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Abstract - Successful GPS operations are based on a basic 

equation: the range measurement equation,                         
|rr(tr) – rs(ts)| = c(tr –ts), in an Earth-centered inertial system. 
The calculations based this equation  show that the correctness 
of the equation leads to the incorrectness of the two principles 
of Special Relativity, the principle of relativity and the 
principle of the constancy of the speed of light. The Sagnac 
effect can be fully interpreted by this equation and therefore, 
the Sagnac effect is a non-relativistic effect. It is indicated that 
the relativity of simultaneity of Special Relativity contradicts 
the basic operational principle of GPS. Moreover, based on 
the range measurement equation, it is expected that a practical 
and crucial experiment that does not require any clock 
synchronization will give a result contradicting the two 
principles of Special Relativity. The crucial experiment can be 
further simplified by using GPS. We should conduct the 
crucial experiment, and re-examine and re-construct Special 
Relativity starting from its foundations. 
 

I. INTRODUCTION 
 

GPS is a timing-ranging system. The operations of GPS 
are based on the range measurement equation in an Earth-
centered inertial system, ECI (in an idealized, error-free 
situation) [1]: 

|rr(tr)–rs(ts)| = c(tr – ts). 
Here ts is the instant of transmission of the signal from the 

source, and tr is the instant of reception at the receiver; rs(ts) is 
the position of the source at the transmission time, and rr(tr) is 
the position of the receiver at the reception time. 

Highly successful practices of GPS, especially its 
unprecedented precision of measuring distance up to the order 
of millimeters (equivalent to measuring the time to the order 
of 0.01ns), have proved the correctness of GPS’ range 
measurement equation with high accuracy. Based on that, we 
re-examine a fundamental problem in physics – the two 
principles of Special Relativity, the principle of relativity and 
the principle of the constancy of the speed of light, and an 
unsolved fundamental problem in physics – the Sagnac effect 
[2], which is extensively used in GPS. 
    Here, we should emphasize three important points first:  
    1) The correct coordinate frame for the range measurement 
equation is the Earth-centered inertial (ECI) frame;  
    2) Most GPS receivers are moving relative to ECI, e.g., 
receivers on ground stations or on airplanes and cars. 

Obviously, the definition of the position of the receiver at the 
reception time is important for a moving receiver, since at the 
reception time, the position of the moving receiver is different 
from the position of a stationary receiver.  
    3) The range ρ, | rr(tr) – rs(ts)|, is not the distance between 
two points in its traditional meaning. Traditionally, the 
distance between two points is the distance between two 
points at a given time, e.g., D1 = |rA(t1) – rB(t1)|. The range ρ 
corresponds to the distance between the position of the 
satellite at transmission time ts and the position of the 
receiver’s antenna at reception time tr.   That is, the range ρ is 
the distance between two points at two different times, 
reception time tr and transmission time ts. The traditional 
distance is an invariant for the coordinate transformation 
between two systems moving relative to each other, but the 
range ρ is not an invariant even for the simplest Galilean 
transformations.  
    Suppose we have two coordinate systems, S and S’, and the 
transformation between S and S’ is x’ = x – vt, y = y’, z = z’ 
and t = t’ (fig. 1).  
    In S, the distance between two points, A and B, at two 
different times, t1 and t2, is xB(t2) – xA(t1).  
    In S’, we have x’B(t’2) = xB(t2) – vt2 and x’A(t’1) = xA(t1) – 
vt1. Then, we have x’B(t’2) – x’A(t’1) = xB(t2) – xA(t1) - v(t2 – 
t1). Therefore, the range ρ, the distance between two points at 
two different times, is not an invariant for the Galilean 
transformations. For more complicated transformations, like 
the transformation between ECI and ECEF, the range ρ is 
more likely not an invariant. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

II. TWO PRINCIPLES OF SPECIAL RELATIVITY 
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Fig. 1 Coordinate transformation between S and S’ 
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Here, we will discuss the implication of GPS to one of the 

foundations of modern physics, Special Relativity. GPS has in 
fact provided a big ‘laboratory’ and ‘instruments’ for tests of 
Special Relativity: moving sources and moving receivers; 
accurate atomic clocks in both sources and (some) receivers; 
precise knowledge of the positions of the sources and 
receivers and long distances between sources and receivers; 
signals carrying the information of positions and times; etc., 
almost all the needs for tests of Special Relativity. Although 
one would think that based on the successful practices and 
unprecedented precision of GPS, a conclusion about Special 
Relativity could have been made, so far, a common opinion 
has not yet been reached, and sometimes, completely opposite 
opinions are held by different people. 

Some people [1] think that the range measurement 
equation is based on the constancy of the speed of light. On 
the surface, this may appear to be true: c, the speed of light, is 
the only velocity term that appears within the equation.  
Expressions such as c-v and c+v, which are often seen in 
discussions of Special Relativity and classical physics, do not 
exist in the equation. Therefore, some people would conclude 
that if this equation is correct, Special Relativity is correct; if 
this equation has been proved with a high degree of accuracy, 
Special Relativity has been proved with a high degree of 
accuracy. For example, it has been concluded [3] that Special 
Relativity had been confirmed to the limit of δc/c < 5x10-9. 

But we should not judge things by their appearance; we 
must try to grasp their essences. If we analyze the implication 
of the range measurement equation carefully, we will find 
that, contrary to what its appearance tells us and what some 
people think, the correctness of the GPS’ range measurement 
equation actually leads to the incorrectness of the principle of 
the constancy of the speed of light, and furthermore, the 
principle of relativity. This may seem unexpected, but it is 
quite understandable if we compare it with Sonar systems. 
Recall that in underwater navigation, Sonar uses the same 
range measurement equation in a reference frame based on 
water to calculate the distance traveled by sound even though 
the sound receiver is moving relative to water. The difference 
there is that the speed of sound in water, a, is used instead of 
the speed of light in vacuum, c. However, no one would 
emphasize the constancy of the speed of sound, and contrarily, 
every one thinks the speed of sound is dependent on the 
motion of the sound receiver. 

 
The range measurement equation and moving source – the 
speed of light is independent of the translational motion of the 
source.  
    Most GPS sources move in circular motion, e.g., GPS 
satellites and DGPS sources moving with the rotation of the 
earth. But from the theoretical point of view, we will only 
investigate sources that are moving translationally and 
uniformly. 

 Let us suppose that we have two sources, one stationary 
and one moving translationally with a speed of v, and a 
stationary receiver. The distance between the stationary source 
and the receiver is L and the moving source passes the 
stationary source at t0 (fig. 2). When will the receiver receive 
the signals emitted at t0 from the two sources according to the 
range measurement equation? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For the stationary source, S1, and the receiver, R, we have 

(using one-dimensional expression) 
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Hence, t – t0 = [R0 – y1(t0)]/c = (R0 – S0)/c = L/c. 
For the moving source, S2, and the receiver, R, we have  
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Hence, t – t0 = [R0 – y2(t0)]/c = (R0 – S0)/c = L/c. 
That means, at the same time instant t, receiver R will 

receive the two signals emitted at t0 from the two sources, one 
stationary and one moving, which are at the same distance 
from the receiver at t0. Therefore, we can conclude that the 
speed of light is independent of the translational motion of the 
source. 
 
The range measurement equation and moving receiver – the 
speed of light is dependent on the translational motion of the 
receiver.  
    Most GPS receivers are moving too. Some of them are in 
circular motion, e.g., the receivers on the ground stations and 
the receivers fixed on the earth; Some of them are in 
translational motion, e.g., on missiles, on airplanes and on 
cars. 

Let us suppose that we have a stationary source and two 
receivers, one stationary and one moving translationally. The 
distance between the source and the stationary receiver is L. 
The moving receiver passes the stationary receiver at t0 (fig. 

Fig. 2 Moving and stationary sources
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3). When will the two receivers receive the signal emitted at t0 
from the source according to the range measurement 
equation? 
      For the source, S, and the stationary receiver, R1, we have 
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     Hence, t – t0 = [R0 – ys(t0)]/c = (R0 – S0)/c = L/c. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     For the source, S, and the moving receiver, R2, we have 
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     Hence, t – t0 = [R0 – ys(t0)]/(c – v) = (R0 – S0)/(c – v) =  
L/(c – v). 
     For a signal transmitted from the source at t0, the two 
receivers, one stationary and one moving, will receive it at 
different instants, although the distances between them and 
the source at t0 are the same. Therefore we can conclude that 
the speed of light is dependent on the translational motion of 
the receiver. 
    Contrary to the appearance of the range measurement 
equation that the speed of the receiver, v, does not appear 
explicitly, the speed of the receiver is implied in the definition 
of the position of the receiver, i.e., the position of the receiver 
at the reception time. Compared with the position of the 
stationary receiver at the reception time, the position of the 
moving receiver at the reception time is different, and the 
difference is proportional to the speed of the moving receiver, 
v. 
 
Global simultaneity vs. the relativity of simultaneity. 
     In any debate about the speed of light, the problem of 
simultaneity is always a focus. Special Relativity claims the 
relativity of simultaneity which states that two events 
occurring at two different places which are viewed as 
simultaneous for an observer in a system, usually will not be 
simultaneous if viewed for an observer in another system. But 

contrary to this, simultaneity is the key to GPS operations. 
GPS is a Timing – Ranging system: it does not directly 
measure the distance between two places where two events, 
i.e. signals transmitting and receiving, occur. It measures the 
difference of the two instants when these two events happen 
and then, the distance is calculated using the range 
measurement equation. GPS, especially its space segment and 
control segment, makes a huge effort to establish and maintain 
a GPS system time, or simply, GPS time [4]. In a scope where 
GPS is applied, roughly a scope with diameter of 50,000 km 
or bigger, if one is using GPS, one is using GPS time and 
therefore the concept of simultaneity of GPS: two events 
happened at two different places, (x1, y1, z1, t1) and (x2, y2, z2, 
t2), are simultaneous if t1 = t2. This is true no matter who the 
observer (receiver) is, where the receiver is, what its status is, 
or what its speed is. This is the basic operational principle of 
GPS. We can call it Global Simultaneity.  
    In the books about Special Relativity, the most commonly 
cited example about the relativity of simultaneity is the 
example about the railway platform and the moving train [5]. 
It says that two events (e.g., the two strokes of lightning A and 
B) which are simultaneous with reference to the platform are 
not simultaneous with respect to the moving train and vice 
versa. But now GPS receivers have been utilized extensively 
on railway platforms and moving trains, and lightning at two 
different places, A and B, conceptually is the same as the 
emissions of GPS signals from two satellites or two DGPS 
stations. In fact, if two signals are emitted from two satellites 
or two DGPS stations at the same GPS time, both the GPS 
receiver on the railway platform and the GPS receiver in the 
moving train would acknowledge the two events, the 
emissions of the signals, to be simultaneous. Without this 
basic acknowledgement, the GPS receivers can not function at 
all.    

 
The range measurement equation and the crucial experiment 
of Special Relativity.  
    We have shown that the correctness of the range 
measurement equation contradicts the principle of the 
constancy of the speed of light which asserts that light in 
vacuum always has a definite speed of propagation that is 
independent of the state of the motion of the observer [6]. We 
have also indicated that the relativity of simultaneity 
contradicts the purpose of GPS system time and the basic 
operational principle of GPS. Due to the popularity of Special 
Relativity, a lot of people still will not accept these. Therefore, 
we would examine a crucial experiment, in which the result 
can be used to refute or verify Special Relativity from 
everybody’s point of view. More importantly, in this 
experiment, simultaneity, or the synchronization of the clocks, 
is not a concern. 
    We mount two atomic clocks with the same construction, 
signal transmitter, reflector, and receivers on the two ends, 
points A and B, of a vehicle, with distance L between A and 
B. First (fig. 4a), the vehicle is stationary relative to the earth 

Fig. 3 Moving and stationary receivers 
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(facing due South or due North, so when the vehicle moves, 
the direction of the velocity is due South or due North, 
eliminating the effect of the rotation of the earth.) The two 
clocks are not synchronized with each other. A signal is 
transmitted from A at t1(A) (according to clock A) to B 
(arriving at t1(B) according to clock B) and reflected back to 
A (arriving at t’1(A) according to clock A). By the readings of 
clocks, we can calculate the difference of the nominal 
travelling times for two directions, ∆t1 = [t’1(A) – t1(B)] – 
[t1(B) – t1(A)]. (We say that the travelling times t1(B) – t1(A) 
and t’1(A) – t1(B) are nominal because the two clocks are not 
synchronized. For example, t1(B) – t1(A) could be negative if 
clock B is too much behind clock A.) Then we repeat the 
same measurement when the vehicle moves uniformly due 
North at speed of v (fig. 4b). We will obtain ∆t2 = [t’2(A) – 
t2(B)] – [t2(B) – t2(A)]. If the readings of the clocks show that 
∆t1 is different  from ∆t2, we think everybody would agree that 
the experiment refutes the principle of the constancy of the 
speed of light, and the principle of relativity (because we now 
find a difference between two uniform motion states), 
especially noting that the relativity of simultaneity is not a 
problem here, because the synchronization of clocks is not 
required. If ∆t1 is equal to ∆t2, then the experiment verifies 
Special Relativity.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     
 
 

Let us calculate ∆t1 and ∆t2 according to the range 
measurement equation. First, we assume that both clocks have 
GPS time for convenience. Later we will show that this 
assumption is not necessary to obtain the same result. 

In case 1, when the vehicle is stationary, for the signal 
transmitted from A to B, we have 
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Hence, [t1(B) – t1(A)] = {yA[t1(A)]  – yB[t1(A)]}/c = L/c. 
       For the signal reflected back from B to A, we have  
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Hence, [t’1(A) – t1(B)] = {yA[t1(B)]  – yB[t1(B)]}/c = L/c. 
In this case, we have ∆t1 = [t’1(A) – t1(B)] – [t1(B) – t1(A)] 

= 0. 
In case 2, when the vehicle is uniformly moving North 

with a speed of v, for the signal emitted from A to B, we have 
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Hence, [t2(B) – t2(A)] = {yA[t2(A)]  – yB[t2(A)]}/(c + v) = 
L/(c + v)                        

For the signal reflected back from B to A, we have 
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Hence, [t’2(A) – t2(B)] = {yA[t2(B)]  – yB[t2(B)]}/(c – v) = 
L/(c – v)                                

Therefore, we have ∆t2 = [t’2(A) – t2(B)] – [t2(B) – t2(A)] 
= L/(c – v) – L/(c + v) ≈  2Vl/c2, neglecting the quantities of 
the second and higher order of v/c. 

Now let us eliminate the assumption of having GPS time 
in both clocks and find the result. Let us suppose that neither 
clock A nor clock B uses GPS time, and the two clocks are not 
synchronized with each other: clock A would be δtA ahead of 
GPS time and clock B would be δtB ahead of GPS time, Then, 
in case 1, where the vehicle is stationary, we will record a ∆t1 
= 2δtA  − 2 δtB, in stead of recording ∆t1 = 0. In case 2, when 
the vehicle is moving, we will record a ∆t2 = 2Vl/c2 + 2δtA 
 − 2δtB.  Therefore, when we calculate the time difference 
between two cases, we will find the same ∆t = ∆t2 - ∆t1  = 
2Vl/c2, whether clock B is synchronized with clock A or not, 
and whether the clocks are synchronized with GPS time or 
not. 

Hence, according to the range measurement equation, 
when we conduct this experiment, we will find a time 
difference of ∆t = ∆t2 - ∆t1  = 2Vl/c2 between the two cases. It 
is a first-order effect and Lorentz contraction, which is a 
second-order effect, is irrelevant here. Time dilation, and 
hence, the effect of moving clocks are relevant here.  
However, since both clocks move in exactly the same way, 
there will be no net effect on the time difference from the two 
moving clocks. Therefore, the range measurement equation’s 
correctness has lead to the prediction that the crucial 
experiment will refute the two principles of Special Relativity.  

It is suggested in [7] that this experiment can be 
implemented by mounting the two clocks not in one moving 
object, but in two separate objects that move in a straight line, 
one after another, with the same velocity. This way, L, the 
distance between the two clocks can be increased 
substantially, and hence, the predicted time difference can 
reach up to 1 nanosecond, a value that is relatively easy to 
detect with current technology. Also, the effect of moving 
clocks, including time dilation, and the effect resulting from 
the fact that L is not strictly constant are discussed there in 

y 

Fig. 4 Crucial experiment 
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detail, and it has been indicated that these effects will not 
prevail over the time difference we are trying to detect. 
 
 
 

III. THE SAGNAC EFFECT 
 
    In 1913, Sagnac [8] conducted an experiment that is now 
named after him. This experiment consists of a beam splitter 
and several mirrors mounted on a disk (fig. 5). The beam 
splitter divides the light beam into two portions; one traverses 
clockwise along the quadrilateral formed by the mirrors, the 
other counterclockwise. An interference pattern is formed 
when the beams unite. When the disk rotates clockwise with 
an angular velocity ω around its axis, there is a shift of fringes 
∆N = 4ωSABCD/cλ  (SABCD, the area of the quadrilateral ABCD 
and λ, the wavelength of light). If the disk rotates 
counterclockwise, the shift is in the opposite direction. The 
Sagnac experiment indicated that, for the observer at A, the 
two light beams travelling in opposite directions do not return 
to the starting point at the same instant when the disk rotates 
and the general expression of the Sagnac effect for the time 
difference is ∆t = ∆Nλ/c = 4ωS/c2, where S is the area 
enclosed by the light path and can be of any shape. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     
 

Since then, the Sagnac experiment has been 
conducted in many different ways. For example, the 
Michelson-Gale experiment[9] examined the effect of  the 
rotation of the earth instead of the rotation of the disk, and the 
around-the-world Sagnac experiment[10] recorded signal 
arrival times with atomic clocks instead of the interferometers. 
The Sagnac effect has been applied to many systems ranging 
in size from a few centimeters, e.g., in fiber-optic 
gyroscopes[11], to the Global Positioning System [1]. 
Especially, there will be a positioning error of 30 meters in 
GPS if the Sagnac effect caused by the rotation of the Earth is 

not considered correctly. Although everybody understands the 
existence and the importance of the Sagnac effect, the 
interpretation of the Sagnac effect is still a very controversial 
topic and there are more than a dozen ways to interpret the 
Sagnac effect [12]. As mentioned above, it is stated that the 
Sagnac effect is an unsolved fundamental problem in physics 
[2]. Here, we would show that the Sagnac effect could be fully 
interpreted by the range measurement equation of GPS. 
 
Interpretation of the Sagnac effect with the range 
measurement equation of GPS.  
    First, we need to simplify the light path in the Sagnac 
experiment, from a quadrilateral to a circle (fig. 6), so we can 
identify the light path better when the disk is rotating. 
However, when the light path is a circle, we can not directly 
utilize the range measurement equation in its current form 
which is suitable for straight line light path, instead, we should 
reform the range measurement equation. When a GPS signal 
is transmitted from A to B and then consecutively from B to 
C, we have |rB(tB) – rA(tA)| = c(tB – tA) and |rC(tC) – rB(tB)| =    
c(tC – tB). We notice that rB(tB) in both expressions is the 
same, we can re-write them in |∆rBA| = c∆tBA and  |∆rCB| = 
c∆tCB, or Σ|∆r| = Σ(c∆t), here |∆rBA|, |∆rCB| and Σ|∆r| are the 
real paths of the signal in ECI. Now we can convert them to a 
differential form |dr| = cdt, and then utilize its integral form 

∫
s

d| |r = ∫ cdt , where s is the real propagation path from the 

source to the receiver in ECI. Obviously, ∫
s

d| |r  is the length 

of the light path s, LS.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    Now, let us examine the Sagnac experiment.  
    For the clockwise light path, we have  

O           S 

Fig. 5 The Sagnac experiment 
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Fig. 6 The Sagnac experiment with a 
circular light path 

S1 

S2 



  6   

 ∫
1s

|d| r = c ∫
1

0

t
t dt  and the real path LS1 = 2πR + ωR (t1 – t0).  

    For the counterclockwise light path, we have  

 ∫
2s

|d| r = c ∫
2

0

t
t dt  and the real path LS2 = 2πR - ωR (t2 – t0).  

    Therefore, we have 2πR + ωR (t1 – t0) = c(t1 – t0),  2πR - 
ωR (t2 – t0) = c(t2 – t0) and t1 – t0 = 2πR/(c - ωR), t2 – t0 =     
2πR/(c + ωR). The difference of two travelling times is ∆t =  
(t1 – t0) - (t2 – t0) = 2πR/(c - ωR) - 2πR/(c + ωR) ≈ 4πR2ω/c2 = 
4Sω/c2, neglecting the quantities of the second order of ωR/c 
or higher. The last expression is the same as the result of the 
Sagnac experiment. This tells us that the range measurement 
equation of GPS in ECI can interpret the result of the Sagnac 
experiment perfectly. It also tells us that if we utilize the real 
propagation paths in ECI to calculate the travelling times of 
the signals, the Sagnac effect is included automatically. 
 
The Sagnac effect and the Sagnac correction.  
    Then, a reasonable question is when do we need to add the 
Sagnac effect into the calculation of the travelling time of the 
signal. Here, it is useful that we identify the difference 
between two terms: Sagnac effect and Sagnac correction.   
    The Sagnac effect is an effect or a phenomenon: compared 
with a stationary receiver in ECI, a receiver moving relative to 
ECI will receive the signal from the source at a different time. 
The time difference depends on the distance between the 
source and the receiver and the relationship between two 
directions, the direction of the propagation and direction of 
the motion of the receiver. 
     The Sagnac correction is a correction added in the 
calculation when we use the range measurement equation. In 
fact, if we use the range measurement equation in its original 
meaning, i.e., range being the distance in ECI between the 
source at the transmission time and the receiver at the 
reception time, no correction is needed. The Sagnac effect is 
included automatically. That is, although there is a Sagnac 
effect, there is no need for Sagnac correction. However, if we 
utilize the range measurement equation differently from its 
original meaning, we need to add a correction. Usually, there 
are two cases: 1) the range is not in ECI, but in other 
coordinate systems because the range is not an invariant of 
coordinate transformations as we mentioned before, and 2) the 
range is not the distance between the source at the 
transmission time and the receiver at the reception time, but 
the distance between the source and the receiver at the same 
time, the transmission time. Therefore, a Sagnac correction 
must be added in order to compensate for the difference 
caused by the incorrect definition of the range.  
    We can see these two cases very clearly in the Sagnac 
experiment. First, if the length of the signal propagation path 
is not in ECI, but in a coordinate system rotating with the disk, 
the lengths of the propagation paths in the two directions will 
be the same, 2πR. Therefore, if we investigate the signal 

propagation using the range measurement equation in this 
rotating system, we will get an incorrect result, unless we add 
a positive Sagnac correction, 2ωπR2/c, to the clockwise 
propagation length and a negative Sagnac correction, -
2ωπR2/c, to the counterclockwise propagation length.  
    Second, some times we have difficulties deciding the 
propagation length between the source at the transmission 
time and the receiver at the reception time because the 
receiver is moving and it is easier to decide the length between 
the source and the receiver at the same time. In this case, for 
the latter, both lengths are 2πR. Therefore, if we use the 
definition of propagation length like this, we should also add 
the corrections. Just like the previous example, we need to add 
a positive Sagnac correction, 2ωπR2/c, to the clockwise 
propagation length and a negative Sagnac correction, -
2ωπR2/c, to the counterclockwise propagation length. Notice 
that the reasons for adding Sagnac correction in these two 
examples are different, although here their values are the 
same.  
 
Two examples of the Sagnac correction in GPS. 
    The transformation from ECI to ECEF when investigating 
the propagation from a satellite to a ground station. With the 
around-the-world Sagnac experiment [10], it is well known 
that the signal propagation eastward from a satellite to a 
ground station will take a longer time compared to the signal 
propagation westward because of the rotation of the earth. As 
we mentioned above, this Sagnac effect will be included 
automatically and we do not need a Sagnac correction if we 
utilize the range measurement equation correctly, i.e., utilize 
the range as the distance in ECI between the source at the 
transmission time and the receiver at the reception time. If we 
define the range not as the distance in ECI, but as the distance 
in ECEF, then we need to add a Sagnac correction, like in the 
rotating disk case mentioned above. 
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Fig.7 The Sagnac correction in ECEF 
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    Let us calculate the difference between two ranges, one 
defined in ECI and one defined in ECEF. We can utilize both 
the rectangular coordinates and the cylindrical coordinates for 
ECI (x, y, z and r, θ, z) and for ECEF (x’, y’, z’ and r’, θ’, z’) 
and the transformation between ECI and ECEF can be 
described in cylindrical coordinates easily as r’ = r, θ’ = θ – 
ω(t - t0), z’ = z, where ω is the Earth angular rotation rate. To 
simplify the calculation here, we define t0 = ts. That means, at 
transmission time ts, ECEF coincides with ECI. Fig. 7 has 
shown the signal propagation from Rs(rs, θs, zs) to Rr(rr, θr, zr) 
viewed from ECI (R, instead of r, is used here because r is a 
coordinate of the cylindrical coordinates.) The same 
propagation can be viewed from ECEF as that from R’s(r’s, 
θ’s, z’s) to R’r(r’r, θ’r, z’r) and we have rs = r’s, θs = θ’s, zs = z’s 
and rr = r’r, θr = θ’r - ω(tr – ts), zr = z’r. Fig. 7 has also shown 
the signal propagation from R’s(r’s, θ’s, z’s) to R’r(r’r, θ’r, z’r) 
viewed from ECEF at the reception time tr. Notice that the 
axes of ECEF at the reception time tr have rotated an angle of 
ω(tr – ts) compared with the axes of ECI, and therefore, R’s is 
obtained from Rs by rotating Rs around z(z’) by ω(tr – ts) and 
R’r = Rr.  
    Obviously, |∆R| = |Rr –Rs| is different from |∆R’| = |R’r –
R’s| and their difference is the Sagnac correction. Since |∆R’|  
= |∆R| - M and M = ω ×  Rs(tr – ts) ≈  ω ×  R’s(tr – ts), we 
have  
|∆R’| = [|∆R|2 - 2∆R • M + |∆M|2]1/2 ≈ |∆R| - ∆R • M/|∆R|. 
∆ρ = |∆R| - |∆R’| = ∆R • M/|∆R| = ∆R •  (ω×  Rs) (tr – ts) 
/|∆R|  = ∆R •  (ω×  Rs)/c =( Rr –Rs ) •  (ω×  Rs)/c = Rr

 •  
(ω×  Rs)/c = (xrys – yrxs)ω/c, where Rr = xri + yrj + zrk, Rs = xsi 
+ ysj + zsk and ω = ωk. 
    Or utilizing ECEF, ∆ρ = |∆R| - |∆R’| = R’r •  (ω × R’s)/c = 
(x’ry’s – y’rx’s)ω/c, where R’r = x’ri + y’rj + z’rk, R’s = x’si + 
y’sj + z’sk. 
    Sometimes, it is convenient to add a Sagnac correction not 
as a range correction, but as a coordinate correction, i.e., 
modifying the position of the receiver to compensate for the 
range correction. We understand that R’s is obtained from Rs 
by rotating Rs around z(z’) by ω(tr – ts), therefore, rotating R’r 
around z(z’) by the same ω(tr – ts), we could have the same 
range. That means adding M’ = ω × R’r(tr – ts) to the position 
of the receiver.  
    We have M’ = ω × R’r(tr – ts) = -ωy’r∆ti + ωx’r∆tj. Hence, 
the coordinate correction of the position of the receiver is       
(-ωy’r∆t, ωx’r∆t, 0). 
    Utilize the definition of the range as the distance between 
the source and the receiver at the same time, the transmission 
time, when investigating the propagation between two 
satellites. GPS IIR satellites implement the communications 
between two satellites. Therefore, we should calculate the 
propagation time between two satellites correctly. Correct 

usage of the range measurement equation utilizes the distance 
between the two satellites, source and the receiver, at two 
different times, the transmission time and the reception time. 
But this distance is not easy to decide. It is much easier to 
decide the distance between two satellites at the same time, 
e.g., the transmission time and it is an invariant of the 
coordinate transformation. If we utilize this definition of the 
distance, we need to add a correction, Sagnac correction, to 
compensate for the difference between the position of the 
receiver at the transmission time and position of the receiver 
at the reception time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    Suppose in ECI, the position of the first satellite at the 
transmission time is rs (fig. 8). The position of the second 
satellite is rr at reception time tr and is r’r at transmission time 
ts. The difference between rr and r’r is that during signal 
propagation, the second satellite has moved M where M = v 
∆t if ∆t is short. Obviously, |∆r| = |rr –rs| is different from |∆r’| 
= |r’r –rs| and the difference is the Sagnac correction. 
∆ρ = |∆r| - |∆r’| = ∆r •  M/|∆r| = ∆r •  v ∆t /|∆r|  = ∆r •  v/c.  
As we mentioned before, |∆r’| = |r’r –rs| is an invariant of 
coordinate transformation, we can utilize ∆ρ = ∆r’ • v/c, 
instead of  ∆r •  v/c, because ∆r •  v/c - ∆r’ •  v/c = M •  v/c 
<< ∆r • v/c. 
 
The Sagnac effect, the Sagnac correction and the translational 
motion including uniform motion.   
    There is a misconception that the Sagnac effect, a first order 
effect, uniquely belongs to the rotational motion. Although it 
is true that for an interference experiment, the necessary 

 S 
 
 
 
    

rs    
 
 
 
 

R’ 
 

M 

R 

∆r’ 
 
∆r 
r’r 
 
rr 

Fig. 8 The Sagnac correction for using the position of 
the second  satellite at the transmission time 
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condition of the Sagnac effect is the rotation. It is because for 
an interference experiment, the light path is a closed one and 
for this closed light path, the possible Sagnac effects caused 
by the translation motion are cancelled with each other like in 
the Michelson-Morley experiment which only detected the 
second order effect. Now the signal propagation in GPS is a 
one-way propagation, there will not be a cancellation and 
therefore, rotation is not a necessary condition for a first order 
Sagnac effect anymore. Besides, we should notice that the 
motions of the ground station and the satellite in the previous 
examples are not purely rotational, but circular motions, 
which are the combination of the translational motion and the 
rotational motion. Here, we will show that for purely 
translation motions, including uniform motions, all the 
discussions about the Sagnac effect and the Sagnac correction 
are suitable too. That is, there is a Sagnac effect when the 
receiver is in a uniform motion, and we need to add a Sagnac 
correction if we use the range measurement equation not in its 
original meaning.   
    The Sagnac correction with a range defined in a system U 
instead of the range defined in ECI. Suppose there is a system 
U which is moving uniformly with a velocity v in ECI. At 
transmission time ts, it is located at ou and at reception time tr, 
it is located at o’u (fig. 9). Viewed from the system U at the 
reception time tr, the propagation from rs to rr becomes the 
propagation from r’s(ts) to r’r(tr). Obviously, viewed from the 
system U, the range  |∆r’| is different from the range |∆r|, and 
based on the same calculation made before, we have ∆ρ = |∆r| 
- |∆r’|  = ∆r •  v/c ≈ ∆r’ •  v/c. 
    If the system U is based on the receiver, the velocity v is the 
velocity of the receiver.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    The Sagnac correction with the position of the receiver 
defined at transmission time ts instead of reception time tr.  
Suppose in ECI, the position of the receiver is rr at reception 

time tr and is r’r at transmission time ts (fig. 10). The 
difference between rr and r’r is that during signal propagation, 
the receiver has moved M where M = v ∆t if ∆t is short. The 
Sagnac correction in this case is ∆ρ = |∆r| - |∆r’|  = 
∆r • M/|∆r| = ∆r • v/c ≈ ∆r’ •  v/c. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    This result is the same as the result of the Sagnac correction 
for signal propagating from a satellite to another satellite 
mentioned above. In fact, when ∆t (= tr – ts) is short, there is 
no difference between the motion of the satellite which is a 
circular motion and the motion of the receiver which is a 
translational motion.  
 
    Finally, we would summarize the following for the Sagnac 
effect and the Sagnac correction: (1) The Sagnac effect is 
caused by the motion of the receiver in ECI. (2) The Sagnac 
effect will be automatically included or considered if we use 
the range measurement equation correctly, i.e., use the real 
propagation path in ECI. (3) We should add the Sagnac 
correction if we use the range measurement equation in a 
coordinate frame that is moving relative to ECI or if the 
position of the receiver is its position not at the instant of 
reception, but at the instant of the transmission, whether the 
motion of the receiver is circular or purely translational. (4) 
Therefore, the Sagnac effect is not a relativistic effect. 
Contrarily, it is a non-relativistic effect.  
 

IV. SIMPLIFYING THE CRUCIAL EXPERIMENT USING GPS 
 

    When we say that the correctness of the range measurement 
equation leads to the incorrectness of the two principles of 
Special Relativity, we mean it not only qualitatively as we 
mentioned before, but also quantitatively. The difference 
between what Special Relativity predicts and what the range 
measurement equation calculates is an item of vL/c (for 
length) or vL/c2 (for time). This item is ‘big’ in GPS 

O                          X 

y 

Z 

O’u  X’u 
 Xu yu                y’u 

  Zu          z’u 

M 

Ou 

rs(ts) 

r’s(ts) ∆r’ 
∆r 

V 
r’r(tr) 
rr(tr)

Fig. 9 The Sagnac correction in system U 

R 

S 

 O    x 
y 

z 

M

R 

R’ 

rs 
rr 
 
r’r 

∆r 

∆r’ 

V 

S 

Fig. 10  The Sagnac correction for using the 
position of the receiver at the transmission time 

toby
Highlight

toby
Highlight

toby
Highlight

toby
Highlight

toby
Highlight

toby
Highlight

toby
Highlight

toby
Highlight



  9   

applications because L is about 20,000km. Therefore, vL/c 
reaches 200m when v = 3 km/s (speed of missiles), it reaches 
20m when v = 300 m/s (speed of airplanes), and it reaches 2 m 
when v = 30 m/s (speed of cars). GPS has reached 
unprecedented precision of positioning up to the order of 
millimeters which is much smaller than the values listed 
above. Therefore, quantitatively, GPS practices have proved 
the correctness of the range measurement equation and the 
incorrectness of the two principles of Special Relativity. 
 
 
 
 
 
 
 
 
 
 
 
    As we mentioned before, because of the popularity of 
Special Relativity, a lot of people, especially relativistic 
physicists, would not accept this unless a crucial experiment is 
conducted with a result refuting Special Relativity. The crucial 
experiment we proposed before is a practical one. But we can 
simplify it further using GPS: assume that two satellites, S1 
and S2, are located on the extension of line AB (fig. 11), then 
it is not necessary to have a signal transmitter at A and a 
reflector at B. What we need are only GPS receivers at A and 
B, and we can calculate the times needed as t(A → B) = 
t(S1 → B) - t(S1 → A) and t(B → A) = t(S2 → A) - t(S2 → B). 
We can conduct the experiment in two parts. In part 1, A and 
B move south (to eliminate the effect caused by the rotation of 
the earth) with a speed of v and in part 2, A and B move north 
with a speed of v. Special Relativity predicts that there is no 
time difference between the two parts, but the calculation of 
the range measurement equation tells us that we will find a 
time difference in the experiment, ∆t = 4vL/c2 (all the 
discussions about clock synchronization of the crucial 
experiment can be applied here too).   It reaches 4 ns when L 
= 3,000 km and v = 30 m/s (speed of cars).  
    Realistically, the assumption that GPS satellites are exactly 
located on the extension of line AB is unpractical and almost 
unachievable. Any small shift of the positions of satellites 
from the extension of line AB will cause big errors because 
the distances between satellites and A or B are much longer 
than the distance between A and B. Then, is a way to simplify 
the crucial experiment still possible? It is possible if we recall 
how Galileo overcame the seemly inevitable difficulty that 
there was no a perfectly frictionless and perfectly horizontal 
track when he conducted the experiment that led him to his 
Law of Inertia. He used two inclined planes set end-to-end 
and changed the tilt of the second track. The ball always 
reached a vertical height that was almost the same as it started 
from. Then Galileo argued that if the second track were 

perfectly frictionless and perfectly horizontal, the ball would 
roll forever. We can gain a good deal of enlightenment from 
this famous experiment. We can conduct the experiment with 
different positions of the satellites, then, different inclinations 
to line AB (fig. 12). According to the range measurement 
equation, we will have the result as 
[(tS1B1 – tS1A1) - (tS2A1 – tS2B1)] - [(tS1B2 – tS1A2) - (tS2A2 – tS2B2)] 
= 2v(D1B – D1A)cosθ1/c2 + 2v(D2A – D2B)cosθ2/c2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    If we can find, from the results of the experiments, that this 
is true for different θ1and θ2, then we can conclude that it will 
be true for θ1 = 0 and θ2= 0 also. It means (tA1B1 – tB1A1) - 
(tA2B2 – tB2A2) = 4vL/c2, and therefore, the two principles of 
Special Relativity will be falsified.  
 

V. CONCLUSION 
 

   Up to now all experiments used to verify Special Relativity 
have been done with the Earth as the reference frame, and for 
the speed of light, there has never been an experiment in 
which the receiver is linearly moving relative to the Earth. 
Therefore, the two principles of Special Relativity, the 
principle of relativity and the principle of the constancy of the 
speed of light, have never been fully verified by experiment 
[13]. The calculations based on GPS’s basic equation, the 
range measurement equation, show that the correctness of the 
equation leads to the incorrectness of the two principles of 
Special Relativity. The Sagnac effect can be fully interpreted 
by this equation and therefore, the Sagnac effect is a non-
relativistic effect. It is indicated that the relativity of 
simultaneity of Special Relativity contradicts the basic 
operational principle of GPS. Moreover, based on the range 
measurement equation, it is expected that a practical and 
crucial experiment that does not require any clock 
synchronization will give a result contradicting the two 
principles of Special Relativity. The crucial experiment can be 
further simplified by using GPS. Therefore, if scientific 
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Fig. 11 Simplifying the crucial experiment (ideal case) 
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contention can not settle the dispute, this crucial experiment 
definitely will. We should conduct this crucial experiment, 
and re-examine and re-construct Special Relativity starting 
from its foundations. 
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