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1 Introduction

Just as in the Earth’s atmosphere, cosmic rays (CRs) hitting the solar atmosphere create a
cascade that eventually generates neutrinos. The aim of this study is to estimate the size of
this flux including interactions and oscillations.

If we look towards the Sun, the Sun will block some CRs and we expect to get a lower
Earth atmospheric neutrino signal from the direction of the Sun. On the other hand these
blocked CRs will produce neutrinos in the Sun instead. Naively we would expect these to be
of similar magnitude, but the typical density where neutrinos are produced is lower in the
solar atmosphere and neutrinos also experience interactions and oscillations on the way to
Earth. The stronger magnetic fields in the Sun will also affect both the CRs on their way to
the Sun and the cascade development in the Sun. Hence, we expect the neutrino fluxes from
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the Sun to be different compared to the fluxes from the Earth’s atmosphere. This motivates
studying these fluxes in more detail.

These neutrinos from the solar atmosphere can teach us (if observed) about both the
primary cosmic rays, the solar density in the outskirts of the Sun, the solar magnetic fields
and possibly about neutrino oscillations. They will also be a background for other searches
for high energy neutrinos from the Sun, most notably for searches for dark matter via dark
matter annihilations in the Sun that can give rise to neutrinos [1, 2]. We will compare our
results with the signal from WIMP (Weakly Interacting Massive Particle) annihilations.

These solar atmospheric neutrinos, SAν, have been studied in the past in e.g. refs. [3–9].
In the first four of these studies, neutrino oscillations were not included, in the fifth one
they were included partially, and in the last two they used the production fluxes in the
atmosphere calculated by Ingelman & Thunman in ref. [7] (hereafter denoted IT96) and
estimated the effect of oscillations. Our focus here is to improve on these earlier studies by
calculating the complete process from cosmic ray interactions in the Sun through interactions
and oscillations to a flux of neutrinos and neutrino-induced leptons at a neutrino telescope.
Our improvements mainly come from using newer cosmic ray models, hadronic interaction
models in the solar atmosphere, an improved solar density model and a better simulation
of the neutrino interaction and oscillation effects in the Sun and oscillations on the way to
a detector at Earth. Adding the effects of magnetic fields presents a considerable challenge
however and we will not include those effects in this study. Instead we restrict ourselves to
neutrino energies above 50 GeV where the effects from the solar magnetic fields are expected
to be small.

Our approach is event-based using Monte Carlo techniques. For the CR interactions in
the solar atmosphere we use the publicly available tool MCEq [10] which we have modified to
work for the Sun instead of the Earth’s atmosphere. For the interactions and oscillations in
the Sun, oscillations between the Sun and the Earth and interactions in the Earth close to the
detector we use an updated version of the publicly available simulation package WimpSim [11,
12]. Our additions to that code to include the SAνs are also made publicly available [13].

2 Cosmic ray interactions and neutrino production in the Sun

2.1 Production mechanism and cascade

When CRs impinge on the Sun they collide with nuclei in the Sun, resulting in the develop-
ment of hadronic cascades. These cascades contain a plethora of hadrons and leptons that
decay and interact further, resulting in a flux of neutrinos. The neutrinos are mainly pro-
duced from leptonic decays of pions and kaons. This is described by a chain of decays that
begins with the initial hadronic collision producing π+ (π−) or K+ (K−) that subsequently
decay into a µ+ (µ−) and νµ (ν̄µ). The µ+ (µ−) further decay into e+νeν̄µ (e−ν̄eνµ). The
resulting flux of neutrinos is called the conventional flux and has an approximate flavour
ratio of (νe + ν̄e) : (νµ + ν̄µ) : (ντ + ν̄τ ) = 1 : 2 : 0.

Apart from the conventional neutrino flux there is a contribution to the neutrino flux
called the prompt flux. This is induced by decays of charmed mesons such as D0 and D±.
Due to the higher masses and shorter lifetimes of these mesons, the prompt flux is mainly
important at higher energies, where the conventional flux falls off faster with energy due to
energy losses of the long-lived pions and kaons. We will here assume that the effects of the
solar magnetic fields is negligible and that the cascade is developing in the direction of the
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Figure 1. A schematic geometry showing how the particles travel through the Sun. Incoming CRs
interact with the Sun creating secondary particles which decay into/interact creating neutrinos. The
length parameter ` is defined to be 0 at the point closest to the centre of the Sun and follows the
trajectory of the incoming CR at an impact parameter b and continues all the way to the Earth.

primary CR particle. This is a good approximation at higher energies, but will be worse for
lower energies, see section 2.4 below for more details.

The development of the cascade is described by a set of coupled differential equations
that describe how the flux of each particle type depends on the atmospheric slant depth
X. The slant depth is for a specific trajectory from `0 to ` given by the integral of the
atmospheric density ρ along the path:

X(`) =

∫ `

`0

ρ(`′) d`′ (2.1)

where ` is a variable tracing the trajectory of the particle and ρ(`) is the density at the point
`. In terms of X the cascade equation for the flux of a particle type i at energy E is written

dΦi(E)

dX
=− Φi(E)

λi,int(E)
(2.2a)

− Φi(E)

λi,dec(X,E)
(2.2b)

+
∑
j

∫
E′>E

Φj(E
′)

λj,int(E′)

dnj(E′)→i(E)

dE
dE′ (2.2c)

+
∑
j

∫
E′>E

Φj(E
′)

λj,dec(X,E′)

dnj(E′)→i(E)

dE
dE′. (2.2d)

The first two terms are sink terms, while the last two terms are source terms. They
represent an decrease and increase respectively in the flux of particle i.

The first term, (2.2a), describes interactions where particles of type i are lost and is
governed by the interaction length

λi,int(E) =
ρ

nσinel
i−atm(E)

≈ 〈matm〉
σinel
i−atm(E)

(2.3)
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which, in the approximation that ρ(X)/n(X) ≈ 〈matm〉, i.e. that the atmospheric composition
is independent of depth (n is the atmospheric number density), is the atmospheric mass
average divided by the (weakly energy dependent) inelastic cross section for interactions of
particle i with the atmospheric particles. It is in this approximation independent of the
slant depth X. The average atmospheric mass is given by 〈matm〉 = mp〈A〉 where mp is the
proton mass and 〈A〉 = 1.27 the average mass number for the nuclei in the solar atmosphere,
assuming a composition of 28 % helium and 72 % hydrogen. We use the inelastic cross section
for particle i on protons, σinel

i p , for the interaction lengths. This means that we approximate

the cross section σinel
i−atm ' σinel

i p , but adjust the mass average to the actual conditions in
the Sun. We estimate that this approximation is good to within about 10%. The second
term, (2.2b), describes particle loss due to decays and contains the decay length

λi,dec(X,E) = cτiρ(X)
E

mi
(2.4)

where τi is the life-time of particle i and E/mi = γ represents time dilation. The decay length
depends explicitly on the energy and implicitly on the slant depth through the density ρ(X).

The two last terms in the cascade equation, (2.2c) and (2.2d), represent an increase of the
flux of particle i due to interactions and decays containing the particle in the final state. They
contain integrals over the fluxes of other particles j and the corresponding interaction/decay
lengths multiplied by the yields dnj(E′)→i(E)/dE — the number of i particles at energy E
coming from the interaction/decay of particle j with energy E′.

The coupled system of cascade equations can be solved in a number of ways, ranging
from purely numerical to semi-analytical methods that introduce the spectrum-weighted Z-
moments. In this case the equations can be solved separately in the limits of high and low
energies, where the interaction term and the decay term dominate, respectively, and the
solution is then an interpolation between these two solutions. There is then a critical energy
above which the flux falls off faster by one power of the energy.

2.2 The MCEq code and modifications

In this paper we use the code MCEq [10, 14] to obtain the neutrino fluxes. In this code the
cascade equations are formulated in matrix form, with the fluxes for all particle types in a
column vector and the different interaction/decay lengths and regeneration terms as matrix
elements, and solved by utilising methods from linear algebra.

Originally, the MCEq code was meant to treat CR cascades in the Earth’s atmosphere, but
we have modified it to make it possible to obtain results for cascades in the solar atmosphere.
We have (i) included muon energy loss as described in section 2.6, (ii) changed to a solar
geometry, (iii) used solar density profiles as described in section 2.3, and (iv) used cross
sections and particle yields appropriate for a solar atmospheric environment.

In MCEq the CR flux is converted into fluxes of neutrons and protons with energies
divided equally among the nucleons. These are then followed along with all other included
particle types in the cascade equations. Tabulated cross sections and yields must be provided
to MCEq. Several event generators are available to provide these, we use the cross sections
and yields for hadronic and baryonic projectiles on protons obtained with the event generator
SIBYLL [15, 16] version 2.3 [17, 18].

The prompt flux is often modelled separately from the conventional flux. In this paper
we use the default option in MCEq, i.e. the charm production model of SIBYLL 2.3 [18]. This
is a phenomenological model, in contrast to the modern calculations of the prompt flux in
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the atmosphere [19–22] that use state-of-the-art perturbative QCD. The SIBYLL prompt flux
is larger than the perturbative fluxes, and may be close to the IceCube upper limit on the
prompt flux [22, 23]. However, as the prompt flux in Earth’s atmosphere is only relevant for
neutrino energies above 106 GeV, we do not expect it to be important for solar neutrinos in
the energy range we are interested in.

2.3 The Sun

For the radial density profile, describing the distribution of mass in the Sun as a function of
the distance from the centre, we use the Standard Solar Models (SSMs) for the interior of
the Sun. The SSMs mainly concern the inner parts of the Sun and close to the surface we
need to provide additional models. We use two benchmark models. For the first benchmark,
Ser+GS98 we use the Serenelli [24] model combined with Grevesse & Sauval [25]. For the
second model, Ser+Stein, we use ref. [24] for the interior and the density resulting from a
numerical simulation by Stein et al. [26]1 closer to the surface (above ∼20 000 km). The
latter is a magnetohydrodynamical simulation of convection and magnetic fields near the
solar surface. We use the average density in the vertical direction. Outside the solar surface,
we use, for both benchmark models, the same density profile as in the IT96 study which
is an exponential fit to data in ref. [27]. The two resulting density profiles we use in our
calculations are plotted in figure 2, but in practice, the choice of density model does not
significantly affect the results. We have also checked that the Serenelli model is very similar
to Model S by Christensen-Dalsgaard et al. [28]. The density curve jumps discontinuously at
the points where the model changes. This is unphysical, however we have made the choice
to keep the values as is rather than making a guess for how to match the curves. The jump
does not affect our results in a significant way.

The magnetic field of the Sun is the source of the interplanetary magnetic field that
extends throughout the Solar System. In the outer parts of the Sun, in the corona and
chromosphere, the magnetic field has a complicated structure and our knowledge to a large
part relies on numerical modelling and approximations [29–31] using observations of the
magnetic field in the photosphere as boundary conditions. The magnetic flux is unevenly
distributed on the solar surface and is concentrated in flux tubes that extend outwards from
the surface, and there is a toroidal magnetic field around the equator. The magnetic field in
the flux tubes at the surface can be in excess of 103 G. This will affect the cascade development
that we will discuss in the next subsection.

In order to estimate energy losses of charged particles in the cascade we need to know
the magnetic field inside the Sun in the regions where the neutrinos are generated. The
complicated structure of the solar magnetic field is thought to have its origin at the base of
the convective zone, at roughly 0.7R�, and it is believed that the magnetic fields there are
at least 104 G or up to 105 G in flux tubes [32]. Because the SAν are produced closer to the
surface, we do not need to know the magnetic fields deep into the Sun.

2.4 Cosmic rays, the solar magnetic field and cascade developments

CRs that reach the solar atmosphere will be affected by the solar magnetic field. The effect
will be largest for the lower energy particles — at higher energies the particles are rigid
enough that the magnetic effects can be neglected. The effect on the CRs up until their first
interaction in the Sun has been studied in ref. [5], where the neutrino energy Em below which

1As obtained from Bob Stein’s webpage: http://steinr.pa.msu.edu/∼bob/data.html.

– 5 –

http://steinr.pa.msu.edu/~bob/data.html


J
C
A
P
0
6
(
2
0
1
7
)
0
3
3

0.0 0.2 0.4 0.6 0.8 1.0
Radius [R¯]

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

D
e
n
si

ty
 [

g
 c

m
−

3
]

Edsjö, Elevant, Enberg & Niblaeus (2017)

Ser+Stein
Ser

-25 -20 -15 -10 -5 0 5
Height [1000 km]

10-6

10-5

10-4

10-3

10-2

Figure 2. Shown here are the radial density profiles we have considered. The solid blue curve is
a Standard Solar Model by Serenelli et al. [24] while the dashed red line comes from a Serenelli
et al. model out to ∼20 000 km below the solar surface, where we change to the density from a
magnetohydrodynamic simulation by Stein et al. [26]. For both curves we use the exponential fit to
data in ref. [27] used by Ingelman et al. [7] outside the solar surface. The density makes a discontinuous
jump where the model changes which is unphysical, we have made the choice to use the densities at
face value rather than making a possibly erroneous matching of the curves at points of model change.

magnetic effects are important is estimated to be Em ∼ 200 GeV. CRs leading to neutrinos
of energies below Em are in their analysis assumed to partially prevented from reaching the
Sun, hence the effect in ref. [5] is to lower the neutrino flux below Em.

The magnetic field will also affect the motion of charged particles in the cascades,
causing their direction to change. Hence, the cascade development will in general not only
be in the direction of the primary particle. One effect of this would be that the cascade does
not develop as far down into the atmosphere as without a magnetic field, another effect is
the potential that the particles in the cascades are mirrored.

A gamma-ray flux from the Sun has been observed by the Fermi-LAT [33, 34]. The
flux is about ten times larger than that previously expected [5] and furthermore has a time-
dependence anti-correlated with the solar activity [34]. The gamma ray observations can
potentially aid in determining the effect of the magnetic fields on the low energy neutrino
flux since part of the gamma ray flux is produced by the π0 decay in the same hadronic
cascades that give the neutrino flux. In fact, as shown in ref. [5], the gamma ray flux will
be enhanced by the mirroring of incoming CRs in the magnetic fields. These effects on the
cascade development should in principle also affect the neutrino flux in a similar fashion.
The fact that the gamma ray observations are higher than expected indicate that there can
be an enhancement in the neutrino flux.

In the current analysis we neglect the effects of magnetic fields. Given the above discus-
sion, this should be valid for neutrinos of higher energies. We follow ref. [5] and judge that
the magnetic effects is relevant for neutrino energies below Em ∼ 200 GeV with increasing
importance the lower the energy is. As the effects of the magnetic fields are expected to be
larger the lower the neutrino energy is we will in this study show results a bit below 200 GeV
and will cut our fluxes at 50 GeV. In future work we will attempt to estimate the effects
from the magnetic field.

– 6 –
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2.5 Energy loss mechanisms

The particles created in the cascade may lose energy in several ways. The main mechanism
is hadronic interactions, as indicated above. In the generation of neutrino fluxes in Earth’s
atmosphere, this is the only relevant mechanism, and as such, it is the only mechanism
implemented in MCEq by default. In neutrino production in astrophysical sources, however,
hadronic interactions are not the main energy loss mechanism, but instead radiative cooling,
i.e. synchrotron radiation and inverse Compton scattering, are more important due to the
very large magnetic fields and photon densities. The Sun has a significant magnetic field
and number density of photons, so in principle it may be possible for particles to lose energy
through these radiative processes. However, as we shall see, these two mechanisms for energy
loss can be safely neglected in the Sun and the energy loss implemented in MCEq is sufficient.
Below we give a simple estimate of the relative importance of the three energy loss mech-
anisms, and since the radiative processes are not important we do not include them in our
calculations. It would, however, be straightforward to include them if necessary, provided
that a sufficiently good knowledge of the magnetic field was available. Including radiative
cooling would only be relevant for ultra-high energies, however, where the fluxes are very low.

As we shall see below, most of the neutrino production occurs between r = 0.99R� and
r = 1R�. For definiteness, we choose the density and temperature below at r = 0.995R�
for illustration, and we choose a magnetic field strength of 105 G, but the conclusions do not
depend on this choice.

The attenuation length for synchrotron losses for protons of energy Ep in a magnetic
field B is

λp,synchro =
6πm4

pc
4

σTm2
eEpB

2
, (2.5)

where σT is the Thomson cross section for electrons. This should be rescaled by (mM/mp)
4

for a meson of mass mM . Note that the attenuation length is in units of cm.
With a density at r = 0.995R� of 5 × 10−5 g/cm3, the hadronic interaction length

for protons, λp,int, is on the order of 105 cm with a logarithmic dependence on energy. The
synchrotron length λp,synchro falls with energy and magnetic field strength, but for all energies
of interest it is orders of magnitude larger than λp,int. For pions, the hadronic length is roughly
the same as for protons, while the synchrotron length is rescaled by a factor 5× 10−4. This
is not enough to make them comparable, except for the extreme choice of B = 105 G, where
they become equal for very large energies Eπ ∼ 1011 GeV. Note that if a perhaps more
realistic value of B ∼ 103 G is used, they instead become equal at 1015 GeV. We therefore
conclude that synchrotron losses are completely negligible in the energy range we consider.

For inverse Compton scattering on a photon energy density Uγ the attenuation length is

λp,IC =
3m4

pc
4

4σTm2
eEpUγ

, (2.6)

where Uγ ∝ T 4 is the photon energy density as obtained from the Stefan-Boltzmann law for
temperature T . The solar models discussed above give the temperature as a function of the
radial distance from the centre, with a temperature at r = 0.995R� around 2.5×104 K. This
gives the estimate that λp,IC is 105 times larger than λp,synchro. Inverse Compton scattering
can therefore also be neglected.

It should be noted that the above estimates use a conservative value of B = 105 G, and
if the true value is smaller, synchrotron cooling becomes even more irrelevant.
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In the next section we discuss the energy loss of muons in particular, which is one of
our additions to MCEq. Muons are also affected by the radiative processes discussed in this
section, but since the muon mass is quite close to the pion mass, they will have roughly the
same attenuation lengths such that we may again neglect radiative energy loss.

2.6 Muon energy loss and decay

Muons lose energy, which in MCEq is modelled in a continuous fashion according to

dE

dX
= −(α+ βE) (2.7)

where E is the muon energy, X the slant depth and α and β parameters that depend on the
material that the muons propagate through. As muons decay and produce neutrinos it is
important to include the energy losses.

As in ref. [5] we model the outer parts of the Sun as consisting of 72 % hydrogen and
28 % helium which gives us the values 7.0× 10−3 GeV cm2 g−1 and 1.8× 10−6 cm2 g−1 for
α and β respectively. We have produced tables of energy losses as a function of energy and
use these in MCEq.

As the muons lose energy, their decay length decreases, and for most impact parameters
they all decay within the Sun and produce neutrinos. However, for very high impact parame-
ters, there is not enough solar material to propagate through, so some muons will decay after
the Sun. MCEq only calculates the decays inside the Sun and to include the neutrinos from
the decay of these remaining muons we have added an extension where we let the muons
decay manually and add the resulting neutrinos to the neutrinos produced in MCEq.

2.7 Cosmic ray models

The all-particle CR spectrum is well modelled by a power-law with a single slope of around
−2.7 up to energies of about 106 GeV, at which point the spectrum becomes steeper (the so
called knee). At energies around 109 GeV the spectrum changes again at the ankle, signalling
a probable transition to an extragalactic source of CRs since the energy is then too high
for the CRs to be contained by the galactic magnetic field. There are various options for
the parametrization of the CR spectrum in MCEq. The models differ in their assumptions on
what types of CR populations make up the spectrum. Typically one assumes galactic and
extragalactic components in the spectrum, with the extragalactic populations being relevant
mainly from the knee and upwards.

In our analysis, we use two different models: the Hillas-Gaisser 3-generation model
(denoted H3a) model [35] and the Gaisser-Stanev-Tilav 4-generation model (here denoted
GST 4-gen) model [36]. In the H3a model, three different populations of CRs are assumed,
one extragalactic component that starts to contribute to the spectrum at the ankle and two
galactic components below the ankle. The GST 4-gen model assumes four populations, two
of galactic origin and two extragalactic, the fourth one consisting of purely protons included
to make the CR composition less heavy at the highest energies.

2.8 Neutrino fluxes at production

In the outer parts of the Sun, cascade particles (mainly pions, kaons and muons) will decay
into neutrinos. In figure 3, we show the flux differentiated with respect to length travelled
to show where neutrinos are produced. We show this for an impact parameter b = 0 and
three different energies. Note, that most of the neutrinos are produced directly beneath the

– 8 –
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Figure 3. Differential neutrino flux with respect to length travelled for an impact parameter b = 0
and three different energies (100 GeV, 1 000 GeV and 10 000 GeV). Note that the neutrinos are
dominantly produced just beneath the surface of the Sun.

surface of the Sun. The position of the production peak depends on impact parameter, but
most of the neutrinos are produced between 0.99R� and 1.0R�.

At a depth sufficiently large that all cascade particles that produce neutrinos will have
decayed, no more neutrinos are produced by the CR interactions with the solar matter. We
call these fluxes our production fluxes. We also include neutrinos arising from muon decay
outside the Sun (as described in section 2.6) in these production fluxes. In section 4.1 we
will come back to these fluxes after having discussed how we perform the event generation
in the next section.

3 Neutrino interactions and oscillations in the Sun and interactions at the
detector on Earth

From the MCEq calculations we have the neutrino production fluxes as a function of impact
parameters and length travelled in the solar atmosphere. These neutrinos will then propagate
through the Sun undergoing interactions and oscillations. For the interactions we include deep
inelastic scattering via both neutral current (NC) and charged current (CC) interactions. NC
will degrade the energy of the neutrino and we include these lower energy neutrinos in our
calculation. In CC interactions we will produce a charged lepton. For electrons and muons
these will not give rise to new neutrinos (muons are considered stopped before they decay),
but for τ leptons, these will decay and produce new lower energy neutrinos, which we include
in our calculation.

In this section we will go through how we in our event-based Monte Carlo framework use
the MCEq production fluxes as input and draw events from these distributions and take care of
neutrino interactions and oscillations. For this we use the publicly available WimpSim code [11,
12]. The WimpSim code is created to take care of neutrino interactions and oscillations for
neutrinos arising from WIMP dark matter annihilations in the Sun and the Earth. In this
study, we have modified WimpSim to include also the SAνs.

3.1 Event generation in WimpSim

For a fixed value of the impact parameter b, MCEq provides the fluxes of neutrinos produced
in the cascades as function of flavour, energy and path length ` (or depth X) travelled. For
definitions of path length ` and impact parameter b, see figure 1. We differentiate these to
obtain the differential fluxes with respect to path length dΦνα/d` and read the differential
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Figure 4. An illustration of the attenuation of νe and νµ (left) and ν̄e and ν̄µ (right) through CC and
NC interactions in the Sun. The figure shows the fraction of neutrinos that survive passage through
the Sun for different energies and impact parameters. In this plot we have for simplicity assumed that
both NC and CC interactions will absorb the neutrinos, whereas in the real calculation we include
the lower energy neutrinos from NC interactions and from τ decay. This figure is dedicated to the
memory of PAW [37].

fluxes into WimpSim for 14 values of the impact parameter ranging from 0 to 1.002 (we have
picked the values of b to make sure we sample the distribution well, especially close to the
limb, b ' 1). The fluxes are then interpolated linearly in b, ` and logE. We have chosen our
set of impact parameters to ensure small interpolation errors.

We generate events uniformly distributed in the impact parameter b and assign each
event a weight to properly include the b dependence on the solid angle. We then sample neu-
trino events with a value of energy from the integrated flux Φ using acceptance-rejection sam-
pling. Each event is also given an `-value by using acceptance-rejection sampling on the dif-
ferential flux distribution dΦνα/d`. In practice we draw events from the distributions summed
over flavour and particle/antiparticle type and assign flavour and particle/antiparticle type
from their relative probabilities.

Both energy and ` span over many orders of magnitude, with a rather steep decline.
In order to obtain reasonably good statistics at all orders of magnitude, we used rejection
sampling under a curve that is as close to the sampling distribution as possible. It takes
about a minute to generate 1 million events.

In this way we obtain neutrino events with energies, impact parameter and flavour ratios
distributed in accordance with the MCEq fluxes, and points of creation distributed according
to the differential flux so that most neutrinos come from points mostly around an energy
dependent distance of the order of a few thousands of kilometres below the solar surface.
Each event is assigned a weight that ensures that the sum of all events will give the flux in
units of 1/(cm2 s).

3.2 Neutrino interactions

When the generated neutrinos propagate through the Sun on their way to the Earth they
will interact and undergo flavour oscillations. As we focus on high energy neutrinos, we
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consider interactions through deep inelastic scattering on the nuclei in the solar interior,
where the neutrino exchanges energy with a parton inside a nucleon through weak vector
boson exchange. The interactions include NC and CC interactions, proceeding through the
exchange of a Z and W boson respectively. In NC interactions, the neutrino is kept, but
with a lower energy. In CC interactions we produce a charged lepton, which for electrons and
muons will not give rise to new neutrinos (muons are considered stopped before they decay
in the region where interactions are significant). If a τ lepton is produced it will decay and
produce new lower energy neutrinos. The neutrino-nucleon interactions are simulated with
nusigma [38] using the CTEQ6-DIS parton distribution functions [39] and τ lepton decay we
simulate with Pythia 6.4.26 [40].

The interactions are simulated from the point in the Sun where the neutrino is created,
and onward using the same density profile as for CR interactions. We use the composition in
the Serenelli SSM [24] to include interactions on the correct amount of protons and neutrons
throughout the Sun (i.e. we do not assume an isoscalar target). We link to DarkSUSY where
these density profiles and the composition in the Sun are easily obtained [41]. In case a
charged current interaction that creates a τ lepton takes place, we simulate the tau decay
and inject the produced neutrinos at this location and continue simulating interactions and
decay through the Sun.

In figure 4 we illustrate how important the interactions are by calculating the attenuation
factors in a simple setup. We have here assumed that both NC and CC interactions will
absorb the neutrinos, whereas in the real calculation we include the lower energy neutrinos
from NC interactions and from τ decay. This figure shows the attenuation for electron
and muon neutrinos and antineutrinos.2 We can see from these figures that for low impact
parameters (b = 0) we lose essentially all neutrinos above 103 GeV, whereas close to the
solar surface (b = 1) the neutrinos are not very much affected by interactions below around
105 GeV. These figures can be compared to the earlier calculation IT96 [7]. Qualitatively
our results are quite similar, but we do get a higher suppression, especially for low impact
parameters. Most likely this is due to that we use an updated solar density model and
neutrino-nucleon cross sections compared to the IT96 study. We will come back to the effect
the interactions have on our SAνs in section 4.1.

3.3 Neutrino oscillations

Neutrino oscillations are included in WimpSim using a full three-flavour numerical evolution
code. It steps through the Sun taking both vacuum oscillations, oscillations from matter
effects and interactions into account (as described in the previous subsection). For the matter
effects, we use the Serenelli SSM [24] for the electron density in the Sun. We will perform
our calculations for three different sets of oscillation parameters: one without oscillations and
one each for the best fit normal and inverted mass ordering scenarios. The best fit values we
take from refs. [42, 43]. These sets of values are listed in table 1.

The probabilities for neutrino oscillations are oscillating functions with amplitudes de-
termined by the neutrino mixing angles θij and oscillation lengths that depend on the neutrino
energy and the squared mass differences ∆m2

ij . Thus we get three oscillation lengths: λ21, λ31

and λ32. Since |∆m2
31| ≈ |∆m2

32|, λ31 ≈ λ32 and we effectively have two different oscillation
lengths. In the vacuum approximation, where matter oscillation effects are ignored, these

2For tau neutrinos, the results would be similar, but the CC cross section is slightly lower for tau neutrinos
due to the τ lepton mass.
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θ12(◦) θ23(◦) θ13(◦) δCP (◦) ∆m2
21 (eV2) ∆m2

31 (eV2)

No osc. 0 0 0 0 0* 0*

Normal ordering 33.56 41.6 8.46 261 7.50 · 10−5 +2.524 · 10−3

Inverted ordering 33.56 50.0 8.49 277 7.50 · 10−5 −2.439 · 10−3

∗In the code, we set the mass squared differences to non-zero values to avoid numerical problems.

Table 1. Table of the three sets of oscillation parameters we use. For normal ordering and inverted
ordering the best fit values are from refs. [42, 43].

are approximately given by

λ21 ≈ 3.3× 106 km

(
E

100 GeV

)(
7.5× 10−5 eV2

∆m2
21

)
(3.1a)

λ3i ≈ 9.9× 104 km

(
E

100 GeV

)(
2.5× 10−3 eV2

|∆m2
3i|

)
, i = 1, 2, (3.1b)

i.e. λ21 ' R� for energies above 100 GeV while all oscillation lengths are small compared to
the Sun-Earth distance for energies around 100 GeV. We can divide the effects of oscillations
for each oscillation length in three regions: i) low energies, where oscillations become decoher-
ent and the oscillating part can be averaged over ii) intermediate energies, where oscillation
effects can be seen in the neutrino fluxes and iii) high energies, where the oscillation lengths
are long compared to the Sun-Earth distance so that neutrinos do not have time to oscillate.

Although we include the full treatment of matter effects on the neutrino oscillations,
these effects are not significant for the energies we are considering, as also shown earlier in
ref. [9]. The oscillation effects on the neutrino fluxes at Earth come dominantly from vacuum
oscillations.

3.4 WimpSim running

Our new solar atmospheric neutrino code solar crnu is added to the existing WimpSim soft-
ware and made publicly available [12]. For details about the code, we refer the reader to
appendix A and the code webpage. We will also provide the result files used in this paper
on the WimpSim web page [12].

In WimpSim we can simulate the events at a particular detector on Earth and we will
assume that the detector is IceCube [44] located at latitude −90◦, with the detector medium
being ice. We will further assume that the data taking window is between the vernal and
autumn equinoxes (i.e. during the austral winter where the Sun is below the horizon and hence
the atmospheric muon background is lower). We will in this study focus on the summary
fluxes which will contain the fluxes we are interested in, time-averaged over the six months
of the austral winter. For the time-averaging, the eccentricity of the Earth’s orbit is included
which will cause some of the oscillation patterns to be washed out. Our assumption on
the detector medium being ice will only affect our neutrino-induced muon fluxes and using
a different detector location or medium surrounding the detector will typically change the
fluxes by less than 5%.
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4 Results: neutrino fluxes and production neutrino fluxes and neutrino-
induced muon fluxes at production and at the Earth

We are now ready to show some resulting fluxes, where we will focus on fluxes at the detector
on Earth. We have calculated the neutrino fluxes for two cosmic ray models, H4a and
GST 4-gen, two density profiles, Ser+Stein and Ser+GS98 and three neutrino oscillation
scenarios, no oscillations, normal ordering and inverted ordering, i.e. in total 12 different
combinations. For each combination we have generated 2.5× 108 neutrinos. As a default, we
will show results for the cosmic ray model H3a and the density profile Ser+Stein, but will
also investigate some of the dependencies we have on different input parameters.

4.1 Neutrino fluxes at production and after passage through the Sun

Our production fluxes for νe and νµ are shown in figure 5 for our different choices of CR
models and density profiles. The fluxes are as seen from Earth, integrated over the solid
angle of the sun. We see that the production fluxes can differ by up to 30% at higher
energies depending on which CR model we use. At lower energies (below around 100 GeV),
the differences are very small though. Our two different density models give very similar
results with the differences typically being less than 5%. As our two density models only
differ significantly at the solar surface, we expect to see the biggest differences from the two
models in the production fluxes, the interactions and oscillations will be very similar for our
two models.

In figure 6 we show the production fluxes and fluxes after passage through the Sun
of muon neutrinos and antineutrinos for three different neutrino energies. For the sake of
illustrating interaction effects we do not include oscillations in this figure. If we compare
the neutrino fluxes at production (solid lines) to the ones after passage through the Sun
(dashed lines), we see that we get a dip at low impact parameters. This is the effect of the
attenuation that happens due to interactions when the neutrinos pass through the Sun, as
we saw already in figure 4. As the density of the Sun is significantly higher in the centre,
the effect is very strongly pronounced for low impact parameters. We can also see that the
effect of attenuation is higher for higher energies as expected.

We can also see how the production fluxes depend on the impact parameter. We see
that for higher energies these are quite peaked at large impact parameters, which is expected
as the density where the cascade happens is lower for these Sun grazing CRs, and hence the
fluxes are higher. We also get a small contribution from muons decaying outside of the Sun
at high impact parameters and high energies.3 The total flux from the Sun is obtained by
integrating over the impact parameters including the fact that the solid angle is larger for
large impact parameters. Hence, the high impact parameter part of these figures will be most
important for the total flux from the Sun. So to summarise, we have three effects which all
make the high impact parameters most important for our SAν flux: i) interactions suppress
low impact parameters, ii) CR interactions produce more neutrinos where the density is low,
i.e. at high impact parameters and iii) the solid angle of the Sun is larger for large impact
parameters.

At low b-values our fluxes to a large part agree with the previous calculation in IT96.
At b = 1 the fluxes in IT96 are significantly higher than at low b. We also see this effect, but
not to the same extent.

3These are included in this figure even if they strictly speaking are produced between the Sun and the
Earth.
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Figure 5. In the upper row we show the production fluxes of νe (left) and ν̄e (right) respectively. In
the lower row, we show the same but for muon neutrinos and anti-neutrinos. We show the production
fluxes for our default cosmic ray model H3a and density profile Ser+Stein, but also compare the fluxes
from a different cosmic ray model GST 4-gen and density profile Ser+GS98. In the lower part of the
figures we show the ratio between the fluxes for different cosmic ray models and density profiles.

4.2 Neutrino fluxes at a detector at Earth

In figure 7 we show the neutrino fluxes at production, after propagation through the Sun, at
1 AU from the Sun and finally propagated to the detector at Earth. The difference between
the results at 1 AU and at the detector is that the detector fluxes are averaged over the
austral winter (from vernal to autumn equinox). This averaging will due to the eccentricity
of the Earth’s orbit wash out some of the oscillation effects at lower energies.

After propagating through the Sun we can see from the red curves in figure 7 that some
neutrinos have been lost due to interactions, especially at higher energies. We also see that on
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Figure 6. The muon neutrino fluxes at production and at the surface of the Sun (after propagation
through the Sun) for neutrino energies 100 GeV (left), 1000 GeV (middle) and 10 000 GeV (right). In
this figure, neutrino oscillations are not included to show the effect of attenuation only. Note that we
here plot the fluxes and not E3

ν times the fluxes.

these length scales oscillations essentially only affect muon and tau neutrinos. The oscillation
length λ21 due to ∆m2

21 is in accordance with eq. (3.1a) large compared to R� and hence
ineffective at these energy and length scales. Therefore oscillations from muon neutrino into
electron neutrinos are insignificant. Muon neutrinos oscillations into tau neutrinos, coming
from the oscillation lengths λ31, λ32, are significant at energies below ∼ 103 GeV. Below
about ∼ 102 GeV the neutrinos are incoherent since from eq. (3.1b) we have λ31, λ32 � R�
and oscillations average out. At very high energies, also λ31 and λ32 are long compared to
R� and oscillations do not develop, leading to a tau neutrino flux that is very small and does
not differ from the very small production flux.

In the fluxes after passage through the Sun we can see some effects of matter oscillations.
There is a slight enhancement in the flux of ν̄e at around 100 GeV that is due to matter effects,
but overall the oscillation effects on the fluxes are well approximated by vacuum oscillations.

At the Earth the distance travelled is long compared to all oscillation lengths for energies
below a few hundred GeV and the oscillations average out, resulting in a ratio of about equal
fluxes for all three flavours. At high energies we can now see the effect of oscillations due to
λ21 in the electron neutrino flux and the effect of all oscillation lengths for the muon and tau
neutrinos. For the latter two, λ21 oscillations now appear in the region around ∼ 103 GeV
and the λ31 ≈ λ32 oscillations at higher energies around ∼ 104 GeV with muon oscillation
into tau neutrinos now efficient up to the highest energies. Thus the tau neutrino flux at the
Earth is almost entirely due to oscillations.

In figure 8 we show the effect of different oscillation parameters. The ‘No oscillations’
model is of course not physical, but just shown for comparison. The normal and inverted
ordering refers to the best fit neutrino oscillation parameters for these two cases. The main
effect of inverted ordering compared to normal ordering is to increase the muon neutrino
fluxes below 104 GeV and correspondingly decrease the electron neutrino fluxes. The tau
neutrino fluxes are not affected by the mass ordering. We attribute the difference from
mass ordering to the different values of the best fit parameters. For electron and muon
neutrinos we also compare with the IT96 [7] results. We note that without oscillations our
results agree fairly well with IT96 at low energies, whereas at higher energies our results are
lower. It is hard to know exactly what causes this difference, as it can come from many
different sources (cosmic ray model, atmospheric interaction model, solar model, etc). We
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Figure 7. The progression of neutrino fluxes from production, after passage through the Sun, at 1
AU from the Sun and finally at the detector (averaged over the austral winter). The plots show the
νe, νµ and ντ fluxes (integrated over the Sun) from top to down respectively. To the left we show
neutrino fluxes and to the right anti-neutrino fluxes.
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Figure 8. The effect of different oscillation scenarios on the different neutrino flavour fluxes (at the
detector, averaged over the austral winter). We show the sum of the electron neutrino fluxes (left),
muon neutrino fluxes (middle) and tau neutrino fluxes (right). In the lower part of the plot the ratio
between the inverted and normal ordering scenarios is shown. Note that for tau neutrinos, the fluxes
without oscillations are below the lowest boundary of the plot and are hence not shown. For electron
and muon neutrinos we also show the fluxes from IT96 [7].

Figure 9. The muon neutrino flux from the Sun compared to the Earth atmospheric neutrino back-
ground (both are given per solid angle). The Earth atmospheric fluxes are given both for horizontal
and vertical fluxes (with a shaded red region in between). For an actual detector, the Earth atmo-
spheric fluxes will be between these two extremes (and slightly reduced in the direction of the Sun
due to the Sun blocking some cosmic rays). The Sun and Earth fluxes are both calculated with MCEq

with the same set of parameters.

have though compared with their production fluxes for different impact parameters (their
figure 1). Our production fluxes are in reasonable agreement, except at b = 1 where they
get significantly more neutrinos. We also get more neutrinos for large impact parameters,
but not to the extent IT96 gets them. We also note that IT96 calculates the fluxes at three
impact parameters (b = 0, b = 2/3 and b = 1) and then interpolate between these to get the
total flux from the Sun. As the flux is so much higher at b = 1, the way the interpolation
is done will largely affect the result. We have generated MCEq tables for more values of b
(especially close to 1) to make sure we get small interpolation errors and then draw events
for all b. Our integration over the Sun should therefore be more accurate.

In the previous figures we showed the fluxes integrated over the Sun, but it is also inter-
esting to look at the angular distributions and compare to the Earth atmospheric neutrino
fluxes. One way to view this is that the cosmic rays hit an atmosphere and produce cas-
cades and eventually neutrinos. If it were not for interactions, oscillations and atmospheric
differences we would expect to get essentially the same flux of neutrinos (per solid angle)
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Figure 10. The flux of neutrino-induced muons at the detector (averaged over the austral winter).
At the bottom, the ratio between the inverted and normal oscillation scenarios is shown. To the
left we show differential fluxes (note that these fluxes are shown as E2

µdΦµ/dEµ) and to the right
integrated fluxes above an energy threshold.

from the Sun’s and Earth’s atmospheres. In principle, the Sun blocks some cosmic rays to
reach the Earth and we would naively expect to get a reduction of Earth atmospheric neu-
trinos in the direction of the Sun, and an equal increase from the cosmic ray interactions in
the Sun. However, including atmospheric differences (the Sun’s atmosphere is considerably
less dense), interactions and oscillations, this no longer holds true and the solar cosmic ray
neutrinos could be both larger or smaller than the Earth atmospheric ones.

In figure 9 we show the differential muon neutrino (νµ + ν̄µ) fluxes (per solid angle)
from the solar cosmic ray neutrinos (i.e. our calculation in this paper) and compare with the
Earth atmospheric neutrinos. Our shown fluxes in this plot are very similar to those shown
in figure 6, with the difference being that here we show the fluxes propagated all the way
to the detector and we include oscillations. An actual detector will of course be at a given
latitude and the Sun will then be in a range of directions on the sky, so depending on the
detector location and time of day and year the actual Earth atmospheric background will
be somewhere between the lower (vertical) and upper (horizontal) limit. We have in this
figure not included the solar cosmic ray blocking effect on the Earth’s atmospheric fluxes as
it is complicated to model given the effect of magnetic fields in the Solar System (naively
one would expect the Earth atmospheric neutrino fluxes to drop to zero below 0.26◦). We
can see that the solar cosmic ray neutrinos are of the same order or larger than the Earth
atmospheric background, but we get a dip in the centre due to the attenuations through the
Sun. If we compare the different energies in figure 9 we also see the SAν fluxes are (relatively
speaking) higher than the Earth’s atmospheric neutrino fluxes especially for higher energies.
This can be understood from the density of the solar atmosphere being much lower than
the Earth’s atmosphere. This means that especially at high energies, the unstable cascade
particles have time to decay before they interact, whereas in the Earth they are much more
likely to interact.
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Figure 11. The angular distribution of the neutrino-induced muon flux at the detector with a
threshold of 50 GeV on the muon energies. For comparison we show the angular distributions of a
WIMP annihilation signal of different masses for annihilation into bb̄ (left) and W+W− (right). In
this figure, we have integrated over the azimuthal angle so that the fluxes are differential in the angle
with respect to the Sun, θ.

4.3 Neutrino-induced muon fluxes at a detector at Earth

Instead of looking at the neutrinos directly we can let these interact and look at the muons
that are produced. The muon flux will of course be lower as most neutrinos (at least at
lower energies) do not interact. With the WimpEvent part of WimpSim we have calculated
the neutrino-induced muon flux at a detector in ice at the South Pole. In figure 10 we
show the resulting muon (µ− − µ+) fluxes at the detector (to the left differential in energy
and to the right integrated over an energy threshold). To get these fluxes we have let the
muons lose energy after the neutrino-nucleon interaction, i.e. we show the muon flux at a
plane perpendicular to the Sun at the detector. We see that the effect we saw earlier, that
inverted neutrino mass ordering gives higher fluxes, still remains. In the right figure with the
integrated fluxes, one can also get a rough estimate of the event rates in a neutrino telescope.
A detector with an effective area of 1 km2 and a muon energy threshold of 100 GeV would e.g.
see a flux of 2.3 muons (µ−+µ+) per square kilometre per year. In the next section, we will
calculate event rates more accurately using the effective areas for different energies instead.

In figure 9 we looked at the angular distributions of neutrinos, but as these angles are
not directly observable, we now instead focus on the angular distributions of the muons. In
figure 11 we show the fluxes of neutrino-induced muons at the detector integrated above a
muon energy of 50 GeV. Compared to the neutrino angles (that were at most 0.26◦, half the
angular diameter of the Sun), these angles now include also the neutrino-nucleon scattering
angle and the deflection of the muons due to multiple Coulomb scattering. Hence, these
angles are slightly bigger.

We have mentioned earlier that these solar cosmic ray neutrinos will be an (essentially)
irreducible background for searches for neutrinos from dark matter annihilations in the Sun.
Both the solar cosmic ray neutrinos and the neutrinos from dark matter annihilations come
from the Sun, but as the energy distribution is different, so will the angular distribution be
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Figure 12. The Sun as it could be seen in neutrino-induced muons at a neutrino telescope. Note the
dip in the centre.

(mostly from the fact that the neutrino-muon angle at the deep inelastic scattering goes like
1/
√
Eν). In figure 11 we also show the angular distributions for some dark matter models, so

called WIMPs. These are also calculated with WimpSim where Pythia [40] is used to calculate
the annihilation spectrum of neutrinos from WIMP annihilations. We show these fluxes as
differential in the angle from the Sun, θ, as this is close to what one would experimentally
cut on if trying to separate these two distributions. In principle, we could also cut on energy,
but the energy estimate of muons at these energies is very poor. We have not included the
experimental error on the angle in this figure, if we would it would smear the distributions
further. Even if the angular distributions are different we argue that they are quite close which
will make discrimination difficult, hence the solar cosmic ray neutrinos will be a background
for dark matter searches from Sun.

Finally, for illustration we show in figure 12 how the Sun wold look like if we could see
the neutrino-induced muons from solar cosmic ray interactions. Even if the neutrino-nucleon
scattering angle smears the neutrino fluxes somewhat, we still see the ring like signature of
this signal with a slight dip in the centre.

4.4 Events in neutrino telescopes

To estimate how many events we could expect in a neutrino telescope, we focus on IceCube
and use the estimated effective areas for searches looking for a neutrino excess from the
Sun. We have used two recent estimates of the neutrino effective area, one from their IC-79
study [45] and one from their recent 3-year study [46], we will call these IC-79 and IC3
below. These two estimates use slightly different event selection criteria and present their
effective areas in different ways (separate for νµ and ν̄µ in the first one and combined in the
second). For IC-79 we use the highest effective area of the three selection criteria SL, WL
and WH for each energy. For IC3 we use the DeepCore selection for low energies and the
IceCube selection for higher energies. The events per year (of lifetime of the detector) are
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Events per year

Oscillation scenario IC-79 IC3

Normal ordering 1.17 2.26

Inverted ordering 1.40 2.70

Table 2. Number of events per year (lifetime) in IceCube. The neutrino flux above 50 GeV has been
used in calculating these event rates for IC-79 and IC3.

Figure 13. The differential event rate dR/dEν for normal and inverted neutrino mass ordering for
the effective areas of IC3. In this figure we have included lower energies than our usual 50 GeV limit
even if these are more uncertain.

given in table 2. The event rates for different cosmic ray and density models differ only by
about 1–1.5% from the values listed in the table.

In our study we have focused on neutrinos with energies larger than 50 GeV. As the
differential spectrum falls steeply with energy one might wonder how sensitive the event rates
in table 2 are to this lower energy limit. To test this, we can look at the differential rate,
which for IC3 can be written as

dR

dEν
=

(
dΦνµ

dEν
+
dΦν̄µ

dEν

)
Aνµ+ν̄µ (4.1)

In figure 13 we show this as a function of energy. We can see that our event rate is dominated
by neutrinos of energies in the 100–300 GeV range and hence our calculated event rates are
not very sensitive to the lowest energy of 50 GeV. This can be understood from the effective
area, which is very small at low energies and then rises steeply as the energy goes up. In
this interplay between the steeply falling neutrino spectrum and the increasing effective area
we get a peak, which in this case happens to be in the 100–300 GeV region. The feature at
around 40 GeV comes from the switch from the DeepCore to the IceCube selection in IC3
and the kink at 140 GeV is due to a kink in the IceCube effective area, whereas the wiggles
at higher energies are due to oscillations.
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Figure 14. The SAν sensitivity floor expressed as a limit on the spin-dependent scattering cross
section σSDp as a function of the WIMP mass. We show the sensitivity floor for bb̄ (left), W+W−

(middle) and τ−τ+ (right). For all three cases we show a simple estimate using a hard cut on the muon
energy as a solid blue line, our estimate using the IceCube IC3 effective neutrino area integrating
neutrino energies above Eν = 50 GeV (dashed) and Eν = 1 GeV (dotted). As our fluxes are more
uncertain below 50 GeV, our primary results are the dashed blue curves. We also compare with the
NBPR study (dashed red) [48], where we use their naive curves. All results here are for IceCube.

5 Comparisons with recent studies

Just before finishing our work, two other studies focusing on similar aspects appeared [47, 48].
The first one, by Argüelles et al. [47], performs a very similar study as ours but in a slightly
different framework. We have compared our results with their study, but have been informed
that they are revising their calculation and paper. We therefore refrain from comparing with
their results here.

The other study that appeared very recently is the study by Ng et al. [48], hereafter
NBPR. They do not recalculate the neutrino fluxes from cosmic ray interactions in the Sun
but instead rely on earlier studies and focus on the neutrino floor this gives rise to for dark
matter searches using neutrinos from the Sun. This aspect is also studied in ref. [47]. There
are many ways to present the fact that the SAν flux presents a background for dark matter
searches from the Sun and in NBPR they show results as a limit on the spin-dependent (SD)
scattering cross section σSDp for different WIMP masses. The limits can be presented in this
way by calculating the capture of WIMPs in the Sun and assume equilibrium between capture
and annihilation (see e.g. ref. [49]). There are of course uncertainties coming from both this
assumption and from astrophysical input, most notably the local dark matter halo density
and the velocity distribution. It is however a convenient way to present results as it makes it
easy to compare with direct detection experiments directly sensitive to the scattering cross
section.

We have made an estimate of this sensitivity floor using our results. In these estimates
we calculate the rate in a neutrino telescope, where we use IceCube as an example. We
calculate the capture and annihilation of WIMPs in the Sun with DarkSUSY [41] which in
turn uses results from WimpSim [12] for the WIMP annihilation signals. We also define the
neutrino floor as the scattering cross section σSDp where we get equally many events from
WIMP annihilations as from the SAν flux. We have calculated this estimate in three different
ways: i) the first is to just look at the neutrino-induced muon fluxes (i.e. the ones in figure 10)
and put a hard cut on the muon energy at 50 GeV, ii) the second is to instead use the neutrino
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fluxes directly and use the neutrino effective areas derived for dark matter searches, as done
in section 4.4, where we will here use the IC3 areas and only for Eν > 50 GeV, and iii) the
third way is the same as ii) but for Eν > 1 GeV. Note that as we have large uncertainties
below 50 GeV, the second choice is most robust for our calculation. The first method is
similar to the method used in NBPR although they have also included contained events.

In figure 14 we show our results and for comparison also show the results (for IceCube)
from the NBPR study. We note that our results agree fairly well with NBPR. That the
NBPR τ−τ+ results do not show the turnover of the curve at around 200–300 GeV is most
likely due to that they also include contained events. To get a more accurate estimate of
this neutrino sensitivity floor one should really perform a detector simulation optimizing cuts
(in e.g. energy and angle) to reduce the SAν background as much as possible. One should
also perform a proper statistical analysis on what limits one could really set on WIMP dark
matter given this partly irreducible SAν background.

6 Conclusion and outlook

We have performed a new calculation of the solar atmospheric neutrino flux, SAν. We also
provide an event-based Monte Carlo package that can be used by experimental groups wishing
to simulate this neutrino flux in their detector. Compared to earlier studies, we include both
cosmic ray interactions, neutrino interactions and oscillations in a consistent framework.
Even if our results qualitatively are quite similar to e.g. the earlier IT96 results [7], our muon
neutrino fluxes are lower, since neutrino oscillations reduce these fluxes. We also get lower
fluxes at high energy which most likely comes from two effects, both that our production
model gives less high energy neutrinos, and that our attenuation from interactions in the
Sun is stronger than in the IT96 study.

We have also compared our SAν background to the signal from WIMP annihilation
in the Sun and concluded that the energy and angular distribution of the two signals will
be different, but not different enough to be able to discriminate the two effectively. Hence,
the SAν flux will be an essentially irreducible background for neutrino searches from WIMP
annihilation in the Sun. To properly address how significant this background is will be tough,
requiring a detailed detector simulation to also include detector effects like reconstruction
uncertainties on the muon energy and angle.

We have also compared to Earth’s atmospheric neutrino background and conclude that
the SAν flux is higher in the direction of the Sun, especially at higher energies. The total
event rates are rather low though with only a few events per year even in a large detector,
like IceCube.

We also point out some future directions. We have in this study used the MCEq simulation
package which only include all parts of the neutrino production flux above 50 GeV. Although
the rates in current neutrino telescopes are mostly sensitive to SAν at higher energies, it would
be very interesting to investigate lower energies in a future study, as thresholds of neutrino
telescope are lower than this. However, in that case one would also need to address the
difficult question of the impact of the magnetic fields in the Solar System that will effect the
lower energies. One possible way forward in this regard could be to correlate the neutrino
flux with the gamma ray flux measured by the Fermi-LAT and e.g. IceCube.

As the gamma ray flux would depend on the magnetic fields in similar ways, it should
be possible to reduce the uncertainties this way. It would also be worthwhile to investigate
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WimpSim code layout
In the Sun* At the Earth

WimpAnn
Simulates WIMP 
annihilations and 
propagates neutrinos

Pythia
Simulates annihilation 
events and tau decay

nusigma
Simulates 
neutrino-nucleon 
interactions

DarkSUSY
Provides solar models

Pythia
Simulates tau decay

MCEq
data files

solar_crnu
Generates solar 
atmospheric neutrinos 
and propagates them

nusigma
Simulates 
neutrino-nucleon 
interactions

DarkSUSY
Provides solar models

At 1 AU

Summary files with 
fluxes

Event files

Event files

Summary files 
with fluxes

WimpEvent
Distributes the 
neutrinos in time, 
propagates them to 
the detector and lets 
them interact

Event files

Summary files 
with fluxes

Detector simulation
(not part of WimpSim)

At detector

*) WimpAnn can also 
be run for annihilations 
in the Earth

Figure 15. The layout of the WimpSim code. Solid lines indicate linked codes and arrows indicate
reading/writing of data files.

more systematically different cosmic ray models and hadronic interaction models to get a
better handle on how large the uncertainties on the predicted SAν fluxes are.
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A The WimpSim code

The WimpSim package contains three main codes: WimpAnn, solar crnu and WimpEvent, see
figure 15 for an illustration of the layout of the code. WimpAnn and WimpEvent are used to
simulate dark matter WIMP annihilations in the Sun (and the Earth) and its production
of neutrinos and their interactions and oscillations. Interactions are calculated with our
neutrino-nucleon Monte Carlo nusigma. solar crnu is our new add-on that reads the output
from our modified MCEq and generates solar atmospheric neutrinos and lets these interact and
oscillate. In practice, solar crnu will take the neutrinos from their starting point and let
them interact and oscillate through the Sun. It will then take them to 1 AU from the Sun
(Earth’s average distance from the Sun). At this point, both summary and event files will be
saved. The summary files contain the fluxes of neutrinos at production, at the solar surface
and at 1 AU, whereas the event files contain the actual neutrino events together with their
energy, weight and state vector (amplitude and phases in the neutrino interaction base).

WimpEvent will take these event files as input and propagate the neutrinos further to
our actual detector where it will let them interact (again using nusigma as our neutrino-
nucleon simulation software) and produce leptons and hadronic showers. We are here mostly
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interested in the muons coming from charged interactions, but the code can simulate both
neutral and charged currents to be used for neutrino telescope simulations. In case a muon
is produced, we also let it propagate in the medium surrounding the detector where it will
undergo energy losses and multiple Coulomb scattering. WimpEvent will also produce both
summary and event files. The summary files contain fluxes of neutrinos, charged leptons at
the neutrino-nucleon interaction point, muons after propagation to the detector and hadronic
showers at the interaction point, whereas the event files contain both the incoming neutrino
and the lepton and hadronic shower at the neutrino-nucleon interaction point. These event
files are suitable for further detector simulation. WimpEvent will take the actual detector
location into account and will perform the simulation over a given time frame and properly
time stamp the events and include both particle directions relative to the Sun and in usual
astronomical coordinates. For this we use SLALIB [50].

The main modifications we have made to the code to include the SAνs are to add reading
of MCEq output files and drawing events from those distributions. We have also modified the
code to allow for arbitrary neutrino paths through the Sun (earlier only radial parts were
included). Compared to the earlier publication describing WimpSim [11], there have also been
other improvements to the code that are not directly related to the SAνs. E.g. the code now
uses a much more accurate time stamp of the events giving modified Julian dates (MJD) for
the events with proper directions of all the produced particles.

We have optimised the code for speed without sacrificing accuracy. For example, for the
event generation from MCEq production fluxes, we gain speed by using a good test function for
our acceptance-rejection sampling. The choice of test function does not affect the accuracy,
only the speed. For the propagation and oscillation simulation, we have optimised the step
size to use reasonably sized steps without sacrificing accuracy (where we require accuracy
at the percent level). Typical timings for a simulation run with 1 million neutrino events
(on an Intel i7 2.6 GHz CPU ) are that about 1 minute is spent on drawing events from the
MCEq production fluxes, about 9 minutes are spent on neutrino propagation and oscillations
in WimpAnn and finally about 1 minute and 20 seconds are spent in WimpEvent propagating
the neutrinos to a detector and simulating interactions at the detector. So, in total about
11.3 minutes per 1 million events. In this paper, we have generated 250 million events for 12
scenarios so we have spent about 25 CPU days to get our results.

For details we refer the interested reader to refs. [11, 12]. Our updated codes (both
WimpSim and nusigma) are available at [13] and we refer the interested reader to this code
web page for more details.
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[40] T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006)
026 [hep-ph/0603175] [INSPIRE].

[41] P. Gondolo, J. Edsjo, P. Ullio, L. Bergstrom, M. Schelke and E.A. Baltz, DarkSUSY:
computing supersymmetric dark matter properties numerically, JCAP 07 (2004) 008
[astro-ph/0406204] [INSPIRE].

[42] I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and T. Schwetz, Updated fit
to three neutrino mixing: exploring the accelerator-reactor complementarity, JHEP 01 (2017)
087 [arXiv:1611.01514] [INSPIRE].

[43] I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and T. Schwetz, NuFIT 3.0,
http://www.nu-fit.org/ (2016).

[44] IceCube collaboration, A. Achterberg et al., First year performance of the IceCube neutrino
telescope, Astropart. Phys. 26 (2006) 155 [astro-ph/0604450] [INSPIRE].

[45] IceCube collaboration, M.G. Aartsen et al., Improved limits on dark matter annihilation in
the Sun with the 79-string IceCube detector and implications for supersymmetry, JCAP 04
(2016) 022 [arXiv:1601.00653] [INSPIRE].

[46] IceCube collaboration, M.G. Aartsen et al., Search for annihilating dark matter in the Sun
with 3 years of IceCube data, Eur. Phys. J. C 77 (2017) 146 [arXiv:1612.05949] [INSPIRE].
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