . -1
Va1 = v — {ﬁ%ﬁ—)] £ (hsy ) (59)

The computed singular arc time-optimal climb paths for both wind field profiles are plotted in Fig. 3. Forreference,
we also compute the singular arc for zero wind disturbance. As can be seen, the singular arc climb paths are steep
paths that rapidly increase the altitude with a relatively smaller change in the air speed for the case of no wind. The
power law profile follows a similar pattern as the no-wind case, although the ground speed intercept is less. This
would mean that with the power law profile, the aircraft has to enter the singular arc climb path at lower speed than

were no wind. The sineular arc for the wind shear nrofile is the most interesting in that the Speed variation is
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significant over a wide range at a very low altitude. This is due to the strong wind field gradient over a short altitude.
At high altitude, the three singular arcs are converging, so the effect of wind field is less pronounced at high altitude.
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Fig. 3 - Singular Arc Time-Optimal Climb Paths

Ornce the singular arc has been determined, the values of h and v along the singular arc are plugged into the 4th
degree polynomial to solve for the flight path angle along the singular arc. The lift coefficients are also computed.
Figs. 4 and 5 are the plots of the flight path angle and lift coefficient on the singular arc climb paths. The flight path
angle for the no-wind case generally decreases with altitude. At high altitude, the flight path angle for the two wind
profiles converge to that of the no-wind case. The wind shear case as usual shows a drastic change in the flight path
angle along the singular arc at low altitude. The lift coefficient generally increases with altitude for the no-wind case.
The lift coefficient for the wind shear case varies greatly at very low altitude and is quite large at ground level due to

.the low ground speed intercept required to enter the climb path. .

We next compute a complete trajectory from take-off to some final altitude and air speed. We only consider the
wind shear case. The initial ground speed at take-off is about Mach 0.2 or 224 ft/sec and the desired air speed at
15000 ft is Mach 0.5 and 0.6. The solutions not on singular arc require solving a two-point boundary value problem.
However, since the adjoint variables are completely determined on the singular arc, we can solve the trajectory off the’

‘singular arc quite easily using a shooting method by integrating Egs. (51) to (53) either forward or backward starting
from the singular arc. The adjoint solution on the singular arc is plotted in Fig. 6.
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The complete trajectory is plotted in Fig. 7. To climb to 15000 ft and Mach 0.5, the climb trajectory is comprised
of three segments. The first segment, segment AB, is the take-off segment on which the aircraft flies from take-off
ground speed to intercept the singular arc at point B. This occurs at a very low altitude. The second segment, or
singular arc segment BC, is the minimum-~time to climb path that takes the aircraft to a higher altitude in a fastest time.
At some point on this singular arc, the aircraft begins to depart at point C and flies on the final segment, segment CD,
to the final altitnde and airspeed. We note that the three segments join together and are tangent at points B and C. On
this path, the departure slope is to the left of the singular arc. In the region to the left of the singular arc, because the
altitude is continuously increasing, the thrust is maintained at the maximum value.

The situation for Mach 0.6 corresponding to the final segment EF is different. Since the aircraft must arrive at
Mach 0.6 which is to the right of the singular arc. Because the departure slope must be tangent to the singular arc and
curve to the left, there is no point below the final altitude where this tangency exists. As a result, the aircraft must fly
past the final altitude and then reduce the engine thrust to let the potential energy be convert to kinetic energy once the
aircraft begins to slow down. For the problem, we use a first-order model to describe the engine thrust reduction from
the maximum value to an idle value at roughly 20% of the maximum thrust. The segment EF is sub-optimal in that the
engine thrust varies so that it becomes a control variable in addition to the flight path angle. Nonetheless, it is a very
good approximation since the segment EF approximately follows a total energy curve.
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Fig. 7 - Climb Trajectory
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Fig. 8 - Lift Coefficient on Climb Trajectory
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The lift coefficient variation on the climb trajectory is shown in Fig. 8. The lift coefficient varies greatly from
a maximurm take-off value to about 0.4 at a very low altitude. Depending on the wind shear profile, this may not
be feasible due to the slow retraction of flaps and slats deployed during take-off. The flight path angle on the climb
trajectory is plotted in Fig. 9. The flight path angle for the initial segment AB and the final segment CD are computed
using Bq. (50) as a function of the adjoint solution computed from the shooting method. It turns out that the computed
flight path angle is very nearly constant as shown in Fig: 10. Thus, an approximate trajectory can easily be computed
by only integrating Bq. (53) using a constant flight path angle at a point of tangency to the singular arc. The final
segment EF is computed using this approach.

To examine the optimality of the computed solution, we compute the values of the Hamiltonian function along
various climb segments. The segments AB, BC, and CD are optimal so the values of the Hamiltonian function are
equal to zero. The climb segment EF is sub-optimal and that fact is clearly illustrated by the non-zero value of the
Hamiltonian function. Nonetheless, it is a reasonable approximate solution, given that the problem would have been
formulated with the engine thrust as an additional control variable, which would result in a more complex problem.

Fig. 9 - Flight Path Angle on Climb Trajectory
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Fig. 10 - Flight Path Angle Computation
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V. Conclusions

A solution to a minimum time-to climb problem in an altitude dependent two-dimensional wind field has been
presented. This problem possesses a singular ¢ontrol structure when the lift coefficient is taken as a control variable
with the induced drag effect neglected. The optimal climb path on the singular arc is obtained as a fanction of the three
flight state variables and the lift coefficient as a control. A time-scale separation is used to reduce the dimensionality
of the optimal climb path function by converting the lift coefficient control into the flight path angle control. Using
the singular arc analysis, this three-dimensional function can be further decomposed into a solution for the optimal
flight path angle and a two-dimensional climb trajectory as a function of the airspeed and altitude. The known adjoint
variables on this optimal trajectory significantly simplifies the general optimal control solution for the initial and final
climb segments. A shooting method is formulated to solve numerically the trajectories of the initial and final segments
using the known solutions on the optimal climb trajectory. A numerical example for a wind shear profile is computed
to demonstrate the analytical method. It is found that the computed flight path angle off the singular arc is nearly a
constant and therefore can be used as a very good approximation. The analytical approach provides a rapid means for
estimating climb trajectory of aircraft flying in the presence of atmospheric wind.
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