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A B S T R A C T 

The behaviour of relativistic electrons in the radiation belt is difficult to diagnose as their dynamics are controlled by simultaneous 
physical processes, some of which may be still unknown. Signatures of these physical processes are difficult to identify in large 
amounts of data; therefore, a machine learning approach is developed to classify energetic electron distributions which have been 

driven by different mechanisms. A series of unsupervised machine learning tools have been applied to 7 yrs of Van Allen Probe 
Relativistic Electr on-Pr oton Telescope data to identify six different typical types of plasma conditions, each with a distinctly 

shaped energy-dependent pitch angle distribution (PAD). The PADs at lower energies have shapes as expected from previous 
studies – either butterfly, pancake, or flattop, providing evidence that machine learning has been able to reliably classify the 
relativistic electrons in the radiation belts. Further applications of this technique could be applied to other space plasma regions, 
and data sets from inner heliospheric missions such as Parker Solar Probe and Solar Orbiter, to planetary magnetospheres and 

the JUICE mission. Understanding PADs across the heliosphere enables researchers to determine the physical mechanisms that 
drive pitch angle evolution and investigate their spatial and temporal dependence and physical properties. 

Key words: radiation belts – electrons – machine learning – unsupervised; pitch angle distributions. 
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 I N T RO D U C T I O N  

he behaviour of energetic particles in the Van Allen radiation belts
s difficult to diagnose due to their complicated dynamics. At times,
adiation belt dynamics can be dominated by a multitude of loss,
ransport, and acceleration processes (Reeves et al. 2003 ; Baker
t al. 2018 ; Li & Hudson 2019 ; Chu et al. 2021 ; Chakraborty et al.
022 ) including magnetospheric shadowing (e.g. Herrera, Maget &
icard-Piet 2016 ; Staples et al. 2020 ), and wave-particle interactions
e.g. Artemyev et al. 2016 ; Ripoll et al. 2020 ) involving pitch angle
cattering (e.g. Summers & Thorne 2003 ; Chaston et al. 2018 )
nd atmospheric precipitation (e.g. Rodger et al. 2007 ; Rae et al.
018 ). These different physical processes drive relativistic electron
ehaviour at different energies and pitch angles, leading to differently
haped energy-dependent pitch angle distributions (PADs). Hence,
ADs are essential in understanding the state of plasma regions
Bakrania et al. 2020a ) that can have a pancake (peak at 90 ◦), butterfly
electron flux minima at 90 ◦), or flattop (flux plateau o v er a range of
itch angles centred on 90 ◦) shape (Horne et al. 2003 ; Gannon, Li &
eynderickx 2007 ; Souza et al. 2016 ; Zhao et al. 2018 ; Chakraborty

t al. 2022 ). 
The Van Allen Probe mission (Mauk et al. 2013 ), provides over

 years of e xtensiv e, high-quality observations of radiation belt
articles (Baker et al. 2018 ) to analyse radiation belt physics. For
 E-mail: s.killey@northumbria.ac.uk 
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elativistic electrons ( > 1 MeV) alone, there are almost 20 million
bservations measured using the Relativistic Electr on-Pr oton Tele-
cope (REPT) instrument (Baker et al. 2013 ). Identifying physical
rocesses that drive the behaviour of relativistic electrons in such
ig data is a difficult and lengthy process. Therefore, to understand
elativistic electron behaviour, we must first understand the response
f MeV electrons to changes to the magnetosphere by investigating
heir distributions. Ho we ver, with 20 million observ ations, it is
mpossible to reliably identify PADs of similar shape by eye, which
ikely introduces significant bias to the results. Traditional PAD
tudies typically pre-define the shape of the distributions a priori
e.g. Liu et al. 2020 ; Chakraborty et al. 2022 ; Ozeke et al. 2022 )
t given energies. In this work, we adopt a different approach and
onsider PADs at all energies and without the assumptions of specific
AD shapes. 

Machine learning classification methods have been found to be
ncredibly useful in space physics, including for investigating the
ifferent plasma regions in the Earth’s magnetosphere (e.g. Breuillard
t al. 2020 ; Innocenti et al. 2021 ) and other planetary magnetospheres
e.g. Cheng, Achilleos & Smith 2022 ; Yeakel et al. 2022 ), identifying
olar wind types (e.g. Camporeale, Car ́e & Boro vsk y 2017 ; Amaya
t al. 2020 ; Bloch et al. 2020 ), and solar wind characteristics (e.g.
akrania et al. 2020b ) and even space weather forecasting (e.g.
aimaiti et al. 2019 ; Smith et al. 2020 ). Machine learning methods

ave also increasingly been used to model the highly dynamic
adiation belts (e.g. Bortnik et al. 2016 ; Chu et al. 2021 ; Wing et al. 
022 ). 
© 2023 The Author(s). 
ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 
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Table 1. The random, shuffled 20:20:60 splitting of the training, validation, and testing sets, respectively, between 2012 
September and 2019 July. 

Set Split (per cent) Number of observations Date range 

Training 20 3 995 838 2012 September–2019 July 
Validation 20 3 995 838 2012 September–2019 July 
Testing 60 11 987 516 2012 September–2019 July 
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Recent classification works using machine learning by Bakrania 
t al. ( 2020a ) have been performed on plasma sheet electron distri-
utions that yield robust identifications of clusters of PADs. These 
lusters can then be analysed to identify mechanisms that result 
n different particle populations in the magnetotail (Bakrania et al. 
020a ). Using a different machine learning technique, Souza et al. 
 2016 ) determined similarly shaped PADs of 1.8 MeV relativistic 
lectrons using a month’s worth of REPT data, evidencing that ma- 
hine learning can identify underlying relationships and classify large 
article data sets. By adapting the method of Bakrania et al. ( 2020a ),
e present a new unsupervised learning technique (Section 3 ) applied 

o relativistic electron data to cluster similar energy-dependent PADs 
ogether (Section 6 ) for the duration of the Van Allen Probe mission.
n this paper, we describe this new technique and its suitability to
lasma PADs, using Van Allen Probe REPT data as an e x emplar. 

 INSTRU M ENTATION  

he NASA Van Allen Probes follow an elliptical orbit of ∼600 
m × 5.8 R E with a ∼10 ◦ inclination, meaning that the satellites
ollect observations from both the inner and outer radiation belts 
ith an orbital cadence of 9 h (Mauk et al. 2013 ). We analyse

elativistic radiation belt electron fluxes from 1 to 20 MeV measured 
y the Van Allen Probe REPT instrument (Baker et al. 2013 ) at a
emporal resolution of the order of tens of seconds for the entire
an Allen Probe mission lifetime between 2012 September and 
019 July. In this paper, we apply the technique to Van Allen
robe B only, although this technique is valid for any spacecraft 
easurement. 
REPT measured flux f as a function of 17 different pitch angles PA

nd 12 energies E , meaning that at each observation time t there are a
otal of 204 individual energy-pitch angle bins or ‘dimensions’. The 
ux, which we refer to as f ( PA , E , t ), from REPT was then normalized
ith respect to the maximum flux of each observation, in order to

ocus on the shape of distribution rather than predominantly on the 
article flux or density. As we are interested in understanding the 
hape of the PADs rather than the magnitudes, this step has minimal
mpacts. Although we note here that this technique can be adapted 
ithout issue if the magnitude of flux was of specific interest. The
ormalized three-dimensional (3D) array of size 17 × 12 × N t , 
here N t is the number of observations, was flattened to a 2D array
f size 204 × N t for easier processing in the early stages of machine
earning. We consider PADs across all energies rather than a subset
s an e x emplar; the machine learning techniques of this study can be
asily adapted to consider a smaller range of energies and therefore 
 lower number of dimensions. 

Due to the multidimensionality of REPT data, we employ a 
-step process to reduce the number of dimensions to a more 
anageable number while considering the linear and non-linear 

rends within the data and retaining the most important informa- 
ion. Dimensionality reduction was first achieved by applying an 
utoencoder (AE; Section 4.1 ) to compress the REPT data from
04 dimensions to 102 dimensions, before then applying principal 
omponent analysis (PCA; Section 4.2 ) to further compress the data
nto only three dimensions. The 3D REPT data was then classified
y first using a mean shift algorithm (Section 5.1 ) to determine
he number of clusters, before a k-means algorithm (Section 5.2 )
as applied to sort the relativistic electron data into this number of
roups. 

 M AC H I N E  L E A R N I N G  T E C H N I QU E S  

.1 Train – validation – test split for machine learning 

nsupervised machine learning is a valuable tool used to determine 
mportant characteristics in data without prior teaching (Kyan et al. 
014 ) by imposing as few a priori decisions as possible, e.g. the
umber of clusters. Standard practice for machine learning is to split
he data into three: a training, validation, and testing set. This is done
o ensure that the resultant model will not automatically return a
iased output; as such the model should not be trained on the same
ata that it is applied to. To limit any biases in the unsupervised
earning, we follow this standard practice by requiring both training 
nd testing data sets, such that each of the data sets is excluded
rom each other. A validation set is used in order to validate the
erformance of the model during training. 
To retain as many observations in the testing set as possible,

 20:20:60 training, validation, and testing split was applied to 
9979192 flattened f (204, t ) REPT observations. The splitting of
he data was achieved based on the randomly shuffled data points
sing the TRAIN TEST SPLIT Python tool (Pedregosa et al. 2011 )
ith a random seed of 4. By splitting the data randomly, each
f the data sets contains a mix of both quiet and active times.
ach data set will contain observations for every day within the
-yr window. Therefore, as geomagnetic storms are multiday events 
Murphy et al. 2020 ), it is guaranteed that each data set will contain a
ix of all geomagnetic conditions, which is critical for the machine

earning tools to learn and distinguish between these different activity 
imes. The numbers of observations included in each of the training,
alidation, and testing sets, respectively, are shown in Table 1 . 

When using a time series data set, splitting the data in this manner
ay result in the validation and training sets being correlated. 
his is because the dynamic flux time is larger than that of the

esolution of the data (Ma et al. 2022 ). Therefore, adjacent flux
easurements will ef fecti vely be the same. We acknowledge the

imitation of this splitting method; ho we ver, as this is an unsupervised
earning problem, we collect no accuracy metrics and therefore the 
otential autocorrelation between the training and validation sets is 
ot important. We limit the effect by randomly shuffling the REPT
bservations before randomly splitting to remo v e an y bias due to the
ata being ordered by timestamp. A validation set was provided only
o satisfy the building arguments of the first stage of the machine
earning, an AE (Section 4.1 ), and to determine if the model is
erforming as expected during its learning phase before being applied 
o the testing set. 
RASTAI 2, 548–561 (2023) 
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Figure 1. Schematic of the internal processes of an AE, where x i denotes the input data with dimensions in the range of 0 to k , ω are the adjustable weights, b 
is the applied bias parameter, ξ i represents the encoded layer neurons with dimensions in the range of 0 to l , where l is smaller than k , and ˆ x i is the reconstructed 
layer with dimensions the same as the input. 
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 DIMEN SION  R E D U C T I O N  

iven that REPT flux measurements have a high number of di-
ensions, the data can be difficult for unsupervised classification

ools to efficiently process (Bakrania et al. 2020a ) and visualize. As
ome of the dimensions within the data will be dominated by noise,
nstrument sensitivity, and the instrument noise floor (Baker et al.
013 ), to impro v e efficienc y and denoise the data, the flattened 204D
ux measurements underwent dimensionality reduction to compress

he data into a more suitable representation. The compression of data
o 3 dimensions was achieved in two stages: an AE (Section 4.1 ) and
CA (Section 4.2 ). 

.1 Autoencoders 

n AE is a form of neural network that can be used to compress
ultidimensional data while retaining both the underlying linear and

on-linear relationships within the data. The AE algorithm works
y mapping each flattened data point (neuron) to a hidden layer of
 lower number of dimensions (encoder) before then being mapped
ack to a layer of the same number of dimensions as the input
decoder). An example of an AE is shown in Fig. 1 . 

The mapping of each input neuron x i to each new layer neuron y j 
orks through the multiplication of inputs and weights y using y j =
 

i ω i x i + b . Here i is in the range of 0 to number of input dimensions
 , j is of the range 0 to number of encoded dimensions l , ω refers to
he weights associated with the mapping, and b is a bias unit which
as been applied and adjusted to impro v e the performance of the
E (Bakrania et al. 2020a ). The summation of weights and input
eurons and the addition of a bias parameter results in an acti v ation
alue y . The activation value is then transformed into a j th next layer
euron output by passing y j through an acti v ation function (Sharma,
harma & Athaiya 2020 ). The AE repeats this process for a number
f epochs (iterations) n , whereby the score of the previous epoch
s used to update the weights and bias parameters. In this case the
ASTAI 2, 548–561 (2023) 
core is the loss value, which should be minimized for an optimal
olution (Chollet et al. 2015 ). The loss value is a measure of how
uch information is lost during the compression of the data and,

n this case, is determined using the mean square error function
se = 

1 
N 

∑ 

( x i − ˆ x i ) 2 of input x i and reconstruction ˆ x i , where N is
he number of data points. The AE algorithm was built and applied
o the REPT flattened data using the Keras Python library (Chollet
t al. 2015 ) with a single hidden layer, a batch-size of 256, a learning
ate of 0.0005, 102 encoded dimensions, and an Adam optimizer.
atch-size determines the number of samples by splitting the data

nto batches. In order for the AE to be optimal, the batch-size needs
o be as close to the number of dimensions of the data set. Given
hat the batch-size is given by a 2 n function where n is an integer
Bakrania et al. 2020a ), we chose a batch-size of 256 (where n =
) to most closely resemble the 204 dimensions of our data set.
he learning rate modulates the change in learning rate of the data
 v er time and has a default value of 0.001 (Chollet et al. 2015 ).
he encoded dimensions refer to the smaller number of dimensions

neurons) in the hidden layer of the AE, and the Adam optimizer
as used for computational efficiency on large data sets (Kingma &
a 2014 ; Chollet et al. 2015 ). A stopping function was applied such

hat the AE would stop iterating when it had reached minimum loss
alue with a patience of 5, where patience refers to the number of
pochs where the loss value has not impro v ed (Chollet et al. 2015 )
nd is used to prevent overfitting the training data. To consider the
eproducibility of results, a TensorFlow (Abadi et al. 2016 ) random
eed of 1 was applied. 

To transform the acti v ation v alues into next layer neuron outputs,
e opted to use a Rectified Linear Unit (ReLU) acti v ation function

or the mapping between the input and encoded layers, and a
igmoid acti v ation function for the mapping between the encoded
nd reconstruction layers. 

ReLU is a popular non-linear acti v ation function described by
ax (0, y ). This means that for positive activation values, the

unction behaves as a simple linear function; ho we v er, for ne gativ e

art/rzad035_f1.eps
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Figure 2. Resulting AE loss curve for training (red) and validation (blue) 
sets with optimum parameters of a learning rate of 0.0005, batch-size of 256 
and 102 encoded dimensions. 
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nputs, the output will be saturated at 0 (Basodi et al. 2020 ).
 sigmoid acti v ation function was applied to the reconstruction 

ayer to add non-linear and more complex relationships in the 
econstruction in attempt to recreate the original input data. A 

igmoid acti v ation is a non-linear function described by 1 
1 + e −y , 

here y is the acti v ation v alue (Dubey, Singh & Chaudhuri
021 ). 
The AE needed to be tested during its building due to the number

f hyperparameters needed. A summary of the parameter tests and 
heir loss curves are shown in Appendix A . The learning rate,
atch-size, and encoded dimensions were determined to have the 
ost optimum values of 0.0005, 256, and 102, respectively. These 

arameters collectiv ely gav e the most minimum validation loss of
.02 per cent with a loss curve showing no signatures of o v er or
nderfitting and it is shown in Fig. 2 . The validation curve closely
igure 3. (a) Pitch angle – energy distribution example from one of the random
nput data. (c) The difference between the original and reconstruction. While ther
ifferences are due to information loss. 
ollows that of the training loss, suggesting that the model has not
een o v erfitted. As both the training and validation curv es decrease
 v er time, this implies that the model was able to learn the training
et and hence the model has not been underfitted either. 

Once trained, the AE was then applied to our test data set. The
econstructed f ( PA , E , t ) is then compared to that of the original input,
n example of which is shown in Fig. 3 . The o v erall shape of the
econstruction distribution (Fig. 3 b) remains the same as the original
Fig. 3 a) with no signatures of severe data loss or introduction of
issing data or anisotropies. While there are minor differences, 

hown by the flux differences in Fig. 3 c, the o v erall shape and
agnitudes remain almost identical given the chosen discretization 

f the colour scale. Ho we ver, it should be noted that there are small
hanges of less than 5 per cent resulting from the information loss,
hich we consider to be minimal. By comparing the original and

econstructed data which was created from the encoded layer with 
 lower number of dimensions, Fig. 3 gives confidence that the AE
s functioning correctly and with a small loss of data that does not
mpact the shape of the distributions. 

.2 Principal component analysis 

nce the REPT data was initially compressed to 102 dimensions, 
 PCA was applied to further compress the data to three dimen-
ions following Bakrania et al. ( 2020a ). PCA determines the data’s
igenvectors (or principal components) by calculating the covariance 
atrix of the data. The eigenvectors returned from the covariance 
atrix are hierarchical, meaning the top eigenvectors contain the 
ost important information. As three dimensions was the desired 

utput, the top three eigenvectors A were determined. The 102D data
 was then translated to 3D principal component space Z through Z
 x A (Bakrania et al. 2020a ). 
The PCA algorithm was applied using the PCA Python tool from the

cikit-learn package (Pedregosa et al. 2011 ). The top three principal
omponents account for a total of 74.47 per cent of the information
45.06 per cent, 23.61 per cent, and 6.30 per cent, respectively),
eaning that we can describe o v er 70 per cent of the 204D data
ith only three dimensions. A sensitivity test was performed in order

o understand whether three components were sufficient to describe 
his data set. The fourth principle component yielded only an extra
.69 per cent of information, therefore suggesting that the first three
omponents were sufficient to describe the REPT data in our analysis.
RASTAI 2, 548–561 (2023) 

 observations in the testing set. (b) The resulting AE reconstruction of the 
e are no large local differences, there are slight differences globally. These 
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Figure 4. (a) 3D representation of Van Allen Probe B REPT electron flux data in principal component space. Each of the dimensions corresponds to one of 
the principal components which contain the most important information. (b) The 3D representation of REPT data in each of the three PCA eigenvector space, 
where observations have been partitioned into eight predicted clusters using k-means. Each cluster has been arbitrarily assigned a different colour. (c) The 3D 

REPT data in PCA space, with a 95 per cent confidence interval applied to each cluster to restrict the effect of ambiguous classifications at the boundaries due 
to small spatial separations between clusters. 
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We chose three dimensions in order to visualize the three most crit-
cal dimensions of the Van Allen Probe REPT data. The resulting 3D
ata are shown in Fig. 4 a where each dimension is one principal com-
onent. The 2D projections are shown in Appendix D . Overall, the
ata set is still very dense, and it is not clear how to identify any data
hat have similar PAD shapes. Hence, we need to employ a classifi-
ation technique in order to identify PADs that have common shapes.

 CLUSTER ING  

nsupervised machine learning is utilized due to the unlabelled
ature of the data. Unlabelled data means that as well as unknowing
he truths of our data, the number of classifications within the data
rst needs to be predicted before any classifications can be made.
n order to classify these 12 million data points into meaningful
hysical categories, we use a mean shift algorithm (Section 5.1 )
o predict the number of clusters of data, before using a k-means
lgorithm (Section 5.2 ) to classify the data itself. 

.1 Mean shift 

ean shift is a non-parametric clustering technique based on the
ensity function of the data (Fukunaga & Hostetler 1975 ), which
n this case is 3D REPT data. Using the MEANSHIFT Python tool
n the scikit-learn package (Pedregosa et al. 2011 ), we can apply a
ean shift algorithm to predict the number of distinct classifications

r clusters of data within the REPT data. The algorithm works
y iterating between calculating and translating the mean shift (a
ector that describes the distance and direction of the nearest density
unction maxima) of each data point until convergence onto a density
unction maximum. The predicted number of clusters is then given by
he total number of density function maxima (Fukunaga & Hostetler
975 ; Bakrania et al. 2020a ). A mathematical description of the mean
hift algorithm is given in Appendix B . 

The mean shift algorithm requires a data-dependent bandwidth
hat defines the size of the window used to calculate the mean, which
eeds to be optimized for each data set. To optimize the bandwidth,
he ESTIMATE BANDWIDTH Python tool from the scikit-learn package
Pedregosa et al. 2011 ) was used, with 6000 samples, a quantile factor
f 0.1, and a random state of 0. The algorithm runs on time-scales
omparable to the quadratic of the number of samples (Pedregosa
t al. 2011 ), therefore 6000 samples were chosen to consider compu-
ational expense while yielding a comparable bandwidth estimation
o a test ran with 60 000 samples. The quantile factor relates to the
ASTAI 2, 548–561 (2023) 
roportion of data that is considered in the estimation of the band-
idth where from experience, typical values range between 0.05 and
.3 depending on the data set and computational resources. A sum-
ary of the bandwidth optimization is given in Appendix C with re-

pect to the Calinski–Harabasz (CH) score and Davies–Bouldin (DB)
ndex, where the CH score describes the variance between clusters
nd should be as high as possible. The DB index describes the similar-
ty between clusters and should be as low as possible. Mathematical
escriptions for these statistics are also supplied in Appendix C . 
For the 3D representation of REPT data, with an optimal band-

idth of 1.949, the mean shift algorithm predicted eight clusters with
 CH score of 1.990 × 10 6 and DB index of 0.941. 

.2 K-means 

he 3D data can be partitioned into this mean shift predicted number
f clusters using a k-means algorithm. We have applied k-means
lustering using the KMEANS Python tool from the scikit-learn
ackage (Pedregosa et al. 2011 ) with a random state of 0. K-means
lgorithms are computationally simple and fast to process, making
hem adv antageous e ven on large data sets. Moreo v er, k-means only
elies on a single parameter – the number of clusters k . K-means is
ased on minimizing the sum-of-squares (known as inertia) between
ata points in each cluster and works by assigning a k number of clus-
er centroids positions. The Euclidean distance d euc = || x i − C j || is
alculated for each data point x i within N observations and each clus-
er centroid C j . Observations are then assigned to the closest cluster.

The centroid positions are recalculated by taking the mean po-
ition of the intra-cluster data points. The process iterates between
etermining the nearest centroids and recalculating the cluster means
ntil the centroid position variance between iterations is zero. The
lgorithm iterates to locally make impro v ements to the partitions in
rder to minimize the inertia (Arthur & Vassilvitskii 2007 ; Pedregosa
t al. 2011 ). 

By using the k-means algorithm, the 3D REPT was partitioned into
he eight predicted clusters from the mean shift (Section 5.1 ) with a
H index of 8.258 × 10 6 and DB index of 0.997. The resulting 3D

epresentation in PCA space is shown in Fig. 4 b, where each cluster
s represented by a different colour. 

To test the stability of the results, a k-means test was also
erformed with a random state of 4. The result yielded less than
 1 per cent difference in the number of observations in each cluster,
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Figure 5. The mean PAD for each cluster across all energies. The colour bar represents the mean normalized flux. Each of the clusters shows a differently 
shaped distribution where for lower energies Cluster 0 (a) and Cluster 1 (b) show flattop like distributions where Cluster 1 is a significantly weaker distribution. 
(c) Cluster 2 is a narrow pancake distribution centred on 90 ◦. (d) Cluster 3 is another type of flattop that extends to ultra-relativistic energies. (e) Cluster 4 is a 
broader pancake than Cluster 2. Cluster 5 (f) and Cluster 6 (g) have butterfly-like shapes at lo wer energies; ho we ver, at energies higher than 10 MeV Cluster 6 
shows a flattop-feature. (h) Cluster 7 is the third pancak e-lik e distribution which is much weaker than the distributions of Clusters 2 and 4. 
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videncing that eight clusters is stable and valid regardless of the 
andom sampling. This test is shown in Appendix E . 

 CLA SSIFIC ATIONS  

.1 Cluster reduction 

ig. 4 b shows the positions of the eight clusters in 3D PCA space.
rom Fig. 4 b we can see that there are regions of well separated
ata points. Ho we ver , at the borders of each cluster , there is little
eparation, meaning that in those regions, it is difficult to reliably 
etermine which cluster the data point most closely resembles. 
herefore, to interpret the clusters, we limit our classifications by 

ocusing on observations more centrally concentrated within the 
luster. K-means, with a Euclidean distance metric, attempts to find 
pherically shaped clusters within the data (Jain 2010 ) and calculated 
nertia on the assumption that the clusters are isotropic (Pedregosa 
t al. 2011 ). We therefore take a 2 σ confidence interval around each
luster centroid by calculating the Euclidean distances of intra-cluster 
bservations from the cluster centroids and taking the top 95 per cent
f observations. 
The resulting clusters in 3D PCA space are shown in Fig. 4 c. These

educed clusters can be seen to be more spatially separated in PCA
pace, and therefore any potential ambiguous classifications at the 
oundaries have been restricted. 
.2 Pitch angle distributions 

o recap, each data point within the clustered data corresponds to an
ndi vidual relati vistic electron energy-dependent PAD. To investigate 
he shape of the PADs, the mean and median fluxes of the normalized
bservations in each cluster were calculated. The mean and median 
ADs are shown in Fig. 5 and 6 , respectively. We present both the
ean and median PADs in order to demonstrate that our results are

ot skewed by statistical outliers. The mean and median PADs with
espect to 1.8 MeV are shown in Appendix F . 

Each of the mean PADs in Fig. 5 indicate a different shape of
he distribution in energy–pitch angle space, which correspond to 
hysically meaningful PADs resultant from processes operating in 
he radiation belts. Fig. 5 shows the mean flux as a function of PA
 y -axis) and E ( x -axis). We notice that each of the clusters display
ifferent distributions. Clusters 2, 4, and 7 (Figs 5 c, e, and h) show
if ferent v ariations of a ‘pancake distribution’, which is described
s a peaked distribution centred on 90 degree (e.g. West, Buck &
alton 1973 ; Horne et al. 2003 ; Gannon et al. 2007 ; Chakraborty

t al. 2022 ). Fig. 5 c shows a narrower pancake distribution for Cluster
 than Cluster 4, whereas Cluster 7 (Fig. 5 h) is a much weaker
ancake than both Cluster 2 and 4. Clusters 5 and 6 (Figs 5 f and
) show a butterfly-like distributions at low energies ( < 2.5 MeV),
here there is a decrease in flux at 90 degree (e.g. West et al.
973 ; Selesnick & Blake 2002 ; Gannon et al. 2007 ; Zhao et al.
018 ; Chakraborty et al. 2022 ). Fig. 5 g ho we ver also shows a high
RASTAI 2, 548–561 (2023) 
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R

Figure 6. The median PADs for each cluster across all energies, with the colour bar representing the median normalized flux. The shapes of Clusters 0, 2, 3, 4, 
5, 6, and 7 (a, c, d, e, f, g, and h, respectively) are the same as the mean distributions shown in Fig. 5 . Cluster 1 (b) ho we ver sho ws a median normalized flux of 
0 that is a result of partitioning noisy observations together. 
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nergy ( > 10 MeV) flattop feature, a signature that is not dominant
n the other cluster distributions. This high-energy PAD may have
een caused by proton contamination in the inner radiation belt (e.g.
laudepierre et al. 2019 ). Cluster 0 (Fig. 5 a) sho ws e vidence of a
attop distribution which has a plateau of constant flux at pitch angles
f approximately 60–130 degree (e.g. Horne et al. 2003 ; Zhao et al.
018 ) and appears to be an intermediate distribution between Cluster
 and Cluster 5 (Figs 5 e and f) perhaps corresponding to evidence of
 transition between pancak e-lik e, flattop, and b utterfly distrib utions
Horne et al. 2003 ; Gannon et al. 2007 ). Fig. 5 b shows a low-flux
attop distribution for Cluster 1 whereas Cluster 3 (Fig. 5 d) displays
 flattop that extends to ultra-relativistic energy ranges ( ∼7 MeV).
uture applications of this work will entail looking more closely
t these ultra-relativistic flattop observations to determine if these
istrib utions ha ve resulted from noise or been driven by a physical
agnetospheric process. 
In terms of the median distributions (Fig. 6 ), for Clusters 0, 2, 3,

, 5, 6, and 7, the shapes of the distributions remain the same as
heir mean distributions in Fig. 5 , with slight differences only in the
alues of the average flux. However, Cluster 1 (Fig. 6 b) shows zero
ux at all pitch angles and energies. When in vestigated further , each

ndi vidual observ ation within this cluster displayed only signatures
hat corresponded to noisy or missing data. Similarly, observations
n Cluster 7 (weak pancake, Fig. 5 h), only contained observations
f low counts, close to that of the noise floor. Hence, our technique
as partitioned these noisy, low-count observations together within
wo clusters, which can then be neglected from further study. Our
ew technique has demonstrated that, by removing the clusters that
ASTAI 2, 548–561 (2023) 
ontained only noise and low counts, scientific data sets can be
leaned up and bad and/or missing data can be easily remo v ed. 

The distributions of the remaining six clusters at lower energies
ave shapes as expected from e.g. Chakraborty et al. ( 2022 ), Zhao
t al. ( 2018 ), Souza et al. ( 2016 ), Gannon et al. ( 2007 ), and Horne
t al. ( 2003 ). As the distributions are clearly different shapes,
his work suggests that these different types of distributions have
esulted from different magnetospheric drivers as discussed in e.g.
hakraborty et al. ( 2022 ), Chu et al. ( 2021 ), and Li & Hudson
 2019 ). Therefore, future applications of this algorithm and data
et include identifying the magnetospheric phenomena driving each
ndividual cluster and investigating the properties and spatial and
emporal dependence of the six physically meaningful clusters. 

 C O N C L U S I O N  

he behaviour of the radiation belts is difficult to diagnose due to their
ynamic nature and unpredictability. We can begin to understand the
lasma conditions of the radiation belts by looking at the energy-
ependent PADs of the relativistic electrons. The Van Allen Probe
ission provides over 7 yrs worth of relativistic electron observations
ith a temporal resolution of the order of tens of seconds (Baker

t al. 2013 ). This means there are millions of PADs available to
nalyse, which is impossible by eye. Ho we ver, by using a new
malgamation of unsupervised machine learning techniques adapted
rom Bakrania et al. ( 2020a ), entire relativistic electron distributions
 v er all energies and pitch angles have been characterized over the
ntire Van Allen Probe mission. 
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We use an AE and PCA to reduce the dimensions of Van Allen
robe REPT data f ( PA , E , t ) to a more manageable number for visu-
lization, in this case – three dimensions. The now 3D data was then
ble to be classified through unsupervised machine learning tools by 
sing mean shift to predict the number of clusters and k-means to
artition the data into the predicted number of classifications. 
Using this method, a total of eight different clusters were identified. 

pon investigating the average energy-dependent PADs, one of 
hese clusters contained only low counts and spurious data with 
n average flux of zero and the other contained low counts of
oisy, asymmetric pancake distributions – counts so low they can be 
onsidered negligible. The remaining six clusters displayed average 
AD shapes as expected from previous distribution studies at energies 
ower than 2.5 MeV – either flattop, butterfly, or pancake (Gannon 
t al. 2007 ; Souza et al. 2016 ; Zhao et al. 2018 ; Chakraborty et al.
022 ), with some clusters being wider in pitch angle space than others
otentially revealing an evolution between distribution types. Future 
pplications of this work will be to identify the physical processes
hat drive the behaviour of the relativistic electrons by investigating 
he properties and spatial and temporal dependence of the six clusters. 
ur findings show that this technique can be used to both classify

nd denoise large data sets of multidimensional data in space plasma 
hysics, using Van Allen Probe relativistic electrons as an e x emplar.
iven that we are looking for specific particle distributions in large 

mounts of data, this machine learning technique could be used to 
ine data sets from other plasma missions, where data is either less

lentiful or incomplete. These data sets could include new inner 
eliospheric missions such as Parker Solar Probe and Solar Orbiter, 
revious missions such with less data availability such as Mars 
xpress and Cassini, and potentially new missions such as JUICE. 
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Table A1. AE parameter tests performed in order to determine the most 
optimum batch-size, number of encoded dimensions, and learning rate. The 
most optimum parameters are taken to be those that had most minimal loss 
values and smoothest loss curve. Some parameters gave the most minimal loss 
value but showed potential signatures of o v erfitting in their loss curves, for 
this reason those parameter combinations were not selected. The combination 
of parameters that gave the most minimum loss and had an agreeable loss 
curve were found to be 256, 102, and 0.0005 for the batch-size, number of 
encoded dimension, and learning rate, respectively. 

Test Batch-size Encoded dimensions Learning rate Loss 

0 256 102 0 .001 0.000 191 129 
1 256 102 0 .0005 0.000 195 895 
2 256 51 0 .001 0.000 378 399 
3 256 51 0 .0005 0.000 377 934 
4 512 102 0 .001 0.000 198 566 
5 512 102 0 .0005 0.000 197 810 
6 512 51 0 .001 0.000 397 513 
7 512 51 0 .0005 0.000 397 850 
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PPENDIX  A :  A E  H Y P E R PA R A M E T E R  

PTIM IZATION  

n order to optimize the AE, a series of parameter tests were
erformed. The test that produced the most minimum loss value
nd had the most desired loss curve (with no signatures of o v er or
nderfitting) was determined to be the most optimal set of parameters,
 summary of the test results is shown in Table A1 . The lowest
 v erall loss was given by parameters of 102 encoded dimensions,
atch-size of 256, and learning rate of 0.001 (test 0); ho we ver, the
ASTAI 2, 548–561 (2023) 

Figure A1. AE paramet
esulting loss curve (Fig. A1 a) indicates a potential signature of
 v erfitting. Therefore, we take the second most optimal parameters
f 102 encoded dimensions, batch-size of 256, and learning rate of
.0005 (test 1) as the resulting loss curve (Fig. A1 b) does not show
ny noticeable signatures of overfitting. 
er test loss curves. 
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PPEN D IX  B:  M E A N  SHIFT  MA  T H E M A  T I C A L  

ESC R IPTION  

he density function f ( x ) is given by equation ( B1 ), where N is the
umber of observations x i , n is the number of dimensions, K is a
ernel function around the randomly assigned mean point x and 
ernel bandwidth h (Fukunaga & Hostetler 1975 ; Bakrania et al. 
020a ): 

 ( x) = 

1 

Nh 

n + 1 

N ∑ 

i= 1 

K 

(
x − x i 

h 

)
. (B1) 

o satisfy conditions of consistency and asymptotic unbiasedness, a 
aussian kernel k is applied to the K function (Fukunaga & Hostetler
975 ). The kernel function weights of the nearest neighbour data 
oints within the kernel window and is given by equation ( B2 ),
here c k is a normalization constant (Bakrania et al. 2020a ): 

 

(
x − x i 

h 

)
= c k k 

( ∣∣∣∣
∣∣∣∣x − x i 

h 

∣∣∣∣
∣∣∣∣

2 
) 

. (B2) 

The density gradient of the density function (equation B1 ) with a
aussian kernel (equation B2 ) is then derived to give 

f ( x) = 

2 c k 
Nh 

n + 2 

N ∑ 

i= 1 

( x i − x ) 

( 

−k ′ 
( ∣∣∣∣

∣∣∣∣x − x i 
h 

∣∣∣∣
∣∣∣∣

2 
) ) 

, (B3) 

here −k 
′ 
( X ) = g ( X ) (Comaniciu & Meer 2002 ; Bakrania et al.

020a ). Rearranging and substituting in the mean shift M h ( x ),
quation ( B3 ) becomes 

 h ( x ) = 

∑ N 

i= 1 x i g 
(∣∣∣∣ x −x i 

h 

∣∣∣∣2 
)

∑ N 

i= 1 g 
(∣∣∣∣ x −x i 

h 

∣∣∣∣2 
) − x , (B4) 

here the mean shift vector indicates the direction of the nearest 
aximum density for each data point x i . The window function is then

ranslated by shifting the mean, following equation ( B5 ) (Bakrania 
t al. 2020a ): 

 

t+ 1 = x t + M h ( x t ) . (B5) 

The mean shift recalculations and window functions translation 
ill be iterated o v er t steps, until M h ( x ) converges onto a density

unction maximum and therefore when the density gradient is zero. 
Table B1. Bandwidth optimization tests using the scikit-learn
samples n s amples , quantile factor Q , number of parallel job
estimation, and number of clusters n , with their CH scores and 
result with more than one clusters. 

n samples Q n jobs BW 

600 0 .1 8 1967 550
6000 0 .05 2 1.466 269
6000 0 .1 2 1.94 923
6000 0 .2 2 2.647 787
6000 0 .3 2 3.243 912
6000 0 .05 4 1.466 269
6000 0 .1 4 1.949 230
6000 0 .2 4 2.647 787
6000 0 .3 4 3.243 912
6000 0 .05 8 1.466 269
6000 0 .1 8 1.949 230
6000 0 .2 8 2.647 787
6000 0 .3 8 3.243 912
6000 000 0 .1 8 1.95 022 89

on
y repeating the process on each observation, each data point is
hifted to converge on a density point maximum (Comaniciu & Meer
002 ; Pedregosa et al. 2011 ; Bakrania et al. 2020a ). 

PPENDI X  C :  BA N DW I D T H  OPTI MI ZAT IO N  

o optimize the bandwidth for the mean shift algorithm, a series of
ests were performed. The tests were carried out using the scikit-
earn ESTIMATE BANDWIDTH tool (Pedregosa et al. 2011 ). This tool
elies on defining specific parameters – number of samples, quantile 
actor, and number of parallel jobs that affect the performance of the
unction. A summary of the tests is shown in Table B1 . 

To e v aluate the most optimum bandwidth, the CH score and DB
ndex was calculated for each test. The test that returned the most

aximum CH score and most minimum DB index w as tak en to be
he optimum parameter. 

The CH score is a statistical technique used when ground truths are
ot available. The index defines the variance ratio between clusters 
o describe their dispersion and separation following equation ( C1 ),
here the CH index ( s ) is ratio of the trace of the inter-cluster
ispersion tr ( B k ) o v er the intra-cluster dispersion of all clusters tr ( W k )
or N number of observations and k number of clusters (Pedregosa
t al. 2011 ): 

 = 

tr( B k ) 

tr( W k ) 

N − k 

k − 1 
. (C1) 

The larger the CH score, the denser and more separated the clusters
re and the better the algorithm has performed. The CH index was
sed to optimize the bandwidth value, by selecting the bandwidth 
hat resulted in a mean shift algorithm with the largest CH index. 

The DB index was also used to optimize the bandwidth. The
B index describes the similarity R ij between clusters ( i ) and their
ost similar cluster ( j ) with respect to their separation following

quation ( C2 ). The DB index measures the ratio of the cluster
iameters ( s ) of clusters i and j (where i and j = 1,. . . , k and i �=
 ) from the average distance between the cluster’s centroid and each
ntra-cluster data point o v er the distance between the i and j centroids
 ij (Davies & Bouldin 1979 ; Pedregosa et al. 2011 ): 

 ij = 

s i + s j 

d ij 
. (C2) 
RASTAI 2, 548–561 (2023) 

 ESTIMATE BANDWIDTH function showing the number of 
s n jobs used in each test, the resulting bandwidth BW 

DB inde x es. In all cases, only a Q score of 0.1 yielded a 

n CH score DB index 

 8 1967 550 0.93 523 
 20 1544 917 1.01 811 
 8 1990 235 0.94 146 
 1 NaN NaN 

 1 NaN NaN 

 20 1544 917 1.01 811 
 8 1990 235 0.94 146 
 1 NaN NaN 

 1 NaN NaN 

 20 1544 917 1.01 811 
 8 1990 235 0.94 146 
 1 NaN NaN 

 1 NaN NaN 

8 8 1990 849 0.94 157 

 18 April 2024
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The maximum similarity (equation C3 ) for each cluster is then
aken to be the DB index R̄ and relates to the appropriateness of the
artitions within the data set without the dependence upon clustering
ethod (Davies & Bouldin 1979 ): 

¯
 = 

1 

N 

N ∑ 

i= 1 

max R i , i �= j . (C3) 

A DB index close to 0 indicates that no clusters are similar, and
hus is the best possible score. 

By using the ESTIMATE BANDWIDTH function, the ambiguity of
etermining an optimal bandwidth manually based of their statistics
as been limited and yielded the most optimal result when the
ASTAI 2, 548–561 (2023) 
unction was considered with 6000 samples and a quantile of 0.1. As
here was no dependence on the number of parallel jobs, two jobs
ere applied to match the number of jobs used in the mean shift

lgorithm itself. 

PPENDI X  D :  2 D  P RO J E C T I O N S  

ig. D1 shows the projections of the 3D representations of REPT data
fter PCA (left-hand panel), k-means (central panel), and 95 per cent
onfidence interval (right-hand panel) has been applied for the PCA
–PCA 1 (top row), PCA 1–PCA 2 (middle row), and PCA 0–PCA
 (bottom row) projections. 
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Figure D1. The 2D projections of the 3D representations of the REPT data in principal component space. The top row reflects the PCA 0–PCA 1 projection, 
the middle row reflects the PCA 1–PCA 2 projection, and the bottom row reflects the PCA 0–PCA 2 projection. The columns reflect the 3D observation, the 
resulting k-means classifications, and an applied 95 per cent confidence interval, respectively. 
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R

Figure E1. The 3D representation of REPT data in each of the three PCA eigenvector space, where observations have been partitioned into clusters using 
k-means. Left-hand panel: The resulting k-means classifications using a random state of 0, the result used throughout this study. Right-hand panel: The resulting 
k-means classification test using a random state of 4. Though the cluster numbers are different due to the random placement of the k-means centroids, the 
number of observations within each cluster was within 1 per cent of the result from this study. 
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PPENDIX  E:  K - M E A N S  STABILITY  TEST  

o verify the stability of the k-means result, we ran a k-means
est with a random state of 4. The results of the test show only a
 per cent difference to the results of this study. The cluster numbers
re different due to the random positioning of the k-means centroids
nd the resulting 3D k-means test compared to the results of this
tudy are shown in Fig. E1 . 
ASTAI 2, 548–561 (2023) 

igure F1. The mean PAD for each cluster at 1.8 MeV. Each of the eight clusters sh
0 ◦, (b) Cluster 1 shows a significantly weak flattop, (c) Cluster 2 is a narrow panca
f) Cluster 5 is a b utterfly distrib ution, (g) Cluster 6 also shows a butterfly distribu
luster 7 is a low flux narrow peak centred on 90 ◦. 
PPENDI X  F:  1 . 8  MEV-DEPENDENT  PA D S  

ig. F1 shows the mean PAD of each cluster with respect to the
rst energy bin (1.8 MeV). Fig. F2 shows the median PAD of each
luster with respect to the first energy bin (1.8 MeV). The energy-
ependent PADs more clearly see the shapes of the distributions that
re described in Section 6 . 
ows a differently shaped distribution. (a) Cluster 0 is a flattop centred across 
ke, (d) Cluster 3 is flattop shaped, (e) Cluster 4 is a pancake centred on 90 ◦, 
tion at lower energies but a flattop at energies higher than 12 MeV, and (g) 

asti/article/2/1/548/7243422 by guest on 18 April 2024
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Figure F2. The median PAD for each cluster at 1.8 MeV. Each of the clusters shows a differently shaped distribution. (a) Cluster 0 is a flattop centred across 
90 ◦, (b) Cluster 1 shows a net flux of 0, (c) Cluster 2 is a narrow pancake, (d) Cluster 3 is flattop shaped, (e) Cluster 4 is a pancake centred on 90 ◦, (f) Cluster 5 
is a butterfly distribution, (g) Cluster 6 also shows a b utterfly distrib ution at lower energies but a flattop at energies higher than 12 MeV, and (g) Cluster 7 is a 
low flux narrow peak centred on 90 ◦. 

This paper has been typeset from a T E 

X/L 

A T E 

X file prepared by the author. 

© 2023 The Author(s). 

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License 

( http://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 

D
ow

nloaded from
 https://academ

ic.oup.com
/rasti/article/2/1/548/7243422 by guest on 18 April 2024

art/rzad035_ff2.eps
http://creativecommons.org/licenses/by/4.0/

	1 INTRODUCTION
	2 INSTRUMENTATION
	3 MACHINE LEARNING TECHNIQUES
	4 DIMENSION REDUCTION
	5 CLUSTERING
	6 CLASSIFICATIONS
	7 CONCLUSION
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES
	SUPPORTING INFORMATION
	APPENDIX A: AE HYPERPARAMETER OPTIMIZATION
	APPENDIX B: MEAN SHIFT MATHEMATICAL DESCRIPTION
	APPENDIX C: BANDWIDTH OPTIMIZATION
	APPENDIX D: 2D PROJECTIONS
	APPENDIX E: K-MEANS STABILITY TEST
	APPENDIX F: 1.8 MeV-DEPENDENT PADs

