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ABSTRACT

The behaviour of relativistic electrons in the radiation belt is difficult to diagnose as their dynamics are controlled by simultaneous
physical processes, some of which may be still unknown. Signatures of these physical processes are difficult to identify in large
amounts of data; therefore, a machine learning approach is developed to classify energetic electron distributions which have been
driven by different mechanisms. A series of unsupervised machine learning tools have been applied to 7 yrs of Van Allen Probe
Relativistic Electron-Proton Telescope data to identify six different typical types of plasma conditions, each with a distinctly
shaped energy-dependent pitch angle distribution (PAD). The PADs at lower energies have shapes as expected from previous
studies — either butterfly, pancake, or flattop, providing evidence that machine learning has been able to reliably classify the
relativistic electrons in the radiation belts. Further applications of this technique could be applied to other space plasma regions,
and data sets from inner heliospheric missions such as Parker Solar Probe and Solar Orbiter, to planetary magnetospheres and
the JUICE mission. Understanding PADs across the heliosphere enables researchers to determine the physical mechanisms that

drive pitch angle evolution and investigate their spatial and temporal dependence and physical properties.
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1 INTRODUCTION

The behaviour of energetic particles in the Van Allen radiation belts
is difficult to diagnose due to their complicated dynamics. At times,
radiation belt dynamics can be dominated by a multitude of loss,
transport, and acceleration processes (Reeves et al. 2003; Baker
et al. 2018; Li & Hudson 2019; Chu et al. 2021; Chakraborty et al.
2022) including magnetospheric shadowing (e.g. Herrera, Maget &
Sicard-Piet 2016; Staples et al. 2020), and wave-particle interactions
(e.g. Artemyev et al. 2016; Ripoll et al. 2020) involving pitch angle
scattering (e.g. Summers & Thorne 2003; Chaston et al. 2018)
and atmospheric precipitation (e.g. Rodger et al. 2007; Rae et al.
2018). These different physical processes drive relativistic electron
behaviour at different energies and pitch angles, leading to differently
shaped energy-dependent pitch angle distributions (PADs). Hence,
PADs are essential in understanding the state of plasma regions
(Bakrania et al. 2020a) that can have a pancake (peak at 90°), butterfly
(electron flux minima at 90°), or flattop (flux plateau over a range of
pitch angles centred on 90°) shape (Horne et al. 2003; Gannon, Li &
Heynderickx 2007; Souza et al. 2016; Zhao et al. 2018; Chakraborty
et al. 2022).

The Van Allen Probe mission (Mauk et al. 2013), provides over
7 years of extensive, high-quality observations of radiation belt
particles (Baker et al. 2018) to analyse radiation belt physics. For

* E-mail: s.killey @northumbria.ac.uk

relativistic electrons (>1 MeV) alone, there are almost 20 million
observations measured using the Relativistic Electron-Proton Tele-
scope (REPT) instrument (Baker et al. 2013). Identifying physical
processes that drive the behaviour of relativistic electrons in such
big data is a difficult and lengthy process. Therefore, to understand
relativistic electron behaviour, we must first understand the response
of MeV electrons to changes to the magnetosphere by investigating
their distributions. However, with 20 million observations, it is
impossible to reliably identify PADs of similar shape by eye, which
likely introduces significant bias to the results. Traditional PAD
studies typically pre-define the shape of the distributions a priori
(e.g. Liu et al. 2020; Chakraborty et al. 2022; Ozeke et al. 2022)
at given energies. In this work, we adopt a different approach and
consider PADs at all energies and without the assumptions of specific
PAD shapes.

Machine learning classification methods have been found to be
incredibly useful in space physics, including for investigating the
different plasma regions in the Earth’s magnetosphere (e.g. Breuillard
etal. 2020; Innocenti et al. 2021) and other planetary magnetospheres
(e.g. Cheng, Achilleos & Smith 2022; Yeakel et al. 2022), identifying
solar wind types (e.g. Camporeale, Caré & Borovsky 2017; Amaya
et al. 2020; Bloch et al. 2020), and solar wind characteristics (e.g.
Bakrania et al. 2020b) and even space weather forecasting (e.g.
Maimaiti et al. 2019; Smith et al. 2020). Machine learning methods
have also increasingly been used to model the highly dynamic
radiation belts (e.g. Bortnik et al. 2016; Chu et al. 2021; Wing et al.
2022).
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Table 1. The random, shuffled 20:20:60 splitting of the training, validation, and testing sets, respectively, between 2012

September and 2019 July.

Set Split (per cent) Number of observations Date range
Training 20 3995838 2012 September—2019 July
Validation 20 3995838 2012 September—2019 July
Testing 60 11987516 2012 September—2019 July

Recent classification works using machine learning by Bakrania
et al. (2020a) have been performed on plasma sheet electron distri-
butions that yield robust identifications of clusters of PADs. These
clusters can then be analysed to identify mechanisms that result
in different particle populations in the magnetotail (Bakrania et al.
2020a). Using a different machine learning technique, Souza et al.
(2016) determined similarly shaped PADs of 1.8 MeV relativistic
electrons using a month’s worth of REPT data, evidencing that ma-
chine learning can identify underlying relationships and classify large
particle data sets. By adapting the method of Bakrania et al. (2020a),
we present a new unsupervised learning technique (Section 3) applied
to relativistic electron data to cluster similar energy-dependent PADs
together (Section 6) for the duration of the Van Allen Probe mission.
In this paper, we describe this new technique and its suitability to
plasma PADs, using Van Allen Probe REPT data as an exemplar.

2 INSTRUMENTATION

The NASA Van Allen Probes follow an elliptical orbit of ~600
km x 5.8 Rp with a ~10° inclination, meaning that the satellites
collect observations from both the inner and outer radiation belts
with an orbital cadence of 9 h (Mauk et al. 2013). We analyse
relativistic radiation belt electron fluxes from 1 to 20 MeV measured
by the Van Allen Probe REPT instrument (Baker et al. 2013) at a
temporal resolution of the order of tens of seconds for the entire
Van Allen Probe mission lifetime between 2012 September and
2019 July. In this paper, we apply the technique to Van Allen
Probe B only, although this technique is valid for any spacecraft
measurement.

REPT measured flux fas a function of 17 different pitch angles PA
and 12 energies E, meaning that at each observation time ¢ there are a
total of 204 individual energy-pitch angle bins or ‘dimensions’. The
flux, which we refer to as f(PA, E, ), from REPT was then normalized
with respect to the maximum flux of each observation, in order to
focus on the shape of distribution rather than predominantly on the
particle flux or density. As we are interested in understanding the
shape of the PADs rather than the magnitudes, this step has minimal
impacts. Although we note here that this technique can be adapted
without issue if the magnitude of flux was of specific interest. The
normalized three-dimensional (3D) array of size 17 x 12 x N,
where N, is the number of observations, was flattened to a 2D array
of size 204 x N, for easier processing in the early stages of machine
learning. We consider PADs across all energies rather than a subset
as an exemplar; the machine learning techniques of this study can be
easily adapted to consider a smaller range of energies and therefore
a lower number of dimensions.

Due to the multidimensionality of REPT data, we employ a
2-step process to reduce the number of dimensions to a more
manageable number while considering the linear and non-linear
trends within the data and retaining the most important informa-
tion. Dimensionality reduction was first achieved by applying an
autoencoder (AE; Section 4.1) to compress the REPT data from
204 dimensions to 102 dimensions, before then applying principal

component analysis (PCA; Section 4.2) to further compress the data
into only three dimensions. The 3D REPT data was then classified
by first using a mean shift algorithm (Section 5.1) to determine
the number of clusters, before a k-means algorithm (Section 5.2)
was applied to sort the relativistic electron data into this number of
groups.

3 MACHINE LEARNING TECHNIQUES

3.1 Train - validation — test split for machine learning

Unsupervised machine learning is a valuable tool used to determine
important characteristics in data without prior teaching (Kyan et al.
2014) by imposing as few a priori decisions as possible, e.g. the
number of clusters. Standard practice for machine learning is to split
the data into three: a training, validation, and testing set. This is done
to ensure that the resultant model will not automatically return a
biased output; as such the model should not be trained on the same
data that it is applied to. To limit any biases in the unsupervised
learning, we follow this standard practice by requiring both training
and testing data sets, such that each of the data sets is excluded
from each other. A validation set is used in order to validate the
performance of the model during training.

To retain as many observations in the testing set as possible,
a 20:20:60 training, validation, and testing split was applied to
19979192 flattened f(204, 1) REPT observations. The splitting of
the data was achieved based on the randomly shuffled data points
using the TRAIN_TEST_SPLIT Python tool (Pedregosa et al. 2011)
with a random seed of 4. By splitting the data randomly, each
of the data sets contains a mix of both quiet and active times.
Each data set will contain observations for every day within the
7-yr window. Therefore, as geomagnetic storms are multiday events
(Murphy et al. 2020), it is guaranteed that each data set will contain a
mix of all geomagnetic conditions, which is critical for the machine
learning tools to learn and distinguish between these different activity
times. The numbers of observations included in each of the training,
validation, and testing sets, respectively, are shown in Table 1.

When using a time series data set, splitting the data in this manner
may result in the validation and training sets being correlated.
This is because the dynamic flux time is larger than that of the
resolution of the data (Ma et al. 2022). Therefore, adjacent flux
measurements will effectively be the same. We acknowledge the
limitation of this splitting method; however, as this is an unsupervised
learning problem, we collect no accuracy metrics and therefore the
potential autocorrelation between the training and validation sets is
not important. We limit the effect by randomly shuffling the REPT
observations before randomly splitting to remove any bias due to the
data being ordered by timestamp. A validation set was provided only
to satisfy the building arguments of the first stage of the machine
learning, an AE (Section 4.1), and to determine if the model is
performing as expected during its learning phase before being applied
to the testing set.
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Figure 1. Schematic of the internal processes of an AE, where x; denotes the input data with dimensions in the range of 0 to k, w are the adjustable weights, b
is the applied bias parameter, &; represents the encoded layer neurons with dimensions in the range of O to /, where [ is smaller than &, and x; is the reconstructed

layer with dimensions the same as the input.

4 DIMENSION REDUCTION

Given that REPT flux measurements have a high number of di-
mensions, the data can be difficult for unsupervised classification
tools to efficiently process (Bakrania et al. 2020a) and visualize. As
some of the dimensions within the data will be dominated by noise,
instrument sensitivity, and the instrument noise floor (Baker et al.
2013), to improve efficiency and denoise the data, the flattened 204D
flux measurements underwent dimensionality reduction to compress
the data into a more suitable representation. The compression of data
to 3 dimensions was achieved in two stages: an AE (Section 4.1) and
PCA (Section 4.2).

4.1 Autoencoders

An AE is a form of neural network that can be used to compress
multidimensional data while retaining both the underlying linear and
non-linear relationships within the data. The AE algorithm works
by mapping each flattened data point (neuron) to a hidden layer of
a lower number of dimensions (encoder) before then being mapped
back to a layer of the same number of dimensions as the input
(decoder). An example of an AE is shown in Fig. 1.

The mapping of each input neuron x; to each new layer neuron y;
works through the multiplication of inputs and weights y using y; =
> i wix; + b. Here i is in the range of 0 to number of input dimensions
k, j is of the range 0 to number of encoded dimensions /, w refers to
the weights associated with the mapping, and b is a bias unit which
has been applied and adjusted to improve the performance of the
AE (Bakrania et al. 2020a). The summation of weights and input
neurons and the addition of a bias parameter results in an activation
value y. The activation value is then transformed into a jth next layer
neuron output by passing y; through an activation function (Sharma,
Sharma & Athaiya 2020). The AE repeats this process for a number
of epochs (iterations) n, whereby the score of the previous epoch
is used to update the weights and bias parameters. In this case the
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score is the loss value, which should be minimized for an optimal
solution (Chollet et al. 2015). The loss value is a measure of how
much information is lost during the compression of the data and,
in this case, is determined using the mean square error function
mse = ﬁ S(x — %)? of input x; and reconstruction x;, where N is
the number of data points. The AE algorithm was built and applied
to the REPT flattened data using the Keras Python library (Chollet
et al. 2015) with a single hidden layer, a batch-size of 256, a learning
rate of 0.0005, 102 encoded dimensions, and an Adam optimizer.
Batch-size determines the number of samples by splitting the data
into batches. In order for the AE to be optimal, the batch-size needs
to be as close to the number of dimensions of the data set. Given
that the batch-size is given by a 2" function where 7 is an integer
(Bakrania et al. 2020a), we chose a batch-size of 256 (where n =
8) to most closely resemble the 204 dimensions of our data set.
The learning rate modulates the change in learning rate of the data
over time and has a default value of 0.001 (Chollet et al. 2015).
The encoded dimensions refer to the smaller number of dimensions
(neurons) in the hidden layer of the AE, and the Adam optimizer
was used for computational efficiency on large data sets (Kingma &
Ba 2014; Chollet et al. 2015). A stopping function was applied such
that the AE would stop iterating when it had reached minimum loss
value with a patience of 5, where patience refers to the number of
epochs where the loss value has not improved (Chollet et al. 2015)
and is used to prevent overfitting the training data. To consider the
reproducibility of results, a TensorFlow (Abadi et al. 2016) random
seed of 1 was applied.

To transform the activation values into next layer neuron outputs,
we opted to use a Rectified Linear Unit (ReLU) activation function
for the mapping between the input and encoded layers, and a
sigmoid activation function for the mapping between the encoded
and reconstruction layers.

ReLU is a popular non-linear activation function described by
max(0, y). This means that for positive activation values, the
function behaves as a simple linear function; however, for negative
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Figure 2. Resulting AE loss curve for training (red) and validation (blue)
sets with optimum parameters of a learning rate of 0.0005, batch-size of 256
and 102 encoded dimensions.

inputs, the output will be saturated at 0 (Basodi et al. 2020).
A sigmoid activation function was applied to the reconstruction
layer to add non-linear and more complex relationships in the
reconstruction in attempt to recreate the original input data A
sigmoid activation is a non-linear function described by — = + —,
where y is the activation value (Dubey, Singh & Chaudhuri
2021).

The AE needed to be tested during its building due to the number
of hyperparameters needed. A summary of the parameter tests and
their loss curves are shown in Appendix A. The learning rate,
batch-size, and encoded dimensions were determined to have the
most optimum values of 0.0005, 256, and 102, respectively. These
parameters collectively gave the most minimum validation loss of
0.02 percent with a loss curve showing no signatures of over or
underfitting and it is shown in Fig. 2. The validation curve closely
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follows that of the training loss, suggesting that the model has not
been overfitted. As both the training and validation curves decrease
over time, this implies that the model was able to learn the training
set and hence the model has not been underfitted either.

Once trained, the AE was then applied to our test data set. The
reconstructed f{PA, E, ) is then compared to that of the original input,
an example of which is shown in Fig. 3. The overall shape of the
reconstruction distribution (Fig. 3b) remains the same as the original
(Fig. 3a) with no signatures of severe data loss or introduction of
missing data or anisotropies. While there are minor differences,
shown by the flux differences in Fig. 3c, the overall shape and
magnitudes remain almost identical given the chosen discretization
of the colour scale. However, it should be noted that there are small
changes of less than 5 per cent resulting from the information loss,
which we consider to be minimal. By comparing the original and
reconstructed data which was created from the encoded layer with
a lower number of dimensions, Fig. 3 gives confidence that the AE
is functioning correctly and with a small loss of data that does not
impact the shape of the distributions.

4.2 Principal component analysis

Once the REPT data was initially compressed to 102 dimensions,
a PCA was applied to further compress the data to three dimen-
sions following Bakrania et al. (2020a). PCA determines the data’s
eigenvectors (or principal components) by calculating the covariance
matrix of the data. The eigenvectors returned from the covariance
matrix are hierarchical, meaning the top eigenvectors contain the
most important information. As three dimensions was the desired
output, the top three eigenvectors A were determined. The 102D data
x was then translated to 3D principal component space Z through Z
= xA (Bakrania et al. 2020a).

The PCA algorithm was applied using the PCA Python tool from the
scikit-learn package (Pedregosa et al. 2011). The top three principal
components account for a total of 74.47 per cent of the information
(45.06 percent, 23.61 percent, and 6.30 percent, respectively),
meaning that we can describe over 70 percent of the 204D data
with only three dimensions. A sensitivity test was performed in order
to understand whether three components were sufficient to describe
this data set. The fourth principle component yielded only an extra
4.69 per cent of information, therefore suggesting that the first three
components were sufficient to describe the REPT data in our analysis.

c) Difference

Pitch Angle [degs]

B30, X Y B AD D VO
NG 0 0 020 w0

Figure 3. (a) Pitch angle — energy distribution example from one of the random observations in the testing set. (b) The resulting AE reconstruction of the
input data. (c) The difference between the original and reconstruction. While there are no large local differences, there are slight differences globally. These

differences are due to information loss.
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Figure 4. (a) 3D representation of Van Allen Probe B REPT electron flux data in principal component space. Each of the dimensions corresponds to one of
the principal components which contain the most important information. (b) The 3D representation of REPT data in each of the three PCA eigenvector space,
where observations have been partitioned into eight predicted clusters using k-means. Each cluster has been arbitrarily assigned a different colour. (¢) The 3D
REPT data in PCA space, with a 95 per cent confidence interval applied to each cluster to restrict the effect of ambiguous classifications at the boundaries due

to small spatial separations between clusters.

We chose three dimensions in order to visualize the three most crit-
ical dimensions of the Van Allen Probe REPT data. The resulting 3D
data are shown in Fig. 4a where each dimension is one principal com-
ponent. The 2D projections are shown in Appendix D. Overall, the
data set is still very dense, and it is not clear how to identify any data
that have similar PAD shapes. Hence, we need to employ a classifi-
cation technique in order to identify PADs that have common shapes.

5 CLUSTERING

Unsupervised machine learning is utilized due to the unlabelled
nature of the data. Unlabelled data means that as well as unknowing
the truths of our data, the number of classifications within the data
first needs to be predicted before any classifications can be made.
In order to classify these 12 million data points into meaningful
physical categories, we use a mean shift algorithm (Section 5.1)
to predict the number of clusters of data, before using a k-means
algorithm (Section 5.2) to classify the data itself.

5.1 Mean shift

Mean shift is a non-parametric clustering technique based on the
density function of the data (Fukunaga & Hostetler 1975), which
in this case is 3D REPT data. Using the MEANSHIFT Python tool
in the scikit-learn package (Pedregosa et al. 2011), we can apply a
mean shift algorithm to predict the number of distinct classifications
or clusters of data within the REPT data. The algorithm works
by iterating between calculating and translating the mean shift (a
vector that describes the distance and direction of the nearest density
function maxima) of each data point until convergence onto a density
function maximum. The predicted number of clusters is then given by
the total number of density function maxima (Fukunaga & Hostetler
1975; Bakrania et al. 2020a). A mathematical description of the mean
shift algorithm is given in Appendix B.

The mean shift algorithm requires a data-dependent bandwidth
that defines the size of the window used to calculate the mean, which
needs to be optimized for each data set. To optimize the bandwidth,
the ESTIMATE_BANDWIDTH Python tool from the scikit-learn package
(Pedregosaetal. 2011) was used, with 6000 samples, a quantile factor
of 0.1, and a random state of 0. The algorithm runs on time-scales
comparable to the quadratic of the number of samples (Pedregosa
etal. 2011), therefore 6000 samples were chosen to consider compu-
tational expense while yielding a comparable bandwidth estimation
to a test ran with 60 000 samples. The quantile factor relates to the
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proportion of data that is considered in the estimation of the band-
width where from experience, typical values range between 0.05 and
0.3 depending on the data set and computational resources. A sum-
mary of the bandwidth optimization is given in Appendix C with re-
spect to the Calinski—Harabasz (CH) score and Davies—Bouldin (DB)
index, where the CH score describes the variance between clusters
and should be as high as possible. The DB index describes the similar-
ity between clusters and should be as low as possible. Mathematical
descriptions for these statistics are also supplied in Appendix C.

For the 3D representation of REPT data, with an optimal band-
width of 1.949, the mean shift algorithm predicted eight clusters with
a CH score of 1.990 x 10° and DB index of 0.941.

5.2 K-means

The 3D data can be partitioned into this mean shift predicted number
of clusters using a k-means algorithm. We have applied k-means
clustering using the KMEANS Python tool from the scikit-learn
package (Pedregosa et al. 2011) with a random state of 0. K-means
algorithms are computationally simple and fast to process, making
them advantageous even on large data sets. Moreover, k-means only
relies on a single parameter — the number of clusters k. K-means is
based on minimizing the sum-of-squares (known as inertia) between
data points in each cluster and works by assigning a k number of clus-
ter centroids positions. The Euclidean distance deu. = ||x; — Cjl| is
calculated for each data point x; within N observations and each clus-
ter centroid C;. Observations are then assigned to the closest cluster.

The centroid positions are recalculated by taking the mean po-
sition of the intra-cluster data points. The process iterates between
determining the nearest centroids and recalculating the cluster means
until the centroid position variance between iterations is zero. The
algorithm iterates to locally make improvements to the partitions in
order to minimize the inertia (Arthur & Vassilvitskii 2007; Pedregosa
etal. 2011).

By using the k-means algorithm, the 3D REPT was partitioned into
the eight predicted clusters from the mean shift (Section 5.1) with a
CH index of 8.258 x 10° and DB index of 0.997. The resulting 3D
representation in PCA space is shown in Fig. 4b, where each cluster
is represented by a different colour.

To test the stability of the results, a k-means test was also
performed with a random state of 4. The result yielded less than
a 1 per cent difference in the number of observations in each cluster,

202 11dy 8 U0 1s9nB Aq ZZrEYe./8YS/L/Z/l0Ie/msel/woo"dno-ojwapese//:sdny Wwoly papeojumoq


art/rzad035_f4.eps

—
©
o

= - = =
© o ] B a
o o o o o

PA [degrees]

=]
o

a) Cluster 0 b) Cluster 1

PA [degrees]

e) Cluster 4

8% 00 B Y20 1 2, T O
X"L"'l-"‘)‘bl":b‘\%.{b.{’),&

E [MeV]

f) Cluster 5

020 M Yo AN 2 T Yo
RGO R R B PR

E [MeV]

LN R U TR TR N S A T S P P M R
ST 900 010" AR e 0 9Tl

Diagnosing relativistic electron distributions 553

c) Cluster 2 d) Cluster 3

Fmean

g) Cluster 6 h) Cluster 7

LT - T PO P TR V- e

E [MeV] E [MeV]

Figure 5. The mean PAD for each cluster across all energies. The colour bar represents the mean normalized flux. Each of the clusters shows a differently
shaped distribution where for lower energies Cluster 0 (a) and Cluster 1 (b) show flattop like distributions where Cluster 1 is a significantly weaker distribution.
(c) Cluster 2 is a narrow pancake distribution centred on 90°. (d) Cluster 3 is another type of flattop that extends to ultra-relativistic energies. (e) Cluster 4 is a
broader pancake than Cluster 2. Cluster 5 (f) and Cluster 6 (g) have butterfly-like shapes at lower energies; however, at energies higher than 10 MeV Cluster 6
shows a flattop-feature. (h) Cluster 7 is the third pancake-like distribution which is much weaker than the distributions of Clusters 2 and 4.

evidencing that eight clusters is stable and valid regardless of the
random sampling. This test is shown in Appendix E.

6 CLASSIFICATIONS

6.1 Cluster reduction

Fig. 4b shows the positions of the eight clusters in 3D PCA space.
From Fig. 4b we can see that there are regions of well separated
data points. However, at the borders of each cluster, there is little
separation, meaning that in those regions, it is difficult to reliably
determine which cluster the data point most closely resembles.
Therefore, to interpret the clusters, we limit our classifications by
focusing on observations more centrally concentrated within the
cluster. K-means, with a Euclidean distance metric, attempts to find
spherically shaped clusters within the data (Jain 2010) and calculated
inertia on the assumption that the clusters are isotropic (Pedregosa
et al. 2011). We therefore take a 20 confidence interval around each
cluster centroid by calculating the Euclidean distances of intra-cluster
observations from the cluster centroids and taking the top 95 per cent
of observations.

The resulting clusters in 3D PCA space are shown in Fig. 4c. These
reduced clusters can be seen to be more spatially separated in PCA
space, and therefore any potential ambiguous classifications at the
boundaries have been restricted.

6.2 Pitch angle distributions

To recap, each data point within the clustered data corresponds to an
individual relativistic electron energy-dependent PAD. To investigate
the shape of the PADs, the mean and median fluxes of the normalized
observations in each cluster were calculated. The mean and median
PADs are shown in Fig. 5 and 6, respectively. We present both the
mean and median PADs in order to demonstrate that our results are
not skewed by statistical outliers. The mean and median PADs with
respect to 1.8 MeV are shown in Appendix F.

Each of the mean PADs in Fig. 5 indicate a different shape of
the distribution in energy—pitch angle space, which correspond to
physically meaningful PADs resultant from processes operating in
the radiation belts. Fig. 5 shows the mean flux as a function of PA
(y-axis) and E (x-axis). We notice that each of the clusters display
different distributions. Clusters 2, 4, and 7 (Figs 5c, e, and h) show
different variations of a ‘pancake distribution’, which is described
as a peaked distribution centred on 90 degree (e.g. West, Buck &
Walton 1973; Horne et al. 2003; Gannon et al. 2007; Chakraborty
etal. 2022). Fig. 5c shows a narrower pancake distribution for Cluster
2 than Cluster 4, whereas Cluster 7 (Fig. Sh) is a much weaker
pancake than both Cluster 2 and 4. Clusters 5 and 6 (Figs 5f and
g) show a butterfly-like distributions at low energies (<2.5 MeV),
where there is a decrease in flux at 90 degree (e.g. West et al.
1973; Selesnick & Blake 2002; Gannon et al. 2007; Zhao et al.
2018; Chakraborty et al. 2022). Fig. 5g however also shows a high
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Figure 6. The median PADs for each cluster across all energies, with the colour bar representing the median normalized flux. The shapes of Clusters 0, 2, 3, 4,
5,6,and 7 (a, c, d, e, f, g, and h, respectively) are the same as the mean distributions shown in Fig. 5. Cluster 1 (b) however shows a median normalized flux of

0 that is a result of partitioning noisy observations together.

energy (>10 MeV) flattop feature, a signature that is not dominant
in the other cluster distributions. This high-energy PAD may have
been caused by proton contamination in the inner radiation belt (e.g.
Claudepierre et al. 2019). Cluster O (Fig. 5a) shows evidence of a
flattop distribution which has a plateau of constant flux at pitch angles
of approximately 60—130 degree (e.g. Horne et al. 2003; Zhao et al.
2018) and appears to be an intermediate distribution between Cluster
4 and Cluster 5 (Figs 5e and f) perhaps corresponding to evidence of
a transition between pancake-like, flattop, and butterfly distributions
(Horne et al. 2003; Gannon et al. 2007). Fig. 5b shows a low-flux
flattop distribution for Cluster 1 whereas Cluster 3 (Fig. 5d) displays
a flattop that extends to ultra-relativistic energy ranges (~7 MeV).
Future applications of this work will entail looking more closely
at these ultra-relativistic flattop observations to determine if these
distributions have resulted from noise or been driven by a physical
magnetospheric process.

In terms of the median distributions (Fig. 6), for Clusters 0, 2, 3,
4,5, 6, and 7, the shapes of the distributions remain the same as
their mean distributions in Fig. 5, with slight differences only in the
values of the average flux. However, Cluster 1 (Fig. 6b) shows zero
flux at all pitch angles and energies. When investigated further, each
individual observation within this cluster displayed only signatures
that corresponded to noisy or missing data. Similarly, observations
in Cluster 7 (weak pancake, Fig. 5h), only contained observations
of low counts, close to that of the noise floor. Hence, our technique
has partitioned these noisy, low-count observations together within
two clusters, which can then be neglected from further study. Our
new technique has demonstrated that, by removing the clusters that
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contained only noise and low counts, scientific data sets can be
cleaned up and bad and/or missing data can be easily removed.

The distributions of the remaining six clusters at lower energies
have shapes as expected from e.g. Chakraborty et al. (2022), Zhao
et al. (2018), Souza et al. (2016), Gannon et al. (2007), and Horne
et al. (2003). As the distributions are clearly different shapes,
this work suggests that these different types of distributions have
resulted from different magnetospheric drivers as discussed in e.g.
Chakraborty et al. (2022), Chu et al. (2021), and Li & Hudson
(2019). Therefore, future applications of this algorithm and data
set include identifying the magnetospheric phenomena driving each
individual cluster and investigating the properties and spatial and
temporal dependence of the six physically meaningful clusters.

7 CONCLUSION

The behaviour of the radiation belts is difficult to diagnose due to their
dynamic nature and unpredictability. We can begin to understand the
plasma conditions of the radiation belts by looking at the energy-
dependent PADs of the relativistic electrons. The Van Allen Probe
mission provides over 7 yrs worth of relativistic electron observations
with a temporal resolution of the order of tens of seconds (Baker
et al. 2013). This means there are millions of PADs available to
analyse, which is impossible by eye. However, by using a new
amalgamation of unsupervised machine learning techniques adapted
from Bakrania et al. (2020a), entire relativistic electron distributions
over all energies and pitch angles have been characterized over the
entire Van Allen Probe mission.
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We use an AE and PCA to reduce the dimensions of Van Allen
Probe REPT data f(PA, E, t) to a more manageable number for visu-
alization, in this case — three dimensions. The now 3D data was then
able to be classified through unsupervised machine learning tools by
using mean shift to predict the number of clusters and k-means to
partition the data into the predicted number of classifications.

Using this method, a total of eight different clusters were identified.
Upon investigating the average energy-dependent PADs, one of
these clusters contained only low counts and spurious data with
an average flux of zero and the other contained low counts of
noisy, asymmetric pancake distributions — counts so low they can be
considered negligible. The remaining six clusters displayed average
PAD shapes as expected from previous distribution studies at energies
lower than 2.5 MeV - either flattop, butterfly, or pancake (Gannon
et al. 2007; Souza et al. 2016; Zhao et al. 2018; Chakraborty et al.
2022), with some clusters being wider in pitch angle space than others
potentially revealing an evolution between distribution types. Future
applications of this work will be to identify the physical processes
that drive the behaviour of the relativistic electrons by investigating
the properties and spatial and temporal dependence of the six clusters.
Our findings show that this technique can be used to both classify
and denoise large data sets of multidimensional data in space plasma
physics, using Van Allen Probe relativistic electrons as an exemplar.
Given that we are looking for specific particle distributions in large
amounts of data, this machine learning technique could be used to
mine data sets from other plasma missions, where data is either less
plentiful or incomplete. These data sets could include new inner
heliospheric missions such as Parker Solar Probe and Solar Orbiter,
previous missions such with less data availability such as Mars
Express and Cassini, and potentially new missions such as JUICE.
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APPENDIX A: AE HYPERPARAMETER
OPTIMIZATION

In order to optimize the AE, a series of parameter tests were
performed. The test that produced the most minimum loss value
and had the most desired loss curve (with no signatures of over or
underfitting) was determined to be the most optimal set of parameters,
a summary of the test results is shown in Table Al. The lowest
overall loss was given by parameters of 102 encoded dimensions,
batch-size of 256, and learning rate of 0.001 (test 0); however, the
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Table Al. AE parameter tests performed in order to determine the most
optimum batch-size, number of encoded dimensions, and learning rate. The
most optimum parameters are taken to be those that had most minimal loss
values and smoothest loss curve. Some parameters gave the most minimal loss
value but showed potential signatures of overfitting in their loss curves, for
this reason those parameter combinations were not selected. The combination
of parameters that gave the most minimum loss and had an agreeable loss
curve were found to be 256, 102, and 0.0005 for the batch-size, number of
encoded dimension, and learning rate, respectively.

Test Batch-size Encoded dimensions Learning rate Loss

0 256 102 0.001 0.000 191 129
1 256 102 0.0005 0.000 195 895
2 256 51 0.001 0.000378 399
3 256 51 0.0005 0.000377934
4 512 102 0.001 0.000 198 566
5 512 102 0.0005 0.000 197 810
6 512 51 0.001 0.000397513
7 512 51 0.0005 0.000397 850

resulting loss curve (Fig. Ala) indicates a potential signature of
overfitting. Therefore, we take the second most optimal parameters
of 102 encoded dimensions, batch-size of 256, and learning rate of
0.0005 (test 1) as the resulting loss curve (Fig. A1b) does not show
any noticeable signatures of overfitting.
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Figure Al1. AE parameter test loss curves.
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APPENDIX B: MEAN SHIFT MATHEMATICAL
DESCRIPTION

The density function f{x) is given by equation (B1), where N is the
number of observations X;, n is the number of dimensions, K is a
kernel function around the randomly assigned mean point x and
kernel bandwidth /4 (Fukunaga & Hostetler 1975; Bakrania et al.
2020a):

1 —x;
f(x):WZI:K(xhx>. (BI)

To satisty conditions of consistency and asymptotic unbiasedness, a
Gaussian kernel & is applied to the K function (Fukunaga & Hostetler
1975). The kernel function weights of the nearest neighbour data
points within the kernel window and is given by equation (B2),
where ¢, is a normalization constant (Bakrania et al. 2020a):

k(225 =k ’ B2
< Y )—Ck . (B2)

The density gradient of the density function (equation B1) with a
Gaussian kernel (equation B2) is then derived to give

2 N / 2
VI = s D i —x) |~k : (B3)
i=1

where —k (X) = g(X) (Comaniciu & Meer 2002; Bakrania et al.
2020a). Rearranging and substituting in the mean shift M;(x),
equation (B3) becomes

Z:V: xig (155" ’
My = = (IMH)_L 0

e (I51F)

where the mean shift vector indicates the direction of the nearest
maximum density for each data point x;. The window function is then
translated by shifting the mean, following equation (B5) (Bakrania
et al. 2020a):

X —X;

h

X —X;

h

Xt =x' + M, (x). (B5)

The mean shift recalculations and window functions translation
will be iterated over 7 steps, until M;(x) converges onto a density
function maximum and therefore when the density gradient is zero.
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By repeating the process on each observation, each data point is
shifted to converge on a density point maximum (Comaniciu & Meer
2002; Pedregosa et al. 2011; Bakrania et al. 2020a).

APPENDIX C: BANDWIDTH OPTIMIZATION

To optimize the bandwidth for the mean shift algorithm, a series of
tests were performed. The tests were carried out using the scikit-
learn ESTIMATE_.BANDWIDTH tool (Pedregosa et al. 2011). This tool
relies on defining specific parameters — number of samples, quantile
factor, and number of parallel jobs that affect the performance of the
function. A summary of the tests is shown in Table B1.

To evaluate the most optimum bandwidth, the CH score and DB
index was calculated for each test. The test that returned the most
maximum CH score and most minimum DB index was taken to be
the optimum parameter.

The CH score is a statistical technique used when ground truths are
not available. The index defines the variance ratio between clusters
to describe their dispersion and separation following equation (C1),
where the CH index (s) is ratio of the trace of the inter-cluster
dispersion 1(By) over the intra-cluster dispersion of all clusters tr(W;,)
for N number of observations and k£ number of clusters (Pedregosa
etal. 2011):

tr(By) N —k

ST W k—1" b

The larger the CH score, the denser and more separated the clusters
are and the better the algorithm has performed. The CH index was
used to optimize the bandwidth value, by selecting the bandwidth
that resulted in a mean shift algorithm with the largest CH index.

The DB index was also used to optimize the bandwidth. The
DB index describes the similarity R;; between clusters (i) and their
most similar cluster (j) with respect to their separation following
equation (C2). The DB index measures the ratio of the cluster
diameters (s) of clusters i and j (where i and j = 1,....k and i #
J) from the average distance between the cluster’s centroid and each
intra-cluster data point over the distance between the i and j centroids
d;j (Davies & Bouldin 1979; Pedregosa et al. 2011):

Si+Sj

o (€2)

R,‘j =

Table B1. Bandwidth optimization tests using the scikit-learn ESTIMATE_BANDWIDTH function showing the number of
samples n_samples, quantile factor Q, number of parallel jobs n_jobs used in each test, the resulting bandwidth BW
estimation, and number of clusters n, with their CH scores and DB indexes. In all cases, only a Q score of 0.1 yielded a

result with more than one clusters.

n_samples Q n_jobs n CH score DB index
600 0.1 8 1967 550 8 1967 550 0.93523
6000 0.05 2 1.466 269 20 1544917 1.01811
6000 0.1 2 1.94923 8 1990235 0.94 146
6000 0.2 2 2.647787 1 NaN NaN
6000 0.3 2 3.243912 1 NaN NaN
6000 0.05 4 1.466 269 20 1544917 1.01811
6000 0.1 4 1.949 230 8 1990235 0.94 146
6000 0.2 4 2.647787 1 NaN NaN
6000 0.3 4 3.243912 1 NaN NaN
6000 0.05 8 1.466 269 20 1544917 1.01811
6000 0.1 8 1.949230 8 1990235 0.94 146
6000 0.2 8 2.647787 1 NaN NaN
6000 0.3 8 3.243912 1 NaN NaN
6000 000 0.1 8 1.95022 898 8 1990 849 0.94 157
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The maximum similarity (equation C3) for each cluster is then
taken to be the DB index R and relates to the appropriateness of the
partitions within the data set without the dependence upon clustering
method (Davies & Bouldin 1979):

I g
R = N Zl:max R,“ i#j- (C3)

A DB index close to 0 indicates that no clusters are similar, and
thus is the best possible score.

By using the ESTIMATE_BANDWIDTH function, the ambiguity of
determining an optimal bandwidth manually based of their statistics
has been limited and yielded the most optimal result when the

RASTAI 2, 548-561 (2023)

function was considered with 6000 samples and a quantile of 0.1. As
there was no dependence on the number of parallel jobs, two jobs
were applied to match the number of jobs used in the mean shift
algorithm itself.

APPENDIX D: 2D PROJECTIONS

Fig. D1 shows the projections of the 3D representations of REPT data
after PCA (left-hand panel), k-means (central panel), and 95 per cent
confidence interval (right-hand panel) has been applied for the PCA
0-PCA 1 (top row), PCA 1-PCA 2 (middle row), and PCA 0-PCA
2 (bottom row) projections.
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(a) PCA 0 - PCA 1 projection of the 3D
representation of REPT data.
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(d) PCA 1 - PCA 2 projection of the 3D
representation of REPT data.
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(g) PCA 0 - PCA 2 projection of the 3D
representation of REPT data.
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(b) PCA 1 - PCA 2 projection of the 3D
representation of REPT data coloured by the
assigned cluster number determined through k-
means.
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() PCA 1 - PCA 2 projection of the 3D
representation of REPT data coloured by the
assigned cluster number determined through k-
means.
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(h) PCA 0 - PCA 2 projection of the 3D
representation of REPT data determined through
k-means.
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(c) PCA 0 - PCA 1 projection of the 3D
representation of REPT data coloured by the
assigned cluster number determined through k-
means with an applied 95% confidence interval
to remove ambiguous classifications at the

boundaries of each cluster.
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(f) PCA 1 - PCA 2 projection of the 3D
representation of REPT data determined through
k-means with an applied 95% confidence
interval to remove ambiguous classifications at
the boundaries of each cluster.
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(i) PCA 0 - PCA 2 projection of the 3D
representation of REPT data determined through
k-means with an applied 95% confidence
interval to remove ambiguous classifications at
the boundaries of each cluster.
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Figure D1. The 2D projections of the 3D representations of the REPT data in principal component space. The top row reflects the PCA 0-PCA 1 projection,
the middle row reflects the PCA 1-PCA 2 projection, and the bottom row reflects the PCA 0-PCA 2 projection. The columns reflect the 3D observation, the
resulting k-means classifications, and an applied 95 per cent confidence interval, respectively.
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Figure E1. The 3D representation of REPT data in each of the three PCA eigenvector space, where observations have been partitioned into clusters using
k-means. Left-hand panel: The resulting k-means classifications using a random state of 0, the result used throughout this study. Right-hand panel: The resulting
k-means classification test using a random state of 4. Though the cluster numbers are different due to the random placement of the k-means centroids, the
number of observations within each cluster was within 1 per cent of the result from this study.

APPENDIX E: K-MEANS STABILITY TEST APPENDIX F: 1.8 MEV-DEPENDENT PADS

To verify the stability of the k-means result, we ran a k-means Fig. F1 shows the mean PAD of each cluster with respect to the
test with a random state of 4. The results of the test show only a first energy bin (1.8 MeV). Fig. F2 shows the median PAD of each
1 per cent difference to the results of this study. The cluster numbers cluster with respect to the first energy bin (1.8 MeV). The energy-
are different due to the random positioning of the k-means centroids dependent PADs more clearly see the shapes of the distributions that
and the resulting 3D k-means test compared to the results of this are described in Section 6.

study are shown in Fig. E1.
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Figure F1. The mean PAD for each cluster at 1.8 MeV. Each of the eight clusters shows a differently shaped distribution. (a) Cluster O is a flattop centred across
90°, (b) Cluster 1 shows a significantly weak flattop, (c) Cluster 2 is a narrow pancake, (d) Cluster 3 is flattop shaped, (e) Cluster 4 is a pancake centred on 90°,
(f) Cluster 5 is a butterfly distribution, (g) Cluster 6 also shows a butterfly distribution at lower energies but a flattop at energies higher than 12 MeV, and (g)
Cluster 7 is a low flux narrow peak centred on 90°.
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Figure F2. The median PAD for each cluster at 1.8 MeV. Each of the clusters shows a differently shaped distribution. (a) Cluster O is a flattop centred across
90°, (b) Cluster 1 shows a net flux of 0, (c) Cluster 2 is a narrow pancake, (d) Cluster 3 is flattop shaped, (e) Cluster 4 is a pancake centred on 90°, (f) Cluster 5
is a butterfly distribution, (g) Cluster 6 also shows a butterfly distribution at lower energies but a flattop at energies higher than 12 MeV, and (g) Cluster 7 is a

low flux narrow peak centred on 90°.
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