
Functions and Models

A graphical representation of a function––here the

number of hours of daylight as a function of the time

of year at various latitudes–– is often the most nat-

ural and convenient way to represent the function.



The fundamental objects that we deal with in calculus are

functions. This chapter prepares the way for calculus by

discussing the basic ideas concerning functions, their

graphs, and ways of transforming and combining them.

We stress that a function can be represented in different

ways: by an equation, in a table, by a graph, or in words. We look at the main

types of functions that occur in calculus and describe the process of using these func-

tions as mathematical models of real-world phenomena. We also discuss the use of

graphing calculators and graphing software for computers.

|||| 1.1 F o u r  W a y s  t o  R e p r e s e n t  a  F u n c t i o n

Functions arise whenever one quantity depends on another. Consider the following four
situations.

A. The area of a circle depends on the radius of the circle. The rule that connects 
and is given by the equation . With each positive number there is associ-
ated one value of , and we say that is a function of .

B. The human population of the world depends on the time . The table gives estimates
of the world population at time for certain years. For instance,

But for each value of the time there is a corresponding value of and we say that 
is a function of .

C. The cost of mailing a first-class letter depends on the weight of the letter.
Although there is no simple formula that connects and , the post office has a rule
for determining when is known.

D. The vertical acceleration of the ground as measured by a seismograph during an
earthquake is a function of the elapsed time Figure 1 shows a graph generated by
seismic activity during the Northridge earthquake that shook Los Angeles in 1994.
For a given value of the graph provides a corresponding value of .

FIGURE 1
Vertical ground acceleration during

the Northridge earthquake
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1900 1650
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1930 2070
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1960 3040
1970 3710
1980 4450
1990 5280
2000 6080



Each of these examples describes a rule whereby, given a number ( , , , or ), another
number ( , , , or ) is assigned. In each case we say that the second number is a func-
tion of the first number.

A function is a rule that assigns to each element in a set exactly one ele-
ment, called , in a set .

We usually consider functions for which the sets and are sets of real numbers. The
set is called the domain of the function. The number is the value of at and is
read “ of .” The range of is the set of all possible values of as varies through-
out the domain. A symbol that represents an arbitrary number in the domain of a function

is called an independent variable. A symbol that represents a number in the range of 
is called a dependent variable. In Example A, for instance, r is the independent variable
and A is the dependent variable.

It’s helpful to think of a function as a machine (see Figure 2). If is in the domain of
the function then when enters the machine, it’s accepted as an input and the machine
produces an output according to the rule of the function. Thus, we can think of the
domain as the set of all possible inputs and the range as the set of all possible outputs.

The preprogrammed functions in a calculator are good examples of a function as a
machine. For example, the square root key on your calculator computes such a function.
You press the key labeled (or ) and enter the input x. If , then is not in the
domain of this function; that is, is not an acceptable input, and the calculator will indi-
cate an error. If , then an approximation to will appear in the display. Thus, the

key on your calculator is not quite the same as the exact mathematical function defined
by .

Another way to picture a function is by an arrow diagram as in Figure 3. Each arrow
connects an element of to an element of . The arrow indicates that is associated
with is associated with , and so on.

The most common method for visualizing a function is its graph. If is a function with
domain , then its graph is the set of ordered pairs

(Notice that these are input-output pairs.) In other words, the graph of consists of all
points in the coordinate plane such that and is in the domain of .

The graph of a function gives us a useful picture of the behavior or “life history” of
a function. Since the -coordinate of any point on the graph is , we can read
the value of from the graph as being the height of the graph above the point (see
Figure 4). The graph of also allows us to picture the domain of on the -axis and its
range on the -axis as in Figure 5.
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FIGURE 2
Machine diagram for a function ƒ
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Arrow diagram for ƒ
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EXAMPLE 1 The graph of a function is shown in Figure 6.
(a) Find the values of and .
(b) What are the domain and range of ?

SOLUTION
(a) We see from Figure 6 that the point lies on the graph of , so the value of at
1 is . (In other words, the point on the graph that lies above x � 1 is 3 units
above the x-axis.)

When x � 5, the graph lies about 0.7 unit below the x-axis, so we estimate that
.

(b) We see that is defined when , so the domain of is the closed inter-
val . Notice that takes on all values from �2 to 4, so the range of is

EXAMPLE 2 Sketch the graph and find the domain and range of each function.
(a) (b)

SOLUTION
(a) The equation of the graph is , and we recognize this as being the equa-
tion of a line with slope 2 and y-intercept �1. (Recall the slope-intercept form of the
equation of a line: . See Appendix B.) This enables us to sketch the graph of

in Figure 7. The expression is defined for all real numbers, so the domain of 
is the set of all real numbers, which we denote by �. The graph shows that the range is
also �.

(b) Since and , we could plot the points and
, together with a few other points on the graph, and join them to produce the

graph (Figure 8). The equation of the graph is , which represents a parabola (see
Appendix C). The domain of t is �. The range of t consists of all values of , that is,
all numbers of the form . But for all numbers x and any positive number y is a
square. So the range of t is . This can also be seen from Figure 8.
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R e p r e s e n t a t i o n s  o f  F u n c t i o n s

There are four possible ways to represent a function:

■■ verbally (by a description in words)
■■ numerically (by a table of values)
■■ visually (by a graph)
■■ algebraically (by an explicit formula)

If a single function can be represented in all four ways, it is often useful to go from one
representation to another to gain additional insight into the function. (In Example 2, for
instance, we started with algebraic formulas and then obtained the graphs.) But certain
functions are described more naturally by one method than by another. With this in mind,
let’s reexamine the four situations that we considered at the beginning of this section.

A. The most useful representation of the area of a circle as a function of its radius is
probably the algebraic formula , though it is possible to compile a table of
values or to sketch a graph (half a parabola). Because a circle has to have a positive
radius, the domain is , and the range is also .

B. We are given a description of the function in words: is the human population of
the world at time t. The table of values of world population on page 11 provides a
convenient representation of this function. If we plot these values, we get the graph
(called a scatter plot) in Figure 9. It too is a useful representation; the graph allows us
to absorb all the data at once. What about a formula? Of course, it’s impossible to
devise an explicit formula that gives the exact human population at any time t.
But it is possible to find an expression for a function that approximates . In fact,
using methods explained in Section 1.5, we obtain the approximation

and Figure 10 shows that it is a reasonably good “fit.” The function is called a
mathematical model for population growth. In other words, it is a function with an
explicit formula that approximates the behavior of our given function. We will see,
however, that the ideas of calculus can be applied to a table of values; an explicit
formula is not necessary.
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The function is typical of the functions that arise whenever we attempt to apply
calculus to the real world. We start with a verbal description of a function. Then we
may be able to construct a table of values of the function, perhaps from instrument
readings in a scientific experiment. Even though we don’t have complete knowledge
of the values of the function, we will see throughout the book that it is still possible to
perform the operations of calculus on such a function.

C. Again the function is described in words: is the cost of mailing a first-class letter
with weight . The rule that the U.S. Postal Service used as of 2002 is as follows:
The cost is 37 cents for up to one ounce, plus 23 cents for each successive ounce up
to 11 ounces. The table of values shown in the margin is the most convenient repre-
sentation for this function, though it is possible to sketch a graph (see Example 10).

D. The graph shown in Figure 1 is the most natural representation of the vertical acceler-
ation function . It’s true that a table of values could be compiled, and it is even
possible to devise an approximate formula. But everything a geologist needs to
know—amplitudes and patterns—can be seen easily from the graph. (The same is true
for the patterns seen in electrocardiograms of heart patients and polygraphs for lie-
detection.) Figures 11 and 12 show the graphs of the north-south and east-west accel-
erations for the Northridge earthquake; when used in conjunction with Figure 1, they
provide a great deal of information about the earthquake.

In the next example we sketch the graph of a function that is defined verbally.

EXAMPLE 3 When you turn on a hot-water faucet, the temperature of the water depends
on how long the water has been running. Draw a rough graph of as a function of the
time that has elapsed since the faucet was turned on.

SOLUTION The initial temperature of the running water is close to room temperature
because of the water that has been sitting in the pipes. When the water from the hot-
water tank starts coming out, increases quickly. In the next phase, is constant
at the temperature of the heated water in the tank. When the tank is drained, decreases
to the temperature of the water supply. This enables us to make the rough sketch of as
a function of in Figure 13.t
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FIGURE 11 North-south acceleration for the Northridge earthquake
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6.

8. (a) How is the graph of related to the graph of
? Use your answer and Figure 6 to sketch the

graph of .
(b) How is the graph of related to the graph of

? Use your answer and Figure 4(a) to sketch the
graph of .

9–24 |||| Graph the function, not by plotting points, but by starting
with the graph of one of the standard functions given in Section 1.2,
and then applying the appropriate transformations.

9. 10.

11. 12.

13. 14.

16.

17. 18.

19. 20.

21. 22.

23. 24.

25. The city of New Orleans is located at latitude . Use
Figure 9 to find a function that models the number of hours of
daylight at New Orleans as a function of the time of year. Use
the fact that on March 31 the Sun rises at 5:51 A.M. and sets at
6:18 P.M. in New Orleans to check the accuracy of your model.

26. A variable star is one whose brightness alternately increases
and decreases. For the most visible variable star, Delta Cephei,
the time between periods of maximum brightness is 5.4 days,
the average brightness (or magnitude) of the star is 4.0, and its
brightness varies by magnitude. Find a function that
models the brightness of Delta Cephei as a function of time.
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2. Explain how the following graphs are obtained from the graph
of .
(a) (b)
(c) (d)
(e) (f)

3. The graph of is given. Match each equation with its
graph and give reasons for your choices.
(a) (b)

(c) (d)

(e)

4. The graph of is given. Draw the graphs of the following
functions.
(a) (b)

(c) (d)

The graph of is given. Use it to graph the following 
functions.
(a) (b)
(c) (d)

6–7 |||| The graph of is given. Use transformations
to create a function whose graph is as shown.
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(a) How is the graph of related to the graph of ?

(b) Sketch the graph of .

(c) Sketch the graph of .

28. Use the given graph of to sketch the graph of .
Which features of are the most important in sketching

? Explain how they are used.

29–30 |||| Use graphical addition to sketch the graph of .

29.

30.

31–32 |||| Find , , , and and state their domains.

,

32. ,

33–34 |||| Use the graphs of and and the method of graphical
addition to sketch the graph of .

33. , 34. ,

35–40 |||| Find the functions , , , and and their
domains.

35. ,

36. ,
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40. ,

41–44 |||| Find 

41. , ,

42. , ,

43. , ,

44. , ,

45–50 |||| Express the function in the form 

45. 46.

47. 48.

49.

51–53 |||| Express the function in the form 

51. 52.

53.

54. Use the table to evaluate each expression.
(a) (b) (c)
(d) (e) (f)

55. Use the given graphs of and to evaluate each expression,
or explain why it is undefined.
(a) (b) (c)
(d) (e) (f)
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(b) Sketch the graph of the voltage in a circuit if the
switch is turned on at time and 120 volts are applied
instantaneously to the circuit. Write a formula for in
terms of .

(c) Sketch the graph of the voltage in a circuit if the
switch is turned on at time seconds and 240 volts are
applied instantaneously to the circuit. Write a formula for

in terms of . (Note that starting at corre-
sponds to a translation.)

60. The Heaviside function defined in Exercise 59 can also be used
to define the ramp function , which represents a
gradual increase in voltage or current in a circuit.
(a) Sketch the graph of the ramp function .
(b) Sketch the graph of the voltage in a circuit if the

switch is turned on at time and the voltage is gradu-
ally increased to 120 volts over a 60-second time interval.
Write a formula for in terms of for .

(c) Sketch the graph of the voltage in a circuit if the
switch is turned on at time seconds and the voltage 
is gradually increased to 100 volts over a period of 
25 seconds. Write a formula for in terms of for

.

61. (a) If and , find a function
such that . (Think about what operations you

would have to perform on the formula for to end up with
the formula for .)

(b) If and , find a function
such that .

62. If and , find a function such that
.

Suppose t is an even function and let . Is h always an
even function?

64. Suppose t is an odd function and let . Is h always an
odd function? What if is odd? What if is even?ff

h � f � t

h � f � t63.

t � f � h
th�x� � 4x � 1f �x� � x � 4

f � t � ht

h�x� � 3x 2 � 3x � 2f �x� � 3x � 5
h

t

f � t � hf
h�x� � 4x 2 � 4x � 7t�x� � 2x � 1

t � 32
H�t�V�t�

t � 7
V�t�

t � 60H�t�V�t�

t � 0
V�t�

y � tH�t�

y � ctH�t�

t � 5H�t�V�t�

t � 5
V�t�

H�t�
V�t�

t � 0
V�t�56. Use the given graphs of and to estimate the value of

for . Use these estimates to
sketch a rough graph of .

A stone is dropped into a lake, creating a circular ripple that
travels outward at a speed of .
(a) Express the radius of this circle as a function of the 

time (in seconds).
(b) If is the area of this circle as a function of the radius, find

and interpret it.

58. An airplane is flying at a speed of at an altitude of
one mile and passes directly over a radar station at time .
(a) Express the horizontal distance (in miles) that the plane

has flown as a function of .
(b) Express the distance between the plane and the radar 

station as a function of .
(c) Use composition to express as a function of .

59. The Heaviside function H is defined by

It is used in the study of electric circuits to represent the
sudden surge of electric current, or voltage, when a switch is
instantaneously turned on.
(a) Sketch the graph of the Heaviside function.
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|||| 1.4 G r a p h i n g  C a l c u l a t o r s  a n d  C o m p u t e r s

In this section we assume that you have access to a graphing calculator or a computer with
graphing software. We will see that the use of such a device enables us to graph more com-
plicated functions and to solve more complex problems than would otherwise be possible.
We also point out some of the pitfalls that can occur with these machines.

Graphing calculators and computers can give very accurate graphs of functions. But we
will see in Chapter 4 that only through the use of calculus can we be sure that we have
uncovered all the interesting aspects of a graph.

A graphing calculator or computer displays a rectangular portion of the graph of a func-
tion in a display window or viewing screen, which we refer to as a viewing rectangle.
The default screen often gives an incomplete or misleading picture, so it is important to
choose the viewing rectangle with care. If we choose the -values to range from a mini-
mum value of to a maximum value of and the -values to range fromyXmax � bXmin � a

x
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a minimum of to a maximum of , then the visible portion of the graph
lies in the rectangle

shown in Figure 1. We refer to this rectangle as the by viewing rectangle.
The machine draws the graph of a function much as you would. It plots points of the

form for a certain number of equally spaced values of between and . If an 
-value is not in the domain of , or if lies outside the viewing rectangle, it moves on

to the next -value. The machine connects each point to the preceding plotted point to form
a representation of the graph of .

EXAMPLE 1 Draw the graph of the function in each of the following view-
ing rectangles.

(a) by (b) by 
(c) by (d) by 

SOLUTION For part (a) we select the range by setting min , max , min
and max . The resulting graph is shown in Figure 2(a). The display window is
blank! A moment’s thought provides the explanation: Notice that for all , so

for all . Thus, the range of the function is . This 
means that the graph of lies entirely outside the viewing rectangle by .

The graphs for the viewing rectangles in parts (b), (c), and (d) are also shown in 
Figure 2. Observe that we get a more complete picture in parts (c) and (d), but in part (d)
it is not clear that the -intercept is 3.

We see from Example 1 that the choice of a viewing rectangle can make a big differ-
ence in the appearance of a graph. Sometimes it’s necessary to change to a larger viewing
rectangle to obtain a more complete picture, a more global view, of the graph. In the next
example we see that knowledge of the domain and range of a function sometimes provides
us with enough information to select a good viewing rectangle.

EXAMPLE 2 Determine an appropriate viewing rectangle for the function
and use it to graph .

SOLUTION The expression for is defined when

 &?  � x � � 2  &?  �2 � x � 2

 8 � 2x 2 	 0 &? 2x 2 � 8 &? x 2 � 4

f �x�

ff �x� � s8 � 2x 2

y

	�2, 2
	�2, 2
f
	3, 
�f �x� � x2 � 3xx 2 � 3 	 3

xx 2 	 0
� 2Y

� �2,Y� 2X� �2X

	�100, 1000
	�50, 50
	�5, 30
	�10, 10

	�4, 4
	�4, 4
	�2, 2
	�2, 2


f �x� � x 2 � 3

f
x

f �x�fx
bax�x, f �x��

f
	c, d
	a, b


	a, b
 � 	c, d 
 � ��x, y� � a � x � b, c � y � d �

Ymax � dYmin � c

FIGURE 2   Graphs of ƒ=≈+3

(b) 	_4, 4
 by 	_4, 4


(a) 	_2, 2
 by 	_2, 2


2

_2

_2 2

4

_4

_4 4

(c) 	_10, 10
 by 	_5, 30


30

_5

_10 10

(d) 	_50, 50
 by 	_100, 1000


1000

_100

_50 50

FIGURE 1
The viewing rectangle 	a, b
 by 	c, d 


y=d

x=a x=b

y=c

(a, d ) (b, d )

(a, c ) (b, c )
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Therefore, the domain of is the interval . Also,

so the range of is the interval .
We choose the viewing rectangle so that the -interval is somewhat larger than the

domain and the -interval is larger than the range. Taking the viewing rectangle to be
by , we get the graph shown in Figure 3.

EXAMPLE 3 Graph the function .

SOLUTION Here the domain is , the set of all real numbers. That doesn’t help us choose a
viewing rectangle. Let’s experiment. If we start with the viewing rectangle by

, we get the graph in Figure 4. It appears blank, but actually the graph is so
nearly vertical that it blends in with the -axis.

If we change the viewing rectangle to by , we get the picture
shown in Figure 5(a). The graph appears to consist of vertical lines, but we know that
can’t be correct. If we look carefully while the graph is being drawn, we see that the
graph leaves the screen and reappears during the graphing process. This indicates that 
we need to see more in the vertical direction, so we change the viewing rectangle to

by . The resulting graph is shown in Figure 5(b). It still doesn’t
quite reveal all the main features of the function, so we try by 
in Figure 5(c). Now we are more confident that we have arrived at an appropriate view-
ing rectangle. In Chapter 4 we will be able to see that the graph shown in Figure 5(c)
does indeed reveal all the main features of the function.

EXAMPLE 4 Graph the function in an appropriate viewing rectangle.

SOLUTION Figure 6(a) shows the graph of produced by a graphing calculator using the
viewing rectangle by . At first glance the graph appears to be rea-
sonable. But if we change the viewing rectangle to the ones shown in the following parts
of Figure 6, the graphs look very different. Something strange is happening.

In order to explain the big differences in appearance of these graphs and to find an
appropriate viewing rectangle, we need to find the period of the function 
We know that the function has period and the graph of is 
compressed horizontally by a factor of 50, so the period of is

2�

50
�

�

25
 0.126

y � sin 50x
y � sin 50x2�y � sin x

y � sin 50x.

	�1.5, 1.5
	�12, 12

f

f �x� � sin 50x

FIGURE 5 ƒ=˛-150x

(a) (c)(b)

1000

_1000

_20 20

500

_500

_20 20

20

_20

_20 20

	�1000, 1000
	�20, 20

	�500, 500
	�20, 20


	�20, 20
	�20, 20

y

	�5, 5

	�5, 5


�

y � x 3 � 150x

	�1, 4
	�3, 3

y

x
[0, 2s2]f

0 � s8 � 2x 2 � s8 � 2s2  2.83

	�2, 2
f

FIGURE 3

4

_1

_3 3

5

_5

_5 5

FIGURE 4
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This suggests that we should deal only with small values of in order to show just a few
oscillations of the graph. If we choose the viewing rectangle by ,
we get the graph shown in Figure 7.

Now we see what went wrong in Figure 6. The oscillations of are so rapid
that when the calculator plots points and joins them, it misses most of the maximum and
minimum points and therefore gives a very misleading impression of the graph.

We have seen that the use of an inappropriate viewing rectangle can give a misleading
impression of the graph of a function. In Examples 1 and 3 we solved the problem by
changing to a larger viewing rectangle. In Example 4 we had to make the viewing rect-
angle smaller. In the next example we look at a function for which there is no single view-
ing rectangle that reveals the true shape of the graph.

EXAMPLE 5 Graph the function .

SOLUTION Figure 8 shows the graph of produced by a graphing calculator with viewing
rectangle by . It looks much like the graph of , but per-
haps with some bumps attached. If we zoom in to the viewing rectangle by

, we can see much more clearly the shape of these bumps in Figure 9. The
reason for this behavior is that the second term, , is very small in comparison
with the first term, . Thus, we really need two graphs to see the true nature of this
function.

FIGURE 9

0.1

_0.1

_0.1 0.1

FIGURE 8

1.5

_1.5

_6.5 6.5

sin x

1
100 cos 100x

	�0.1, 0.1

	�0.1, 0.1


y � sin x	�1.5, 1.5
	�6.5, 6.5

f

f �x� � sin x �
1

100 cos 100x

y � sin 50x

	�1.5, 1.5
	�0.25, 0.25

x

FIGURE 6
Graphs of ƒ=sin 50x

in four viewing rectangles

(a) (b)

(c) (d)

1.5

_1.5

_10 10

1.5

_1.5

_12 12

1.5

_1.5

_9 9

1.5

_1.5

_6 6

|||| The appearance of the graphs in Figure 6
depends on the machine used. The graphs you
get with your own graphing device might not
look like these figures, but they will also be 
quite inaccurate.

FIGURE 7
ƒ=sin 50x

1.5

_1.5

_.25 .25
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EXAMPLE 6 Draw the graph of the function .

SOLUTION Figure 10(a) shows the graph produced by a graphing calculator with 
viewing rectangle by . In connecting successive points on the graph, the
calculator produced a steep line segment from the top to the bottom of the screen. That
line segment is not truly part of the graph. Notice that the domain of the function

is . We can eliminate the extraneous near-vertical line by exper-
imenting with a change of scale. When we change to the smaller viewing rectangle

by on this particular calculator, we obtain the much better graph
in Figure 10(b).

EXAMPLE 7 Graph the function .

SOLUTION Some graphing devices display the graph shown in Figure 11, whereas others
produce a graph like that in Figure 12. We know from Section 1.2 (Figure 13) that the
graph in Figure 12 is correct, so what happened in Figure 11? The explanation is that
some machines compute the cube root of using a logarithm, which is not defined if is
negative, so only the right half of the graph is produced.

You should experiment with your own machine to see which of these two graphs is
produced. If you get the graph in Figure 11, you can obtain the correct picture by graph-
ing the function 

Notice that this function is equal to (except when ).

To understand how the expression for a function relates to its graph, it’s helpful to graph
a family of functions, that is, a collection of functions whose equations are related. In the
next example we graph members of a family of cubic polynomials.

x � 0s
3 x

f �x� �
x

� x � � � x �1�3

FIGURE 11

2

_2

_3 3

FIGURE 12

2

_2

_3 3

xx

y � s
3 x

FIGURE 10

y=
1

1-x (a) (b)

9

_9

_9 9

4.7

_4.7

_4.7 4.7

	�4.7, 4.7
	�4.7, 4.7


�x � x � 1�y � 1��1 � x�

	�9, 9
	�9, 9


y �
1

1 � x

|||| Another way to avoid the extraneous line is
to change the graphing mode on the calculator
so that the dots are not connected. Alternatively,
we could zoom in using the Zoom Decimal mode.
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EXAMPLE 8 Graph the function for various values of the number . How
does the graph change when is changed?

SOLUTION Figure 13 shows the graphs of for , , , , and . We
see that, for positive values of , the graph increases from left to right with no maximum
or minimum points (peaks or valleys). When , the curve is flat at the origin. When

is negative, the curve has a maximum point and a minimum point. As decreases, the
maximum point becomes higher and the minimum point lower.

EXAMPLE 9 Find the solution of the equation correct to two decimal places.

SOLUTION The solutions of the equation are the -coordinates of the points of
intersection of the curves and . From Figure 14(a) we see that there is
only one solution and it lies between 0 and 1. Zooming in to the viewing rectangle 
by , we see from Figure 14(b) that the root lies between 0.7 and 0.8. So we zoom in
further to the viewing rectangle by in Figure 14(c). By moving the
cursor to the intersection point of the two curves, or by inspection and the fact that the 
-scale is 0.01, we see that the root of the equation is about 0.74. (Many calculators have

a built-in intersection feature.)

	0.7, 0.8
 by 	0.7, 0.8

x-scale=0.01

(c)	0, 1
 by 	0, 1

x-scale=0.1

(b)	_5, 5
 by 	_1.5, 1.5

x-scale=1

(a)

0.8

0.7
0.8

y=x

y=Ł x

1

0
1

y=x

y=Ł x

1.5

_1.5

_5 5

y=x

y=Ł x

FIGURE 14
Locating the roots
of cos x=x

x

	0.7, 0.8
	0.7, 0.8

	0, 1


	0, 1

y � xy � cos x

xcos x � x

cos x � x

FIGURE 13
Several members of the family of
functions y=˛+cx, all graphed
in the viewing rectangle 	_2, 2

by 	_2.5, 2.5


(a) y=˛+2x (b) y=˛+x (c) y=˛ (d) y=˛-x (e) y=˛-2x

cc
c � 0

c
�2�101c � 2y � x 3 � cx

c
cy � x 3 � cx

1. Use a graphing calculator or computer to determine which of
the given viewing rectangles produces the most appropriate
graph of the function .
(a) by (b) by 
(c) by 
(d) by 
(e) by 	�80, 800
	�40, 40


	�4, 40
	�8, 8

	�4, 4
	�4, 4


	0, 4
	0, 4
	�2, 2
	�2, 2

f �x� � x 4 � 2

2. Use a graphing calculator or computer to determine which of
the given viewing rectangles produces the most appropriate
graph of the function .
(a) by 
(b) by 
(c) by 
(d) by 	�100, 20
	�10, 3


	�20, 100
	�15, 8

	�20, 100
	0, 10

	�5, 5
	�5, 5


f �x� � x 2 � 7x � 6

|||| 1.4 ; Exercises



26. Use graphs to determine which of the functions
and is eventually larger.

27. For what values of is it true that ?

28. Graph the polynomials and
on the same screen, first using the viewing rect-

angle by [ ] and then changing to by
. What do you observe from these graphs?

In this exercise we consider the family of root functions
, where is a positive integer.

(a) Graph the functions , , and on the
same screen using the viewing rectangle by .

(b) Graph the functions , , and on the
same screen using the viewing rectangle by .
(See Example 7.)

(c) Graph the functions , , , and 
on the same screen using the viewing rectangle by

.
(d) What conclusions can you make from these graphs?

30. In this exercise we consider the family of functions
, where is a positive integer.

(a) Graph the functions and on the same
screen using the viewing rectangle by .

(b) Graph the functions and on the same
screen using the same viewing rectangle as in part (a).

(c) Graph all of the functions in parts (a) and (b) on the same
screen using the viewing rectangle by .

(d) What conclusions can you make from these graphs?

Graph the function for several values 
of . How does the graph change when changes?

32. Graph the function for various values of .
Describe how changing the value of affects the graph.

33. Graph the function , , for ,
and 6. How does the graph change as increases?

34. The curves with equations

are called bullet-nose curves. Graph some of these curves to
see why. What happens as increases?

What happens to the graph of the equation as 
varies?

36. This exercise explores the effect of the inner function on a
composite function .
(a) Graph the function using the viewing rect-

angle by . How does this graph differ
from the graph of the sine function?

(b) Graph the function using the viewing rectangle
by . How does this graph differ from the

graph of the sine function?
	�1.5, 1.5
	�5, 5


y � sin�x 2 �

	�1.5, 1.5
	0, 400

y � sin(sx )

y � f �t�x��
t

c
y 2 � cx 3 � x 235.

c

y � � x �
sc � x 2

n
n � 1, 2, 3, 4, 5x 	 0y � x n2�x

c
cs1 � cx 2f �x� �

cc
f �x� � x 4 � cx 2 � x31.

	�1, 3
	�1, 3


y � 1�x 4y � 1�x 2
	�3, 3
	�3, 3


y � 1�x 3y � 1�x
nf �x� � 1�x n

	�1, 2

	�1, 3


y � s
5 xy � s

4 xy � s
3 xy � sx

	�2, 2
	�3, 3

y � s

5 xy � s
3 xy � x

	�1, 3
	�1, 4

y � s

6 xy � s
4 xy � sx

nf �x� � s
n x

29.

	�10,000, 10,000

	�10, 10
�2, 2	�2, 2


Q�x� � 3x 5
P�x� � 3x 5 � 5x 3 � 2x

� sin x � x � � 0.1x

t�x� � x 3f �x� � x 4 � 100x 3
3. Use a graphing calculator or computer to determine which of

the given viewing rectangles produces the most appropriate
graph of the function .
(a) by 
(b) by 
(c) by 
(d) by 

4. Use a graphing calculator or computer to determine which of
the given viewing rectangles produces the most appropriate
graph of the function .
(a) by 
(b) by 
(c) by 
(d) by 

5–18 |||| Determine an appropriate viewing rectangle for the given
function and use it to draw the graph.

5.

6.

7. 8.

9. 10.

11.

13. 14.

16.

17. 18.

19. Graph the ellipse by graphing the functions
whose graphs are the upper and lower halves of the ellipse.

20. Graph the hyperbola by graphing the functions
whose graphs are the upper and lower branches of the
hyperbola.

21–23 |||| Find all solutions of the equation correct to two decimal
places.

21. 22.

23.

24. We saw in Example 9 that the equation has exactly
one solution.
(a) Use a graph to show that the equation has

three solutions and find their values correct to two decimal
places.

(b) Find an approximate value of such that the equation
has exactly two solutions.

Use graphs to determine which of the functions 
and is eventually larger (that is, larger when is
very large).

xt�x� � x 3�10
f �x� � 10x 225.

cos x � mx
m

cos x � 0.3x

cos x � x

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

x 2 � sin x

x 3 � 4x � 1x 3 � 9x 2 � 4 � 0

y 2 � 9x 2 � 1

4x 2 � 2y 2 � 1

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

y � x 2 � 0.02 sin 50xy � 3cos�x2�

y � tan 25xf �x� � sin�x�40�15.

f �x� � 3 sin 120xf �x� � cos 100x

f �x� �
x

x 2 � 100
12.f �x� � x 2 �

100

x

f �x� � s0.1x � 20f �x� � s
4 81 � x 4

f �x� � x�x � 6��x � 9�f �x� � 0.01x 3 � x 2 � 5

f �x� � x 3 � 30x 2 � 200x

f �x� � 5 � 20x � x 2

	�2, 6
	�2, 10

	�10, 40
	�10, 10


	0, 100
	�5, 5

	�4, 4
	�4, 4


f �x� � s8x � x 2

	�200, 200
	�100, 100

	�100, 100
	�20, 20

	�10, 10
	�10, 10


	�4, 4
	�4, 4

f �x� � 10 � 25x � x 3
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37. The figure shows the graphs of and as
displayed by a TI-83 graphing calculator.

The first graph is inaccurate. Explain why the two graphs
appear identical. [Hint: The TI-83’s graphing window is 95
pixels wide. What specific points does the calculator plot?]

38. The first graph in the figure is that of as displayed
by a TI-83 graphing calculator. It is inaccurate and so, to help

y � sin 45x

y=sin 96x

0 2π

y=sin 2x

0 2π

y � sin 2xy � sin 96x explain its appearance, we replot the curve in dot mode in the
second graph.

What two sine curves does the calculator appear to be 
plotting? Show that each point on the graph of that
the TI-83 chooses to plot is in fact on one of these two curves.
(The TI-83’s graphing window is 95 pixels wide.)

y � sin 45x

0 2π 0 2π

|||| 1.5 E x p o n e n t i a l  F u n c t i o n s

The function is called an exponential function because the variable, x, is the
exponent. It should not be confused with the power function , in which the vari-
able is the base.

In general, an exponential function is a function of the form

where is a positive constant. Let’s recall what this means.
If , a positive integer, then

n factors

If , and if , where is a positive integer, then

If is a rational number, , where and are integers and , then

But what is the meaning of if x is an irrational number? For instance, what is meant by
or ?

To help us answer this question we first look at the graph of the function , where
x is rational. A representation of this graph is shown in Figure 1. We want to enlarge the
domain of to include both rational and irrational numbers.

There are holes in the graph in Figure 1 corresponding to irrational values of x. We want
to fill in the holes by defining , where , so that is an increasing function.
In particular, since the irrational number satisfies

1.7 � s3 � 1.8

s3
fx � �f �x� � 2x

y � 2x

y � 2x
5�2s3

ax

ax � ap�q � q
sap � ( q

sa ) p

q � 0qpx � p�qx

a�n �
1

an

nx � �nx � 0, then a 0 � 1

an � a � a �    � a

x � n
a

f �x� � ax

t�x� � x 2
f �x� � 2x

x0

y

1

1

FIGURE 1
Representation of y=2®, x rational



56 ❙ ❙ ❙ ❙ CHAPTER 1 FUNCTIONS AND MODELS

we must have

and we know what and mean because 1.7 and 1.8 are rational numbers. Similarly,
if we use better approximations for , we obtain better approximations for :

. . . .

. . . .

. . . .

It can be shown that there is exactly one number that is greater than all of the numbers

. . .

and less than all of the numbers

. . .

We define to be this number. Using the preceding approximation process we can com-
pute it correct to six decimal places:

Similarly, we can define (or , if ) where x is any irrational number. Figure 2
shows how all the holes in Figure 1 have been filled to complete the graph of the function

.
The graphs of members of the family of functions are shown in Figure 3 for var-

ious values of the base a. Notice that all of these graphs pass through the same point 
because for . Notice also that as the base a gets larger, the exponential func-
tion grows more rapidly (for ).

You can see from Figure 3 that there are basically three kinds of exponential functions
. If , the exponential function decreases; if , it is a constant; and if

, it increases. These three cases are illustrated in Figure 4. Observe that if ,a � 1a � 1
a � 10 � a � 1y � a x

x0

y

1

1®

1.5®2®4®10®”   ’®1
4”   ’®1

2

FIGURE 3

x � 0
a � 0a 0 � 1

�0, 1�
y � ax

f �x� � 2x, x � �

a � 0ax2x

2s3 � 3.321997

2s3

21.73206, 21.7321, 21.733, 21.74, 21.8, 

21.73205, 21.7320, 21.732, 21.73, 21.7, 

 1.73205 � s3 � 1.73206 ? 21.73205 � 2s3 � 21.73206

 1.7320 � s3 � 1.7321  ?  21.7320 � 2s3 � 21.7321

 1.732 � s3 � 1.733  ?  21.732 � 2s3 � 21.733

 1.73 � s3 � 1.74  ?  21.73 � 2s3 � 21.74

2s3
s3

21.821.7

21.7 � 2s3 � 21.8

x10

y

1

FIGURE 2
y=2®, x real

|||| A proof of this fact is given in J. Marsden
and A. Weinstein, Calculus Unlimited (Menlo
Park, CA: Benjamin/Cummings, 1980).

|||| If , then approaches as 
becomes large. If , then approaches 
as decreases through negative values. In both
cases the -axis is a horizontal asymptote. 
These matters are discussed in Section 2.6.

x
x

0a xa � 1
x0a x0 � a � 1
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then the exponential function has domain � and range . Notice also that,
since , the graph of is just the reflection of the graph of

about the -axis.

One reason for the importance of the exponential function lies in the following proper-
ties. If x and y are rational numbers, then these laws are well known from elementary 
algebra. It can be proved that they remain true for arbitrary real numbers x and y.

Laws of Exponents If a and b are positive numbers and x and y are any real numbers,
then

1. 2. 3. 4.

EXAMPLE 1 Sketch the graph of the function and determine its domain and
range.

SOLUTION First we reflect the graph of (shown in Figure 2) about the x-axis to 
get the graph of in Figure 5(b). Then we shift the graph of upward
3 units to obtain the graph of in Figure 5(c). The domain is � and the range
is .

EXAMPLE 2 Use a graphing device to compare the exponential function and the
power function . Which function grows more quickly when x is large?

SOLUTION Figure 6 shows both functions graphed in the viewing rectangle 
by . We see that the graphs intersect three times, but for the graph ofx � 4�0, 40�

��2, 6�

t�x� � x 2
f �x� � 2x

x0

y

1

x0

y

_1

y=3

x0

y

2

(b) y=_2® (c) y=3-2®(a) y=2®FIGURE 5

���, 3�
y � 3 � 2x

y � �2xy � �2x
y � 2x

y � 3 � 2x

�ab�x � axbx�ax�y � axyax�y �
ax

ayax�y � axay

x0

y

1

x0

y

(0, 1)

(a) y=a®,  0<a<1 (b) y=1® (c) y=a®,  a>1

x0

y

(0, 1)

FIGURE 4

yy � ax
y � �1�a�x�1�a�x � 1�ax � a�x

�0, ��y � ax

|||| In Section 5.6 we will present a definition 
of the exponential function that will enable us 
to give an easy proof of the Laws of Exponents.

|||| For a review of reflecting and shifting
graphs, see Section 1.3.
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stays above the graph of . Figure 7 gives a more global view and
shows that for large values of x, the exponential function grows far more rapidly
than the power function .

A p p l i c a t i o n s  o f  E x p o n e n t i a l  F u n c t i o n s

The exponential function occurs very frequently in mathematical models of nature and
society. Here we indicate briefly how it arises in the description of population growth 
and radioactive decay. In later chapters we will pursue these and other applications in
greater detail.

First we consider a population of bacteria in a homogeneous nutrient medium. Suppose
that by sampling the population at certain intervals it is determined that the population
doubles every hour. If the number of bacteria at time t is , where t is measured in hours,
and the initial population is , then we have

It seems from this pattern that, in general,

This population function is a constant multiple of the exponential function , so it
exhibits the rapid growth that we observed in Figures 2 and 7. Under ideal conditions
(unlimited space and nutrition and freedom from disease) this exponential growth is typi-
cal of what actually occurs in nature.

What about the human population? Table 1 shows data for the population of the world
in the 20th century and Figure 8 shows the corresponding scatter plot.

FIGURE 8 Scatter plot for world population growth
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EXAMPLE 14 Simplify the expression .

SOLUTION 1 Let . Then and . We want to find 
but, since is known, it is easier to find first:

Thus

SOLUTION 2 Instead of using trigonometric identities as in Solution 1, it is perhaps easier
to use a diagram. If , then , and we can read from Figure 24 (which
illustrates the case ) that

The inverse tangent function, , has domain and range .
Its graph is shown in Figure 25.

We know that the lines are vertical asymptotes of the graph of . Since the
graph of is obtained by reflecting the graph of the restricted tangent function about
the line , it follows that the lines and are horizontal asymptotes
of the graph of .

The remaining inverse trigonometric functions are not used as frequently and are sum-
marized here.

The choice of intervals for in the definitions of and is not universally
agreed upon. For instance, some authors use in the definition of

. [You can see from the graph of the secant function in Figure 26 that both this choice
and the one in (11) will work.]
sec�1

y � �0, 	�2� � �	�2, 		
sec�1csc�1y

y � �0, 	�andcot y � x&? y � cot�1x �x � ��

y � �0, 	�2� � �	, 3	�2�andsec y � x&? y � sec�1x �
 x 
 � 1�

y � �0, 	�2	 � �	, 3	�2	andcsc y � x&? y � csc�1x �
 x 
 � 1�11

tan�1
y � �	�2y � 	�2y � x

tan�1
tanx � �	�2

��	�2, 	�2��tan�1 � arctan

cos�tan�1x� � cos y �
1

s1 � x 2

y � 0
tan y � xy � tan�1x

cos�tan�1x� � cos y �
1

sec y
�

1

s1 � x 2

�since sec y � 0 for �	�2 � y � 	�2� sec y � s1 � x 2

 sec2y � 1 � tan2 y � 1 � x 2

sec ytan y
cos y�	�2 � y � 	�2tan y � xy � tan�1x

cos�tan�1x�
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FIGURE 26
y=sec x

0

y

x
_1

2ππ

FIGURE 25
y=tan–! x=arctan x

π
2

_ π
2

y

0
x

œ„„„„„1+≈

1

y

x

FIGURE 24

(c) If you are given the graph of , how do you find the graph
of ?

3–14 |||| A function is given by a table of values, a graph, a formula,
or a verbal description. Determine whether it is one-to-one.

3.

f �1
f1. (a) What is a one-to-one function?

(b) How can you tell from the graph of a function whether it is
one-to-one?

2. (a) Suppose is a one-to-one function with domain and
range . How is the inverse function defined? What is
the domain of ? What is the range of ?

(b) If you are given a formula for , how do you find a 
formula for ?f �1

f
f �1f �1

f �1B
Af

|||| 1.6 Exercises

x 1 2 3 4 5 6

1.5 2.0 3.6 5.3 2.8 2.0f �x�
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The formula , where , expresses
the Celsius temperature C as a function of the Fahrenheit 
temperature F. Find a formula for the inverse function and
interpret it. What is the domain of the inverse function?

22. In the theory of relativity, the mass of a particle with speed 
is

where is the rest mass of the particle and is the speed of
light in a vacuum. Find the inverse function of and explain
its meaning.

23–28 |||| Find a formula for the inverse of the function.

23.

25. 26.

28.

; 29–30 |||| Find an explicit formula for and use it to graph 
, and the line on the same screen. To check your work, see

whether the graphs of and are reflections about the line.

29. , 30. ,

31. Use the given graph of to sketch the graph of .

32. Use the given graph of to sketch the graphs of and .

33. (a) How is the logarithmic function defined?
(b) What is the domain of this function?
(c) What is the range of this function?
(d) Sketch the general shape of the graph of the function 

if .a � 1y � loga x

y � loga x

y

x1

1

1�ff �1f

y

x1

1

f �1f

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

x � 0f �x� � sx 2 � 2xx � 0f �x� � 1 � 2�x 2

f �1f
y � xf

f �1,f �1

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

y �
1 � e x

1 � e xy � ln�x � 3�27.

y � 2x3 � 3f �x� � e x3

f �x� �
4x � 1

2x � 3
24.f �x� � s10 � 3x

f
cm 0

m � f �v� �
m 0

s1 � v 2�c 2

v

F � �459.67C � 5
9 �F � 32�21.4.

5. 6.

7.

9. 10.

11. 12.

is the height of a football t seconds after kickoff.

14. is your height at age t.

; 15–16 |||| Use a graph to decide whether is one-to-one.

15. 16.

17. If is a one-to-one function such that , what 
is ?

18. Let , where .
(a) Find .
(b) Find .

If , find .

20. The graph of is given.
(a) Why is one-to-one?
(b) State the domain and range of .
(c) Estimate the value of .

y

x0

1
1

2

2_2 _1

_2

_1
3_3

f �1�1�
f �1

f
f

t
�1�4�t�x� � 3 � x � e x19.

f � f �1�5��
f �1�3�

�1 � x � 1f �x� � 3 � x 2 � tan�	x�2�

f �1�9�
f �2� � 9f

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

f �x� � x 3 � xf �x� � x 3 � x

f

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

f �t�

f �t�13.

t�x� � sxt�x� � 
 x 

f �x� � 1 � 4x � x 2f �x� � 1

2�x � 5�

y

x

8.

x

y

y

xx

y

x 1 2 3 4 5 6

1 2 4 8 16 32f �x�



53–54 |||| Solve each inequality for .

53. (a) (b)

54. (a) (b)

55–56 |||| Find (a) the domain of and (b) and its domain.

55. 56.

57. Graph the function and explain
why it is one-to-one. Then use a computer algebra system to
find an explicit expression for . (Your CAS will produce
three possible expressions. Explain why two of them are irrele-
vant in this context.)

58. (a) If , use a computer algebra system to
find an expression for .

(b) Use the expression in part (a) to graph , and
on the same screen.

59. If a bacteria population starts with 100 bacteria and doubles
every three hours, then the number of bacteria after hours is

. (See Exercise 25 in Section 1.5.)
(a) Find the inverse of this function and explain its 

meaning.
(b) When will the population reach 50,000?

60. When a camera flash goes off, the batteries immediately begin
to recharge the flash’s capacitor, which stores electric charge
given by

(The maximum charge capacity is and is measured in 
seconds.)
(a) Find the inverse of this function and explain its meaning.
(b) How long does it take to recharge the capacitor to 90% of

capacity if ?

Starting with the graph of , find the equation of the
graph that results from
(a) shifting 3 units upward
(b) shifting 3 units to the left
(c) reflecting about the x-axis
(d) reflecting about the y-axis
(e) reflecting about the line 
(f) reflecting about the x-axis and then about the line 
(g) reflecting about the y-axis and then about the line 
(h) shifting 3 units to the left and then reflecting about the 

line 

62. (a) If we shift a curve to the left, what happens to its reflection
about the line ? In view of this geometric principle, 
find an expression for the inverse of ,
where is a one-to-one function.

(b) Find an expression for the inverse of , where
.c � 0

h�x� � f �cx�
f

t�x� � f �x � c�
y � x

y � x

y � x
y � x

y � x

y � ln x61.

a � 2

tQ0

Q�t� � Q0�1 � e �t�a �

n � f �t� � 100 � 2 t�3
t

y � t
�1�x�

y � t�x�, y � x
t

�1�x�
t�x� � x 6 � x 4, x � 0CAS

f �1�x�

f �x� � sx 3 � x 2 � x � 1CAS

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

f �x� � ln�2 � ln x�f �x� � s3 � e 2x

f �1f

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

e2�3x � 42 � ln x � 9

ln x � �1ex � 10

x34. (a) What is the natural logarithm?
(b) What is the common logarithm?
(c) Sketch the graphs of the natural logarithm function and the

natural exponential function with a common set of axes.

35–38 |||| Find the exact value of each expression.

35. (a) (b)

36. (a) (b)

37. (a)
(b)

38. (a) (b)

39–41 |||| Express the given quantity as a single logarithm.

39. 40.

41.

42. Use Formula 10 to evaluate each logarithm correct to six deci-
mal places.
(a) (b)

; 43–44 |||| Use Formula 10 to graph the given functions on a com-
mon screen. How are these graphs related?

43. , , ,

44. , , ,

Suppose that the graph of is drawn on a coordinate
grid where the unit of measurement is an inch. How many
miles to the right of the origin do we have to move before the
height of the curve reaches ft?

; 46. Compare the functions and by graphing
both and in several viewing rectangles. When does the
graph of finally surpass the graph of ?

47–48 |||| Make a rough sketch of the graph of each function. Do
not use a calculator. Just use the graphs given in Figures 12 and 13
and, if necessary, the transformations of Section 1.3.

(a) (b)

48. (a) (b)

49–52 |||| Solve each equation for .

49. (a) (b)

50. (a) (b)

(a) (b)

52. (a) (b) , where 

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

a � be ax � Ce bxln�ln x� � 1

ln x � ln�x � 1� � 12x�5 � 351.

ln�5 � 2x� � �3e2x�3 � 7 � 0

e�x � 52 ln x � 1

x

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

y � ln � x �y � ln��x�

y � �ln xy � log10�x � 5�47.

tf
tf

t�x� � ln xf �x� � x 0.1

3

y � log2 x45.

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

y � 10 xy � e xy � log10 xy � ln x

y � log50 xy � log10 xy � ln xy � log1.5 x

log2 8.4log12 10

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

ln�1 � x 2� �
1
2 ln x � ln sin x

ln x � a ln y � b ln z2 ln 4 � ln 2

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

e 3 ln 22�log2 3 � log2 5�

log5 10 � log5 20 � 3 log5 2
log10 1.25 � log10 80

ln es2log8 2

log6
1

36log2 64
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1. (a) What is a function? What are its domain and range?
(b) What is the graph of a function?
(c) How can you tell whether a given curve is the graph of a

function?

2. Discuss four ways of representing a function. Illustrate your
discussion with examples.

3. (a) What is an even function? How can you tell if a function is
even by looking at its graph?

(b) What is an odd function? How can you tell if a function is
odd by looking at its graph?

4. What is an increasing function?

5. What is a mathematical model?

6. Give an example of each type of function.
(a) Linear function (b) Power function
(c) Exponential function (d) Quadratic function
(e) Polynomial of degree 5 (f) Rational function

7. Sketch by hand, on the same axes, the graphs of the following
functions.
(a) (b)
(c) (d)

8. Draw, by hand, a rough sketch of the graph of each function.
(a) (b)
(c) (d)
(e) (f)
(g) (h)

9. Suppose that has domain and has domain .
(a) What is the domain of ?f � t

BtAf

y � tan�1 xy � sx
y � � x �y � 1�x
y � ln xy � e x
y � tan xy � sin x

j�x� � x 4h�x� � x 3
t�x� � x 2f �x� � x

(b) What is the domain of ?
(c) What is the domain of ?

10. How is the composite function defined? What is its
domain?

11. Suppose the graph of is given. Write an equation for each of
the graphs that are obtained from the graph of as follows.
(a) Shift 2 units upward.
(b) Shift 2 units downward.
(c) Shift 2 units to the right.
(d) Shift 2 units to the left.
(e) Reflect about the x-axis.
(f) Reflect about the y-axis.
(g) Stretch vertically by a factor of 2.
(h) Shrink vertically by a factor of 2.
(i) Stretch horizontally by a factor of 2.
( j) Shrink horizontally by a factor of 2.

12. (a) What is a one-to-one function? How can you tell if a func-
tion is one-to-one by looking at its graph?

(b) If is a one-to-one function, how is its inverse function 
defined? How do you obtain the graph of from the

graph of ?

13. (a) How is the inverse sine function defined?
What are its domain and range?

(b) How is the inverse cosine function defined?
What are its domain and range?

(c) How is the inverse tangent function defined?
What are its domain and range?

f �x� � tan�1x

f �x� � cos�1x

f �x� � sin�1x

f
f �1f �1

f

f
f

f � t

f�t

f t

63–68 |||| Find the exact value of each expression.

63. (a) (b)

64. (a) (b)

65. (a) (b)

66. (a) (b)

67. (a) (b)

68. (a) (b)

69. Prove that .

70–72 |||| Simplify the expression.

70. tan�sin�1x�

cos�sin�1x� � s1 � x 2

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

cos(2 sin�1 ( 5
13))sec�arctan 2�

tan�1�tan 
4�

3 �sin�sin�1 0.7�

arcsin 1sec�1
s2

arcsin(�1�s2)tan�1
s3

csc�1 2arctan��1�

cos�1��1�sin�1(s3�2)
71.

72.

; 73–74 |||| Graph the given functions on the same screen. How are
these graphs related?

73. , ; ;

74. , ; ;

75. Find the domain and range of the function

; 76. (a) Graph the function and explain the
appearance of the graph.

(b) Graph the function . How do you explain
the appearance of this graph?

t�x� � sin�1�sin x�

f �x� � sin�sin�1x�

t�x� � sin�1�3x � 1�

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

y � xy � tan�1x���2 � x � ��2y � tan x

y � xy � sin�1x���2 	 x 	 ��2y � sin x

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

sin�2 cos�1x�

sin�tan�1x�

|||| 1 Review
■■ C O N C E P T  C H E C K  ■■
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■■ T R U E - F A L S E  Q U I Z  ■■

Determine whether the statement is true or false. If it is true, explain why. 
If it is false, explain why or give an example that disproves the statement.

1. If is a function, then .

2. If , then .

3. If is a function, then .

4. If and is a decreasing function, then .

5. A vertical line intersects the graph of a function at most once.

f �x1 � � f �x2 �fx1 � x2

f �3x� � 3 f �x�f

s � tf �s� � f �t�

f �s � t� � f �s� � f �t�f

6. If and are functions, then .

7. If is one-to-one, then .

8. You can always divide by .

9. If , then .

10. If , then .

11. If and , then .
ln x

ln a
� ln 

x

a
 a � 1x � 0

�ln x�6 � 6 ln xx � 0

ln a � ln b0 � a � b

e x

f �1�x� �
1

 f �x�
f

f � t � t � ftf

3. The distance traveled by a car is given by the values in the table.

(a) Use the data to sketch the graph of as a function of t.
(b) Use the graph to estimate the distance traveled after

4.5 seconds.

4. Sketch a rough graph of the yield of a crop as a function of the
amount of fertilizer used.

5–8 |||| Find the domain and range of the function.

5. 6.

7. 8.

9. Suppose that the graph of is given. Describe how the graphs
of the following functions can be obtained from the graph of 
(a) (b)
(c) (d)
(e) (f)

10. The graph of is given. Draw the graphs of the following 
functions.
(a) (b)
(c) (d)

(e) (f)

y

x0 1

1

y � f �1�x � 3�y � f �1�x�
y � 1

2 f �x� � 1y � 2 � f �x�
y � �f �x�y � f �x � 8�

f

y � f �1�x�y � �f �x�
y � f �x � 2� � 2y � 1 � 2 f �x�
y � f �x � 8�y � f �x� � 8

f.
f

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

y � ln ln xy � 1 � sin x

t�x� � 1��x � 1�f �x� � s4 � 3x 2

d

1. Let be the function whose graph is given.
(a) Estimate the value of .
(b) Estimate the values of such that .
(c) State the domain of 
(d) State the range of 
(e) On what interval is increasing?
(f) Is one-to-one? Explain.
(g) Is even, odd, or neither even nor odd? Explain.

2. The graph of is given.
(a) State the value of .
(b) Why is one-to-one?
(c) Estimate the value of .
(d) Estimate the domain of .
(e) Sketch the graph of .

gy

x0 1

1

t
�1

t
�1

t
�1�2�

t

t�2�
t

f

y

x1

1

f
f

f
f.

f.
f �x� � 3x

f �2�
f

■■ E X E R C I S E S  ■■

t (seconds) 0 1 2 3 4 5

d (feet) 0 10 32 70 119 178
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11–16 |||| Use transformations to sketch the graph of the function.

11.

12.

13.

14.

15.

16.

17. Determine whether is even, odd, or neither even nor odd.
(a)
(b)
(c)
(d)

18. Find an expression for the function whose graph consists of 
the line segment from the point to the point 
together with the top half of the circle with center the origin
and radius 1.

19. If and , find the functions , ,
, , and their domains.

20. Express the function as a composition of
three functions.

21. Life expectancy improved dramatically in the 20th century. The
table gives the life expectancy at birth (in years) of males born
in the United States.

Use a scatter plot to choose an appropriate type of model. Use
your model to predict the life span of a male born in the year
2010.

F�x� � 1�sx � sx  

t � tf � f
t � ff � tt�x� � x 2 � 9f �x� � ln x

��1, 0���2, 2�

f �x� � 1 � sin x
f �x� � e�x 2
f �x� � x 3 � x 7
f �x� � 2x 5 � 3x 2 � 2

f

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

f �x� � ��x

e x � 1

if x � 0

if x � 0

f �x� �
1

x � 2

y � 2 � sx

y � �1 � e x ��2

y � 3 ln �x � 2�

y � �sin 2x

22. A small-appliance manufacturer finds that it costs $9000 to
produce 1000 toaster ovens a week and $12,000 to produce
1500 toaster ovens a week.
(a) Express the cost as a function of the number of toaster

ovens produced, assuming that it is linear. Then sketch the
graph.

(b) What is the slope of the graph and what does it represent?
(c) What is the y-intercept of the graph and what does it 

represent?

23. If , find .

24. Find the inverse function of .

25. Find the exact value of each expression.
(a) (b)

(c) (d)

26. Solve each equation for x.
(a) (b)
(c) (d)

27. The half-life of palladium-100, , is four days. (So half of
any given quantity of will disintegrate in four days.) The
initial mass of a sample is one gram.
(a) Find the mass that remains after 16 days.
(b) Find the mass that remains after t days.
(c) Find the inverse of this function and explain its meaning.
(d) When will the mass be reduced to 0.01 g?

28. The population of a certain species in a limited environment
with initial population 100 and carrying capacity 1000 is

where t is measured in years.

; (a) Graph this function and estimate how long it takes for the
population to reach 900.

(b) Find the inverse of this function and explain its meaning.
(c) Use the inverse function to find the time required for the

population to reach 900. Compare with the result of
part (a).

; 29. Graph members of the family of functions 
for several values of c. How does the graph change when 
changes?

; 30. Graph the three functions , , and on
the same screen for two or three values of . For large 
values of x, which of these functions has the largest values 
and which has the smallest values?

a � 1
y � loga xy � a xy � x a

c
f �x� � ln�x 2 � c�

P�t� �
100,000

100 � 900e�t

m�t�

100Pd

100Pd

tan�1x � 1e e x
� 2

ln x � 2e x � 5

sin(cos�1 (4
5))tan(arcsin 1

2 )
log10 25 � log10 4e 2 ln 3

f �x� �
x � 1

2x � 1

f �1�2�f �x� � 2x � ln x

Birth year Life expectancy

1900 48.3
1910 51.1
1920 55.2
1930 57.4
1940 62.5
1950 65.6
1960 66.6
1970 67.1
1980 70.0
1990 71.8
2000 73.0



There are no hard and fast rules that will ensure success in solving problems. However, it is
possible to outline some general steps in the problem-solving process and to give some prin-
ciples that may be useful in the solution of certain problems. These steps and principles are
just common sense made explicit. They have been adapted from George Polya’s book How
To Solve It.

The first step is to read the problem and make sure that you understand it clearly. Ask your-
self the following questions:

For many problems it is useful to

draw a diagram

and identify the given and required quantities on the diagram.
Usually it is necessary to

introduce suitable notation

In choosing symbols for the unknown quantities we often use letters such as a, b, c, m, n, x,
and y, but in some cases it helps to use initials as suggestive symbols; for instance, for
volume or for time.

THINK OF A PLAN Find a connection between the given information and the unknown that will enable you to
calculate the unknown. It often helps to ask yourself explicitly: “How can I relate the given
to the unknown?” If you don’t see a connection immediately, the following ideas may be
helpful in devising a plan.

Try to Recognize Something Familiar Relate the given situation to previous knowledge. Look at
the unknown and try to recall a more familiar problem that has a similar unknown.

Try to Recognize Patterns Some problems are solved by recognizing that some kind of pattern
is occurring. The pattern could be geometric, or numerical, or algebraic. If you can see reg-
ularity or repetition in a problem, you might be able to guess what the continuing pattern is
and then prove it.

Use Analogy Try to think of an analogous problem, that is, a similar problem, a related
problem, but one that is easier than the original problem. If you can solve the similar, sim-
pler problem, then it might give you the clues you need to solve the original, more difficult
problem. For instance, if a problem involves very large numbers, you could first try a simi-
lar problem with smaller numbers. Or if the problem involves three-dimensional geometry,
you could look for a similar problem in two-dimensional geometry. Or if the problem you
start with is a general one, you could first try a special case.

Introduce Something Extra It may sometimes be necessary to introduce something new, an
auxiliary aid, to help make the connection between the given and the unknown. For instance,
in a problem where a diagram is useful the auxiliary aid could be a new line drawn in a dia-
gram. In a more algebraic problem it could be a new unknown that is related to the original
unknown.

2

t
V

What is the unknown?

What are the given quantities?

What are the given conditions?

UNDERSTAND
THE PROBLEM

1

PRINCIPLES 
OF PROBLEM
SOLVING



Take Cases We may sometimes have to split a problem into several cases and give a dif-
ferent argument for each of the cases. For instance, we often have to use this strategy in deal-
ing with absolute value.

Work Backward Sometimes it is useful to imagine that your problem is solved and work
backward, step by step, until you arrive at the given data. Then you may be able to reverse
your steps and thereby construct a solution to the original problem. This procedure is com-
monly used in solving equations. For instance, in solving the equation , we sup-
pose that is a number that satisfies and work backward. We add 5 to each side
of the equation and then divide each side by 3 to get . Since each of these steps can
be reversed, we have solved the problem.

Establish Subgoals In a complex problem it is often useful to set subgoals (in which the
desired situation is only partially fulfilled). If we can first reach these subgoals, then we may
be able to build on them to reach our final goal.

Indirect Reasoning Sometimes it is appropriate to attack a problem indirectly. In using proof
by contradiction to prove that implies , we assume that is true and is false and try
to see why this can’t happen. Somehow we have to use this information and arrive at a con-
tradiction to what we absolutely know is true.

Mathematical Induction In proving statements that involve a positive integer , it is frequently
helpful to use the following principle.

Principle of Mathematical Induction Let be a statement about the positive integer . 
Suppose that

1. is true.

2. is true whenever is true.

Then is true for all positive integers .

This is reasonable because, since is true, it follows from condition 2 (with ) that
is true. Then, using condition 2 with , we see that is true. Again using condition 2,

this time with , we have that is true. This procedure can be followed indefinitely.

CARRY OUT THE PLAN In Step 2 a plan was devised. In carrying out that plan we have to check each stage of the
plan and write the details that prove that each stage is correct.

LOOK BACK Having completed our solution, it is wise to look back over it, partly to see if we have made
errors in the solution and partly to see if we can think of an easier way to solve the problem.
Another reason for looking back is that it will familiarize us with the method of solution and
this may be useful for solving a future problem. Descartes said, “Every problem that I solved
became a rule which served afterwards to solve other problems.”

These principles of problem solving are illustrated in the following examples. Before you
look at the solutions, try to solve these problems yourself, referring to these Principles of
Problem Solving if you get stuck. You may find it useful to refer to this section from time
to time as you solve the exercises in the remaining chapters of this book.

4

3

S4k � 3
S3k � 2S2

k � 1S1

nSn

SkSk�1

S1

nSn

n

QPQP

x � 4
3x � 5 � 7x

3x � 5 � 7



EXAMPLE 1 Express the hypotenuse of a right triangle with area as a function of
its perimeter P.

SOLUTION Let’s first sort out the information by identifying the unknown quantity and the
data:

It helps to draw a diagram and we do so in Figure 1.

In order to connect the given quantities to the unknown, we introduce two extra vari-
ables and , which are the lengths of the other two sides of the triangle. This enables us
to express the given condition, which is that the triangle is right-angled, by the Pythago-
rean Theorem:

The other connections among the variables come by writing expressions for the area and
perimeter:

Since is given, notice that we now have three equations in the three unknowns , ,
and :

Although we have the correct number of equations, they are not easy to solve in a straight-
forward fashion. But if we use the problem-solving strategy of trying to recognize some-
thing familiar, then we can solve these equations by an easier method. Look at the right
sides of Equations 1, 2, and 3. Do these expressions remind you of anything familiar?
Notice that they contain the ingredients of a familiar formula:

Using this idea, we express in two ways. From Equations 1 and 2 we have

From Equation 3 we have

Thus

This is the required expression for h as a function of P.

 h �
P2 � 100

2P

 2Ph � P2 � 100

 h 2 � 100 � P2 � 2Ph � h 2

�a � b�2 � �P � h�2 � P2 � 2Ph � h 2

�a � b�2 � �a 2 � b 2 � � 2ab � h 2 � 4�25�

�a � b�2

�a � b�2 � a 2 � 2ab � b 2

 P � a � b � h3

 25 � 1
2 ab2

 h 2 � a 2 � b 21

h
baP

P � a � b � h25 � 1
2 ab

h 2 � a 2 � b 2

ba

a

h
b

FIGURE 1

 Given quantities: perimeter P, area 25 m2

Unknown: hypotenuse h

25 m2h

|||| Understand the problem

|||| Draw a diagram

|||| Connect the given with the unknown
|||| Introduce something extra

|||| Relate to the familiar



As the next example illustrates, it is often necessary to use the problem-solving prin-
ciple of taking cases when dealing with absolute values.

EXAMPLE 2 Solve the inequality .

SOLUTION Recall the definition of absolute value:

It follows that

Similarly

These expressions show that we must consider three cases:

CASE I ■■ If , we have

CASE II ■■ If the given inequality becomes

(always true)

CASE III ■■ If , the inequality becomes

Combining cases I, II, and III, we see that the inequality is satisfied when .
So the solution is the interval .

In the following example we first guess the answer by looking at special cases and rec-
ognizing a pattern. Then we prove it by mathematical induction.

In using the Principle of Mathematical Induction, we follow three steps:

STEP 1 Prove that is true when .

STEP 2 Assume that is true when and deduce that is true when 

STEP 3 Conclude that is true for all n by the Principle of Mathematical Induction.Sn

n � k � 1.Snn � kSn

n � 1Sn

��5, 6�
�5 � x � 6

 x � 6

 2x � 12

 x � 3 � x � 2 � 11

x � 3

 5 � 11

 �x � 3 � x � 2 � 11

�2 � x � 3, 

 x � �5

 �2x � 10

 �x � 3 � x � 2 � 11

 � x � 3 � � � x � 2 � � 11

x � �2

x � 3�2 � x � 3x � �2

 � �x � 2

�x � 2

if x � �2

if x � �2

 � x � 2 � � �x � 2

��x � 2�
if x � 2 � 0

if x � 2 � 0

 � �x � 3

�x � 3

if x � 3

if x � 3

 � x � 3 � � �x � 3

��x � 3�
if x � 3 � 0

if x � 3 � 0

� x � � �x

�x

if x � 0

if x � 0

� x � 3 � � � x � 2 � � 11

|||| Take cases



EXAMPLE 3 If and for n � 0, 1, 2, . . . , find a 
formula for .

SOLUTION We start by finding formulas for for the special cases n � 1, 2, and 3.

We notice a pattern: The coefficient of x in the denominator of is n � 1 in the
three cases we have computed. So we make the guess that, in general,

To prove this, we use the Principle of Mathematical Induction. We have already verified
that (4) is true for n � 1. Assume that it is true for , that is,

Then

This expression shows that (4) is true for . Therefore, by mathematical induc-
tion, it is true for all positive integers n.

n � k � 1

 �

x

�k � 1�x � 1

x

�k � 1�x � 1
� 1

�

x

�k � 1�x � 1

�k � 2�x � 1

�k � 1�x � 1

�
x

�k � 2�x � 1

 fk�1�x� � � f0 � fk� �x� � f0� fk�x�� � f0� x

�k � 1�x � 1�
fk�x� �

x

�k � 1�x � 1

n � k

fn�x� �
x

�n � 1�x � 1
4

fn�x�

 �

x

3x � 1

x

3x � 1
� 1

�

x

3x � 1

4x � 1

3x � 1

�
x

4x � 1

 f3�x� � � f0 � f2 � �x� � f0� f2�x�� � f0� x

3x � 1�

 �

x

2x � 1

x

2x � 1
� 1

�

x

2x � 1

3x � 1

2x � 1

�
x

3x � 1

 f2�x� � � f0 � f1 � �x� � f0� f1�x�� � f0� x

2x � 1�

 �

x

x � 1

x

x � 1
� 1

�

x

x � 1

2x � 1

x � 1

�
x

2x � 1

 f1�x� � � f0 � f0 � �x� � f0� f0�x�� � f0� x

x � 1�
fn�x�

fn�x�
fn�1 � f0 � fnf0�x� � x��x � 1�

|||| Analogy: Try a similar, simpler problem

|||| Look for a pattern



1. One of the legs of a right triangle has length 4 cm. Express the length of the altitude perpen-
dicular to the hypotenuse as a function of the length of the hypotenuse.

2. The altitude perpendicular to the hypotenuse of a right triangle is 12 cm. Express the length of
the hypotenuse as a function of the perimeter.

3. Solve the equation .

4. Solve the inequality .

5. Sketch the graph of the function .

6. Sketch the graph of the function .

7. Draw the graph of the equation 

8. Draw the graph of the equation .

9. Sketch the region in the plane consisting of all points such that .

10. Sketch the region in the plane consisting of all points such that

11. Evaluate .

12. (a) Show that the function is an odd function.
(b) Find the inverse function of 

13. Solve the inequality .

14. Use indirect reasoning to prove that is an irrational number.

15. A driver sets out on a journey. For the first half of the distance she drives at the leisurely pace
of 30 mi�h; she drives the second half at 60 mi�h. What is her average speed on this trip?

16. Is it true that ?

17. Prove that if n is a positive integer, then is divisible by 6.

18. Prove that .

19. If and for find a formula for .

20. (a) If and for find an expression for and

use mathematical induction to prove it.

; (b) Graph on the same screen and describe the effects of repeated composition.f0, f1, f2, f3

fn�x�n � 0, 1, 2, . . . , fn�1 � f0 �  fnf0�x� �
1

2 � x

fn�x�n � 0, 1, 2, . . . , fn�1�x� � f0� fn�x��f0�x� � x 2

1 � 3 � 5 � ��� � �2n � 1� � n2

7n � 1

f � �t � h� � f � t � f � h

log2 5

ln�x 2 � 2x � 2� � 0

f.
f �x� � ln(x � sx 2 � 1)

�log2 3��log3 4��log4 5� � � � �log31 32�

� x � y � � � x � � � y � � 2

�x, y�
� x � � � y � � 1�x, y�

x 4 � 4x 2 � x 2y 2 � 4y 2 � 0

x � � x � � y � � y �.
t�x� � � x 2 � 1 � � � x 2 � 4 �

� x 2 � 4� x � � 3 �f �x� �

� x � 1 � � � x � 3 � � 5

� x � 5 � � 3� 2x � 1 � �

PROBLEMS



Limits and Derivatives

The idea of a limit is 

illustrated by secant lines

approaching a tangent line.



In A Preview of Calculus (page 2) we saw how the idea of

a limit underlies the various branches of calculus. It is there-

fore appropriate to begin our study of calculus by investi-

gating limits and their properties. The special type of limit

that is used to find tangents and velocities gives rise to the

central idea in differential calculus, the derivative.

|||| 2.1 T h e  T a n g e n t  a n d  V e l o c i t y  P r o b l e m s

In this section we see how limits arise when we attempt to find the tangent to a curve or
the velocity of an object.

T h e  T a n g e n t  P r o b l e m

The word tangent is derived from the Latin word tangens, which means “touching.” Thus,
a tangent to a curve is a line that touches the curve. In other words, a tangent line should
have the same direction as the curve at the point of contact. How can this idea be made
precise?

For a circle we could simply follow Euclid and say that a tangent is a line that intersects
the circle once and only once as in Figure 1(a). For more complicated curves this defini-
tion is inadequate. Figure l(b) shows two lines and passing through a point on a curve

. The line intersects only once, but it certainly does not look like what we think of as
a tangent. The line , on the other hand, looks like a tangent but it intersects twice.

To be specific, let’s look at the problem of trying to find a tangent line to the parabola
in the following example.

EXAMPLE 1 Find an equation of the tangent line to the parabola at the point .

SOLUTION We will be able to find an equation of the tangent line as soon as we know its
slope . The difficulty is that we know only one point, , on , whereas we need two
points to compute the slope. But observe that we can compute an approximation to by
choosing a nearby point on the parabola (as in Figure 2) and computing the
slope of the secant line .

We choose so that . Then

mPQ �
x 2 � 1

x � 1

Q � Px � 1
PQmPQ

Q�x, x 2 �
m

tPm
t

P�1, 1�y � x 2

y � x 2
t

(a) (b)

t
P

Ct

l

FIGURE 1

Ct
ClC

Ptl

Locate tangents interactively and explore 
them numerically.

Resources / Module 1
/ Tangents 

/ What Is a Tangent?

FIGURE 2

x

y

0

y=≈

tQ{x, ≈}

P(1, 1)



For instance, for the point we have

The tables in the margin show the values of for several values of close to 1. The
closer is to , the closer is to 1 and, it appears from the tables, the closer is to 2.
This suggests that the slope of the tangent line should be .

We say that the slope of the tangent line is the limit of the slopes of the secant lines,
and we express this symbolically by writing

and

Assuming that the slope of the tangent line is indeed 2, we use the point-slope form
of the equation of a line (see Appendix B) to write the equation of the tangent line
through as

Figure 3 illustrates the limiting process that occurs in this example. As approaches
along the parabola, the corresponding secant lines rotate about and approach the

tangent line t.

Many functions that occur in science are not described by explicit equations; they are
defined by experimental data. The next example shows how to estimate the slope of the
tangent line to the graph of such a function.

P

y

x0

Q
t

P

y

x0

Q

t

P

y

x0

Q

t

P

y

x0

Q

t

P

y

x0

Q

t

Q approaches P from the right

P

y

x0

Q

t

Q approaches P from the left

FIGURE 3
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Q

y � 2x � 1ory � 1 � 2�x � 1�

�1, 1�

lim
x l 1

 
x 2 � 1

x � 1
� 2lim 

Q lP
 mPQ � m

m � 2t
mPQxPQ

xmPQ

mPQ �
2.25 � 1

1.5 � 1
�

1.25

0.5
� 2.5

Q�1.5, 2.25�

x

2 3
1.5 2.5
1.1 2.1
1.01 2.01
1.001 2.001

mPQ

x

0 1
0.5 1.5
0.9 1.9
0.99 1.99
0.999 1.999

mPQ

In Module 2.1 you can see how the
process in Figure 3 works for five 
additional functions.



EXAMPLE 2 The flash unit on a camera operates by storing charge on a capacitor and
releasing it suddenly when the flash is set off. The data at the left describe the charge Q
remaining on the capacitor (measured in microcoulombs) at time t (measured in seconds
after the flash goes off ). Use the data to draw the graph of this function and estimate the
slope of the tangent line at the point where t � 0.04. [Note: The slope of the tangent line
represents the electric current flowing from the capacitor to the flash bulb (measured in
microamperes).]

SOLUTION In Figure 4 we plot the given data and use them to sketch a curve that approxi-
mates the graph of the function.

Given the points and on the graph, we find that the
slope of the secant line PR is

The table at the left shows the results of similar calculations for the slopes of other
secant lines. From this table we would expect the slope of the tangent line at to
lie somewhere between �742 and �607.5. In fact, the average of the slopes of the two
closest secant lines is

So, by this method, we estimate the slope of the tangent line to be �675.
Another method is to draw an approximation to the tangent line at P and measure the

sides of the triangle ABC, as in Figure 4. This gives an estimate of the slope of the tan-
gent line as

T h e  V e l o c i t y  P r o b l e m

If you watch the speedometer of a car as you travel in city traffic, you see that the needle
doesn’t stay still for very long; that is, the velocity of the car is not constant. We assume
from watching the speedometer that the car has a definite velocity at each moment, but how
is the “instantaneous” velocity defined? Let’s investigate the example of a falling ball.

� � AB �
� BC � � �

80.4 � 53.6

0.06 � 0.02
� �670

1
2 ��742 � 607.5� � �674.75

t � 0.04

mPR �
100.00 � 67.03

0.00 � 0.04
� �824.25

R�0.00, 100.00�P�0.04, 67.03�

FIGURE 4
t

Q

A

B C

P

0 0.02 0.04 0.06 0.08 0.1

90

100

60

70

80

50

t Q

0.00 100.00
0.02 81.87
0.04 67.03
0.06 54.88
0.08 44.93
0.10 36.76

|||| The physical meaning of the answer in
Example 2 is that the electric current flowing
from the capacitor to the flash bulb after
0.04 second is about –670 microamperes.

R

(0.00, 100.00) �824.25
(0.02, 81.87) �742.00
(0.06, 54.88) �607.50
(0.08, 44.93) �552.50
(0.10, 36.76) �504.50

mPR
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EXAMPLE 3 Suppose that a ball is dropped from the upper observation deck of the CN
Tower in Toronto, 450 m above the ground. Find the velocity of the ball after 5 seconds.

SOLUTION Through experiments carried out four centuries ago, Galileo discovered that the
distance fallen by any freely falling body is proportional to the square of the time it has
been falling. (This model for free fall neglects air resistance.) If the distance fallen after 
seconds is denoted by and measured in meters, then Galileo’s law is expressed by the
equation

The difficulty in finding the velocity after 5 s is that we are dealing with a single instant
of time , so no time interval is involved. However, we can approximate the desired
quantity by computing the average velocity over the brief time interval of a tenth of a
second from to :

The following table shows the results of similar calculations of the average velocity over
successively smaller time periods.

It appears that as we shorten the time period, the average velocity is becoming closer to
49 m�s. The instantaneous velocity when is defined to be the limiting value of
these average velocities over shorter and shorter time periods that start at . Thus,
the (instantaneous) velocity after 5 s is

You may have the feeling that the calculations used in solving this problem are very
similar to those used earlier in this section to find tangents. In fact, there is a close con-
nection between the tangent problem and the problem of finding velocities. If we draw the
graph of the distance function of the ball (as in Figure 5) and we consider the points

and on the graph, then the slope of the secant line 
is

mPQ �
4.9�a � h�2 � 4.9a 2

�a � h� � a

PQ
Q�a � h, 4.9�a � h�2 �P�a, 4.9a 2 �

v � 49 m�s

t � 5
t � 5

 �
4.9�5.1�2 � 4.9�5�2

0.1
� 49.49 m�s

 �
s�5.1� � s�5�

0.1

 average velocity �
distance traveled

time elapsed

t � 5.1t � 5

�t � 5�

s�t� � 4.9t 2

s�t�
t

The CN Tower in Toronto is currently the tallest
freestanding building in the world.

Time interval Average velocity (m�s)

53.9
49.49
49.245
49.049
49.00495 � t � 5.001

5 � t � 5.01
5 � t � 5.05
5 � t � 5.1
5 � t � 6
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which is the same as the average velocity over the time interval . Therefore, the
velocity at time (the limit of these average velocities as approaches 0) must be
equal to the slope of the tangent line at (the limit of the slopes of the secant lines).

Examples 1 and 3 show that in order to solve tangent and velocity problems we must
be able to find limits. After studying methods for computing limits in the next five sections,
we will return to the problems of finding tangents and velocities in Section 2.7.

FIGURE 5
t

s

Q

a a+h0

slope of secant line
� average velocity

P

s=4.9t@

t

s

0 a

slope of tangent
� instantaneous velocityP

s=4.9t@

P
ht � a
�a, a � h�

after 42 minutes using the secant line between the points with
the given values of t.
(a) t � 36 and t � 42 (b) t � 38 and t � 42
(c) t � 40 and t � 42 (d) t � 42 and t � 44

What are your conclusions?

The point lies on the curve .
(a) If is the point , use your calculator to find

the slope of the secant line (correct to six decimal
places) for the following values of :

(i) 0.5 (ii) 0.9
(iii) 0.99 (iv) 0.999
(v) 1.5 (vi) 1.1

(vii) 1.01 (viii) 1.001
(b) Using the results of part (a), guess the value of the slope of

the tangent line to the curve at .
(c) Using the slope from part (b), find an equation of the

tangent line to the curve at .

4. The point lies on the curve .
(a) If is the point , use your calculator to find the

slope of the secant line (correct to six decimal places)
for the following values of :

(i) 1.5 (ii) 1.9
(iii) 1.99 (iv) 1.999
(v) 2.5 (vi) 2.1

(vii) 2.01 (viii) 2.001
(b) Using the results of part (a), guess the value of the slope of

the tangent line to the curve at .P�2, ln 2�

x
PQ

�x, ln x�Q
y � ln xP�2, ln 2�

P(1, 12)

P(1, 12)

x
PQ

�x, x��1 � x��Q
y � x��1 � x�P(1, 12)3.

1. A tank holds 1000 gallons of water, which drains from the 
bottom of the tank in half an hour. The values in the table show
the volume V of water remaining in the tank (in gallons) after
t minutes.

(a) If P is the point on the graph of V, find the slopes
of the secant lines PQ when Q is the point on the graph
with , 10, 20, 25, and 30.

(b) Estimate the slope of the tangent line at P by averaging the
slopes of two secant lines.

(c) Use a graph of the function to estimate the slope of the 
tangent line at P. (This slope represents the rate at which the
water is flowing from the tank after 15 minutes.)

2. A cardiac monitor is used to measure the heart rate of a patient
after surgery. It compiles the number of heartbeats after t min-
utes. When the data in the table are graphed, the slope of the
tangent line represents the heart rate in beats per minute.

The monitor estimates this value by calculating the slope 
of a secant line. Use the data to estimate the patient’s heart rate 

t � 5

�15, 250�

|||| 2.1 Exercises

t (min) 5 10 15 20 25 30

V (gal) 694 444 250 111 28 0

t (min) 36 38 40 42 44

Heartbeats 2530 2661 2806 2948 3080
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(c) Draw the graph of as a function of and draw the secant
lines whose slopes are the average velocities found in
part (a).

(d) Draw the tangent line whose slope is the instantaneous
velocity from part (b).

8. The position of a car is given by the values in the table.

(a) Find the average velocity for the time period beginning
when and lasting
(i) 3 seconds (ii) 2 seconds (iii) 1 second

(b) Use the graph of as a function of to estimate the instan-
taneous velocity when .

The point lies on the curve .
(a) If is the point , find the slope of the secant

line (correct to four decimal places) for , 1.5, 1.4,
1.3, 1.2, 1.1, 0.5, 0.6, 0.7, 0.8, and 0.9. Do the slopes
appear to be approaching a limit?

; (b) Use a graph of the curve to explain why the slopes of the
secant lines in part (a) are not close to the slope of the 
tangent line at .

(c) By choosing appropriate secant lines, estimate the slope of
the tangent line at .P

P

x � 2PQ
�x, sin�10��x��Q

y � sin�10��x�P�1, 0�9.

t � 2
ts

t � 2

ts(c) Using the slope from part (b), find an equation of the
tangent line to the curve at .

(d) Sketch the curve, two of the secant lines, and the tangent
line.

If a ball is thrown into the air with a velocity of 40 ft�s, its
height in feet after seconds is given by .
(a) Find the average velocity for the time period beginning

when and lasting
(i) 0.5 second (ii) 0.1 second

(iii) 0.05 second (iv) 0.01 second
(b) Find the instantaneous velocity when 

6. If an arrow is shot upward on the moon with a velocity of
58 m�s, its height in meters after seconds is given by

(a) Find the average velocity over the given time intervals:
(i) [1, 2] (ii) [1, 1.5] (iii) [1, 1.1]

(iv) [1, 1.01] (v) [1, 1.001]
(b) Find the instantaneous velocity after one second.

7. The displacement (in feet) of a certain particle moving in 
a straight line is given by , where is measured in 
seconds.
(a) Find the average velocity over the following time periods:

(i) [1, 3] (ii) [1, 2]
(iii) [1, 1.5] (iv) [1, 1.1]

(b) Find the instantaneous velocity when .t � 1

ts � t 3�6

h � 58t � 0.83t 2.
t

t � 2.

t � 2

y � 40t � 16t 2t
5.

P�2, ln 2�

t (seconds) 0 1 2 3 4 5

s (feet) 0 10 32 70 119 178

|||| 2.2 T h e  L i m i t  o f  a  F u n c t i o n

Having seen in the preceding section how limits arise when we want to find the tangent to
a curve or the velocity of an object, we now turn our attention to limits in general and
numerical and graphical methods for computing them.

Let’s investigate the behavior of the function defined by for val-
ues of near 2. The following table gives values of for values of close to 2, but not
equal to 2.

From the table and the graph of (a parabola) shown in Figure 1 we see that when is
close to 2 (on either side of 2), is close to 4. In fact, it appears that we can make the f �x�

xf

xf �x�x
f �x� � x 2 � x � 2f

x

3.0 8.000000
2.5 5.750000
2.2 4.640000
2.1 4.310000
2.05 4.152500
2.01 4.030100
2.005 4.015025
2.001 4.003001

f �x�x

1.0 2.000000
1.5 2.750000
1.8 3.440000
1.9 3.710000
1.95 3.852500
1.99 3.970100
1.995 3.985025
1.999 3.997001

f �x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�� x�



Some limits are best calculated by Þrst Þnding the left- and right-hand limits. The fol-
lowing theorem is a reminder of what we discovered in Section 2.2. It says that a two-sided
limit exists if and only if both of the one-sided limits exist and are equal.

Theorem if and only if

When computing one-sided limits, we use the fact that the Limit Laws also hold for
one-sided limits.

EXAMPLE 7 Show that .

SOLUTION Recall that

Since for , we have

For we have and so 

Therefore, by Theorem 1, 

EXAMPLE 8 Prove that does not exist.

SOLUTION

Since the right- and left-hand limits are different, it follows from Theorem 1 that
does not exist. The graph of the function is shown in

Figure 4 and supports the one-sided limits that we found.

EXAMPLE 9 If

determine whether exists.

SOLUTION Since for , we have

lim
x � 4�

 f � x� � lim
x � 4�

 � x � 4 � � 4 � 4 � 0

x � 4f � x� � � x � 4

lim x � 4 f � x�

f � x� � �� x � 4

8 � 2x

if� x � 4

if� x � 4

f � x� � � x �� xlim x � 0 � x �� x

 lim
x � 0�

 � x �
x

� lim
x � 0�

 
� x

x
� lim

x � 0�
 � � 1� � � 1

 lim
x � 0�

 � x �
x

� lim
x � 0�

 
x

x
� lim

x � 0�
 1 � 1

lim
x � 0

 � x �
x

lim
x � 0

 � x � � 0

lim
x � 0�

 � x � � lim
x � 0�

 � � x� � 0

� x � � � xx � 0

lim
x � 0�

 � x � � lim
x � 0�

 x � 0

x � 0� x � � x

� x � � �x

� x

if� x � 0

if� x � 0

lim
x � 0

 � x � � 0

lim
x � a�

 f � x� � L � lim
x � a�

 f � x�lim
x � a

 f � x� � L1
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|||| The result of Example 7 looks plausible 
from Figure 3.

FIGURE 3

�

�	

�� � 

�

��

�

�

	

��
� 
�

FIGURE 4

|||| It is shown in Example 3 in 
Section 2.4 that .lim x � 0�  � x � 0
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Since for , we have

The right- and left-hand limits are equal. Thus, the limit exists and

The graph of is shown in Figure 5.

EXAMPLE 10 The greatest integer function is deÞned by the largest integer 
that is less than or equal to . (For instance, , , , , 

) Show that does not exist.

SOLUTION The graph of the greatest integer function is shown in Figure 6. Since 
for , we have

Since for , we have

Because these one-sided limits are not equal, does not exist by Theorem 1.

The next two theorems give two additional properties of limits. Their proofs can be
found in Appendix F.

Theorem If when is near (except possibly at ) and the limits
of and both exist as approaches , then

The Squeeze Theorem If when is near (except possibly 
at ) and

then

The Squeeze Theorem, which is sometimes called the Sandwich Theorem or the
Pinching Theorem, is illustrated by Figure 7. It says that if is squeezed between 
and near , and if and have the same limit at , then is forced to have the same
limit at .aL

�aLhfah� x�
f � x�� � x�

lim
x � a

 � � x� � L

lim
x � a

 f � x� � lim
x � a

 h� x� � L

a
axf � x� � � � x� � h� x�3

lim
x � a

 f � x� � lim
x � a

 � � x�

ax�f
aaxf � x� � � � x�2

lim x � 3 � x�

lim
x � 3�

 � x� � lim
x � 3�

 2 � 2

2 � x � 3� x� � 2

lim
x � 3�

 � x� � lim
x � 3�

 3 � 3

3 � x � 4
� x� � 3

lim x � 3 � x�� � 1
2� � � 1.

� � 2 � � 1� � � � 3�4.8� � 4�4� � 4x
� x� �

f

lim
x � 4

 f � x� � 0

lim
x � 4�

 f � x� � lim
x � 4�

 �8 � 2x� � 8 � 2 � 4 � 0

x � 4f � x� � 8 � 2x

|||| Other notations for are and .� x�	 x
� x�

� � �
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FIGURE 6
Greatest integer function
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EXAMPLE 11 Show that .

SOLUTION First note that we cannot use

because does not exist (see Example 4 in Section 2.2). However, since 

we have, as illustrated by Figure 8,

We know that 

Taking , , and in the Squeeze Theorem, we
obtain

lim
x � 0

 x 2 sin 
1

x
� 0

h� x� � x 2� � x� � x 2 sin�1� x�f � x� � � x 2

lim
x � 0

 � � x 2 � � 0andlim
x � 0

 x 2 � 0

�
����� sin

���

����

	 �

�

FIGURE 8

� x 2 � x 2 sin 
1

x
� x 2

� 1 � sin 
1

x
� 1

lim x � 0 sin�1� x�

lim
x � 0

 x 2 sin 
1

x
� lim

x � 0
 x 2 � lim

x � 0
sin 

1

x

lim
x � 0

 x 2 sin 
1

x
� 0
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Watch an animation of a similar limit.
Resources / Module 2

/ Basics of Limits 
/ Sound of a Limit that Exists

(c) (d)

(e) (f )

(g) (h) lim
x �

 

a
 

2 f � x�
h� x� � f � x�

lim
x �

 

a
 
 f � x�
� � x�

lim
x �

 

a
 
� � x�
f � x�

lim
x �

 

a
 
 f � x�
h� x�

lim
x �

 

a
 

1

f � x�
lim 
x � a

 �3 h� x�
1. Given that

Þnd the limits that exist. If the limit does not exist, explain
why.

(a) (b) lim
x �

 

a
 	 f � x�
 2lim

x �
 

a
 	 f � x� � h� x�


lim
x �

 

a
 h� x� � 8lim

x �
 

a
 � � x� � 0lim

x �
 

a
 f � x� � � 3

|||| 2.3 Exercises
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21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

� 31. (a) Estimate the value of

by graphing the function .
(b) Make a table of values of for x close to 0 and guess

the value of the limit.
(c) Use the Limit Laws to prove that your guess is correct.

� 32. (a) Use a graph of

to estimate the value of to two decimal places.
(b) Use a table of values of to estimate the limit to four

decimal places.
(c) Use the Limit Laws to Þnd the exact value of the limit.

� 33. Use the Squeeze Theorem to show that
. Illustrate by graphing the functions

, and on the same
screen.

� 34. Use the Squeeze Theorem to show that

Illustrate by graphing the functions and (in the notation
of the Squeeze Theorem) on the same screen.

If for all , Þnd .

36. If for , evaluate .

37. Prove that 

38. Prove that .

39–44 |||| Find the limit, if it exists. If the limit does not exist,
explain why.

40. lim
x � � 4�

 � x � 4 �
x � 4

lim
x �

 

� 4
 � x � 4 �39.

lim
x �

 

0�
 � x esin� � � x� � 0

lim
x �

 

0
 x 4 cos 

2

x
� 0.

limx �  1 f � x�0 � x � 23x � f � x� � x 3 � 2

limx �  � 1 f � x�x1 � f � x� � x 2 � 2x � 235.

hf, � ,

lim
x �

 

0
 � x 3 � x 2 sin 

�
x

� 0

h� x� � x 2f � x� � � x 2, � � x� � x 2 cos 20� x
limx �  0 x

2 cos 20� x � 0

f � x�
limx �  0 f � x�

f � x� �
� 3 � x � � 3

x

f � x�
f � x� � x� (� 1 � 3x � 1)

lim
x �

 

0
 

x

� 1 � 3x � 1

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

lim
x � 1

 
� x � x 2

1 � � x
lim
t � 0

 � 1

t � 1 � t
�

1

t �
lim
h �

 

0
 
�3 � h� � 1 � 3 � 1

h
lim
x � 9

 
x 2 � 81

� x � 3

lim
t �

 

0
 �1

t
�

1

t 2 � t�lim
x �

 

� 4
 

1

4
�

1

x

4 � x

lim
x �

 

2
 
x 4 � 16

x � 2
lim
x �

 

7
 
� x � 2 � 3

x � 7

lim
h �

 

0
 
� 1 � h � 1

h
lim
t � 9

 
9 � t

3 � � t
2. The graphs of and � are given. Use them to evaluate each

limit, if it exists. If the limit does not exist, explain why.

(a) (b)

(c) (d)

(e) (f )

3–9 |||| Evaluate the limit and justify each step by indicating the
appropriate Limit Law(s).

3. 4.

5. 6.

7.

9.

10. (a) What is wrong with the following equation?

(b) In view of part (a), explain why the equation

is correct.

11–30 |||| Evaluate the limit, if it exists.

11. 12.

13. 14.

16.

17. 18.

19. lim
h �

 

0
 
�2 � h�3 � 8

h
20.lim

h � 0
 
�1 � h�4 � 1

h

lim
x �

 

1
 
x 3 � 1

x 2 � 1
lim
h �  0

 
�4 � h�2 � 16

h

lim
x �

 

� 1
 

x 2 � 4x

x 2 � 3x � 4
lim

t �
 

� 3
 

t 2 � 9

2t 2 � 7t � 3
15.

lim
x �

 

4
 

x 2 � 4x

x 2 � 3x � 4
lim
x �

 

2
 
x 2 � x � 6

x � 2

lim
x �

 

� 4
 
x 2 � 5x � 4

x2 � 3x � 4
lim
x �

 

2
 
x 2 � x � 6

x � 2

lim
x �

 

2
 
x 2 � x � 6

x � 2
� lim

x �
 

2
 � x � 3�

x 2 � x � 6

x � 2
� x � 3

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

lim 
x � 4�

 � 16 � x 2

lim 
u � � 2

 � u 4 � 3u � 68.lim
x �

 

1
 � 1 � 3x

1 � 4x2 � 3x4�3

lim
t �  � 1

 � t2 � 1�3� t � 3�5lim
x �  3

 � x2 � 4�� x3 � 5x � 1�

lim
x �

 

2
 

2x2 � 1

x2 � 6x � 4
lim

x �  � 2
 �3x4 � 2x2 � x � 1�

lim
x �

 

1
 � 3 � f � x�lim

x �
 

2
 x 3f � x�

lim
x �

 

� 1
 
 f � x�
� � x�

lim
x �

 

0
 	 f � x� � � x�


lim
x �

 

1
 	 f � x� � � � x�
lim

x �
 

2
 	 f � x� � � � x�


��

�

��

�

	 �

�

�

���
�

f
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41. 42.

43. 44.

45. The signum (or sign) function, denoted by sgn, is deÞned by 

(a) Sketch the graph of this function.
(b) Find each of the following limits or explain why it does not

exist.
(i) (ii)

(iii) (iv)

46. Let

(a) Find and 
(b) Does exist?
(c) Sketch the graph of .

47. Let .

(a) Find

(i) (ii)

(b) Does exist?
(c) Sketch the graph of .

48. Let

(a) Evaluate each of the following limits, if it exists.
(i) (ii) (iii)

(iv) (v) (vi)

(b) Sketch the graph of .

(a) If the symbol denotes the greatest integer function
deÞned in Example 10, evaluate
(i) (ii) (iii)

(b) If n is an integer, evaluate
(i) (ii)

(c) For what values of does exist?

50. Let .
(a) Sketch the graph of f.

f � x� � x � � x�

limx �  a � x�a

lim
x �  n�  

 � x�lim
x �

 

n�
 � x�

lim
x �

 

� 2.4
 � x�lim

x �
 

� 2
 � x�lim

x �
 

� 2�
 � x�

� �49.

h

lim
x � 2

 h� x�lim
x �  2�

 h� x�lim
x �  2�

 h� x�

lim
x � 1

 h� x�lim
x � 0

 h� x�lim
x �  0�

 h� x�

h� x� � �x

x 2

8 � x

if� x � 0

if� 0 � x � 2

if� x � 2

F

limx �  1 F� x�

lim
x �

 

1�
 F� x�lim

x �
 

1�
 F� x�

F� x� �
x 2 � 1

� x � 1 �

f
lim x � 2 f � x�

lim x � 2�  f � x� .lim x � 2�  f � x�

f � x� � �4 � x2

x � 1

if� x � 2

if� x � 2

lim
x � 0

 � sgn x �lim
x � 0

 sgn x

lim
x � 0�  

sgn xlim
x � 0�

 sgn x

sgn x � �� 1

� 0

� 1

if� x � 0

if� x � 0

if� x � 0

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

lim
x �

 

0�
 �1

x
�

1

� x � �lim
x �

 

0� �1

x
�

1

� x � �
lim

x � 1.5
 
2x 2 � 3x

� 2x � 3 �
lim
x �

 

2
 � x � 2 �

x � 2

(b) If is an integer, evaluate
(i) (ii)

(c) For what values of does exist?

51. If , show that exists but is not
equal to .

52. In the theory of relativity, the Lorentz contraction formula

expresses the length L of an object as a function of its velocity
with respect to an observer, where is the length of the

object at rest and c is the speed of light. Find and
interpret the result. Why is a left-hand limit necessary?

53. If is a polynomial, show that .

54. If r is a rational function, use Exercise 53 to show that
for every number a in the domain of r.

55. If

prove that .

Show by means of an example that may
exist even though neither nor exists.

57. Show by means of an example that may exist
even though neither nor exists.

58. Evaluate .

Is there a number a such that

exists? If so, Þnd the value of a and the value of the limit.

60. The Þgure shows a Þxed circle with equation
and a shrinking circle with radius and

center the origin. P is the point , Q is the upper point of
intersection of the two circles, and R is the point of intersection
of the line PQ and the -axis. What happens to R as shrinks,
that is, as ?

�

�

	

� �
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��
�

r � 0 �
C2x

�0, r�
rC2� x � 1�2 � y 2 � 1

C1

lim
x � � 2

 
3x 2 � ax � a � 3

x 2 � x � 2

59.

lim
x � 2

 
� 6 � x � 2

� 3 � x � 1

limx �  a � � x�limx �  a f � x�
limx �  a 	 f � x� � � x�


limx �  a � � x�limx �  a f � x�
limx �  a 	 f � x� � � � x�
56.

lim x � 0 f � x� � 0

f � x� � �x 2

0

if� x is rational

if� x is irrational

limx �  a r� x� � r�a�

lim x�  a p� x� � p�a�p

lim v � c�  L
L0v

L � L0 � 1 � v 2� c 2

f �2�
limx �  2 f � x�f � x� � � x� � � � x�

limx �  a f � x�a

lim
x �

 

n�
 f � x�lim

x �
 

n�
 f � x�

n



|||| 2.4 T h e  P r e c i s e  D e f i n i t i o n  o f  a  L i m i t

The intuitive deÞnition of a limit given in Section 2.2 is inadequate for some purposes
because such phrases as Ò is close to 2Ó and Ò gets closer and closer to LÓ are vague.
In order to be able to prove conclusively that

we must make the deÞnition of a limit precise.
To motivate the precise deÞnition of a limit, letÕs consider the function

Intuitively, it is clear that when is close to 3 but , then is close to 5, and so
.

To obtain more detailed information about how varies when is close to 3, we ask
the following question:

How close to 3 does have to be so that differs from 5 by less than 0.l?

The distance from to 3 is and the distance from to 5 is , so our
problem is to Þnd a number such that

If , then , so an equivalent formulation of our problem is to Þnd a num-
ber such that

Notice that if , then

that is,

Thus, an answer to the problem is given by ; that is, if is within a distance of
0.05 from 3, then will be within a distance of 0.1 from 5.

If we change the number 0.l in our problem to the smaller number 0.01, then by using
the same method we Þnd that will differ from 5 by less than 0.01 provided that dif-
fers from 3 by less than (0.01)� 2 � 0.005:

Similarly,

The numbers and that we have considered are error tolerances that we
might allow. For 5 to be the precise limit of as approaches 3, we must not only be
able to bring the difference between and 5 below each of these three numbers; wef � x�

xf � x�
0.0010.1, 0.01,

0 � � x � 3 � � 0.0005if� f � x� � 5 � � 0.001

0 � � x � 3 � � 0.005if� f � x� � 5 � � 0.01

xf � x�

f � x�
x	 � 0.05

0 � � x � 3 � � 0.05if� f � x� � 5 � � 0.1

� f � x� � 5 � � � �2x � 1� � 5 � � � 2x � 6 � � 2� x � 3 � � 0.1

0 � � x � 3 � � �0.1�� 2 � 0.05

0 � � x � 3 � � 	if� f � x� � 5 � � 0.1

	
x � 3� x � 3 � � 0

but x � 3� x � 3 � � 	if� f � x� � 5 � � 0.1

	
� f � x� � 5 �f � x�� x � 3 �x

f � x�x

xf � x�
lim x � 3 f � x� � 5

f � x�� 3xx

f � x� � �2x � 1

6

if� x � 3

if� x � 3

lim
x � 0

 
sin x

x
� 1orlim

x � 0
 �x 3 �

cos 5x

10,000�� 0.0001

f � x�x
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|||| It is traditional to use the Greek letter 
(delta) in this situation.

	



must be able to bring it below any positive number. And, by the same reasoning, we can!
If we write (the Greek letter epsilon) for an arbitrary positive number, then we Þnd as 
before that

This is a precise way of saying that is close to 5 when is close to 3 because (1) says
that we can make the values of within an arbitrary distance from 5 by taking the val-
ues of within a distance from 3 (but ).

Note that (1) can be rewritten as

and this is illustrated in Figure 1. By taking the values of ( ) to lie in the interval
we can make the values of lie in the interval .

Using (1) as a model, we give a precise deÞnition of a limit.

Definition Let be a function deÞned on some open interval that contains the
number , except possibly at itself. Then we say that the limit of as 
approaches is , and we write

if for every number there is a number such that

Another way of writing the last line of this deÞnition is

Since is the distance from to and is the distance from to ,
and since can be arbitrarily small, the deÞnition of a limit can be expressed in words 
as follows:

means that the distance between and can be made arbitrarily small 
by taking the distance from to sufÞciently small (but not 0).

Alternatively,

means that the values of can be made as close as we please to 
by taking close enough to (but not equal to ).

We can also reformulate DeÞnition 2 in terms of intervals by observing that the in-
equality is equivalent to , which in turn can be written 
as . Also is true if and only if , that is, 

. Similarly, the inequality is equivalent to the pair of inequalities 
. Therefore, in terms of intervals, DeÞnition 2 can be stated 

as follows:

means that for every (no matter how small is) we can Þnd
such that if lies in the open interval and , then lies in 

the open interval �L � 
 , L � 
 � .
f � x�x � a�a � 	 , a � 	 �x	 � 0



 � 0lim x � a f � x� � L

L � 
�f � x�L � 
 �
� f � x� � L � � 
x � a

x � a � 00 � � x � a �a � 	 � x � a � 	
� 	 � x � a � 	� x � a � � 	

aax
Lf � x�lim x � a f � x� � L

ax
Lf � x�lim x � a f � x� � L



Lf � x�� f � x� � L �ax� x � a �

� f � x� � L � � 
then0 � � x � a � � 	if

0 � � x � a � � 	whenever� f � x� � L � � 


	 � 0
 � 0

lim
x � a

 f � x� � L

La
xf � x�aa

f2

�5 � 
 , 5 � 
 �f � x��3 � 	 , 3 � 	 �
� 3x

� x � 3�3 � 	 � x � 3 � 	whenever5 � 
 � f � x� � 5 � 


x � 3
 � 2x

f � x�

xf � x�

0 � � x � 3 � � 	 �


2

if� f � x� � 5 � � 
1
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We interpret this statement geometrically by representing a function by an arrow diagram
as in Figure 2, where maps a subset of onto another subset of .

The deÞnition of limit says that if any small interval is given around ,
then we can Þnd an interval around such that maps all the points in

(except possibly ) into the interval . (See Figure 3.)

Another geometric interpretation of limits can be given in terms of the graph of a func-
tion. If is given, then we draw the horizontal lines and and
the graph of (see Figure 4). If , then we can Þnd a number such
that if we restrict to lie in the interval and take , then the curve

lies between the lines and . (See Figure 5.) You can see that
if such a has been found, then any smaller will also work.

It is important to realize that the process illustrated in Figures 4 and 5 must work for
every positive number no matter how small it is chosen. Figure 6 shows that if a smaller

is chosen, then a smaller may be required.

EXAMPLE 1 Use a graph to Þnd a number such that

whenever

In other words, Þnd a number that corresponds to in the deÞnition of a limit for
the function with and .L � 2a � 1f � x� � x 3 � 5x � 6


 � 0.2	

� x � 1 � � 	� � x 3 � 5x � 6� � 2 � � 0.2

	

FIGURE 4 FIGURE 5 FIGURE 6
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y � L � 
y � L � 
y � f � x�

x � a�a � 	 , a � 	 �x
	 � 0lim x � a f � x� � Lf

y � L � 
y � L � 

 � 0
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SOLUTION A graph of is shown in Figure 7; we are interested in the region near the point
. Notice that we can rewrite the inequality

as

So we need to determine the values of for which the curve lies
between the horizontal lines and . Therefore, we graph the curves

, , and near the point in Figure 8. Then we use
the cursor to estimate that the -coordinate of the point of intersection of the line

and the curve is about . Similarly, 
intersects the line when . So, rounding to be safe, we can say that

This interval is not symmetric about . The distance from to the
left endpoint is and the distance to the right endpoint is 0.12. We can
choose to be the smaller of these numbers, that is, . Then we can rewrite our
inequalities in terms of distances as follows:

This just says that by keeping within 0.08 of 1, we are able to keep within 0.2 
of 2.

Although we chose , any smaller positive value of would also have
worked.

The graphical procedure in Example 1 gives an illustration of the deÞnition for ,
but it does not prove that the limit is equal to 2. A proof has to provide a for every .

In proving limit statements it may be helpful to think of the deÞnition of limit as a chal-
lenge. First it challenges you with a number . Then you must be able to produce a suit-
able . You have to be able to do this for every , not just a particular .

Imagine a contest between two people, A and B, and imagine yourself to be B. Person
A stipulates that the Þxed number should be approximated by the values of to within
a degree of accuracy (say, 0.01). Person B then responds by Þnding a number such that

whenever . Then A may become more exacting and
challenge B with a smaller value of (say, 0.0001). Again B has to respond by Þnding a
corresponding . Usually the smaller the value of , the smaller the corresponding value
of must be. If B always wins, no matter how small A makes , then 

EXAMPLE 2 Prove that .

SOLUTION
1. Preliminary analysis of the problem (guessing a value for ). Let be a given

positive number. We want to Þnd a number such that

But . Therefore, we want

0 � � x � 3 � � 	whenever4� x � 3 � � 


� �4x � 5� � 7 � � � 4x � 12 � � � 4� x � 3� � � 4� x � 3 �

0 � � x � 3 � � 	whenever� �4x � 5� � 7 � � 


	

	

lim
x � 3

 �4x � 5� � 7

lim x � a f � x� � L.
	

	



0 � � x � a � � 	� f � x� � L � � 


	

f � x�L



 � 0	




	

 � 0.2

		 � 0.08

f � x�x

� x � 1 � � 0.08whenever� � x 3 � 5x � 6� � 2 � � 0.2

	 � 0.08	
1 � 0.92 � 0.08

x � 1x � 1�0.92, 1.12�

0.92 � x � 1.12whenever1.8 � x 3 � 5x � 6 � 2.2

x  1.124y � 1.8
y � x 3 � 5x � 60.911y � x 3 � 5x � 6y � 2.2

x
�1, 2�y � 2.2y � 1.8y � x 3 � 5x � 6

y � 2.2y � 1.8
y � x 3 � 5x � 6x

1.8 � x 3 � 5x � 6 � 2.2

 � � x 3 � 5x � 6� � 2 � � 0.2

�1, 2�
f
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that is, whenever

This suggests that we should choose .

2. Proof (showing that this works). Given , choose . If
, then

Thus

Therefore, by the deÞnition of a limit,

This example is illustrated by Figure 9.

Note that in the solution of Example 2 there were two stagesÑ guessing and proving.
We made a preliminary analysis that enabled us to guess a value for . But then in the sec-
ond stage we had to go back and prove in a careful, logical fashion that we had made a
correct guess. This procedure is typical of much of mathematics. Sometimes it is neces-
sary to Þrst make an intelligent guess about the answer to a problem and then prove that
the guess is correct.

The intuitive deÞnitions of one-sided limits that were given in Section 2.2 can be pre-
cisely reformulated as follows.

Definition of Left-Hand Limit

if for every number there is a number such that

Definition of Right-Hand Limit

if for every number there is a number such that

Notice that DeÞnition 3 is the same as DeÞnition 2 except that is restricted to lie in
the left half of the interval . In DeÞnition 4, is restricted to lie
in the right half of the interval 

EXAMPLE 3 Use DeÞnition 4 to prove that lim
x � 0�

 � x � 0.

�a � 	 , a � 	 � .�a, a � 	 �
x�a � 	 , a � 	 ��a � 	 , a�

x

a � x � a � 	whenever� f � x� � L � � 


	 � 0
 � 0

lim
x � a�

 f � x� � L

4

a � 	 � x � awhenever� f � x� � L � � 


	 � 0
 � 0

lim
x � a�

 f � x� � L 

3

	

lim
x � 3

 �4x � 5� � 7 

0 � � x � 3 � � 	whenever� �4x � 5� � 7 � � 


� �4x � 5� � 7 � � � 4x � 12 � � 4� x � 3 � � 4	 � 4�

4�� 


0 � � x � 3 � � 	
	 � 
 � 4
 � 0	

	 � 
 � 4

0 � � x � 3 � � 	� x � 3 � �


4

FIGURE 9
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SOLUTION
1. Guessing a value for . Let be a given positive number. Here and ,

so we want to Þnd a number such that

that is,

or, squaring both sides of the inequality , we get

This suggests that we should choose 

2. Showing that this works. Given , let . If , then

so

According to DeÞnition 4, this shows that .

EXAMPLE 4 Prove that .

SOLUTION
1. Guessing a value for . Let be given. We have to Þnd a number 

such that

To connect with we write . Then we
want

Notice that if we can Þnd a positive constant such that , then

and we can make by taking .
We can Þnd such a number if we restrict to lie in some interval centered at 3. 

In fact, since we are interested only in values of that are close to 3, it is reasonable 
to assume that is within a distance l from 3, that is, . Then , 
so . Thus, we have , and so is a suitable choice for
the constant.

But now there are two restrictions on , namely

To make sure that both of these inequalities are satisÞed, we take to be the smaller of
the two numbers 1 and . The notation for this is .

2. Showing that this works. Given , let . If ,
then (as in part l). We also have

, so

This shows that .lim x � 3 x 2 � 9

� x 2 � 9 � � � x � 3 � � x � 3 � � 7 �


7

� 


� x � 3 � � 
 � 7
� x � 3 � � 1  �   2 � x � 4  �   � x � 3 � � 7

0 � � x � 3 � � 		 � min �1, 
 � 7�
 � 0	

	 � min �1, 
 � 7�
 � 7
	

� x � 3 � �


C

�


7

and� x � 3 � � 1

� x � 3 �

C � 7� x � 3 � � 75 � x � 3 � 7
2 � x � 4� x � 3 � � 1x

x
xC

� 	
 � C�� x � 3 �C� x � 3 � � 


� x � 3 � � x � 3 � � C� x � 3 �
� x � 3 � � CC

0 � � x � 3 � � 	whenever� x � 3 � � x � 3 � � 


� x 2 � 9 � � � � x � 3�� x � 3� �� x � 3 �� x 2 � 9 �

0 � � x � 3 � � 	whenever� x 2 � 9 � � 


	 � 0
 � 0	

lim
x �  3

 x 2 � 9

lim x � 0�  � x � 0

� � x � 0 � � 


� x � � 	 � � 
 2 � 


0 � x � 		 � 
 2
 � 0	

	 � 
 2.

0 � x � 	wheneverx � 
 2

� x � 


 � x � 
 whenever 0 � x � 	

 � � x � 0 � � 
 whenever 0 � x � 	

	
L � 0a � 0
	

|||| CAUCHY AND LIMITS
After the invention of calculus in the 17th cen-
tury, there followed a period of free development
of the subject in the 18th century. Mathemati-
cians like the Bernoulli brothers and Euler were
eager to exploit the power of calculus and boldly
explored the consequences of this new and 
wonderful mathematical theory without worrying
too much about whether their proofs were com-
pletely correct.

The 19th century, by contrast, was the Age of
Rigor in mathematics. There was a movement to
go back to the foundations of the subjectÑto
provide careful deÞnitions and rigorous proofs.
At the forefront of this movement was the 
French mathematician Augustin-Louis Cauchy
(1789Ð1857), who started out as a military engi-
neer before becoming a mathematics professor
in Paris. Cauchy took NewtonÕs idea of a limit,
which was kept alive in the 18th century by the
French mathematician Jean dÕAlembert, and
made it more precise. His deÞnition of a limit
reads as follows: ÒWhen the successive values
attributed to a variable approach indeÞnitely a
Þxed value so as to end by differing from it by 
as little as one wishes, this last is called the
limit of all the others.Ó But when Cauchy used
this deÞnition in examples and proofs, he often
employed delta-epsilon inequalities similar to 
the ones in this section. A typical Cauchy proof
starts with: ÒDesignate by and two very
small numbers; . . .Ó He used because of the
correspondence between epsilon and the French
word erreur. Later, the German mathematician
Karl Weierstrass (1815Ð1897) stated the deÞni-
tion of a limit exactly as in our DeÞnition 2.
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As Example 4 shows, it is not always easy to prove that limit statements are true 
using the definition. In fact, if we had been given a more complicated function such
as , a proof would require a great deal of ingenuity.
Fortunately this is unnecessary because the Limit Laws stated in Section 2.3 can be proved
using Definition 2, and then the limits of complicated functions can be found rigorously
from the Limit Laws without resorting to the definition directly.

For instance, we prove the Sum Law: If and both
exist, then

The remaining laws are proved in the exercises and in Appendix F.

Proof of the Sum Law Let be given. We must find such that

Using the Triangle Inequality we can write

We make less than by making each of the terms 
and less than .

Since and , there exists a number such that

Similarly, since , there exists a number such that

Let . Notice that

and so

Therefore, by (5),

To summarize,

Thus, by the definition of a limit,

lim
x � a

 � f � x� � � � x�� � L � M 

0 � � x � a � � �whenever� f � x� � � � x� � �L � M � � � �

 �
�
2

�
�
2

� �

 � f � x� � � � x� � �L � M � � � � f � x� � L � � � � � x� � M �

� � � x� � M � �
�
2

and� f � x� � L � �
�
2

0 � � x � a � � � 2and0 � � x � a � � � 1then0 � � x � a � � �if

� � min � � 1, � 2 �

0 � � x � a � � � 2whenever� � � x� � M � �
�
2

� 2 � 0lim x � a � � x� � M

0 � � x � a � � � 1whenever� f � x� � L � �
�
2

� 1 � 0lim x � a f � x� � L� 0� 	 2
� 	 2� � � x� � M �

� f � x� � L ��� f � x� � � � x� � �L � M � �

 � � f � x� � L � � � � � x� � M �
 � f � x� � � � x� � �L � M � � � � � f � x� � L� � � � � x� � M � �5

0 � � x � a � � �whenever� f � x� � � � x� � �L � M � � � �

� � 0� � 0

lim
x � a

 � f � x� � � � x�� � L � M

lim x � a � � x� � Mlim x � a f � x� � L

f � x� � �6x 2 � 8x � 9�	� 2x 2 � 1�
� , �

|||| Triangle Inequality:

(See Appendix A.)

� a � b � � � a � � � b �
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Infinite limits can also be defined in a precise way. The following is a precise version of
Definition 4 in Section 2.2.

Definition Let be a function defined on some open interval that contains the
number , except possibly at itself. Then

means that for every positive number there is a positive number such that

This says that the values of can be made arbitrarily large (larger than any given
number ) by taking close enough to (within a distance , where depends on , but
with ). A geometric illustration is shown in Figure 10.

Given any horizontal line , we can find a number such that if we restrict
to lie in the interval but , then the curve lies above the line

. You can see that if a larger is chosen, then a smaller may be required.

EXAMPLE 5 Use Definition 6 to prove that .

SOLUTION
1. Guessing a value for . Given , we want to find such that

that is,

or

This suggests that we should take 

2. Showing that this works. If is given, let . If ,
then

Thus whenever

Therefore, by Definition 6,

lim
x � 0

 
1

x 2 � 	

0 � � x � 0 � � �
1

x 2 � M

 �
1

x 2 �
1

� 2 � M

 � x � � � � x 2 � � 2

0 � � x � 0 � � �� � 1	 � MM � 0�

� � 1	 � M.

 � x � �
1

� M
 whenever 0 � � x � � �

 x 2 �
1

M
 whenever 0 � � x � � �

 
1

x 2 � M  whenever 0 � � x � 0 � � �

� � 0M � 0�

lim 
x � 0

 
1

x 2 � 	

�My � M
y � f � x�x � a�a � � , a � � �x

� � 0y � M
x � a

M��ax
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44. Suppose that and , where is
a real number. Prove each statement.

(a) lim
x � a

 � f �x� � � �x�� � 	

climx � a � �x� � clim x � a f � x� � 	 (b) if 

(c) if  c � 0lim
x � a

 � f �x�� �x�� � �	

 c � 0lim
x � a

 � f �x�� �x�� � 	

|||| 2.5 C o n t i n u i t y

We noticed in Section 2.3 that the limit of a function as approaches can often be found
simply by calculating the value of the function at . Functions with this property are called
continuous at a. We will see that the mathematical definition of continuity corresponds
closely with the meaning of the word continuity in everyday language. (A continuous
process is one that takes place gradually, without interruption or abrupt change.)

Definition A function is continuous at a number a if

Notice that Definition l implicitly requires three things if is continuous at a:

1. is defined (that is, a is in the domain of )

2. exists

3.

The definition says that is continuous at if approaches as x approaches a.
Thus, a continuous function has the property that a small change in x produces only a
small change in . In fact, the change in can be kept as small as we please by keep-
ing the change in sufficiently small.

If is defined near (in other words, is defined on an open interval containing ,
except perhaps at ), we say that is discontinuous at a, or has a discontinuity at , if

is not continuous at .
Physical phenomena are usually continuous. For instance, the displacement or velocity

of a vehicle varies continuously with time, as does a person’s height. But discontinuities
do occur in such situations as electric currents. [See Example 6 in Section 2.2, where the
Heaviside function is discontinuous at because does not exist.]

Geometrically, you can think of a function that is continuous at every number in an
interval as a function whose graph has no break in it. The graph can be drawn without
removing your pen from the paper.

EXAMPLE 1 Figure 2 shows the graph of a function f. At which numbers is f discontinu-
ous? Why?

SOLUTION It looks as if there is a discontinuity when a � 1 because the graph has a break
there. The official reason that f is discontinuous at 1 is that is not defined.

The graph also has a break when , but the reason for the discontinuity is differ-
ent. Here, is defined, but does not exist (because the left and right limits
are different). So f is discontinuous at 3.

What about ? Here, is defined and exists (because the left and
right limits are the same). But

So is discontinuous at 5.f

lim
x �  5

 f � x� � f �5�

lim x � 5 f � x�f �5�a � 5

lim x � 3 f � x�f �3�
a � 3

f �1�

lim t � 0 H�t�0

af
affa

afaf
x

f � x�f � x�
f

f �a�f � x�af

lim
x �

 

a
 f � x� � f �a�

lim
x �

 

a
 f � x�

ff �a�

f

lim
x �

 

a
 f � x� � f �a�

f1

a
ax

|||| As illustrated in Figure 1, if is continuous,
then the points on the graph of 
approach the point on the graph. So
there is no gap in the curve.

�a, f �a��
f� x, f � x��

f

����

��

�

�

���

�
approaches

�����

As��� approaches � ,

FIGURE 1

Explore continuous functions interactively.
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/ Start of Continuity
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Now let’s see how to detect discontinuities when a function is defined by a formula.

EXAMPLE 2 Where are each of the following functions discontinuous?

(a) (b)

(c) (d)

SOLUTION
(a) Notice that is not defined, so f is discontinuous at 2. Later we’ll see why is
continuous at all other numbers.

(b) Here is defined but

does not exist. (See Example 8 in Section 2.2.) So f is discontinuous at 0.

(c) Here is defined and

exists. But 

so is not continuous at 2.

(d) The greatest integer function has discontinuities at all of the integers
because does not exist if is an integer. (See Example 10 and Exercise 49 in
Section 2.3.)

Figure 3 shows the graphs of the functions in Example 2. In each case the graph can’t
be drawn without lifting the pen from the paper because a hole or break or jump occurs in
the graph. The kind of discontinuity illustrated in parts (a) and (c) is called removable
because we could remove the discontinuity by redefining at just the single number 2.
[The function is continuous.] The discontinuity in part (b) is called an inÞ-
nite discontinuity. The discontinuities in part (d) are called jump discontinuities because
the function “jumps” from one value to another.

� � �

�

�

�

(a) ��
�
�
�

�
� (b) �� ���� if����
� if ���

�

�

�

� � �

�

�

�

�

(c) ��
if����

� if ���

�
�
�
�
�

� � �

�

�

�

�

(d) ��� � �

FIGURE 3 Graphs of the functions in Example 2

� � x� � x � 1
f

nlim x � n �x�
f � x� � �x�

f

lim
x � 2

 f � x� � f �2�

lim
x � 2

 f � x� � lim
x � 2

 
x 2 � x � 2

x � 2
� lim

x � 2
 
� x � 2�� x � 1�

x � 2
� lim

x � 2
 � x � 1� � 3

f �2� � 1

lim
x � 0

 f � x� � lim
x � 0

 
1

x 2

f �0� � 1

ff �2�

f � x� � � x�f � x� � �x 2 � x � 2

x � 2
if x � 2

1 if x � 2

f � x� � � 1

x 2 if x � 0

1 if x � 0

f � x� �
x 2 � x � 2

x � 2
Resources / Module 2

/ Continuity 
/ Problems and Tests



Definition A function is continuous from the right at a number a if

and is continuous from the left at a if

EXAMPLE 3 At each integer , the function [see Figure 3(d)] is continuous
from the right but discontinuous from the left because

but

Definition A function is continuous on an intervalif it is continuous at
every number in the interval. (If f is defined only on one side of an endpoint of the
interval, we understand continuous at the endpoint to mean continuous from the
right or continuous from the left.)

EXAMPLE 4 Show that the function is continuous on the 
interval 

SOLUTION If , then using the Limit Laws, we have

(by Laws 2 and 7)

(by 11)

(by 2, 7, and 9)

Thus, by Definition l, is continuous at if . Similar calculations show that

and

so is continuous from the right at � 1 and continuous from the left at 1. Therefore,
according to Definition 3, is continuous on .

The graph of is sketched in Figure 4. It is the lower half of the circle

Instead of always using Definitions 1, 2, and 3 to verify the continuity of a function as
we did in Example 4, it is often convenient to use the next theorem, which shows how to
build up complicated continuous functions from simple ones.

x 2 � � y � 1�2 � 1

f
� � 1, 1�f

f

lim
x � 1�

 f � x� � 1 � f �1�lim
x � � 1�

 f � x� � 1 � f � � 1�

� 1 � a � 1af

 � f �a�

 � 1 � � 1 � a 2

 � 1 � � lim 
x � a

 �1 � x 2 �

 � 1 � lim
x � a

 � 1 � x 2

 lim
x � a

 f � x� � lim
x � a

 (1 � � 1 � x 2 )

� 1 � a � 1

� � 1, 1� .
f � x� � 1 � � 1 � x 2

f3

lim
x � n�

 f � x� � lim
x � n�

 � x� � n � 1 � f �n�

lim
x � n�

 f � x� � lim
x � n�

 � x� � n � f �n�

f � x� � � x�n

lim
x � a�

 f � x� � f �a�

f

lim
x � a�

 f � x� � f �a�

f2
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Theorem If and are continuous at and is a constant, then the following
functions are also continuous at :

1. 2. 3.

4. 5. if 

Proof Each of the five parts of this theorem follows from the corresponding Limit Law
in Section 2.3. For instance, we give the proof of part 1. Since and are continuous at
, we have

Therefore

(by Law 1)

This shows that is continuous at .

It follows from Theorem 4 and Definition 3 that if and are continuous on an inter-
val, then so are the functions , and (if is never 0) . The following
theorem was stated in Section 2.3 as the Direct Substitution Property.

Theorem
(a) Any polynomial is continuous everywhere; that is, it is continuous on

.
(b) Any rational function is continuous wherever it is defined; that is, it is continu-

ous on its domain.

Proof
(a) A polynomial is a function of the form

where are constants. We know that

(by Law 7)

and (by 9)

This equation is precisely the statement that the function is a continuous 
function. Thus, by part 3 of Theorem 4, the function is continuous. Since 
is a sum of functions of this form and a constant function, it follows from part 1 of 
Theorem 4 that is continuous.P

P� � x� � cxm
f � x� � xm

m � 1, 2, . . . , nlim
x � a

 xm � am

lim
x � a

 c0 � c0

c0, c1, . . . , cn

P� x� � cnxn � cn� 1xn� 1 �    � c1x � c0 

� � � �	 , 	 �

5

f	 ��f � � , f � � , cf, f�
�f

af � �

 � � f � � �� a�

 � f �a� � � �a�

 � lim
x � a

 f � x� � lim
x � a

 � � x�

 lim
x � a

 � f � � �� x� � lim
x � a

 � f � x� � � � x��

lim
x � a

 � � x� � � �a�andlim
x � a

 f � x� � f �a�

a
�f

� �a� � 0
 f

�
f�

cff � �f � �

a
ca�f4
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(b) A rational function is a function of the form

where and are polynomials. The domain of is . We know
from part (a) that and are continuous everywhere. Thus, by part 5 of Theorem 4, 

is continuous at every number in .

As an illustration of Theorem 5, observe that the volume of a sphere varies continuously
with its radius because the formula shows that is a polynomial function 
of . Likewise, if a ball is thrown vertically into the air with a velocity of 50 ft	 s, then the
height of the ball in feet after seconds is given by the formula . Again this
is a polynomial function, so the height is a continuous function of the elapsed time.

Knowledge of which functions are continuous enables us to evaluate some limits very
quickly, as the following example shows. Compare it with Example 2(b) in Section 2.3.

EXAMPLE 5 Find .

SOLUTION The function

is rational, so by Theorem 5 it is continuous on its domain, which is . 
Therefore

It turns out that most of the familiar functions are continuous at every number in their
domains. For instance, Limit Law 10 (page 106) implies that root functions are continu-
ous. [Example 3 in Section 2.4 shows that is continuous from the right at 0.]

From the appearance of the graphs of the sine and cosine functions (Figure 18 in
Section 1.2), we would certainly guess that they are continuous. We know from the defin-
itions of and that the coordinates of the point P in Figure 5 are . As

, we see that P approaches the point and so and . Thus

Since and , the equations in (6) assert that the cosine and sine func-
tions are continuous at 0. The addition formulas for cosine and sine can then be used to
deduce that these functions are continuous everywhere (see Exercises 56 and 57).

It follows from part 5 of Theorem 4 that

tan x �
sin x

cos x

sin 0 � 0cos 0 � 1

lim 
� � 0

 cos � � 1 lim 
� � 0

 sin � � 06

sin � � 0cos � � 1�1, 0�� � 0
�cos � , sin � �cos �sin �

f � x� � � x

 �
� � 2�3 � 2� � 2�2 � 1

5 � 3� � 2�
� �

1

11

 lim
x � � 2

 
x 3 � 2x 2 � 1

5 � 3x
� lim

x � � 2
 f � x� � f � � 2�

{x � x � 5
3}

f � x� �
x 3 � 2x 2 � 1

5 � 3x

lim
x �

 

� 2
 
x 3 � 2x 2 � 1

5 � 3x

h � 50t � 16t 2t
r

VV�r� � 4
3 
 r 3

Df
QP

D � � x � � � Q� x� � 0�fQP

f � x� �
P� x�
Q� x�

�

�

��

�

�� !��

"�#!� !$!��

FIGURE 5

|||| Another way to establish the limits in (6) is
to use the Squeeze Theorem with the inequality

(for ), which is proved in Sec-
tion 3.4.

� � 0sin � � �
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is continuous except where cos x � 0. This happens when x is an odd integer multiple of
, so y � tan x has infinite discontinuities when , and so on

(see Figure 6).

The inverse function of any continuous function is also continuous. (The graph of 
is obtained by reflecting the graph of f about the line . So if the graph of f has no
break in it, neither does the graph of .) Thus, the inverse trigonometric functions are
continuous.

In Section 1.5 we defined the exponential function so as to fill in the holes in the
graph of where x is rational. In other words, the very definition of makes 
it a continuous function on � . Therefore, its inverse function is continuous 
on .

Theorem The following types of functions are continuous at every number in
their domains:

polynomials rational functions root functions

trigonometric functions inverse trigonometric functions

exponential functions logarithmic functions

EXAMPLE 6 Where is the function continuous?

SOLUTION We know from Theorem 7 that the function is continuous for 
and is continuous on � . Thus, by part 1 of Theorem 4, is
continuous on . The denominator, , is a polynomial, so it is continuous
everywhere. Therefore, by part 5 of Theorem 4, f is continuous at all positive numbers x
except where . So f is continuous on the intervals and .

Another way of combining continuous functions and to get a new continuous func-
tion is to form the composite function . This fact is a consequence of the following
theorem.

Theorem If is continuous at and then 
In other words,

lim
x � a

 f � � � x�� � f (lim
x � a

 � � x�)

lim
x �

 

a
 f � � � x�� � f �b� .lim

x �
 

a
 � � x� � b, bf8

f � �
�f

�1, 	 ��0, 1�x 2 � 1 � 0

y � x 2 � 1�0, 	 �
y � ln x � tan� 1xy � tan� 1x

x � 0y � ln x

f � x� �
ln x � tan� 1x

x 2 � 1

7

�0, 	 �
y � loga x

y � axy � ax
y � ax

f � 1
y � x

f � 1

%%
�

�

&�%&

�

&
�

�&
��

&
�

�&
��

FIGURE 6
�� tan��

x � � 
 	 2, � 3
 	 2, � 5
 	 2
 	 2

|||| The inverse trigonometric functions are
reviewed in Section 1.6.

|||| This theorem says that a limit symbol can be
moved through a function symbol if the function
is continuous and the limit exists. In other words,
the order of these two symbols can be reversed.



Intuitively, Theorem 8 is reasonable because if is close to , then is close to ,
and since is continuous at , if is close to , then is close to . A proof
of Theorem 8 is given in Appendix F.

EXAMPLE 7 Evaluate . 

SOLUTION Because is a continuous function, we can apply Theorem 8:

Let’s now apply Theorem 8 in the special case where , with being a posi-
tive integer. Then

and

If we put these expressions into Theorem 8, we get

and so Limit Law 11 has now been proved. (We assume that the roots exist.)

Theorem If is continuous at and is continuous at , then the composite 
function given by is continuous at .

This theorem is often expressed informally by saying “a continuous function of a con-
tinuous function is a continuous function.”

Proof Since is continuous at , we have

Since is continuous at , we can apply Theorem 8 to obtain

which is precisely the statement that the function is continuous at ; that
is, is continuous at .af � �

ah� x� � f � � � x��

lim
x � a

 f � � � x�� � f � � �a��

b � � �a�f

lim
x � a

 � � x� � � �a�

a�

a� f � � �� x� � f � � � x��f � �
� �a�fa�9

lim 
x � a

 �n � �x� � �n lim 
x � a

 � �x�

f (lim 
x � a

 � �x�) � �n lim 
x � a

 � �x�

 f � � � x�� � �n � �x�

nf � x� � �n x

 � arcsin 
1

2
�



6

 � arcsin�lim
x �

 

1
 

1

1 � � x�
 � arcsin�lim

x �
 

1
 

1 � � x

(1 � � x) (1 � � x)�
 lim
x �

 

1
 arcsin�1 � � x

1 � x �� arcsin�lim
x � 1

 
1 � � x

1 � x �
arcsin

lim
x �

 

1
 arcsin�1 � � x

1 � x �

f �b�f � � � x��b� � x�bf
b� � x�ax
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EXAMPLE 8 Where are the following functions continuous?
(a) (b)

SOLUTION
(a) We have , where

Now is continuous on since it is a polynomial, and is also continuous everywhere.
Thus, is continuous on by Theorem 9.

(b) We know from Theorem 7 that is continuous and 
is continuous (because both and are continuous). Therefore, by
Theorem 9, is continuous wherever it is defined. Now is
defined when . So it is undefined when , and this happens
when . Thus, F has discontinuities when x is an odd multiple of 
and is continuous on the intervals between these values (see Figure 7).

An important property of continuous functions is expressed by the following theorem,
whose proof is found in more advanced books on calculus.

The Intermediate Value Theorem Suppose that is continuous on the closed inter-
val and let be any number between and , where .
Then there exists a number in such that .

The Intermediate Value Theorem states that a continuous function takes on every inter-
mediate value between the function values and . It is illustrated by Figure 8. Note
that the value can be taken on once [as in part (a)] or more than once [as in part (b)].

If we think of a continuous function as a function whose graph has no hole or break,
then it is easy to believe that the Intermediate Value Theorem is true. In geometric terms it
says that if any horizontal line is given between and as in Fig-
ure 9, then the graph of can’t jump over the line. It must intersect somewhere.

It is important that the function in Theorem 10 be continuous. The Intermediate Value
Theorem is not true in general for discontinuous functions (see Exercise 44).

One use of the Intermediate Value Theorem is in locating roots of equations as in the
following example.

f
y � Nf
y � f �b�y � f �a�y � N

(b)

� �

�

��'�

�

����

� () '

���

(*(+

(a)

� �

�

��'�

�

����

� ( '

���

FIGURE 8

N
f �b�f �a�

f �c� � N�a, b�c
f �a� � f �b�f �b�f �a�N�a, b�

f10


x � � 
 , � 3
 , . . .
cos x � � 11 � cos x � 0

ln�1 � cos x�F� x� � f � � � x��
y � cos xy � 1

� � x� � 1 � cos xf � x� � ln x

�h � f � �
f��

f � x� � sin xand� � x� � x 2

h� x� � f � � � x��

F� x� � ln�1 � cos x�h� x� � sin� x 2 �
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FIGURE 7
�� ln(�� cos�� )
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%�� ��
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����
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���
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EXAMPLE 9 Show that there is a root of the equation

between 1 and 2.

SOLUTION Let . We are looking for a solution of the given
equation, that is, a number between 1 and 2 such that . Therefore, we take

, , and in Theorem 10. We have

and

Thus, ; that is, is a number between and . Now is
continuous since it is a polynomial, so the Intermediate Value Theorem says there 
is a number between 1 and 2 such that . In other words, the equation

has at least one root in the interval .
In fact, we can locate a root more precisely by using the Intermediate Value Theorem

again. Since

a root must lie between 1.2 and 1.3. A calculator gives, by trial and error,

so a root lies in the interval .

We can use a graphing calculator or computer to illustrate the use of the Intermediate
Value Theorem in Example 9. Figure 10 shows the graph of in the viewing rectangle

by and you can see that the graph crosses the -axis between 1 and 2. Fig-
ure 11 shows the result of zooming in to the viewing rectangle by .

In fact, the Intermediate Value Theorem plays a role in the very way these graphing
devices work. A computer calculates a finite number of points on the graph and turns on
the pixels that contain these calculated points. It assumes that the function is continuous
and takes on all the intermediate values between two consecutive points. The computer
therefore connects the pixels by turning on the intermediate pixels.

���

����

��� ���

FIGURE 11FIGURE 10

�

��

�� �

� � 0.2, 0.2��1.2, 1.3�
x�� 3, 3�� � 1, 3�

f

�1.22, 1.23�

f �1.23� � 0.056068 � 0andf �1.22� � � 0.007008 � 0

f �1.3� � 0.548 � 0andf �1.2� � � 0.128 � 0

�1, 2�c4x3 � 6x2 � 3x � 2 � 0
f �c� � 0c

ff �2�f �1�N � 0f �1� � 0 � f �2�

 f �2� � 32 � 24 � 6 � 2 � 12 � 0

 f �1� � 4 � 6 � 3 � 2 � � 1 � 0

N � 0b � 2a � 1
f �c� � 0c

f � x� � 4x3 � 6x2 � 3x � 2

4x3 � 6x2 � 3x � 2 � 0
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(c) The altitude above sea level as a function of the distance
due west from New York City

(d) The cost of a taxi ride as a function of the distance traveled
(e) The current in the circuit for the lights in a room as a func-

tion of time

9. If and are continuous functions with and
, Þnd .

10–12 |||| Use the deÞnition of continuity and the properties of lim-
its to show that the function is continuous at the given number.

10. ,

,

12. ,

13–14 |||| Use the deÞnition of continuity and the properties of lim-
its to show that the function is continuous on the given interval.

13. , 14. ,

15–20 |||| Explain why the function is discontinuous at the given
number . Sketch the graph of the function.

15.

16.

17.

18.

20.

21–28 |||| Explain, using Theorems 4, 5, 7, and 9, why the function
is continuous at every number in its domain. State the domain.

21. 22. G�x� � �3 x�1 � x3�F�x� �
x

x2 � 5x � 6

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

a � 1f � x� � �1 � x2

4 � x
if x � 1

if x � 1

a � � 3f � x� � �x2 � x � 12

x � 3

� 5

  if x � � 3

  if x � � 3

19.

a � 1f � x� � �x2 � x
x2 � 1

1

  if x � 1

  if x � 1

a � 0f � x� � �ex

x2

if x � 0

if x � 0

a � 1f � x� � � 1

x � 1

2

if x � 1

if x � 1

a � 2f � x� � ln � x � 2 �
a

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

��� , 3�� � x� � 2 � 3 � x�2, � �f � x� �
2x � 3

x � 2
 

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

a � 4� � x� �
x � 1

2x2 � 1

a � � 1f � x� � � x � 2x3 �411.

a � 4f � x� � x2 � � 7 � x

� �3�lim xl 3 �2 f � x� � � � x�� � 4
f �3� � 5�f

1. Write an equation that expresses the fact that a function 
is continuous at the number 4.

2. If is continuous on , what can you say about its
graph?

(a) From the graph of , state the numbers at which is
discontinuous and explain why.

(b) For each of the numbers stated in part (a), determine
whether is continuous from the right, or from the left, 
or neither.

4. From the graph of , state the intervals on which is 
continuous.

5. Sketch the graph of a function that is continuous everywhere
except at x � 3 and is continuous from the left at 3.

6. Sketch the graph of a function that has a jump discontinuity at
and a removable discontinuity at , but is continu-

ous elsewhere.

A parking lot charges $3 for the Þrst hour (or part of an hour)
and $2 for each succeeding hour (or part), up to a daily maxi-
mum of $10.
(a) Sketch a graph of the cost of parking at this lot as a func-

tion of the time parked there.
(b) Discuss the discontinuities of this function and their 

signiÞcance to someone who parks in the lot.

8. Explain why each function is continuous or discontinuous.
(a) The temperature at a speciÞc location as a function of time
(b) The temperature at a speciÞc time as a function of the dis-

tance due west from New York City

7.

x � 4x � 2

�

	�
 � 
 ��� �

��

�

	�
 � 
 ��� �

f

ff3.

� �� , � �f

f

|||| 2.5 Exercises



23. 24.

26.

27. 28.

� 29–30 |||| Locate the discontinuities of the function and illustrate by
graphing.

30.

31–34 |||| Use continuity to evaluate the limit.

31.

33. 34.

35–36 |||| Show that is continuous on .

35.

36.

37–39 |||| Find the numbers at which is discontinuous. At which
of these numbers is continuous from the right, from the left, or
neither? Sketch the graph of .

37.

38.

40. The gravitational force exerted by Earth on a unit mass at a dis-
tance r from the center of the planet is

where M is the mass of Earth, R is its radius, and G is the grav-
itational constant. Is F a continuous function of r ?

if r � R
GM
r 2

F�r� �

GMr
R3 if r � R

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

f � x� � �x � 2

ex

2 � x

if x � 0

if 0 � x � 1

if x � 1
39.

f � x� � �x � 1

1� x
� x � 3  

if x � 1

if 1 � x � 3

if x � 3

f � x� � �1 � x2

2 � x
� x � 2�2

if x � 0

if 0 � x � 2

if x � 2

f
f

f

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

f � x� � �sin x  if x � 	 � 4

cos x  if x � 	 � 4

f � x� � � x2  if x � 1

� x  if x � 1

��� , � �f

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

lim
x l

 

2
 arctan	 x2 � 4

3x2 � 6x
lim
x l

 

1
 ex2� x

lim
x l

 

	
 sin� x � sin x�32.lim

x l
 

4
 
5 � � x
� 5 � x

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

y � ln�tan2x�y �
1

1 � e1� x29.

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

H�x� � cos(e� x)G�t� � ln� t 4 � 1�

F� x� � sin� 1� x2 � 1�f � x� � ex sin 5x25.

h� x� �
sin x
x � 1

R�x� � x2 � � 2x � 1 For what value of the constant is the function continuous
on ?

42. Find the constant that makes continuous on 

43. Which of the following functions has a removable disconti-
nuity at ? If the discontinuity is removable, Þnd a function 
that agrees with for and is continuous on .

(a) ,

(b) ,

(c) ,

(d) ,

44. Suppose that a function is continuous on [0, 1] except at
0.25 and that and . Let N � 2. Sketch two
possible graphs of , one showing that might not satisfy the
conclusion of the Intermediate Value Theorem and one show-
ing that might still satisfy the conclusion of the Intermediate
Value Theorem (even though it doesnÕt satisfy the hypothesis).

45. If , show that there is a number such 
that .

46. Use the Intermediate Value Theorem to prove that there is a
positive number such that . (This proves the existence
of the number .)

47–50 |||| Use the Intermediate Value Theorem to show that there is
a root of the given equation in the speciÞed interval.

, 48. ,

49. , 50. ,

51–52 |||| (a) Prove that the equation has at least one real root.
(b) Use your calculator to Þnd an interval of length 0.01 that con-
tains a root.

51. 52.

� 53–54 |||| (a) Prove that the equation has at least one real root.
(b) Use your graphing device to Þnd the root correct to three deci-
mal places.

53. 54.

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

� x � 5 �
1

x � 3
x5 � x2 � 4 � 0

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

x5 � x2 � 2x � 3 � 0ex � 2 � x

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

�1, 2�ln x � e� x�0, 1�cos x � x

�0, 1��3 x � 1 � x�1, 2�x4 � x � 3 � 047.

� 2
c2 � 2c

f �c� � 10
cf � x� � x3 � x2 � x

f

ff
f �1� � 3f �0� � 1

f

a � 9f � x� �
3 � � x
9 � x

a � � 4f � x� �
x3 � 64

x � 4

a � 7f � x� �
x � 7

� x � 7 �

a � � 2f � x� �
x2 � 2x � 8

x � 2

�x � af
�a

f

� � x� � �x2 � c2

cx � 20

if x � 4

if x � 4

� �� , � � .�c

f � x� � �cx � 1

cx2 � 1

if x � 3

if x � 3

� �� , � �
fc41.
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60. For what values of is continuous?

Is there a number that is exactly 1 more than its cube?

62. (a) Show that the absolute value function is contin-
uous everywhere.

(b) Prove that if is a continuous function on an interval, then
so is .

(c) Is the converse of the statement in part (b) also true? In
other words, if is continuous, does it follow that is
continuous? If so, prove it. If not, Þnd a counterexample.

63. A Tibetan monk leaves the monastery at 7:00 A.M. and takes
his usual path to the top of the mountain, arriving at 7:00 P.M.
The following morning, he starts at 7:00 A.M. at the top and
takes the same path back, arriving at the monastery at 7:00 P.M.
Use the Intermediate Value Theorem to show that there is a
point on the path that the monk will cross at exactly the same
time of day on both days.

f� f �

� f �
f

F� x� � � x �
61.

� � x� � �0

x
if x is rational

if x is irrational

�x55. Prove that is continuous at if and only if

56. To prove that sine is continuous, we need to show that
for every real number . By Exercise 55 

an equivalent statement is that

Use (6) to show that this is true.

57. Prove that cosine is a continuous function.

58. (a) Prove Theorem 4, part 3.
(b) Prove Theorem 4, part 5.

59. For what values of is continuous?

f � x� � �0

1

if x is rational

if x is irrational

fx

lim
hl 0

 sin�a � h� � sin a

alimxla sin x � sin a

lim
hl 0

 f �a � h� � f �a�

af

|||| 2.6 L i m i t s  a t  I n f i n i t y ;  H o r i z o n t a l  A s y m p t o t e s

In Sections 2.2 and 2.4 we investigated inÞnite limits and vertical asymptotes. There we
let approach a number and the result was that the values of became arbitrarily large
(positive or negative). In this section we let become arbitrarily large (positive or nega-
tive) and see what happens to .

LetÕs begin by investigating the behavior of the function deÞned by 

as becomes large. The table at the left gives values of this function correct to six decimal
places, and the graph of has been drawn by a computer in Figure 1.

As grows larger and larger you can see that the values of get closer and closer 
to 1. In fact, it seems that we can make the values of as close as we like to 1 by taking

sufÞciently large. This situation is expressed symbolically by writing

In general, we use the notation

to indicate that the values of become closer and closer to as becomes larger and
larger.

xLf � x�

lim
xl �

 f � x� � L

lim
xl �

 
x2 � 1

x2 � 1
� 1

x
f � x�

f � x�x

	��

�

��

�
���
���

FIGURE 1

f
x

f � x� �
x2 � 1

x2 � 1

f
y

x
yx

x

0 � 1
0
0.600000
0.800000
0.882353
0.923077
0.980198
0.999200
0.999800
0.999998
 1000


 100

 50

 10

 5

 4

 3

 2

 1

f � x�



Definition Let be a function deÞned on some interval . Then

means that the values of can be made arbitrarily close to by taking suf-
Þciently large.

Another notation for is

as

The symbol does not represent a number. Nonetheless, the expression is
often read as 

Òthe limit of , as approaches inÞnity, is Ó

or Òthe limit of , as becomes inÞnite, is Ó

or Òthe limit of , as increases without bound, is Ó

The meaning of such phrases is given by DeÞnition 1. A more precise deÞnition, similar
to the deÞnition of Section 2.4, is given at the end of this section.

Geometric illustrations of DeÞnition 1 are shown in Figure 2. Notice that there are
many ways for the graph of to approach the line (which is called a horizontal
asymptote) as we look to the far right of each graph.

Referring back to Figure 1, we see that for numerically large negative values of , the
values of are close to 1. By letting decrease through negative values without bound,
we can make as close as we like to 1. This is expressed by writing

The general deÞnition is as follows.

Definition Let be a function deÞned on some interval . Then 

means that the values of can be made arbitrarily close to by taking suf-
Þciently large negative.

xLf � x�

lim
xl ��

 f � x� � L

��� , a�f2

lim
xl ��

 
x2 � 1

x2 � 1
� 1

f � x�
xf � x�

x

	

�

�

��

��

� 	

�

��

��

	

�

�

��

��

	�����

FIGURE 2
Examples illustrating lim ��

y � Lf

� , �

Lxf � x�

Lxf � x�

Lxf � x�

lim 
xl �

 f � x� � L�

x l �f � x� l L

lim xl �  f � x� � L

xLf � x�

lim
xl �

 f � x� � L

�a, � �f1
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Again, the symbol does not represent a number, but the expression
is often read as

Òthe limit of , as x approaches negative inÞnity, is LÓ

DeÞnition 2 is illustrated in Figure 3. Notice that the graph approaches the line as
we look to the far left of each graph.

Definition The line is called a horizontal asymptote of the curve
if either 

For instance, the curve illustrated in Figure 1 has the line as a horizontal asymp-
tote because 

An example of a curve with two horizontal asymptotes is . (See Figure 4.) 
In fact,

so both of the lines and are horizontal asymptotes. (This follows from
the fact that the lines are vertical asymptotes of the graph of tan.)

EXAMPLE 1 Find the inÞnite limits, limits at inÞnity, and asymptotes for the function f
whose graph is shown in Figure 5.

SOLUTION We see that the values of become large as from both sides, so

Notice that becomes large negative as x approaches 2 from the left, but large posi-
tive as x approaches 2 from the right. So

Thus, both of the lines and are vertical asymptotes.
As x becomes large, it appears that approaches 4. But as x decreases through

negative values, approaches 2. So

This means that both y � 4 and y � 2 are horizontal asymptotes.

lim
xl ��

 f � x� � 2andlim
xl �

 f � x� � 4

f � x�
f � x�

x � 2x � � 1

lim
xl2�

 f � x� � �andlim
xl2�

 f � x� � ��

f � x�

lim
xl � 1

 f � x� � �

x l � 1f � x�

x � 
 	 � 2
y � 	 � 2y � � 	 � 2

lim
xl �

 tan� 1x �
	
2

lim
xl ��

 tan� 1x � �
	
2

4

y � tan� 1x

lim
xl �

 
x2 � 1

x2 � 1
� 1

y � 1

lim
xl ��

 f � x� � Lorlim
xl �

 f � x� � L

y � f � x�
y � L3

y � L

f � x�

lim 
xl ��

 f � x� � L��

	������

FIGURE 3
Examples illustrating  lim  ��
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EXAMPLE 2 Find and .

SOLUTION Observe that when is large, is small. For instance, 

In fact, by taking large enough, we can make as close to 0 as we please. Therefore,
according to DeÞnition 1, we have 

Similar reasoning shows that when is large negative, is small negative, so we also
have

It follows that the line (the -axis) is a horizontal asymptote of the curve .
(This is an equilateral hyperbola; see Figure 6.) 

Most of the Limit Laws that were given in Section 2.3 also hold for limits at inÞnity. It
can be proved that the Limit Laws listed in Section 2.3 (with the exception of Laws 9 and
10) are also valid if Ò Óis replaced by Ò Óor Ò .Ó In particular, if we
combine Laws 6 and 11 with the results of Example 2, we obtain the following important
rule for calculating limits.

Theorem If is a rational number, then

If is a rational number such that is deÞned for all x, then

EXAMPLE 3 Evaluate

and indicate which properties of limits are used at each stage.

SOLUTION As becomes large, both numerator and denominator become large, so it isnÕt
obvious what happens to their ratio. We need to do some preliminary algebra. 

To evaluate the limit at inÞnity of any rational function, we Þrst divide both the
numerator and denominator by the highest power of that occurs in the denominator.
(We may assume that , since we are interested only in large values of .) In this
case the highest power of in the denominator is , so we havex 2x

xx � 0
x

x

lim
x l �

 
3x 2 � x � 2

5x 2 � 4x � 1

lim 
x l ��

 
1

xr � 0

xrr � 0

lim
x l �

 
1

xr � 0

r � 05

x l ��x l �x l a

y � 1� xxy � 0

lim
x l ��

 
1

x
� 0

1� xx

lim
x l �

 
1

x
� 0

1� xx

1

1,000,000
� 0.000001

1

10,000
� 0.0001

1

100
� 0.01

1� xx

lim
x l ��

 
1

x
lim
x l �

 
1

x
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(by Limit Law 5)

(by 1, 2, and 3)

(by 7 and Theorem 5)

A similar calculation shows that the limit as is also . Figure 7 illustrates the
results of these calculations by showing how the graph of the given rational function
approaches the horizontal asymptote .

EXAMPLE 4 Find the horizontal and vertical asymptotes of the graph of the function

SOLUTION Dividing both numerator and denominator by and using the properties of
limits, we have 

(since for )

Therefore, the line is a horizontal asymptote of the graph of .
In computing the limit as , we must remember that for , we have

. So when we divide the numerator by , for we get

1
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Therefore

Thus, the line is also a horizontal asymptote.
A vertical asymptote is likely to occur when the denominator, , is 0, that is,

when . If is close to and , then the denominator is close to 0 and 
is positive. The numerator is always positive, so is positive. Therefore

If is close to but , then and so is large negative. Thus

The vertical asymptote is . All three asymptotes are shown in Figure 8.

EXAMPLE 5 Compute .

SOLUTION Because both and x are large when x is large, itÕs difÞcult to see what
happens to their difference, so we use algebra to rewrite the function. We Þrst multiply
numerator and denominator by the conjugate radical:

The Squeeze Theorem could be used to show that this limit is 0. But an easier method is
to divide numerator and denominator by . Doing this and using the Limit Laws, we obtain

Figure 9 illustrates this result.

The graph of the natural exponential function has the line y � 0 (the x-axis) as
a horizontal asymptote. (The same is true of any exponential function with base .) Ina � 1

y � ex
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|||| 2.8 D e r i v a t i v e s

In Section 2.7 we deÞned the slope of the tangent to a curve with equation at the
point where to be

We also saw that the velocity of an object with position function at time is

In fact, limits of the form

arise whenever we calculate a rate of change in any of the sciences or engineering, such as
a rate of reaction in chemistry or a marginal cost in economics. Since this type of limit
occurs so widely, it is given a special name and notation.

Definition The derivative of a function at a number , denoted by , is

if this limit exists.

If we write , then and approaches if and only if approaches
. Therefore, an equivalent way of stating the deÞnition of the derivative, as we saw in

Þnding tangent lines, is

EXAMPLE 1 Find the derivative of the function at the number .

SOLUTION From DeÞnition 2 we have

 � 2a � 8

 � lim
h l

 

0
 
2ah � h 2 � 8h

h
� lim

h l
 

0
 �2a � h � 8�

 � lim
h l

 

0
 
a 2 � 2ah � h 2 � 8a � 8h � 9 � a 2 � 8a � 9

h

 � lim
h l

 

0
 
�� a � h�2 � 8�a � h� � 9� � �a 2 � 8a � 9�

h

 f ��a� � lim
h l

 

0
 
 f �a � h� � f �a�

h

af � x� � x 2 � 8x � 9

f ��a� � lim
x l a

 
 f � x� � f �a�

x � a
3

a
x0hh � x � ax � a � h

f ��a� � lim
h l

 

0
 
 f �a � h� � f �a�

h

f ��a�af2

lim
h l

 

0
 
 f �a � h� � f �a�

h

v�a� � lim
h l

 

0
 
 f �a � h� � f �a�

h

t � as � f �t�

m � lim
h l

 

0
 
 f �a � h� � f �a�

h
1

x � a
y � f � x�

|||| is read “ prime of .”aff � �a�

Try problems like this one.
Resources / Module 3

/ Derivative at a Point 
/ Problem Wizard
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I n t e r p r e t a t i o n  o f  t h e  D e r i v a t i v e  a s  t h e  S l o p e  o f  a  T a n g e n t

In Section 2.7 we deÞned the tangent line to the curve at the point to
be the line that passes through and has slope given by Equation 1. Since, by DeÞni-
tion 2, this is the same as the derivative , we can now say the following.

The tangent line to at is the line through whose slope is
equal to , the derivative of at .

Thus, the geometric interpretation of a derivative [as deÞned by either (2) or (3)] is as
shown in Figure 1.

If we use the point-slope form of the equation of a line, we can write an equation of the
tangent line to the curve at the point :

EXAMPLE 2 Find an equation of the tangent line to the parabola at the
point .

SOLUTION From Example 1 we know that the derivative of at the
number is . Therefore, the slope of the tangent line at is 

. Thus, an equation of the tangent line, shown in Figure 2, is

or

EXAMPLE 3 Let . Estimate the value of in two ways:
(a) By using DeÞnition 2 and taking successively smaller values of .
(b) By interpreting as the slope of a tangent and using a graphing calculator to
zoom in on the graph of .

SOLUTION
(a) From DeÞnition 2 we have

f ��0� � lim
h l

 

0
 
 f �h� � f �0�

h
� lim

h l
 

0
 
2h � 1

h

y � 2x
f ��0�

h
f ��0�f � x� � 2x

y � � 2xy � � � 6� � � � 2�� x � 3�

f ��3� � 2�3� � 8 � � 2
�3, � 6�f ��a� � 2a � 8a

f � x� � x 2 � 8x � 9

�3, � 6�
y � x 2 � 8x � 9

y � f �a� � f ��a�� x � a�

�a, f �a��y � f � x�

FIGURE 1
Geometric interpretation

of the derivative
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P�a, f �a��y � f � x�

0 x

y

�������

��� !��

��!� �

FIGURE 2



Since we are not yet able to evaluate this limit exactly, we use a calculator to approxi-
mate the values of . From the numerical evidence in the table at the left we
see that as approaches , these values appear to approach a number near 0.69. So our
estimate is

(b) In Figure 3 we graph the curve and zoom in toward the point . We see
that the closer we get to , the more the curve looks like a straight line. In fact, in
Figure 3(c) the curve is practically indistinguishable from its tangent line at . Since
the -scale and the -scale are both 0.01, we estimate that the slope of this line is

So our estimate of the derivative is . In Section 3.5 we will show that, correct
to six decimal places, .

I n t e r p r e t a t i o n  o f  t h e  D e r i v a t i v e  a s  a  R a t e  o f  C h a n g e

In Section 2.7 we deÞned the instantaneous rate of change of with respect to at
as the limit of the average rates of change over smaller and smaller intervals. If the

interval is , then the change in is , the corresponding change in is

and

From Equation 3 we recognize this limit as being the derivative of at , that is, .
This gives a second interpretation of the derivative:

The derivative is the instantaneous rate of change of with respect to
when .

The connection with the Þrst interpretation is that if we sketch the curve , then
the instantaneous rate of change is the slope of the tangent to this curve at the point where 

y � f � x�

x � ax
y � f � x�f ��a�

f �� x1�x1f

� lim
x2

 l
 

x1

 
 f � x2� � f � x1�

x2 � x1
 instantaneous rate of change � lim

� x l
 

0
 
� y

� x
4

� y � f � x2� � f � x1�

y� x � x2 � x1x�x1, x2�
x � x1

xy � f � x�

FIGURE 3 Zooming in on the graph of ���#  near ��� ��

������ ������ ������

(a) � !�� � �  by � �� � � (b) � !�"�� �"� �  by � �"�� �"� � (c) � !�"�� �"� �  by �0.9, 1.1�

f ��0� 	 0.693147
f ��0� 	 0.7

0.14

0.20
� 0.7

yx
�0, 1�

�0, 1�
�0, 1�y � 2x

f ��0� 	 0.69

0h
�2h � 1�� h
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h

0.1 0.718
0.01 0.696
0.001 0.693
0.0001 0.693

� 0.1 0.670
� 0.01 0.691
� 0.001 0.693
� 0.0001 0.693

2h � 1

h
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. This means that when the derivative is large (and therefore the curve is steep, as at
the point in Figure 4), the -values change rapidly. When the derivative is small, the
curve is relatively ßat and the -values change slowly.

In particular, if is the position function of a particle that moves along a straight
line, then is the rate of change of the displacement with respect to the time . In
other words, is the velocity of the particle at time . (See Section 2.7.) The speed
of the particle is the absolute value of the velocity, that is, 

EXAMPLE 4 The position of a particle is given by the equation of motion
, where is measured in seconds and in meters. Find the velocity

and the speed after 2 seconds.

SOLUTION The derivative of when is

Thus, the velocity after 2 seconds is , and the speed is
.

EXAMPLE 5 A manufacturer produces bolts of a fabric with a Þxed width. The cost of
producing x yards of this fabric is dollars.
(a) What is the meaning of the derivative ? What are its units?
(b) In practical terms, what does it mean to say that ?
(c) Which do you think is greater, or ? What about ?

SOLUTION
(a) The derivative is the instantaneous rate of change of C with respect to x; that
is, means the rate of change of the production cost with respect to the number of
yards produced. (Economists call this rate of change the marginal cost. This idea is dis-
cussed in more detail in Sections 3.3 and 4.8.)

Because

the units for are the same as the units for the difference quotient . Since 
is measured in dollars and in yards, it follows that the units for are dollars

per yard.

(b) The statement that means that, after 1000 yards of fabric have been
manufactured, the rate at which the production cost is increasing is $9� yard. (When

, C is increasing 9 times as fast as x.)x � 1000

f ��1000� � 9

f �� x�� x� C
� C� � xf �� x�

f �� x� � lim
� x l 0
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� x

f �� x�
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h

f � �2� � lim
h l

 

0
 
 f �2 � h� � f �2�

h
� lim
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1 � 2
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FIGURE 4
The y-values are changing rapidly
at P and slowly at Q.
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In Module 2.8 you are asked to compare
and order the slopes of tangent and
secant lines at several points on a curve.



Since is small compared with x � 1000, we could use the approximation

and say that the cost of manufacturing the 1000th yard (or the 1001st) is about $9.

(c) The rate at which the production cost is increasing (per yard) is probably lower
when x � 500 than when x � 50 (the cost of making the 500th yard is less than the cost
of the 50th yard) because of economies of scale. (The manufacturer makes more efÞcient
use of the Þxed costs of production.) So

But, as production expands, the resulting large-scale operation might become inefÞcient
and there might be overtime costs. Thus, it is possible that the rate of increase of costs
will eventually start to rise. So it may happen that

The following example shows how to estimate the derivative of a tabular function, that
is, a function deÞned not by a formula but by a table of values.

EXAMPLE 6 Let be the U.S. national debt at time t. The table in the margin gives
approximate values of this function by providing end of year estimates, in billions of
dollars, from 1980 to 2000. Interpret and estimate the value of .

SOLUTION The derivative means the rate of change of D with respect to t when
, that is, the rate of increase of the national debt in 1990.

According to Equation 3,

So we compute and tabulate values of the difference quotient (the average rates of
change) as follows.

From this table we see that lies somewhere between 257.48 and 348.14 billion
dollars per year. [Here we are making the reasonable assumption that the debt didnÕt
ßuctuate wildly between 1980 and 2000.] We estimate that the rate of increase of the
national debt of the United States in 1990 was the average of these two numbers, namely

D��1990� 	 303 billion dollars per year

D��1990�

D��1990� � lim
t l1990

 
D�t� � D�1990�

t � 1990

t � 1990
D��1990�

D��1990�

D�t�

f ��5000� � f ��500�

f ��50� � f ��500�

f ��1000� 	
� C

� x
�

� C

1
� � C

� x � 1
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|||| Here we are assuming that the cost function
is well behaved; in other words, doesnÕt
oscillate rapidly near .x � 1000

C�x�

t

1980 230.31
1985 257.48
1995 348.14
2000 244.09

D�t� � D�1990�
t � 1990

|||| Another method is to plot the debt function
and estimate the slope of the tangent line when

. (See Example 5 in Section 2.7.)t � 1990

t

1980 930.2
1985 1945.9
1990 3233.3
1995 4974.0
2000 5674.2

D�t�
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10. (a) If , Þnd and use it to Þnd an equa-
tion of the tangent line to the curve at the
point .

� (b) Illustrate part (a) by graphing the curve and the tangent line
on the same screen.

11. Let . Estimate the value of in two ways:
(a) By using DeÞnition 2 and taking successively smaller 

values of .

� (b) By zooming in on the graph of and estimating the
slope.

12. Let . Estimate the value of in two ways:
(a) By using DeÞnition 2 and taking successively smaller 

values of .

� (b) By zooming in on the graph of and estimating the
slope.

13–18 |||| Find .

13. 14.

16.

17. 18.

19–24 |||| Each limit represents the derivative of some function at
some number . State such an and in each case.

19. 20.

21. 22.

24.

25–26 |||| A particle moves along a straight line with equation of
motion , where is measured in meters and in seconds.
Find the velocity when .

26.

The cost of producing x ounces of gold from a new gold mine
is dollars.
(a) What is the meaning of the derivative ? What are its

units?
(b) What does the statement mean?
(c) Do you think the values of will increase or decrease

in the short term? What about the long term? Explain.
f �� x�

f ��800� � 17

f �� x�
C � f � x�

27.

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

f �t� � 2t 3 � t � 1f �t� � t 2 � 6t � 525.

t � 2
tss � f �t�

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

lim
t l

 

1
 
t 4 � t � 2

t � 1
lim
h l

 

0
 
cos� � � h� � 1

h
23.

lim
x l

 

� � 4
 
tan x � 1

x � � � 4
lim
x l

 

5
 
2x � 32

x � 5

lim
h l

 

0
 
�4 16 � h � 2

h
lim
h l

 

0
 
�1 � h�10 � 1

h

afa
f

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

f � x� � � 3x � 1f � x� �
1

� x � 2

f � x� �
x 2 � 1

x � 2
f �t� �

2t � 1

t � 3
15.

f �t� � t 4 � 5tf � x� � 3 � 2x � 4x 2

f ��a�

y � tan x
h

� �� � � 4�� � x� � tan x

y � 3x
h

f ��1�f � x� � 3x

(� 1
4 , � 1

2 )
y � x�� 1 � 2x�

G��a�G� x� � x�� 1 � 2x�1. On the given graph of f, mark lengths that represent ,
, , and h. (Choose .) What 

line has slope ?

2. For the function whose graph is shown in Exercise 1, arrange
the following numbers in increasing order and explain your
reasoning:

For the function � whose graph is given, arrange the following
numbers in increasing order and explain your reasoning:

If the tangent line to at (4, 3) passes through the point
(0, 2), Þnd and .

Sketch the graph of a function for which , 
, and .

6. Sketch the graph of a function for which , ,
, and .

7. If , Þnd and use it to Þnd an equation 
of the tangent line to the parabola at the 
point .

8. If , Þnd and use it to Þnd an equation of the
tangent line to the curve at the point .

(a) If , Þnd and use it to Þnd an
equation of the tangent line to the curve 
at the point .

� (b) Illustrate part (a) by graphing the curve and the tangent line
on the same screen.

�1, � 3�
y � x 3 � 5x � 1

F��1�F� x� � x 3 � 5x � 19.

�0, 1�y � 1 � x 3
� ��0�� � x� � 1 � x 3

�2, 2�
y � 3x 2 � 5x

f ��2�f � x� � 3x 2 � 5x

� ��2� � 1� ��1� � 0
� ��0� � 3� �0� � 0�

f ��2� � � 1f ��1� � 0
f ��0� � 3,f �0� � 0f5.

f ��4�f �4�
y � f � x�4.

��%

� � &!� � ��

�

0 � �� � 2� � ��0� � ��2� � ��4�

3.

0 f ��2� f �3� � f �2� 1
2 � f �4� � f �2��

f

���

� ��

�

f �2 � h� � f �2�
h

h � 0f �2 � h� � f �2�f �2 � h�
f �2�

|||| 2.8 Exercises
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28. The number of bacteria after t hours in a controlled laboratory
experiment is .
(a) What is the meaning of the derivative ? What are its

units?
(b) Suppose there is an unlimited amount of space and

nutrients for the bacteria. Which do you think is larger,
or ? If the supply of nutrients is limited, would

that affect your conclusion? Explain.

29. The fuel consumption (measured in gallons per hour) of a car
traveling at a speed of miles per hour is 
(a) What is the meaning of the derivative ? What are its

units?
(b) Write a sentence (in laymanÕs terms) that explains the

meaning of the equation .

30. The quantity (in pounds) of a gourmet ground coffee that is
sold by a coffee company at a price of p dollars per pound 
is .
(a) What is the meaning of the derivative ? What are its

units?
(b) Is positive or negative? Explain.

Let be the temperature (in ) in Dallas hours after mid-
night on June 2, 2001. The table shows values of this function
recorded every two hours. What is the meaning of ? 
Estimate its value.

32. Life expectancy improved dramatically in the 20th century. The
table gives values of , the life expectancy at birth (in years)
of a male born in the year t in the United States. Interpret and
estimate the values of and .E��1950�E��1910�

E�t�

T � �10�

t	 FT�t�31.

f ��8�

f ��8�
Q � f � p�

f ��20� � � 0.05

f ��v�
c � f �v� .v

f ��10�f ��5�

f ��5�
n � f �t�

33. The quantity of oxygen that can dissolve in water depends on
the temperature of the water. (So thermal pollution inßuences
the oxygen content of water.) The graph shows how oxygen
solubility varies as a function of the water temperature .
(a) What is the meaning of the derivative ? What are its

units?
(b) Estimate the value of and interpret it.

34. The graph shows the inßuence of the temperature on the
maximum sustainable swimming speed of Coho salmon.
(a) What is the meaning of the derivative ? What are its

units?
(b) Estimate the values of and and interpret them.

35–36 |||| Determine whether exists.

36.

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

f � x� � �x 2 sin 
1

x
� � � if� x � 0

0 if� x � 0

f � x� � �x sin 
1

x
� � � if� x � 0

0 if� x � 0
35.

f ��0�

��� '  (� C)��

(
(cm/s)

��

S��25�S��15�

S��T �
S

T

&

�

��

��

� �� �& �� &�

(
(mg/L)

� '  (� C)

S� �16�

S� �T �
TS

t 0 2 4 6 8 10 12 14

T 73 73 70 69 72 81 88 91

t t

1900 48.3 1960 66.6
1910 51.1 1970 67.1
1920 55.2 1980 70.0
1930 57.4 1990 71.8
1940 62.5 2000 74.1
1950 65.6

E�t�E�t�

Early Methods for Finding Tangents

The Þrst person to formulate explicitly the ideas of limits and derivatives was Sir Isaac Newton in
the 1660s. But Newton acknowledged that ÒIf I have seen further than other men, it is because I
have stood on the shoulders of giants.Ó Two of those giants were Pierre Fermat (1601Ð1665) and
NewtonÕs teacher at Cambridge, Isaac Barrow (1630Ð1677). Newton was familiar with the methods
that these men used to Þnd tangent lines, and their methods played a role in NewtonÕs eventual
formulation of calculus.

WRITING PROJECT
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The following references contain explanations of these methods. Read one or more of the 
references and write a report comparing the methods of either Fermat or Barrow to modern meth-
ods. In particular, use the method of Section 2.8 to Þnd an equation of the tangent line to the
curve at the point (1, 3) and show how either Fermat or Barrow would have solved
the same problem. Although you used derivatives and they did not, point out similarities between
the methods.

1. Carl Boyer and Uta Merzbach, A History of Mathematics (New York: Wiley, 1989), 
pp. 389, 432.

2. C. H. Edwards, The Historical Development of the Calculus (New York: Springer-Verlag,
1979), pp. 124, 132.

3. Howard Eves, An Introduction to the History of Mathematics, 6th ed. (New York: Saunders,
1990), pp. 391, 395.

4. Morris Kline, Mathematical Thought from Ancient to Modern Times (New York: Oxford 
University Press, 1972), pp. 344, 346.

y � x 3 � 2x

|||| 2.9 T h e  D e r i v a t i v e  a s  a  F u n c t i o n

In the preceding section we considered the derivative of a function f at a Þxed number a:

Here we change our point of view and let the number a vary. If we replace a in Equation 1
by a variable x, we obtain

Given any number x for which this limit exists, we assign to x the number . So we can
regard as a new function, called the derivative of and deÞned by Equation 2. We
know that the value of at , , can be interpreted geometrically as the slope of the
tangent line to the graph of at the point .

The function is called the derivative of because it has been ÒderivedÓ from by
the limiting operation in Equation 2. The domain of is the set exists and may
be smaller than the domain of .

EXAMPLE 1 The graph of a function is given in Figure 1. Use it to sketch the graph of
the derivative .

FIGURE 1

x

y

��

�

���

f �
f

f
� x 
 f �� x�f �

fff �
� x, f � x��f

f �� x�xf �
ff �

f �� x�

f �� x� � lim
h l 0

 
f � x � h� � f � x�

h
2

f ��a� � lim
h l 0

 
 f �a � h� � f �a�

h
1



SOLUTION We can estimate the value of the derivative at any value of by drawing the
tangent at the point and estimating its slope. For instance, for x � 5 we draw the
tangent at in Figure 2(a) and estimate its slope to be about , so . This
allows us to plot the point on the graph of directly beneath P. Repeating
this procedure at several points, we get the graph shown in Figure 2(b). Notice that the
tangents at , , and are horizontal, so the derivative is 0 there and the graph of 
crosses the -axis at the points , , and , directly beneath A, B, and C. Between 
and the tangents have positive slope, so is positive there. But between and 
the tangents have negative slope, so is negative there.

If a function is deÞned by a table of values, then we can construct a table of approxi-
mate values of its derivative, as in the next example.

FIGURE 2

�

�

�
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(a)

x

1

�� �

���

�

��


 � ��� �"��

��

� �

(b)

x

1

�� �

�������

f �� x�
CBf �� x�B
AC�B�A�x

f �CBA

f �P��5, 1.5�
f ��5� 	 1.53

2P
� x, f � x��

x
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|||| Notice that where the derivative is positive
(to the right of and between and ), the
function is increasing. Where is negative
(to the left of and between and ), is
decreasing. In Section 4.3 we will prove that this
is true for all functions.

fCBA
f �� x�f

BAC

Watch an animation of the relation between a
function and its derivative.

Resources / Module 3
/ Derivatives as Functions 

/ Mars Rover
Resources / Module 3

/ Slope-a-Scope 
/ Derivative of a Cubic



EXAMPLE 2 Let be the population of Belgium at time . The table at the left gives
midyear values of , in thousands, from 1980 to 2000. Construct a table of values for
the derivative of this function.

SOLUTION We assume that there were no wild ßuctuations in the population between the
stated values. LetÕs start by approximating , the rate of increase of the popula-
tion of Belgium in mid-1988. Since

we have

for small values of .
For , we get

(This is the average rate of increase between 1988 and 1990.) For , we have

which is the average rate of increase between 1986 and 1988. We get a more accurate
approximation if we take the average of these rates of change:

This means that in 1988 the population was increasing at a rate of about 25,000 people
per year.

Making similar calculations for the other values (except at the endpoints), we get the
table at the left, which shows the approximate values for the derivative.

������

���

����

���

������

������

������

�

�

��& ��� �� �� ����

�������

���

��

��

�

�

��& ��� �� �� ����

��

FIGURE 3

B��1988� 	 1
2�39 � 11� � 25

B��1988� 	  
B�1986� � B�1988�

� 2
�

9862 � 9884

� 2
� 11

h � � 2

B��1988� 	  
B�1990� � B�1988�

2
�

9962 � 9884

2
� 39

h � 2
h

B��1988� 	  
B�1988 � h� � B�1988�

h

B��1988� � lim
h l

 

0
 
B�1988 � h� � B�1988�

h

B� �1988�

B�t�
tB�t�
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t

1980 9,847
1982 9,856
1984 9,855
1986 9,862
1988 9,884
1990 9,962
1992 10,036
1994 10,109
1996 10,152
1998 10,175
2000 10,186

B�t�

t

1980 4.5
1982 2.0
1984 1.5
1986 7.3
1988 25.0
1990 38.0
1992 36.8
1994 29.0
1996 16.5
1998 8.5
2000 5.5

B� �t�

|||| Figure 3 illustrates Example 2 by showing
graphs of the population function and its
derivative . Notice how the rate of popu-
lation growth increases to a maximum in 1990
and decreases thereafter.

B� �t�
B�t�
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EXAMPLE 3
(a) If , find a formula for .
(b) Illustrate by comparing the graphs of and .

SOLUTION
(a) When using Equation 2 to compute a derivative, we must remember that the variable
is and that is temporarily regarded as a constant during the calculation of the limit.

(b) We use a graphing device to graph and in Figure 4. Notice that when 
has horizontal tangents and is positive when the tangents have positive slope. So

these graphs serve as a check on our work in part (a).

EXAMPLE 4 If , find the derivative of . State the domain of .

SOLUTION

We see that exists if , so the domain of is . This is smaller than
the domain of , which is .

Let’s check to see that the result of Example 4 is reasonable by looking at the graphs of
and in Figure 5. When is close to 1, is close to , so 

is very large; this corresponds to the steep tangent lines near in Figure 5(a) and the
large values of just to the right of 1 in Figure 5(b). When is large, is very
small; this corresponds to the flatter tangent lines at the far right of the graph of and the
horizontal asymptote of the graph of .f �

f
f �� x�xf �� x�

�1, 0�
f �� x� � 1� (2 � x � 1)0� x � 1xf �f

�1, � �f
�1, � �f �x � 1f �� x�

 �
1

� x � 1 � � x � 1
�

1

2 � x � 1

 � lim 
h l 0

 
1

� x � h � 1 � � x � 1

 � lim 
h l 0

 
�x � h � 1� � �x � 1�

h(� x � h � 1 � � x � 1)

 � lim 
h l 0

 
� x � h � 1 � � x � 1

h
�

� x � h � 1 � � x � 1

� x � h � 1 � � x � 1

 � lim 
h l 0

 
� x � h � 1 � � x � 1

h

 f �� x� � lim
h l 0

 
 f � x � h� � f � x�

h

f �ff � x� � � x � 1

f �� x�f
f �� x� � 0f �f

 � lim
h l 0

 �3x 2 � 3xh � h 2 � 1� � 3x 2 � 1

 � lim
h l 0

 
3x 2h � 3xh 2 � h 3 � h

h

 � lim
h l 0

 
x 3 � 3x 2h � 3xh 2 � h 3 � x � h � x 3 � x

h

 f �� x� � lim
h l 0

 
 f � x � h� � f � x�

h
� lim

h l 0
 
 �� x � h�3 � � x � h�� � �x 3 � x�

h

xh

f �f
f �� x�f � x� � x 3 � x

FIGURE 4
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Here we rationalize the numerator.

See more problems like these.
Resources / Module 3

/ How to Calculate 
/ The Essential Examples



EXAMPLE 5 Find if .

SOLUTION

O t h e r  N o t a t i o n s

If we use the traditional notation to indicate that the independent variable is and
the dependent variable is , then some common alternative notations for the derivative are
as follows:

The symbols and are called differentiation operators because they indicate the
operation of differentiation, which is the process of calculating a derivative.

The symbol , which was introduced by Leibniz, should not be regarded as a ratio
(for the time being); it is simply a synonym for . Nonetheless, it is a very useful and
suggestive notation, especially when used in conjunction with increment notation.
Referring to Equation 2.8.4, we can rewrite the deÞnition of derivative in Leibniz notation
in the form

dy

dx
� lim

� x l 0
 
� y

� x

f �� x�
dy� dx

d� dxD

f �� x� � y� �
dy

dx
�

df

dx
�

d

dx
 f � x� � Df � x� � Dx f � x�

y
xy � f � x�

 � lim 
h l 0

 
� 3

�2 � x � h�� 2 � x�
� �

3

�2 � x�2

 � lim 
h l 0

 
� 3h

h�2 � x � h�� 2 � x�

 � lim 
h l 0

 
�2 � x � 2h � x 2 � xh� � �2 � x � h � x 2 � xh�

h�2 � x � h�� 2 � x�

 � lim 
h l 0

 
�1 � x � h�� 2 � x� � �1 � x�� 2 � x � h�

h�2 � x � h�� 2 � x�

 � lim 
h l 0

 

1 � � x � h�
2 � � x � h�

�
1 � x

2 � x

h

 f �� x� � lim
h l 0

 
 f � x � h� � f � x�

h

f � x� �
1 � x

2 � x
f �

FIGURE 5 (a) ���				 
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(b) � �
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a

b
�

c

d

e
�

ad � bc

bd
�

1
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If we want to indicate the value of a derivative in Leibniz notation at a speciÞc num-
ber , we use the notation

or

which is a synonym for .

Definition A function is differentiable at a if exists. It is differentiable
on an open interval [or or or ] if it is differentiable
at every number in the interval.

EXAMPLE 6 Where is the function differentiable?

SOLUTION If , then and we can choose small enough that and
hence . Therefore, for we have

and so is differentiable for any .
Similarly, for we have and can be chosen small enough that

. Therefore, for ,

and so is differentiable for any .
For we have to investigate

LetÕs compute the left and right limits separately:

and

Since these limits are different, does not exist. Thus, is differentiable at all 
except 0.

xff ��0�

 lim
h l 0�

 � 0 � h � � � 0 �
h

� lim
h l 0�

 � h �
h

� lim
h l 0�

 
� h

h
� lim

h l 0�
 � � 1� � � 1

 lim
h l 0�

 � 0 � h � � � 0 �
h

� lim
h l 0�

 � h �
h

� lim
h l 0�

 
h

h
� lim

h l 0�
 1 � 1

 � lim
h l 0

 � 0 � h � � � 0 �
h

�if it exists�

 f ��0� � lim
h l 0

 
 f �0 � h� � f �0�

h

x � 0
x � 0f

 � lim
h l 0

 
� � x � h� � � � x�

h
� lim

h l 0
 
� h

h
� lim

h l 0
 � � 1� � � 1

 f �� x� � lim
h l 0

 � x � h � � � x �
h

x � 0x � h � 0 and so � x � h � � � � x � h�
h� x � � � xx � 0

x � 0f

 � lim
h l 0

 
� x � h� � x

h
� lim

h l 0
 
h

h
� lim

h l 0
 1 � 1

 f �� x� � lim
h l 0

 � x � h � � � x �
h

x � 0� x � h � � x � h
x � h � 0h� x � � xx � 0

f � x� � � x �

� �� , � �� �� , a��a, � ��a, b�
f ��a�f3

f ��a�

dy

dx�x�a

dy

dx 	
x�a

a
dy� dx|||| Gottfried Wilhelm Leibniz was born in

Leipzig in 1646 and studied law, theology, 
philosophy, and mathematics at the university
there, graduating with a bachelorÕs degree at age
17. After earning his doctorate in law at age 20,
Leibniz entered the diplomatic service and spent
most of his life traveling to the capitals of Europe
on political missions. In particular, he worked to
avert a French military threat against Germany
and attempted to reconcile the Catholic and
Protestant churches.

His serious study of mathematics did not
begin until 1672 while he was on a diplomatic
mission in Paris. There he built a calculating
machine and met scientists, like Huygens, who
directed his attention to the latest developments
in mathematics and science. Leibniz sought to
develop a symbolic logic and system of notation
that would simplify logical reasoning. In particu-
lar, the version of calculus that he published in
1684 established the notation and the rules for
Þnding derivatives that we use today.

Unfortunately, a dreadful priority dispute arose
in the 1690s between the followers of Newton
and those of Leibniz as to who had invented 
calculus Þrst. Leibniz was even accused of 
plagiarism by members of the Royal Society in
England. The truth is that each man invented 
calculus independently. Newton arrived at his
version of calculus Þrst but, because of his fear
of controversy, did not publish it immediately. So
LeibnizÕs 1684 account of calculus was the Þrst
to be published.



A formula for is given by  

and its graph is shown in Figure 6(b). The fact that does not exist is reßected geo-
metrically in the fact that the curve does not have a tangent line at . 
[See Figure 6(a).]

Both continuity and differentiability are desirable properties for a function to have. The
following theorem shows how these properties are related.

Theorem If is differentiable at , then is continuous at .

Proof To prove that is continuous at , we have to show that . We
do this by showing that the difference approaches 0.

The given information is that f is differentiable at a, that is,

exists (see Equation 2.8.3). To connect the given and the unknown, we divide and multi-
ply by (which we can do when ):

Thus, using the Product Law and (2.8.3), we can write

To use what we have just proved, we start with and add and subtract :

Therefore, is continuous at .

� NOTE ■■ The converse of Theorem 4 is false; that is, there are functions that are continu-
ous but not differentiable. For instance, the function is continuous at 0 because

(See Example 7 in Section 2.3.) But in Example 6 we showed that is not differentiable
at 0.

f

lim
x l 0

 f � x� � lim
x l 0

 � x � � 0 � f �0�

f � x� � � x �

af

 � f �a� � 0 � f �a�

 � lim
x l a

 f �a� � lim
x l a

 � f � x� � f �a��

 lim
x l a

 f � x� � lim
x l a

 � f �a� � � f � x� � f �a���

f �a�f � x�

 � f ��a� � 0 � 0

 � lim
x l a

 
 f � x� � f �a�

x � a
 lim

x l a
 � x � a�

 lim
x l a

 � f � x� � f �a�� � lim
x l a

 
 f � x� � f �a�

x � a
 � x � a�

f � x� � f �a� �
 f � x� � f �a�

x � a
 � x � a�

x � ax � af � x� � f �a�

f ��a� � lim
x l a

 
 f � x� � f �a�

x � a

f � x� � f �a�
f � x� � f �a�lim x l aaf

afaf4

�0, 0�y � � x �
f ��0�

f �� x� � 
1

� 1

if x � 0

if x � 0

f �
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H o w  C a n  a  F u n c t i o n  F a i l  t o  B e  D i f f e r e n t i a b l e ?

We saw that the function in Example 6 is not differentiable at 0 and Figure 6(a)
shows that its graph changes direction abruptly when . In general, if the graph of a
function has a ÒcornerÓ or ÒkinkÓ in it, then the graph of has no tangent at this point
and is not differentiable there. [In trying to compute , we Þnd that the left and right
limits are different.]

Theorem 4 gives another way for a function not to have a derivative. It says that if is
not continuous at , then is not differentiable at . So at any discontinuity (for instance,
a jump discontinuity) fails to be differentiable.

A third possibility is that the curve has a vertical tangent line when ; that is, 
is continuous at and

This means that the tangent lines become steeper and steeper as . Figure 7 shows
one way that this can happen; Figure 8(c) shows another. Figure 8 illustrates the three pos-
sibilities that we have discussed.

A graphing calculator or computer provides another way of looking at differentiability.
If is differentiable at , then when we zoom in toward the point the graph
straightens out and appears more and more like a line. (See Figure 9. We saw a speciÞc
example of this in Figure 3 in Section 2.8.) But no matter how much we zoom in toward a
point like the ones in Figures 7 and 8(a), we canÕt eliminate the sharp point or corner (see
Figure 10).

FIGURE 9
Ä is differentiable at a.

FIGURE 10
Ä is not differentiable at a.

x
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��x
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�a, f �a��af

x
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��

(a) A corner

x

y

��

(c) A vertical tangent

x

y

��

(b) A discontinuity

FIGURE 8
Three ways for Ä not to be

differentiable at a

x l a

lim
x l a

� f �� x� � � �

a
fx � a

f
afa

f

f ��a�f
ff

x � 0
y � � x �

FIGURE 7

x
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vertical tangent
line
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5–13 |||| Trace or copy the graph of the given function . (Assume
that the axes have equal scales.) Then use the method of Example 1
to sketch the graph of below it.

5. 6.

8.

9. 10.

11. 12.
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1–3 |||| Use the given graph to estimate the value of each derivative.
Then sketch the graph of .

1. (a)

(b)

(c)

(d)

2. (a)

(b)

(c)

(d)

(e)

(f )

3. (a)

(b)

(c)

(d)

(e)

(f )

(g)

Match the graph of each function in (a)Ð(d) with the graph of
its derivative in IÐIV. Give reasons for your choices.
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�
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�
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(b)(a)

(c) (d)

4.

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

f ��3�

f ��2�

f ��1�

f ��0�

f �� � 1�

f �� � 2�

�

� 


�

�

���
�

f �� � 3�

�

� 
�

�

���
�

f ��5�

f ��4�

f ��3�

f ��2�

f ��1�

f ��0�

x

1

y

��

���

f ��4�

f ��3�

f ��2�

f ��1�

f �

|||| 2.9 Exercises



174 ❙ ❙ ❙ ❙ CHAPTER 2 LIMITS AND DERIVATIVES

14. Shown is the graph of the population function for yeast
cells in a laboratory culture. Use the method of Example 1 to
graph the derivative . What does the graph of tell us
about the yeast population?

15. The graph shows how the average age of Þrst marriage of
Japanese men varied in the last half of the 20th century. Sketch
the graph of the derivative function . During which years
was the derivative negative?

16–18 |||| Make a careful sketch of the graph of and below it
sketch the graph of in the same manner as in Exercises 5Ð13. 
Can you guess a formula for from its graph?

16. 17.

18.

� Let .

(a) Estimate the values of , , , and by
using a graphing device to zoom in on the graph of f.

(b) Use symmetry to deduce the values of , , 
and .

(c) Use the results from parts (a) and (b) to guess a formula 
for .

(d) Use the deÞnition of a derivative to prove that your guess in
part (c) is correct.

f �� x�

f �� � 2�
f �� � 1�f �(� 1

2 )

f ��2�f ��1�f �( 1
2 )f ��0�

f � x� � x 219.

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

f � x� � ln x

f � x� � e xf � x� � sin x

f �� x�
f �

f

����

��

�

���� ���� ����

��

�

M� �t�

(yeast cells)

� (hours)

�

� � �� ��

���

P�P�� t�

P�t�

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

� 


�13. � 20. Let .
(a) Estimate the values of , , , , and 

by using a graphing device to zoom in on the graph of f.
(b) Use symmetry to deduce the values of , ,

, and .
(c) Use the values from parts (a) and (b) to graph .
(d) Guess a formula for .
(e) Use the deÞnition of a derivative to prove that your guess in

part (d) is correct.

21–31 |||| Find the derivative of the function using the deÞnition of
derivative. State the domain of the function and the domain of its
derivative.

21. 22.

23. 24.

25. 26.

28.

30.

31.

32. (a) Sketch the graph of by starting with the
graph of and using the transformations of Sec-
tion 1.3.

(b) Use the graph from part (a) to sketch the graph of .
(c) Use the deÞnition of a derivative to Þnd . What are the

domains of f and ?

� (d) Use a graphing device to graph and compare with your
sketch in part (b).

33. (a) If , Þnd .

� (b) Check to see that your answer to part (a) is reasonable by
comparing the graphs of and .

34. (a) If , Þnd .

� (b) Check to see that your answer to part (a) is reasonable by
comparing the graphs of and .

The unemployment rate varies with time. The table (from
the Bureau of Labor Statistics) gives the percentage of unem-
ployed in the U.S. labor force from 1991 to 2000.

(a) What is the meaning of ? What are its units?
(b) Construct a table of values for .U�� t�

U�� t�

U� t�35.

f �f

f �� t�f � t� � 6�� 1 �
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Geometrically, this means that of all the possible exponential functions , the
function is the one whose tangent line at ( has a slope that is exactly 1.
(See Figures 6 and 7.)

If we put and, therefore, in Equation 4, it becomes the following impor-
tant differentiation formula.

Derivative of the Natural Exponential Function

Thus, the exponential function has the property that it is its own derivative.
The geometrical signiÞcance of this fact is that the slope of a tangent line to the curve

is equal to the -coordinate of the point (see Figure 7).

EXAMPLE 7If , Þnd . Compare the graphs of and .

SOLUTIONUsing the Difference Rule, we have

The functionf and its derivative are graphed in Figure 8. Notice that has a horizon-
tal tangent when ; this corresponds to the fact that . Notice also that,
for , is positive and is increasing. When , is negative and is
decreasing.

EXAMPLE 8At what point on the curve is the tangent line parallel to the 
line ?

SOLUTIONSince , we have . Let the x-coordinate of the point in question be
a. Then the slope of the tangent line at that point is . This tangent line will be parallel
to the line if it has the same slope, that is, 2. Equating slopes, we get

Therefore, the required point is . (See Figure 9.)�a, ea� � � ln 2, 2�

a � ln 2ea � 2

y � 2x
ea

y� � exy � ex

y � 2x
y � ex

ff �� x�x � 0ff �� x�x � 0
f ��0� � 0x � 0

ff �

f �� x� �
d
dx

 �ex � x� �
d
dx

 �ex� �
d
dx

 � x� � ex � 1

f �ff �f � x� � ex � x

yy � ex

f � x� � ex

d
dx

 �ex� � ex

f ��0� � 1a � e

FIGURE 7
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FIGURE 6

f ��0�0, 1�f � x� � ex
y � ax

FIGURE 8
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1. (a) How is the number e deÞned?
(b) Use a calculator to estimate the values of the limits

and

correct to two decimal places. What can you conclude
about the value of e?

2. (a) Sketch, by hand, the graph of the function , pay-
ing particular attention to how the graph crosses the y-axis.
What fact allows you to do this?

(b) What types of functions are and ?
Compare the differentiation formulas for and � .

(c) Which of the two functions in part (b) grows more 
rapidly when x is large?

3Ð32 |||| Differentiate the function.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

24.

25. 26.

27. 28.

29. 30.

32.

� 33Ð36|||| Find . Compare the graphs of and and use them
to explain why your answer is reasonable.

33. 34.

35. 36.

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

f � x� � x �
1
x

f � x� � 3x15 � 5x3 � 3

f � x� � 3x5 � 20x3 � 50xf � x� � ex � 5x

f �ff �� x�

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

y � ex� 1 � 1� �
A
y10 � Bey31.

u � �3 t 2 � 2� t 3v � t 2 �
1

�4 t 3
  

y � aev �
b
v

�
c
v2y � ax2 � bx � c

� �u� � � 2u � � 3uy � 4	 2

y �
x2 � 2� x

x
y �

x2 � 4x � 3
� x

23.

y � � x � x � 1�� � x� � x2 �
1
x2

f �t� � � t �
1
� t

F � x� � (1
2 x)5

y � �3 xG� x� � � x � 2ex

R� x� �
� 10
x7Y�t� � 6t � 9

R�t� � 5t� 3� 5V�r� � 4
3 	 r 3

y � 5ex � 3y � x� 2� 5

f � t� � 1
2 t 6 � 3t 4 � tf � t� � 1

4�t
4 � 8�

� � x� � 5x8 � 2x5 � 6f � x� � x2 � 3x � 4

F� x� � � 4x10f � x� � 5x � 1

f � x� � � 30f � x� � 186.5

f
� � x� � xef � x� � ex

f � x� � ex

lim
h �  0

 
2.8h � 1

h
lim
h �  0

 
2.7h � 1

h

� 37Ð38|||| Estimate the value of by zooming in on the graph
of . Then differentiate to Þnd the exact value of and com-
pare with your estimate.

37. , 38. ,

39Ð40|||| Find an equation of the tangent line to the curve at the
given point.

, 40. ,

� 41Ð42|||| Find an equation of the tangent line to the curve at the
given point. Illustrate by graphing the curve and the tangent line on
the same screen.

41. , 42. ,

� 43. (a) Use a graphing calculator or computer to graph the func-
tion in the viewing
rectangle by .

(b) Using the graph in part (a) to estimate slopes, make a 
rough sketch, by hand, of the graph of . (See Example 1
in Section 2.9.)

(c) Calculate and use this expression, with a graphing
device, to graph . Compare with your sketch in part (b).

� 44. (a) Use a graphing calculator or computer to graph the function
in the viewing rectangle by

.
(b) Using the graph in part (a) to estimate slopes, make a rough

sketch, by hand, of the graph of . (See Example 1 in Sec-
tion 2.9.)

(c) Calculate and use this expression, with a graphing
device, to graph . Compare with your sketch in part (b).

Find the points on the curve where
the tangent is horizontal.

46. For what values of does the graph of
have a horizontal tangent?

47. Show that the curve has no tangent line
with slope 4.

� 48. At what point on the curve is the tangent
line parallel to the line ? Illustrate by graphing the
curve and both lines.

Draw a diagram to show that there are two tangent lines to the
parabola that pass through the point . Find the
coordinates of the points where these tangent lines intersect the
parabola.

50. Find equations of both lines through the point that are
tangent to the parabola .y � x2 � x

�2, � 3�

�0, � 4�y � x2
49.

3x � y � 5
y � 1 � 2ex � 3x

y � 6x3 � 5x � 3

f � x� � x3 � 3x2 � x � 3
x

y � 2x3 � 3x2 � 12x � 145.

� �
� �� x�

� �

	 � 8, 8

	 � 1, 4
� � x� � ex � 3x2

f �
f �� x�

f �

	 � 10, 50
	� 3, 5

f � x� � x4 � 3x3 � 6x2 � 7x � 30

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

�4, 8�y � x� x�1, 2�y � 3x2 � x3

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

�1, 9�y � �1 � 2x�2�0, 2�y � x4 � 2ex39.

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

a � 4f � x� � 1� � xa � 1f � x� � 3x2 � x3

f � �a�ff
f � �a�
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Velocity, density, and current are not the only rates of change that are important in
physics. Others include power (the rate at which work is done), the rate of heat ßow, tem-
perature gradient (the rate of change of temperature with respect to position), and the rate
of decay of a radioactive substance in nuclear physics.

Chemistry

EXAMPLE 4A chemical reaction results in the formation of one or more substances
(called products) from one or more starting materials (called reactants). For instance, the
ÒequationÓ

indicates that two molecules of hydrogen and one molecule of oxygen form two mole-
cules of water. LetÕs consider the reaction

where A and B are the reactants and C is the product. The concentration of a reactant 
A is the number of moles ( 6.022 10 molecules) per liter and is denoted by

. The concentration varies during a reaction, so , , and are all functions of
time . The average rate of reaction of the product C over a time interval is

But chemists are more interested in the instantaneous rate of reaction, which is
obtained by taking the limit of the average rate of reaction as the time interval 
approaches 0:

Since the concentration of the product increases as the reaction proceeds, the derivative
will be positive. (You can see intuitively that the slope of the tangent to the

graph of an increasing function is positive.) Thus, the rate of reaction of C is positive.
The concentrations of the reactants, however, decrease during the reaction, so, to make
the rates of reaction of A and B positive numbers, we put minus signs in front of the
derivatives and . Since A and B each decrease at the same rate that 
C increases, we have

More generally, it turns out that for a reaction of the form

we have

�
1
a

 
d�A�

dt
� �

1
b

 
d�B�

dt
�

1
c

 
d�C�

dt
�

1
d

 
d�D�

dt

aA � bB �  cC � dD

rate of reaction�
d�C�

dt
� �

d�A�
dt

� �
d�B�

dt

��
����d�B�� dtd�A�� dt

d�C�� dt

rate of reaction� lim
� t � 0

 
� �C�
� t

�
d�C�

dt

� t

� �C�
� t

�
�C�� t2� � �C�� t1�

t2 � t1

t1 � t � t2�t�
�C��B��A��A�

23�1 mole�

A � B �  C

2H2 � O2 �  2H2O
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The rate of reaction can be determined by graphical methods (see Exercise 22). In some
cases we can use the rate of reaction to Þnd explicit formulas for the concentrations as
functions of time (see Exercises 9.3). 

EXAMPLE 5One of the quantities of interest in thermodynamics is compressibility. If a
given substance is kept at a constant temperature, then its volume depends on its pres-
sure . We can consider the rate of change of volume with respect to pressureÑ namely,
the derivative . As increases, decreases, so . The compressibility
is deÞned by introducing a minus sign and dividing this derivative by the volume :

Thus, measures how fast, per unit volume, the volume of a substance decreases as the
pressure on it increases at constant temperature.

For instance, the volume (in cubic meters) of a sample of air at was found to
be related to the pressure (in kilopascals) by the equation

The rate of change of with respect to when � 50 kPa is

The compressibility at that pressure is

Biology

EXAMPLE 6Let be the number of individuals in an animal or plant population 
at time . The change in the population size between the times and is

, and so the average rate of growth during the time period 
is

The instantaneous rate of growthis obtained from this average rate of growth by let-
ting the time period approach 0:

growth rate� lim
� t � 0

 
� n
� t

�
dn
dt

� t

average rate of growth�
� n
� t

�
 f � t2� � f � t1�

t2 � t1

t1 � t � t2� n � f �t2� � f � t1�
t � t2t � t1t

n � f �t�

� � �
1
V

 
dV
dP �

P� 50
�

0.00212
5.3
50

� 0.02 �m3� kPa�� m3

 � �
5.3

2500
� � 0.00212 m3� kPa

 
dV
dP �

P� 50

� �
5.3
P2 �

P� 50

PPV

V �
5.3
P

P
25�CV

�

isothermal compressibility� � � �
1
V

 
dV
dP

V
dV� dP 	 0VPdV� dP

P
V
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Strictly speaking, this is not quite accurate because the actual graph of a population
function would be a step function that is discontinuous whenever a birth or
death occurs and, therefore, not differentiable. However, for a large animal or plant 
population, we can replace the graph by a smooth approximating curve as in Figure 5.

To be more speciÞc, consider a population of bacteria in a homogeneous nutrient
medium. Suppose that by sampling the population at certain intervals it is determined
that the population doubles every hour. If the initial population is and the time is
measured in hours, then

and, in general,

The population function is .
In Section 3.1 we discussed derivatives of exponential functions and found that

So the rate of growth of the bacteria population at time t is

For example, suppose that we start with an initial population of bacteria. Then
the rate of growth after 4 hours is

This means that, after 4 hours, the bacteria population is growing at a rate of about
1100 bacteria per hour.

dn
dt

 �
t� 4

� 100�0.69�24 � 1104

n0 � 100

dn
dt

�
d
dt

 �n02t � � n0�0.69�2t

d
dx

 �2x� � � 0.69�2x

n � n02t

f �t� � 2tn0 

 f �3� � 2f �2� � 23n0

 f �2� � 2f �1� � 22n0

 f �1� � 2f �0� � 2n0

tn0

FIGURE 5
A smooth curve approximating

a growth function
t

n

�

n � f �t�
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EXAMPLE 7When we consider the ßow of blood through a blood vessel, such as a vein or
artery, we can take the shape of the blood vessel to be a cylindrical tube with radius 
and length as illustrated in Figure 6.

Because of friction at the walls of the tube, the velocity of the blood is greatest
along the central axis of the tube and decreases as the distance from the axis increases
until becomes 0 at the wall. The relationship between and is given by the law of
laminar ßow discovered by the French physician Jean-Louis-Marie Poiseuille in 1840.
This states that

where is the viscosity of the blood and is the pressure difference between the ends
of the tube. If and are constant, then is a function of with domain . [For
more detailed information, see W. Nichols and M. OÕRourke (eds.), McDonaldÕs Blood
Flow in Arteries: Theoretic, Experimental, and Clinical Principles,4th ed. (New York:
Oxford University Press, 1998).]

The average rate of change of the velocity as we move from outward to 
is given by

and if we let , we obtain the velocity gradient, that is, the instantaneous rate of
change of velocity with respect to r :

Using Equation 1, we obtain

For one of the smaller human arteries we can take , cm, cm,
and , which gives

At cm the blood is ßowing at a speed of

 � 1.11 cm� s

 v�0.002� � 1.85� 104�64 � 10� 6 � 4 � 10� 6�

r � 0.002

 � 1.85� 104�6.4 � 10� 5 � r 2�

 v �
4000

4�0.027�2
 �0.000064� r 2�

P � 4000 dynes� cm2
l � 2R � 0.008
 � 0.027

dv

dr
�

P
4
 l

 �0 � 2r� � �
Pr
2
 l

velocity gradient� lim
� r � 0

 
� v

� r
�

dv

dr

� r � 0

� v

� r
�

v�r2� � v�r1�
r2 � r1

r � r2r � r1

�0, R�rvlP
P


v �
P

4
 l
 �R2 � r 2�1

rvv
r

v

FIGURE 6
Blood flow in an artery

� �

�

l
R
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and the velocity gradient at that point is

To get a feeling for what this statement means, letÕs change our units from centi-
meters to micrometers ( � m). Then the radius of the artery is � m. The
velocity at the central axis is � m� s, which decreases to � m� s at a distance
of � m. The fact that (� m� s)� � m means that, when � m, the
velocity is decreasing at a rate of about � m� s for each micrometer that we proceed
away from the center.

Economics

EXAMPLE 8Suppose is the total cost that a company incurs in producing units of 
a certain commodity. The function is called a cost function. If the number of items
produced is increased from to , the additional cost is , and the
average rate of change of the cost is

The limit of this quantity as , that is, the instantaneous rate of change of cost
with respect to the number of items produced, is called the marginal costby economists:

[Since often takes on only integer values, it may not make literal sense to let 
approach 0, but we can always replace by a smooth approximating function as in
Example 6.]

Taking and large (so that is small compared to ), we have

Thus, the marginal cost of producing units is approximately equal to the cost of pro-
ducing one more unit [the st unit].

It is often appropriate to represent a total cost function by a polynomial

where represents the overhead cost (rent, heat, maintenance) and the other terms 
represent the cost of raw materials, labor, and so on. (The cost of raw materials may be
proportional to , but labor costs might depend partly on higher powers of because of
overtime costs and inefÞciencies involved in large-scale operations.)

For instance, suppose a company has estimated that the cost (in dollars) of producing
items is

Then the marginal cost function is

C�� x� � 5 � 0.02x

C�x� � 10,000� 5x � 0.01x2

x

xx

a

C�x� � a � bx � cx2 � dx3

�n � 1�
n

C��n� � C�n � 1� � C�n�

n� xn� x � 1

C�x�
� xx

marginal cost� lim
� x� 0

 
� C
� x

�
dC
dx

� 0� x

� C
� x

�
C�x2� � C� x1�

x2 � x1
�

C� x1 � � x� � C� x1�
� x

� C � C�x2� � C� x1�x2x1

C
xC�x�

74
r � 20dv� dr � � 74r � 20

11,11011,850
801 cm� 10,000

dv

dr �
r� 0.002

� �
4000�0.002�
2�0.027�2

� � 74 �cm� s�� cm
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The marginal cost at the production level of 500 items is

This gives the rate at which costs are increasing with respect to the production level
when and predicts the cost of the 501st item.

The actual cost of producing the 501st item is

Notice that .

Economists also study marginal demand, marginal revenue, and marginal proÞt, which
are the derivatives of the demand, revenue, and proÞt functions. These will be considered
in Chapter 4 after we have developed techniques for Þnding the maximum and minimum
values of functions.

Other Sciences

Rates of change occur in all the sciences. A geologist is interested in knowing the rate at
which an intruded body of molten rock cools by conduction of heat into surrounding rocks.
An engineer wants to know the rate at which water ßows into or out of a reservoir. An
urban geographer is interested in the rate of change of the population density in a city as
the distance from the city center increases. A meteorologist is concerned with the rate of
change of atmospheric pressure with respect to height (see Exercise 17 in Section 9.4).

In psychology, those interested in learning theory study the so-called learning curve,
which graphs the performance of someone learning a skill as a function of the train-
ing time . Of particular interest is the rate at which performance improves as time passes,
that is, .

In sociology, differential calculus is used in analyzing the spread of rumors (or innova-
tions or fads or fashions). If denotes the proportion of a population that knows a rumor
by time , then the derivative represents the rate of spread of the rumor (see Exer-
cise 70 in Section 3.5).

Summary

Velocity, density, current, power, and temperature gradient in physics, rate of reaction and
compressibility in chemistry, rate of growth and blood velocity gradient in biology, mar-
ginal cost and marginal proÞt in economics, rate of heat ßow in geology, rate of improve-
ment of performance in psychology, rate of spread of a rumor in sociologyÑ these are all
special cases of a single mathematical concept, the derivative.

This is an illustration of the fact that part of the power of mathematics lies in its
abstractness. A single abstract mathematical concept (such as the derivative) can have dif-
ferent interpretations in each of the sciences. When we develop the properties of the math-
ematical concept once and for all, we can then turn around and apply these results to all of
the sciences. This is much more efÞcient than developing properties of special concepts in
each separate science. The French mathematician Joseph Fourier (1768Ð1830) put it suc-
cinctly: ÒMathematics compares the most diverse phenomena and discovers the secret
analogies that unite them.Ó

dp� dtt
p�t�

dP� dt
t

P�t�

C��500� � C�501� � C�500�

 � $15.01

 � �  �10,000� 5�500� � 0.01�500�2�

 C�501� � C�500� � �10,000� 5�501� � 0.01�501�2�

x � 500

C��500� � 5 � 0.02�500� � $15� item
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(b) Show that the rate of change of the volume of a cube with
respect to its edge length is equal to half the surface area of
the cube. Explain geometrically why this result is true by
arguing by analogy with Exercise 11(b).

13. (a) Find the average rate of change of the area of a circle with
respect to its radius as changes from
(i) 2 to 3 (ii) 2 to 2.5 (iii) 2 to 2.1

(b) Find the instantaneous rate of change when .
(c) Show that the rate of change of the area of a circle with

respect to its radius (at any ) is equal to the circumference
of the circle. Try to explain geometrically why this is true
by drawing a circle whose radius is increased by an amount

. How can you approximate the resulting change in area
if is small?

14. A stone is dropped into a lake, creating a circular ripple that
travels outward at a speed of 60 cm� s. Find the rate at which
the area within the circle is increasing after (a) 1 s, (b) 3 s, and
(c) 5 s. What can you conclude?

A spherical balloon is being inßated. Find the rate of increase
of the surface area with respect to the radius 
when is (a) 1 ft, (b) 2 ft, and (c) 3 ft. What conclusion can
you make?

16. (a) The volume of a growing spherical cell is , where
the radius is measured in micrometers (1� m ).
Find the average rate of change of with respect to when

changes from
(i) 5 to 8 � m (ii) 5 to 6 � m (iii) 5 to 5.1 � m

(b) Find the instantaneous rate of change of with respect to 
when � m.

(c) Show that the rate of change of the volume of a sphere with
respect to its radius is equal to its surface area. Explain
geometrically why this result is true. Argue by analogy with
Exercise 13(c).

17. The mass of the part of a metal rod that lies between its left
end and a point meters to the right is kg. Find the linear
density (see Example 2) when is (a) 1 m, (b) 2 m, and 
(c) 3 m. Where is the density the highest? The lowest?

18. If a tank holds 5000 gallons of water, which drains from the
bottom of the tank in 40 minutes, then TorricelliÕs Law gives
the volume of water remaining in the tank after minutes as

Find the rate at which water is draining from the tank after 
(a) 5 min, (b) 10 min, (c) 20 min, and (d) 40 min. At what time
is the water ßowing out the fastest? The slowest? Summarize
your Þndings.

The quantity of charge in coulombs (C) that has passed
through a point in a wire up to time (measured in seconds) ist

Q19.

0 � t � 40V � 5000	1 �
t

40

2

tV

x
3x2x

r � 5
rV

r
rV

� 10� 6 mr
V � 4

3  r 3

r
r�S � 4 r 2�

15.

� r� A
� r

r

r � 2

rr

1Ð6 |||| A particle moves according to a law of motion ,
, where is measured in seconds and in feet.

(a) Find the velocity at time .
(b) What is the velocity after 3 s?
(c) When is the particle at rest?
(d) When is the particle moving in the positive direction?
(e) Find the total distance traveled during the Þrst 8 s.
(f) Draw a diagram like Figure 2 to illustrate the motion of the

particle.

1. 2.

3. 4.

5. 6.

7. The position function of a particle is given by

When does the particle reach a velocity of ?

8. If a ball is given a push so that it has an initial velocity of
down a certain inclined plane, then the distance it has

rolled after seconds is .
(a) Find the velocity after 2 s.
(b) How long does it take for the velocity to reach ?

9. If a stone is thrown vertically upward from the surface of the
moon with a velocity of , its height (in meters) after 

seconds is .
(a) What is the velocity of the stone after 3 s?
(b) What is the velocity of the stone after it has risen 25 m?

10. If a ball is thrown vertically upward with a velocity of 
80 ft� s, then its height after seconds is .
(a) What is the maximum height reached by the ball?
(b) What is the velocity of the ball when it is 96 ft above the

ground on its way up? On its way down?

11. (a) A company makes computer chips from square wafers 
of silicon. It wants to keep the side length of a wafer very
close to 15 mm and it wants to know how the area of a
wafer changes when the side length x changes. Find 
and explain its meaning in this situation.

(b) Show that the rate of change of the area of a square with
respect to its side length is half its perimeter. Try to explain
geometrically why this is true by drawing a square whose
side length x is increased by an amount . How can you
approximate the resulting change in area if is small?

12. (a) Sodium chlorate crystals are easy to grow in the shape of
cubes by allowing a solution of water and sodium chlorate
to evaporate slowly. If V is the volume of such a cube with
side length x, calculate when mm and explain
its meaning.

x � 3dV� dx

� x� A
� x

A��15�
A� x�

s � 80t � 16t 2t

h � 10t � 0.83t2t
10 m� s

35 m� s

s � 5t � 3t2t
5 m� s

5 m� s

s � t 3 � 4.5t 2 � 7t� � � � t � 0

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

s � � t �3t 2 � 35t � 90�s �
t

t 2 � 1

f �t� � t 4 � 4t � 1f �t� � t 3 � 12t 2 � 36t

f �t� � t 3 � 9t 2 � 15t � 10f �t� � t 2 � 10t � 12

t
stt � 0

s � f �t�

|||| 3.3 Exercises
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given by . Find the current when
(a) s and (b) s. [See Example 3. The unit of cur-
rent is an ampere ( A C� s).] At what time is the current
lowest?

20. NewtonÕs Law of Gravitation says that the magnitude of the
force exerted by a body of mass on a body of mass is

where is the gravitational constant and is the distance
between the bodies.
(a) Find and explain its meaning. What does the minus

sign indicate?
(b) Suppose it is known that Earth attracts an object with 

a force that decreases at the rate of 2 N� km when 
r � 20,000 km. How fast does this force change when 
r � 10,000 km?

BoyleÕs Law states that when a sample of gas is compressed at
a constant temperature, the product of the pressure and the vol-
ume remains constant: .
(a) Find the rate of change of volume with respect to 

pressure.
(b) A sample of gas is in a container at low pressure and is

steadily compressed at constant temperature for 10 minutes.
Is the volume decreasing more rapidly at the beginning or
the end of the 10 minutes? Explain.

(c) Prove that the isothermal compressibility (see Example 5)
is given by .

22. The data in the table concern the lactonization of hydroxy-
valeric acid at . They give the concentration of this
acid in moles per liter after minutes.

(a) Find the average rate of reaction for the following time
intervals:
(i) (ii) (iii)

(b) Plot the points from the table and draw a smooth curve
through them as an approximation to the graph of the con-
centration function. Then draw the tangent at and use
it to estimate the instantaneous rate of reaction when .

� 23. The table gives the population of the world in the 20th century.

t � 2
t � 2

0 � t � 22 � t � 42 � t � 6

t
C�t�25�C

� � 1� P

PV � C

21.

dF� dr

rG

F �
GmM

r 2

Mm
F

� 11
t � 1t � 0.5

Q�t� � t 3 � 2t 2 � 6t � 2 (a) Estimate the rate of population growth in 1920 and in 1980
by averaging the slopes of two secant lines.

(b) Use a graphing calculator or computer to Þnd a cubic func-
tion (a third-degree polynomial) that models the data. (See
Section 1.2.)

(c) Use your model in part (b) to Þnd a model for the rate of
population growth in the 20th century.

(d) Use part (c) to estimate the rates of growth in 1920 and
1980. Compare with your estimates in part (a).

(e) Estimate the rate of growth in 1985.

� 24. The table shows how the average age of Þrst marriage of
Japanese women varied in the last half of the 20th century.

(a) Use a graphing calculator or computer to model these data
with a fourth-degree polynomial.

(b) Use part (a) to Þnd a model for .
(c) Estimate the rate of change of marriage age for women 

in 1990.
(d) Graph the data points and the models for .

25. If, in Example 4, one molecule of the product C is formed 
from one molecule of the reactant A and one molecule of 
the reactant B, and the initial concentrations of A and B have 
a common value , then

where is a constant.
(a) Find the rate of reaction at time .
(b) Show that if C , then

(c) What happens to the concentration as ?
(d) What happens to the rate of reaction as ?
(e) What do the results of parts (c) and (d) mean in practical

terms?

26. Suppose that a bacteria population starts with 500 bacteria and
triples every hour.
(a) What is the population after 3 hours? After 4 hours? After 

hours?
(b) Use (5) in Section 3.1 to estimate the rate of increase of the

bacteria population after 6 hours.

27. Refer to the law of laminar ßow given in Example 7. Consider
a blood vessel with radius 0.01 cm, length 3 cm, pressure dif-
ference , and viscosity .
(a) Find the velocity of the blood along the centerline , at

radius cm, and at the wall .r � R � 0.01 cmr � 0.005
r � 0


 � 0.0273000 dynes� cm2

t

t � �
t � �

dx
dt

� k�a � x�2

�x � �
t

k

�C� � a2kt�� akt � 1�

�A� � �B� � a moles� L

A and A�

A��t�

Population Population
Year (in millions) Year (in millions)

1900 1650 1960 3040
1910 1750 1970 3710
1920 1860 1980 4450
1930 2070 1990 5280
1940 2300 2000 6080
1950 2560

t t

1950 23.0 1975 24.7
1955 23.8 1980 25.2
1960 24.4 1985 25.5
1965 24.5 1990 25.9
1970 24.2 1995 26.3

A�t�A�t�

t 0 2 4 6 8

C(t ) 0.0800 0.0570 0.0408 0.0295 0.0210



when the brightness of a light source is increased, the eye
reacts by decreasing the area of the pupil. The experimental
formula

has been used to model the dependence of on when is
measured in square millimeters and is measured in appropri-
ate units of brightness.
(a) Find the sensitivity.

� (b) Illustrate part (a) by graphing both and as functions 
of . Comment on the values of and at low levels of
brightness. Is this what you would expect?

33. The gas law for an ideal gas at absolute temperature (in
kelvins), pressure (in atmospheres), and volume (in liters)
is , where is the number of moles of the gas 
and is the gas constant. Suppose that, at a 
certain instant, atm and is increasing at a rate of
0.10 atm� min and and is decreasing at a rate of
0.15 L� min. Find the rate of change of with respect to time
at that instant if mol.

34. In a Þsh farm, a population of Þsh is introduced into a pond
and harvested regularly. A model for the rate of change of the
Þsh population is given by the equation

where is the birth rate of the Þsh, is the maximum popula-
tion that the pond can sustain (called the carrying capacity),
and is the percentage of the population that is harvested.
(a) What value of corresponds to a stable population?
(b) If the pond can sustain 10,000 Þsh, the birth rate is 5%, and

the harvesting rate is 4%, Þnd the stable population level.
(c) What happens if is raised to 5%?

In the study of ecosystems, predator-prey modelsare often
used to study the interaction between species. Consider popu-
lations of tundra wolves, given by , and caribou, given by

, in northern Canada. The interaction has been modeled by
the equations

(a) What values of and correspond to stable 
populations?

(b) How would the statement ÒThe caribou go extinctÓ be 
represented mathematically?

(c) Suppose that , , , and 
. Find all population pairs that lead to

stable populations. According to this model, is it possible
for the two species to live in balance or will one or both
species become extinct?

�C, W�d � 0.0001
c � 0.05b � 0.001a � 0.05

dW�dtdC�dt

dW
dt

� � cW� dCW
dC
dt

� aC � bCW

C�t�
W�t�

35.

�

dP�dt
�

Pcr0

dP
dt

� r0	1 �
P�t�
Pc

P�t� � � P�t�

n � 10
T

V � 10 L
P � 8.0

R � 0.0821
nPV � nRT

VP
T

SRx
SR

x
RxR

R �
40 � 24x0.4

1 � 4x0.4

R
x(b) Find the velocity gradient at , , and 

.
(c) Where is the velocity the greatest? Where is the velocity

changing most?

The frequency of vibrations of a vibrating violin string is given
by

where is the length of the string, is its tension, and is its
linear density. [See Chapter 11 in Donald E. Hall, Musical
Acoustics,3d ed. (PaciÞc Grove, CA: Brooks/Cole, 2002).]
(a) Find the rate of change of the frequency with respect to

(i) the length (when and are constant),
(ii) the tension (when and are constant), and
(iii) the linear density (when and are constant).

(b) The pitch of a note (how high or low the note sounds) is
determined by the frequency . (The higher the frequency,
the higher the pitch.) Use the signs of the derivatives in 
part (a) to determine what happens to the pitch of a note
(i) when the effective length of a string is decreased by

placing a Þnger on the string so a shorter portion of
the string vibrates,

(ii) when the tension is increased by turning a tuning peg,
(iii) when the linear density is increased by switching to

another string.

29. Suppose that the cost (in dollars) for a company to produce 
pairs of a new line of jeans is

(a) Find the marginal cost function.
(b) Find and explain its meaning. What does it predict?
(c) Compare with the cost of manufacturing the 101st

pair of jeans.

30. The cost function for a certain commodity is

(a) Find and interpret 
(b) Compare with the cost of producing the 101st item.

If is the total value of the production when there are 
workers in a plant, then the average productivityof the work-

force at the plant is

(a) Find . Why does the company want to hire more 
workers if ?

(b) Show that if is greater than the average 
productivity.

32. If denotes the reaction of the body to some stimulus of
strength , the sensitivity is deÞned to be the rate of change
of the reaction with respect to . A particular example is that x

Sx
R

p�� x�A�� x� � 0
A�� x� � 0

A�� x�

A� x� �
 p� x�

x

x
p� x�31.

C��100�
C��100�.

C� x� � 84 � 0.16x � 0.0006x2 � 0.000003x3

C��100�
C��100�

C� x� � 2000� 3x � 0.01x2 � 0.0002x3

x

f

TL
�L

�T

�TL

f �
1

2L
 � T

�

28.

r � 0.01
r � 0.005r � 0
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|||| 3.4 Derivatives of Trigonometric Functions

Before starting this section, you might need to review the trigonometric functions. In par-
ticular, it is important to remember that when we talk about the function deÞned for all
real numbers by

it is understood that means the sine of the angle whose radian measure is . A simi-
lar convention holds for the other trigonometric functions cos, tan, csc, sec, and cot. Recall
from Section 2.5 that all of the trigonometric functions are continuous at every number in
their domains.

If we sketch the graph of the function and use the interpretation of 
as the slope of the tangent to the sine curve in order to sketch the graph of (see Exer-
cise 16 in Section 2.9), then it looks as if the graph of may be the same as the cosine
curve (see Figure 1 and also page 182).

LetÕs try to conÞrm our guess that if , then . From the deÞn-
ition of a derivative, we have

 � lim
h� 0

 sin x � lim
h� 0

 
cos h � 1

h
� lim

h� 0
 cos x � lim

h� 0
 
sin h

h
1

 � lim
h� 0

 �sin x 	cos h � 1
h 
 � cos x 	sin h

h 

 � lim

h� 0
 �sin x cos h � sin x

h
�

cos x sin h
h 

 � lim
h� 0

 
sin x cos h � cos x sin h � sin x

h

 � lim
h� 0

 
sin� x � h� � sinx

h

 f �� x� � lim
h� 0

 
 f � x � h� � f � x�

h

f �� x� � cos xf � x� � sin x

x

�� sin��

� 	



	 
	

x

����

� 	



	

FIGURE 1

f �
f �

f �� x�f � x� � sin x

xsin x

f � x� � sin x
x

f
|||| A review of the trigonometric functions is
given in Appendix D.

See an animation of Figure 1.
Resources / Module 4

/ Trigonometric Models 
/ Slope-A-Scope for Sine

|||| We have used the addition formula for sine.
See Appendix D.
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Velocity, density, and current are not the only rates of change that are important in
physics. Others include power (the rate at which work is done), the rate of heat ßow, tem-
perature gradient (the rate of change of temperature with respect to position), and the rate
of decay of a radioactive substance in nuclear physics.

Chemistry

EXAMPLE 4A chemical reaction results in the formation of one or more substances
(called products) from one or more starting materials (called reactants). For instance, the
ÒequationÓ

indicates that two molecules of hydrogen and one molecule of oxygen form two mole-
cules of water. LetÕs consider the reaction

where A and B are the reactants and C is the product. The concentration of a reactant 
A is the number of moles ( 6.022 10 molecules) per liter and is denoted by

. The concentration varies during a reaction, so , , and are all functions of
time . The average rate of reaction of the product C over a time interval is

But chemists are more interested in the instantaneous rate of reaction, which is
obtained by taking the limit of the average rate of reaction as the time interval 
approaches 0:

Since the concentration of the product increases as the reaction proceeds, the derivative
will be positive. (You can see intuitively that the slope of the tangent to the

graph of an increasing function is positive.) Thus, the rate of reaction of C is positive.
The concentrations of the reactants, however, decrease during the reaction, so, to make
the rates of reaction of A and B positive numbers, we put minus signs in front of the
derivatives and . Since A and B each decrease at the same rate that 
C increases, we have

More generally, it turns out that for a reaction of the form

we have

�
1
a

 
d�A�

dt
� �

1
b

 
d�B�

dt
�

1
c

 
d�C�

dt
�

1
d

 
d�D�

dt

aA � bB �  cC � dD

rate of reaction�
d�C�

dt
� �

d�A�
dt

� �
d�B�

dt

��
����d�B�� dtd�A�� dt

d�C�� dt

rate of reaction� lim
� t � 0

 
� �C�
� t

�
d�C�

dt

� t

� �C�
� t

�
�C�� t2� � �C�� t1�

t2 � t1

t1 � t � t2�t�
�C��B��A��A�

23�1 mole�

A � B �  C

2H2 � O2 �  2H2O
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The rate of reaction can be determined by graphical methods (see Exercise 22). In some
cases we can use the rate of reaction to Þnd explicit formulas for the concentrations as
functions of time (see Exercises 9.3). 

EXAMPLE 5One of the quantities of interest in thermodynamics is compressibility. If a
given substance is kept at a constant temperature, then its volume depends on its pres-
sure . We can consider the rate of change of volume with respect to pressureÑ namely,
the derivative . As increases, decreases, so . The compressibility
is deÞned by introducing a minus sign and dividing this derivative by the volume :

Thus, measures how fast, per unit volume, the volume of a substance decreases as the
pressure on it increases at constant temperature.

For instance, the volume (in cubic meters) of a sample of air at was found to
be related to the pressure (in kilopascals) by the equation

The rate of change of with respect to when � 50 kPa is

The compressibility at that pressure is

Biology

EXAMPLE 6Let be the number of individuals in an animal or plant population 
at time . The change in the population size between the times and is

, and so the average rate of growth during the time period 
is

The instantaneous rate of growthis obtained from this average rate of growth by let-
ting the time period approach 0:

growth rate� lim
� t � 0

 
� n
� t

�
dn
dt

� t

average rate of growth�
� n
� t

�
 f � t2� � f � t1�

t2 � t1

t1 � t � t2� n � f �t2� � f � t1�
t � t2t � t1t

n � f �t�

� � �
1
V

 
dV
dP �

P� 50
�

0.00212
5.3
50

� 0.02 �m3� kPa�� m3

 � �
5.3

2500
� � 0.00212 m3� kPa

 
dV
dP �

P� 50

� �
5.3
P2 �

P� 50

PPV

V �
5.3
P

P
25�CV

�

isothermal compressibility� � � �
1
V

 
dV
dP

V
dV� dP 	 0VPdV� dP

P
V
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Strictly speaking, this is not quite accurate because the actual graph of a population
function would be a step function that is discontinuous whenever a birth or
death occurs and, therefore, not differentiable. However, for a large animal or plant 
population, we can replace the graph by a smooth approximating curve as in Figure 5.

To be more speciÞc, consider a population of bacteria in a homogeneous nutrient
medium. Suppose that by sampling the population at certain intervals it is determined
that the population doubles every hour. If the initial population is and the time is
measured in hours, then

and, in general,

The population function is .
In Section 3.1 we discussed derivatives of exponential functions and found that

So the rate of growth of the bacteria population at time t is

For example, suppose that we start with an initial population of bacteria. Then
the rate of growth after 4 hours is

This means that, after 4 hours, the bacteria population is growing at a rate of about
1100 bacteria per hour.

dn
dt

 �
t� 4

� 100�0.69�24 � 1104

n0 � 100

dn
dt

�
d
dt

 �n02t � � n0�0.69�2t

d
dx

 �2x� � � 0.69�2x

n � n02t

f �t� � 2tn0 

 f �3� � 2f �2� � 23n0

 f �2� � 2f �1� � 22n0

 f �1� � 2f �0� � 2n0

tn0

FIGURE 5
A smooth curve approximating

a growth function
t

n

�

n � f �t�
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EXAMPLE 7When we consider the ßow of blood through a blood vessel, such as a vein or
artery, we can take the shape of the blood vessel to be a cylindrical tube with radius 
and length as illustrated in Figure 6.

Because of friction at the walls of the tube, the velocity of the blood is greatest
along the central axis of the tube and decreases as the distance from the axis increases
until becomes 0 at the wall. The relationship between and is given by the law of
laminar ßow discovered by the French physician Jean-Louis-Marie Poiseuille in 1840.
This states that

where is the viscosity of the blood and is the pressure difference between the ends
of the tube. If and are constant, then is a function of with domain . [For
more detailed information, see W. Nichols and M. OÕRourke (eds.), McDonaldÕs Blood
Flow in Arteries: Theoretic, Experimental, and Clinical Principles,4th ed. (New York:
Oxford University Press, 1998).]

The average rate of change of the velocity as we move from outward to 
is given by

and if we let , we obtain the velocity gradient, that is, the instantaneous rate of
change of velocity with respect to r :

Using Equation 1, we obtain

For one of the smaller human arteries we can take , cm, cm,
and , which gives

At cm the blood is ßowing at a speed of

 � 1.11 cm� s

 v�0.002� � 1.85� 104�64 � 10� 6 � 4 � 10� 6�

r � 0.002

 � 1.85� 104�6.4 � 10� 5 � r 2�

 v �
4000

4�0.027�2
 �0.000064� r 2�

P � 4000 dynes� cm2
l � 2R � 0.008
 � 0.027

dv

dr
�

P
4
 l

 �0 � 2r� � �
Pr
2
 l

velocity gradient� lim
� r � 0

 
� v

� r
�

dv

dr

� r � 0

� v

� r
�

v�r2� � v�r1�
r2 � r1

r � r2r � r1

�0, R�rvlP
P


v �
P

4
 l
 �R2 � r 2�1

rvv
r

v

FIGURE 6
Blood flow in an artery

� �
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and the velocity gradient at that point is

To get a feeling for what this statement means, letÕs change our units from centi-
meters to micrometers ( � m). Then the radius of the artery is � m. The
velocity at the central axis is � m� s, which decreases to � m� s at a distance
of � m. The fact that (� m� s)� � m means that, when � m, the
velocity is decreasing at a rate of about � m� s for each micrometer that we proceed
away from the center.

Economics

EXAMPLE 8Suppose is the total cost that a company incurs in producing units of 
a certain commodity. The function is called a cost function. If the number of items
produced is increased from to , the additional cost is , and the
average rate of change of the cost is

The limit of this quantity as , that is, the instantaneous rate of change of cost
with respect to the number of items produced, is called the marginal costby economists:

[Since often takes on only integer values, it may not make literal sense to let 
approach 0, but we can always replace by a smooth approximating function as in
Example 6.]

Taking and large (so that is small compared to ), we have

Thus, the marginal cost of producing units is approximately equal to the cost of pro-
ducing one more unit [the st unit].

It is often appropriate to represent a total cost function by a polynomial

where represents the overhead cost (rent, heat, maintenance) and the other terms 
represent the cost of raw materials, labor, and so on. (The cost of raw materials may be
proportional to , but labor costs might depend partly on higher powers of because of
overtime costs and inefÞciencies involved in large-scale operations.)

For instance, suppose a company has estimated that the cost (in dollars) of producing
items is

Then the marginal cost function is

C�� x� � 5 � 0.02x

C�x� � 10,000� 5x � 0.01x2

x

xx

a

C�x� � a � bx � cx2 � dx3

�n � 1�
n

C��n� � C�n � 1� � C�n�

n� xn� x � 1

C�x�
� xx

marginal cost� lim
� x� 0

 
� C
� x

�
dC
dx

� 0� x

� C
� x

�
C�x2� � C� x1�

x2 � x1
�

C� x1 � � x� � C� x1�
� x

� C � C�x2� � C� x1�x2x1

C
xC�x�
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r � 20dv� dr � � 74r � 20

11,11011,850
801 cm� 10,000

dv

dr �
r� 0.002

� �
4000�0.002�
2�0.027�2

� � 74 �cm� s�� cm
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The marginal cost at the production level of 500 items is

This gives the rate at which costs are increasing with respect to the production level
when and predicts the cost of the 501st item.

The actual cost of producing the 501st item is

Notice that .

Economists also study marginal demand, marginal revenue, and marginal proÞt, which
are the derivatives of the demand, revenue, and proÞt functions. These will be considered
in Chapter 4 after we have developed techniques for Þnding the maximum and minimum
values of functions.

Other Sciences

Rates of change occur in all the sciences. A geologist is interested in knowing the rate at
which an intruded body of molten rock cools by conduction of heat into surrounding rocks.
An engineer wants to know the rate at which water ßows into or out of a reservoir. An
urban geographer is interested in the rate of change of the population density in a city as
the distance from the city center increases. A meteorologist is concerned with the rate of
change of atmospheric pressure with respect to height (see Exercise 17 in Section 9.4).

In psychology, those interested in learning theory study the so-called learning curve,
which graphs the performance of someone learning a skill as a function of the train-
ing time . Of particular interest is the rate at which performance improves as time passes,
that is, .

In sociology, differential calculus is used in analyzing the spread of rumors (or innova-
tions or fads or fashions). If denotes the proportion of a population that knows a rumor
by time , then the derivative represents the rate of spread of the rumor (see Exer-
cise 70 in Section 3.5).

Summary

Velocity, density, current, power, and temperature gradient in physics, rate of reaction and
compressibility in chemistry, rate of growth and blood velocity gradient in biology, mar-
ginal cost and marginal proÞt in economics, rate of heat ßow in geology, rate of improve-
ment of performance in psychology, rate of spread of a rumor in sociologyÑ these are all
special cases of a single mathematical concept, the derivative.

This is an illustration of the fact that part of the power of mathematics lies in its
abstractness. A single abstract mathematical concept (such as the derivative) can have dif-
ferent interpretations in each of the sciences. When we develop the properties of the math-
ematical concept once and for all, we can then turn around and apply these results to all of
the sciences. This is much more efÞcient than developing properties of special concepts in
each separate science. The French mathematician Joseph Fourier (1768Ð1830) put it suc-
cinctly: ÒMathematics compares the most diverse phenomena and discovers the secret
analogies that unite them.Ó

dp� dtt
p�t�

dP� dt
t

P�t�

C��500� � C�501� � C�500�

 � $15.01

 � �  �10,000� 5�500� � 0.01�500�2�

 C�501� � C�500� � �10,000� 5�501� � 0.01�501�2�

x � 500

C��500� � 5 � 0.02�500� � $15� item
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(b) Show that the rate of change of the volume of a cube with
respect to its edge length is equal to half the surface area of
the cube. Explain geometrically why this result is true by
arguing by analogy with Exercise 11(b).

13. (a) Find the average rate of change of the area of a circle with
respect to its radius as changes from
(i) 2 to 3 (ii) 2 to 2.5 (iii) 2 to 2.1

(b) Find the instantaneous rate of change when .
(c) Show that the rate of change of the area of a circle with

respect to its radius (at any ) is equal to the circumference
of the circle. Try to explain geometrically why this is true
by drawing a circle whose radius is increased by an amount

. How can you approximate the resulting change in area
if is small?

14. A stone is dropped into a lake, creating a circular ripple that
travels outward at a speed of 60 cm� s. Find the rate at which
the area within the circle is increasing after (a) 1 s, (b) 3 s, and
(c) 5 s. What can you conclude?

A spherical balloon is being inßated. Find the rate of increase
of the surface area with respect to the radius 
when is (a) 1 ft, (b) 2 ft, and (c) 3 ft. What conclusion can
you make?

16. (a) The volume of a growing spherical cell is , where
the radius is measured in micrometers (1� m ).
Find the average rate of change of with respect to when

changes from
(i) 5 to 8 � m (ii) 5 to 6 � m (iii) 5 to 5.1 � m

(b) Find the instantaneous rate of change of with respect to 
when � m.

(c) Show that the rate of change of the volume of a sphere with
respect to its radius is equal to its surface area. Explain
geometrically why this result is true. Argue by analogy with
Exercise 13(c).

17. The mass of the part of a metal rod that lies between its left
end and a point meters to the right is kg. Find the linear
density (see Example 2) when is (a) 1 m, (b) 2 m, and 
(c) 3 m. Where is the density the highest? The lowest?

18. If a tank holds 5000 gallons of water, which drains from the
bottom of the tank in 40 minutes, then TorricelliÕs Law gives
the volume of water remaining in the tank after minutes as

Find the rate at which water is draining from the tank after 
(a) 5 min, (b) 10 min, (c) 20 min, and (d) 40 min. At what time
is the water ßowing out the fastest? The slowest? Summarize
your Þndings.

The quantity of charge in coulombs (C) that has passed
through a point in a wire up to time (measured in seconds) ist

Q19.

0 � t � 40V � 5000	1 �
t

40

2

tV

x
3x2x

r � 5
rV

r
rV

� 10� 6 mr
V � 4

3  r 3

r
r�S � 4 r 2�

15.

� r� A
� r

r

r � 2

rr

1Ð6 |||| A particle moves according to a law of motion ,
, where is measured in seconds and in feet.

(a) Find the velocity at time .
(b) What is the velocity after 3 s?
(c) When is the particle at rest?
(d) When is the particle moving in the positive direction?
(e) Find the total distance traveled during the Þrst 8 s.
(f) Draw a diagram like Figure 2 to illustrate the motion of the

particle.

1. 2.

3. 4.

5. 6.

7. The position function of a particle is given by

When does the particle reach a velocity of ?

8. If a ball is given a push so that it has an initial velocity of
down a certain inclined plane, then the distance it has

rolled after seconds is .
(a) Find the velocity after 2 s.
(b) How long does it take for the velocity to reach ?

9. If a stone is thrown vertically upward from the surface of the
moon with a velocity of , its height (in meters) after 

seconds is .
(a) What is the velocity of the stone after 3 s?
(b) What is the velocity of the stone after it has risen 25 m?

10. If a ball is thrown vertically upward with a velocity of 
80 ft� s, then its height after seconds is .
(a) What is the maximum height reached by the ball?
(b) What is the velocity of the ball when it is 96 ft above the

ground on its way up? On its way down?

11. (a) A company makes computer chips from square wafers 
of silicon. It wants to keep the side length of a wafer very
close to 15 mm and it wants to know how the area of a
wafer changes when the side length x changes. Find 
and explain its meaning in this situation.

(b) Show that the rate of change of the area of a square with
respect to its side length is half its perimeter. Try to explain
geometrically why this is true by drawing a square whose
side length x is increased by an amount . How can you
approximate the resulting change in area if is small?

12. (a) Sodium chlorate crystals are easy to grow in the shape of
cubes by allowing a solution of water and sodium chlorate
to evaporate slowly. If V is the volume of such a cube with
side length x, calculate when mm and explain
its meaning.

x � 3dV� dx

� x� A
� x

A��15�
A� x�

s � 80t � 16t 2t

h � 10t � 0.83t2t
10 m� s

35 m� s

s � 5t � 3t2t
5 m� s

5 m� s

s � t 3 � 4.5t 2 � 7t� � � � t � 0
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t
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|||| 3.3 Exercises
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Proof of the Chain RuleSuppose is differentiable at a and is differen-
tiable at . If is an increment in x and and are the corresponding incre-
ments in u and y, then we can use Equation 7 to write

where as . Similarly

where as . If we now substitute the expression for from Equation 8
into Equation 9, we get

so

As , Equation 8 shows that . So both and as .
Therefore

This proves the Chain Rule.

 � f ��b�� ��a� � f �� � �a�� � ��a�

 
dy
dx

� lim 
� x � 0

 
� y
� x

� lim 
� x � 0

 � f ��b� � � 2� � � ��a� � � 1�

� x � 0� 2 � 0� 1 � 0� u � 0� x � 0

� y
� x

� � f ��b� � � 2� � � ��a� � � 1�

� y � � f ��b� � � 2� � � ��a� � � 1� � x

� u� u � 0� 2 � 0

� y � f ��b� � u � � 2 � u � � f ��b� � � 2� � u9

� x � 0� 1 � 0

� u � � ��a� � x � � 1 � x � � � ��a� � � 1� � x8

� y� u� xb � � �a�
y � f �u�u � � � x�

21. 22.

24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

38.

39. 40.

41. 42.

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

y � 23x2

y � sin(tan � sin x)

y � � x � � x � � x y � � x � � x

y � sin�sin�sin x��y � cot2�sin 	 �37.

y � ek tan � xy � sec2x � tan2x

y � x sin 
1
x

y � �1 � cos2x�6

y � tan2�3	 �y � 2sin 
 x

y �
sin2x
cos x

y � tan�cos x�

y �
e2u

eu � e� uy �
r

� r 2 � 1

G� y� �
� y � 1�4

� y2 � 2y�5F�� � � 	 � � 1
� � 1

y � 101� x 2

y � excosx23.

y � e� 5x cos 3xy � xe� x 21Ð6 |||| Write the composite function in the form . 
[Identify the inner function and the outer function

.] Then Þnd the derivative .

1. 2.

3. 4.

6.

7Ð42|||| Find the derivative of the function.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17.

18.

19. 20. y � � x2 � 1� �3 x2 � 2y � �2x � 5�4�8x2 � 5� � 3

h� t� � � t 4 � 1�3� t 3 � 1�4

� � x� � �1 � 4x�5�3 � x � x2�8

y � 4 sec 5xy � e� mx

y � a3 � cos3xy � cos�a3 � x3�

f � t� � �3 1 � tan t� � t� �
1

�t 4 � 1�3

f � x� � �1 � x4�2
 3F� x� � �4 1 � 2x � x3

F� x� � � x2 � x � 1�3F� x� � � x3 � 4x�7

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

y � sin�ex�y � e� x5.

y � tan�sin x�y � �1 � x2�10

y � � 4 � 3xy � sin 4x

dy
 dxy � f �u�
u � � � x�

f � � � x��

|||| 3.5 Exercises
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43Ð46|||| Find an equation of the tangent line to the curve at the
given point.

43. , 44. ,

45. , 46.

(a) Find an equation of the tangent line to the curve
at the point .

� (b) Illustrate part (a) by graphing the curve and the tangent line
on the same screen.

48. (a) The curve is called a bullet-nose curve.
Find an equation of the tangent line to this curve at the
point .

� (b) Illustrate part (a) by graphing the curve and the tangent line
on the same screen.

49. (a) If , Þnd .
� (b) Check to see that your answer to part (a) is reasonable by

comparing the graphs of and .

� 50. The function , , arises in
applications to frequency modulation (FM) synthesis.
(a) Use a graph of produced by a graphing device to make a

rough sketch of the graph of .
(b) Calculate and use this expression, with a graphing

device, to graph . Compare with your sketch in part (a).

Find all points on the graph of the function

at which the tangent line is horizontal.

52. Find the -coordinates of all points on the curve
at which the tangent line is horizontal.

Suppose that and , ,
, and . Find .

54. Suppose that and , , ,
, , and . Find .

55. A table of values for , , , and is given.

(a) If , Þnd .
(b) If , Þnd .

56. Let and be the functions in Exercise 55.
(a) If , Þnd .
(b) If , Þnd .G��3�G� x� � � � � � x��

F��2�F� x� � f � f � x��
�f

H��1�H� x� � � � f � x��
h��1�h� x� � f � � � x��

� �f ��f

w��0�v��2� � 6v��0� � 5u��2� � 4
u��0� � 3v�0� � 2u�0� � 1w � u � v

F��3�f ��6� � 7f ��3� � 2
� ��3� � 4� �3� � 6F� x� � f � � � x��53.

y � sin 2x � 2 sin x
x

f � x� � 2 sin x � sin2x

51.

f �
f � � x�

f �
f

0 � x � 
f � x� � sin� x � sin 2x�

f �f

f �� x�f � x� � � 1 � x2
 x

�1, 1�

y � � x � 
 � 2 � x2

�0, 1�y � 2
� 1 � e� x�
47.

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

�1, 1
 e�y � x2e� x� 
 , 0�y � sin�sin x�

�0, 0�y � sin x � sin2x�0, 1�y � �1 � 2x�10

If and are the functions whose graphs are shown, let
, , and . Find each

derivative, if it exists. If it does not exist, explain why.
(a) (b) (c)

58. If is the function whose graph is shown, let 
and . Use the graph of to estimate the value of
each derivative.
(a) (b)

59. Use the table to estimate the value of , where
.

60. If , use the table to estimate the value of .

Suppose is differentiable on . Let and
. Find expressions for (a) and (b) .

62. Suppose is differentiable on and is a real number. Let
and . Find expressions for

(a) and (b) .

63. Suppose is a function such that for . Find
an expression for the derivative of each function.
(a) (b)
(c) (d)

64. Let , where , , ,
, and . Find .r � �1�f � �3� � 6� � �2� � 5

h��1� � 4� �2� � 3h�1� � 2r � x� � f � � �h� x���

G� x� � L�1
 x�F� x� � �L� x�� 4

� � x� � L�4x�f � x� � L� x4�

x � 0L�� x� � 1
 xL

G�� x�F�� x�
G� x� � � f � x�� �F� x� � f � x� �

��f

G�� x�F�� x�G� x� � e f � x�
F� x� � f �ex��f61.

� ��1�� � x� � f � f � x��

h� x� � f � � � x��
h��0.5�

x

y

� �

���

1

� ��2�h��2�

f� � x� � f � x2�
h� x� � f � f � x��f

x

y

�

�

�
1

�

w��1�v��1�u��1�

w� x� � � � � � x��v� x� � � � f � x��u� x� � f � � � x��
�f57.

x

1 3 2 4 6
2 1 8 5 7
3 7 2 7 9

� �� x�f �� x�� � x�f � x�

x 0 0.1 0.2 0.3 0.4 0.5 0.6

12.6 14.8 18.4 23.0 25.9 27.5 29.1

0.58 0.40 0.37 0.26 0.17 0.10 0.05� � x�

f � x�

x 0.0 0.5 1.0 1.5 2.0 2.5

1.7 1.8 2.0 2.4 3.1 4.4f � x�



� (c) Graph for the case , with measured in
hours. Use the graph to estimate how long it will take for
80% of the population to hear the rumor.

� 71. The ßash unit on a camera operates by storing charge on a
capacitor and releasing it suddenly when the ßash is set off.
The following data describe the charge remaining on the
capacitor (measured in microcoulombs,  C) at time (mea-
sured in seconds).

(a) Use a graphing calculator or computer to Þnd an exponen-
tial model for the charge. (See Section 1.5.)

(b) The derivative represents the electric current
(measured in microamperes,  A) ßowing from the capaci-
tor to the ßash bulb. Use part (a) to estimate the current
when s. Compare with the result of Example 2 in
Section 2.1.

� 72. The table gives the U.S. population from 1790 to 1860.

(a) Use a graphing calculator or computer to Þt an exponential
function to the data. Graph the data points and the exponen-
tial model. How good is the Þt?

(b) Estimate the rates of population growth in 1800 and 1850
by averaging slopes of secant lines.

(c) Use the exponential model in part (a) to estimate the rates
of growth in 1800 and 1850. Compare these estimates with
the ones in part (b).

(d) Use the exponential model to predict the population in
1870. Compare with the actual population of 38,558,000.
Can you explain the discrepancy?

73. Computer algebra systems have commands that differentiate
functions, but the form of the answer may not be convenient
and so further commands may be necessary to simplify the
answer.
(a) Use a CAS to Þnd the derivative in Example 5 and compare

with the answer in that example. Then use the simplify
command and compare again.

(b) Use a CAS to Þnd the derivative in Example 6. What hap-
pens if you use the simplify command? What happens if
you use the factor command? Which form of the answer
would be best for locating horizontal tangents?

CAS

t � 0.04

Q��t�

t
Q

tk � 0.5a � 10pThe displacement of a particle on a vibrating string is given by
the equation

where is measured in centimeters and in seconds. Find the
velocity of the particle after seconds.

66. If the equation of motion of a particle is given by
, the particle is said to undergo simple 

harmonic motion.
(a) Find the velocity of the particle at time .
(b) When is the velocity 0?

67. A Cepheid variable star is a star whose brightness alternately
increases and decreases. The most easily visible such star is
Delta Cephei, for which the interval between times of maxi-
mum brightness is 5.4 days. The average brightness of this star
is 4.0 and its brightness changes by . In view of these
data, the brightness of Delta Cephei at time , where is mea-
sured in days, has been modeled by the function

(a) Find the rate of change of the brightness after days.
(b) Find, correct to two decimal places, the rate of increase

after one day.

68. In Example 4 in Section 1.3 we arrived at a model for the
length of daylight (in hours) in Philadelphia on the th day of
the year:

Use this model to compare how the number of hours of day-
light is increasing in Philadelphia on March 21 and May 21.

� 69. The motion of a spring that is subject to a frictional force or 
a damping force (such as a shock absorber in a car) is often
modeled by the product of an exponential function and a sine
or cosine function. Suppose the equation of motion of a point
on such a spring is

where is measured in centimeters and in seconds. Find the
velocity after seconds and graph both the position and veloc-
ity functions for .

70. Under certain circumstances a rumor spreads according to the
equation

where is the proportion of the population that knows the
rumor at time and and are positive constants. [In Sec-
tion 9.5 we will see that this is a reasonable equation for .]
(a) Find .
(b) Find the rate of spread of the rumor.

lim t �  �  p�t�
p�t�

kat
p�t�

p�t� �
1

1 � ae� k t

0 � t � 2
t

ts

s�t� � 2e� 1.5t sin 2
 t

L�t� � 12 � 2.8 sin� 2

365

�t � 80�
t

t

B�t� � 4.0 � 0.35 sin�2
 t
 5.4�

tt
� 0.35

t

s � A cos�� t � � �

t
ts

s�t� � 10 � 1
4 sin�10
 t�

65.
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Year Population Year Population

1790 3,929,000 1830 12,861,000
1800 5,308,000 1840 17,063,000
1810 7,240,000 1850 23,192,000
1820 9,639,000 1860 31,443,000

t 0.00 0.02 0.04 0.06 0.08 0.10

Q 100.00 81.87 67.03 54.88 44.93 36.76
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74. (a) Use a CAS to differentiate the function

and to simplify the result.
(b) Where does the graph of have horizontal tangents?
(c) Graph and on the same screen. Are the graphs consis-

tent with your answer to part (b)?

75. Use the Chain Rule to prove the following.
(a) The derivative of an even function is an odd function.
(b) The derivative of an odd function is an even function.

76. Use the Chain Rule and the Product Rule to give an alternative
proof of the Quotient Rule.
[Hint: Write .]

77. (a) If is a positive integer, prove that

(b) Find a formula for the derivative of

that is similar to the one in part (a).

78. Suppose is a curve that always lies above the -axis
and never has a horizontal tangent, where is differentiablef

xy � f � x�

y � cosnx cos nx

d
dx

 �sinnx cos nx� � n sinn� 1x cos�n � 1�x

n

f � x�
 � � x� � f � x�� � � x�� � 1

f �f
f

f � x� � 	 x4 � x � 1
x4 � x � 1

CAS everywhere. For what value of is the rate of change of 
with respect to eighty times the rate of change of with
respect to ?

Use the Chain Rule to show that if is measured in degrees,
then

(This gives one reason for the convention that radian measure
is always used when dealing with trigonometric functions in
calculus: The differentiation formulas would not be as simple if
we used degree measure.)

80. (a) Write and use the Chain Rule to show that

(b) If , Þnd and sketch the graphs of 
and . Where is not differentiable?

(c) If , Þnd and sketch the graphs of 
and . Where is not differentiable?

81. Suppose and are polynomials and is a positive integer.
Use mathematical induction to prove that the derivative of
the rational function can be written as a
rational function with denominator . In other words,
there is a polynomial such that .f �n�� x� � An� x�
� Q� x�� n� 1An

�Q� x�� n� 1
f � x� � P� x�
 Q� x�

nth
nQP

�� �
�� �� x�� � x� � sin � x �

ff �
ff �� x�f � x� � � sin x �

d
dx

 � x � �
x

� x �

� x � � � x2

d
d	

 �sin 	 � �



180
 cos 	

	79.

x
yx

y5y

|||| 3.6 Implicit Differentiation

The functions that we have met so far can be described by expressing one variable explic-
itly in terms of another variableÑ for example,

or

or, in general, . Some functions, however, are deÞned implicitly by a relation
between and such as

or

In some cases it is possible to solve such an equation for as an explicit function (or sev-
eral functions) of . For instance, if we solve Equation 1 for , we get , 
so two of the functions determined by the implicit Equation l are and

. The graphs of and are the upper and lower semicircles of the 
circle . (See Figure 1.)x2 � y2 � 25

�f� � x� � � � 25 � x2

f � x� � � 25 � x2

y � � � 25 � x2yx
y

x3 � y3 � 6xy2

x2 � y2 � 251

yx
y � f � x�

y � x sin xy � � x3 � 1
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ItÕs not easy to solve Equation 2 for explicitly as a function of by hand. (A computer
algebra system has no trouble, but the expressions it obtains are very complicated.)
Nonetheless, (2) is the equation of a curve called the folium of Descartesshown in 
Figure 2 and it implicitly deÞnes as several functions of . The graphs of three such func-
tions are shown in Figure 3. When we say that is a function deÞned implicitly by Equa-
tion 2, we mean that the equation

is true for all values of in the domain of .

Fortunately, we donÕt need to solve an equation for in terms of in order to Þnd the
derivative of . Instead we can use the method of implicit differentiation . This consists of
differentiating both sides of the equation with respect to and then solving the resulting
equation for . In the examples and exercises of this section it is always assumed that the
given equation determines implicitly as a differentiable function of so that the method
of implicit differentiation can be applied.

EXAMPLE 1

(a) If , Þnd .

(b) Find an equation of the tangent to the circle at the point .

SOLUTION 1
(a) Differentiate both sides of the equation :

 
d
dx

 � x2� �
d
dx

 � y2� � 0

 
d
dx

 � x2 � y2� �
d
dx

 �25�

x2 � y2 � 25

�3, 4�x2 � y2 � 25

dy
dx

x2 � y2 � 25

xy
y�

x
y

xy

	

�

�


�� �	�

FIGURE 2The folium of Descartes

	

�

�

FIGURE 3Graphs of three functions defined by the folium of Descartes
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�

fx

x3 � � f � x�� 3 � 6x f � x�

f
xy

xy

FIGURE 1
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�

� 	

�

(c) ��� ������� ����(b) ��������� ����(a) ������
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Remembering that is a function of and using the Chain Rule, we have 

Thus

Now we solve this equation for :

(b) At the point we have and , so

An equation of the tangent to the circle at is therefore

SOLUTION 2
(b) Solving the equation , we get . The point lies on
the upper semicircle and so we consider the function .
Differentiating using the Chain Rule, we have

So

and, as in Solution 1, an equation of the tangent is .

NOTE 1�� Example 1 illustrates that even when it is possible to solve an equation explic-
itly for in terms of , it may be easier to use implicit differentiation.

NOTE 2�� The expression gives the derivative in terms of both and . It
is correct no matter which function is determined by the given equation. For instance, for

we have

whereas for we have

dy
dx

� �
x
y

� �
x

� � 25 � x2
�

x
� 25 � x2

y � � � x� � � � 25 � x2

dy
dx

� �
x
y

� �
x

� 25 � x2

y � f � x� � � 25 � x2

y
yxdy
 dx � � x
 y

xy

3x � 4y � 25

 f ��3� � �
3

� 25 � 32
� �

3
4

 � 1
2 �25 � x2� � 1
 2� � 2x� � �

x
� 25 � x2

 f �� x� � 1
2 �25 � x2� � 1
 2 

d
dx

 �25 � x2�

f
f � x� � � 25 � x2y � � 25 � x2

�3, 4�y � � � 25 � x2x2 � y2 � 25

3x � 4y � 25ory � 4 � � 3
4 � x � 3�

�3, 4�

dy
dx

� �
3
4

y � 4x � 3�3, 4�

dy
dx

� �
x
y

dy
 dx

2x � 2y 
dy
dx

� 0

d
dx

 � y2� �
d
dy

 � y2� 
dy
dx

� 2y 
dy
dx

xy
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EXAMPLE 2
(a) Find if .
(b) Find the tangent to the folium of Descartes at the point .
(c) At what points on the curve is the tangent line horizontal? 

SOLUTION
(a) Differentiating both sides of with respect to , regarding as a func-
tion of , and using the Chain Rule on the term and the Product Rule on the term,
we get

or

We now solve for :

(b) When ,

and a glance at Figure 4 conÞrms that this is a reasonable value for the slope at . So
an equation of the tangent to the folium at is

or

(c) The tangent line is horizontal if . Using the expression for from part (a), 
we see that when . Substituting in the equation of the curve,
we get

which simpliÞes to . So either or . If , then
. Thus, the tangent is horizontal at (0, 0) and at , which 

is approximately (2.5198, 3.1748). Looking at Figure 5, we see that our answer is 
reasonable.

NOTE 3�� There is a formula for the three roots of a cubic equation that is like the qua-
dratic formula but much more complicated. If we use this formula (or a computer algebra
system) to solve the equation for in terms of , we get three functions
determined by the equation: 

and

(These are the three functions whose graphs are shown in Figure 3.) You can see that the
method of implicit differentiation saves an enormous amount of work in cases such as this.

y � 1
2[� f � x� � � � 3(�3 � 1

2 x3 � � 1
4 x6 � 8x3 � �3 � 1

2 x3 � � 1
4 x6 � 8x3)]

y � f � x� � �3 � 1
2 x3 � � 1

4 x6 � 8x3 � �3 � 1
2 x3 � � 1

4 x6 � 8x3

xyx3 � y3 � 6xy

�24
 3, 25
 3�y � 1
2 �28
 3� � 25
 3

x � 161
 3 � 24
 3x3 � 16x � 0x6 � 16x3

x3 � ( 1
2 x2)3 � 6x(1

2 x2)

y � 1
2 x22y � x2 � 0y� � 0

y�y� � 0

x � y � 6y � 3 � � 1� x � 3�

�3, 3�
�3, 3�

y� �
2 � 3 � 32

32 � 2 � 3
� � 1 

x � y � 3

 y� �
2y � x2

y2 � 2x

 � y2 � 2x�y� � 2y � x2

 y2y� � 2xy� � 2y � x2y�

 x2 � y2y� � 2y � 2xy�

 3x2 � 3y2y� � 6y � 6xy�

6xyy3x
yxx3 � y3 � 6xy

�3, 3�x3 � y3 � 6xy
x3 � y3 � 6xyy�

�

� �

FIGURE 5

FIGURE 4

�

�
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|||| The Norwegian mathematician Niels Abel
proved in 1824 that no general formula can be
given for the roots of a Þfth-degree equation in
terms of radicals. Later the French mathemati-
cian Evariste Galois proved that it is impossible
to Þnd a general formula for the roots of an 
th-degree equation (in terms of algebraic 

operations on the coefÞcients) if is any integer
larger than 4.

n
n
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Moreover, implicit differentiation works just as easily for equations such as

for which it is impossibleto Þnd a similar expression for in terms of .

EXAMPLE 3Find if .

SOLUTIONDifferentiating implicitly with respect to and remembering that is a function
of , we get

(Note that we have used the Chain Rule on the left side and the Product Rule and Chain
Rule on the right side.) If we collect the terms that involve , we get

So

Figure 6, drawn with the implicit-plotting command of a computer algebra system,
shows part of the curve . As a check on our calculation, notice that

when and it appears from the graph that the slope is approximately
at the origin.

Orthogonal Trajectories

Two curves are called orthogonal if at each point of intersection their tangent lines are
perpendicular. In the next example we use implicit differentiation to show that two fami-
lies of curves are orthogonal trajectories of each other; that is, every curve in one family
is orthogonal to every curve in the other family. Orthogonal families arise in several areas
of physics. For example, the lines of force in an electrostatic Þeld are orthogonal to the
lines of constant potential. In thermodynamics, the isotherms (curves of equal tempera-
ture) are orthogonal to the ßow lines of heat. In aerodynamics, the streamlines (curves of
direction of airßow) are orthogonal trajectories of the velocity-equipotential curves.

EXAMPLE 4The equation

represents a family of hyperbolas. (Different values of the constant give different
hyperbolas. See Figure 7.) The equation

represents another family of hyperbolas with asymptotes . Show that every curve
in the family (3) is orthogonal to every curve in the family (4); that is, the families are
orthogonal trajectories of each other.

SOLUTIONImplicit differentiation of Equation 3 gives

so
dy
dx

� �
 y
x

x 
dy
dx

� y � 05

y � � x

k � 0x2 � y2 � k4

c

c � 0 xy � c3

� 1
x � y � 0y� � � 1

sin� x � y� � y2 cos x

y� �
 y2 sin x � cos� x � y�
2y cos x � cos� x � y�

cos� x � y� � y2 sin x � �2y cos x�y� � cos� x � y� � y�

y�

cos� x � y� � �1 � y�� � 2yy� cos x � y2�� sin x�

x
yx

sin� x � y� � y2 cos xy�

xy

y5 � 3x2y2 � 5x4 � 12

FIGURE 6

�

��

�� �

FIGURE 7

� 	

�

������

	���
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Implicit differentiation of Equation 4 gives

From (5) and (6) we see that at any point of intersection of curves from each family, the
slopes of the tangents are negative reciprocals of each other. Therefore, the curves inter-
sect at right angles; that is, they are orthogonal.

Derivatives of Inverse Trigonometric Functions

The inverse trigonometric functions were reviewed in Section 1.6. We discussed their con-
tinuity in Section 2.5 and their asymptotes in Section 2.6. Here we use implicit differenti-
ation to Þnd the derivatives of the inverse trigonometric functions, assuming that these
functions are differentiable. [In fact, if is any one-to-one differentiable function, it can
be proved that its inverse function is also differentiable, except where its tangents are
vertical. This is plausible because the graph of a differentiable function has no corner or
kink and so if we reßect it about , the graph of its inverse function also has no cor-
ner or kink.]

Recall the deÞnition of the arcsine function:

Differentiating implicitly with respect to x, we obtain

Now , since , so

Therefore

The formula for the derivative of the arctangent function is derived in a similar way. If
, then . Differentiating this latter equation implicitly with respect to 

, we have

d
dx

 �tan� 1x� �
1

1 � x2

 
dy
dx

�
1

sec2y
�

1
1 � tan2y

�
1

1 � x2

 sec2y 
dy
dx

� 1

x
tan y � xy � tan� 1x

d
dx

 �sin� 1x� �
1

� 1 � x2

dy
dx

�
1

cos y
�

1
� 1 � x2

cos y � � 1 � sin2y � � 1 � x2

� � � 2 � y � � � 2cos y � 0

dy
dx

�
1

cos y
orcos y 

dy
dx

� 1

sin y � x

�
�
2

� y �
�
2

andsin y � xmeansy � sin� 1x

y � x

f � 1
f

dy
dx

�
x
y

so2x � 2y 
dy
dx

� 06

|||| The same method can be used to Þnd a 
formula for the derivative of anyinverse function.
See Exercise 67.

|||| Figure 8 shows the graph of 
and its derivative . 
Notice that is increasing and is always
positive. The fact that as

is reßected in the fact that
as .x � ��f 	� x� � 0

x � ��
tan� 1x � � � � 2

f 	� x�f
f 	� x� � 1�� 1 � x2�

f � x� � tan� 1x

���

����

�� �

�� tan	
��
�� �

��

FIGURE 8
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EXAMPLE 5Differentiate (a) and (b) .

SOLUTION

(a)

(b)

The inverse trigonometric functions that occur most frequently are the ones that we
have just discussed. The derivatives of the remaining four are given in the following table.
The proofs of the formulas are left as exercises.

Derivatives of Inverse Trigonometric Functions

 
d
dx

 �tan� 1x� �
1

1 � x2  � � � �
d
dx

 �cot� 1x� � �
1

1 � x2

 
d
dx

 �cos� 1x� � �
1

� 1 � x2
 � � � �

d
dx

 �sec� 1x� �
1

x� x2 � 1

 
d
dx

 �sin� 1x� �
1

� 1 � x2
 � � � �

d
dx

 �csc� 1x� � �
1

x� x2 � 1

 �
� x

2�1 � x�
� arctan� x

 f 	� x� � x 
1

1 � (� x)2  ( 1
2 x� 1� 2) � arctan� x

 � �
1

�sin� 1x�2� 1 � x2

 
dy
dx

�
d
dx

 �sin� 1x� � 1 � � �sin� 1x� � 2 
d
dx

 �sin� 1x�

f � x� � x arctan� xy �
1

sin� 1x

|||| The formulas for the derivatives of 
and depend on the deÞnitions that are
used for these functions. See Exercise 54.

sec� 1x
csc� 1x

|||| Recall that is an alternative 
notation for .tan� 1x

arctan x

11. 12.

13. 14.

16.

17. 18.

19. 20.

21. If and , Þnd .

22. If and , Þnd .

23Ð24|||| Regard as the independent variable and as the depen-
dent variable and use implicit differentiation to Þnd .

23. 24.
�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

� x2 � y2�2 � ax2yy4 � x2y2 � yx4 � y � 1

dx� dy
xy

� 	�1�� �1� � 0� � x� � x sin � � x� � x2

f 	 �1�f �1� � 21 � f � x� � x2 � f � x�� 3 � 0

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

sin x � cos y � sin x cos yxy � cot� xy�

tan� x � y� �
y

1 � x2� xy � 1 � x2y

� x � y � 1 � x2y2ex2y � x � y15.

y sin� x2� � x sin� y2�4 cos x sin y � 1

1 � x � sin� xy2�x2y2 � x sin y � 41Ð4 ||||

(a) Find by implicit differentiation.
(b) Solve the equation explicitly for and differentiate to get in

terms of .
(c) Check that your solutions to parts (a) and (b) are consistent by

substituting the expression for into your solution for part (a).

1. 2.

3. 4.

5Ð20|||| Find by implicit differentiation.

5. 6.

7. 8.

9. 10. y5 � x2y3 � 1 � yex2
x2y � xy2 � 3x

x2 � 2xy � y3 � cx3 � x2y � 4y2 � 6

x2 � y2 � 1x2 � y2 � 1

dy� dx

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

� x � � y � 4
1
x

�
1
y

� 1

4x2 � 9y2 � 36xy � 2x � 3x2 � 4

y

x
y	y

y	

|||| 3.6 Exercises



25Ð30|||| Use implicit differentiation to Þnd an equation of the 
tangent line to the curve at the given point.

25. , (ellipse)

26. , (hyperbola)

28.

(cardioid) (astroid)

29. 30.
(3, 1) (0, � 2)
(lemniscate) (devilÕs curve)

31. (a) The curve with equation is called a
kampyle of Eudoxus. Find an equation of the tangent line
to this curve at the point .

� (b) Illustrate part (a) by graphing the curve and the tangent line
on a common screen. (If your graphing device will graph
implicitly deÞned curves, then use that capability. If not,
you can still graph this curve by graphing its upper and
lower halves separately.)

32. (a) The curve with equation is called the
Tschirnhausen cubic. Find an equation of the tangent line
to this curve at the point .

(b) At what points does this curve have a horizontal tangent?
� (c) Illustrate parts (a) and (b) by graphing the curve and the

tangent lines on a common screen.

33. Fanciful shapes can be created by using the implicit plotting
capabilities of computer algebra systems.
(a) Graph the curve with equation

At how many points does this curve have horizontal
tangents? Estimate the -coordinates of these points.

(b) Find equations of the tangent lines at the points (0, 1) 
and (0, 2).

(c) Find the exact -coordinates of the points in part (a).
(d) Create even more fanciful curves by modifying the

equation in part (a).

x

x

y� y2 � 1�� y � 2� � x� x � 1�� x � 2�

CAS

�1, � 2�

y2 � x3 � 3x2

�1, 2�

y2 � 5x4 � x2

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

�

�

x

y

�

y2� y2 � 4� � x2� x2 � 5�2� x2 � y2�2 � 25� x2 � y2�

x

y

� ��

�

(� 3� 3, 1)(0, 12)
x2� 3 � y2� 3 � 4x2 � y2 � �2x2 � 2y2 � x�227.

�1, 2�x2 � 2xy � y2 � x � 2

�1, 1�x2 � xy � y2 � 3
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34. (a) The curve with equation

has been likened to a bouncing wagon. Use a computer
algebra system to graph this curve and discover why.

(b) At how many points does this curve have horizontal 
tangent lines? Find the -coordinates of these points.

Find the points on the lemniscate in Exercise 29 where the 
tangent is horizontal.

36. Show by implicit differentiation that the tangent to the ellipse

at the point is

37. Find an equation of the tangent line to the hyperbola

at the point .

38. Show that the sum of the - and -intercepts of any tangent
line to the curve is equal to .

39. Show, using implicit differentiation, that any tangent line at 
a point to a circle with center is perpendicular to the 
radius .

40. The Power Rule can be proved using implicit differentiation 
for the case where is a rational number, , and

is assumed beforehand to be a differentiable
function. If , then . Use implicit differentiation
to show that

41Ð50|||| Find the derivative of the function. Simplify where 
possible.

41. 42.

44.

45. 46.

47.

48.

49. 50.

� 51Ð52|||| Find . Check that your answer is reasonable by com-
paring the graphs of and .

51. 52.
�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

f � x� � x arcsin�1 � x2�f � x� � ex � x2 arctan x

f 	f
f 	� x�

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

y � arctan�cos 
 �y � cos� 1�e2x�

y � x cos� 1x � � 1 � x2

h� t� � cot� 1� t� � cot� 1�1� t�

y � tan� 1(x � � 1 � x2)H� x� � �1 � x2�  arctan x

h� x� � � 1 � x2 arcsin xy � sin� 1�2x � 1�43.

y � � tan� 1xy � tan� 1� x

y	 �
 p
q

 x� p� q�� 1

yq � xpy � xp� q
y � f � x� � xn

n � p� qn

OP
OP

c� x � � y � � c
yx

� x0, y0�

x2

a2 �
 y2

b2 � 1

x0x
a2 �

 y0y
b2 � 1

� x0, y0�

x2

a2 �
 y2

b2 � 1

35.

x

2y3 � y2 � y5 � x4 � 2x3 � x2

CAS



53. Prove the formula for by the same method as 
for .

54. (a) One way of deÞning is to say that
and or

. Show that, with this deÞnition,

(b) Another way of deÞning that is sometimes used is 
to say that and ,

. Show that, with this deÞnition,

55Ð56|||| Show that the given curves are orthogonal.

55.

56.

Contour lines on a map of a hilly region are curves that join
points with the same elevation. A ball rolling down a hill
follows a curve of steepest descent, which is orthogonal to the
contour lines. Given the contour map of a hill in the Þgure,
sketch the paths of balls that start at positions and .

58. TV meteorologists often present maps showing pressure fronts.
Such maps display isobarsÑ curves along which the air pres-
sure is constant. Consider the family of isobars shown in the
Þgure. Sketch several members of the family of orthogonal 
trajectories of the isobars. Given the fact that wind blows from
regions of high air pressure to regions of low air pressure, what
does the orthogonal family represent?

���
���

���

���

���

���

�

�

BA

57.

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

4x2 � 9y2 � 72x2 � y2 � 5, 

x � y22x2 � y2 � 3, 

d
dx

�sec� 1x� �
1

� x � � x2 � 1

y � 0
0 � y � �y � sec� 1x� �� � sec y � x

sec� 1x

d
dx

 �sec� 1x� �
1

x� x2 � 1

� � y � 3� � 2
0 � y � � � 2y � sec� 1x� �� � sec y � x

sec� 1x

�d� dx�� sin� 1x�
�d� dx�� cos� 1x� 59Ð62|||| Show that the given families of curves are orthogonal 

trajectories of each other. Sketch both families of curves on the
same axes.

59.

60.

62.

The equation represents a Òrotated ellipse,Ó
that is, an ellipse whose axes are not parallel to the coordinate
axes. Find the points at which this ellipse crosses the -axis
and show that the tangent lines at these points are parallel.

64. (a) Where does the normal line to the ellipse
at the point intersect the ellipse

a second time? (See page 192 for the deÞnition of a normal
line.)

� (b) Illustrate part (a) by graphing the ellipse and the normal
line.

65. Find all points on the curve where the slope of
the tangent line is .

66. Find equations of both the tangent lines to the ellipse
that pass through the point .

(a) Suppose is a one-to-one differentiable function and its
inverse function is also differentiable. Use implicit dif-
ferentiation to show that

provided that the denominator is not 0.
(b) If and , Þnd .

68. (a) Show that is one-to-one.
(b) What is the value of ?
(c) Use the formula from Exercise 67(a) to Þnd .

69. The Þgure shows a lamp located three units to the right of 
the -axis and a shadow created by the elliptical region

. If the point is on the edge of the
shadow, how far above the -axis is the lamp located?

?

x

y

����

�����

x
�� 5, 0�x2 � 4y2 � 5

y

� f � 1� 	�1�
f � 1�1�

f � x� � 2x � cos x

� f � 1� 	�5�f 	�4� � 2
3f �4� � 5

� f � 1� 	� x� �
1

 f 	� f � 1� x��

f � 1
f67.

�12, 3�x2 � 4y2 � 36

� 1
x2y2 � xy � 2

�� 1, 1�x2 � xy � y2 � 3

x

x2 � xy � y2 � 363.

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

x2 � 3y2 � by � ax3, 

x2 � 2y2 � ky � cx2, 61.

x2 � y2 � byx2 � y2 � ax, 

ax � by � 0x2 � y2 � r 2, 
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|||| 3.7 Higher Derivatives

If is a differentiable function, then its derivative is also a function, so may have a
derivative of its own, denoted by . This new function is called the second
derivative of because it is the derivative of the derivative of . Using Leibniz notation,
we write the second derivative of as

Another notation is .

EXAMPLE 1If , Þnd and interpret .

SOLUTIONUsing the Product Rule, we have

To Þnd we differentiate :

The graphs off, , and are shown in Figure 1.
We can interpret as the slope of the curve at the point . In

other words, it is the rate of change of the slope of the original curve .
Notice from Figure 1 that whenever has a horizontal tangent.

Also, is positive when has positive slope and negative when 
has negative slope. So the graphs serve as a check on our calculations.

In general, we can interpret a second derivative as a rate of change of a rate of change.
The most familiar example of this is acceleration,which we deÞne as follows.

If is the position function of an object that moves in a straight line, we know
that its Þrst derivative represents the velocity of the object as a function of time:

The instantaneous rate of change of velocity with respect to time is called theacceleration
of the object. Thus, the acceleration function is the derivative of the velocity function

and is therefore the second derivative of the position function:

a�t� � v	�t� � s��t�

a�t�

v�t� � s	�t� �
ds
dt

v�t�
s � s�t�

y � f 	� x�y � f 	� x�f � � x�
y � f 	� x�f � � x� � 0

y � f � x�
� x, f 	� x��y � f 	� x�f � � x�

f �f 	

 � � x cos x � 2 sin x

 � � x cos x � sin x � sin x

 � � x 
d
dx

 �sin x� � sin x 
d
dx

 �� x� �
d
dx

 �cos x�

 f � � x� �
d
dx

 �� x sin x � cos x�

f 	� x�f � � x�

 � � x sin x � cos x

 f 	� x� � x 
d
dx

 �cos x� � cos x 
d
dx

 � x�

f � � x�f � x� � x cos x

f �� x� � D2f � x�

d
dx

 �dy
dx	 �

d2y
dx2

y � f � x�
ff

f �� f 	 � 	 � f �
f 	f 	f

In Module 3.7A you can see how chang-
ing the coefÞcients of a polynomial 
affects the appearance of the graphs of

, , and .f �f 	f

f
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FIGURE 1
The graphs of ���� cos��  and
its first and second derivatives

�

��

���

�
��

� �
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or, in Leibniz notation,

EXAMPLE 2The position of a particle is given by the equation

where is measured in seconds and in meters.
(a) Find the acceleration at time t. What is the acceleration after 4 s?
(b) Graph the position, velocity, and acceleration functions for .
(c) When is the particle speeding up? When is it slowing down?

SOLUTION
(a) The velocity function is the derivative of the position function:

The acceleration is the derivative of the velocity function:

(b) Figure 2 shows the graphs of s, , and a.

(c) The particle speeds up when the velocity is positive and increasing ( and a are both
positive) and also when the velocity is negative and decreasing ( and a are both nega-
tive). In other words, the particle speeds up when the velocity and acceleration have the
same sign. (The particle is pushed in the same direction it is moving.) From Figure 2 we
see that this happens when and when . The particle slows down when 
and a have opposite signs, that is, when and when . Figure 3 sum-
marizes the motion of the particle.

FIGURE 3

�

�

��

�
�

�

forward

slows
down

backward

speeds
up

slows
down

speeds
up

forward

t�

2 � t � 30 � t � 1
vt  31 � t � 2

v
v

v

 a�4� � 6�4� � 12 � 12 m� s2

 a�t� �
d2s
dt2 �

dv

dt
� 6t � 12

 v�t� �
ds
dt

� 3t2 � 12t � 9

 s � f �t� � t 3 � 6t2 � 9t

0 � t � 5

st

s � f �t� � t 3 � 6t2 � 9t 

a �
dv

dt
�

d2s
dt2

FIGURE 2

��

���

� �

�
�

�

|||| The units for acceleration are meters per
second per second, written as m/s2.

In Module 3.7B you can see an anima-
tion of Figure 3 with an expression for 
that you can choose yourself.

s
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The third derivative is the derivative of the second derivative: . So
can be interpreted as the slope of the curve or as the rate of change of

. If , then alternative notations for the third derivative are

The process can be continued. The fourth derivative is usually denoted by . In gen-
eral, the th derivative of is denoted by and is obtained from by differentiating 
times. If , we write

We can interpret the third derivative physically in the case where the function is the
position function of an object that moves along a straight line. Because

, the third derivative of the position function is the derivative of the accel-
eration function and is called the jerk :

Thus, the jerk j is the rate of change of acceleration. It is aptly named because a large jerk
means a sudden change in acceleration, which causes an abrupt movement in a vehicle.

EXAMPLE 3If

then

and in fact for all .

EXAMPLE 4If , Þnd .

SOLUTION

.

.

.
 f �n�� x� � � � 1�nn�n � 1�� n � 2� � � �  2 � 1 � x� �n� 1�

 f �5�� x� � � 5 � 4 � 3 � 2 � 1 � x� 6 � � 5! x� 6

 f �4�� x� � 4 � 3 � 2 � 1 � x� 5

 f � � x� � � 3 � 2 � 1 � x� 4

 f � � x� � � � 2�� � 1� x� 3 �
2
x3

 f 	� x� � � x� 2 �
� 1
x2

 f � x� �
1
x

� x� 1

f �n�� x�f � x� �
1
x

n � 4y�n� � 0

 y�4� � 0

 y� � 6

 y� � 6x � 12

 y	 � 3x2 � 12x � 5

 y � x3 � 6x2 � 5x � 3

j �
da
dt

�
d3s
dt3

s� � �s� � 	 � a	
s � s�t�

y�n� � f �n�� x� �
dny
dxn � Dnf � x�

y � f � x�
nff �n�fn

f �4�f �

y� � f � � x� �
d
dx

 �d2y
dx2 	 �

d3y
dx3 � D3f � x�

y � f � x�f � � x�
y � f � � x�f � � x�

f � � � f � � 	f �

|||| The factor occurs in the formula for
because we introduce another negative

sign every time we differentiate. Since the suc-
cessive values of are , , , , ,
, . . . , the presence of indicates that the

sign changes with each successive derivative.
�� 1� n1

� 11� 11� 1�� 1�n

f �n�� x�
� � 1� n
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or

Here we have used the factorial symbol for the product of the Þrst positive integers.

The following example shows how to Þnd the second derivative of a function that is
deÞned implicitly.

EXAMPLE 5Find if .

SOLUTIONDifferentiating the equation implicitly with respect to , we get

Solving for gives

To Þnd we differentiate this expression for using the Quotient Rule and remember-
ing that is a function of :

If we now substitute Equation 1 into this expression, we get

But the values of and must satisfy the original equation . So the answer
simpliÞes to

EXAMPLE 6Find .

SOLUTIONThe Þrst few derivatives of are as follows:

 D5 cos x � � sin x

 D4 cos x � cos x

 D3 cos x � sin x

 D2 cos x � � cos x

 D cos x � � sin x

cos x

D27 cos x

y� � �
3x2�16�

y7 � � 48 
x2

y7



44x4

44

xx44
x

4

444
4 4

x

44
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|||| 3.8 Derivatives of Logarithmic Functions

In this section we use implicit differentiation to Þnd the derivatives of the logarithmic func-
tions and, in particular, the natural logarithmic function . We assume
that logarithmic functions are differentiable; this is certainly plausible from their graphs
(see Figure 12 in Section 1.6).

Proof Let . Then

Differentiating this equation implicitly with respect to x, using Formula 3.5.5, we get

and so

If we put in Formula 1, then the factor on the right side becomes 
and we get the formula for the derivative of the natural logarithmic function :

By comparing Formulas 1 and 2, we see one of the main reasons that natural logarithms
(logarithms with base e) are used in calculus: The differentiation formula is simplest when

because .

EXAMPLE 1Differentiate .

SOLUTIONTo use the Chain Rule, we let . Then , so

In general, if we combine Formula 2 with the Chain Rule as in Example 1, we get

or
d
dx

 � ln � � x�� �
� �� x�
� � x�

d
dx

 � ln u� �
1
u

 
du
dx

3

dy
dx

�
dy
du

 
du
dx

�
1
u

 
du
dx

�
1

x3 � 1
 �3x2� �

3x2

x3 � 1

y � ln uu � x3 � 1

y � ln� x3 � 1�

ln e � 1a � e

d
dx

 � ln x� �
1
x

2

loge x � ln x
ln e � 1ln aa � e

dy
dx

�
1

ay ln a
�

1
x ln a

ay� ln a� 
dy
dx

� 1

ay � x

y � loga x

d
dx

 � loga x� �
1

x ln a
1

y � ln xy � loga x

|||| Formula 3.5.5 says that

d
dx

 �ax� � ax  ln a
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EXAMPLE 2Find .

SOLUTIONUsing (3), we have

EXAMPLE 3Differentiate .

SOLUTIONThis time the logarithm is the inner function, so the Chain Rule gives

EXAMPLE 4Differentiate .

SOLUTIONUsing Formula 1 with , we have

EXAMPLE 5Find .

SOLUTION 1

SOLUTION 2If we Þrst simplify the given function using the laws of logarithms, then the
differentiation becomes easier:

(This answer can be left as written, but if we used a common denominator we would see
that it gives the same answer as in Solution 1.)

 �
1

x � 1
�

1
2 � 1

x � 2�
 
d
dx

 ln 
x � 1

� x � 2
�

d
dx

 [ln� x � 1� � 1
2 ln� x � 2�]

 �
x � 2 � 1

2 � x � 1�
� x � 1�� x � 2�

�
x � 5

2� x � 1�� x � 2�

 �
� x � 2
x � 1

 
� x � 2 � 1 � � x � 1�(1

2)� x � 2� � 1� 2

x � 2

 
d
dx

 ln 
x � 1

� x � 2
�

1
x � 1

� x � 2

 
d
dx

 
x � 1

� x � 2

d
dx

 ln 
x � 1

� x � 2

 �
cos x

�2 � sin x� ln 10

 f �� x� �
d
dx

 log10�2 � sin x� �
1

�2 � sin x� ln 10
 

d
dx

 �2 � sin x�

a � 10

f � x� � log10�2 � sin x�

f �� x� � 1
2 � ln x� � 1� 2 

d
dx

 � ln x� �
1

2� ln x
�

1
x

�
1

2x� ln x

f � x� � � ln x

d
dx

 ln�sin x� �
1

sin x
 

d
dx

 �sin x� �
1

sin x
 cos x � cot x

d
dx

 ln�sin x�

��

�

�



 �

FIGURE 1

|||| Figure 1 shows the graph of the function 
of Example 5 together with the graph of its deriv-
ative. It gives a visual check on our calculation.
Notice that is large negative when is
rapidly decreasing.

ff �� x�

f
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EXAMPLE 6Find if .

SOLUTIONSince

it follows that

Thus, for all .

The result of Example 6 is worth remembering:

Logarithmic Differentiation

The calculation of derivatives of complicated functions involving products, quotients, or
powers can often be simpliÞed by taking logarithms. The method used in the following
example is called logarithmic differentiation .

EXAMPLE 7Differentiate .

SOLUTIONWe take logarithms of both sides of the equation and use the Laws of Loga-
rithms to simplify:

Differentiating implicitly with respect to gives

Solving for , we get

Because we have an explicit expression for , we can substitute and write

dy
dx

�
x3� 4� x2 � 1

�3x � 2�5 � 3
4x

�
x

x2 � 1
�

15
3x � 2�

y

  
dy
dx

� y� 3
4x

�
x

x2 � 1
�

15
3x � 2�

dy� dx

1
y

 
dy
dx

�
3
4

�
1
x

�
1
2

�
2x

x2 � 1
� 5 �

3
3x � 2

x

ln y � 3
4 ln x � 1

2 ln� x2 � 1� � 5 ln�3x � 2�

y �
x3� 4� x2 � 1

�3x � 2�5

d
dx

 ln 	 x	 �
1
x

4

x � 0f �� x� � 1� x

1
x

if � x � 0

1
� x

 �� 1� �
1
x

� � � if � x � 0
f �� x� �

f � x� � 
ln x
ln�� x�

if x � 0
if x � 0

f � x� � ln 	 x	f �� x�

|||| If we hadnÕt used logarithmic differentiation
in Example 7, we would have had to use both the
Quotient Rule and the Product Rule. The resulting
calculation would have been horrendous.

|||| Figure 2 shows the graph of the function
in Example 6 and its derivative

. Notice that when is small, the
graph of is steep and so is
large (positive or negative).

f �� x�y � ln 	 x 	
xf �� x� � 1� x

f � x� � ln 	 x 	

�

��

�� �



 �

FIGURE 2
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Steps in Logarithmic Differentiation

1. Take natural logarithms of both sides of an equation and use the Laws
of Logarithms to simplify.

2. Differentiate implicitly with respect to .

3. Solve the resulting equation for .

If for some values of , then is not deÞned, but we can write
and use Equation 4. We illustrate this procedure by proving the general ver-

sion of the Power Rule, as promised in Section 3.1.

The Power RuleIf is any real number and , then

Proof Let and use logarithmic differentiation:

Therefore

Hence

� You should distinguish carefully between the Power Rule , where the
base is variable and the exponent is constant, and the rule for differentiating exponential
functions , where the base is constant and the exponent is variable.

In general there are four cases for exponents and bases:

1. ( and are constants)

2.

3.

4. To Þnd , logarithmic differentiation can be used, as in the next
example.

EXAMPLE 8Differentiate .

SOLUTION 1Using logarithmic differentiation, we have

 y� � y� 1
� x

�
ln x
2� x� � x� x�2 � ln x

2� x �
 
 y�
y

� � x �
1
x

� � ln x� 
1

2� x
 

 ln y � ln x� x � � x ln x

y � x� x

�d� dx�� f � x�� � � x�

d
dx

 �a� � x� � � a� � x�� ln a� � �� x�

d
dx

 � f � x�� b � b� f � x�� b� 1f �� x�

ba
d
dx

 �ab� � 0

�� ax�� � ax ln a�

�� xn�� � nxn� 1�

y� � n 
y
x

� n 
xn

x
� nxn� 1

y�
y

�
n
x

x � 0ln 	 y	 � ln 	 x	n � n ln 	 x	

y � xn

f �� x� � nxn� 1

f � x� � xnn

	 y	 � 	 f � x� 	
ln f � x�xf � x� � 0

y�

x

y � f � x�

|||| If , we can show that for
directly from the deÞnition of a derivative.n � 1

f ��0� � 0x � 0

FIGURE 3

��

�

�

�



 �

|||| Figure 3 illustrates Example 8 by showing
the graphs of and its derivative.f � x� � x� x
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SOLUTION 2Another method is to write :

(as in Solution 1)

The Number e as a Limit

We have shown that if , then . Thus, . We now use this
fact to express the number as a limit.

From the deÞnition of a derivative as a limit, we have

Because , we have

Then, by Theorem 2.5.8 and the continuity of the exponential function, we have

Formula 5 is illustrated by the graph of the function in Figure 4 and a
table of values for small values of . This illustrates the fact that, correct to seven decimal
places,

If we put in Formula 5, then as and so an alternative expres-
sion for is

e � lim
n� �

 �1 �
1
n�

n

6

e
x � 0�n � �n � 1� x

e � 2.7182818

x
y � �1 � x�1� x

e � lim
x� 0

 �1 � x�1� x5

e � e1 � elim x �  0 ln�1� x�1� x
� lim

x �  0
 eln�1� x�1� x

� lim
x �  0

 �1 � x�1� x

lim
x �  0

 ln�1 � x�1� x � 1

f ��1� � 1

 � lim
x� 0

 ln�1 � x�1� x

 � lim
x� 0

 
ln�1 � x� � ln 1

x
� lim

x� 0
 
1
x

 ln�1 � x�

 f ��1� � lim
h� 0

 
 f �1 � h� � f �1�

h
� lim

x� 0
 
 f �1 � x� � f �1�

x

e
f ��1� � 1f �� x� � 1� xf � x� � ln x

� x� x�2 � ln x
2� x �

d
dx

 (x� x) �
d
dx

 (e� x ln x) � e� x ln x 
d
dx

 (� x ln x)

x� x � �eln x� � x

x

0.1 2.59374246
0.01 2.70481383
0.001 2.71692393
0.0001 2.71814593
0.00001 2.71826824
0.000001 2.71828047
0.0000001 2.71828169
0.00000001 2.71828181

(1 � x)1/x

FIGURE 4

�

�

�

�

�
�������� ��

�



SECTION 3.8DERIVATIVES OF LOGARITHMIC FUNCTIONS� � � � 249

31Ð32|||| Find an equation of the tangent line to the curve at the
given point.

31. ,

32.

� 33. If , Þnd . Check that your answer is
reasonable by comparing the graphs of and .

� 34. Find equations of the tangent lines to the curve at
the points and . Illustrate by graphing the curve
and its tangent lines.

35Ð46|||| Use logarithmic differentiation to Þnd the derivative of
the function.

35.

36.

37.

38.

39. 40.

42.

43. 44.

45. 46.

47. Find if .

Find if .

49. Find a formula for if .

50. Find .

Use the deÞnition of derivative to prove that

52. Show that for any .x � 0lim
n� �

 �1 �
x
n�

n

� ex

lim
x �  0

 
ln�1 � x�

x
� 1

51.

d9

dx9 � x8 ln x�

f � x� � ln� x � 1�f �n�� x�

xy � yxy�48.

y � ln� x2 � y2�y�

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

y � � ln x�cos xy � xex

y � xln xy � � ln x� x

y � �sin x� xy � xsinx41.

y � x1� xy � x x

y � �4 x2 � 1
x2 � 1

 

y �
sin2x tan4x
� x2 � 1�2

y � � x ex 2

� x2 � 1�10

y � �2x � 1�5� x4 � 3�6

�e, 1� e��1, 0�
y � � ln x�� x

f �f
f �� x�f � x� � sin x � ln x

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

y � ln� x3 � 7�,� � �2, 0�

�e, 0�y � ln ln x

1. Explain why the natural logarithmic function is used
much more frequently in calculus than the other logarithmic
functions .

2Ð20 |||| Differentiate the function.

2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

20.

21Ð24|||| Find and .

21. 22.

23. 24.

25Ð28|||| Differentiate and Þnd the domain of .

26.

27.

28.

29. If , Þnd .

30. If , Þnd .f ��1�f � x� � x2 ln x

f ��e�f � x� �
x

ln x

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

f � x� � ln ln ln x

f � x� � x2 ln�1 � x2�

f � x� �
1

1 � ln x

f � x� �
x

1 � ln�x � 1�25.

ff

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

y � ln�sec x � tan x�y � log10 x

y �
ln x
x2y � x ln x

y�y�

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

y � � ln�1 � ex�� 2y � ln�e� x � xe� x�19.

G�u� � ln� 3u � 2
3u � 2

y � ln 	 2 � x � 5x2	

y � ln� x4 sin2x�f �u� �
ln u

1 � ln�2u�

F� y� � y ln�1 � ey�� � x� � ln 
a � x
a � x

h� x� � ln(x � � x2 � 1)F�t� � ln 
�2t � 1� 3

�3t � 1� 4

f �t� �
1 � ln t
1 � ln t

f � x� � � x ln x

f � x� � ln �5 xf � x� � �5 ln x

f � x� � log10� x
x � 1�f � x� � log2�1 � 3x�

f � x� � cos�ln x�f �  � � ln�cos  �

f � x� � ln� x2 � 10�

y � loga x

y � ln x

|||| 3.8 Exercises
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|||| 3.9 Hyperbolic Functions

Certain combinations of the exponential functions and arise so frequently in math-
ematics and its applications that they deserve to be given special names. In many ways they
are analogous to the trigonometric functions, and they have the same relationship to the
hyperbola that the trigonometric functions have to the circle. For this reason they are col-
lectively called hyperbolic functions and individually calledhyperbolic sine, hyperbolic
cosine, and so on. 

Definition of the Hyperbolic Functions

The graphs of hyperbolic sine and cosine can be sketched using graphical addition as
in Figures 1 and 2.

Note that has domain and range , while has domain and range .
The graph of is shown in Figure 3. It has the horizontal asymptotes . (See
Exercise 23.)

Some of the mathematical uses of hyperbolic functions will be seen in Chapter 7.
Applications to science and engineering occur whenever an entity such as light, velocity,
electricity, or radioactivity is gradually absorbed or extinguished, for the decay can be rep-
resented by hyperbolic functions. The most famous application is the use of hyperbolic
cosine to describe the shape of a hanging wire. It can be proved that if a heavy ßexible
cable (such as a telephone or power line) is suspended between two points at the same
height, then it takes the shape of a curve with equation called a cate-
nary (see Figure 4). (The Latin word catenameans Òchain.Ó)

y � c � a cosh�x� a�

y � � 1tanh
�1, � ��cosh��sinh

FIGURE 3
�� tanh��

�

� �

����

���

FIGURE 1
�� sinh������������ � ��

�
�
�

�
��� �����

��� ���������
�

�� sinh��

�

�

�

FIGURE 2
�� cosh������������ � ��

�
�
�

�� ��������
�

�
��� �����

�� cosh��

�

�

�

�

coth x �
cosh x
sinh x

tanh x �
sinh x
cosh x

sech x �
1

cosh x
cosh x �

ex � e� x

2

csch x �
1

sinh x
sinh x �

ex � e� x

2

e� xex

FIGURE 4
A catenary ������ cosh�����

�

� �



The hyperbolic functions satisfy a number of identities that are similar to well-known
trigonometric identities. We list some of them here and leave most of the proofs to the
exercises.

Hyperbolic Identities

EXAMPLE 1Prove (a) and (b) .

SOLUTION

(a)

(b) We start with the identity proved in part (a):

If we divide both sides by , we get

or

The identity proved in Example 1(a) gives a clue to the reason for the name Òhyper-
bolicÓ functions:

If is any real number, then the point lies on the unit circle 
because . In fact, can be interpreted as the radian measure of 
in Figure 5. For this reason the trigonometric functions are sometimes called circular
functions.

Likewise, if is any real number, then the point lies on the right branch
of the hyperbola because and . This time, 
does not represent the measure of an angle. However, it turns out that represents twice
the area of the shaded hyperbolic sector in Figure 6, just as in the trigonometric case rep-
resents twice the area of the shaded circular sector in Figure 5.

The derivatives of the hyperbolic functions are easily computed. For example,

d
dx

 �sinh x� �
d
dx

 �ex � e� x

2 � �
ex � e� x

2
� cosh x

t
t

tcosh t � 1cosh2t � sinh2t � 1x2 � y2 � 1
P�cosh t, sinh t�t

� POQtcos2t � sin2t � 1
x2 � y2 � 1P�cos t, sin t�t

 1 � tanh2x � sech2x

 1 �
sinh2x
cosh2x

�
1

cosh2x

cosh2x

cosh2x � sinh2x � 1

 � 4
4 � 1

 �
e2x � 2 � e� 2x

4
�

e2x � 2 � e� 2x

4

 cosh2x � sinh2x � �ex � e� x

2 �2

� �ex � e� x

2 �2

1 � tanh2x � sech2xcosh2x � sinh2x � 1

cosh�x � y� � cosh x cosh y � sinh x sinh y

sinh� x � y� � sinh x cosh y � cosh x sinh y

1 � tanh2x � sech2xcosh2x � sinh2x � 1

cosh�� x� � cosh xsinh�� x� � � sinh x
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FIGURE 6

�

�

�

 �! ��

�� cosh�"#�sinh�"�

FIGURE 5

$

�

�

�� cos�"#�sin�"�

 �! ��

�
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We list the differentiation formulas for the hyperbolic functions as Table 1. The remaining
proofs are left as exercises. Note the analogy with the differentiation formulas for trigono-
metric functions, but beware that the signs are different in some cases.

Derivatives of Hyperbolic Functions

EXAMPLE 2Any of these differentiation rules can be combined with the Chain Rule. For
instance,

Inverse Hyperbolic Functions

You can see from Figures 1 and 3 that and are one-to-one functions and so they
have inverse functions denoted by and . Figure 2 shows that is not one-
to-one, but when restricted to the domain it becomes one-to-one. The inverse hyper-
bolic cosine function is deÞned as the inverse of this restricted function.

The remaining inverse hyperbolic functions are deÞned similarly (see Exercise 28).
We can sketch the graphs of , , and in Figures 7, 8, and 9 by using

Figures 1, 2, and 3.

FIGURE 7  �� sinh����
domain� R    range� R

FIGURE 8  �� cosh����
domain� [�	�
����� range� [�	�
�

FIGURE 9  �� tanh����
domain���	������� range� R

�

�

�

�

�

��

�

�

����

tanh� 1cosh� 1sinh� 1

 y � tanh� 1x ��  tanh y � x

 y � cosh� 1x ��  cosh y � x and y � 0

 y � sinh� 1x  ��  sinh y � x2

�0, � �
coshtanh� 1sinh� 1

tanhsinh

d
dx

 (cosh � x) � sinh � x �
d
dx

 � x �
sinh � x

2� x

 
d
dx

 �tanh x� � sech2x 
d
dx

 �coth x� � � csch2x

 
d
dx

 �cosh x� � sinh x  
d
dx

 �sech x� � � sech x tanh x

 
d
dx

 �sinh x� � cosh x 
d
dx

 �csch x� � � csch x coth x

1



Since the hyperbolic functions are deÞned in terms of exponential functions, itÕs not
surprising to learn that the inverse hyperbolic functions can be expressed in terms of log-
arithms. In particular, we have:

EXAMPLE 3Show that .

SOLUTIONLet . Then

so

or, multiplying by ,

This is really a quadratic equation in :

Solving by the quadratic formula, we get

Note that , but (because ). Thus, the minus sign
is inadmissible and we have

Therefore

(See Exercise 25 for another method.)

Derivatives of Inverse Hyperbolic Functions

 
d
dx

 �tanh� 1x� �
1

1 � x2  
d
dx

 �coth� 1x� �
1

1 � x2

 
d
dx

 �cosh� 1x� �
1

� x2 � 1
 

d
dx

 �sech� 1x� � �
1

x� 1 � x2

 
d
dx

 �sinh� 1x� �
1

� 1 � x2
 

d
dx

 �csch� 1x� � �
1

� x� � x2 � 1

6

y � ln�ey� � ln(x � � x2 � 1)

ey � x � � x2 � 1

x � � x2 � 1x � � x2 � 1 � 0ey � 0

ey �
2x � � 4x2 � 4

2
� x � � x2 � 1

�ey�2 � 2x�ey� � 1 � 0

ey

e2y � 2xey � 1 � 0

ey

ey � 2x � e� y � 0

x � sinh y �
ey � e� y

2

y � sinh� 1x

sinh� 1x � ln(x � � x2 � 1)

 tanh� 1x � 1
2 ln�1 � x

1 � x�  � 1 � x � 15

 cosh� 1x � ln(x � � x2 � 1) x � 14

 sinh� 1x � ln(x � � x2 � 1) x � �3

SECTION 3.9HYPERBOLIC FUNCTIONS� � � � 253

|||| Formula 3 is proved in Example 3. The 
proofs of Formulas 4 and 5 are requested in 
Exercises 26 and 27.

|||| Notice that the formulas for the derivatives
of and appear to be identical.
But the domains of these functions have no num-
bers in common: is deÞned for ,
whereas is deÞned for � x � � 1.coth� 1x

� x � � 1tanh� 1x

coth� 1xtanh� 1x
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The inverse hyperbolic functions are all differentiable because the hyperbolic functions
are differentiable. The formulas in Table 6 can be proved either by the method for inverse
functions or by differentiating Formulas 3, 4, and 5.

EXAMPLE 4Prove that .

SOLUTION 1Let . Then . If we differentiate this equation implicitly
with respect to , we get

Since and , we have , so

SOLUTION 2From Equation 3 (proved in Example 3), we have

EXAMPLE 5Find .

SOLUTIONUsing Table 6 and the Chain Rule, we have

 �
1

1 � sin2x
 cos x �

cos x
cos2x

� sec x

 
d
dx

 �tanh� 1�sin x�� �
1

1 � �sin x�2  
d
dx

 �sin x�

d
dx

 �tanh� 1�sin x��

 �
1

� x2 � 1

 �
� x2 � 1 � x

(x � � x2 � 1) � x2 � 1

 �
1

x � � x2 � 1
 �1 �

x
� x2 � 1�

 �
1

x � � x2 � 1
 

d
dx

 (x � � x2 � 1)

 
d
dx

 �sinh� 1x� �
d
dx

 ln(x � � x2 � 1)

dy
dx

�
1

cosh y
�

1
� 1 � sinh2y

�
1

� 1 � x2

cosh y � � 1 � sinh2ycosh y � 0cosh2y � sinh2y � 1

cosh y 
dy
dx

� 1

x
sinh y � xy � sinh� 1x

d
dx

 �sinh� 1x� �
1

� 1 � x2

4. (a) (b)

5. (a) (b)

6. (a) (b)
�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

sinh� 1 1sinh 1

cosh� 1 1sech 0

cosh�ln 3�cosh 31Ð6 |||| Find the numerical value of each expression.

1. (a) (b)

2. (a) (b)

3. (a) (b) sinh 2sinh�ln 2�

tanh 1tanh 0

cosh 0sinh 0

|||| 3.9 Exercises
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27. Prove Equation 5 using (a) the method of Example 3 and 
(b) Exercise 18 with replaced by .

28. For each of the following functions (i) give a deÞnition like
those in (2), (ii) sketch the graph, and (iii) Þnd a formula simi-
lar to Equation 3.
(a) (b) (c)

29. Prove the formulas given in Table 6 for the derivatives of the
following functions.
(a) (b) (c)
(d) (e)

30Ð47|||| Find the derivative.

30. 31.

32. 33.

34. 35.

36. 37.

38. 39.

40.

42. 43.

44.

46.

47.

� 48. A ßexible cable always hangs in the shape of a catenary
, where and are constants and 

(see Figure 4 and Exercise 50). Graph several members of the
family of functions . How does the graph
change as varies?

A telephone line hangs between two poles 14 m apart in the
shape of the catenary , where and 
are measured in meters.
(a) Find the slope of this curve where it meets the right pole.
(b) Find the angle between the line and the pole.

50. Using principles from physics it can be shown that when a
cable is hung between two poles, it takes the shape of a curve

that satisÞes the differential equation 

d2y
dx2 �

	 �
T 	 1 � �dy

dx�
2

y � f � x�

�

� ��� �

�
�




yxy � 20 cosh� x
 20� � 15
49.

a
y � a cosh� x
 a�

a � 0acy � c � a cosh� x
 a�

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

y � coth� 1� x2 � 1

y � sech� 1� 1 � x2, x � 0

y � x sinh� 1� x
 3� � � 9 � x245.

y � x tanh� 1x � ln � 1 � x2

y � tanh� 1� xy � x2 sinh� 1�2x�

y � ecosh 3x41.y � sinh�cosh x�

H�t� � tanh�et �f � t� � ln�sinh t�

h�t� � coth� 1 � t 2f �t� � et sech t

G� x� �
1 � cosh x
1 � cosh x

F� x� � sinh x tanh x

h� x� � sinh� x2�� � x� � sinh2x

f � x� � x cosh xf � x� � tanh 4x

coth� 1sech� 1
csch� 1tanh� 1cosh� 1

coth� 1sech� 1csch� 1

yx
7Ð19 |||| Prove the identity.

7.
(This shows that is an odd function.)

8.
(This shows that is an even function.)

10.

11.

12.

13.

14.

16.

17.

18.

19.
( any real number)

20. If , Þnd the values of the other hyperbolic functions
at .

21. If , Þnd the values of the other hyperbolic functions
at .

22. (a) Use the graphs of , , and in Figures 1Ð3 to
draw the graphs of , , and .

� (b) Check the graphs that you sketched in part (a) by using a
graphing device to produce them.

23. Use the deÞnitions of the hyperbolic functions to Þnd each of
the following limits.
(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

24. Prove the formulas given in Table 1 for the derivatives of the
functions (a) , (b) , (c) , (d) , and (e) .

25. Give an alternative solution to Example 3 by letting
and then using Exercise 9 and Example 1(a) 

with replaced by .

26. Prove Equation 4.

yx
y � sinh� 1x

cothsechcschtanhcosh

lim
x� ��

 csch x

lim
x� 0�

 coth xlim
x� 0�

 coth x

lim
x� �

 coth xlim
x� �

 sech x

lim
x� ��

 sinh xlim
x� �

 sinh x

lim
x� ��

 tanh xlim
x� �

 tanh x

cothsechcsch
tanhcoshsinh

x
tanh x � 4

5

x
sinh x � 3

4

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

n
�cosh x � sinh x�n � cosh nx � sinh nx

1 � tanh x
1 � tanh x

� e2x

tanh�ln x� �
x2 � 1
x2 � 1

cosh 2x � cosh2x � sinh2x

sinh 2x � 2 sinh x cosh x15.

tanh� x � y� �
tanh x � tanh y

1 � tanh x tanh y

coth2x � 1 � csch2x

cosh� x � y� � cosh x cosh y � sinh x sinh y

sinh� x � y� � sinh x cosh y � cosh x sinh y

cosh x � sinh x � e� x

cosh x � sinh x � ex9.

cosh
cosh�� x� � cosh x

sinh
sinh�� x� � � sinh x



|||| 3.10 Related Rates

If we are pumping air into a balloon, both the volume and the radius of the balloon are
increasing and their rates of increase are related to each other. But it is much easier to mea-
sure directly the rate of increase of the volume than the rate of increase of the radius.

In a related rates problem the idea is to compute the rate of change of one quantity in
terms of the rate of change of another quantity (which may be more easily measured). The
procedure is to Þnd an equation that relates the two quantities and then use the Chain Rule
to differentiate both sides with respect to time.

EXAMPLE 1Air is being pumped into a spherical balloon so that its volume increases at a
rate of 100 cm
 s. How fast is the radius of the balloon increasing when the diameter is
50 cm?

SOLUTIONWe start by identifying two things:

the given information:

the rate of increase of the volume of air is 

and the unknown:

the rate of increase of the radius when the diameter is 50 cm

In order to express these quantities mathematically, we introduce some suggestive
notation:

Let V be the volume of the balloon and let r be its radius.

The key thing to remember is that rates of change are derivatives. In this problem, the
volume and the radius are both functions of the time . The rate of increase of the vol-
ume with respect to time is the derivative , and the rate of increase of the radius is

. We can therefore restate the given and the unknown as follows:

Given:

Unknown:
dr
dt

when r � 25 cm

dV
dt

� 100 cm3
 s

dr
 dt
dV
 dt

t

100 cm3
 s

3

(b) Find such that , , 
and .

52. Evaluate .

53. At what point of the curve does the tangent have
slope 1?

54. If , show that .

55. Show that if and , then there exist numbers and
such that equals either or

. In other words, almost every function of the
form is a shifted and stretched hyperbolic
sine or cosine function.

f � x� � aex � be� x
� �cosh� x � � �

� �sinh� x � � �aex � be� x�
�b � 0a � 0

sec 
 � cosh xx � ln�sec 
 � tan 
 �

y � cosh x

lim
x� �

 
sinh x

ex

y�0� � 6
y�0� � � 4y� � 9yy � y� x�where is the linear density of the cable, is the acceleration

due to gravity, and is the tension in the cable at its lowest
point, and the coordinate system is chosen appropriately. Verify
that the function

is a solution of this differential equation.

(a) Show that any function of the form

satisÞes the differential equation .y� � m2y

y � A sinh mx � B cosh mx

51.

y � f � x� �
T
	 �

 cosh�	 � x
T �

T
�	
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|||| According to the Principles of Problem 
Solving discussed on page 80, the Þrst step is to
understand the problem. This includes reading
the problem carefully, identifying the given and
the unknown, and introducing suitable notation.

Explore an expanding balloon interactively.
Resources / Module 5

/ Related Rates 
/ Start of Related Rates



In order to connect and , we Þrst relate and by the formula for the
volume of a sphere:

In order to use the given information, we differentiate each side of this equation with
respect to . To differentiate the right side, we need to use the Chain Rule:

Now we solve for the unknown quantity:

If we put and in this equation, we obtain

The radius of the balloon is increasing at the rate of cm
 s.

EXAMPLE 2A ladder 10 ft long rests against a vertical wall. If the bottom of the ladder
slides away from the wall at a rate of 1 ft
 s, how fast is the top of the ladder sliding
down the wall when the bottom of the ladder is 6 ft from the wall? 

SOLUTIONWe Þrst draw a diagram and label it as in Figure 1. Let feet be the distance
from the bottom of the ladder to the wall and feet the distance from the top of the
ladder to the ground. Note that and are both functions of (time).

We are given that ft
 s and we are asked to Þnd when ft (see
Figure 2). In this problem, the relationship between and is given by the Pythagorean
Theorem:

Differentiating each side with respect to using the Chain Rule, we have

and solving this equation for the desired rate, we obtain

When , the Pythagorean Theorem gives and so, substituting these values and
, we have

The fact that is negative means that the distance from the top of the ladder to
the ground is decreasingat a rate of . In other words, the top of the ladder is sliding
down the wall at a rate of .3

4 ft
 s

3
4 ft
 s

dy
 dt

dy
dt

� �
6
8

�1� � �
3
4

 ft
 s

dx
 dt � 1
y � 8x � 6

dy
dt

� �
x
y

 
dx
dt

2x 
dx
dt

� 2y 
dy
dt

� 0

t

x2 � y2 � 100

yx
x � 6dy
 dtdx
 dt � 1

tyx
y

x

1
� 25� �

dr
dt

�
1

4� �25�2 100 �
1

25�

dV
 dt � 100r � 25

dr
dt

�
1

4� r 2  
dV
dt

dV
dt

�
dV
dr

 
dr
dt

� 4� r 2 
dr
dt

t

V � 4
3 � r 3

rVdr
 dtdV
 dt
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|||| The second stage of problem solving is to
think of a plan for connecting the given and the
unknown.

|||| Notice that, although is constant,
is notconstant.dr
 dt

dV
 dt

How high will a Þreman get while climbing a 
sliding ladder?

Resources / Module 5
/ Related Rates 

/ Start of the Sliding Fireman

ground

wall

10
�

�

FIGURE 1

�

�

��
��

� ?

��
��

� 1

FIGURE 2
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EXAMPLE 3A water tank has the shape of an inverted circular cone with base radius 2 m
and height 4 m. If water is being pumped into the tank at a rate of 2 m
 min, Þnd the rate
at which the water level is rising when the water is 3 m deep.

SOLUTIONWe Þrst sketch the cone and label it as in Figure 3. Let , , and be the vol-
ume of the water, the radius of the surface, and the height at time , where is measured
in minutes.

We are given that m
 min and we are asked to Þnd when is 3 m.
The quantities and are related by the equation

but it is very useful to express as a function of alone. In order to eliminate , we use 
the similar triangles in Figure 3 to write

and the expression for becomes

Now we can differentiate each side with respect to :

so

Substituting m and m
 min, we have

The water level is rising at a rate of .

Strategy It is useful to recall some of the problem-solving principles from page 80 and
adapt them to related rates in light of our experience in Examples 1Ð3:

1. Read the problem carefully.

2. Draw a diagram if possible.

3. Introduce notation. Assign symbols to all quantities that are functions of time.

4. Express the given information and the required rate in terms of derivatives.

5. Write an equation that relates the various quantities of the problem. If necessary, use
the geometry of the situation to eliminate one of the variables by substitution (as in
Example 3).

6. Use the Chain Rule to differentiate both sides of the equation with respect to .

7. Substitute the given information into the resulting equation and solve for the 
unknown rate.

The following examples are further illustrations of the strategy.

t

8
� 9� � � 0.28 m
 min

dh
dt

�
4

� �3�2 � 2 �
8

9�

3dV
 dt � 2h � 3

 
dh
dt

�
4

� h2  
dV
dt

 
dV
dt

�
�
4

 h2 
dh
dt

t

V �
1
3

� �h
2�

2

h �
�
12

h3

V

r �
h
2

r
h

�
2
4

rhV

V � 1
3 � r 2h

hV
hdh
 dt3dV
 dt � 2

tt
hrV

3

FIGURE 3

�

�

�

�

� WARNING:A common error is to substi-
tute the given numerical information (for quanti-
ties that vary with time) too early. This should 
be done only afterthe differentiation. (Step 7 
follows Step 6.) For instance, in Example 3 we
dealt with general values of until we Þnally
substituted at the last stage. (If we had
put earlier, we would have gotten

, which is clearly wrong.)dV
 dt � 0
h � 3

h � 3
h

|||| Look back: What have we learned from
Examples 1Ð3 that will help us solve future 
problems?
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EXAMPLE 4Car A is traveling west at 50 mi
 h and car B is traveling north at 60 mi
 h.
Both are headed for the intersection of the two roads. At what rate are the cars approach-
ing each other when car A is 0.3 mi and car B is 0.4 mi from the intersection?

SOLUTIONWe draw Figure 4, where is the intersection of the roads. At a given time ,
let be the distance from car A to , let be the distance from car B to , and let be
the distance between the cars, where , , and are measured in miles.

We are given that mi
 h and mi
 h. (The derivatives are
negative because and are decreasing.) We are asked to Þnd . The equation that
relates , , and is given by the Pythagorean Theorem:

Differentiating each side with respect to , we have

When mi and mi, the Pythagorean Theorem gives mi, so

The cars are approaching each other at a rate of 78 mi
 h.

EXAMPLE 5A man walks along a straight path at a speed of 4 ft
 s. A searchlight is
located on the ground 20 ft from the path and is kept focused on the man. At what rate is
the searchlight rotating when the man is 15 ft from the point on the path closest to the
searchlight?

SOLUTIONWe draw Figure 5 and let be the distance from the man to the point on the
path closest to the searchlight. We let be the angle between the beam of the searchlight
and the perpendicular to the path.

We are given that ft
 s and are asked to Þnd when . The equa-
tion that relates and can be written from Figure 5:

Differentiating each side with respect to , we get

so

When , the length of the beam is 25, so and

The searchlight is rotating at a rate of 0.128 rad
 s.

d

dt

�
1
5

 �4
5�

2

�
16
125

� 0.128 

cos 
 � 4
5x � 15

d

dt

� 1
20 cos2
  

dx
dt

� 1
20 cos2
 �4� � 1

5 cos2


dx
dt

� 20 sec2
  
d

dt

t

x � 20 tan 

x
20

� tan 



x
x � 15d
 
 dtdx
 dt � 4



x

 � � 78 mi
 h

 
d�
dt

�
1

0.5
 �0.3�� 50� � 0.4�� 60��

� � 0.5y � 0.4x � 0.3

 
d�
dt

�
1
�

 �x 
dx
dt

� y 
dy
dt �

 2�  
d�
dt

� 2x 
dx
dt

� 2y 
dy
dt

t

� 2 � x2 � y2

�yx
d�
 dtyx

dy
 dt � � 60dx
 dt � � 50
�yx

�CyCx
tC

FIGURE 4

C

�
�

�

B

A

FIGURE 5

�

��

�



1. If is the volume of a cube with edge length and the cube
expands as time passes, Þnd in terms of .

2. (a) If is the area of a circle with radius and the circle
expands as time passes, Þnd in terms of .

(b) Suppose oil spills from a ruptured tanker and spreads in a
circular pattern. If the radius of the oil spill increases at a
constant rate of , how fast is the area of the spill
increasing when the radius is 30 m?

3. If and , Þnd when .

4. If and , Þnd when .

5. If , , and , Þnd when
and .

6. A particle moves along the curve . As it reaches
the point , the -coordinate is increasing at a rate of

. How fast is the -coordinate of the point changing at
that instant?

7Ð10 ||||

(a) What quantities are given in the problem?
(b) What is the unknown?
(c) Draw a picture of the situation for any time t.
(d) Write an equation that relates the quantities.
(e) Finish solving the problem.

7. A plane ßying horizontally at an altitude of 1 mi and a speed of
500 mi
 h passes directly over a radar station. Find the rate at
which the distance from the plane to the station is increasing
when it is 2 mi away from the station.

If a snowball melts so that its surface area decreases at a rate of
1 cm
 min, Þnd the rate at which the diameter decreases when
the diameter is 10 cm.

9. A street light is mounted at the top of a 15-ft-tall pole. A man 
6 ft tall walks away from the pole with a speed of 5 ft
 s along
a straight path. How fast is the tip of his shadow moving when
he is 40 ft from the pole?

10.At noon, ship A is 150 km west of ship B. Ship A is sailing east
at 35 km
 h and ship B is sailing north at 25 km
 h. How fast is
the distance between the ships changing at 4:00 P.M.?

Two cars start moving from the same point. One travels south
at 60 mi
 h and the other travels west at 25 mi
 h. At what rate
is the distance between the cars increasing two hours later?

12. A spotlight on the ground shines on a wall 12 m away. If a man
2 m tall walks from the spotlight toward the building at a speed
of 1.6 m
 s, how fast is the length of his shadow on the building
decreasing when he is 4 m from the building?

13. A man starts walking north at 4 ft
 s from a point . Five min-
utes later a woman starts walking south at 5 ft
 s from a point 

P

11.

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

2
8.

x4 cm
s
y�2, 3�

y � � 1 � x3

y � 12x � 5
d� 
 dtdy
 dt � 3dx
 dt � 2� 2 � x2 � y2

y � 4dx
 dtdy
 dt � 6x2 � y2 � 25

x � 2dy
 dtdx
 dt � 5y � x3 � 2x

1 m
 s

dr
 dtdA
 dt
rA

dx
 dtdV
 dt
xV 500 ft due east of . At what rate are the people moving apart

15 min after the woman starts walking?

14. A baseball diamond is a square with side 90 ft. A batter hits the
ball and runs toward Þrst base with a speed of 24 ft
 s.
(a) At what rate is his distance from second base decreasing

when he is halfway to Þrst base?
(b) At what rate is his distance from third base increasing at

the same moment?

The altitude of a triangle is increasing at a rate of 1 cm
 min
while the area of the triangle is increasing at a rate of 
2 cm
 min. At what rate is the base of the triangle changing
when the altitude is 10 cm and the area is ?

16. A boat is pulled into a dock by a rope attached to the bow of
the boat and passing through a pulley on the dock that is 1 m
higher than the bow of the boat. If the rope is pulled in at a rate
of 1 m
 s, how fast is the boat approaching the dock when it is
8 m from the dock?

17. At noon, ship A is 100 km west of ship B. Ship A is sailing
south at 35 km
 h and ship B is sailing north at 25 km
 h. How
fast is the distance between the ships changing at 4:00 P.M.?

18. A particle is moving along the curve . As the particle
passes through the point , its -coordinate increases at a
rate of . How fast is the distance from the particle to the
origin changing at this instant?

19. Water is leaking out of an inverted conical tank at a rate of
10,000 cm
 min at the same time that water is being pumped
into the tank at a constant rate. The tank has height 6 m and the
diameter at the top is 4 m. If the water level is rising at a rate
of 20 cm
 min when the height of the water is 2 m, Þnd the rate
at which water is being pumped into the tank.

20. A trough is 10 ft long and its ends have the shape of isosceles
triangles that are 3 ft across at the top and have a height of 1 ft.
If the trough is being Þlled with water at a rate of 12 ft
 min, 3

3

3 cm
 s
x�4, 2�

y � � x

100 cm2

2

15.

90 ft

P

|||| 3.10 Exercises
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how fast is the water level rising when the water is 6 inches
deep?

A water trough is 10 m long and a cross-section has the shape
of an isosceles trapezoid that is 30 cm wide at the bottom,
80 cm wide at the top, and has height 50 cm. If the trough is
being Þlled with water at the rate of 0.2 , how fast is the
water level rising when the water is 30 cm deep?

22. A swimming pool is 20 ft wide, 40 ft long, 3 ft deep at the
shallow end, and 9 ft deep at its deepest point. A cross-
section is shown in the Þgure. If the pool is being Þlled at a
rate of 0.8 , how fast is the water level rising when the
depth at the deepest point is 5 ft?

Gravel is being dumped from a conveyor belt at a rate of 
30 , and its coarseness is such that it forms a pile in the
shape of a cone whose base diameter and height are always
equal. How fast is the height of the pile increasing when the
pile is 10 ft high?

24. A kite 100 ft above the ground moves horizontally at a speed
of 8 ft
 s. At what rate is the angle between the string and the
horizontal decreasing when 200 ft of string have been let out?

25. Two sides of a triangle are 4 m and 5 m in length and the angle
between them is increasing at a rate of 0.06 rad
 s. Find the rate
at which the area of the triangle is increasing when the angle
between the sides of Þxed length is .

26. Two sides of a triangle have lengths 12 m and 15 m. The angle
between them is increasing at a rate of . How fast is the
length of the third side increasing when the angle between the
sides of Þxed length is 60 ?

BoyleÕs Law states that when a sample of gas is compressed at
a constant temperature, the pressure and volume satisfy the
equation , where is a constant. Suppose that at a cer-
tain instant the volume is 600 cm , the pressure is 150 kPa, and
the pressure is increasing at a rate of 20 kPa
 min. At what rate
is the volume decreasing at this instant?

3
CPV � C

VP
27.

�

2�
 min

� 
 3

ft 3
 min
23.

�

�

�� ����

ft 3
 min

m3
 min

21.

28. When air expands adiabatically (without gaining or losing
heat), its pressure and volume are related by the equation

, where is a constant. Suppose that at a certain
instant the volume is 400 cm and the pressure is 80 kPa and is
decreasing at a rate of 10 kPa
 min. At what rate is the volume
increasing at this instant?

29. If two resistors with resistances and are connected in 
parallel, as in the Þgure, then the total resistance , measured
in ohms ( ), is given by

If and are increasing at rates of and ,
respectively, how fast is changing when and

?

30. Brain weight as a function of body weight in Þsh has 
been modeled by the power function , where 

and are measured in grams. A model for body weight 
as a function of body length (measured in centimeters) is

. If, over 10 million years, the average length of 
a certain species of Þsh evolved from 15 cm to 20 cm at a 
constant rate, how fast was this speciesÕbrain growing when
the average length was 18 cm? 

31. A ladder 10 ft long rests against a vertical wall. If the bottom
of the ladder slides away from the wall at a speed of 2 , 
how fast is the angle between the top of the ladder and the wall
changing when the angle is rad?

32. Two carts, A and B, are connected by a rope 39 ft long that
passes over a pulley (see the Þgure). The point is on the
ßoor 12 ft directly beneath and between the carts. Cart A is
being pulled away from at a speed of 2 ft
 s. How fast is cart
B moving toward at the instant when cart A is 5 ft from ?

A television camera is positioned 4000 ft from the base of a
rocket launching pad. The angle of elevation of the camera has
to change at the correct rate in order to keep the rocket in sight.
Also, the mechanism for focusing the camera has to take into
account the increasing distance from the camera to the rising 

33.

A B
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P
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�� ��
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|||| 3.11 Linear Approximations and Differentials

We have seen that a curve lies very close to its tangent line near the point of tangency. In
fact, by zooming in toward a point on the graph of a differentiable function, we noticed
that the graph looks more and more like its tangent line. (See Figure 2 in Section 2.7 and
Figure 3 in Section 2.8.) This observation is the basis for a method of Þnding approximate
values of functions.

The idea is that it might be easy to calculate a value of a function, but difÞcult (or
even impossible) to compute nearby values off. So we settle for the easily computed val-
ues of the linear function L whose graph is the tangent line off at . (See Figure 1.)

In other words, we use the tangent line at as an approximation to the curve
when x is near a. An equation of this tangent line is

and the approximation

is called the linear approximation or tangent line approximation of f at a. The linear
function whose graph is this tangent line, that is,

is called the linearization of f at a.
The following example is typical of situations in which we use a linear approximation

to predict the future behavior of a function given by empirical data.

EXAMPLE 1Suppose that after you stuff a turkey its temperature is and you then put
it in a oven. After an hour the meat thermometer indicates that the temperature of
the turkey is and after two hours it indicates . Predict the temperature of the
turkey after three hours.

SOLUTIONIf represents the temperature of the turkey after t hours, we are given that
, and . In order to make a linear approximation with

, we need an estimate for the derivative . Because

T��2� � lim
t � 2

 
T�t� � T�2�

t � 2

T��2�a � 2
T�2� � 129T�0� � 50, T�1� � 93

T�t�

129�F93�F
325�F

50�F

L�x� � f �a� � f ��a�� x � a�2

f � x� � f �a� � f ��a�� x � a�1

y � f �a� � f ��a�� x � a�

y � f � x�
�a, f �a��

�a, f �a��

f �a�

angle of 30 . At what rate is the distance from the plane to the
radar station increasing a minute later?

36. Two people start from the same point. One walks east at
3 mi� h and the other walks northeast at 2 mi� h. How fast is
the distance between the people changing after 15 minutes?

A runner sprints around a circular track of radius 100 m at a
constant speed of 7 m� s. The runnerÕs friend is standing at a
distance 200 m from the center of the track. How fast is the
distance between the friends changing when the distance
between them is 200 m?

38. The minute hand on a watch is 8 mm long and the hour hand 
is 4 mm long. How fast is the distance between the tips of the
hands changing at one oÕclock?

37.

�rocket. LetÕs assume the rocket rises vertically and its speed is
600 ft� s when it has risen 3000 ft.
(a) How fast is the distance from the television camera to the

rocket changing at that moment?
(b) If the television camera is always kept aimed at the rocket,

how fast is the cameraÕs angle of elevation changing at that
same moment?

34. A lighthouse is located on a small island 3 km away from the
nearest point on a straight shoreline and its light makes four
revolutions per minute. How fast is the beam of light moving
along the shoreline when it is 1 km from ?

35. A plane ßying with a constant speed of 300 km� h passes over a
ground radar station at an altitude of 1 km and climbs at an 

P

P
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we could estimate by the difference quotient with t � 1:

This amounts to approximating the instantaneous rate of temperature change by the
average rate of change between t � 1 and t � 2, which is . With this estimate, the
linear approximation (1) for the temperature after 3 h is

So the predicted temperature after three hours is .
We obtain a more accurate estimate for by plotting the given data, as in Fig-

ure 2, and estimating the slope of the tangent line at t � 2 to be

Then our linear approximation becomes

and our improved estimate for the temperature is .
Because the temperature curve lies below the tangent line, it appears that the actual

temperature after three hours will be somewhat less than , perhaps closer to .

EXAMPLE 2Find the linearization of the function at and use it to
approximate the numbers and . Are these approximations overestimates or
underestimates?

SOLUTIONThe derivative of is

and so we have and . Putting these values into Equation 2, we see that
the linearization is

The corresponding linear approximation (1) is

(when is near )

In particular, we have

The linear approximation is illustrated in Figure 3. We see that, indeed, the tangent
line approximation is a good approximation to the given function when is near l. We
also see that our approximations are overestimates because the tangent line lies above the
curve.

x

� 4.05� 7
4 � 1.05

4 � 2.0125and� 3.98� 7
4 � 0.98

4 � 1.995

1x� x � 3 �
7
4

�
x
4

L�x� � f �1� � f ��1�� x � 1� � 2 � 1
4 � x � 1� �

7
4

�
x
4

f ��1� � 1
4f �1� � 2

f �� x� � 1
2 � x � 3� � 1� 2 �

1
2� x � 3

f � x� � � x � 3�1� 2

� 4.05� 3.98
a � 1f � x� � � x � 3

160�F162�F

162�F

T�3� � T�2� � T��2� � 1 � 129 � 33 � 162

T��2� � 33

T��2�
165�F

 � 129 � 36 � 1 � 165

 T�3� � T�2� � T��2�� 3 � 2�

36�F� h

T��2� �
T�1� � T�2�

1 � 2
�

93 � 129
� 1

� 36

T��2�
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Of course, a calculator could give us approximations for and , but the 
linear approximation gives an approximation over an entire interval.

In the following table we compare the estimates from the linear approximation in
Example 2 with the true values. Notice from this table, and also from Figure 3, that the
tangent line approximation gives good estimates when x is close to 1 but the accuracy of
the approximation deteriorates when x is farther away from 1.

How good is the approximation that we obtained in Example 2? The next example
shows that by using a graphing calculator or computer we can determine an interval through-
out which a linear approximation provides a speciÞed accuracy.

EXAMPLE 3For what values of is the linear approximation

accurate to within 0.5? What about accuracy to within 0.1?

SOLUTIONAccuracy to within 0.5 means that the functions should differ by less than 0.5: 

Equivalently, we could write

This says that the linear approximation should lie between the curves obtained by shift-
ing the curve upward and downward by an amount 0.5. Figure 4 shows 
the tangent line intersecting the upper curve at 
and . Zooming in and using the cursor, we estimate that the -coordinate of is about 

and the -coordinate of is about 8.66. Thus, we see from the graph that the
approximation

is accurate to within 0.5 when . (We have rounded to be safe.)
Similarly, from Figure 5 we see that the approximation is accurate to within 0.1 when

.� 1.1 � x � 3.9

� 2.6 � x � 8.6

� x � 3 �
7
4

�
x
4

Qx� 2.66
PxQ

Py � � x � 3 � 0.5y � �7 � x�� 4
y � � x � 3

� x � 3 � 0.5 �
7
4

�
x
4

� � x � 3 � 0.5

�� x � 3 � �7
4

�
x
4�� � 0.5

� x � 3 �
7
4

�
x
4

x

� 4.05� 3.98

x From Actual value

0.9 1.975 1.97484176 . . .

0.98 1.995 1.99499373 . . .

1 2 2.00000000 . . .

1.05 2.0125 2.01246117 . . .

1.1 2.025 2.02484567 . . .

2 2.25 2.23606797 . . .

3 2.5 2.44948974 . . .� 6

� 5

� 4.1

� 4.05

� 4

� 3.98

� 3.9
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Applications to Physics

Linear approximations are often used in physics. In analyzing the consequences of an
equation, a physicist sometimes needs to simplify a function by replacing it with its linear
approximation. For instance, in deriving a formula for the period of a pendulum, physics
textbooks obtain the expression for tangential acceleration and then replace

by with the remark that is very close to if is not too large. [See, for
example, Physics: Calculus,2d ed., by Eugene Hecht (PaciÞc Grove, CA: Brooks/Cole,
2000), p. 431.] You can verify that the linearization of the function at a � 0
is and so the linear approximation at 0 is

(see Exercise 48). So, in effect, the derivation of the formula for the period of a pendulum
uses the tangent line approximation for the sine function.

Another example occurs in the theory of optics, where light rays that arrive at shallow
angles relative to the optical axis are called paraxial rays.In paraxial (or Gaussian) optics,
both and are replaced by their linearizations. In other words, the linear approx-
imations

and

are used because is close to 0. The results of calculations made with these approxima-
tions became the basic theoretical tool used to design lenses. [See Optics, 4th ed., by
Eugene Hecht (Reading, MA: Addison-Wesley, 2002), p. 154.]

In Section 11.12 we will present several other applications of the idea of linear approx-
imations to physics.

Differentials

The ideas behind linear approximations are sometimes formulated in the terminology and
notation of differentials.If , where is a differentiable function, then the differ-
ential is an independent variable; that is, can be given the value of any real number.
The differential is then deÞned in terms of by the equation

So is a dependent variable; it depends on the values of and . If is given a spe-
ciÞc value and is taken to be some speciÞc number in the domain of , then the numer-
ical value of is determined.

The geometric meaning of differentials is shown in Figure 6. Let and
be points on the graph of and let . The corresponding

change in is

The slope of the tangent line is the derivative . Thus, the directed distance from S
to R is . Therefore, represents the amount that the tangent line rises or
falls (the change in the linearization), whereas represents the amount that the curve

rises or falls when changes by an amount .dxxy � f � x�
� y

dyf �� x� dx � dy
f �� x�PR

� y � f � x � � x� � f � x�

y
dx � � xfQ�x � � x, f � x � � x��

P� x, f � x��
dy

fx
dxdxxdy

dy � f �� x� dx3

dxdy
dxdx
fy � f � x�

�

cos � � 1sin � � �

cos �sin �

sin x � x

L� x� � x
f � x� � sin x

��sin ��sin �
aT � � �  sin �

|||| If , we can divide both sides of 
Equation 3 by to obtain

We have seen similar equations before, but now
the left side can genuinely be interpreted as a
ratio of differentials.

dy
dx

� f �� x�

dx
dx � 0
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EXAMPLE 4Compare the values of and if and 
changes (a) from 2 to 2.05 and (b) from 2 to 2.01.

SOLUTION
(a) We have

In general,

When and , this becomes

(b)

When ,

Notice that the approximation becomes better as becomes smaller in
Example 4. Notice also that was easier to compute than . For more complicated func-
tions it may be impossible to compute exactly. In such cases the approximation by dif-
ferentials is especially useful.

In the notation of differentials, the linear approximation (1) can be written as

For instance, for the function in Example 2, we have

If a � 1 and , then

and

just as we found in Example 2.
Our Þnal example illustrates the use of differentials in estimating the errors that occur

because of approximate measurements.

EXAMPLE 5The radius of a sphere was measured and found to be 21 cm with a possible
error in measurement of at most 0.05 cm. What is the maximum error in using this value
of the radius to compute the volume of the sphere?

SOLUTIONIf the radius of the sphere is , then its volume is . If the error in the
measured value of is denoted by , then the corresponding error in the calcu-dr � � rr

V � 4
3 	 r 3r

� 4.05� f �1.05� � f �1� � dy � 2.0125

dy �
0.05

2� 1 � 3
� 0.0125

dx � � x � 0.05

dy � f �� x� dx �
dx

2� x � 3

f � x� � � x � 3

f �a � dx� � f �a� � dy

� y
� ydy

� x� y � dy

dy � 	3�2�2 � 2�2� � 2
 0.01� 0.14

dx � � x � 0.01

 � y � f �2.01� � f �2� � 0.140701

 f �2.01� � �2.01�3 � �2.01�2 � 2�2.01� � 1 � 9.140701

dy � 	3�2�2 � 2�2� � 2
0.05� 0.7

dx � � x � 0.05x � 2

dy � f �� x� dx � �3x2 � 2x � 2� dx

 � y � f �2.05� � f �2� � 0.717625

 f �2.05� � �2.05�3 � �2.05�2 � 2�2.05� � 1 � 9.717625

 f �2� � 23 � 22 � 2�2� � 1 � 9

x
y � f � x� � x3 � x2 � 2x � 1dy� y

|||| Figure 7 shows the function in Example 4
and a comparison of and when .
The viewing rectangle is by .	6, 18
	1.8, 2.5
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lated value of is , which can be approximated by the differential

When and , this becomes

The maximum error in the calculated volume is about 277 cm .

NOTE�� Although the possible error in Example 5 may appear to be rather large, a better
picture of the error is given by the relative error , which is computed by dividing the error
by the total volume:

Thus, the relative error in the volume is about three times the relative error in the radius.
In Example 5 the relative error in the radius is approximately 
and it produces a relative error of about 0.007 in the volume. The errors could also be
expressed as percentage errorsof in the radius and in the volume.0.7%0.24%

dr� r � 0.05� 21 � 0.0024

� V
V

�
dV
V

�
4	 r 2 dr

4
3 	 r 3 � 3 

dr
r

3

dV � 4	 �21�20.05� 277

dr � 0.05r � 21

dV � 4	 r 2 dr

� VV

The table shows the population of Nepal (in millions) as of
June 30 of the given year. Use a linear approximation to esti-
mate the population at midyear in 1984. Use another linear
approximation to predict the population in 2006.

5Ð8 |||| Find the linearization of the function at .

5. , 6. ,

, 8. ,

� Find the linear approximation of the function 
at and use it to approximate the numbers and

. Illustrate by graphing and the tangent line.

� 10. Find the linear approximation of the function 
at and use it to approximate the numbers and

. Illustrate by graphing and the tangent line.

� 11Ð14|||| Verify the given linear approximation at . Then
determine the values of for which the linear approximation is
accurate to within 0.1.

11. 12.

14.
�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

ex � 1 � x1�� 1 � 2x�4 � 1 � 8x13.

tan x � x�3 1 � x � 1 � 1
3x

x
a � 0

��3 1.1
�3 0.95a � 0

� � x� � �3 1 � x

f� 0.99
� 0.9a � 0

f � x� � � 1 � x9.

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

a � � 8f � x� � �3 xa � 	 � 2f � x� � cos x7.

a � 1f � x� � ln xa � 1f � x� � x3

aL� x�

4.1. The turkey in Example 1 is removed from the oven when its
temperature reaches and is placed on a table in a room
where the temperature is . After 10 minutes the tempera-
ture of the turkey is and after 20 minutes it is .
Use a linear approximation to predict the temperature of the
turkey after half an hour. Do you think your prediction is an
overestimate or an underestimate? Why?

2. Atmospheric pressure P decreases as altitude h increases. At a
temperature of , the pressure is 101.3 kilopascals (kPa) at
sea level, 87.1 kPa at h � 1 km, and 74.9 kPa at km.
Use a linear approximation to estimate the atmospheric pres-
sure at an altitude of 3 km.

3. The graph indicates how AustraliaÕs population is aging by
showing the past and projected percentage of the population
aged 65 and over. Use a linear approximation to predict the
percentage of the population that will be 65 and over in the
years 2040 and 2050. Do you think your predictions are too
high or too low? Why?

�&�� ����

��

��

Percent
aged 65
and over

�

�

�

h � 2
15�C

160�F172�F
75�F

185�F

|||| 3.11 Exercises

t 1980 1985 1990 1995 2000

15.0 17.0 19.3 22.0 24.9N� t�



15Ð20|||| Find the differential of the function.

15. 16.

17. 18.

20.

21Ð26|||| (a) Find the differential and (b) evaluate for the
given values of and .

21. , ,

22. , ,

23. , ,

24. , ,

25. , ,

26. , ,

27Ð30|||| Compute and for the given values of and
. Then sketch a diagram like Figure 6 showing the line

segments with lengths , , and .

27. , ,

28. , ,

29. , ,

30. , ,

31Ð36|||| Use differentials (or, equivalently, a linear approximation)
to estimate the given number.

31. 32.

33. 34.

35. 36.

37Ð39|||| Explain, in terms of linear approximations or differentials,
why the approximation is reasonable.

38.

39.

40. Let

and

(a) Find the linearizations of , , and at . What do you
notice? How do you explain what happened?

a � 0h�f

h� x� � 1 � ln�1 � 2x�

� � x� � e� 2xf � x� � � x � 1� 2

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

ln 1.05� 0.05

�1.01�6 � 1.06

sec 0.08� 137.

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

ln 1.07tan 44�

1� 1002�8.06�2� 3

� 99.8�2.001�5

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

� x � � 1x � 4y � 16� x

� x � 0.4x � � 2y � 6 � x2

� x � 1x � 1y � � x

� x � 0.5x � 1y � x2

� ydydx
dx � � x

xdy� y

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

dx � 0.05x � 	 � 3y � cos x

dx � � 0.1x � 	 � 4y � tan x

dx � � 0.01x � 1y � 1�� x � 1�

dx � 0.04x � 0y � � 4 � 5x

dx � 0.1x � 0y � ex� 4

dx � 1
2x � 3y � x2 � 2x

dxx
dydy

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

y � �1 � 2r� � 4y �
u � 1
u � 1

19.

y � � 1 � t 2y � x ln x

y � cos 	 xy � x4 � 5x
� (b) Graph , , and and their linear approximation. For which

function is the linear approximation best? For which is it
worst? Explain.

The edge of a cube was found to be 30 cm with a possible error
in measurement of 0.1 cm. Use differentials to estimate the
maximum possible error, relative error, and percentage error in
computing (a) the volume of the cube and (b) the surface area
of the cube.

42. The radius of a circular disk is given as 24 cm with a maxi-
mum error in measurement of 0.2 cm.
(a) Use differentials to estimate the maximum error in the cal-

culated area of the disk.
(b) What is the relative error? What is the percentage error?

43. The circumference of a sphere was measured to be 84 cm with
a possible error of 0.5 cm.
(a) Use differentials to estimate the maximum error in the 

calculated surface area. What is the relative error?
(b) Use differentials to estimate the maximum error in the 

calculated volume. What is the relative error?

44. Use differentials to estimate the amount of paint needed to
apply a coat of paint 0.05 cm thick to a hemispherical dome
with diameter 50 m.

45. (a) Use differentials to Þnd a formula for the approximate vol-
ume of a thin cylindrical shell with height , inner radius ,
and thickness .

(b) What is the error involved in using the formula from
part (a)?

When blood ßows along a blood vessel, the ßux (the volume
of blood per unit time that ßows past a given point) is propor-
tional to the fourth power of the radius of the blood vessel:

(This is known as PoiseuilleÕs Law; we will show why it is true
in Section 8.4.) A partially clogged artery can be expanded by
an operation called angioplasty, in which a balloon-tipped
catheter is inßated inside the artery in order to widen it and
restore the normal blood ßow.

Show that the relative change in is about four times the
relative change in . How will a 5% increase in the radius
affect the ßow of blood?

47. Establish the following rules for working with differentials
(where denotes a constant and and are functions of ). 
(a)
(b)
(c)
(d)

(e)

(f) d� xn� � nxn� 1 dx

d�u
v� �

v du � u dv

v2

d�uv� � u dv � v du
d�u � v� � du � dv
d�cu� � c du
dc � 0

xvuc

R
F

F � kR4

R

F46.

� r
rh

41.

h�f
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(b) Are your estimates in part (a) too large or too small?
Explain.

50. Suppose that we donÕt have a formula for but we know
that and for all .
(a) Use a linear approximation to estimate and .
(b) Are your estimates in part (a) too large or too small?

Explain.

� �2.05�� �1.95�
x� � � x� � � x2 � 5� �2� � � 4

� � x�

�

�� �

���'	�


�

48. On page 431 of Physics: Calculus,2d ed., by Eugene Hecht
(PaciÞc Grove, CA: Brooks/Cole, 2000), in the course of deriv-
ing the formula for the period of a pendulum of
length L, the author obtains the equation for the
tangential acceleration of the bob of the pendulum. He then
says, Òfor small angles, the value of in radians is very nearly
the value of ; they differ by less than 2% out to about 20¡.Ó
(a) Verify the linear approximation at 0 for the sine function:

� (b) Use a graphing device to determine the values of for
which and differ by less than 2%. Then verify
HechtÕs statement by converting from radians to degrees.

Suppose that the only information we have about a function 
is that and the graph of its derivativeis as shown.
(a) Use a linear approximation to estimate and .f �1.1�f �0.9�

f �1� � 5
f49.

xsin x
x

sin x � x

sin �
�

aT � � �  sin �
T � 2	 � L� �

� Taylor Polynomials

The tangent line approximation is the best Þrst-degree (linear) approximation to near
because and have the same rate of change (derivative) at . For a better approx-

imation than a linear one, letÕs try a second-degree (quadratic) approximation . In other
words, we approximate a curve by a parabola instead of by a straight line. To make sure that the
approximation is a good one, we stipulate the following:

(i) ( and should have the same value at .)

(ii) ( and should have the same rate of change at .)

(iii) (The slopes of and should change at the same rate.)

1. Find the quadratic approximation to the function that
satisÞes conditions (i), (ii), and (iii) with . Graph , , and the linear approximation

on a common screen. Comment on how well the functions and approximate .

2. Determine the values of for which the quadratic approximation in Problem 1
is accurate to within 0.1. [Hint: Graph , and on
a common screen.]

3. To approximate a function by a quadratic function near a number , it is best to write 
in the form

Show that the quadratic function that satisÞes conditions (i), (ii), and (iii) is

4. Find the quadratic approximation to near . Graph , the quadratic
approximation, and the linear approximation from Example 3 in Section 3.11 on a common
screen. What do you conclude?

5. Instead of being satisÞed with a linear or quadratic approximation to near , letÕs
try to Þnd better approximations with higher-degree polynomials. We look for an th-degree
polynomial

Tn� x� � c0 � c1� x � a� � c2� x � a�2 � c3� x � a�3 � 
 
 
 � cn� x � a�n

n
x � af � x�

fa � 1f � x� � � x � 3

P� x� � f �a� � f ��a�� x � a� � 1
2 f � �a�� x � a�2

P� x� � A � B� x � a� � C� x � a�2

PaPf

y � cos x � 0.1y � cos x � 0.1, y � P� x�
f � x� � P� x�x

fLPL� x� � 1
fPa � 0

f � x� � cos xP� x� � A � Bx � Cx2

fPP��a� � f � �a�

afPP��a� � f ��a�

afPP�a� � f �a�

P� x�
aL� x�f � x�x � a

f � x�L� x�
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such that and its Þrst derivatives have the same values at as and its Þrst deriv-
atives. By differentiating repeatedly and setting , show that these conditions are satis-
Þed if , and in general

where . The resulting polynomial

is called the th-degree Taylor polynomial of centered at .

6. Find the 8th-degree Taylor polynomial centered at for the function .
Graph together with the Taylor polynomials in the viewing rectangle [� 5, 5]
by [� 1.4, 1.4] and comment on how well they approximate .f

T2, T4, T6, T8f
f � x� � cos xa � 0

afn

Tn� x� � f �a� � f ��a�� x � a� �
 f � �a�

2!
� x � a�2 � 
 
 
 �

 f �n��a�
n!

� x � a�n

k! � 1 � 2 � 3 � 4 � 
 
 
 � k

ck �
 f �k��a�

k!

c0 � f �a�, c1 � f ��a�, c2 � 1
2 f � �a�

x � a
nfx � anTn

1. State each of the following differentiation rules both in
symbols and in words.
(a) The Power Rule
(b) The Constant Multiple Rule
(c) The Sum Rule
(d) The Difference Rule
(e) The Product Rule
(f) The Quotient Rule
(g) The Chain Rule

2. State the derivative of each function.
(a) (b) (c)
(d) (e) (f)
(g) (h) (i)
( j) (k) (l)
(m) (n) (o)
(p) (q) (r)
(s) (t ) y � tanh� 1xy � cosh� 1x

y � sinh� 1xy � tanh xy � cosh x
y � sinh xy � tan� 1xy � cos� 1x
y � sin� 1xy � cot xy � sec x
y � csc xy � tan xy � cos x
y � sin xy � loga xy � ln x
y � axy � exy � xn

3. (a) How is the number deÞned?
(b) Express as a limit.
(c) Why is the natural exponential function used more

often in calculus than the other exponential functions
?

(d) Why is the natural logarithmic function used more
often in calculus than the other logarithmic functions

?

4. (a) Explain how implicit differentiation works.
(b) Explain how logarithmic differentiation works.

5. What are the second and third derivatives of a function f ? If f
is the position function of an object, how can you interpret 
and ?

6. (a) Write an expression for the linearization of at a.
(b) If , write an expression for the differential .
(c) If , draw a picture showing the geometric mean-

ings of and .dy� y
dx � � x

dyy � f � x�
f

f �
f �

y � loga x

y � ln x
y � ax

y � ex
e

e
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Determine whether the statement is true or false. If it is true, explain why. 
If it is false, explain why or give an example that disproves the statement.

1. If and are differentiable, then

2. If and are differentiable, then

d
dx

 	 f � x� � � x�
 � f �� x� � �� x�

�f

d
dx

 	 f � x� � � � x�
 � f �� x� � � �� x�

�f

3. If and are differentiable, then

4. If is differentiable, then .

5. If is differentiable, then .

6. If , then .y� � 2ey � e2

d
dx

 f (� x) �
 f �� x�
2� x

f

d
dx

 � f � x� �
f �� x�

2� f � x�
f

d
dx

 	 f � � � x��
 � f �� � � x�� � �� x�

�f

|||| 3 Review
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11. If , then .

12.

13. An equation of the tangent line to the parabola at
is .y � 4 � 2x� x � 2�� � 2, 4�

y � x2

d2y
dx2 � �dy

dx�
2

lim
x �  2

 
� � x� � � �2�

x � 2
� 80� � x� � x57. 8.

9.

10.
d
dx

 � x2 � x � � � 2x � 1 �

d
dx

 �tan2x� �
d
dx

 �sec2x�

d
dx

 � ln 10� �
1
10

d
dx

 �10x� � x10x� 1

1Ð48 |||| Calculate .

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44. y �
sin mx

x
y � x sinh� x2�

y �
� x �  �4

x4 �  4y �
� x � 1 �2 � x�5

� x � 3�7

xey � y � 1y � tan2�sin � �

y � arctan(arcsin � x)y � sin(tan � 1 � x3)
y � � t ln� t 4�y � cot�3x2 � 5�

y � 10tan 	 �y � ln � sec 5x � tan 5x �
y � ecos x � cos�ex�y � x tan� 1�4x�

y �
� x2 � 1� 4

�2x � 1� 3�3x � 1� 5y � ln sin x � 1
2 sin2x

y � �cos x� xy � log5�1 � 2x�

y � � sin � xsin� xy� � x2 � y

y � 1� �3 x � � xy � �1 � x� 1� � 1

y � sec�1 � x2�y � eex

y � ln� x2ex�y � ecx�c sin x � cos x�

x2 cos y � sin 2y � xyy �
sec 2�

1 � tan 2�

y � ln�csc 5x�xy4 � x2y � x � 3y

y �
1

sin� x � sin x�
y � tan � 1 � x

y � xresxy � xe� 1� x

y � sin� 1�ex�y �
t

1 � t 2

y � e� t� t 2 � 2t � 2�y � esin 2�

y �
ex

1 � x2y � 2x� x2 � 1

y �
3x � 2

� 2x � 1
y � � x �

1
�3 x4

y � cos�tan x�y � � x4 � 3x2 � 5�3

y�
45. 46.

47. 48.

49. If , Þnd .

50. If , Þnd .

51. Find if .

52. Find if .

53. Use mathematical induction to show that if , 
then .

54. Evaluate .

55Ð59|||| Find an equation of the tangent to the curve at the given
point.

55. ,

56. ,

57. ,

58. ,

59. ,

� 60. If , Þnd . Graph and on the same screen
and comment.

61. (a) If , Þnd .
(b) Find equations of the tangent lines to the curve

at the points and .
� (c) Illustrate part (b) by graphing the curve and tangent lines

on the same screen.

� (d) Check to see that your answer to part (a) is reasonable by
comparing the graphs of and .

62. (a) If , , Þnd and .
� (b) Check to see that your answers to part (a) are reasonable by

comparing the graphs of , , and .f �f �f

f �f �� 	 � 2 � x � 	 � 2f � x� � 4x � tan x

f �f

�4, 4��1, 2�y � x� 5 � x

f �� x�f � x� � x� 5 � x

f �ff � � x�f � x� � xesin x

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

�0, 2�y � �2 � x� e� x

�2, 1�x2 � 4xy � y2 � 13

�0, 1�y � � 1 � 4 sin x

�0, � 1�y �
x2 � 1
x2 � 1

�	 � 6, 1�y � 4 sin2x

lim
t � 0

 
t 3

tan3 �2t�

f �n�� x� � � x � n�ex
f � x� � xex

f � x� � 1�� 2 � x�f �n�� x�

x6 � y6 � 1y�

� � � 	 � 6�� � � � � � �sin �

f � �2�f � t� � � 4t � 1

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

y � x tanh� 1� xy � cosh� 1�sinh x�

y � ln � x2 � 4
2x � 5 �y � ln�cosh 3x�

�� EXERCISES ��
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81. At what point on the curve is the tangent 
horizontal?

82. (a) Find an equation of the tangent to the curve that is
parallel to the line .

(b) Find an equation of the tangent to the curve that
passes through the origin.

83. Find a parabola that passes through the
point and whose tangent lines at and have
slopes 6 and , respectively.

84. The function , where a, b, and K are pos-
itive constants and , is used to model the concentration at
time t of a drug injected into the bloodstream.
(a) Show that .
(b) Find , the rate at which the drug is cleared from 

circulation.
(c) When is this rate equal to 0?

85. An equation of motion of the form rep-
resents damped oscillation of an object. Find the velocity and
acceleration of the object.

86. A particle moves along a horizontal line so that its coordinate
at time is , , where and are positive
constants.
(a) Find the velocity and acceleration functions.
(b) Show that the particle always moves in the positive 

direction.

87. A particle moves on a vertical line so that its coordinate at 
time is , .
(a) Find the velocity and acceleration functions.
(b) When is the particle moving upward and when is it moving

downward?
(c) Find the distance that the particle travels in the time inter-

val .

88. The volume of a right circular cone is , where is
the radius of the base and is the height.
(a) Find the rate of change of the volume with respect to the

height if the radius is constant.
(b) Find the rate of change of the volume with respect to the

radius if the height is constant.

89. The mass of part of a wire is kilograms, where is
measured in meters from one end of the wire. Find the linear
density of the wire when m.

90. The cost, in dollars, of producing units of a certain commod-
ity is

(a) Find the marginal cost function.
(b) Find and explain its meaning.
(c) Compare with the cost of producing the 101st item.

91. The volume of a cube is increasing at a rate of 10 .
How fast is the surface area increasing when the length of an
edge is 30 cm?

cm3� min

C��100�
C��100�

C� x� � 920 � 2x � 0.02x2 � 0.00007x3

x

x � 4

xx(1 � � x)

h
rV � � r 2h� 3

0 � t � 3

t � 0y � t 3 � 12t � 3t

cbt � 0x � � b2 � c2t 2t

s � Ae� ct cos�� t � 	 �

C��t�
lim t �  
  C�t� � 0

b � a
C�t� � K�e� at � e� bt �

� 2
x � 5x � � 1�1, 4�

y � ax2 � bx � c

y � ex
x � 4y � 1

y � ex

y � � ln� x � 4�� 263. At what points on the curve , , 
is the tangent line horizontal?

64. Find the points on the ellipse where the tangent
line has slope 1.

65. If , show that

66. (a) By differentiating the double-angle formula

obtain the double-angle formula for the sine function.
(b) By differentiating the addition formula

obtain the addition formula for the cosine function.

67. Suppose that and , where
, , , , and .

Find (a) and (b) .

68. If and are the functions whose graphs are shown, let
, , and . 

Find (a) , (b) , and (c) .

69Ð76|||| Find in terms of .

69. 70.

71. 72.

73. 74.

75. 76.

77Ð79|||| Find in terms of and .

77. 78.

79.

� 80. (a) Graph the function in the viewing rect-
angle by .

(b) On which interval is the average rate of change larger:
or ?

(c) At which value of is the instantaneous rate of change
larger: or ?

(d) Check your visual estimates in part (c) by computing 
and comparing the numerical values of and .f ��5�f ��2�

f �� x�
x � 5x � 2

x
�2, 3��1, 2�

� � 2, 8��0, 8�
f � x� � x � 2 sin x

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

h� x� � f � � �sin 4x��

h� x� � �  f � x�
� � x�

h� x� �
 f � x� � � x�

f � x� � � � x�

� �f �h�

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

f � x� � � � ln x�f � x� � ln � � � x� �
f � x� � e� � x�f � x� � � �ex�

f � x� � � � � � x��f � x� � � � � x�� 2

f � x� � � � x2�f � x� � x2� � x�

� �f �

�

��

�

�

�

�

C��2�Q��2�P��2�
C� x� � f � � � x��Q� x� � f � x�� � � x�P� x� � f � x� � � x�

�f

F��2�h��2�
f ��5� � 11f ��2� � � 2� ��2� � 4� �2� � 5f �2� � 3

F� x� � f � � � x��h� x� � f � x� � � x�

sin� x � a� � sin x cos a � cos x sin a

cos 2x � cos2x � sin2x

 f �� x�
f � x�

�
1

x � a
�

1
x � b

�
1

x � c

f � x� � � x � a�� x � b�� x � c�

x2 � 2y2 � 1

0 � x � 2�y � sin x � cos x
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92. A paper cup has the shape of a cone with height 10 cm and
radius 3 cm (at the top). If water is poured into the cup at a rate
of , how fast is the water level rising when the water is
5 cm deep?

93. A balloon is rising at a constant speed of . A boy is
cycling along a straight road at a speed of . When he
passes under the balloon, it is 45 ft above him. How fast is the
distance between the boy and the balloon increasing 3 s later?

94. A waterskier skis over the ramp shown in the Þgure at a speed
of . How fast is she rising as she leaves the ramp?

95. The angle of elevation of the Sun is decreasing at a rate of
. How fast is the shadow cast by a 400-ft-tall build-

ing increasing when the angle of elevation of the Sun is ?

� 96. (a) Find the linear approximation to near 3.
(b) Illustrate part (a) by graphing and the linear 

approximation.
(c) For what values of is the linear approximation accurate to

within 0.1?

97. (a) Find the linearization of at . State
the corresponding linear approximation and use it to give
an approximate value for .�3 1.03

a � 0f � x� � �3 1 � 3x

x

f
f � x� � � 25 � x2

� � 6
0.25 rad� h

�  ft

�	  ft

30 ft� s

15 ft� s
5 ft� s

2 cm3� s

� (b) Determine the values of for which the linear approxima-
tion given in part (a) is accurate to within 0.1.

98. Evaluate if , , and .

99. A window has the shape of a square surmounted by a semi-
circle. The base of the window is measured as having width
60 cm with a possible error in measurement of 0.1 cm. Use dif-
ferentials to estimate the maximum error possible in computing
the area of the window.

100Ð102|||| Express the limit as a derivative and evaluate.

100. 101.

102.

103. Evaluate .

104. Suppose is a differentiable function such that 
and . Show that .

105. Find if it is known that

106. Show that the length of the portion of any tangent line to the
astroid cut off by the coordinate axes is 
constant.

x2� 3 � y2� 3 � a2� 3

d
dx

 � f �2x�� � x2

f �� x�

� �� x� � 1�� 1 � x2�f �� x� � 1 � � f � x�� 2
f � � � x�� � xf

lim
x� 0

 
� 1 � tan x � � 1 � sin x

x3

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

lim
� � � � 3

 
cos � � 0.5

� � � � 3

lim 
h � 0

 
�4 16 � h � 2

h
lim
x� 1

 
x17 � 1
x � 1

dx � 0.2x � 2y � x3 � 2x2 � 1dy

x



Before you look at the example, cover up the solution and try it yourself Þrst.

EXAMPLE 1How many lines are tangent to both of the parabolas and
? Find the coordinates of the points at which these tangents touch the 

parabolas.

SOLUTIONTo gain insight into this problem, it is essential to draw a diagram. So we sketch
the parabolas (which is the standard parabola shifted 1 unit upward)
and (which is obtained by reßecting the Þrst parabola about the x-axis). If
we try to draw a line tangent to both parabolas, we soon discover that there are only two
possibilities, as illustrated in Figure 1.

Let P be a point at which one of these tangents touches the upper parabola and let a
be its x-coordinate. (The choice of notation for the unknown is important. Of course we
could have used b or c or or instead of a. However, itÕs not advisable to use x in
place of a because that x could be confused with the variable x in the equation of the
parabola.) Then, since P lies on the parabola , its y-coordinate must be 
Because of the symmetry shown in Figure 1, the coordinates of the point Q where the
tangent touches the lower parabola must be .

To use the given information that the line is a tangent, we equate the slope of the line
PQ to the slope of the tangent line at P. We have

If , then the slope of the tangent line at P is . Thus, the condi-
tion that we need to use is that

Solving this equation, we get , so and . Therefore, the
points are (1, 2) and (� 1, � 2). By symmetry, the two remaining points are (� 1, 2) 
and (1, � 2).

EXAMPLE 2For what values of does the equation have exactly one 
solution?

SOLUTIONOne of the most important principles of problem solving is to draw a diagram,
even if the problem as stated doesnÕt explicitly mention a geometric situation. Our pre-
sent problem can be reformulated geometrically as follows: For what values of does
the curve intersect the curve in exactly one point?

LetÕs start by graphing and for various values of . We know that,
for , is a parabola that opens upward if and downward if .
Figure 2 shows the parabolas for several positive values of . Most of them
donÕt intersect at all and one intersects twice. We have the feeling that there
must be a value of (somewhere between and ) for which the curves intersect
exactly once, as in Figure 3.

To Þnd that particular value of , we let be the -coordinate of the single point of
intersection. In other words, , so is the unique solution of the given equa-
tion. We see from Figure 3 that the curves just touch, so they have a common tangent 

aln a � ca2
xac

0.30.1c
y � ln x

cy � cx2
c � 0c � 0y � cx2c � 0

cy � cx2y � ln x
y � cx2y � ln x

c

ln x � cx2c

a � � 1a2 � 11 � a2 � 2a2

1 � a2

a
� 2a

f ��a� � 2af � x� � 1 � x2

mPQ �
1 � a2 � � � 1 � a2�

a � � � a�
�

1 � a2

a

�� a, � �1 � a2��

1 � a2.y � 1 � x2

x1x0

y � � 1 � x2
y � x2y � 1 � x2

y � 1 � x2
y � � 1 � x2

PROBLEMS 
PLUS

�

�

�

�� �
����

����

�	 ln
�

��
�

FIGURE 2

�

�� �

�	 ln
�

�	 �
	 ?

FIGURE 3

�

�

�

�

�

��

FIGURE 1



line when . That means the curves and have the same slope when
. Therefore

Solving the equations and , we get

Thus, and

For negative values of we have the situation illustrated in Figure 4: All parabolas
with negative values of intersect exactly once. And letÕs not forget

about : The curve is just the -axis, which intersects exactly
once.

To summarize, the required values of are and .

1. Find points and on the parabola so that the triangle formed by the -axis
and the tangent lines at and is an equilateral triangle.

� 2. Find the point where the curves and are tangent to each
other, that is, have a common tangent line. Illustrate by sketching both curves and the common
tangent.

3. Show that .

4. A car is traveling at night along a highway shaped like a parabola with its vertex at the origin
(see the Þgure). The car starts at a point 100 m west and 100 m north of the origin and travels
in an easterly direction. There is a statue located 100 m east and 50 m north of the origin. At
what point on the highway will the carÕs headlights illuminate the statue?

5. Prove that .
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6. Find the th derivative of the function .

7. The Þgure shows a circle with radius 1 inscribed in the parabola . Find the center of 
the circle.

8. If is differentiable at , where , evaluate the following limit in terms of :

9. The Þgure shows a rotating wheel with radius 40 cm and a connecting rod with length
1.2 m. The pin slides back and forth along the -axis as the wheel rotates counterclockwise
at a rate of 360 revolutions per minute.
(a) Find the angular velocity of the connecting rod, , in radians per second, when

.
(b) Express the distance in terms of .
(c) Find an expression for the velocity of the pin in terms of .

10. Tangent lines and are drawn at two points and on the parabola and they
intersect at a point . Another tangent line is drawn at a point between and ; it inter-
sects at and at . Show that

11. Show that

where a and b are positive numbers, , and .

12. Evaluate .

13. Let and be the tangent and normal lines to the ellipse at any point on
the ellipse in the Þrst quadrant. Let and be the - and -intercepts of and and be
the intercepts of . As moves along the ellipse in the Þrst quadrant (but not on the axes),
what values can , , , and take on? First try to guess the answers just by looking at the
Þgure. Then use calculus to solve the problem and see how good your intuition is.

14. Evaluate .

15. (a) Use the identity for (see Equation 14b in Appendix D) to show that if two lines
and intersect at an angle , then

where and are the slopes of and , respectively.
(b) The angle between the curves and at a point of intersection is deÞned to be the

angle between the tangent lines to and at (if these tangent lines exist). Use part (a)
to Þnd, correct to the nearest degree, the angle between each pair of curves at each point
of intersection.
(i) and
(ii) and

16. Let be a point on the parabola with focus . Let be the angle
between the parabola and the line segment , and let be the angle between the horizontal
line and the parabola as in the Þgure. Prove that . (Thus, by a principle of geo-
metrical optics, light from a source placed at will be reßected along a line parallel to the 
-axis. This explains why paraboloids, the surfaces obtained by rotating parabolas about their

axes, are used as the shape of some automobile headlights and mirrors for telescopes.)
x

F

 � �y � y1

�FP

F� p, 0�y2 � 4pxP� x1, y1�

x2 � 4x � y2 � 3 � 0x2 � y2 � 3
y � � x � 2�2y � x2

PC2C1

PC2C1

L2L1m2m1

tan 
 �
m2 � m1

1 � m1m2


L2L1

tan� x � y�

lim
x� 0

 
sin�3 � x�2 � sin 9

x

yNxNyTxT

PN
yNxNTyxyTxT

Px2� 9 � y2� 4 � 1NT

lim
x� �

 
esin x � 1
x � �

� � tan� 1�b� a�r 2 � a2 � b2

dn

dxn  �eax sin bx� � r neax sin�bx � n� �

� PQ1�
� PP1 �

� � PQ2 �
� PP2 �

� 1

Q2T2Q1T1

P2P1TP
y � x2P2P1T2T1

�P
�x � � OP�

� � � � 3
d
 � dt

xP
AP

lim 
x � a

 
 f � x� � f �a�
� x � � a

f ��a�a � 0af

y � x2

f � x� � xn�� 1 � x�n

� � � �

� �

� �

x

y

��

�

�

�

�

FIGURE FOR PROBLEM 13

�

�

�

�

� ���
��

� �

FIGURE FOR PROBLEM 9

��

�

��

�	�

FIGURE FOR PROBLEM 7

� �

�

�� ��
��

����
� �

 	!��

�	�

�

"

FIGURE FOR PROBLEM 16



17. Suppose that we replace the parabolic mirror of Problem 16 by a spherical mirror. Although
the mirror has no focus, we can show the existence of an approximate focus. In the Þgure, 

is a semicircle with center . A ray of light coming in toward the mirror parallel to the 
axis along the line will be reßected to the point on the axis so that 
(the angle of incidence is equal to the angle of reßection). What happens to the point as 
is taken closer and closer to the axis?

18. If f and are differentiable functions with and , show that

19. Evaluate .

20. (a) The cubic function has three distinct zeros: 0, 2, and 6. Graph 
and its tangent lines at the averageof each pair of zeros. What do you notice?

(b) Suppose the cubic function has three distinct zeros: , ,
and . Prove, with the help of a computer algebra system, that a tangent line drawn at the
average of the zeros intersects the graph of at the third zero.

21. For what value of does the equation have exactly one solution?

22. For which positive numbers is it true that for all ?

23. If

show that .

24. Given an ellipse , where , Þnd the equation of the set of all points
from which there are two tangents to the curve whose slopes are (a) reciprocals and 
(b) negative reciprocals.

25. Find the two points on the curve that have a common tangent line.

26. Suppose that three points on the parabola have the property that their normal lines
intersect at a common point. Show that the sum of their -coordinates is 0.

27. A lattice pointin the plane is a point with integer coordinates. Suppose that circles with 
radius are drawn using all lattice points as centers. Find the smallest value of such that any
line with slope intersects some of these circles.

28. A cone of radius r centimeters and height h centimeters is lowered point Þrst at a rate of
1 cm� s into a tall cylinder of radius R centimeters that is partially Þlled with water. How fast
is the water level rising at the instant the cone is completely submerged?

29. A container in the shape of an inverted cone has height 16 cm and radius 5 cm at the top. It 
is partially Þlled with a liquid that oozes through the sides at a rate proportional to the area 
of the container that is in contact with the liquid. (The surface area of a cone is , where 
r is the radius and l is the slant height.) If we pour the liquid into the container at a rate of

, then the height of the liquid decreases at a rate of 0.3 cm� min when the height is
10 cm. If our goal is to keep the liquid at a constant height of 10 cm, at what rate should we
pour the liquid into the container?
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Applications of Differentiation

Scientists have tried to

explain how rainbows are

formed since the time of

Aristotle. In the project on

page 288, you will be able

to use the principles of

differential calculus to

explain the formation,

location, and colors of 

the rainbow.



We have already investigated some of the applications of

derivatives, but now that we know the differentiation rules

we are in a better position to pursue the applications of dif-

ferentiation in greater depth. Here we learn how derivatives

affect the shape of a graph of a function and, in particu-

lar, how they help us locate maximum and minimum values of functions. Many prac-

tical problems require us to minimize a cost or maximize an area or somehow Þnd

the best possible outcome of a situation. In particular, we will be able to investigate

the optimal shape of a can and to explain the location of rainbows in the sky.

|||| 4.1 Maximum and Minimum Values

Some of the most important applications of differential calculus are optimization prob-
lems,in which we are required to Þnd the optimal (best) way of doing something. Here are
examples of such problems that we will solve in this chapter:

�� What is the shape of a can that minimizes manufacturing costs?
�� What is the maximum acceleration of a space shuttle? (This is an important 

question to the astronauts who have to withstand the effects of acceleration.)
�� What is the radius of a contracted windpipe that expels air most rapidly during 

a cough?
�� At what angle should blood vessels branch so as to minimize the energy expended

by the heart in pumping blood?

These problems can be reduced to Þnding the maximum or minimum values of a function.
LetÕs Þrst explain exactly what we mean by maximum and minimum values.

Definition A function has an absolute maximum(or global maximum) at 
if for all in , where is the domain of . The number is called
the maximum valueof on . Similarly, has an absolute minimumat if

for all in and the number is called the minimum value of 
on . The maximum and minimum values of are called the extreme valuesof .

Figure 1 shows the graph of a function with absolute maximum at and absolute 
minimum at . Note that is the highest point on the graph and is the low-
est point.
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In Figure 1, if we consider only values of near [for instance, if we restrict our atten-
tion to the interval ], then is the largest of those values of and is called a
local maximum valueof . Likewise, is called a local minimum valueof because

for near [in the interval , for instance]. The function also has a local
minimum at . In general, we have the following deÞnition.

Definition A function has a local maximum (or relative maximum) at if
when x is near c. [This means that for all in some open

interval containing c.] Similarly, has alocal minimum at if when
is near c.

EXAMPLE 1The function takes on its (local and absolute) maximum value
of 1 inÞnitely many times, since for any integer and for
all . Likewise, is its minimum value, where is any integer.

EXAMPLE 2If , then because for all . Therefore,
is the absolute (and local) minimum value of . This corresponds to the fact that the
origin is the lowest point on the parabola . (See Figure 2.) However, there is no
highest point on the parabola and so this function has no maximum value. 

EXAMPLE 3From the graph of the function , shown in Figure 3, we see that this
function has neither an absolute maximum value nor an absolute minimum value. In fact,
it has no local extreme values either. 

EXAMPLE 4The graph of the function

is shown in Figure 4. You can see that is a local maximum, whereas the
absolute maximum is . (This absolute maximum is not a local maximum
because it occurs at an endpoint.) Also, is a local minimum and 
is both a local and an absolute minimum. Note that has neither a local nor an absolute
maximum at .

We have seen that some functions have extreme values, whereas others do not. The 
following theorem gives conditions under which a function is guaranteed to possess
extreme values.
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The Extreme Value TheoremIf is continuous on a closed interval , then 
attains an absolute maximum value and an absolute minimum value at
some numbers and in .

The Extreme Value Theorem is illustrated in Figure 5. Note that an extreme value can
be taken on more than once. Although the Extreme Value Theorem is intuitively very plau-
sible, it is difÞcult to prove and so we omit the proof.

Figures 6 and 7 show that a function need not possess extreme values if either hypoth-
esis (continuity or closed interval) is omitted from the Extreme Value Theorem.

The functionf whose graph is shown in Figure 6 is deÞned on the closed interval [0, 2]
but has no maximum value. (Notice that the range off is [0, 3). The function takes on val-
ues arbitrarily close to 3, but never actually attains the value 3.) This does not contradict
the Extreme Value Theorem because f is not continuous. [Nonetheless, a discontinuous
function couldhave maximum and minimum values. See Exercise 13(b).]

The function � shown in Figure 7 is continuous on the open interval (0, 2) but has nei-
ther a maximum nor a minimum value. [The range of � is . The function takes on
arbitrarily large values.] This does not contradict the Extreme Value Theorem because the
interval (0, 2) is not closed.

The Extreme Value Theorem says that a continuous function on a closed interval has a
maximum value and a minimum value, but it does not tell us how to Þnd these extreme
values. We start by looking for local extreme values.

Figure 8 shows the graph of a function with a local maximum at and a local minimum
at . It appears that at the maximum and minimum points the tangent lines are horizontal
and therefore each has slope 0. We know that the derivative is the slope of the tangent line,
so it appears that and . The following theorem says that this is always
true for differentiable functions.
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FermatÕs TheoremIf has a local maximum or minimum at , and if 
exists, then .

Proof Suppose, for the sake of deÞniteness, that has a local maximum at c. Then,
according to DeÞnition 2, if is sufÞciently close to . This implies that if 

is sufÞciently close to 0, with being positive or negative, then

and therefore

We can divide both sides of an inequality by a positive number. Thus, if and is
sufÞciently small, we have

Taking the right-hand limit of both sides of this inequality (using Theorem 2.3.2), we get

But since exists, we have

and so we have shown that .
If , then the direction of the inequality (5) is reversed when we divide by :

So, taking the left-hand limit, we have

We have shown that and also that . Since both of these inequalities
must be true, the only possibility is that .

We have proved FermatÕs Theorem for the case of a local maximum. The case of a
local minimum can be proved in a similar manner, or we could use Exercise 76 to
deduce it from the case we have just proved (see Exercise 77).

The following examples caution us against reading too much into FermatÕs Theorem.
We canÕt expect to locate extreme values simply by setting and solving for .

EXAMPLE 5If , then , so . But has no maximum or mini-
mum at 0, as you can see from its graph in Figure 9. (Or observe that for 
but for .) The fact that simply means that the curve has a y � x3f ��0� � 0x 	 0x3 	 0
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f ��c�cf4|||| FermatÕs Theorem is named after Pierre 

Fermat (1601Ð1665), a French lawyer who took
up mathematics as a hobby. Despite his amateur
status, Fermat was one of the two inventors of
analytic geometry (Descartes was the other). His
methods for Þnding tangents to curves and maxi-
mum and minimum values (before the invention
of limits and derivatives) made him a forerunner
of Newton in the creation of differential calculus.
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horizontal tangent at . Instead of having a maximum or minimum at , the
curve crosses its horizontal tangent there.

EXAMPLE 6The function has its (local and absolute) minimum value at 0, but
that value canÕt be found by setting because, as was shown in Example 6 in
Section 2.9, does not exist. (See Figure 10.)

� WARNING�� Examples 5 and 6 show that we must be careful when using FermatÕs
Theorem.Example 5 demonstrates thateven when there need not be a maximum
or minimum at .(In other words, the converse of FermatÕs Theorem is false in general.)
Furthermore, there may be an extreme value even when does not exist (as in
Example 6).

FermatÕs Theorem does suggest that we should at least start looking for extreme values
of at the numbers where or where does not exist. Such numbers are
given a special name.

Definition A critical number of a function is a number in the domain of 
such that either or does not exist.

EXAMPLE 7Find the critical numbers of .

SOLUTIONThe Product Rule gives

[The same result could be obtained by Þrst writing .] Therefore,
if , that is, , and does not exist when . Thus, the

critical numbers are and .

In terms of critical numbers, FermatÕs Theorem can be rephrased as follows (compare
DeÞnition 6 with Theorem 4):

If f has a local maximum or minimum at c, then c is a critical number of f.

To Þnd an absolute maximum or minimum of a continuous function on a closed interval,
we note that either it is local [in which case it occurs at a critical number by (7)] or it occurs
at an endpoint of the interval. Thus, the following three-step procedure always works.

The Closed Interval MethodTo Þnd the absolutemaximum and minimum values of a
continuous function on a closed interval :

1. Find the values of at the critical numbers of in .

2. Find the values of at the endpoints of the interval.

3. The largest of the values from Steps 1 and 2 is the absolute maximum value;
the smallest of these values is the absolute minimum value.

f

�a, b�ff

�a, b�f

7

03
2

x � 0f �� x�x � 3
212 � 8x � 0f �� x� � 0

f � x� � 4x3� 5 � x8� 5

 �
3�4 � x� � 5x

5x2� 5 �
12 � 8x

5x2� 5

 f �� x� � 3
5 x� 2� 5�4 � x� � x3� 5� � 1� �

3�4 � x�
5x2� 5 � x3� 5

f � x� � x3� 5�4 � x�

f ��c�f ��c� � 0
fcf6

f ��c�f ��c� � 0cf

f ��c�
c

f ��c� � 0

f ��0�
f �� x� � 0

f � x� � � x�

�0, 0��0, 0�

FIGURE 10
If #�%���% , then ������  is a
minimum value, but �$���  does not exist.

x�

��%�%

�

|||| Figure 11 shows a graph of the function 
in Example 7. It supports our answer because
there is a horizontal tangent when and
a vertical tangent when .x � 0

x � 1.5

f

FIGURE 11

�&�

��

��&� �



284 � � � � CHAPTER 4APPLICATIONS OF DIFFERENTIATION

EXAMPLE 8Find the absolute maximum and minimum values of the function

SOLUTIONSince is continuous on , we can use the Closed Interval Method:

Since exists for all , the only critical numbers of occur when , that is,
or . Notice that each of these critical numbers lies in the interval .

The values of at these critical numbers are

The values of at the endpoints of the interval are

Comparing these four numbers, we see that the absolute maximum value is 
and the absolute minimum value is .

Note that in this example the absolute maximum occurs at an endpoint, whereas the
absolute minimum occurs at a critical number. The graph of is sketched in Figure 12.

If you have a graphing calculator or a computer with graphing software, it is possible
to estimate maximum and minimum values very easily. But, as the next example shows,
calculus is needed to Þnd the exactvalues.

EXAMPLE 9
(a) Use a graphing device to estimate the absolute minimum and maximum values of
the function .
(b) Use calculus to Þnd the exact minimum and maximum values.

SOLUTION
(a) Figure 13 shows a graph of in the viewing rectangle by . By mov-
ing the cursor close to the maximum point, we see that the -coordinates donÕt change
very much in the vicinity of the maximum. The absolute maximum value is about 6.97
and it occurs when . Similarly, by moving the cursor close to the minimum point,
we see that the absolute minimum value is about and it occurs when . It is
possible to get more accurate estimates by zooming in toward the maximum and mini-
mum points, but instead letÕs use calculus.

(b) The function is continuous on . Since ,
we have when and this occurs when or . The values
of at these critical points are
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�� 1, 8��0, 2� �f

f � x� � x � 2 sin x, 0 � x � 2�

f

f �2� � � 3
f �4� � 17

f �4� � 17f (� 1
2) � 1

8

f

f �2� � � 3f �0� � 1

f
(� 1

2, 4)x � 2x � 0
f �� x� � 0fxf �� x�

 f �� x� � 3x2 � 6x � 3x� x � 2�

 f � x� � x3 � 3x2 � 1

[� 1
2, 4]f

� 1
2 � x � 4f � x� � x3 � 3x2 � 1

FIGURE 12
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The values of at the endpoints are 

Comparing these four numbers and using the Closed Interval Method, we see that the
absolute minimum value is and the absolute maximum value is

. The values from part (a) serve as a check on our work.

EXAMPLE 10The Hubble Space Telescope was deployed on April 24, 1990, by the space
shuttle Discovery.A model for the velocity of the shuttle during this mission, from liftoff
at until the solid rocket boosters were jettisoned at , is given by

(in feet per second). Using this model, estimate the absolute maximum and minimum
values of theaccelerationof the shuttle between liftoff and the jettisoning of the boosters.

SOLUTIONWe are asked for the extreme values not of the given velocity function, but
rather of the acceleration function. So weÞrst need to differentiate toÞnd the acceleration:

We now apply the Closed Interval Method to the continuous function a on the interval
. Its derivative is

The only critical number occurs when :

Evaluating at the critical number and at the endpoints, we have

So the maximum acceleration is about and the minimum acceleration is 
about .21.52 ft� s2

62.87 ft� s2

a�126� � 62.87a�t1� � 21.52a�0� � 23.61

a�t�

t1 �
0.18058
0.007812

� 23.12

a��t� � 0

a��t� � 0.007812t � 0.18058

0 � t � 126

 � 0.003906t2 � 0.18058t � 23.61

 a�t� � v��t� �
d
dt

 �0.001302t3 � 0.09029t2 � 23.61t � 3.083�

v�t� � 0.001302t3 � 0.09029t2 � 23.61t � 3.083

t � 126 st � 0

f �5� � 3� � 5� � 3 � � 3
f � � � 3� � � � 3 � � 3

f �2� � � 2� � 6.28andf �0� � 0

f

(a) What theorem guarantees the existence of an absolute max-
imum value and an absolute minimum value for ?

(b) What steps would you take to Þnd those maximum and
minimum values?

f
1. Explain the difference between an absolute minimum and a

local minimum.

2. Suppose is a continuous function deÞned on a closed 
interval .�a, b�

f

|||| 4.1 Exercises



Absolute maximum at 5, absolute minimum at 2,
local maximum at 3, local minima at 2 and 4

10. has no local maximum or minimum, but 2 and 4 are critical
numbers

(a) Sketch the graph of a function that has a local maximum 
at 2 and is differentiable at 2.

(b) Sketch the graph of a function that has a local maximum 
at 2 and is continuous but not differentiable at 2.

(c) Sketch the graph of a function that has a local maximum 
at 2 and is not continuous at 2.

12. (a) Sketch the graph of a function on [� 1, 2] that has an
absolute maximum but no local maximum.

(b) Sketch the graph of a function on [� 1, 2] that has a local
maximum but no absolute maximum.

(a) Sketch the graph of a function on [� 1, 2] that has an
absolute maximum but no absolute minimum.

(b) Sketch the graph of a function on [� 1, 2] that is discontin-
uous but has both an absolute maximum and an absolute
minimum.

14. (a) Sketch the graph of a function that has two local maxima,
one local minimum, and no absolute minimum.

(b) Sketch the graph of a function that has three local minima,
two local maxima, and seven critical numbers.

15Ð30 |||| Sketch the graph of by hand and use your sketch to 
Þnd the absolute and local maximum and minimum values of .
(Use the graphs and transformations of Sections 1.2 and 1.3.)

15. ,

16. ,

17. ,

18. ,

19. ,

20. ,

21. ,

22. ,

23. ,

24. ,

25. ,

26. ,

28.

29.

30.

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

f � x� � 	x2

2 � x2

if � � 1 � x 	 0
if � 0 � x � 1

f � x� � 	1 � x
2x � 4

if � 0 � x 	 2
if � 2 � x � 3

f � x� � ex

f � x� � 1 � � x27.

� � � 4 � � 	 � � 2f � � � � tan �

� 2� � � � 2�f � � � � sin �

0 	 t � 1f �t� � 1� t

0 	 t 	 1f �t� � 1� t

� 2 � x 	 5f � x� � 1 � � x � 1� 2

� 3 � x � 2f � x� � x2

0 � x � 2f � x� � x2

0 � x 	 2f � x� � x2

0 	 x � 2f � x� � x2

0 	 x 	 2f � x� � x2

x � 5f � x� � 3 � 2x

x � 1f � x� � 8 � 3x

f
f

13.

11.

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

f

9.3Ð4 |||| For each of the numbers a, b, c, d, e, r, s, and t, state
whether the function whose graph is shown has an absolute maxi-
mum or minimum, a local maximum or minimum, or neither a
maximum nor a minimum.

3.

4.

5Ð6 |||| Use the graph to state the absolute and local maximum and
minimum values of the function.

5.

6.

7Ð10 |||| Sketch the graph of a function that is continuous on 
[1, 5] and has the given properties.

7. Absolute minimum at 2, absolute maximum at 3,
local minimum at 4

8. Absolute minimum at 1, absolute maximum at 5,
local maximum at 2, local minimum at 4

f

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

y

� �

��#

�

�

��#

y

� ��

�

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

x

y

� � � 
 � 	 ( )

*

� � 
 � 	 ( ) * x

y

�
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31Ð46 |||| Find the critical numbers of the function.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

42.

44.

45. 46.

47Ð62 |||| Find the absolute maximum and absolute minimum 
values of on the given interval.

47. ,

48. ,

,

50. ,

51. ,

52. ,

53. ,

54. ,

55. ,

56. ,

57. ,

58. ,

59.

60.

61.

62.

63. If and are positive numbers,Þnd the maximum value of
, .

� 64. Use a graph to estimate the critical numbers of
correct to one decimal place.

� 65Ð68 ||||

(a) Use a graph to estimate the absolute maximum and minimum
values of the function to two decimal places.

(b) Use calculus to Þnd the exact maximum and minimum values.

65.

66. f � x� � ex3� x, � 1 � x � 0

f � x� � x3 � 8x � 1, � 3 � x � 3

f � x� � � x3 � 3x2 � 2 �

0 � x � 1f � x� � xa�1 � x� b
ba

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

f � x� � e� x � e� 2x, �0, 1�

f � x� � x � 3 ln x, �1, 4�

f � x� � � ln x�� x, �1, 3�

f � x� � xe� x, �0, 2�

� � � , � �f � x� � x � 2 cos x

�0, � � 3�f � x� � sin x � cos x

�0, 8�f � t� � �3 t �8 � t�

� � 1, 2�f � t� � t � 4 � t 2 

� � 4, 4�f � x� �
x2 � 4
x2 � 4

�0, 2�f � x� �
x

x2 � 1

�� 1, 2�f � x� � � x2 � 1� 3

� � 2, 3�f � x� � x4 � 2x2 � 3

�� 1, 4�f � x� � x3 � 6x2 � 9x � 2

�� 2, 3�f � x� � 2x3 � 3x2 � 12x � 149.

�0, 3�f � x� � x3 � 3x � 1

�0, 3�f � x� � 3x2 � 12x � 5

f

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

f � x� � xe2xf � x� � x ln x

� � � � � 4� � tan �f � � � � 2 cos � � sin2�43.

G� x� � �3 x2 � xF� x� � x4� 5�x � 4� 2 41.

� �t� � � t �1 � t�� � t� � 5t 2� 3 � t 5� 3

� � x� � x1� 3 � x� 2� 3� � x� � � 2x � 3 �

f � � � �
� � 1

� 2 � � � 1
s�t� � 3t 4 � 4t 3 � 6t 2

f � x� � x3 � x2 � xf � x� � x3 � 3x2 � 24x

f � x� � x3 � x2 � xf � x� � 5x2 � 4x 68.

69. Between and , the volume (in cubic centimeters) of
1 kg of water at a temperature is given approximately by the
formula

Find the temperature at which water has its maximum density.

70. An object with weight is dragged along a horizontal plane
by a force acting along a rope attached to the object. If the rope
makes an angle with the plane, then the magnitude of the
force is

where is a positive constant called the coefÞcient of friction
and where . Show that is minimized when

.

71. A model for the food-price index (the price of a representative
ÒbasketÓof foods) between 1984 and 1994 is given by the
function

where is measured in years since midyear 1984, so
, and is measured in 1987 dollars and scaled

such that . Estimate the times when food was 
cheapest and most expensive during the period 1984Ð1994.

� 72. On May 7, 1992, the space shuttle Endeavourwas launched 
on mission STS-49, the purpose of which was to install a new
perigee kick motor in an Intelsat communications satellite. The
table gives the velocity data for the shuttle between liftoff and
the jettisoning of the solid rocket boosters.

(a) Use a graphing calculator or computer to Þnd the cubic
polynomial that best models the velocity of the shuttle for
the time interval . Then graph this polynomial.

(b) Find a model for the acceleration of the shuttle and use it to
estimate the maximum and minimum values of the acceler-
ation during the Þrst 125 seconds.

t � �0, 125�

I �3� � 100
I� t�0 � t � 10

t

 I�t� � � 0.4598t2 � 0.6270t � 99.33

 I� t� � 0.00009045t5 � 0.001438t4 � 0.06561t3

tan � � �
F0 � � � � � 2

�

F �
� W

� �sin � � cos �

�

W

V � 999.87� 0.06426T � 0.0085043T 2 � 0.0000679T 3

T
V30C0C

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

f � x� � �cos x��� 2 � sin x�, 0 � x � 2�

f � x� � x� x � x267.

Event Time (s) Velocity (ft� s)

Launch 0 0
Begin roll maneuver 10 185
End roll maneuver 15 319
Throttle to 89% 20 447
Throttle to 67% 32 742
Throttle to 104% 59 1325
Maximum dynamic pressure 62 1445
Solid rocket booster separation 125 4151
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(b) What is the absolute maximum value of on the interval?
(c) Sketch the graph of on the interval .

74. Show that 5 is a critical number of the function

but does not have a local extreme value at 5.

75. Prove that the function

has neither a local maximum nor a local minimum.

76. If has a minimum value at , show that the function
has a maximum value at .

77. Prove FermatÕs Theorem for the case in which has a local
minimum at .

A cubic function is a polynomial of degree 3; that is, it has the
form , where .
(a) Show that a cubic function can have two, one, or no critical

number(s). Give examples and sketches to illustrate the
three possibilities.

(b) How many local extreme values can a cubic function have?

a � 0f � x� � ax3 � bx2 � cx � d
78.

c
f

c� � x� � � f � x�
cf

f � x� � x101 � x51 � x � 1

�

� � x� � 2 � � x � 5� 3

�0, r0�v
v73. When a foreign object lodged in the trachea (windpipe) forces

a person to cough, the diaphragm thrusts upward causing an
increase in pressure in the lungs. This is accompanied by a
contraction of the trachea, making a narrower channel for the
expelled air to ßow through. For a given amount of air to
escape in a Þxed time, it must move faster through the nar-
rower channel than the wider one. The greater the velocity 
of the airstream, the greater the force on the foreign object.
X rays show that the radius of the circular tracheal tube
contracts to about two-thirds of its normal radius during a
cough. According to a mathematical model of coughing, the
velocity of the airstream is related to the radius of the
trachea by the equation

where is a constant and is the normal radius of the trachea.
The restriction on is due to the fact that the tracheal wall 
stiffens under pressure and a contraction greater than is 
prevented (otherwise the person would suffocate).
(a) Determine the value of in the interval at which 

has an absolute maximum. How does this compare with
experimental evidence?

v[ 1
2 r0, r0]r

1
2 r0

r
r0k

1
2 r0 � r � r0v�r� � k�r0 � r�r 2

rv

The Calculus of Rainbows

Rainbows are created when raindrops scatter sunlight. They have fascinated mankind since
ancient times and have inspired attempts at scientiÞc explanation since the time of Aristotle. In
this project we use the ideas of Descartes and Newton to explain the shape, location, and colors
of rainbows. 

1. The Þgure shows a ray of sunlight entering a spherical raindrop at . Some of the light is
reßected, but the line shows the path of the part that enters the drop. Notice that the light
is refracted toward the normal line and in fact SnellÕs Law says that ,
where is the angle of incidence, is the angle of refraction, and is the index of
refraction for water. At some of the light passes through the drop and is refracted into the
air, but the line shows the part that is reßected. (The angle of incidence equals the angle
of reßection.) When the ray reaches , part of it is reßected, but for the time being we are
more interested in the part that leaves the raindrop at . (Notice that it is refracted away
from the normal line.) The angle of deviation is the amount of clockwise rotation that
the ray has undergone during this three-stage process. Thus

Show that the minimum value of the deviation is and occurs when .
The signiÞcance of the minimum deviation is that when we have , so

. This means that many rays with become deviated by approximately
the same amount. It is the concentrationof rays coming from near the direction of minimum 

� � 59.4�� D� � � � 0
D��� � � 0� � 59.4�

� � 59.4�D�� � � 138�

D�� � � � � � 	 � � � 
 � 2	 � � � � � 	 � � 
 � 2� � 4	

D�� �
C

C
BC

B
k � 4

3	�
sin � � k sin 	AO
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A
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deviation that creates the brightness of the primary rainbow. The following Þgure shows 
that the angle of elevation from the observer up to the highest point on the rainbow is

. (This angle is called the rainbow angle.)

2. Problem 1 explains the location of the primary rainbow, but how do we explain the colors?
Sunlight comprises a range of wavelengths, from the red range through orange, yellow,
green, blue, indigo, and violet. As Newton discovered in his prism experiments of 1666, the
index of refraction is different for each color. (The effect is called dispersion.) For red light
the refractive index is whereas for violet light it is . By repeating the
calculation of Problem 1 for these values of , show that the rainbow angle is about for
the red bow and for the violet bow. So the rainbow really consists of seven individual
bows corresponding to the seven colors.

3. Perhaps you have seen a fainter secondary rainbow above the primary bow. That results from
the part of a ray that enters a raindrop and is refracted at , reßected twice (at and ), and
refracted as it leaves the drop at (see the Þgure). This time the deviation angle is the
total amount of counterclockwise rotation that the ray undergoes in this four-stage process.
Show that

and has a minimum value when

Taking , show that the minimum deviation is about and so the rainbow angle for
the secondary rainbow is about , as shown in the Þgure.

4. Show that the colors in the secondary rainbow appear in the opposite order from those in the
primary rainbow.

�� ��

51�
129�k � 4

3

cos � � � k2 � 1
8

D�� �

D�� � � 2� � 6	 � 2


D�� �D
CBA

40.6�
42.3�k

k � 1.3435k � 1.3318

rays from Sun

rays from Sun

��

���

observer

180� � 138� � 42�

Formation of the secondary rainbow
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|||| 4.2 The Mean Value Theorem

We will see that many of the results of this chapter depend on one central fact, which is
called the Mean Value Theorem. But to arrive at the Mean Value Theorem we Þrst need the
following result.

RolleÕs TheoremLet be a function that satisÞes the following three hypotheses:

1. is continuous on the closed interval .

2. is differentiable on the open interval .

3.

Then there is a number in such that .

Before giving the proof letÕs take a look at the graphs of some typical functions that sat-
isfy the three hypotheses. Figure 1 shows the graphs of four such functions. In each case
it appears that there is at least one point on the graph where the tangent is hori-
zontal and therefore . Thus, RolleÕs Theorem is plausible.

Proof There are three cases:

CASE I�� , a constant
Then , so the number can be taken to be anynumber in .

CASE II�� for some x in [as in Figure 1(b) or (c)]
By the Extreme Value Theorem (which we can apply by hypothesis 1), has a maxi-
mum value somewhere in . Since , it must attain this maximum value at
a number in the open interval . Then has a local maximum at and, by hypoth-
esis 2, is differentiable at . Therefore, by FermatÕs Theorem.

CASE III�� for some x in [as in Figure 1(c) or (d)]
By the Extreme Value Theorem, has a minimum value in and, since , it
attains this minimum value at a number in . Again by FermatÕs Theorem.

EXAMPLE 1LetÕs apply RolleÕs Theorem to the position function of a moving
object. If the object is in the same place at two different instants and , then

. RolleÕs Theorem says that there is some instant of time between and
when ; that is, the velocity is 0. (In particular, you can see that this is true

when a ball is thrown directly upward.)
f ��c� � 0b

at � cf �a� � f �b�
t � bt � a

s � f �t�

f ��c� � 0�a, b�c
f �a� � f �b��a, b�f

(a, b)f (x) < f (a)

f ��c� � 0cf
cf�a, b�c

f �a� � f �b��a, b�
f

(a, b)f (x) > f (a)

�a, b�cf �� x� � 0
f (x) �� k

FIGURE 1

(a)

�� �� �� x

y

�

(b)

� � � x

y

�

(c)

�� �� �� x

y

�

(d)

�� �

y

x�

f ��c� � 0
�c, f �c��

f ��c� � 0�a, b�c

f �a� � f �b�

�a, b�f

�a, b�f

f|||| RolleÕs Theorem was Þrst published in 
1691 by the French mathematician Michel Rolle
(1652Ð1719) in a book entitled MŽthode pour
rŽsoudre les ŽgalitŽz. Later, however, he became
a vocal critic of the methods of his day and
attacked calculus as being a Òcollection of 
ingenious fallacies.Ó

|||| Take cases
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EXAMPLE 2Prove that the equation has exactly one real root.

SOLUTIONFirst we use the Intermediate Value Theorem (2.5.10) to show that a root exists.
Let . Then and . Since is a polyno-
mial, it is continuous, so the Intermediate Value Theorem states that there is a number 
between 0 and 1 such that . Thus, the given equation has a root.

To show that the equation has no other real root, we use RolleÕs Theorem and argue by
contradiction. Suppose that it had two roots and . Then and, since 
is a polynomial, it is differentiable on and continuous on . Thus, by RolleÕs
Theorem, there is a number between and such that . But

(since ) so can never be 0. This gives a contradiction. Therefore, the equa-
tion canÕt have two real roots. 

Our main use of RolleÕs Theorem is in proving the following important theorem, which
was Þrst stated by another French mathematician, Joseph-Louis Lagrange.

The Mean Value TheoremLet be a function that satisÞes the following hypotheses:

1. is continuous on the closed interval .

2. is differentiable on the open interval .

Then there is a number in such that

or, equivalently,

Before proving this theorem, we can see that it is reasonable by interpreting it geomet-
rically. Figures 3 and 4 show the points and on the graphs of two dif-
ferentiable functions. The slope of the secant line is

FIGURE 3 FIGURE 4

� �

�

� � �

	 �������� �

� �������� �

� �������� �

� �

�

� ��� ��

	��

� ��

mAB �
 f �b� � f �a�

b � a
3

AB
B�b, f �b��A�a, f �a��

f �b� � f �a� � f ��c�� b � a�2

f ��c� �
 f �b� � f �a�

b � a
1

�a, b�c

�a, b�f

�a, b�f

f

f �� x�x2 � 0

for all xf �� x� � 3x2 � 1 � 1

f ��c� � 0bac
�a, b��a, b�

ff �a� � 0 � f �b�ba

f �c� � 0
c

ff �1� � 1 � 0f �0� � � 1  0f � x� � x3 � x � 1

x3 � x � 1 � 0|||| Figure 2 shows a graph of the function
discussed in Example 2.

Rolle’s Theorem shows that, no matter how much
we enlarge the viewing rectangle, we can never
find a second -intercept.x

f � x� � x3 � x � 1

FIGURE 2
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70. (a) Show that for .
(b) Deduce that for .
(c) Use mathematical induction to prove that for and any

positive integer ,

71. Show that a cubic function (a third-degree polynomial) always
has exactly one point of inflection. If its graph has three 
-intercepts , and , show that the -coordinate of the

inflection point is .

� 72. For what values of does the polynomial
have two inflection points? One inflec-P�x� � x4 � cx3 � x2

c

�x1 � x2 � x3��3
xx3x1, x2x

ex � 1 � x �
x2

2!
� � � � �

xn

n!

n
x � 0

x � 0ex � 1 � x �
1
2 x2

x � 0ex � 1 � x tion point? None? Illustrate by graphing for several values 
of . How does the graph change as decreases?

73. Prove that if is a point of inflection of the graph of 
and exists in an open interval that contains , then .
[Hint: Apply the First Derivative Test and Fermat’s Theorem to
the function .]

74. Show that if , then , but is not an
inflection point of the graph of .

75. Show that the function has an inflection point at
but does not exist.

76. Suppose that is continuous and , but
. Does have a local maximum or minimum at ?

Does have a point of inflection at ?cf
cff ��c� � 0

f ��c� � f 	�c� � 0f �

� 	�0��0, 0�
� �x� � x � x �

f
�0, 0�f 	�0� � 0f �x� � x4

� � f �

f 	�c� � 0cf 	
f�c, f �c��

cc
P

|||| 4.4 Indeterminate Forms and L’Hospital’s Rule

Suppose we are trying to analyze the behavior of the function

Although is not defined when , we need to know how behaves near 1. In par-
ticular, we would like to know the value of the limit

In computing this limit we can’t apply Law 5 of limits (the limit of a quotient is the quo-
tient of the limits, see Section 2.3) because the limit of the denominator is 0. In fact,
although the limit in (1) exists, its value is not obvious because both numerator and denom-
inator approach and is not defined.

In general, if we have a limit of the form

where both and as , then this limit may or may not exist and is
called an indeterminate form of type . We met some limits of this type in Chapter 2. For
rational functions, we can cancel common factors:

We used a geometric argument to show that

But these methods do not work for limits such as (1), so in this section we introduce a sys-
tematic method, known as l’Hospital’s Rule,for the evaluation of indeterminate forms.

lim
x� 0

 
sin x

x
� 1

lim
x� 1

 
x2 � x
x2 � 1

� lim
x� 1

 
x�x � 1�

�x � 1��x � 1�
� lim

x� 1
 

x
x � 1

�
1
2

0
0

x � a� �x� � 0f �x� � 0

lim
x� a

 
 f �x�
� �x�

0
00

lim
x� 1

 
ln x

x � 1
1

Fx � 1F

F�x� �
ln x

x � 1
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Another situation in which a limit is not obvious occurs when we look for a horizontal
asymptote of F and need to evaluate the limit

It isnÕt obvious how to evaluate this limit because both numerator and denominator become
large as . There is a struggle between numerator and denominator. If the numerator
wins, the limit will be ; if the denominator wins, the answer will be 0. Or there may be
some compromise, in which case the answer may be some Þnite positive number.

In general, if we have a limit of the form

where both (or ) and (or ), then the limit may or may not exist
and is called an indeterminate form of type . We saw in Section 2.6 that this type of
limit can be evaluated for certain functions, including rational functions, by dividing
numerator and denominator by the highest power of that occurs in the denominator. For
instance,

This method does not work for limits such as (2), but lÕHospitalÕs Rule also applies to this
type of indeterminate form.

LÕHospitalÕs RuleSuppose and are differentiable and near (except
possibly at ). Suppose that

and

or that and

(In other words, we have an indeterminate form of type or .) Then

if the limit on the right side exists (or is or ).

NOTE 1 �� LÕHospitalÕs Rule says that the limit of a quotient of functions is equal to the
limit of the quotient of their derivatives, provided that the given conditions are satisÞed. It
is especially important to verify the conditions regarding the limits of and before using
lÕHospitalÕs Rule.

NOTE 2 �� LÕHospitalÕs Rule is also valid for one-sided limits and for limits at inÞnity or
negative inÞnity; that is, Ò Ó can be replaced by any of the symbols , ,

, or .

NOTE 3 �� For the special case in which , and are continuous, and
, it is easy to see why lÕHospitalÕs Rule is true. In fact, using the alternative form � ��a� � 0

� �f �f �a� � � �a� � 0

x � ��x � �
x � a�x � a�x � a

�f

���

lim
x� a

 
 f �x�
� �x�

� lim
x� a

 
 f ��x�
� ��x�

���
0
0

 lim
x� a

 � �x� � �� lim
x� a

 f �x� � ��

 lim
x� a

 � �x� � 0 lim
x� a

 f �x� � 0

a
a� ��x� � 0�f

lim
x� �

 
x2 � 1

2x2 � 1
� lim

x� �
 
1 �

1
x2

2 �
1
x2

�
1 � 0
2 � 0

�
1
2

x

���
��� �x� � ���f �x� � �

lim
x� a

 
 f �x�
� �x�

�
x � �

lim
x� �

 
ln x

x � 1
2

0

y

xa

y=m¡(x-a)

y=m™(x-a)

0

y

xa

f

g

FIGURE 1

|||| Figure 1 suggests visually why lÕHospitalÕs
Rule might be true. The Þrst graph shows two
differentiable functions and , each of which
approaches as . If we were to zoom in
toward the point , the graphs would start
to look almost linear. But if the functions actually
were linear, as in the second graph, then their
ratio would be

which is the ratio of their derivatives. This sug-
gests that

lim 
x � a

 
 f �x�
� �x�

� lim 
x � a

 
 f ��x�
� ��x�

m1�x � a�
m2�x � a�

�
m1

m2

�a, 0�
x � a0

�f
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of the definition of a derivative, we have

It is more difficult to prove the general version of l’Hospital’s Rule. See Appendix F.

EXAMPLE 1Find .

SOLUTION Since

we can apply l’Hospital’s Rule:

EXAMPLE 2Calculate .

SOLUTION We have and , so l’Hospital’s Rule gives

Since and as , the limit on the right side is also indeterminate,
but a second application of l’Hospital’s Rule gives

lim
x � �

 
ex

x2 � lim
x � �

 
ex

2x
� lim

x � �
 
ex

2
� �

x � �2x � �ex � �

lim
x � �

 
ex

x2 � lim
x �  �

 

d

dx
�ex�

d

dx
�x2�

� lim
x � �

 
ex

2x

lim x � � x2 � �lim x � � ex � �

lim
x � �

 
ex

x2

 � lim
x � 1

 
1
x

� 1

 lim
x � 1

 
ln x

x � 1
� lim

x � 1
 

d

dx
 �ln x�

d

dx
 �x � 1�

� lim
x � 1

 
1�x

1

lim
x � 1

 �x � 1� � 0andlim
x � 1

 ln x � ln 1 � 0

lim 
x � 1

 
ln x

x � 1

 � lim
x � a

 
 f �x�
� �x�

 � lim
x � a

 
 f �x� � f �a�
� �x� � � �a�

 � lim
x � a

 

 f �x� � f �a�
x � a

� �x� � � �a�
x � a

 lim
x � a

 
 f ��x�
� ��x�

�
 f ��a�
� ��a�

�
lim 
x � a

 
 f �x� � f �a�

x � a

lim 
x � a

 
� �x� � � �a�

x � a

|||| LÕHospitalÕs Rule is named after a 
French nobleman, the Marquis de lÕHospital
(1661Ð1704), but was discovered by a Swiss
mathematician, John Bernoulli (1667Ð1748). 
See Exercise 71 for the example that the 
Marquis used to illustrate his rule. See the 
project on page 315 for further historical details.

|||| The graph of the function of Example 2 is
shown in Figure 2. We have noticed previously
that exponential functions grow far more rapidly
than power functions, so the result of Example 2
is not unexpected. See also Exercise 67.

y=´
≈

10

20

0

FIGURE 2

� Notice that when using lÕHospitalÕs Rule we
differentiate the numerator and denominator
separately. We do not use the Quotient Rule.
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EXAMPLE 3Calculate .

SOLUTION Since and as , l’Hospital’s Rule applies:

Notice that the limit on the right side is now indeterminate of type . But instead of
applying l’Hospital’s Rule a second time as we did in Example 2, we simplify the
expression and see that a second application is unnecessary:

EXAMPLE 4Find . [See Exercise 36(d) in Section 2.2.]

SOLUTION Noting that both and as , we use l’Hospital’s
Rule:

Since the limit on the right side is still indeterminate of type , we apply l’Hospital’s
Rule again:

Because , we simplify the calculation by writing

We can evaluate this last limit either by using l’Hospital’s Rule a third time or by
writing as and making use of our knowledge of trigonometric limits.
Putting together all the steps, we get

EXAMPLE 5Find .

SOLUTION If we blindly attempted to use l’Hospital’s Rule, we would get

�

This is wrong! Although the numerator as , notice that the denomi-
nator does not approach , so l’Hospital’s Rule can’t be applied here.0�1 � cos x�

x � ��sin x � 0

lim
x � ��

 
sin x

1 � cos x
� lim

x � ��
 
cos x
sin x

� ��

lim
x � ��

 
sin x

1 � cos x

 �
1
3

 lim
x �  0

 
tan x

x
�

1
3

 lim
x �  0

 
sec2x

1
�

1
3

lim
x �  0

 
tan x � x

x3 � lim
x �  0

 
sec2x � 1

3x2 � lim
x �  0

 
2 sec2x tan x

6x

�sin x���cos x�tan x

 lim
x �  0

 
2 sec2x tan x

6x
�

1
3

 lim
x �  0

 sec2x lim
x �  0

 
tan x

x
�

1
3

 lim
x �  0

 
tan x

x

lim x �  0 sec2x � 1

lim
x � 0

 
sec2x � 1

3x2 � lim
x � 0

 
2 sec2x tan x

6x

0
0

lim
x � 0

 
tan x � x

x3 � lim
x � 0

 
sec2x � 1

3x2

x � 0x3 � 0tan x � x � 0

lim
x � 0

 
tan x � x

x3

lim
x � �

 
ln x
�3 x

� lim
x � �

 
1�x

1
3 x�2�3 � lim

x � �
 

3
�3 x

� 0 

0
0

lim
x � �

 
ln x
�3 x

� lim
x � �

 
1�x

1
3 x�2�3

x � ��3 x � �ln x � �

lim
x � �

 
ln x
�3 x

|||| The graph of the function of Example 3 is
shown in Figure 3. We have discussed previously
the slow growth of logarithms, so it isnÕt surpris-
ing that this ratio approaches as . See
also Exercise 68.

x � �0

0

_1

2

10,000

y= ln x
Œ„x

FIGURE 3

|||| The graph in Figure 4 gives visual conÞrma-
tion of the result of Example 4. If we were to 
zoom in too far, however, we would get an 
inaccurate graph because is close to 
when is small. See Exercise 36(d) in 
Section 2.2.

x
xtan x

FIGURE 4

y= tan x- x
˛

0
_1 1

1
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The required limit is, in fact, easy to find because the function is continuous and the
denominator is nonzero at :

Example 5 shows what can go wrong if you use l’Hospital’s Rule without thinking.
Other limits can be found using l’Hospital’s Rule but are more easily found by other meth-
ods. (See Examples 3 and 5 in Section 2.3, Example 3 in Section 2.6, and the discussion
at the beginning of this section.) So when evaluating any limit, you should consider other
methods before using l’Hospital’s Rule.

Indeterminate Products

If and (or ), then it isn’t clear what the value of
, if any, will be. There is a struggle between and . If wins, the answer

will be ; if wins, the answer will be (or ). Or there may be a compromise where
the answer is a finite nonzero number. This kind of limit is called an indeterminate form
of type . We can deal with it by writing the product as a quotient:

or

This converts the given limit into an indeterminate form of type or so that we can
use l’Hospital’s Rule.

EXAMPLE 6Evaluate .

SOLUTION The given limit is indeterminate because, as , the first factor 
approaches 0 while the second factor approaches . Writing , we
have as , so l’Hospital’s Rule gives

NOTE �� In solving Example 6 another possible option would have been to write

This gives an indeterminate form of the type , but if we apply l’Hospital’s Rule we get
a more complicated expression than the one we started with. In general, when we rewrite
an indeterminate product, we try to choose the option that leads to the simpler limit.

Indeterminate Differences

If and , then the limit

is called an indeterminate form of type . Again there is a contest between and
. Will the answer be ( wins) or will it be ( wins) or will they compromise on a

finite number? To find out, we try to convert the difference into a quotient (for instance, 
���f��

f� � �

lim
x � a

 � f �x� � � �x��

lim x � a � �x� � �lim x � a f �x� � �

0�0

lim 
x � 0�

 x ln x � lim 
x � 0�

 
x

1�ln x

� lim
x �  0�

 ��x� � 0 lim
x �  0�

 x ln x � lim
x �  0�

 ln x
1�x

� lim
x �  0�

 1�x

�1�x2

x � 0�1�x � �
x � 1��1�x����ln x�

�x�x � 0�

lim 
x � 0�

 x ln x

���
0
0

f� �
�

1�f
f� �

 f
1��

f�0 � �

����0
f�flim x � a f �x�� �x�

��lim x � a � �x� � �lim x � a f �x� � 0

lim
x � ��

 
sin x

1 � cos x
�

sin �
1 � cos �

�
0

1 � ��1�
� 0

�

|||| Figure 5 shows the graph of the function in
Example 6. Notice that the function is undeÞned
at ; the graph approaches the origin but
never quite reaches it.

x � 0

0

y

x1

y=x ln x

FIGURE 5
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by using a common denominator, or rationalization, or factoring out a common factor) so
that we have an indeterminate form of type or .

EXAMPLE 7Compute .

SOLUTION First notice that and as , so the limit is inde-
terminate. Here we use a common denominator:

Note that the use of l’Hospital’s Rule is justified because and 
as .

Indeterminate Powers

Several indeterminate forms arise from the limit

1. and type 

2. and type 

3. and type 

Each of these three cases can be treated either by taking the natural logarithm:

,

or by writing the function as an exponential:

(Recall that both of these methods were used in differentiating such functions.) In either
method we are led to the indeterminate product , which is of type .

EXAMPLE 8Calculate .

SOLUTION First notice that as , we have and , so the
given limit is indeterminate. Let

Then

so l’Hospital’s Rule gives

So far we have computed the limit of , but what we want is the limit of . To find this yln y

� lim
x �  0�

 

4 cos 4x
1 � sin 4x

sec2x
� 4 lim

x �  0�
 ln y � lim

x �  0�

 ln�1 � sin 4x�
tan x

ln y � ln��1 � sin 4x�cot x� � cot x ln�1 � sin 4x�

y � �1 � sin 4x�cot x

cot x � �1 � sin 4x � 1x � 0�

lim
x � 0�

 �1 � sin 4x�cot x

0 � �� �x� ln f �x�

� f �x�� � �x� � e � �x� ln f �x�

ln y � � �x� ln f �x�theny � � f �x�� � �x�let

1�lim
x � a

 � �x� � ��lim
x � a

 f �x� � 1

�0lim
x � a

 � �x� � 0lim
x � a

 f �x� � �

00lim
x � a

 � �x� � 0lim
x � a

 f �x� � 0

lim
x � a

 � f �x�� � �x�

x � ���2��

cos x � 01 � sin x � 0

 � lim
x � ���2��

 
1 � sin x

cos x
� lim

x � ���2��
 
�cos x
�sin x

� 0

 lim
x � ���2��

 �sec x � tan x� � lim
x � ���2��

 � 1
cos x

�
sin x
cos x�

x � ���2��tan x � �sec x � �

lim
x � ���2��

 �sec x � tan x�

���
0
0
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we use the fact that :

EXAMPLE 9Find .

SOLUTION Notice that this limit is indeterminate since for any but 
for any . We could proceed as in Example 8 or by writing the function as an 
exponential:

In Example 6 we used l’Hospital’s Rule to show that

Therefore

lim
x � 0�

 x x � lim
x � 0�

 ex ln x � e0 � 1

lim
x � 0�

 x ln x � 0

x x � �e ln x �x � ex ln x

x � 0
x0 � 1x � 00x � 0

lim 
x � 0�

 x x

lim
x � 0�

 �1 � sin 4x�cot x � lim
x � 0�

 y � lim
x � 0�

 e ln y � e4

y � e ln y

|||| The graph of the function , , is
shown in Figure 6. Notice that although is not
deÞned, the values of the function approach as

. This conÞrms the result of Example 9.x � 0�

1
00

x � 0y � x x

2

0
2_1

FIGURE 6

5Ð62 |||| Find the limit. Use l’Hospital’s Rule where appropriate. If
there is a more elementary method, consider using it. If l’Hospital’s
Rule doesn’t apply, explain why.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

22.

23. 24. lim
x � 0

 
sin x
sinh x

lim
x �  �

 
e x

x 3

lim
x � 0

 
e x � 1 � x � �x 2�2�

x 3lim
x �  0

 
e x � 1 � x

x 221.

lim
x �  1

 
ln x

sin �x
lim
t �  0

 
5t � 3t

t

lim
x �  �

 
ln ln x

x
lim

x �  0�
 
ln x

x

lim 
x � �

 
e x

x
lim
x � �

 
ln x

x

lim
	 �  ��2

 
1 � sin 	

csc 	
lim
x �  0

 
tan px

tan qx

lim
t �  0

 
e3t � 1

t
lim
t �  0

 
et � 1

t 3

lim
x �  0

 
x � tan x

sin x
lim

x �
 

���2��
 cos x
1 � sin x

lim
x �  1

 
x a � 1
x b � 1

lim 
x � 1

 
x 9 � 1
x 5 � 1

lim 
x � �2

 
x � 2

x 2 � 3x � 2
lim

x �
 

�1
 
x 2 � 1
x � 1

1Ð4 |||| Given that

which of the following limits are indeterminate forms? For those
that are not an indeterminate form, evaluate the limit where 
possible.

(a) (b)

(c) (d)

(e)

2. (a) (b)

(c)

3. (a) (b)

(c)

4. (a) (b) (c)

(d) (e) (f)

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

lim
x �  a

 q�x�� p�x�lim
x �  a

 � p�x��q�x�lim
x �  a

 � p�x�� f �x�

lim
x �  a

 �h�x�� p�x�lim
x �  a

 � f �x�� p�x�lim
x �  a

 � f �x�� � �x�

lim
x �  a

 � p�x� � q�x��

lim
x �  a

 � p�x� � q�x��lim
x �  a

 � f �x� � p�x��

lim
x �  a

 � p�x�q�x��

lim
x �  a

 �h�x�p�x��lim
x �  a

 � f �x�p�x��

lim
x �  a

 
p�x�
q�x�

lim
x �  a

 
p�x�
 f �x�

lim
x �  a

 
h�x�
p�x�

lim
x �  a

 
 f �x�
p�x�

lim
x �  a

 
 f �x�
� �x�

1.

lim
x �  a

 p�x� � �� � � � lim
x �  a

 q�x� � �

lim
x �  a

 f �x� � 0� � � � lim
x �  a

 � �x� � 0� � � � lim
x �  a

 h�x� � 1

|||| 4.4 Exercises
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25. 26.

28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

42.

43. 44.

45.

47. 48.

49. 50.

51. 52.

54.

55. 56.

57. 58.

59. 60.

61. 62.

� 63Ð64|||| Use a graph to estimate the value of the limit. Then use
l’Hospital’s Rule to find the exact value.

63.

64.

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

lim
x �

 

��4
 �tan x�tan 2x

lim
x �  �

 x �ln�x � 5� � ln x�

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

lim
x � �

 �2x � 3
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lim
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 �cos x�1�x2
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x � �

 � x
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x � �

 �e x � x�1�xlim
x � �

 x 1�x
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 �1 �
3
x

�
5
x 2�x

lim
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 �1 �
a

x�bx

lim
x �  0

 �1 � 2x�1�x53.

lim
x �  0�

 �tan 2x�xlim
x �  0�

 x x2

lim
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 �xe 1�x � x�lim
x �  �
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�
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 x tan�1�x�lim
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 ln x tan��x�2�

lim
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�1 � tan x�sec xlim
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41.

lim
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 sin x ln xlim
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 cot 2x sin 6x
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 � x ln x
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1 � e�2x
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xa � ax � a � 1
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� x 2 � 2
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1 � x � ln x
1 � cos �x
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x

tan�1�4x�
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x

ln�1 � 2e x �
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x �  0

 
cos mx � cos nx

x 2lim
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x � sin x
x � cos x
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�ln x�2

x
lim
x � 0

 
1 � cos x

x 227.

lim
x � 0

 
sin x � x

x 3lim
x �  0

 
sin�1x

x
� 65Ð66|||| Illustrate l’Hospital’s Rule by graphing both 

and near to see that these ratios have the same
limit as . Also calculate the exact value of the limit.

65. ,

66. ,

Prove that

for any positive integer . This shows that the exponential func-
tion approaches infinity faster than any power of .

68. Prove that

for any number . This shows that the logarithmic
function approaches more slowly than any power of .

69. If an initial amount of money is invested at an interest rate 
compounded times a year, the value of the investment after 

years is

If we let , we refer to the continuous compounding of
interest. Use l’Hospital’s Rule to show that if interest is com-
pounded continuously, then the amount after years is

70. If an object with mass is dropped from rest, one model for
its speed after seconds, taking air resistance into account, is

where is the acceleration due to gravity and is a positive
constant. (In Chapter 9 we will be able to deduce this equation
from the assumption that the air resistance is proportional to
the speed of the object.)
(a) Calculate . What is the meaning of this limit?
(b) For fixed , use l’Hospital’s Rule to calculate .

What can you conclude about the speed of a very heavy
falling object?

71. The first appearance in print of l’Hospital’s Rule was in 
the book Analyse des Infiniment Petits published by the
Marquis de l’Hospital in 1696. This was the first calculus 
textbook ever published and the example that the Marquis 
used in that book to illustrate his rule was to find the limit 
of the function

as approaches , where . (At that time it was common
to write instead of .) Solve this problem.a2aa

a � 0ax

y �
� 2a3x � x4 � a�3 aax

a � �4 ax3
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x�
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ln x
xp � 0

x
n
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ex
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67.

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

� �x� � sec x � 1f �x� � 2x sin x
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76. If is continuous, show that

77. Let

(a) Use the definition of derivative to compute .
(b) Show that has derivatives of all orders that are defined

on . [Hint: First show by induction that there is a poly-
nomial and a nonnegative integer such that

for .]

� 78. Let

(a) Show that is continuous at .
(b) Investigate graphically whether is differentiable at by

zooming in several times toward the point on the
graph of .

(c) Show that is not differentiable at . How can you recon-
cile this fact with the appearance of the graphs in part (b)?

0f
f

�0, 1�
0f

0f

f �x� � 	
 x 
x

1
if � x � 0
if � x � 0

x � 0f �n��x� � pn�x�f �x��xkn

knpn�x�
�

f
f ��0�

f �x� � 	e�1�x 2

0
if � x � 0
if � x � 0

lim
h� 0

 
 f �x � h� � 2f �x� � f �x � h�

h2 � f 
�x�

f 
72. The figure shows a sector of a circle with central angle . Let
be the area of the segment between the chord and 

the arc . Let be the area of the triangle . Find
.

73. If is continuous, , and , evaluate

74. For what values of and is the following equation true?

If is continuous, use l’Hospital’s Rule to show that

Explain the meaning of this equation with the aid of a diagram.

lim
h �  0

 
 f �x � h� � f �x � h�

2h
� f ��x�

f �75.

lim
x �  0

 �sin 2x
x3 � a �

b
x2� � 0

ba
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 f �2 � 3x� � f �2 � 5x�

x

f ��2� � 7f �2� � 0f �
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A(¨)

¨
B(¨)
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The Origins of L’Hospital’s Rule

L’Hospital’s Rule was first published in 1696 in the Marquis de l’Hospital’s calculus textbook
Analyse des Infiniment Petits,but the rule was discovered in 1694 by the Swiss mathematician
John (Johann) Bernoulli. The explanation is that these two mathematicians had entered into a
curious business arrangement whereby the Marquis de l’Hospital bought the rights to Bernoulli’s
mathematical discoveries. The details, including a translation of l’Hospital’s letter to Bernoulli
proposing the arrangement, can be found in the book by Eves [1].

Write a report on the historical and mathematical origins of l’Hospital’s Rule. Start by pro-
viding brief biographical details of both men (the dictionary edited by Gillispie [2] is a good
source) and outline the business deal between them. Then give l’Hospital’s statement of his rule,
which is found in Struik’s sourcebook [4] and more briefly in the book of Katz [3]. Notice that
l’Hospital and Bernoulli formulated the rule geometrically and gave the answer in terms of dif-
ferentials. Compare their statement with the version of l’Hospital’s Rule given in Section 4.4 and
show that the two statements are essentially the same.

1. Howard Eves, In Mathematical Circles (Volume 2: Quadrants III and IV)(Boston: Prindle,
Weber and Schmidt, 1969), pp. 20–22.

2. C. C. Gillispie, ed., Dictionary of Scientific Biography(New York: Scribner’s, 1974). See the
article on Johann Bernoulli by E. A. Fellmann and J. O. Fleckenstein in Volume II and the
article on the Marquis de l’Hospital by Abraham Robinson in Volume VIII.

3. Victor Katz, A History of Mathematics: An Introduction(New York: HarperCollins, 1993),
p. 484.

4. D. J. Struik, ed., A Sourcebook in Mathematics, 1200–1800(Princeton, NJ: Princeton Uni-
versity Press, 1969), pp. 315–316.

WRITING PROJECT

|||| The Internet is another source of infor-
mation for this project. See the web site

www.stewartcalculus.com

and click on History of Mathematics.
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|||| 4.5 Summary of Curve Sketching

So far we have been concerned with some particular aspects of curve sketching: domain,
range, and symmetry in Chapter 1; limits, continuity, and asymptotes in Chapter 2; deriva-
tives and tangents in Chapters 2 and 3; and extreme values, intervals of increase and
decrease, concavity, points of inflection, and l’Hospital’s Rule in this chapter. It is now
time to put all of this information together to sketch graphs that reveal the important fea-
tures of functions.

You may ask: What is wrong with just using a calculator to plot points and then joining
these points with a smooth curve? To see the pitfalls of this approach, suppose you have
used a calculator to produce the table of values and corresponding points in Figure 1.

You might then join these points to produce the curve shown in Figure 2, but the cor-
� rect graph might be the one shown in Figure 3. You can see the drawbacks of the method

of plotting points.Certain essential features of the graph may be missed, such as the max-
imum and minimum values between and or between 2 and 5. If you just plot points,
you don’t know when to stop. (How far should you plot to the left or right?) But the use
of calculus ensures that all the important aspects of the curve are illustrated.

You might respond: Yes, but what about graphing calculators and computers? Don’t
they plot such a huge number of points that the sort of uncertainty demonstrated by Fig-
ures 2 and 3 is unlikely to happen?

It’s true that modern technology is capable of producing very accurate graphs. But even
the best graphing devices have to be used intelligently. We saw in Section 1.4 that it is 
extremely important to choose an appropriate viewing rectangle to avoid getting a mis-
leading graph. (See especially Examples 1, 3, 4, and 5 in that section.) The use of calculus
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enables us to discover the most interesting aspects of graphs and in many cases to calcu-
late maximum and minimum points and inflection points exactlyinstead of approximately.

For instance, Figure 4 shows the graph of . At first
glance it seems reasonable: It has the same shape as cubic curves like , and it
appears to have no maximum or minimum point. But if you compute the derivative, you
will see that there is a maximum when and a minimum when . Indeed, if
we zoom in to this portion of the graph, we see that behavior exhibited in Figure 5. Without
calculus, we could easily have overlooked it.

In the next section we will graph functions by using the interaction between calculus
and graphing devices. In this section we draw graphs by first considering the following
information. We don’t assume that you have a graphing device, but if you do have one you
should use it as a check on your work.

Guidelines for Sketching a Curve

The following checklist is intended as a guide to sketching a curve by hand. Not
every item is relevant to every function. (For instance, a given curve might not have an
asymptote or possess symmetry.) But the guidelines provide all the information you need
to make a sketch that displays the most important aspects of the function.

A. DomainIt’s often useful to start by determining the domain of , that is, the set of val-
ues of for which is defined.

B. InterceptsThe -intercept is and this tells us where the curve intersects the -axis.
To find the -intercepts, we set and solve for . (You can omit this step if the
equation is difficult to solve.)

C. Symmetry
(i) If for all in , that is, the equation of the curve is unchanged

when is replaced by , then is an even functionand the curve is symmetric about
the -axis. This means that our work is cut in half. If we know what the curve looks like
for , then we need only reflect about the -axis to obtain the complete curve [see
Figure 6(a)]. Here are some examples: , and .

(ii) If for all in , then is an odd function and the curve is
symmetric about the origin. Again we can obtain the complete curve if we know what
it looks like for . [Rotate 180° about the origin; see Figure 6(b).] Some simple
examples of odd functions are , and .

(iii) If for all in , where is a positive constant, then is called
a periodic function and the smallest such number is called the period. For instance,

has period and has period . If we know what the graph looks
like in an interval of length , then we can use translation to sketch the entire graph (see
Figure 7).

D. Asymptotes
(i) Horizontal Asymptotes.Recall from Section 2.6 that if either 

or , then the line is a horizontal asymptote of the curvey � Llim x� � � f �x� � L
lim x� � f �x� � L
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. If it turns out that (or ), then we do not have an asymp-
tote to the right, but that is still useful information for sketching the curve.

(ii) Vertical Asymptotes.Recall from Section 2.2 that the line is a vertical
asymptote if at least one of the following statements is true:

(For rational functions you can locate the vertical asymptotes by equating the denomi-
nator to 0 after canceling any common factors. But for other functions this method does
not apply.) Furthermore, in sketching the curve it is very useful to know exactly which
of the statements in (1) is true. If is not defined but is an endpoint of the domain
of , then you should compute or , whether or not this limit
is infinite.

(iii) Slant Asymptotes.These are discussed at the end of this section.
E. Intervals of Increase or Decrease Use the I /D Test. Compute and find the intervals 

on which is positive ( is increasing) and the intervals on which is negative
( is decreasing).

F. Local Maximum and Minimum Values Find the critical numbers of [the numbers where
or does not exist]. Then use the First Derivative Test. If changes from

positive to negative at a critical number , then is a local maximum. If changes
from negative to positive at , then is a local minimum. Although it is usually
preferable to use the First Derivative Test, you can use the Second Derivative Test if 
is a critical number such that . Then implies that is a local
minimum, whereas implies that is a local maximum.

G. Concavity and Points of Inflection Compute and use the Concavity Test. The curve is
concave upward where and concave downward where . Inflection
points occur where the direction of concavity changes.

H. Sketch the Curve Using the information in items A–G, draw the graph. Sketch the asymp-
totes as dashed lines. Plot the intercepts, maximum and minimum points, and inflection
points. Then make the curve pass through these points, rising and falling according to
E, with concavity according to G, and approaching the asymptotes. If additional accu-
racy is desired near any point, you can compute the value of the derivative there. The
tangent indicates the direction in which the curve proceeds.

EXAMPLE 1 Use the guidelines to sketch the curve .

A. The domain is

B. The - and -intercepts are both 0.
C. Since , the function is even. The curve is symmetric about the -axis.

D.

Therefore, the line is a horizontal asymptote. y � 2

lim
xl��

 
2x2

x2 � 1
� lim

xl��
 

2
1 � 1�x2 � 2

yff ��x� � f �x�
yx

�x � x2 � 1 � 0� � �x � x � �1� � ���, �1� � ��1, 1� � �1, ��

y �
2x2

x2 � 1

f ��x� � 0f ��x� � 0
f ��x�

f �c�f ��c� � 0
f �c�f ��c� � 0f ��c� � 0

c
f �c�c

f �f �c�c
f �f ��c�f ��c� � 0

cf
f

f ��x�ff ��x�
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lim xl a	 f �x�lim xl a� f �x�f
af �a�

 lim
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 f �x� � �1

x � a

��lim xl � f �x� � �y � f �x�

In Module 4.5 you can practice using
information about , , and asymp-
totes to determine the shape of the
graph of .f

f �f �



SECTION 4.5 SUMMARY OF CURVE SKETCHING� � � � 319

Since the denominator is 0 when , we compute the following limits:

Therefore, the lines and are vertical asymptotes. This information
about limits and asymptotes enables us to draw the preliminary sketch in Figure 8,
showing the parts of the curve near the asymptotes.

E.

Since when and when , is
increasing on and and decreasing on and .

F. The only critical number is . Since changes from positive to negative at 0,
is a local maximum by the First Derivative Test.

G.

Since for all , we have

and . Thus, the curve is concave upward on the intervals
and and concave downward on . It has no point of inflection

since 1 and are not in the domain of .
H. Using the information in E–G, we finish the sketch in Figure 9.

EXAMPLE 2 Sketch the graph of .

A. Domain
B. The - and -intercepts are both 0.
C. Symmetry: None
D. Since

there is no horizontal asymptote. Since as and is always
positive, we have

and so the line is a vertical asymptote.

E.

We see that when (notice that is not in the domain of ), so the
only critical number is 0. Since when and when

, is decreasing on and increasing on .
F. Since and changes from negative to positive at 0, is a local

(and absolute) minimum by the First Derivative Test.
f �0� � 0f �f ��0� � 0
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4
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|||| We have shown the curve approaching its
horizontal asymptote from above in Figure 8. This
is confirmed by the intervals of increase and
decrease.

FIGURE 8
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G.

Note that the denominator is always positive. The numerator is the quadratic
, which is always positive because its discriminant is ,

which is negative, and the coefficient of is positive. Thus, for all in the
domain of , which means that is concave upward on and there is no point
of inflection.

H. The curve is sketched in Figure 10.

EXAMPLE 3 Sketch the graph of .

A. The domain is .
B. The x- and -intercepts are both 0.
C. Symmetry: None
D. Because bothx and become large as , we have . As ,

however, and so we have an indeterminate product that requires the use of
l’Hospital’s Rule:

Thus, the x-axis is a horizontal asymptote.

E.

Since is always positive, we see that when , and when
. So f is increasing on and decreasing on .

F. Because and f changes from negative to positive at ,
is a local (and absolute) minimum.

G.

Since if and if , is concave upward on 
and concave downward on . The inflection point is .

H. We use this information to sketch the curve in Figure 11.

EXAMPLE 4 Sketch the graph of .

A. The domain is .
B. The -intercept is . The -intercepts occur when

that is, when or . Thus, in the interval , the -intercepts
are and .

C. is neither even nor odd, but for all and so is periodic and has
period . Thus, in what follows we need to consider only and then
extend the curve by translation in H.

D. Asymptotes: None

E.

Thus, when or , so in we have ,
, and . In determining the sign of in the following chart, we use the f ��x�3
�25
�6

x � 
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fact that for all x.

F. From the chart in E the First Derivative Test says that is a local
maximum and is a local minimum, but has no maximum or
minimum at , only a horizontal tangent.

G.

Thus, when (so or ) and when . 
From Figure 12 we see that there are two values of between 0 and for which

. Let’s call them and . Then on and ,
so is concave upward there. Also on , , and ,
so is concave downward there. Inflection points occur when ,
and .

H. The graph of the function restricted to is shown in Figure 13. Then it is
extended, using periodicity, to the complete graph in Figure 14.

EXAMPLE 5 Sketch the graph of .

A. The domain is

B. The -intercept is . To find the -intercept we set

y � ln�4 � x2� � 0

xf �0� � ln 4y

�x � 4 � x2 � 0� � �x � x2 � 4� � �x � � x � � 2� � ��2, 2�

y � ln�4 � x2�

FIGURE 14FIGURE 13
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We know that (since ), so we have 
and therefore the -intercepts are .

C. Since , is even and the curve is symmetric about the -axis.
D. We look for vertical asymptotes at the endpoints of the domain. Since as

and also as , we have

Thus, the lines and are vertical asymptotes.

E.

Since when and when , is increasing on
and decreasing on .

F. The only critical number is . Since changes from positive to negative at ,
is a local maximum by the First Derivative Test.

G.

Since for all , the curve is concave downward on and has no inflec-
tion point.

H. Using this information, we sketch the curve in Figure 15.

Slant Asymptotes

Some curves have asymptotes that are oblique,that is, neither horizontal nor vertical. If

then the line is called a slant asymptote because the vertical distance
between the curve and the line approaches 0, as in Figure 16. (A
similar situation exists if we let .) For rational functions, slant asymptotes occur
when the degree of the numerator is one more than the degree of the denominator. In such
a case the equation of the slant asymptote can be found by long division as in the follow-
ing example.

EXAMPLE 6 Sketch the graph of .

A. The domain is .
B. The - and -intercepts are both 0.
C. Since , is odd and its graph is symmetric about the origin.
D. Since is never 0, there is no vertical asymptote. Since as and

as , there is no horizontal asymptote. But long division gives

as

So the line is a slant asymptote.y � x
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x

x2 	 1
� �

1
x

1 	
1
x2

l 0

 f �x� �
x3

x2 	 1
� x �

x
x2 	 1

x l ��f �x� l ��
x l �f �x� l �x2 	 1

ff ��x� � �f �x�
yx

� � ���, ��

f �x� �
x3

x2 	 1

x l ��
y � mx 	 by � f �x�

y � mx 	 b

lim
xl �

 � f �x� � �mx 	 b�	 � 0

��2, 2�xf ��x� � 0

f ��x� �
�4 � x2���2� 	 2x��2x�

�4 � x2�2 �
�8 � 2x2

�4 � x2�2

f �0� � ln 4
0f �x � 0

�0, 2���2, 0�
f0 � x � 2f ��x� � 0�2 � x � 0f ��x� � 0

f ��x� �
�2x

4 � x2

x � �2x � 2

lim
xl�2	

 ln�4 � x2� � ��lim
xl2�

 ln�4 � x2� � ��

x l �2	x l 2�

4 � x2 l 0	

yff ��x� � f �x�
�s3x

4 � x2 � 1� ?� x2 � 3e0 � 1ln 1 � loge 1 � 0

0

y

x
{œ„3, 0}{_œ„3, 0}

x=2x=_2

(0, ln 4)

y=ln(4 -≈)
FIGURE 15

FIGURE 16

y=ƒ

x

y

0

y=mx+b

ƒ-(mx+b)



SECTION 4.5 SUMMARY OF CURVE SKETCHING� � � � 323

E.

Since for all (except 0), is increasing on .
F. Although , does not change sign at 0, so there is no local maximum or

minimum.

G.

Since when or , we set up the following chart:

The points of inflection are , and .
H. The graph of is sketched in Figure 17.f

(s3, 3s3�4)(�s3, �3s3�4), �0, 0�
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32.

,

34. ,
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37. 38.

39. 40.

42.

43. 44.

46.

47. 48.

49. 50.

51. 52.

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

y � tan�1
 x � 1
x 	 1�y � e3x 	 e�2x

y � ex � 3e�x � 4xy � xe�x 2

y � x�ln x�2y � ln�sin x�

y � ln�x2 � 3x 	 2�y � xe�x45.

y � ex�xy � x ln x

y � e2x � exy � 1��1 	 e�x�41.

y �
cos x

2 	 sin x
y �

sin x
1 	 cos x

y � sin x � xy � sin 2x � 2 sin x

y � cos2x � 2 sin x

0 � x � 3
y � 1
2 x � sin x

�
�2 � x � 
�2y � 2x � tan x

�
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�2y � x tan x33.

y � sin x � tan x

y � 3 sin x � sin3x

y � s
3 �x2 � 1�2

y � x 	 s� x �
y � x5�3 � 5x2�3y � x � 3x1�31–52 |||| Use the guidelines of this section to sketch the curve.

1. 2.

3. 4.

6.

7. 8.

10.

11. 12.

13. 14.

15. 16.

17. 18.

20.

21. 22.

23. 24.

25. 26. y �
x
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y �

s1 � x2
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y � 2sx � xy � xs5 � x19.
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y �

1
x2 � 9

y �
x

�x � 1�2y �
x

x � 1
9.

y � 20x3 � 3x5y � 2x5 � 5x2 	 1

y � x�x 	 2�3y � x4 	 4x35.

y � 8x2 � x4y � 2 � 15x 	 9x2 � x3

y � x3 	 6x2 	 9xy � x3 	 x

|||| 4.5 Exercises



53. The figure shows a beam of length embedded in concrete
walls. If a constant load is distributed evenly along its
length, the beam takes the shape of the deflection curve

where and are positive constants. ( is Young’s modulus of
elasticity and is the moment of inertia of a cross-section of
the beam.) Sketch the graph of the deflection curve.

54. Coulomb’s Law states that the force of attraction between two
charged particles is directly proportional to the product of the
charges and inversely proportional to the square of the distance
between them. The figure shows particles with charge 1 located
at positions 0 and 2 on a coordinate line and a particle with
charge at a position between them. It follows from
Coulomb’s Law that the net force acting on the middle particle
is

where is a positive constant. Sketch the graph of the net force
function. What does the graph say about the force?

55–58 |||| Find an equation of the slant asymptote. Do not sketch
the curve.
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24EI
 x2

W
L

57. 58.

59–64 |||| Use the guidelines of this section to sketch the curve. In
guideline D find an equation of the slant asymptote.

59. 60.

61. 62.

63. 64.

65. Show that the curve has two slant asymptotes:
and . Use this fact to help sketch

the curve.

66. Show that the curve has two slant asymptotes:
and . Use this fact to help sketch the

curve.

67. Show that the lines and are slant
asymptotes of the hyperbola .

68. Let . Show that

This shows that the graph of approaches the graph of ,
and we say that the curve is asymptoticto the
parabola . Use this fact to help sketch the graph of .

69. Discuss the asymptotic behavior of in the
same manner as in Exercise 68. Then use your results to help
sketch the graph of .

70. Use the asymptotic behavior of to sketch
its graph without going through the curve-sketching procedure
of this section.
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|||| 4.6 Graphing with Calculus and Calculators

The method we used to sketch curves in the preceding section was a culmination of much
of our study of differential calculus. The graph was the final object that we produced. In
this section our point of view is completely different. Here we startwith a graph produced
by a graphing calculator or computer and then we refine it. We use calculus to make sure
that we reveal all the important aspects of the curve. And with the use of graphing devices
we can tackle curves that would be far too complicated to consider without technology.
The theme is the interactionbetween calculus and calculators.
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|||| If you have not already read Section 1.4, you
should do so now. In particular, it explains how
to avoid some of the pitfalls of graphing devices
by choosing appropriate viewing rectangles.
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EXAMPLE 1 Graph the polynomial . Use the graphs of 
and to estimate all maximum and minimum points and intervals of concavity.

SOLUTIONIf we specify a domain but not a range, many graphing devices will deduce a
suitable range from the values computed. Figure 1 shows the plot from one such device
if we specify that . Although this viewing rectangle is useful for showing
that the asymptotic behavior (or end behavior) is the same as for , it is obviously
hiding some finer detail. So we change to the viewing rectangle by 
shown in Figure 2.

From this graph it appears that there is an absolute minimum value of about 3
when (by using the cursor) and is decreasing on and increas-
ing on . Also there appears to be a horizontal tangent at the origin and inflec-
tion points when and when is somewhere between and .

Now let’s try to confirm these impressions using calculus. We differentiate and get 

When we graph in Figure 3 we see that changes from negative to positive when
; this confirms (by the First Derivative Test) the minimum value that we

found earlier. But, perhaps to our surprise, we also notice that changes from posi-
tive to negative when and from negative to positive when . This means
that has a local maximum at 0 and a local minimum when , but these were
hidden in Figure 2. Indeed, if we now zoom in toward the origin in Figure 4, we see
what we missed before: a local maximum value of 0 when and a local minimum
value of about when .

What about concavity and inflection points? From Figures 2 and 4 there appear to be
inflection points when is a little to the left of and when is a little to the right of 0.
But it’s difficult to determine inflection points from the graph of , so we graph the sec-
ond derivative in Figure 5. We see that changes from positive to negative when

and from negative to positive when . So, correct to two decimal
places, is concave upward on and and concave downward on

. The inflection points are and .
We have discovered that no single graph reveals all the important features of this

polynomial. But Figures 2 and 4, when taken together, do provide an accurate picture.

EXAMPLE 2 Draw the graph of the function

in a viewing rectangle that contains all the important features of the function. Estimate
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the maximum and minimum values and the intervals of concavity. Then use calculus to
find these quantities exactly.

SOLUTIONFigure 6, produced by a computer with automatic scaling, is a disaster. Some
graphing calculators use by as the default viewing rectangle, so
let’s try it. We get the graph shown in Figure 7; it’s a major improvement.

The -axis appears to be a vertical asymptote and indeed it is because 

Figure 7 also allows us to estimate the -intercepts: about and . The 
exact values are obtained by using the quadratic formula to solve the equation

; we get .
To get a better look at horizontal asymptotes, we change to the viewing rectangle

by in Figure 8. It appears that is the horizontal asymptote and
this is easily confirmed:

To estimate the minimum value we zoom in to the viewing rectangle by
in Figure 9. The cursor indicates that the absolute minimum value is about 

when , and we see that the function decreases on and and
increases on . The exact values are obtained by differentiating:

This shows that when and when and when
. The exact minimum value is .

Figure 9 also shows that an inflection point occurs somewhere between and
. We could estimate it much more accurately using the graph of the second deriv-

ative, but in this case it’s just as easy to find exact values. Since

we see that when . So is concave upward on and
and concave downward on . The inflection point is .

The analysis using the first two derivatives shows that Figures 7 and 8 display all the
major aspects of the curve. 
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EXAMPLE 3Graph the function .

SOLUTIONDrawing on our experience with a rational function in Example 2, let’s start by
graphing in the viewing rectangle by . From Figure 10 we have
the feeling that we are going to have to zoom in to see some finer detail and also zoom
out to see the larger picture. But, as a guide to intelligent zooming, let’s first take a close
look at the expression for . Because of the factors and in the
denominator, we expect and to be the vertical asymptotes. Indeed

To find the horizontal asymptotes we divide numerator and denominator by :

as

so the -axis is the horizontal asymptote.
It is also very useful to consider the behavior of the graph near the -intercepts using

an analysis like that in Example 11 in Section 2.6. Since is positive, does not
change sign at 0 and so its graph doesn’t cross the -axis at 0. But, because of the factor

, the graph does cross the -axis at and has a horizontal tangent there.
Putting all this information together, but without using derivatives, we see that the curve
has to look something like the one in Figure 11.

Now that we know what to look for, we zoom in (several times) to produce the graphs
in Figures 12 and 13 and zoom out (several times) to get Figure 14.

We can read from these graphs that the absolute minimum is about and occurs
when . There is also a local maximum when and a local
minimum when . These graphs also show three inflection points near 

and and two between and . To estimate the inflection points closely we
would need to graph , but to compute by hand is an unreasonable chore. If you
have a computer algebra system, then it’s easy to do (see Exercise 17).

We have seen that, for this particular function,threegraphs (Figures 12, 13, and 14)
are necessary to convey all the useful information. The only way to display all these
features of the function on a single graph is to draw it by hand. Despite the exaggera-
tions and distortions, Figure 11 does manage to summarize the essential nature of the
function.
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EXAMPLE 4 Graph the function . For , locate all maxi-
mum and minimum values, intervals of increase and decrease, and inßection points cor-
rect to one decimal place.

SOLUTIONWe Þrst note that is periodic with period . Also, is odd and 
for all . So the choice of a viewing rectangle is not a problem for this function: We start
with by . (See Figure 15.) It appears that there are three local maxi-
mum values and two local minimum values in that window. To conÞrm this and locate
them more accurately, we calculate that

and graph both and in Figure 16. Using zoom-in and the First Derivative Test, we
Þnd the following values to one decimal place.

The second derivative is

Graphing both and in Figure 17, we obtain the following approximate values:

Having checked that Figure 15 does indeed represent accurately for , 
we can state that the extended graph in Figure 18 represents accurately for

.

Our Þnal example is concerned with familiesof functions. As discussed in Section 1.4,
this means that the functions in the family are related to each other by a formula that 
contains one or more arbitrary constants. Each value of the constant gives rise to a mem-
ber of the family and the idea is to see how the graph of the function changes as the con-
stant changes.
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 Inflection points:  �0, 0�, �0.8, 0.97�, �1.3, 0.97�, �1.8, 0.97�, �2.3, 0.97�

 Concave downward on: �0, 0.8�, �1.3, 1.8�, �2.3, ��

 Concave upward on:  �0.8, 1.3�, �1.8, 2.3�

f �f

f ��x� � ��1 � 2 cos 2x�2 sin�x � sin 2x� � 4 sin 2x cos�x � sin 2x�

 Local minimum values:  f �1.0� � 0.94, f �2.1� � 0.94

 Local maximum values: f �0.6� � 1, f �1.6� � 1, f �2.5� � 1

 Intervals of decrease:  �0.6, 1.0�, �1.6, 2.1�, �2.5, ��
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f �f

f ��x� � cos�x � sin 2x� � �1 � 2 cos 2x�

��1.1, 1.1��0, ��
x

� f �x� � � 1f2�f

0 � x � �f �x� � sin�x � sin 2x�|||| The family of functions

where is a constant, occurs in applications to
frequency modulation (FM) synthesis. A sine
wave is modulated by a wave with a different
frequency . The case where is
studied in Example 4. Exercise 25 explores
another special case.

c � 2�sin cx�

c
f �x� � sin�x � sin cx�

1.1

_1.1

0 π

FIGURE 15

1.2

_1.2

0 π

y=ƒ

y=fª(x)

FIGURE 16
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EXAMPLE 5 How does the graph of vary as varies?

SOLUTIONThe graphs in Figures 19 and 20 (the special cases and ) show
two very different-looking curves. Before drawing any more graphs, let’s see what mem-
bers of this family have in common. Since

for any value of , they all have the -axis as a horizontal asymptote. A vertical asymp-
tote will occur when . Solving this quadratic equation, we get

. When , there is no vertical asymptote (as in Figure 19). When
, the graph has a single vertical asymptote because

When , there are two vertical asymptotes: (as in Figure 20).
Now we compute the derivative:

This shows that when (if ), when , and
when . For , this means that increases on and

decreases on . For , there is an absolute maximum value
. For , is a local maximum value and the

intervals of increase and decrease are interrupted at the vertical asymptotes.
Figure 21 is a “slide show” displaying five members of the family, all graphed in the

viewing rectangle by . As predicted, is the value at which a transi-
tion takes place from two vertical asymptotes to one, and then to none. As increases 
from , we see that the maximum point becomes lower; this is explained by the fact that

as . As decreases from , the vertical asymptotes become more
widely separated because the distance between them is , which becomes large
as . Again, the maximum point approaches the -axis because 
as .

There is clearly no inflection point when . For we calculate that

and deduce that inflection points occur when . So the inflection
points become more spread out as increases and this seems plausible from the last two
parts of Figure 21.

c
x � �1 � s3�c � 1��3

f ��x� �
2�3x2 � 6x � 4 � c�

�x2 � 2x � c�3

c 	 1c � 1

c=3c=2c=1c=0c=_1

FIGURE 21 The family of functions ƒ=1/(≈+2x+c)

c l �

1��c � 1� l 0xc l �


2s1 � c
1cc l 
1��c � 1� l 0

1
c

c � 1��2, 2���5, 4�

f ��1� � 1��c � 1�c � 1f ��1� � 1��c � 1�
c 	 1��1, 
�

��
, �1�fc � 1x 	 �1f ��x� � 0
x � �1f ��x� 	 0c � 1x � �1f ��x� � 0

f ��x� � �
2x � 2

�x2 � 2x � c�2

x � �1 � s1 � cc � 1

lim
xl�1

 
1

x2 � 2x � 1
� lim

xl�1
 

1
�x � 1�2 � 


x � �1c � 1
c 	 1x � �1 � s1 � c

x2 � 2x � c � 0
xc

lim
xl�


 
1

x2 � 2x � c
� 0

c � �2c � 2

cf �x� � 1��x2 � 2x � c�

FIGURE 19 c=2

y=
1
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2
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FIGURE 20 c=_2
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See an animation of Figure 21.
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1–8 |||| Produce graphs of that reveal all the important aspects of
the curve. In particular, you should use graphs of and to esti-
mate the intervals of increase and decrease, extreme values, inter-
vals of concavity, and inflection points.

1.

2.

3.

4.

5.

6.

7. ,

8.

9–12 |||| Produce graphs of that reveal all the important aspects of
the curve. Estimate the intervals of increase and decrease, extreme
values, intervals of concavity, and inflection points, and use calcu-
lus to find these quantities exactly.

9.

10.

11.

12. ,

13–14 ||||

(a) Graph the function.
(b) Use l’Hospital’s Rule to explain the behavior as .
(c) Estimate the minimum value and intervals of concavity. Then

use calculus to find the exact values.

14.

15–16 |||| Sketch the graph by hand using asymptotes and
intercepts, but not derivatives. Then use your sketch as a guide to
producing graphs (with a graphing device) that display the major
features of the curve. Use these graphs to estimate the maximum
and minimum values.

16.

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

f �x� �
10x�x � 1�4

�x � 2�3�x � 1�2

f �x� �
�x � 4��x � 3�2

x4�x � 1�
15.

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

f �x� � xe1�xf �x� � x2 ln x13.

x l 0

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

�2� � x � 2�f �x� � x � 2 sin x

f �x� � xs9 � x2

f �x� �
x2 � 11x � 20

x2

f �x� � 8x3 � 3x2 � 10

f

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

f �x� �
ex

x2 � 9

�4 � x � 4f �x� � x2 � 4x � 7 cos x

f �x� � tan x � 5 cos x

f �x� �
x

x3 � x2 � 4x � 1

f �x� �
x4 � x3 � 2x2 � 2

x2 � x � 2

f �x� � s
3 x2 � 3x � 5

f �x� � x6 � 15x5 � 75x4 � 125x3 � x

f �x� � 4x4 � 32x3 � 89x2 � 95x � 29

f �f �
f 17. If is the function considered in Example 3, use a computer

algebra system to calculate and then graph it to confirm 
that all the maximum and minimum values are as given in the
example. Calculate and use it to estimate the intervals of
concavity and inflection points.

18. If is the function of Exercise 16, find and and use their
graphs to estimate the intervals of increase and decrease and
concavity of .

19–22 |||| Use a computer algebra system to graph and to find 
and . Use graphs of these derivatives to estimate the intervals of
increase and decrease, extreme values, intervals of concavity, and
inflection points of .

19. ,

20.

21.

22.

23–24 ||||

(a) Graph the function.
(b) Explain the shape of the graph by computing the limit as

or as .
(c) Estimate the maximum and minimum values and then use 

calculus to find the exact values.
(d) Use a graph of to estimate the x-coordinates of the inflec-

tion points.

24.

25. In Example 4 we considered a member of the family of func-
tions that occur in FM synthesis. Here
we investigate the function with . Start by graphing in
the viewing rectangle by . How many local
maximum points do you see? The graph has more than are vis-
ible to the naked eye. To discover the hidden maximum and
minimum points you will need to examine the graph of very
carefully. In fact, it helps to look at the graph of at the same
time. Find all the maximum and minimum values and inflection
points. Then graph in the viewing rectangle by

and comment on symmetry.

26–33 |||| Describe how the graph of varies as varies. Graph
several members of the family to illustrate the trends that you dis-
cover. In particular, you should investigate how maximum and 

cf

��1.2, 1.2�
��2�, 2��f

f �
f �

��1.2, 1.2��0, ��
fc � 3

f �x� � sin�x � sin cx�

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

f �x� � �sin x�sinxf �x� � x1�x23.

f �

x l 
x l 0�

CAS

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

f �x� �
1

1 � etan x

f �x� �
1 � e1�x

1 � e1�x

f �x� �
2x � 1

s
4 x4 � x � 1

0 � x � 3�f �x� �
sin2x

sx2 � 1

f

f �
f �fCAS

f

f �f �fCAS

f �

f �
fCAS

|||| 4.6 ; Exercises
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changes. What happens to the maximum or minimum points
and inflection points as changes? Illustrate by graphing sev-
eral members of the family.

36. Investigate the family of curves given by the equation
. Start by determining the transitional

value of at which the number of inflection points changes.
Then graph several members of the family to see what shapes
are possible. There is another transitional value of at which
the number of critical numbers changes. Try to discover it
graphically. Then prove what you have discovered.

37. (a) Investigate the family of polynomials given by the equation
. For what values of does the curve

have minimum points?
(b) Show that the minimum and maximum points of every

curve in the family lie on the parabola . Illus-
trate by graphing this parabola and several members of the
family.

38. (a) Investigate the family of polynomials given by the equation
. For what values of does the

curve have maximum and minimum points?
(b) Show that the minimum and maximum points of every

curve in the family lie on the curve . Illustrate
by graphing this curve and several members of the family.

y � x � x3

cf �x� � 2x3 � cx2 � 2x

y � 1 � x2

cf �x� � cx4 � 2x2 � 1

c

c
f �x� � x4 � cx2 � x

c
minimum points and inflection points move when changes. You
should also identify any transitional values of at which the basic
shape of the curve changes.

26. 27.

28. 29.

32. 33.

The family of functions , where , , and
are positive numbers and , has been used to model the

concentration of a drug injected into the blood at time .
Graph several members of this family. What do they have in
common? For fixed values of and , discover graphically
what happens as increases. Then use calculus to prove what
you have discovered.

35. Investigate the family of curves given by , where 
is a real number. Start by computing the limits as .

Identify any transitional values of where the basic shape c
x l �
c

f �x� � xe�cx

b
aC

t � 0
b 	 aC

baf �t� � C�e�at � e�bt�34.

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

f �x� � cx � sin xf �x� �
1

�1 � x2�2 � cx2

f �x� �
cx

1 � c2x2
31.f �x� � ln�x2 � c�30.

f �x� � e�c�x 2

f �x� � x2
sc2 � x2

f �x� � x4 � cx2f �x� � x3 � cx

c
c

|||| 4.7 Optimization Problems

The methods we have learned in this chapter for finding extreme values have practical
applications in many areas of life. A businessperson wants to minimize costs and maxi-
mize profits. A traveler wants to minimize transportation time. Fermat’s Principle in optics
states that light follows the path that takes the least time. In this section and the next we
solve such problems as maximizing areas, volumes, and profits and minimizing distances,
times, and costs.

In solving such practical problems the greatest challenge is often to convert the word
problem into a mathematical optimization problem by setting up the function that is to be
maximized or minimized. Let’s recall the problem-solving principles discussed on page 80
and adapt them to this situation:

Steps in Solving Optimization Problems

1. Understand the Problem The first step is to read the problem carefully until it is clearly
understood. Ask yourself: What is the unknown? What are the given quantities?
What are the given conditions?

2. Draw a Diagram In most problems it is useful to draw a diagram and identify the
given and required quantities on the diagram.

3. Introduce Notation Assign a symbol to the quantity that is to be maximized or mini-
mized (let’s call it for now). Also select symbols for other
unknown quantities and label the diagram with these symbols. It may help to use
initials as suggestive symbols—for example, for area, for height, for time.

4. Express in terms of some of the other symbols from Step 3.Q
thA

�a, b, c, . . . , x, y�Q



5. If has been expressed as a function of more than one variable in Step 4, use the
given information to find relationships (in the form of equations) among these
variables. Then use these equations to eliminate all but one of the variables in the
expression for . Thus, will be expressed as a function of onevariable , say,

. Write the domain of this function.
6. Use the methods of Sections 4.1 and 4.3 to find the absolutemaximum or mini-

mum value of . In particular, if the domain of is a closed interval, then the
Closed Interval Method in Section 4.1 can be used.

EXAMPLE 1 A farmer has 2400 ft of fencing and wants to fence off a rectangular field that
borders a straight river. He needs no fence along the river. What are the dimensions of
the field that has the largest area?

SOLUTIONIn order to get a feeling for what is happening in this problem, let’s experiment
with some special cases. Figure 1 (not to scale) shows three possible ways of laying out
the 2400 ft of fencing. We see that when we try shallow, wide fields or deep, narrow
fields, we get relatively small areas. It seems plausible that there is some intermediate
configuration that produces the largest area.

Figure 2 illustrates the general case. We wish to maximize the area of the rectangle.
Let and be the depth and width of the rectangle (in feet). Then we express in terms
of and :

We want to express as a function of just one variable, so we eliminate by expressing
it in terms of . To do this we use the given information that the total length of the fenc-
ing is 2400 ft. Thus 

From this equation we have , which gives

Note that 0 and (otherwise ). So the function that we wish to maxi-
mize is

The derivative is , so to find the critical numbers we solve the 
equation

2400� 4x � 0

A��x� � 2400� 4x

0 � x � 1200A�x� � 2400x � 2x2

A � 0x � 1200x �

A � x�2400� 2x� � 2400x � 2x2

y � 2400� 2x

2x � y � 2400

x
yA

A � xy
yx

Ayx
A

FIGURE 1
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|||| Analogy: Try special cases
|||| Draw diagrams

|||| Introduce notation
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which gives . The maximum value of must occur either at this critical number
or at an endpoint of the interval. Since , and ,
the Closed Interval Method gives the maximum value as .

[Alternatively, we could have observed that for all , so is always
concave downward and the local maximum at must be an absolute maximum.]

Thus, the rectangular field should be 600 ft deep and 1200 ft wide.

EXAMPLE 2 A cylindrical can is to be made to hold 1 L of oil. Find the dimensions that
will minimize the cost of the metal to manufacture the can.

SOLUTIONDraw the diagram as in Figure 3, where is the radius and the height (both in
centimeters). In order to minimize the cost of the metal, we minimize the total surface
area of the cylinder (top, bottom, and sides). From Figure 4 we see that the sides are
made from a rectangular sheet with dimensions and h. So the surface area is

To eliminate we use the fact that the volume is given as 1 L, which we take to be
1000 cm . Thus

which gives . Substitution of this into the expression for gives

Therefore, the function that we want to minimize is

To find the critical numbers, we differentiate:

Then when , so the only critical number is .
Since the domain of is , we can’t use the argument of Example 1 concerning

endpoints. But we can observe that for and for
, so is decreasing for all to the left of the critical number and increasing

for all to the right. Thus, must give rise to an absoluteminimum.
[Alternatively, we could argue that as and as , so

there must be a minimum value of , which must occur at the critical number. See
Figure 5.]

The value of corresponding to is

Thus, to minimize the cost of the can, the radius should be cm and the height
should be equal to twice the radius, namely, the diameter.

NOTE 1�� The argument used in Example 2 to justify the absolute minimum is a variant
of the First Derivative Test (which applies only to local maximum or minimum values) and
is stated here for future reference.

s
3 500��

h �
1000
�r 2 �

1000
��500���2�3 � 2	3 500

�
� 2r

r � s
3 500��h

A�r�
r l 
A�r� l 
r l 0�A�r� l 


r � s
3 500��r

rAr 	 s
3 500��

A��r� 	 0r � s
3 500��A��r� � 0

�0, 
�A
r � s

3 500���r 3 � 500A��r� � 0

A��r� � 4�r �
2000

r 2 �
4��r 3 � 500�

r 2

r 	 0A�r� � 2�r 2 �
2000

r

A � 2�r 2 � 2�r
1000
�r 2 � � 2�r 2 �

2000
r

Ah � 1000���r 2�

�r 2h � 1000

3
h

A � 2�r 2 � 2�rh

2�r

hr

x � 600
AxA��x� � �4 � 0

A�600� � 720,000
A�1200� � 0A�0� � 0, A�600� � 720,000

Ax � 600

|||| In the Applied Project on page 341 we inves-
tigate the most economical shape for a can by
taking into account other manufacturing costs.
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First Derivative Test for Absolute Extreme Values Suppose that is a critical number of a
continuous function defined on an interval.

(a) If for all and for all , then is the absolute
maximum value of .

(b) If for all and for all , then is the absolute
minimum value of .

NOTE 2�� An alternative method for solving optimization problems is to use implicit dif-
ferentiation. Let’s look at Example 2 again to illustrate the method. We work with the same
equations

but instead of eliminating h, we differentiate both equations implicitly with respect to r :

The minimum occurs at a critical number, so we set , simplify, and arrive at the
equations

and subtraction gives , or .

EXAMPLE 3 Find the point on the parabola that is closest to the point .

SOLUTIONThe distance between the point and the point is

(See Figure 6.) But if lies on the parabola, then , so the expression for 
becomes

(Alternatively, we could have substituted to get in terms of alone.) Instead
of minimizing , we minimize its square:

(You should convince yourself that the minimum of occurs at the same point as the
minimum of , but is easier to work with.) Differentiating, we obtain

so when . Observe that when and when
, so by the First Derivative Test for Absolute Extreme Values, the absolute mini-

mum occurs when . (Or we could simply say that because of the geometric nature
of the problem, it’s obvious that there is a closest point but not a farthest point.) The
corresponding value of is . Thus, the point on closest to 
is .�2, 2�

�1, 4�y2 � 2xx � y2�2 � 2x

y � 2
y 	 2

f ��y� 	 0y � 2f ��y� � 0y � 2f ��y� � 0

f ��y� � 2(1
2 y

2 � 1)y � 2�y � 4� � y3 � 8

d2d2
d

d2 � f �y� � (1
2 y

2 � 1)2 � �y � 4�2

d
xdy � s2x

d � s(1
2
 y2 � 1)2 � �y � 4�2

dx � y2�2�x, y�

d � s�x � 1�2 � �y � 4�2

�x, y��1, 4�

�1, 4�y2 � 2x

h � 2r2r � h � 0

2h � rh� � 02r � h � rh� � 0

A� � 0

2�rh � �r 2h� � 0A� � 4�r � 2�h � 2�rh�

�r 2h � 100A � 2�r 2 � 2�rh

f
f �c�x 	 cf ��x� 	 0x � cf ��x� � 0

f
f �c�x 	 cf ��x� � 0x � cf ��x� 	 0

f
c
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Module 4.7 takes you through eight
additional optimization problems, includ-
ing animations of the physical situations.
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EXAMPLE 4 A man launches his boat from point on a bank of a straight river, 3 km
wide, and wants to reach point , 8 km downstream on the opposite bank, as quickly as
possible (see Figure 7). He could row his boat directly across the river to point and
then run to , or he could row directly to , or he could row to some point between 
and and then run to . If he can row 6 km�h and run 8 km�h, where should he land to
reach as soon as possible? (We assume that the speed of the water is negligible com-
pared with the speed at which the man rows.)

SOLUTIONIf we let be the distance from to , then the running distance 
is and the Pythagorean Theorem gives the rowing distance as

. We use the equation

Then the rowing time is and the running time is , so the total time
as a function of is

The domain of this function is . Notice that if he rows to and if 
he rows directly to . The derivative of is

Thus, using the fact that , we have

The only critical number is . To see whether the minimum occurs at this criti-
cal number or at an endpoint of the domain , we evaluate at all three points:

Since the smallest of these values of occurs when , the absolute minimum
value of must occur there. Figure 8 illustrates this calculation by showing the graph 
of .

Thus, the man should land the boat at a point km ( km) downstream from
his starting point. 
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Try another problem like this one.
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EXAMPLE 5 Find the area of the largest rectangle that can be inscribed in a semicircle of
radius .

SOLUTION 1Let’s take the semicircle to be the upper half of the circle with
center the origin. Then the word inscribedmeans that the rectangle has two vertices on
the semicircle and two vertices on the -axis as shown in Figure 9.

Let be the vertex that lies in the first quadrant. Then the rectangle has sides of
lengths and , so its area is

To eliminate we use the fact that lies on the circle and so
. Thus

The domain of this function is . Its derivative is

which is 0 when , that is, (since ). This value of gives a 
maximum value of since and . Therefore, the area of the largest
inscribed rectangle is

SOLUTION 2A simpler solution is possible if we think of using an angle as a variable. Let
be the angle shown in Figure 10. Then the area of the rectangle is

We know that has a maximum value of 1 and it occurs when . So 
has a maximum value of and it occurs when .

Notice that this trigonometric solution doesn’t involve differentiation. In fact, we 
didn’t need to use calculus at all.
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(b) Use calculus to solve the problem and compare with your
answer to part (a).

2. Find two numbers whose difference is 100 and whose product
is a minimum.

3. Find two positive numbers whose product is 100 and whose
sum is a minimum.

4. Find a positive number such that the sum of the number and its
reciprocal is as small as possible.

5. Find the dimensions of a rectangle with perimeter 100 m
whose area is as large as possible.

6. Find the dimensions of a rectangle with area whose
perimeter is as small as possible.

1000 m2

1. Consider the following problem: Find two numbers whose sum
is 23 and whose product is a maximum.
(a) Make a table of values, like the following one, so that the

sum of the numbers in the first two columns is always 23.
On the basis of the evidence in your table, estimate the
answer to the problem.

|||| 4.7 Exercises
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7. Consider the following problem: A farmer with 750 ft of fenc-
ing wants to enclose a rectangular area and then divide it into
four pens with fencing parallel to one side of the rectangle.
What is the largest possible total area of the four pens?
(a) Draw several diagrams illustrating the situation, some with

shallow, wide pens and some with deep, narrow pens. Find
the total areas of these configurations. Does it appear that
there is a maximum area? If so, estimate it.

(b) Draw a diagram illustrating the general situation. Introduce
notation and label the diagram with your symbols.

(c) Write an expression for the total area.
(d) Use the given information to write an equation that relates

the variables.
(e) Use part (d) to write the total area as a function of one 

variable.
(f) Finish solving the problem and compare the answer with

your estimate in part (a).

8. Consider the following problem: A box with an open top is to
be constructed from a square piece of cardboard, 3 ft wide, by
cutting out a square from each of the four corners and bending
up the sides. Find the largest volume that such a box can have.
(a) Draw several diagrams to illustrate the situation, some short

boxes with large bases and some tall boxes with small
bases. Find the volumes of several such boxes. Does it
appear that there is a maximum volume? If so, estimate it.

(b) Draw a diagram illustrating the general situation. Introduce
notation and label the diagram with your symbols.

(c) Write an expression for the volume.
(d) Use the given information to write an equation that relates

the variables.
(e) Use part (d) to write the volume as a function of one 

variable.
(f) Finish solving the problem and compare the answer with

your estimate in part (a).

9. A farmer wants to fence an area of 1.5 million square feet in a
rectangular field and then divide it in half with a fence parallel
to one of the sides of the rectangle. How can he do this so as to
minimize the cost of the fence?

10. A box with a square base and open top must have a volume of
32,000 cm . Find the dimensions of the box that minimize the
amount of material used.

If 1200 cm of material is available to make a box with a
square base and an open top, find the largest possible volume
of the box.

12. A rectangular storage container with an open top is to have a
volume of 10 m . The length of its base is twice the width.
Material for the base costs $10 per square meter. Material for
the sides costs $6 per square meter. Find the cost of materials
for the cheapest such container.

13. Do Exercise 12 assuming the container has a lid that is made
from the same material as the sides.

(a) Show that of all the rectangles with a given area, the one
with smallest perimeter is a square.

14.

3

211.

3

(b) Show that of all the rectangles with a given perimeter, the
one with greatest area is a square.

Find the point on the line that is closest to the 
origin.

16. Find the point on the line that is closest to the
point .

17. Find the points on the ellipse that are farthest
away from the point .

; 18. Find, correct to two decimal places, the coordinates of the
point on the curve that is closest to the point .

19. Find the dimensions of the rectangle of largest area that can be
inscribed in a circle of radius .

Find the area of the largest rectangle that can be inscribed in
the ellipse .

21. Find the dimensions of the rectangle of largest area that can be
inscribed in an equilateral triangle of side if one side of the
rectangle lies on the base of the triangle.

22. Find the dimensions of the rectangle of largest area that has its
base on the -axis and its other two vertices above the -axis
and lying on the parabola .

23. Find the dimensions of the isosceles triangle of largest area that
can be inscribed in a circle of radius .

24. Find the area of the largest rectangle that can be inscribed in a
right triangle with legs of lengths 3 cm and 4 cm if two sides of
the rectangle lie along the legs.

25. A right circular cylinder is inscribed in a sphere of radius .
Find the largest possible volume of such a cylinder.

26. A right circular cylinder is inscribed in a cone with height 
and base radius . Find the largest possible volume of such a
cylinder.

27. A right circular cylinder is inscribed in a sphere of radius .
Find the largest possible surface area of such a cylinder.

A Norman window has the shape of a rectangle surmounted 
by a semicircle. (Thus, the diameter of the semicircle is equal 
to the width of the rectangle. See Exercise 52 on page 24.) If
the perimeter of the window is 30 ft, find the dimensions of 
the window so that the greatest possible amount of light is
admitted.

29. The top and bottom margins of a poster are each 6 cm and the
side margins are each 4 cm. If the area of printed material on
the poster is fixed at 384 cm , find the dimensions of the poster
with the smallest area.

30. A poster is to have an area of 180 in with 1-inch margins at
the bottom and sides and a 2-inch margin at the top. What
dimensions will give the largest printed area?

A piece of wire 10 m long is cut into two pieces. One piece 
is bent into a square and the other is bent into an equilateral 
triangle. How should the wire be cut so that the total area
enclosed is (a) a maximum? (b) A minimum?

31.
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surface area is given by

where , the length of the sides of the hexagon, and , the
height, are constants.
(a) Calculate .
(b) What angle should the bees prefer?
(c) Determine the minimum surface area of the cell (in terms

of and ).
Note: Actual measurements of the angle in beehives have
been made, and the measures of these angles seldom differ
from the calculated value by more than .

40. A boat leaves a dock at 2:00 P.M. and travels due south at a
speed of 20 km�h. Another boat has been heading due east at
15 km�h and reaches the same dock at 3:00 P.M. At what time
were the two boats closest together?

41. Solve the problem in Example 4 if the river is 5 km wide and
point is only 5 km downstream from .

42. A woman at a point on the shore of a circular lake with
radius 2 mi wants to arrive at the point diametrically oppo-
site on the other side of the lake in the shortest possible 
time. She can walk at the rate of 4 mi�h and row a boat at
2 mi�h. How should she proceed?

The illumination of an object by a light source is directly 
proportional to the strength of the source and inversely propor-
tional to the square of the distance from the source. If two 
light sources, one three times as strong as the other, are placed
10 ft apart, where should an object be placed on the line
between the sources so as to receive the least illumination?

Find an equation of the line through the point that cuts
off the least area from the Þrst quadrant.

�3, 5�44.
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S32. Answer Exercise 31 if one piece is bent into a square and the
other into a circle.

33. A cylindrical can without a top is made to contain of 
liquid. Find the dimensions that will minimize the cost of the
metal to make the can.

34. A fence 8 ft tall runs parallel to a tall building at a distance of 
4 ft from the building. What is the length of the shortest ladder
that will reach from the ground over the fence to the wall of the
building?

35. A cone-shaped drinking cup is made from a circular piece of
paper of radius by cutting out a sector and joining the edges

and . Find the maximum capacity of such a cup.

36. A cone-shaped paper drinking cup is to be made to hold 
of water. Find the height and radius of the cup that will use the
smallest amount of paper.

37. A cone with height is inscribed in a larger cone with height
so that its vertex is at the center of the base of the larger

cone. Show that the inner cone has maximum volume when
.

38. For a Þsh swimming at a speed relative to the water, the
energy expenditure per unit time is proportional to . It is
believed that migrating Þsh try to minimize the total energy
required to swim a Þxed distance. If the Þsh are swimming
against a current , then the time required to swim a
distance is and the total energy required to 
swim the distance is given by

where is the proportionality constant.
(a) Determine the value of that minimizes .
(b) Sketch the graph of .

Note: This result has been veriÞed experimentally; migrating
Þsh swim against a current at a speed greater than the 
current speed.

39. In a beehive, each cell is a regular hexagonal prism, open at
one end with a trihedral angle at the other end. It is believed
that bees form their cells in such a way as to minimize the sur-
face area for a given volume, thus using the least amount of
wax in cell construction. Examination of these cells has shown
that the measure of the apex angle is amazingly consistent.
Based on the geometry of the cell, it can be shown that the 
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45. Let and be positive numbers. Find the length of the shortest
line segment that is cut off by the Þrst quadrant and passes
through the point .

46. At which points on the curve does the
tangent line have the largest slope?

47. Show that of all the isosceles triangles with a given perimeter,
the one with the greatest area is equilateral.

48. The frame for a kite is to be made from six pieces of wood.
The four exterior pieces have been cut with the lengths indi-
cated in the Þgure. To maximize the area of the kite, how long
should the diagonal pieces be?

; 49. A point needs to be located somewhere on the line so
that the total length of cables linking to the points , ,
and is minimized (see the Þgure). Express as a function of

and use the graphs of and to estimate the
minimum value.

50. The graph shows the fuel consumption of a car (measured in
gallons per hour) as a function of the speed of the car. At very
low speeds the engine runs inefÞciently, so initially decreases
as the speed increases. But at high speeds the fuel consumption
increases. You can see that is minimized for this car when

mi�h. However, for fuel efÞciency, what must be mini-
mized is not the consumption in gallons per hour but rather the
fuel consumption in gallons per mile.LetÕs call this consump-
tion . Using the graph, estimate the speed at which has its
minimum value.

Let be the velocity of light in air and the velocity of light
in water. According to FermatÕs Principle, a ray of light will 
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ba travel from a point in the air to a point in the water by a
path that minimizes the time taken. Show that

where (the angle of incidence) and (the angle of refrac-
tion) are as shown. This equation is known as SnellÕs Law.

52. Two vertical poles and are secured by a rope 
going from the top of the Þrst pole to a point on the ground
between the poles and then to the top of the second pole as in
the Þgure. Show that the shortest length of such a rope occurs
when .

53. The upper right-hand corner of a piece of paper, 12 in. by 8 in.,
as in the Þgure, is folded over to the bottom edge. How would
you fold it so as to minimize the length of the fold? In other
words, how would you choose to minimize ?

54. A steel pipe is being carried down a hallway 9 ft wide. At the
end of the hall there is a right-angled turn into a narrower hall-
way 6 ft wide. What is the length of the longest pipe that can
be carried horizontally around the corner?
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59. Find the maximum area of a rectangle that can be circum-
scribed about a given rectangle with length and width .

60. The blood vascular system consists of blood vessels (arteries,
arterioles, capillaries, and veins) that convey blood from the
heart to the organs and back to the heart. This system should
work so as to minimize the energy expended by the heart in
pumping the blood. In particular, this energy is reduced when
the resistance of the blood is lowered. One of PoiseuilleÕs Laws
gives the resistance of the blood as

where is the length of the blood vessel, is the radius, and 
is a positive constant determined by the viscosity of the blood.
(Poiseuille established this law experimentally, but it also 
follows from Equation 8.4.2.) The Þgure shows a main blood
vessel with radius branching at an angle into a smaller ves-
sel with radius .

(a) Use PoiseuilleÕs Law to show that the total resistance of the
blood along the path is

where and are the distances shown in the Þgure.
(b) Prove that this resistance is minimized when
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55. An observer stands at a point , one unit away from a track.

Two runners start at the point in the Þgure and run along the
track. One runner runs three times as fast as the other. Find the
maximum value of the observerÕs angle of sight between the
runners. [Hint: Maximize .]

56. A rain gutter is to be constructed from a metal sheet of width
30 cm by bending up one-third of the sheet on each side
through an angle . How should be chosen so that the gutter
will carry the maximum amount of water?

Where should the point be chosen on the line segment so
as to maximize the angle ?

58. A painting in an art gallery has height and is hung so that its
lower edge is a distance above the eye of an observer (as in
the Þgure). How far from the wall should the observer stand to
get the best view? (In other words, where should the observer
stand so as to maximize the angle subtended at his eye by the
painting?)



(b) Determine so that is a maximum.
(c) Suppose the plane is at an angle belowthe horizontal.

Determine the range in this case, and determine the angle
at which the projectile should be fired to maximize .

79. A light is to be placed atop a pole of height feet to illuminate
a busy traffic circle, which has a radius of 40 ft. The intensity
of illumination at any point on the circle is directly propor-
tional to the cosine of the angle (see the figure) and inversely
proportional to the square of the distance from the source.
(a) How tall should the light pole be to maximize ?
(b) Suppose that the light pole is feet tall and that a woman is

walking away from the base of the pole at the rate of 4 ft�s.
At what rate is the intensity of the light at the point on her
back 4 ft above the ground decreasing when she reaches the
outer edge of the traffic circle?

80. Water is flowing at a constant rate into a spherical tank. Let
be the volume of water in the tank and be the height

of the water in the tank at time .
(a) What are the meanings of and ? Are these deriva-

tives positive, negative, or zero?
(b) Is positive, negative, or zero? Explain.
(c) Let , , and be the times when the tank is one-quarter

full, half full, and three-quarters full, respectively. Are the
values , , and positive, negative, or zero?
Why?

81. Show that, for ,

82. Sketch the graph of a function such that for 
all for for , and
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R�; 73. (a) If , use a graph of to

sketch a rough graph of the antiderivative of that satis-
fies .

(b) Find an expression for .
(c) Graph using the expression in part (b). Compare with

your sketch in part (a).

; 74. Investigate the family of curves given by .
In particular you should determine the transitional value of at
which the number of critical numbers changes and the transi-
tional value at which the number of inflection points changes.
Illustrate the various possible shapes with graphs.

75. A canister is dropped from a helicopter m above the
ground. Its parachute does not open, but the canister has been
designed to withstand an impact velocity of m�s. Will it
burst?

76. In an automobile race along a straight road, car A passed car B
twice. Prove that at some time during the race their accelera-
tions were equal. State the assumptions that you make.

77. A rectangular beam will be cut from a cylindrical log of 
radius 10 inches.
(a) Show that the beam of maximal cross-sectional area is 

a square.
(b) Four rectangular planks will be cut from the four sections

of the log that remain after cutting the square beam. Deter-
mine the dimensions of the planks that will have maximal
cross-sectional area.

(c) Suppose that the strength of a rectangular beam is propor-
tional to the product of its width and the square of its depth.
Find the dimensions of the strongest beam that can be cut
from the cylindrical log.

78. If a projectile is fired with an initial velocity at an angle of
inclination from the horizontal, then its trajectory, neglecting
air resistance, is the parabola

(a) Suppose the projectile is fired from the base of a plane that
is inclined at an angle , , from the horizontal, as
shown in the figure. Show that the range of the projectile,
measured up the slope, is given by
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One of the most important principles of problem solving is analogy(see page 80). If you
are having trouble getting started on a problem, it is sometimes helpful to start by solving
a similar, but simpler, problem. The following example illustrates the principle. Cover up
the solution and try solving it yourself first.

EXAMPLEIf x, y, and are positive numbers, prove that

SOLUTIONIt may be difficult to get started on this problem. (Some students have tackled 
it by multiplying out the numerator, but that just creates a mess.) Let’s try to think of a
similar, simpler problem. When several variables are involved, it’s often helpful to think
of an analogous problem with fewer variables. In the present case we can reduce the
number of variables from three to one and prove the analogous inequality

In fact, if we are able to prove (1), then the desired inequality follows because

The key to proving (1) is to recognize that it is a disguised version of a minimum prob-
lem. If we let

then , so when x � 1. Also, for and
for . Therefore, the absolute minimum value of is . This

means that

for all positive values of x

and, as previously mentioned, the given inequality follows by multiplication.
The inequality in (1) could also be proved without calculus. In fact, if , we have

Because the last inequality is obviously true, the first one is true too.
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What have we learned from the solution to this
example?
|||| To solve a problem involving several

variables, it might help to solve a similar
problem with just one variable.

|||| When trying to prove an inequality, it might
help to think of it as a maximum or minimum
problem.



1. If a rectangle has its base on the -axis and two vertices on the curve , show that the
rectangle has the largest possible area when the two vertices are at the points of inßection of
the curve.

2. Show that for all .

3. Show that, for all positive values of and ,

4. Show that for all numbers and such that and .

5. Let and be positive numbers. Show that not both of the numbers and 
can be greater than .

6. Find the point on the parabola at which the tangent line cuts from the Þrst quad-
rant the triangle with the smallest area.

7. Find the highest and lowest points on the curve .

8. Sketch the set of all points such that .

9. The line intersects the parabola in points and (see the Þgure). Find
the point on the arc of the parabola that maximizes the area of the triangle .

10. Find a function such that and for all , or prove that such
a function cannot exist.

11. Determine the values of the number for which the function has no critical number:

12. Sketch the region in the plane consisting of all points such that

13. Let be a triangle with and .
(a) Express the length of the angle bisector in terms of .
(b) Find the largest possible value of .

14. is a square piece of paper with sides of length 1 m. A quarter-circle is drawn from to
with center . The piece of paper is folded along , with on and on , so that 

falls on the quarter-circle. Determine the maximum and minimum areas that the triangle 
could have.

15. For which positive numbers does the curve intersect the line ?

16. For what value of is the following equation true?

17. Let , where , ,. . . , are real numbers and
is a positive integer. If it is given that for all , show that

18. An arc of a circle subtends a central angle as in the Þgure. Let be the area between
the chord and the arc . Let be the area between the tangent lines , and the
arc. Find
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19. The speeds of sound in an upper layer and in a lower layer of rock and the thickness of
the upper layer can be determined by seismic exploration if the speed of sound in the lower
layer is greater than the speed in the upper layer. A dynamite charge is detonated at a point 
and the transmitted signals are recorded at a point , which is a distance from . The Þrst
signal to arrive at travels along the surface and takes seconds. The next signal travels
from to a point , from to in the lower layer, and then to taking seconds. The third
signal is reßected off the lower layer at the midpoint of and takes seconds to reach .
(a) Express in terms of .
(b) Show that is a minimum when .
(c) Suppose that , , , . Find .

Note: Geophysicists use this technique when studying the structure of EarthÕs crust, whether
searching for oil or examining fault lines.

20. For what values of is there a straight line that intersects the curve

in four distinct points?

21. One of the problems posed by the Marquis de lÕHospital in his calculus textbook Analyse des
InÞniment Petitsconcerns a pulley that is attached to the ceiling of a room at a point by a
rope of length . At another point on the ceiling, at a distance from (where ), a
rope of length � is attached and passed through the pulley at and connected to a weight .
The weight is released and comes to rest at its equilibrium position . As lÕHospital argued,
this happens when the distance is maximized. Show that when the system reaches equi-
librium, the value of is

Notice that this expression is independent of both and �.

22. Given a sphere with radius ,Þnd the height of a pyramid of minimum volume whose base is
a square and whose base and triangular faces are all tangent to the sphere. What if the base of
the pyramid is a regular -gon (a polygon with equal sides and angles)? (Use the fact that
the volume of a pyramid is , where is the area of the base.)

23. Assume that a snowball melts so that its volume decreases at a rate proportional to its surface
area. If it takes three hours for the snowball to decrease to half its original volume, how much
longer will it take for the snowball to melt completely?

24. A hemispherical bubble is placed on a spherical bubble of radius 1. A smaller hemispherical
bubble is then placed on the Þrst one. This process is continued until chambers, including
the sphere, are formed. (The Þgure shows the case .) Use mathematical induction to
prove that the maximum height of any bubble tower with chambers is .1 � snn

n � 4
n
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Integrals

To compute an area we approximate a region by rectangles

and let the number of rectangles become large. The precise

area is the limit of these sums of areas of rectangles.



In Chapter 2 we used the tangent and velocity problems to

introduce the derivative, which is the central idea in differ-

ential calculus. In much the same way, this chapter starts

with the area and distance problems and uses them to for-

mulate the idea of a definite integral, which is the basic

concept of integral calculus. We will see in Chapters 6 and 8 how to use the inte-

gral to solve problems concerning volumes, lengths of curves, population predic-

tions, cardiac output, forces on a dam, work, consumer surplus, and baseball,

among many others.

There is a connection between integral calculus and differential calculus. The

Fundamental Theorem of Calculus relates the integral to the derivative, and we will

see in this chapter that it greatly simplifies the solution of many problems.

|||| 5.1 A r e a s  a n d  D i s t a n c e s

In this section we discover that in trying to find the area under a curve or the distance 
traveled by a car, we end up with the same special type of limit.

T h e  A r e a  P r o b l e m

We begin by attempting to solve the area problem: Find the area of the region that lies
under the curve from to . This means that , illustrated in Figure 1, is bounded
by the graph of a continuous function [where ], the vertical lines and

, and the -axis.

In trying to solve the area problem we have to ask ourselves: What is the meaning of
the word area? This question is easy to answer for regions with straight sides. For a rect-
angle, the area is defined as the product of the length and the width. The area of a triangle
is half the base times the height. The area of a polygon is found by dividing it into tri-
angles (as in Figure 2) and adding the areas of the triangles.

FIGURE 2
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|||| Now is a good time to read (or reread) 
A Preview of Calculus (see page 2). It discusses
the unifying ideas of calculus and helps put in
perspective where we have been and where we
are going.
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However, it isn’t so easy to find the area of a region with curved sides. We all have an
intuitive idea of what the area of a region is. But part of the area problem is to make this
intuitive idea precise by giving an exact definition of area.

Recall that in defining a tangent we first approximated the slope of the tangent line by
slopes of secant lines and then we took the limit of these approximations. We pursue a sim-
ilar idea for areas. We first approximate the region by rectangles and then we take the
limit of the areas of these rectangles as we increase the number of rectangles. The follow-
ing example illustrates the procedure.

EXAMPLE 1 Use rectangles to estimate the area under the parabola from 0 to 1 
(the parabolic region S illustrated in Figure 3).

SOLUTION We first notice that the area of S must be somewhere between 0 and 1 because 
is contained in a square with side length 1, but we can certainly do better than that. Sup-
pose we divide S into four strips , , , and by drawing the vertical lines ,

, and as in Figure 4(a).

We can approximate each strip by a rectangle whose base is the same as the strip and
whose height is the same as the right edge of the strip [see Figure 4(b)]. In other words,
the heights of these rectangles are the values of the function at the right end
points of the subintervals , , , and .

Each rectangle has width and the heights are , , , and . If we let be
the sum of the areas of these approximating rectangles, we get

From Figure 4(b) we see that the area A of S is less than , so

Instead of using the rectangles in Figure 4(b) we could use the smaller rectangles in
Figure 5 whose heights are the values of at the left endpoints of the subintervals. (The
leftmost rectangle has collapsed because its height is 0.) The sum of the areas of these 
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approximating rectangles is

We see that the area of S is larger than , so we have lower and upper estimates for A:

We can repeat this procedure with a larger number of strips. Figure 6 shows what
happens when we divide the region S into eight strips of equal width.

By computing the sum of the areas of the smaller rectangles and the sum of the
areas of the larger rectangles , we obtain better lower and upper estimates for A:

So one possible answer to the question is to say that the true area of S lies somewhere
between 0.2734375 and 0.3984375.

We could obtain better estimates by increasing the number of strips. The table at the
left shows the results of similar calculations (with a computer) using n rectangles whose
heights are found with left endpoints or right endpoints . In particular, we see
by using 50 strips that the area lies between 0.3234 and 0.3434. With 1000 strips we
narrow it down even more: A lies between 0.3328335 and 0.3338335. A good estimate is
obtained by averaging these numbers: .

From the values in the table in Example 1, it looks as if is approaching as n
increases. We confirm this in the next example.

EXAMPLE 2 For the region S in Example 1, show that the sum of the areas of the upper
approximating rectangles approaches , that is,

SOLUTION is the sum of the areas of the rectangles in Figure 7. Each rectangle 
has width and the heights are the values of the function at the points

; that is, the heights are . �1�n�2, �2�n�2, �3�n�2, . . . , �n�n�21�n, 2�n, 3�n, . . . , n�n
f �x� � x 21�n

nRn

lim
n l �

 Rn � 1
3

1
3

1
3Rn

A � 0.3333335

�Rn ��Ln �

0.2734375 � A � 0.3984375

�R8 �
�L8 �

FIGURE 6
Approximating S with eight rectangles (a) Using left endpoints (b) Using right endpoints
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10 0.2850000 0.3850000
20 0.3087500 0.3587500
30 0.3168519 0.3501852
50 0.3234000 0.3434000

100 0.3283500 0.3383500
1000 0.3328335 0.3338335
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Thus

Here we need the formula for the sum of the squares of the first n positive integers:

Perhaps you have seen this formula before. It is proved in Example 5 in Appendix E.
Putting Formula 1 into our expression for , we get

Thus, we have

It can be shown that the lower approximating sums also approach , that is,

From Figures 8 and 9 it appears that, as n increases, both and become better and bet-
ter approximations to the area of S. Therefore, we define the area A to be the limit of the 
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The ideas in Examples 1 and 2 are
explored in Module 5.1/5.2/7.7 for a
variety of functions.

|||| Here we are computing the limit of the
sequence . Sequences were discussed in 
A Preview of Calculus and will be studied in
detail in Chapter 11. Their limits are calculated 
in the same way as limits at infinity (Section 2.6).
In particular, we know that

lim 
n l �

 
1

n
� 0

�Rn 	
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sums of the areas of the approximating rectangles, that is,

Let’s apply the idea of Examples 1 and 2 to the more general region S of Figure 1. We
start by subdividing S into n strips of equal width as in Figure 10. The width
of the interval is , so the width of each of the n strips is

These strips divide the interval [a, b] into n subintervals

where and . The right endpoints of the subintervals are

Let’s approximate the ith strip by a rectangle with width and height , which
is the value of at the right endpoint (see Figure 11). Then the area of the ith rectangle 
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is . What we think of intuitively as the area of S is approximated by the sum of the
areas of these rectangles, which is

Figure 12 shows this approximation for n � 2, 4, 8, and 12. Notice that this approxi-
mation appears to become better and better as the number of strips increases, that is, as

. Therefore, we define the area A of the region S in the following way.

Definition The area A of the region S that lies under the graph of the continu-
ous function is the limit of the sum of the areas of approximating rectangles:

It can be proved that the limit in Definition 2 always exists, since we are assuming that
is continuous. It can also be shown that we get the same value if we use left endpoints:

In fact, instead of using left endpoints or right endpoints, we could take the height of the
ith rectangle to be the value of f at any number in the ith subinterval . We call
the numbers , , . . . , the sample points. Figure 13 shows approximating rect-
angles when the sample points are not chosen to be endpoints. So a more general expression
for the area of S is

We often use sigma notation to write sums with many terms more compactly. For
instance,

�
n
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So the expressions for area in Equations 2, 3, and 4 can be written as follows:

We could also rewrite Formula 1 in the following way:

EXAMPLE 3 Let A be the area of the region that lies under the graph of 
between x � 0 and x � 2.
(a) Using right endpoints, find an expression for A as a limit. Do not evaluate the limit.
(b) Estimate the area by taking the sample points to be midpoints and using four sub-
intervals and then ten subintervals.

SOLUTION
(a) Since a � 0 and b � 2, the width of a subinterval is

So , and . The sum of the areas of the
approximating rectangles is

According to Definition 2, the area is

Using sigma notation we could write

It is difficult to evaluate this limit directly by hand, but with the aid of a computer alge-
bra system it isn’t hard (see Exercise 24). In Section 5.3 we will be able to find A more
easily using a different method.

(b) With n � 4 the subintervals of equal width are , , ,
and . The midpoints of these subintervals are , , ,x 3* � 1.25x 2* � 0.75x 1* � 0.25
1.5, 2�
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|||| If you need practice with sigma notation,
look at the examples and try some of the exer-
cises in Appendix E.
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and , and the sum of the areas of the four approximating rectangles (see Fig-
ure 14) is

So an estimate for the area is

With n � 10 the subintervals are , , . . . , and the midpoints are
. Thus

From Figure 15 it appears that this estimate is better than the estimate with n � 4.

T h e  D i s t a n c e  P r o b l e m

Now let’s consider the distance problem: Find the distance traveled by an object during a
certain time period if the velocity of the object is known at all times. (In a sense this is the
inverse problem of the velocity problem that we discussed in Section 2.1.) If the velocity
remains constant, then the distance problem is easy to solve by means of the formula

But if the velocity varies, it’s not so easy to find the distance traveled. We investigate the
problem in the following example.

EXAMPLE 4 Suppose the odometer on our car is broken and we want to estimate the dis-
tance driven over a 30-second time interval. We take speedometer readings every five
seconds and record them in the following table:

In order to have the time and the velocity in consistent units, let’s convert the velocity
readings to feet per second (1 mi�h � 5280�3600 ft�s):

During the first five seconds the velocity doesn’t change very much, so we can estimate
the distance traveled during that time by assuming that the velocity is constant. If we
take the velocity during that time interval to be the initial velocity (25 ft�s), then we 

distance � velocity 	 time

 � 0.2�e�0.1 � e�0.3 � e�0.5 � � � � � e�1.9 � � 0.8632

 A � M10 � f �0.1� �x � f �0.3� �x � f �0.5� �x � � � � � f �1.9� �x

x 1* � 0.1, x 2* � 0.3, x 3* � 0.5, . . . , x10* � 1.9

1.8, 2�
0.2, 0.4�
0, 0.2�

A � 0.8557

 � 1
2 �e�0.25 � e�0.75 � e�1.25 � e�1.75 � � 0.8557

 � e�0.25�0.5� � e�0.75�0.5� � e�1.25�0.5� � e�1.75�0.5�

 � f �0.25� �x � f �0.75� �x � f �1.25� �x � f �1.75� �x

 M4 � �
4

i�1
 f �xi*� �x

x 4* � 1.75

Time (s) 0 5 10 15 20 25 30

Velocity (mi�h) 17 21 24 29 32 31 28

Time (s) 0 5 10 15 20 25 30

Velocity (ft�s) 25 31 35 43 47 46 41
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obtain the approximate distance traveled during the first five seconds:

Similarly, during the second time interval the velocity is approximately constant and we
take it to be the velocity when t � 5 s. So our estimate for the distance traveled from 
t � 5 s to t � 10 s is

If we add similar estimates for the other time intervals, we obtain an estimate for the
total distance traveled:

We could just as well have used the velocity at the end of each time period instead of
the velocity at the beginning as our assumed constant velocity. Then our estimate
becomes

If we had wanted a more accurate estimate, we could have taken velocity readings every
two seconds, or even every second.

Perhaps the calculations in Example 4 remind you of the sums we used earlier to esti-
mate areas. The similarity is explained when we sketch a graph of the velocity function of
the car in Figure 16 and draw rectangles whose heights are the initial velocities for each
time interval. The area of the first rectangle is 25 	 5 � 125, which is also our estimate
for the distance traveled in the first five seconds. In fact, the area of each rectangle can be
interpreted as a distance because the height represents velocity and the width represents
time. The sum of the areas of the rectangles in Figure 16 is , which is our ini-
tial estimate for the total distance traveled.

In general, suppose an object moves with velocity , where and
(so the object always moves in the positive direction). We take velocity readings

at times so that the velocity is approximately constant on each
subinterval. If these times are equally spaced, then the time between consecutive readings
is . During the first time interval the velocity is approximately and so
the distance traveled is approximately . Similarly, the distance traveled during the
second time interval is about and the total distance traveled during the time inter-
val is approximately

If we use the velocity at right endpoints instead of left endpoints, our estimate for the total
distance becomes

The more frequently we measure the velocity, the more accurate our estimates become, so
it seems plausible that the exact distance d traveled is the limit of such expressions:

We will see in Section 5.4 that this is indeed true.
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Because Equation 5 has the same form as our expressions for area in Equations 2 and
3, it follows that the distance traveled is equal to the area under the graph of the velocity
function. In Chapters 6 and 8 we will see that other quantities of interest in the natural and
social sciences—such as the work done by a variable force or the cardiac output of the
heart—can also be interpreted as the area under a curve. So when we compute areas in this
chapter, bear in mind that they can be interpreted in a variety of practical ways.

right endpoints. Sketch the graph and the rectangles. Is
your estimate an underestimate or an overestimate?

(b) Repeat part (a) using left endpoints.

(a) Estimate the area under the graph of from
to using three rectangles and right end-

points. Then improve your estimate by using six rectangles.
Sketch the curve and the approximating rectangles.

(b) Repeat part (a) using left endpoints.
(c) Repeat part (a) using midpoints.
(d) From your sketches in parts (a)–(c), which appears to be

the best estimate?

; 6. (a) Graph the function .
(b) Estimate the area under the graph of using four approxi-

mating rectangles and taking the sample points to be
(i) right endpoints (ii) midpoints
In each case sketch the curve and the rectangles.

(c) Improve your estimates in part (b) by using eight
rectangles.

7–8 |||| With a programmable calculator (or a computer), it is pos-
sible to evaluate the expressions for the sums of areas of approxi-
mating rectangles, even for large values of , using looping. (On a
TI use the Is command or a For-EndFor loop, on a Casio use Isz,
on an HP or in BASIC use a FOR-NEXT loop.) Compute the sum
of the areas of approximating rectangles using equal subintervals
and right endpoints for , 30, and 50. Then guess the value of
the exact area.

7. The region under from to 

8. The region under from 1 to 2

9. Some computer algebra systems have commands that will draw
approximating rectangles and evaluate the sums of their areas,
at least if is a left or right endpoint. (For instance, in Maple
use leftbox, rightbox, leftsum, and rightsum.)
(a) If , find the left and right sums for

and .
(b) Illustrate by graphing the rectangles in part (a).
(c) Show that the exact area under lies between 4.6 and 4.7.

10. (a) If , use the commands dis-
cussed in Exercise 9 to find the left and right sums for

and .50n � 10, 30,

f �x� � sin�sin x�, 0 � x � ��2CAS

f

50n � 10, 30,
f �x� � sx, 1 � x � 4

x i*

CAS

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

y � 1�x 2

�0y � sin x

n � 10

�
n

f
f �x� � e�x 2

, �2 � x � 2

x � 2x � �1
f �x� � 1 � x 25.

1. (a) By reading values from the given graph of , use five rect-
angles to find a lower estimate and an upper estimate for
the area under the given graph of from to .
In each case sketch the rectangles that you use.

(b) Find new estimates using 10 rectangles in each case.

(a) Use six rectangles to find estimates of each type for the
area under the given graph of from to .

(i) (sample points are left endpoints)
(ii) (sample points are right endpoints)

(iii) (sample points are midpoints)
(b) Is an underestimate or overestimate of the true area?
(c) Is an underestimate or overestimate of the true area?
(d) Which of the numbers , , or gives the best

estimate? Explain.

3. (a) Estimate the area under the graph of from
to using four approximating rectangles and

right endpoints. Sketch the graph and the rectangles. Is
your estimate an underestimate or an overestimate?

(b) Repeat part (a) using left endpoints.

4. (a) Estimate the area under the graph of from
to using five approximating rectangles and x � 5x � 0

f �x� � 25 � x 2

x � 5x � 1
f �x� � 1�x

y

x0 4

4

8

y=ƒ

8 12

M6R6L6

R6

L6

M6

R6

L6

x � 12x � 0f
2.

y

x0 5

5 y=ƒ

10

x � 10x � 0f

f

|||| 5.1 Exercises





59. The velocity of a car was read from its speedometer at 
10-second intervals and recorded in the table. Use the Midpoint
Rule to estimate the distance traveled by the car.

60. Suppose that a volcano is erupting and readings of the rate 
at which solid materials are spewed into the atmosphere are
given in the table. The time is measured in seconds and the
units for are tonnes (metric tons) per second.

(a) Give upper and lower estimates for the quantity of
erupted materials after 6 seconds.

(b) Use the Midpoint Rule to estimate .

61. The marginal cost of manufacturing yards of a certain fabric
is (in dollars per yard). Find
the increase in cost if the production level is raised from
2000 yards to 4000 yards.

62. Water flows in and out of a storage tank. A graph of the rate of
change of the volume of water in the tank, in liters per day,
is shown. If the amount of water in the tank at time is
25,000 L, use the Midpoint Rule to estimate the amount of
water four days later.

63. Economists use a cumulative distribution called a Lorenz curve
to describe the distribution of income between households in a
given country. Typically, a Lorenz curve is defined on 
with endpoints and , and is continuous, increasing,
and concave upward. The points on this curve are determined
by ranking all households by income and then computing the
percentage of households whose income is less than or equal 
to a given percentage of the total income of the country. For
example, the point is on the Lorenz curve if the
bottom of the households receive less than or equal to 
of the total income. Absolute equality of income distribution 

b%a%
�a�100, b�100�

�1, 1��0, 0�
�0, 1�

2000

_1000

r

t0 1 2 3 4

1000

t � 0
r�t�

C��x� � 3 � 0.01x � 0.000006x 2
x

Q�6�

Q�6�

r�t�
t

r�t�

45. If is the rate of growth of a child in pounds per year, what
does represent?

46. The current in a wire is defined as the derivative of the charge:
. (See Example 3 in Section 3.3.) What does

represent?

If oil leaks from a tank at a rate of gallons per minute at
time , what does represent?

48. A honeybee population starts with 100 bees and increases 
at a rate of bees per week. What does 
represent?

49. In Section 4.8 we defined the marginal revenue function 
as the derivative of the revenue function , where is the
number of units sold. What does represent?

50. If is the slope of a trail at a distance of miles from the
start of the trail, what does represent?

51. If is measured in meters and is measured in newtons,
what are the units for ?

52. If the units for are feet and the units for are pounds per
foot, what are the units for ? What units does 
have?

53–54 |||| The velocity function (in meters per second) is given 
for a particle moving along a line. Find (a) the displacement and 
(b) the distance traveled by the particle during the given time 
interval.

,

54. ,

55–56 |||| The acceleration function (in m�s ) and the initial veloc-
ity are given for a particle moving along a line. Find (a) the 
velocity at time and (b) the distance traveled during the given
time interval.

, ,

56. , ,

57. The linear density of a rod of length 4 m is given by
measured in kilograms per meter, where 

is measured in meters from one end of the rod. Find the total
mass of the rod.

58. Water flows from the bottom of a storage tank at a rate of
liters per minute, where . Find the

amount of water that flows from the tank during the first
10 minutes.

0 � t � 50r�t� � 200 � 4t

x
��x� � 9 � 2sx 

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

0 � t � 3v�0� � �4a�t� � 2t � 3

0 � t � 10v�0� � 5a�t� � t � 455.

t

2

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

1 � t � 6v�t� � t 2 � 2t � 8

0 � t � 3v�t� � 3t � 553.

x
8
2  a�x� dxda�dx

a�x�x

x
100
0  f �x� dx

f �x�x

x
5
3  f �x� dx

xf �x�

x
5000
1000  R��x� dx

xR�x�
R��x�

100 � x
15
0

 n��t� dtn��t�

x
120
0  r�t� dtt

r�t�47.

x
b
a  I�t� dt

I�t� � Q��t�

x
10
5  w��t� dt

w��t�
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t (s) (mi�h) t (s) (mi�h)

0 0 60 56
10 38 70 53
20 52 80 50
30 58 90 47
40 55 100 45
50 51

vv

t 0 1 2 3 4 5 6

2 10 24 36 46 54 60r�t�
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would occur if the bottom of the households receive of
the income, in which case the Lorenz curve would be the line

. The area between the Lorenz curve and the line 
measures how much the income distribution differs from
absolute equality. The coefficient of inequality is the ratio of 
the area between the Lorenz curve and the line to the
area under .

(a) Show that the coefficient of inequality is twice the area
between the Lorenz curve and the line , that is, show
that

(b) The income distribution for a certain country is represented
by the Lorenz curve defined by the equation 

L�x� � 5
12 x 2 �

7
12 x

coefficient of inequality � 2 y
1

0
 �x � L�x�� dx

y � x

x1

y

0

1
y=x

y=L(x)

(1, 1)

y � x
y � x

y � xy � x

a%a% What is the percentage of total income received by the 
bottom of the households? Find the coefficient of
inequality.

; 64. On May 7, 1992, the space shuttle Endeavour was launched on
mission STS-49, the purpose of which was to install a new
perigee kick motor in an Intelsat communications satellite. The
table gives the velocity data for the shuttle between liftoff and
the jettisoning of the solid rocket boosters.

(a) Use a graphing calculator or computer to model these data
by a third-degree polynomial.

(b) Use the model in part (a) to estimate the height reached by
the Endeavour, 125 seconds after liftoff.

50%

Event Time (s) Velocity (ft�s)

Launch 0 0
Begin roll maneuver 10 185
End roll maneuver 15 319
Throttle to 89% 20 447
Throttle to 67% 32 742
Throttle to 104% 59 1325
Maximum dynamic pressure 62 1445

Solid rocket booster separation 125 4151

Newton, Leibniz, and the Invention of Calculus

We sometimes read that the inventors of calculus were Sir Isaac Newton (1642–1727) and 
Gottfried Wilhelm Leibniz (1646–1716). But we know that the basic ideas behind integration
were investigated 2500 years ago by ancient Greeks such as Eudoxus and Archimedes, and meth-
ods for finding tangents were pioneered by Pierre Fermat (1601–1665), Isaac Barrow (1630–1677),
and others. Barrow, Newton’s teacher at Cambridge, was the first to understand the inverse rela-
tionship between differentiation and integration. What Newton and Leibniz did was to use this
relationship, in the form of the Fundamental Theorem of Calculus, in order to develop calculus
into a systematic mathematical discipline. It is in this sense that Newton and Leibniz are credited
with the invention of calculus.

Read about the contributions of these men in one or more of the given references and write a
report on one of the following three topics. You can include biographical details, but the main
thrust of your report should be a description, in some detail, of their methods and notations. In
particular, you should consult one of the sourcebooks, which give excerpts from the original
publications of Newton and Leibniz, translated from Latin to English.

The Role of Newton in the Development of Calculus

The Role of Leibniz in the Development of Calculus

The Controversy between the Followers of Newton and Leibniz over 
Priority in the Invention of Calculus
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|||| 5.5 T h e  S u b s t i t u t i o n  R u l e

Because of the Fundamental Theorem, it’s important to be able to find antiderivatives. But
our antidifferentiation formulas don’t tell us how to evaluate integrals such as

To find this integral we use the problem-solving strategy of introducing something extra.
Here the “something extra” is a new variable; we change from the variable x to a new vari-
able u. Suppose that we let be the quantity under the root sign in (1), . Then
the differential of is . Notice that if the in the notation for an integral were
to be interpreted as a differential, then the differential would occur in (1) and, so,
formally, without justifying our calculation, we could write

But now we can check that we have the correct answer by using the Chain Rule to differ-
entiate the final function of Equation 2: 

In general, this method works whenever we have an integral that we can write in the
form . Observe that if , then

y F��t�x��t��x� dx � F�t�x�� � C3

F� � fx f �t�x��t��x� dx

d

dx
 [ 2

3 �x 2 � 1�3�2 � C] � 2
3 � 3

2 �x 2 � 1�1�2 � 2x � 2xsx 2 � 1

   � 2
3 u3�2 � C � 2

3 �x 2 � 1�3�2 � C

 y 2xs1 � x 2 dx � y s1 � x 2 2x dx � y su du2

2x dx
dxdu � 2x dxu

u � 1 � x 2u

y 2xs1 � x 2 dx1
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|||| Differentials were defined in Section 3.11. 
If , then

du � f ��x� dx

u � f �x�



because, by the Chain Rule, 

If we make the “change of variable” or “substitution” , then from Equation 3
we have 

or, writing , we get 

Thus, we have proved the following rule.

The Substitution Rule If is a differentiable function whose range is an
interval and is continuous on , then

Notice that the Substitution Rule for integration was proved using the Chain Rule for
differentiation. Notice also that if , then , so a way to remember the
Substitution Rule is to think of and in (4) as differentials.

Thus, the Substitution Rule says: It is permissible to operate with dx and du after
integral signs as if they were differentials.

EXAMPLE 1 Find .

SOLUTION We make the substitution because its differential is ,
which, apart from the constant factor 4, occurs in the integral. Thus, using 
and the Substitution Rule, we have

Notice that at the final stage we had to return to the original variable .

The idea behind the Substitution Rule is to replace a relatively complicated integral 
by a simpler integral. This is accomplished by changing from the original variable to 
a new variable that is a function of . Thus, in Example 1 we replaced the integral

by the simpler integral .
The main challenge in using the Substitution Rule is to think of an appropriate substi-

tution. You should try to choose to be some function in the integrand whose differential
also occurs (except for a constant factor). This was the case in Example 1. If that is not

u

1
4 x cos u dux x 3 cos�x 4 � 2� dx

xu
x

x

 � 1
4 sin�x 4 � 2� � C

 � 1
4 sin u � C

 y x 3 cos�x 4 � 2� dx � y cos u � 1
4 du � 1

4 y cos u du

x 3 dx � du�4
du � 4x 3 dxu � x 4 � 2

y x 3 cos�x 4 � 2� dx

dudx
du � t��x� dxu � t�x�

y f �t�x��t��x� dx � y f �u� du

IfI
u � t�x�4

y f �t�x��t��x� dx � y f �u� du

F� � f

y F��t�x��t��x� dx � F�t�x�� � C � F�u� � C � y F��u� du

u � t�x�

d

dx
 �F�t�x��� � F��t�x��t��x�
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|||| Check the answer by differentiating it.
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possible, try choosing to be some complicated part of the integrand. Finding the right
substitution is a bit of an art. It’s not unusual to guess wrong; if your first guess doesn’t
work, try another substitution.

EXAMPLE 2 Evaluate .

SOLUTION 1 Let . Then , so . Thus, the Substitution Rule
gives

SOLUTION 2 Another possible substitution is . Then

so

(Or observe that so .) Therefore

EXAMPLE 3 Find .

SOLUTION Let . Then , so and

The answer to Example 3 could be checked by differentiation, but instead let’s check 
it with a graph. In Figure 1 we have used a computer to graph both the integrand

and its indefinite integral (we take the case
). Notice that decreases when is negative, increases when is positive,

and has its minimum value when . So it seems reasonable, from the graphical evi-
dence, that is an antiderivative of .

EXAMPLE 4 Calculate .

SOLUTION If we let , then , so . Therefore

y e 5x dx � 1
5 y eu du � 1

5 e
u � C � 1

5 e
5x � C

dx � 1
5 dudu � 5 dxu � 5x

y e 5x dx

ft

f �x� � 0
f �x�f �x�t�x�C � 0

t�x� � �
1
4 s1 � 4x 2f �x� � x�s1 � 4x 2

 � �
1
8 (2su ) � C � �

1
4 s1 � 4x 2 � C

 y 
x

s1 � 4x 2
 dx � �

1
8 y 

du

su
� �

1
8 y u�1�2 du

x dx � �
1
8 dudu � �8x dxu � 1 � 4x 2

y 
x

s1 � 4x 2
 dx

 �
u 3

3
� C � 1

3 �2x � 1�3�2 � C

 y s2x � 1 dx � y u � u du � y u 2 du

2u du � 2 dxu 2 � 2x � 1, 

dx � s2x � 1 du � u dudu �
dx

s2x � 1

u � s2x � 1

 � 1
3 �2x � 1�3�2 � C

 �
1

2
�

u 3�2

3�2
� C � 1

3 u 3�2 � C

 y s2x � 1 dx � y su 
du

2
� 1

2 y u 1�2 du

dx � du�2du � 2 dxu � 2x � 1

y s2x � 1 dx

u

1

_1

_1 1

©=� ƒ dx

f
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©=j ƒ dx=_   œ„„„„„„

x
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1-4≈1
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EXAMPLE 5 Find .

SOLUTION An appropriate substitution becomes more obvious if we factor as . Let
. Then , so . Also , so :

EXAMPLE 6 Calculate .

SOLUTION First we write tangent in terms of sine and cosine:

This suggests that we should substitute , since then and so
:

Since , the result of Example
6 can also be written as

D e f i n i t e  I n t e g r a l s

When evaluating a definite integral by substitution, two methods are possible. One method
is to evaluate the indefinite integral first and then use the Fundamental Theorem. For
instance, using the result of Example 2, we have 

Another method, which is usually preferable, is to change the limits of integration when
the variable is changed.

 � 1
3 �9�3�2 �

1
3 �1�3�2 � 1

3 �27 � 1� � 26
3

 y
4

0
 s2x � 1 dx � y s2x � 1 dx]0

4
� 1

3 �2x � 1�3�2]0

4

y tan x dx � ln 	 sec x 	 � C5

�ln 	 cos x 	 � ln�	 cos x 	�1� � ln�1�	cos x 	� � ln 	 sec x 	

 � �ln 	 u 	 � C � �ln 	 cos x 	 � C

 y tan x dx � y 
sin x

cos x
 dx � �y 

du

u

sin x dx � �du
du � �sin x dxu � cos x

y tan x dx � y 
sin x

cos x
 dx

y tan x dx

 � 1
7 �1 � x 2 �7�2 �

2
5 �1 � x 2 �5�2 �

1
3 �1 � x 2 �3�2 � C

 � 1
2 ( 2

7 u 7�2 � 2 	 25 u 5�2 �
2
3 u 3�2 ) � C

 � 1
2 y �u 5�2 � 2u 3�2 � u 1�2 � du

 � y su �u � 1�2 
du

2
� 1

2 y su �u 2 � 2u � 1� du

 y s1 � x 2 x 5 dx � y s1 � x 2 x 4 	 x dx

x 4 � �u � 1�2x 2 � u � 1x dx � du�2du � 2x dxu � 1 � x 2
x 4 � xx 5

y s1 � x 2 x 5 dx
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The Substitution Rule for Definite Integrals If is continuous on and is
continuous on the range of , then

Proof Let be an antiderivative of . Then, by (3), is an antiderivative of
, so by Part 2 of the Fundamental Theorem, we have

But, applying FTC2 a second time, we also have

EXAMPLE 7 Evaluate using (6).

SOLUTION Using the substitution from Solution 1 of Example 2, we have and
. To find the new limits of integration we note that

and

Therefore

Observe that when using (6) we do not return to the variable x after integrating. We sim-
ply evaluate the expression in u between the appropriate values of u.

EXAMPLE 8 Evaluate .y
2
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�3 � 5x�2
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1
 12 su du
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u � 2x � 1

y
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0
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 f �u� du � F�u�]

t�a�
t�b�

� F�t�b�� � F�t�a��
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b
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 f �t�x��t��x� dx � F�t�x��]b

a � F�t�b�� � F�t�a��

f �t�x��t��x�
F�t�x��fF

y
b

a
 f �t�x��t��x� dx � y

t�b�

t�a�
 f �u� du

u � t�x�
f�a, b�t�6

|||| The geometric interpretation of Example 7 is
shown in Figure 2. The substitution 
stretches the interval by a factor of and
translates it to the right by unit. The Substitu-
tion Rule shows that the two areas are equal.

1
2�0, 4�

u � 2x � 1

|||| This rule says that when using a substitution
in a definite integral, we must put everything in
terms of the new variable , not only and 
but also the limits of integration. The new limits
of integration are the values of that correspond
to and .x � bx � a

u

dxxu
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SOLUTION Let . Then , so . When , and
when , . Thus

EXAMPLE 9 Calculate .

SOLUTION We let because its differential occurs in the integral. When
, ; when , . Thus

S y m m e t r y

The next theorem uses the Substitution Rule for Definite Integrals (6) to simplify the cal-
culation of integrals of functions that possess symmetry properties.

Integrals of Symmetric Functions Suppose is continuous on .

(a) If is even , then .

(b) If is odd , then .

Proof We split the integral in two:

In the first integral on the far right side we make the substitution . Then
and when , . Therefore

�y
�a

0
 f �x� dx � �y

a

0
 f ��u���du� � y

a

0
 f ��u� du
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 � �
1

5  
�
1

u�
�2

�7

�
1

5u�
�2

�7

 y
2

1
 

dx

�3 � 5x�2 � �
1

5
 y

�7

�2
 
du

u 2

u � �7x � 2
u � �2x � 1dx � �du�5du � �5 dxu � 3 � 5x

|||| Since the function in
Example 9 is positive for , the integral 
represents the area of the shaded region in 
Figure 3.

x � 1
f �x� � �ln x��x

|||| The integral given in Example 8 is an 
abbreviation for

y
2

1
 

1

�3 � 5x�2  dx
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and so Equation 8 becomes

(a) If is even, then so Equation 9 gives 

(b) If is odd, then and so Equation 9 gives

Theorem 7 is illustrated by Figure 4. For the case where is positive and even, part (a)
says that the area under from to is twice the area from to because of
symmetry. Recall that an integral can be expressed as the area above the -axis
and below minus the area below the axis and above the curve. Thus, part (b) says
the integral is because the areas cancel.

EXAMPLE 10 Since satisfies , it is even and so

EXAMPLE 11 Since satisfies , it is odd 
and so

y
1

�1
 

tan x

1 � x 2 � x 4  dx � 0

f ��x� � �f �x�f �x� � �tan x���1 � x 2 � x 4 �

 � 2[1
7 x

7 � x]0

2
� 2(128

7 � 2) � 284
7

 y
2

�2
 �x 6 � 1� dx � 2 y

2

0
 �x 6 � 1� dx

f ��x� � f �x�f �x� � x 6 � 1

0
y � f �x�

xx
b
a  f �x� dx

a0a�ay � f �x�
f

y
a

�a
 f �x� dx � �y

a

0
 f �u� du � y

a

0
 f �x� dx � 0

f ��u� � �f �u�f

y
a

�a
 f �x� dx � y

a

0
 f �u� du � y

a

0
 f �x� dx � 2 y

a

0
 f �x� dx

f ��u� � f �u�f

y
a

�a
 f �x� dx � y

a

0
 f ��u� du � y

a

0
 f �x� dx9

7–44 |||| Evaluate the indefinite integral.

7. 8.

9. 10.

11. 12.

14.

15. 16.

17. 18. y y 3
s2y 4 � 1 dyy s4 � t dt

y 
1

�5t � 4�2.7  dty 
3

�2y � 1�5  dy

y 
x

x 2 � 1
 dxy 

dx

5 � 3x
13.

y 
x

�x 2 � 1�2  dxy 
1 � 4x

s1 � x � 2x 2
 dx

y �2 � x�6 dxy �3x � 2�20 dx

y x 2�x 3 � 5�9 dxy 2x�x 2 � 3�4 dx

1–6 |||| Evaluate the integral by making the given substitution.

1.

2.

4.

5.

6.

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

y e sin � cos � d�, u � sin �

y 
4

�1 � 2x�3  dx, u � 1 � 2x

y 
sin sx

sx
dx , u � sx

y x 2
sx 3 � 1 dx, u � x 3 � 13.

y x�4 � x 2 �10 dx, u � 4 � x 2

y cos 3x dx, u � 3x

|||| 5.5 Exercises

0

y

x_a a

FIGURE 4

(a) ƒ even, j    ƒ dx=2 j  ƒ dx
0

a

_a

a

0
x

_a
a

y

(b) ƒ odd, j    ƒ dx=0
_a

a
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19. 20.

22.

23. 24.

25. 26.

28.

29. 30.

31. 32.

34.

35. 36.

37. 38.

39.

40.

42.

43. 44.

; 45–48 |||| Evaluate the indefinite integral. Illustrate and check that
your answer is reasonable by graphing both the function and its
antiderivative (take ).

45. 46.

47. 48.

49–70 |||| Evaluate the definite integral, if it exists.

49. 50.

51. 52.

53. 54. y
1�2

1�6
 csc �t cot �t dty

�

0
 sec2�t�4� dt

y
s�

0
 x cos�x 2 � dxy

1

0
 x 2�1 � 2x 3 �5 dx

y
7

0
 s4 � 3x dxy

2

0
 �x � 1�25 dx

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

y tan2� sec2� d�y sin3x cos x dx

y 
x

sx 2 � 1
 dxy 

3x � 1

�3x 2 � 2x � 1�4  dx

C � 0

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

y 
x 2

s1 � x
 dxy 

x

s
4 x � 2

 dx

y 
x

1 � x 4  dxy 
1 � x

1 � x 2  dx41.

y sin t sec2�cos t� dt

�c � 0, a � �1�y x a
sb � cx a�1 dx

y s3 x 3 � 1 x 5 dxy sec3x tan x dx

y 
sin x

1 � cos2x
 dxy cot x dx

y 
cos���x�

x 2  dxy scot x csc2x dx33.

y 
e x

e x � 1
 dxy 

dx

x ln x

y 
ax � b

sax 2 � 2bx � c
 dxy 

z2

s
3 1 � z 3

 dz

y ecos t sin t dty e x
s1 � e x dx27.

y �1 � tan ��5 sec2� d�y cos � sin6� d�

y sx sin�1 � x 3�2� dxy 
cos st

st
 dt

y 
tan�1x

1 � x 2  dxy 
�ln x�2

x
 dx21.

y sec 2� tan 2� d�y sin � t dt 55. 56.

58.

59. 60.

61. 62.

63. 64.

66.

67.

69. 70.

; 71–72 |||| Use a graph to give a rough estimate of the area of the
region that lies under the given curve. Then find the exact area.

71. ,

72. , 

73. Evaluate by writing it as a sum of 
two integrals and interpreting one of those integrals in terms 
of an area.

74. Evaluate by making a substitution and
interpreting the resulting integral in terms of an area.

Which of the following areas are equal? Why?

76. A bacteria population starts with 400 bacteria and grows at a
rate of bacteria per hour. How many
bacteria will there be after three hours?

77. Breathing is cyclic and a full respiratory cycle from the begin-
ning of inhalation to the end of exhalation takes about 5 s. The
maximum rate of air flow into the lungs is about 0.5 L�s. This
explains, in part, why the function has
often been used to model the rate of air flow into the lungs.
Use this model to find the volume of inhaled air in the lungs at
time .t

f �t� � 1
2 sin�2� t�5�

r�t� � �450.268�e1.12567t

y=2x´

0 x

y

1

y=esin x sin 2x

0 x

y

π
2

1

y=eœ„x

0 x

y

1

75.

x
1
0  xs1 � x 4 dx

x
2

�2 �x � 3�s4 � x 2 dx

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

0 � x � �y � 2 sin x � sin 2x

0 � x � 1y � s2x � 1

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

y
a

�a
 xsx 2 � a 2 dxy

a

0
 xsx 2 � a 2 dx �a � 0�

y
a

0
 xsa 2 � x 2 dx68.y

4

0
 

dx

�x � 2�3

y
1�2

0
 

sin�1x

s1 � x 2
 dxy

e4

e
 

dx

xsln x
65.

y
4

0
 

x

s1 � 2x
 dxy

2

1
 xsx � 1 dx

y
��2

0
 cos x sin�sin x� dxy

13

0
 

dx

s
3 �1 � 2x�2

y
��2

���2
 
x 2 sin x

1 � x 6  dxy
��3

0
 

sin �

cos2�
 d�

y
1

0
 xe�x2

 dxy
2

1
 
e1�x

x 2  dx57.

y
2

0
 

dx

�2x � 3�2y
��6

���6
 tan3� d� 
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For the case where and , draw a diagram
to interpret this equation geometrically as an equality of areas.

82. If is continuous on , prove that

For the case where , draw a diagram to interpret this
equation geometrically as an equality of areas.

If and are positive numbers, show that

84. Use the substitution to show that

85. Use Exercise 84 to evaluate the integral

y
�

0
 

x sin x

1 � cos2x
 dx

y
�

0
 x f �sin x� dx �

�

2
 y

�

0
 f �sin x� dx

u � � � x

y
1

0
 x a�1 � x�b dx � y

1

0
 x b�1 � x�a dx

ba83.

f �x� 	 0

y
b

a
 f �x � c� dx � y

b�c

a�c
 f �x� dx

�f

0 
 a 
 bf �x� 	 078. Alabama Instruments Company has set up a production line to
manufacture a new calculator. The rate of production of these
calculators after weeks is

(Notice that production approaches 5000 per week as time goes
on, but the initial production is lower because of the workers’
unfamiliarity with the new techniques.) Find the number of cal-
culators produced from the beginning of the third week to the
end of the fourth week.

If is continuous and , find .

80. If is continuous and , find .

81. If is continuous on , prove that

y
b

a
 f ��x� dx � y

�a

�b
 f �x� dx

�f

y
3

0
 x f �x 2 � dxy

9

0
 f �x� dx � 4f

y
2

0
 f �2x� dxy

4

0
 f �x� dx � 10f79.

dx

dt
� 5000�1 �

100

�t � 10�2	 calculators�week

t

|||| 5.6 T h e  L o g a r i t h m  D e f i n e d  a s  a n  I n t e g r a l

Our treatment of exponential and logarithmic functions until now has relied on our intuition,
which is based on numerical and visual evidence. (See Sections 1.5, 1.6, and 3.1.) Here we
use the Fundamental Theorem of Calculus to give an alternative treatment that provides a
surer footing for these functions.

Instead of starting with and defining as its inverse, this time we start by defin-
ing as an integral and then define the exponential function as its inverse. In this sec-
tion you should bear in mind that we do not use any of our previous definitions and results
concerning exponential and logarithmic functions.

T h e  N a t u r a l  L o g a r i t h m

We first define as an integral.

Definition The natural logarithmic function is the function defined by

The existence of this function depends on the fact that the integral of a continuous func-
tion always exists. If , then can be interpreted geometrically as the area under
the hyperbola from to . (See Figure 1.) For , we have

For ,

and so is the negative of the area shown in Figure 2.ln x

ln x � y
x

1
 
1

t
 dt � �y

1

x
 
1

t
 dt 
 00 
 x 
 1

ln 1 � y
1

1
 
1

t
 dt � 0

x � 1t � xt � 1y � 1�t
ln xx � 1

x � 0ln x � y
x

1
 
1

t
 dt

1

ln x

ln x
loga xax

FIGURE 2

FIGURE 1

y= 1
t

0

y

1 x t

area=ln x

y= 1
t

0

y

1x t

area=_ ln x



EXAMPLE 1
(a) By comparing areas, show that .
(b) Use the Midpoint Rule with to estimate the value of .

SOLUTION
(a) We can interpret as the area under the curve from 1 to 2. From Figure 3
we see that this area is larger than the area of rectangle and smaller than the area
of trapezoid . Thus, we have

(b) If we use the Midpoint Rule with , and , we get

Notice that the integral that defines is exactly the type of integral discussed in Part 1
of the Fundamental Theorem of Calculus (see Section 5.3). In fact, using that theorem, 
we have

and so

We now use this differentiation rule to prove the following properties of the logarithm
function.

Laws of Logarithms If and are positive numbers and is a rational number,
then

1. 2. 3.

Proof
1. Let , where is a positive constant. Then, using Equation 2 and the

Chain Rule, we have

Therefore, and have the same derivative and so they must differ by a constant:

ln�ax� � ln x � C

ln xf �x�

f ��x� �
1

ax
 

d

dx
 �ax� �

1

ax
� a �

1

x

af �x� � ln�ax�

ln�xr � � r ln xln� x

y	 � ln x � ln yln�xy� � ln x � ln y

ryx3

d

dx
 �ln x� �

1

x
2

d

dx
 y

x

1
 
1

t
 dt �

1

x

ln x

 � �0.1�� 1

1.05
�

1

1.15
� � � � �

1

1.95	 � 0.693

 ln 2 � y
2

1
 
1

t
 dt � �0.1�� f �1.05� � f �1.15� � � � � � f �1.95��

�t � 0.1f �t� � 1�t, n � 10

 12 
 ln 2 

3
4

 12 � 1 
 ln 2 
 1 � 1
2 (1 �

1
2 )

ABCD
BCDE

y � 1�tln 2

ln 2n � 10

1
2 
 ln 2 


3
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FIGURE 3
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t

0

y

1 2 t

A

B C

DE



424 ❙ ❙ ❙ ❙ CHAPTER 5 INTEGRALS

Putting in this equation, we get . Thus

If we now replace the constant by any number , we have

2. Using Law 1 with , we have

and so

Using Law 1 again, we have

The proof of Law 3 is left as an exercise.

In order to graph , we first determine its limits:

(a) (b)

Proof
(a) Using Law 3 with and (where n is any positive integer), we have

. Now , so this shows that as . But is an
increasing function since its derivative . Therefore, as .

(b) If we let , then as . Thus, using (a), we have

If , then

and

which shows that is increasing and concave downward on . Putting this infor-
mation together with (4), we draw the graph of in Figure 4.

Since and is an increasing continuous function that takes on arbitrarily
large values, the Intermediate Value Theorem shows that there is a number where takes
on the value 1 (see Figure 5). This important number is denoted by .

Definition is the number such that .

We will show (in Theorem 19) that this definition is consistent with our previous defi-
nition of e.

ln e � 1e5

e
ln x

ln xln 1 � 0
y � ln x

�0, �ln x

d 2y

dx 2 � �
1

x 2 
 0
dy

dx
�

1

x
� 0

y � ln x, x � 0

lim
x l 0�

 ln x � lim
t l 

 ln�1

t 	 � lim
t l 

 ��ln t� � �

x l 0�t l t � 1�x
x l ln x l 1�x � 0

ln xn l ln�2n � l ln 2 � 0ln�2n � � n ln 2
r � nx � 2

lim 
x l 0�

 ln x � �lim 
x l 

 ln x � 4

y � ln x

ln� x

y	 � ln�x �
1

y	 � ln x � ln 
1

y
� ln x � ln y

 ln 
1

y
� �ln y

 ln 
1

y
� ln y � ln�1

y
� y	 � ln 1 � 0

x � 1�y

ln�xy� � ln x � ln y

ya

ln�ax� � ln x � ln a

ln a � ln 1 � C � 0 � C � Cx � 1

FIGURE 4

0

y

x1

y=ln x

FIGURE 5

0

y

1

x1 e

y=ln x



T h e  N a t u r a l  E x p o n e n t i a l  F u n c t i o n

Since ln is an increasing function, it is one-to-one and therefore has an inverse function,
which we denote by exp. Thus, according to the definition of an inverse function,

and the cancellation equations are

In particular, we have

We obtain the graph of by reflecting the graph of about the line 
(See Figure 6.) The domain of is the range of ln, that is, ; the range of exp is
the domain of ln, that is, .

If is any rational number, then the third law of logarithms gives

Therefore, by (6),

Thus, whenever is a rational number. This leads us to define , even for irra-
tional values of , by the equation

In other words, for the reasons given, we define to be the inverse of the function . In
this notation (6) becomes

and the cancellation equations (7) become

The natural exponential function is one of the most frequently occurring
functions in calculus and its applications, so it is important to be familiar with its graph
(Figure 7) and its properties (which follow from the fact that it is the inverse of the natural
logarithmic function).

f �x� � ex

 ln�ex� � x for all x10

 e ln x � x x � 09

ex � y &? ln y � x8

ln xex

ex � exp�x�

x
exxexp�x� � ex

 exp�r� � er

 ln�er � � r ln e � r

r
�0, �

��, �exp
y � x.y � ln xy � exp x

 exp�1� � e since ln e � 1

 exp�0� � 1 since ln 1 � 0

exp�ln x� � x and ln�exp x� � x7

exp�x� � y &? ln y � x6
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f �1�x� � y &? f �y� � x

f � f �1�x�� � x

 f �1� f �x�� � x

FIGURE 6

y

1

0 x

y=x

y=ln x

y=exp x

1

y=´

x0

1

y

1

FIGURE 7
The natural exponential function
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Properties of the Exponential Function The exponential function is an increas-
ing continuous function with domain and range . Thus, for all .
Also

So the -axis is a horizontal asymptote of .

We now verify that has the other properties expected of an exponential function.

Laws of Exponents If and are real numbers and is rational, then

1. 2. 3.

Proof of Law 1 Using the first law of logarithms and Equation 10, we have

Since ln is a one-to-one function, it follows that 
Laws 2 and 3 are proved similarly (see Exercises 6 and 7). As we will soon see,

Law 3 actually holds when is any real number. 

We now prove the differentiation formula for .

Proof The function is differentiable because it is the inverse function of ,
which we know is differentiable with nonzero derivative. To find its derivative, we use
the inverse function method. Let . Then and, differentiating this latter
equation implicitly with respect to , we get

G e n e r a l  E x p o n e n t i a l  F u n c t i o n s

If and is any rational number, then by (9) and (11),

Therefore, even for irrational numbers , we define

ax � ex ln a13

x

ar � �e ln a �r � er ln a

ra � 0

 
dy

dx
� y � ex

 
1

y
 

dy

dx
� 1

x
ln y � xy � ex

y � ln xy � ex

d

dx
 �ex� � ex12

ex

r

exe y � ex�y.

ln�exey � � ln�ex � � ln�ey� � x � y � ln�ex�y �

�ex�r � erxe x�y �
ex

eye x�y � exe y
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cross-sectional area is

and so the volume of is

The solids in Examples 1–5 are all called solids of revolution because they are obtained
by revolving a region about a line. In general, we calculate the volume of a solid of revo-
lution by using the basic defining formula

and we find the cross-sectional area or in one of the following ways:

■■ If the cross-section is a disk (as in Examples 1–3), we find the radius of the
disk (in terms of x or y) and use

■■ If the cross-section is a washer (as in Examples 4 and 5), we find the inner
radius and outer radius from a sketch (as in Figures 9 and 10) and com-
pute the area of the washer by subtracting the area of the inner disk from the
area of the outer disk:

The next example gives a further illustration of the procedure.

EXAMPLE 6 Find the volume of the solid obtained by rotating the region in Example 4
about the line .x � �1

FIGURE 10
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SOLUTION Figure 11 shows a horizontal cross-section. It is a washer with inner radius
and outer radius , so the cross-sectional area is

The volume is

We now find the volumes of three solids that are not solids of revolution.

EXAMPLE 7 Figure 12 shows a solid with a circular base of radius 1. Parallel cross-sections
perpendicular to the base are equilateral triangles. Find the volume of the solid.

SOLUTION Let’s take the circle to be . The solid, its base, and a typical cross-
section at a distance from the origin are shown in Figure 13.

FIGURE 13
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Since lies on the circle, we have and so the base of the triangle
is . Since the triangle is equilateral, we see from Figure 13(c) that its
height is . The cross-sectional area is therefore

and the volume of the solid is

EXAMPLE 8 Find the volume of a pyramid whose base is a square with side and whose
height is .

SOLUTION We place the origin at the vertex of the pyramid and the -axis along its cen-
tral axis as in Figure 14. Any plane that passes through and is perpendicular to the 
-axis intersects the pyramid in a square with side of length , say. We can express in

terms of by observing from the similar triangles in Figure 15 that

and so . [Another method is to observe that the line has slope and
so its equation is .] Thus, the cross-sectional area is

The pyramid lies between and , so its volume is

NOTE ■■ We didn’t need to place the vertex of the pyramid at the origin in Example 8. We
did so merely to make the equations simple. If, instead, we had placed the center of the
base at the origin and the vertex on the positive -axis, as in Figure 16, you can verify thaty
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we would have obtained the integral

EXAMPLE 9 A wedge is cut out of a circular cylinder of radius 4 by two planes. One plane
is perpendicular to the axis of the cylinder. The other intersects the first at an angle of
30 along a diameter of the cylinder. Find the volume of the wedge.

SOLUTION If we place the -axis along the diameter where the planes meet, then the 
base of the solid is a semicircle with equation , . A cross-
section perpendicular to the -axis at a distance from the origin is a triangle ,
as shown in Figure 17, whose base is and whose height is

. Thus, the cross-sectional area is

and the volume is

For another method see Exercise 62.

 �
128

3s3

 �
1

s3
 y

4

0
 �16 � x 2 � dx �

1

s3�16x �
x 3

3 �0

4

 V � y
4

�4
 A�x� dx � y

4

�4
 
16 � x 2

2s3
 dx

 �
16 � x 2

2s3

 A�x� � 1
2 s16 � x 2 �

1

s3
 s16 � x 2

 BC  � y tan 30� � s16 � x 2
s3
y � s16 � x 2

ABCxx
�4 � x � 4y � s16 � x 2

x

�

V � y
h

0
 
L2

h 2  �h � y�2 dy �
L2h

3

y=œ„„„„„„16-≈

x

y0

A
B

C

4

FIGURE 17

A B

C

y
30°

10. , , ; about the -axis

, ; about 

12. , ; about 

13. , ; about 

14. , , , ; about 

15. , ; about 

16. , ; about 

17. , ; about 

18. , , , ; about 

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

x � 1x � 4x � 2y � 0y � x

x � �1x � y 2y � x 2

x � 2y � sxy � x

x � 1x � 1x � y 2

y � �1x � 3x � 1y � 0y � 1
x

y � 2y � 1y � x 4

y � 4y � 4y � x 2

y � 1y � sxy � x11.

yy � 0x � 1y � x 2
31–18 |||| Find the volume of the solid obtained by rotating the
region bounded by the given curves about the specified line. Sketch
the region, the solid, and a typical disk or washer.

1. , , ; about the -axis

2.

3. , , , ; about the -axis

4. , , , ; about the -axis

5. , , , ; about the -axis

6. , ; about the -axis

, ; about the -axis

8. , , , ; about the -axis

, ; about the -axisyx � 2yy 2 � x9.

xx � 1x � �1y � 1y � sec x

xy 2 � xy � x 27.

yx � 0x � y � y 2

yx � 0y � 40 � x � 2y � x 2

xy � 0x � 5x � 2y � sx � 1

xy � 0x � 2x � 1y � 1
x

y � e x, y � 0, x � 0, x � 1; about the x-axis

xy � 0x � 1y � x 2

|||| 6.2 Exercises
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19–30 |||| Refer to the figure and find the volume generated by 
rotating the given region about the specified line.

19. about 20. about 

21. about 22. about 

23. about 24. about 

25. about 26. about 

27. about 28. about 

29. about 30. about 

31–36 |||| Set up, but do not evaluate, an integral for the volume of
the solid obtained by rotating the region bounded by the given
curves about the specified line.

31.

32. , ; about 

33. , , ; about 

34. , , ; about 

35. , ; about 

36. , ; about 

; 37–38 |||| Use a graph to find approximate -coordinates of the
points of intersection of the given curves. Then find (approxi-
mately) the volume of the solid obtained by rotating about the 
-axis the region bounded by these curves.

37.

38.

39–40 |||| Use a computer algebra system to find the exact volume
of the solid obtained by rotating the region bounded by the given
curves about the specified line.

39. , , ;

40. , ;

41–44 |||| Each integral represents the volume of a solid. Describe
the solid.

41. 42. � y
5

2
 y dy� y

�
2

0
 cos2x dx

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

about y � 3y � xe1�x
2y � x

about y � �10 � x � �y � 0y � sin2 x

CAS

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

y � 3 sin�x 2 �, y � e x
2 � e�2x

y � x 2, y � ln�x � 1�

x

x

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

x � �5�y � 1�2 � 4 � x2x � 3y � 6

x � �2x � 3x 2 � y 2 � 1

y � �20 � x � �y � sin xy � 0

y � 10 � x � �y � sin xy � 0

x � 108x � y � 16y � �x � 2�4

y � tan3x, y � 1, x � 0; about y � 1

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

BC�3AB�3

OC�3OA�3

BC�2AB�2

OC�2OA�2

BC�1AB�1

OC�1OA�1

O x

y

T™

y=˛

T£
T¡

B(1, 1)

A(1, 0)

y=œ„x
C(0, 1)

44.

45. A CAT scan produces equally spaced cross-sectional views of a
human organ that provide information about the organ other-
wise obtained only by surgery. Suppose that a CAT scan of a
human liver shows cross-sections spaced 1.5 cm apart. The
liver is 15 cm long and the cross-sectional areas, in square centi-
meters, are 0, 18, 58, 79, 94, 106, 117, 128, 63, 39, and 0. Use
the Midpoint Rule to estimate the volume of the liver.

46. A log 10 m long is cut at 1-meter intervals and its cross-
sectional areas (at a distance from the end of the log) are
listed in the table. Use the Midpoint Rule with to
estimate the volume of the log.

47–59 |||| Find the volume of the described solid .

A right circular cone with height and base radius 

48. A frustum of a right circular cone with height , lower base
radius , and top radius 

A cap of a sphere with radius and height 

50. A frustum of a pyramid with square base of side , square top
of side , and height 

What happens if ? What happens if ?a � 0a � b

a

b

ha
b

r

h

hr49.

R

h

r

rR
h

rh47.

S

n � 5
xA

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

� y
�
2

0
 ��1 � cos x�2 � 12 � dx� y

1

0
 �y 4 � y 8 � dy43.

x (m) A ( ) x (m) A ( )

0 0.68 6 0.53
1 0.65 7 0.55
2 0.64 8 0.52
3 0.61 9 0.50
4 0.58 10 0.48
5 0.59

m2m2



62. Solve Example 9 taking cross-sections to be parallel to the line
of intersection of the two planes.

63. (a) Cavalieri’s Principle states that if a family of parallel planes
gives equal cross-sectional areas for two solids and ,
then the volumes of and are equal. Prove this principle.

(b) Use Cavalieri’s Principle to find the volume of the oblique
cylinder shown in the figure.

64. Find the volume common to two circular cylinders, each with
radius , if the axes of the cylinders intersect at right angles.

Find the volume common to two spheres, each with radius , if
the center of each sphere lies on the surface of the other sphere.

66. A bowl is shaped like a hemisphere with diameter 30 cm. A
ball with diameter 10 cm is placed in the bowl and water is
poured into the bowl to a depth of centimeters. Find the vol-
ume of water in the bowl.

67. A hole of radius is bored through a cylinder of radius 
at right angles to the axis of the cylinder. Set up, but do not
evaluate, an integral for the volume cut out.

68. A hole of radius is bored through the center of a sphere of
radius . Find the volume of the remaining portion of the
sphere.

69. Some of the pioneers of calculus, such as Kepler and Newton,
were inspired by the problem of finding the volumes of wine
barrels. (In fact Kepler published a book Stereometria doliorum
in 1715 devoted to methods for finding the volumes of barrels.)
They often approximated the shape of the sides by parabolas.
(a) A barrel with height and maximum radius is con-

structed by rotating about the -axis the parabola
, , where is a positive c�h
2 � x � h
2y � R � cx 2

x
Rh

R � r
r

R � rr

h

r65.



since is continuous, the values of don’t change very much over the interval .
In other words, is almost constant on the interval and so the work that is done in mov-
ing the particle from to is approximately given by Equation 2:

Thus, we can approximate the total work by

It seems that this approximation becomes better as we make larger. Therefore, we define
the work done in moving the object from a to b as the limit of this quantity as .
Since the right side of (3) is a Riemann sum, we recognize its limit as being a definite inte-
gral and so

EXAMPLE 2 When a particle is located a distance feet from the origin, a force of
pounds acts on it. How much work is done in moving it from to ?

SOLUTION

The work done is ft-lb.

In the next example we use a law from physics: Hooke’s Law states that the force
required to maintain a spring stretched units beyond its natural length is proportional 
to :

where is a positive constant (called the spring constant). Hooke’s Law holds provided
that is not too large (see Figure 1).

EXAMPLE 3 A force of 40 N is required to hold a spring that has been stretched from its
natural length of 10 cm to a length of 15 cm. How much work is done in stretching the
spring from 15 cm to 18 cm?

SOLUTION According to Hooke’s Law, the force required to hold the spring stretched 
meters beyond its natural length is . When the spring is stretched from 10 cm
to 15 cm, the amount stretched is cm m. This means that , so

Thus, and the work done in stretching the spring from 15 cm to 18 cm is

 � 400��0.08�2 � �0.05�2� � 1.56 J

 W � y
0.08

0.05
 800x dx � 800 

x 2

2 	0.05

0.08

f �x� � 800x

k � 40
0.05 � 8000.05k � 40

f �0.05� � 40� 0.055
f �x� � kx

x

x
k

f �x� � kx

x
x

162
3

W � y
3

1
 �x 2 � 2x� dx �

x 3

3
� x 2	

1

3

�
50

3

x � 3x � 1x 2 � 2x
x

W � lim
n l �

 �
n

i�1
 f �xi*� �x � y

b

a
 f �x� dx4

n l �
n

W � �
n

i�1
 f �xi*� �x3

Wi � f �xi*� �x

xixi�1

Wif
�xi�1, xi�ff
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Hooke’s Law
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(a) Natural position of spring

(b) Stretched position of spring
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EXAMPLE 4 A 200-lb cable is 100 ft long and hangs vertically from the top of a tall build-
ing. How much work is required to lift the cable to the top of the building?

SOLUTION Here we don’t have a formula for the force function, but we can use an argu-
ment similar to the one that led to Definition 4.

Let’s place the origin at the top of the building and the -axis pointing downward as
in Figure 2. We divide the cable into small parts with length . If is a point in the

such interval, then all points in the interval are lifted by approximately the same
amount, namely . The cable weighs 2 pounds per foot, so the weight of the part is

. Thus, the work done on the part, in foot-pounds, is 

We get the total work done by adding all these approximations and letting the number
of parts become large (so ):

EXAMPLE 5 A tank has the shape of an inverted circular cone with height 10 m and base
radius 4 m. It is filled with water to a height of 8 m. Find the work required to empty 
the tank by pumping all of the water to the top of the tank. (The density of water is
1000 kg
m .)

SOLUTION Let’s measure depths from the top of the tank by introducing a vertical coordi-
nate line as in Figure 3. The water extends from a depth of 2 m to a depth of 10 m and
so we divide the interval into n subintervals with endpoints and
choose in the th subinterval. This divides the water into layers. The th layer is
approximated by a circular cylinder with radius and height . We can compute 
from similar triangles, using Figure 4, as follows:

Thus, an approximation to the volume of the th layer of water is

and so its mass is

The force required to raise this layer must overcome the force of gravity and so

Each particle in the layer must travel a distance of approximately . The work done to
raise this layer to the top is approximately the product of the force and the distance :

Wi � Fi xi* � 1570�xi*�10 � xi*�2 �x

xi*Fi

Wixi*

 � 1570� �10 � xi*�2 �x

 Fi � mit � �9.8�160� �10 � xi*�2 �x

 � 1000 �
4�

25
 �10 � xi*�2 �x � 160� �10 � xi*�2 �x

 mi � density 	 volume

Vi � �ri
2 �x �

4�

25
 �10 � xi*�2 �x

i

ri � 2
5 �10 � xi*�

ri

10 � xi*
�

4

10

ri�xri

inixi*
x0, x1, . . . , xn�2, 10�

3

 � x 2 �100
0 � 10,000 ft-lb

 W � lim
n l �

 �
n

i�1
 2xi*�x � y

100

0
 2x dx

�x l 0

distanceforce

�2�x�       xi*   � 2xi* �x

ith2�x
ithxi*

ith
xi*�x

x

0

100

x*i

x

Îx

FIGURE 2

FIGURE 3

4

10

10-xi*

ri

FIGURE 4

0

x

2 m

4 m

10 m

x i*

Îx

ri

|||| If we had placed the origin at the bottom of
the cable and the -axis upward, we would have
gotten

which gives the same answer.

W � y
100

0
 2�100 � x� dx

x
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To find the total work done in emptying the entire tank, we add the contributions of each
of the layers and then take the limit as :

 � 1570� ( 2048
3 ) � 3.4 	 106 J

 � 1570� y
10

2
 �100x � 20x 2 � x 3 � dx � 1570��50x 2 �

20x 3

3
�

x 4

4 	2

10

 W � lim
n l �

 �
n

i�1
 1570�xi*�10 � xi*�2 �x � y

10

2
 1570�x�10 � x�2 dx

n l �n

Suppose that 2 J of work is needed to stretch a spring from its
natural length of 30 cm to a length of 42 cm. How much work
is needed to stretch it from 35 cm to 40 cm?

10. If the work required to stretch a spring 1 ft beyond its natural
length is 12 ft-lb, how much work is needed to stretch it 9 in.
beyond its natural length?

11. How far beyond its natural length will a force of 30 N keep the
spring in Exercise 9 stretched?

12. If 6 J of work is needed to stretch a spring from 10 cm to
12 cm and another 10 J is needed to stretch it from 12 cm to
14 cm, what is the natural length of the spring?

13–20 |||| Show how to approximate the required work by a
Riemann sum. Then express the work as an integral and evaluate it.

A heavy rope, 50 ft long, weighs and hangs over the
edge of a building 120 ft high. 
(a) How much work is done in pulling the rope to the top of

the building?
(b) How much work is done in pulling half the rope to the top

of the building?

14. A chain lying on the ground is 10 m long and its mass is 80 kg.
How much work is required to raise one end of the chain to a
height of 6 m?

15. A cable that weighs is used to lift 800 lb of coal up a
mineshaft 500 ft deep. Find the work done.

16. A bucket that weighs 4 lb and a rope of negligible weight are
used to draw water from a well that is 80 ft deep. The bucket is
filled with 40 lb of water and is pulled up at a rate of , but
water leaks out of a hole in the bucket at a rate of .
Find the work done in pulling the bucket to the top of the well.

A leaky 10-kg bucket is lifted from the ground to a height of
12 m at a constant speed with a rope that weighs . Ini-
tially the bucket contains 36 kg of water, but the water leaks at
a constant rate and finishes draining just as the bucket reaches
the 12 m level. How much work is done?

18. A 10-ft chain weighs 25 lb and hangs from a ceiling. Find the
work done in lifting the lower end of the chain to the ceiling so
that it’s level with the upper end.

0.8 kg
m
17.

0.2 lb
s
2 ft
s

2 lb
ft

0.5 lb
ft13.

9.1. Find the work done in pushing a car a distance of 8 m while
exerting a constant force of 900 N.

2. How much work is done by a weightlifter in raising a 60-kg
barbell from the floor to a height of 2 m?

3. A particle is moved along the -axis by a force that measures
pounds at a point feet from the origin. Find the

work done in moving the particle from the origin to a distance
of 9 ft.

4. When a particle is located a distance meters from the origin,
a force of newtons acts on it. How much work is
done in moving the particle from to ? Interpret
your answer by considering the work done from to

and from to .

5. Shown is the graph of a force function (in newtons) that
increases to its maximum value and then remains constant.
How much work is done by the force in moving an object a
distance of 8 m?

6. The table shows values of a force function , where is
measured in meters and in newtons. Use the Midpoint
Rule to estimate the work done by the force in moving an
object from to .

A force of 10 lb is required to hold a spring stretched 4 in.
beyond its natural length. How much work is done in stretching
it from its natural length to 6 in. beyond its natural length?

8. A spring has a natural length of 20 cm. If a 25-N force is
required to keep it stretched to a length of 30 cm, how much
work is required to stretch it from 20 cm to 25 cm?

7.

x � 20x � 4

f �x�
xf �x�

0 x

F

10

1

20
30

2 3 4 5 6 7 8

(N)

(m)

x � 2x � 1.5x � 1.5
x � 1

x � 2x � 1
cos��x
3�

x

x10
�1 � x�2
x

|||| 6.4 Exercises

x 4 6 8 10 12 14 16 18 20

5 5.8 7.0 8.8 9.6 8.2 6.7 5.2 4.1f �x�



When gas expands in a cylinder with radius , the pressure at
any given time is a function of the volume: . The
force exerted by the gas on the piston (see the figure) is the
product of the pressure and the area: . Show that the
work done by the gas when the volume expands from volume

to volume is

28. In a steam engine the pressure and volume of steam satisfy
the equation , where is a constant. (This is true for
adiabatic expansion, that is, expansion in which there is no heat
transfer between the cylinder and its surroundings.) Use Exer-
cise 27 to calculate the work done by the engine during a cycle
when the steam starts at a pressure of 160 lb
in and a volume
of 100 in and expands to a volume of 800 in .

29. Newton’s Law of Gravitation states that two bodies with masses
and attract each other with a force

where is the distance between the bodies and is the gravi-
tational constant. If one of the bodies is fixed, find the work
needed to move the other from to .

30. Use Newton’s Law of Gravitation to compute the work
required to launch a 1000-kg satellite vertically to an orbit
1000 km high. You may assume that Earth’s mass is

kg and is concentrated at its center. Take the radius
of Earth to be m and .G � 6.67 	 10�11 N
m2
kg26.37 	 106
5.98 	 1024

r � br � a

Gr

F � G 
m1m2

r 2

m2m1

33

2

kPV 1.4 � k
VP

x

V

piston head

W � y
V2

V1

 P dV

V2V1

F � �r 2P

P � P�V �
r27.An aquarium 2 m long, 1 m wide, and 1 m deep is full of

water. Find the work needed to pump half of the water out 
of the aquarium. (Use the fact that the density of water is

.)

20. A circular swimming pool has a diameter of 24 ft, the sides are
5 ft high, and the depth of the water is 4 ft. How much work is
required to pump all of the water out over the side? (Use the
fact that water weighs .)

21–24 |||| A tank is full of water. Find the work required to pump
the water out of the outlet. In Exercises 23 and 24 use the fact that
water weighs 62.5 lb
ft .

21. 22.

23. 24.

; 25. Suppose that for the tank in Exercise 21 the pump breaks down
after J of work has been done. What is the depth of
the water remaining in the tank?

26. Solve Exercise 22 if the tank is half full of oil that has a
density of .920 kg
m3

4.7 	 105

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

5 ft

hemisphere

1 ft

semicircle
8 ft

4 ft

1.5 m

1 m

6 m

2 m

3 m

8 m

3 m

3

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

62.5 lb
ft3

1000 kg
m3

19.
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|||| 6.5 A v e r a g e  V a l u e  o f  a  F u n c t i o n

It is easy to calculate the average value of finitely many numbers , , . . . , :

But how do we compute the average temperature during a day if infinitely many tempera-
ture readings are possible? Figure 1 shows the graph of a temperature function , where

is measured in hours and in C, and a guess at the average temperature, .
In general, let’s try to compute the average value of a function , . 

We start by dividing the interval into equal subintervals, each with length
. Then we choose points , . . . , in successive subintervals and xn*x 1*�x � �b � a�
n

n�a, b�
a � x � by � f �x�

Tave�Tt
T�t�

yave �
 y1 � y2 � 
 
 
 � yn

n

yny2y1

0 t

T

Tave

5

10

15

12

6

18 24

FIGURE 1



calculate the average of the numbers , . . . , :

(For example, if represents a temperature function and , this means that we take
temperature readings every hour and then average them.) Since , we can
write and the average value becomes

If we let increase, we would be computing the average value of a large number of closely
spaced values. (For example, we would be averaging temperature readings taken every
minute or even every second.) The limiting value is

by the definition of a definite integral.
Therefore, we define the average value of f on the interval as

EXAMPLE 1 Find the average value of the function on the interval .

SOLUTION With and we have

The question arises: Is there a number at which the value of is exactly equal to the
average value of the function, that is, ? The following theorem says that this is
true for continuous functions.

The Mean Value Theorem for Integrals If is continuous on , then there exists a
number in such that

The Mean Value Theorem for Integrals is a consequence of the Mean Value Theorem
for derivatives and the Fundamental Theorem of Calculus. The proof is outlined in Exer-
cise 23.

y
b

a
 f �x� dx � f �c��b � a�

�a, b�c
�a, b�f

f �c� � fave

fc

 �
1

3
 �x �

x 3

3 	
2

�1

� 2

 fave �
1

b � a
 y

b

a
 f �x� dx �

1

2 � ��1�
 y

2

�1
 �1 � x 2 � dx

b � 2a � �1

��1, 2�f �x� � 1 � x 2

fave �
1

b � a
 y

b

a
 f �x� dx

�a, b�

lim
n l �

 
1

b � a
 �

n

i�1
 f �x i*� �x �

1

b � a
 y

b

a
 f �x� dx

n

 �
1

b � a
 �

n

i�1
 f �x i*� �x

 
 f �x 1*� � 
 
 
 � f �xn*�

b � a

�x

�
1

b � a
 � f �x 1*� �x � 
 
 
 � f �xn*� �x�

n � �b � a�
�x
�x � �b � a�
n

n � 24f

 f �x 1*� � 
 
 
 � f �xn*�
n

f �xn*�f �x1*�
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The geometric interpretation of the Mean Value Theorem for Integrals is that, for posi-
tive functions , there is a number such that the rectangle with base and height 
has the same area as the region under the graph of from to . (See Figure 2 and the
more picturesque interpretation in the margin note.)

EXAMPLE 2 Since is continuous on the interval , the Mean Value
Theorem for Integrals says there is a number in such that

In this particular case we can find explicitly. From Example 1 we know that ,
so the value of c satisfies

Therefore

Thus, in this case there happen to be two numbers in the interval that
work in the Mean Value Theorem for Integrals.

Examples 1 and 2 are illustrated by Figure 3.

EXAMPLE 3 Show that the average velocity of a car over a time interval is the same
as the average of its velocities during the trip.

SOLUTION If is the displacement of the car at time , then, by definition, the average
velocity of the car over the interval is 

On the other hand, the average value of the velocity function on the interval is

(by the Net Change Theorem)

 �
s�t2 � � s�t1�

t2 � t1
� average velocity

 �
1

t2 � t1
 �s�t2 � � s�t1��

 vave �
1

t2 � t1
 y

t2

t1

 v�t� dt �
1

t2 � t1
 y

t2

t1

 s��t� dt

�s

�t
�

s�t2 � � s�t1�
t2 � t1

ts�t�

�t1, t2 �

��1, 2�c � �1

c 2 � 1so1 � c 2 � 2

f �c� � fave � 2

fave � 2c

y
2

�1
 �1 � x 2 � dx � f �c��2 � ��1��

��1, 2�c
��1, 2�f �x� � 1 � x 2

FIGURE 2 0 x

y

a c b

y=ƒ

f(c)=fave

baf
f �c��a, b�cf

0 x

y

1 2_1

(_1, 2)

(2, 5)

y=1+≈

fave=2

FIGURE 3

|||| You can always chop off the top of a (two-
dimensional) mountain at a certain height and
use it to fill in the valleys so that the mountain
becomes completely flat.
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In a certain city the temperature (in F) hours after 9 A.M. was
modeled by the function

Find the average temperature during the period from 9 A.M. 
to 9 P.M.

18. If a cup of coffee has temperature 95 C in a room where the
temperature is 20 C, then, according to Newton’s Law of Cool-
ing, the temperature of the coffee after minutes is

What is the average temperature of the coffee during the first
half hour?

19. The linear density in a rod 8 m long is ,
where is measured in meters from one end of the rod. Find
the average density of the rod.

20. If a freely falling body starts from rest, then its displacement is
given by . Let the velocity after a time be . Show
that if we compute the average of the velocities with respect to

we get , but if we compute the average of the veloc-
ities with respect to we get .

21. Use the result of Exercise 77 in Section 5.5 to compute the
average volume of inhaled air in the lungs in one respiratory
cycle.

22. The velocity of blood that flows in a blood vessel with radius
and length at a distance from the central axis is

where is the pressure difference between the ends of the ves-
sel and is the viscosity of the blood (see Example 7 in Sec-
tion 3.3). Find the average velocity (with respect to ) over the
interval . Compare the average velocity with the
maximum velocity.

Prove the Mean Value Theorem for Integrals by applying the
Mean Value Theorem for derivatives (see Section 4.2) to the
function .

24. If denotes the average value of on the interval 
and , show that

fave �a, b� �
c � a

b � a
  fave �a, c� �

b � c

b � a
  fave �c, b�

a � c � b
�a, b�ffave �a, b�

F�x� � x
x
a f �t� dt

23.

0 � r � R
r

	
P

v�r� �
P

4	l
 �R2 � r 2 �

rlR
v

vave � 2
3 vTs

vave � 1
2 vTt

vTTs � 1
2 tt 2

x
kg�m12�sx � 1

T�t� � 20 � 75e�t�50

t






T�t� � 50 � 14 sin 
�t

12

t
17.1–8 |||| Find the average value of the function on the given interval.

1. 2.

3. 4.

5.

6.

8.

9–12 ||||

(a) Find the average value of on the given interval.
(b) Find such that .
(c) Sketch the graph of and a rectangle whose area is the same as

the area under the graph of .

,

10. ,

; 11. ,

; 12. ,

If is continuous and , show that takes on the
value 4 at least once on the interval .

14. Find the numbers such that the average value of
on the interval is equal to 3.

15. The table gives values of a continuous function. Use the Mid-
point Rule to estimate the average value of on .

16. The velocity graph of an accelerating car is shown.
(a) Estimate the average velocity of the car during the first

12 seconds.
(b) At what time was the instantaneous velocity equal to the

average velocity?

4 t (seconds)

20

0 8 12

40

60

√
(km/h)

�20, 50�f

�0, b�f �x� � 2 � 6x � 3x 2
b

�1, 3�
fx

3
1  f �x� dx � 8f13.

■   ■   ■   ■   ■   ■   ■   ■   ■   ■   ■   ■   ■

�0, 2�f �x� � 2x��1 � x 2�2

�0, ��f �x� � 2 sin x � sin 2x

�0, 4�f �x� � sx

�2, 5�f �x� � �x � 3�29.

f
f

fave � f �c�c
f

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

h�r� � 3��1 � r�2, �1, 6�

h�x� � cos4x sin x, �0, ��7.

f ��� � sec � tan �, �0, ��4�

f �t� � te�t 2
, �0, 5�

t�x� � x 2
s1 � x 3, �0, 2�t�x� � cos x, �0, ��2�

f �x� � 1�x, �1, 4�f �x� � x 2, ��1, 1�

|||| 6.5 Exercises

x 20 25 30 35 40 45 50
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Where to Sit at the Movies

A movie theater has a screen that is positioned 10 ft off the floor and is 25 ft high. The first row
of seats is placed 9 ft from the screen and the rows are set 3 ft apart. The floor of the seating area
is inclined at an angle of above the horizontal and the distance up the incline that you sit
is . The theater has 21 rows of seats, so . Suppose you decide that the best place to
sit is in the row where the angle subtended by the screen at your eyes is a maximum. Let’s also
suppose that your eyes are 4 ft above the floor, as shown in the figure. (In Exercise 58 in Sec-
tion 4.7 we looked at a simpler version of this problem, where the floor is horizontal, but this
project involves a more complicated situation and requires technology.)

1. Show that

where

and

2. Use a graph of as a function of to estimate the value of that maximizes . In which row
should you sit? What is the viewing angle in this row?

3. Use your computer algebra system to differentiate and find a numerical value for the root
of the equation . Does this value confirm your result in Problem 2?

4. Use the graph of to estimate the average value of on the interval . Then use
your CAS to compute the average value. Compare with the maximum and minimum values
of .�

0 � x � 60��

d��dx � 0
�

�
�xx�

 b 2 � �9 � x cos �2 � �x sin  � 6�2

 a 2 � �9 � x cos �2 � �31 � x sin �2

� � arccos�a 2 � b 2 � 625

2ab �

�
0 � x � 60x

 � 20


CAS
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1. (a) Draw two typical curves and , where
for . Show how to approximate the

area between these curves by a Riemann sum and sketch
the corresponding approximating rectangles. Then write an
expression for the exact area.

(b) Explain how the situation changes if the curves have 
equations and , where for

.

2. Suppose that Sue runs faster than Kathy throughout a 1500-
meter race. What is the physical meaning of the area between
their velocity curves for the first minute of the race?

3. (a) Suppose is a solid with known cross-sectional areas.
Explain how to approximate the volume of by a Riemann
sum. Then write an expression for the exact volume.

S
S

c � y � d
f �y� � t�y�x � t�y�x � f �y�

a � x � bf �x� � t�x�
y � t�x�y � f �x� (b) If is a solid of revolution, how do you find the cross-

sectional areas?

4. (a) What is the volume of a cylindrical shell?
(b) Explain how to use cylindrical shells to find the volume of

a solid of revolution.
(c) Why might you want to use the shell method instead of

slicing?

5. Suppose that you push a book across a 6-meter-long table by
exerting a force at each point from to . What
does represent? If is measured in newtons, what
are the units for the integral?

6. (a) What is the average value of a function on an interval
?

(b) What does the Mean Value Theorem for Integrals say?
What is its geometric interpretation?

�a, b�
f

f �x�x
6
0  f �x� dx

x � 6x � 0f �x�

S

3.

4. ,

5. , y � x 2 � 2xy � sin��x�2�

x � y 2 � 3yx � y � 0

y � e x � 1, y � x 2 � x, x � 11–6 |||| Find the area of the region bounded by the given curves.

1.

2. y � 20 � x 2, y � x 2 � 12

y � x 2 � x � 6, y � 0
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6. , ,

7–11 |||| Find the volume of the solid obtained by rotating the
region bounded by the given curves about the specified axis.

7. , ;

8. , ;

9. , ;

10. , ;

11. , (where , );
about the -axis

12–14 |||| Set up, but do not evaluate, an integral for the volume of
the solid obtained by rotating the region bounded by the given
curves about the specified axis.

12. , , , ; about the -axis

13. , ; about 

14. , , ; about 

15. Find the volumes of the solids obtained by rotating the region
bounded by the curves and about the following
lines:
(a) The -axis (b) The -axis (c)

16. Let be the region in the first quadrant bounded by the curves
and . Calculate the following quantities.

(a) The area of 
(b) The volume obtained by rotating about the -axis
(c) The volume obtained by rotating about the -axis

17. Let be the region bounded by the curves ,
and . Use the Midpoint Rule with to estimate the
following.
(a) The area of 
(b) The volume obtained by rotating about the -axis

; 18. Let be the region bounded by the curves and
. Estimate the following quantities.

(a) The -coordinates of the points of intersection of the curves
(b) The area of 
(c) The volume generated when is rotated about the -axis
(d) The volume generated when is rotated about the -axis

19–22 |||| Each integral represents the volume of a solid. Describe
the solid.

19. 20.

21. 22.

23. The base of a solid is a circular disk with radius 3. Find the
volume of the solid if parallel cross-sections perpendicular to 

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

y
1

0
 � [�2 � x 2 �2 � (2 � sx )2 ] dxy

2

0
 2�y�4 � y 2 � dy

y
��2

0
 2� cos2x dx y

��2

0
 2�x cos x dx

y�
x�

�
x

y � x 6 � x � 1
y � 1 � x 2�

x�
�

n � 4y � 0
x � 1y � tan�x 2 �,�

y�
x�

�
y � 2x � x 2y � x 3

�

y � 2yx

y � x 2y � x

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

x � 2x � 0y � 8y � x 3

y � 1y � x 2y � x 3

yx � 5��2x � 3��2y � 0y � cos x

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

y
h � 0a � 0x � a � hx 2 � y 2 � a 2

about y � �1y � 9 � x 2y � x 2 � 1

about x � �1x � 9 � y 2x � 0

about the y-axisy � x � 3x � 1 � y 2

about the x-axisy � x 2y � 2x

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

x � 2y � x 2y � sx the base are isosceles right triangles with hypotenuse lying
along the base.

24. The base of a solid is the region bounded by the parabolas
and . Find the volume of the solid if the

cross-sections perpendicular to the -axis are squares with one
side lying along the base.

25. The height of a monument is 20 m. A horizontal cross-section
at a distance meters from the top is an equilateral triangle
with side meters. Find the volume of the monument.

26. (a) The base of a solid is a square with vertices located at
, and . Each cross-section per-

pendicular to the -axis is a semicircle. Find the volume of
the solid.

(b) Show that by cutting the solid of part (a), we can rearrange
it to form a cone. Thus compute its volume more simply.

27. A force of 30 N is required to maintain a spring stretched from
its natural length of 12 cm to a length of 15 cm. How much
work is done in stretching the spring from 12 cm to 20 cm?

28. A 1600-lb elevator is suspended by a 200-ft cable that weighs
10 lb�ft. How much work is required to raise the elevator from
the basement to the third floor, a distance of 30 ft?

29. A tank full of water has the shape of a paraboloid of revolution
as shown in the figure; that is, its shape is obtained by rotating
a parabola about a vertical axis.
(a) If its height is 4 ft and the radius at the top is 4 ft, find the

work required to pump the water out of the tank.

; (b) After 4000 ft-lb of work has been done, what is the depth
of the water remaining in the tank?

30. Find the average value of the function on the
interval .

31. If is a continuous function, what is the limit as of the
average value of on the interval ?

32. Let be the region bounded by , , and ,
where . Let be the region bounded by , ,
and .
(a) Is there a value of such that and have the same

area?
(b) Is there a value of such that sweeps out the same 

volume when rotated about the -axis and the -axis?
(c) Is there a value of such that and sweep out the

same volume when rotated about the -axis?
(d) Is there a value of such that and sweep out the

same volume when rotated about the -axis?y
�2�1b
x
�2�1b

yx
�1b

�2�1b
y � b 2

x � 0y � x 2�2b � 0
x � by � 0y � x 2�1

�x, x � h�f
h l 0f

�0, 10�
f �t� � t sin�t2�

4 ft

4 ft

x
�0, �1��1, 0�, �0, 1�, ��1, 0�

x�4
x

x
y � 2 � x 2y � x 2



PROBLEMS 
PLUS

1. (a) Find a positive continuous function such that the area under the graph of from 0 to is
for all .

(b) A solid is generated by rotating about the -axis the region under the curve ,
where is a positive function and . The volume generated by the part of the curve
from to is for all . Find the function .

2. There is a line through the origin that divides the region bounded by the parabola 
and the -axis into two regions with equal area. What is the slope of that line?

3. The figure shows a horizontal line intersecting the curve . Find the num-
ber c such that the areas of the shaded regions are equal.

4. A cylindrical glass of radius and height is filled with water and then tilted until the water
remaining in the glass exactly covers its base. 
(a) Determine a way to “slice” the water into parallel rectangular cross-sections and then 

set up a definite integral for the volume of the water in the glass.
(b) Determine a way to “slice” the water into parallel cross-sections that are trapezoids and

then set up a definite integral for the volume of the water.
(c) Find the volume of water in the glass by evaluating one of the integrals in part (a) or

part (b).
(d) Find the volume of the water in the glass from purely geometric considerations.
(e) Suppose the glass is tilted until the water exactly covers half the base. In what direction

can you “slice” the water into triangular cross-sections? Rectangular cross-sections?
Cross-sections that are segments of circles? Find the volume of water in the glass.

5. (a) Show that the volume of a segment of height h of a sphere of radius is

(b) Show that if a sphere of radius 1 is sliced by a plane at a distance x from the center in
such a way that the volume of one segment is twice the volume of the other, then x is a
solution of the equation

where . Use Newton’s method to find x accurate to four decimal places.
(c) Using the formula for the volume of a segment of a sphere, it can be shown that the depth

to which a floating sphere of radius r sinks in water is a root of the equation

where s is the specific gravity of the sphere. Suppose a wooden sphere of radius 0.5 m has
specific gravity 0.75. Calculate, to four-decimal-place accuracy, the depth to which the
sphere will sink.

(d) A hemispherical bowl has radius 5 inches and water is running into the bowl at the rate 
of .
(i) How fast is the water level in the bowl rising at the instant the water is 3 inches deep?

(ii) At a certain instant, the water is 4 inches deep. How long will it take to fill the bowl?
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x
y � x � x 2

fb � 0b 2x � bx � 0
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y � f �x�x
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FIGURE FOR PROBLEM 5
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6. Archimedes’ Principle states that the buoyant force on an object partially or fully submerged
in a fluid is equal to the weight of the fluid that the object displaces. Thus, for an object of
density floating partly submerged in a fluid of density , the buoyant force is given by

, where t is the acceleration due to gravity and is the area of a typi-
cal cross-section of the object. The weight of the object is given by

(a) Show that the percentage of the volume of the object above the surface of the liquid is

(b) The density of ice is and the density of seawater is . What percent-
age of the volume of an iceberg is above water?

(c) An ice cube floats in a glass filled to the brim with water. Does the water overflow when
the ice melts?

(d) A sphere of radius 0.4 m and having negligible weight is floating in a large freshwater
lake. How much work is required to completely submerge the sphere? The density of the
water is .

7. Water in an open bowl evaporates at a rate proportional to the area of the surface of the water.
(This means that the rate of decrease of the volume is proportional to the area of the surface.)
Show that the depth of the water decreases at a constant rate, regardless of the shape of the
bowl.

8. A sphere of radius 1 overlaps a smaller sphere of radius r in such a way that their intersection
is a circle of radius r. (In other words, they intersect in a great circle of the small sphere.) 
Find r so that the volume inside the small sphere and outside the large sphere is as large as
possible.

9. The figure shows a curve with the property that, for every point on the middle curve
, the areas and are equal. Find an equation for .

10. A paper drinking cup filled with water has the shape of a cone with height and semivertical
angle (see the figure). A ball is placed carefully in the cup, thereby displacing some of the
water and making it overflow. What is the radius of the ball that causes the greatest volume of
water to spill out of the cup?
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y
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11. A clepsydra, or water clock, is a glass container with a small hole in the bottom through
which water can flow. The “clock” is calibrated for measuring time by placing markings on
the container corresponding to water levels at equally spaced times. Let be continu-
ous on the interval and assume that the container is formed by rotating the graph of 
about the -axis. Let denote the volume of water and the height of the water level at time .
(a) Determine as a function of .
(b) Show that

(c) Suppose that is the area of the hole in the bottom of the container. It follows from 
Torricelli’s Law that the rate of change of the volume of the water is given by

where is a negative constant. Determine a formula for the function such that is a
constant . What is the advantage in having ?

12. A cylindrical container of radius and height is partially filled with a liquid whose volume
is . If the container is rotated about its axis of symmetry with constant angular speed , then
the container will induce a rotational motion in the liquid around the same axis. Eventually,
the liquid will be rotating at the same angular speed as the container. The surface of the liquid
will be convex, as indicated in the figure, because the centrifugal force on the liquid particles
increases with the distance from the axis of the container. It can be shown that the surface of
the liquid is a paraboloid of revolution generated by rotating the parabola

about the -axis, where is the acceleration due to gravity.
(a) Determine as a function of .
(b) At what angular speed will the surface of the liquid touch the bottom? At what speed will

it spill over the top?
(c) Suppose the radius of the container is 2 ft, the height is 7 ft, and the container and liquid

are rotating at the same constant angular speed. The surface of the liquid is 5 ft below the
top of the tank at the central axis and 4 ft below the top of the tank 1 ft out from the cen-
tral axis.
(i) Determine the angular speed of the container and the volume of the fluid.

(ii) How far below the top of the tank is the liquid at the wall of the container?

13. If the tangent at a point on the curve intersects the curve again at , let be the 
area of the region bounded by the curve and the line segment . Let be the area of the
region defined in the same way starting with instead of . What is the relationship between
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14. Suppose we are planning to make a taco from a round tortilla with diameter 8 inches by bend-
ing the tortilla so that it is shaped as if it is partially wrapped around a circular cylinder. We
will fill the tortilla to the edge (but no more) with meat, cheese, and other ingredients. Our
problem is to decide how to curve the tortilla in order to maximize the volume of food it can
hold.
(a) We start by placing a circular cylinder of radius along a diameter of the tortilla and

folding the tortilla around the cylinder. Let represent the distance from the center of the
tortilla to a point on the diameter (see the figure). Show that the cross-sectional area of
the filled taco in the plane through perpendicular to the axis of the cylinder is

and write an expression for the volume of the filled taco.
(b) Determine (approximately) the value of that maximizes the volume of the taco. (Use a

graphical approach with your CAS.)
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Techniques of Integration

The techniques of this

chapter enable us to find

the height of a rocket a

minute after liftoff and to

compute the escape 

velocity of the rocket.



Because of the Fundamental Theorem of Calculus, we can

integrate a function if we know an antiderivative, that is,

an indefinite integral. We summarize here the most impor-

tant integrals that we have learned so far.

In this chapter we develop techniques for using these basic integration formulas

to obtain indefinite integrals of more complicated functions. We learned the most

important method of integration, the Substitution Rule, in Section 5.5. The other gen-

eral technique, integration by parts, is presented in Section 7.1. Then we learn

methods that are special to particular classes of functions such as trigonometric func-

tions and rational functions.

Integration is not as straightforward as differentiation; there are no rules that

absolutely guarantee obtaining an indefinite integral of a function. Therefore, in

Section 7.5 we discuss a strategy for integration.

|||| 7.1 I n t e g r a t i o n  b y  P a r t s

Every differentiation rule has a corresponding integration rule. For instance, the Substi-
tution Rule for integration corresponds to the Chain Rule for differentiation. The rule that
corresponds to the Product Rule for differentiation is called the rule for integration by
parts.

The Product Rule states that if and are differentiable functions, then

d

dx
 � f �x�t�x�� � f �x�t��x� � t�x�f ��x�

tf

y 
1

sa 2 � x 2
 dx � sin�1� x

a� � Cy 
1

x 2 � a 2  dx �
1

a
 tan�1� x

a� � C

y cot x dx � ln � sin x � � Cy tan x dx � ln � sec x � � C

y cosh x dx � sinh x � Cy sinh x dx � cosh x � C

y csc x cot x dx � �csc x � Cy sec x tan x dx � sec x � C

y csc2x dx � �cot x � Cy sec2x dx � tan x � C

y cos x dx � sin x � Cy sin x dx � �cos x � C

y ax dx �
ax

ln a
� Cy ex dx � ex � C

y 
1

x
 dx � ln � x � � C�n � �1�y xn dx �

xn�1

n � 1
� C
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In the notation for indefinite integrals this equation becomes

or

We can rearrange this equation as

Formula 1 is called the formula for integration by parts. It is perhaps easier to remem-
ber in the following notation. Let and . Then the differentials are

and , so, by the Substitution Rule, the formula for integration
by parts becomes

EXAMPLE 1 Find .

SOLUTION USING FORMULA 1 Suppose we choose and . Then 
and . (For we can choose any antiderivative of .) Thus, using Formula
1, we have

It’s wise to check the answer by differentiating it. If we do so, we get , as
expected.

SOLUTION USING FORMULA 2 Let

Then

and so

 � �x cos x � sin x � C

 � �x cos x � y cos x dx

 y x sin x dx � y x  sin x dx � x ��cos x� � y ��cos x� dx

 v � �cos x du � dx

 dv � sin x dx u � x

x sin x

 � �x cos x � sin x � C

 � �x cos x � y cos x dx

 � x��cos x� � y ��cos x� dx

 y x sin x dx � f �x�t�x� � y t�x�f ��x� dx

t�tt�x� � �cos x
f ��x� � 1t��x� � sin xf �x� � x

y x sin x dx

y u dv � uv � y v du2

dv � t��x� dxdu � f ��x� dx
v � t�x�u � f �x�

y f �x�t��x� dx � f �x�t�x� � y t�x�f ��x� dx1

 y f �x�t��x� dx � y t�x�f ��x� dx � f �x�t�x�
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Writing , we have

SOLUTION 2 For the hyperbolic substitution can also be used. Using the
identity , we have

Since , we obtain

Since , we have and

Although Formulas 1 and 2 look quite different, they are actually equivalent by
Formula 3.9.4.

NOTE ■■ As Example 5 illustrates, hyperbolic substitutions can be used in place of trigo-
nometric substitutions and sometimes they lead to simpler answers. But we usually use
trigonometric substitutions because trigonometric identities are more familiar than hyper-
bolic identities.

EXAMPLE 6 Find .

SOLUTION First we note that so trigonometric substitution 
is appropriate. Although is not quite one of the expressions in the table of
trigonometric substitutions, it becomes one of them if we make the preliminary substitu-
tion . When we combine this with the tangent substitution, we have ,
which gives and

When , , so ; when , , so .

Now we substitute so that . When , ; when
.� � ��3, u � 1

2

u � 1� � 0du � �sin � d�u � cos �

 � 3
16 y

��3

0
 
1 � cos2�

cos2�
 sin � d�

 � 3
16 y

��3

0
 
tan3�

sec �
 d� � 3

16 y
��3

0
 
sin3�

cos2�
 d�

 y
3 s3�2

0
 

x 3

�4x 2 � 9�3�2  dx � y
��3

0
 

27
8 tan3�

 27 sec3�
 3
2 sec2� d�

� � ��3tan � � s3x � 3s3�2� � 0tan � � 0x � 0

s4x 2 � 9 � s9 tan2� � 9 � 3 sec �

dx � 3
2 sec2� d�

x � 3
2 tan �u � 2x

s4x 2 � 9
�4x 2 � 9�3�2 � �s4x 2 � 9)3

y
3 s3�2

0
 

x 3

�4x 2 � 9�3�2  dx

y 
dx

sx 2 � a 2
� cosh�1� x

a� � C2

t � cosh�1�x�a�cosh t � x�a

y 
dx

sx 2 � a 2
� y 

a sinh t dt

a sinh t
� y dt � t � C

dx � a sinh t dt

sx 2 � a 2 � sa 2 �cosh2 t � 1� � sa 2 sinh2 t � a sinh t

cosh2y � sinh2y � 1
x � a cosh tx � 0

y 
dx

sx 2 � a 2
� ln 	 x � sx 2 � a 2 	 � C11

C1 � C � ln a



4–30 |||| Evaluate the integral.

4.

5. 6.

8.

9. 10. y 
t 5

st 2 � 2
 dty 

dx

sx 2 � 16

y 
sx 2 � a 2

x 4
 dxy 

1

x 2
s25 � x 2

 dx7.

y
2

0
 x 3

sx 2 � 4 dxy
2

s2
 

1

t 3
st 2 � 1

 dt

y
2 s3

0
 

x 3

s16 � x 2 
 dx

1–3 |||| Evaluate the integral using the indicated trigonometric 
substitution. Sketch and label the associated right triangle.

1. ;

2. ;

;

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

x � 3 tan �y 
x 3

sx 2 � 9
 dx3.

x � 3 sin �y x 3
s9 � x 2 dx

x � 3 sec �y 
1

x 2
sx 2 � 9

 dx

|||| 7.3 Exercises
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Therefore

EXAMPLE 7 Evaluate .

SOLUTION We can transform the integrand into a function for which trigonometric substi-
tution is appropriate by first completing the square under the root sign:

This suggests that we make the substitution . Then and , so

We now substitute , giving and , so

 � �s3 � 2x � x 2 � sin�1� x � 1

2 � � C

 � �s4 � u 2 � sin�1�u

2� � C

 � �2 cos � � � � C

 � y �2 sin � � 1� d�

 y 
x

s3 � 2x � x 2
 dx � y 

2 sin � � 1

2 cos �
 2 cos � d�

s4 � u 2 � 2 cos �du � 2 cos � d�u � 2 sin �

y 
x

s3 � 2x � x 2
 dx � y 

u � 1

s4 � u 2
 du

x � u � 1du � dxu � x � 1

 � 4 � �x � 1�2

 3 � 2x � x 2 � 3 � �x 2 � 2x� � 3 � 1 � �x 2 � 2x � 1�

y 
x

s3 � 2x � x 2
 dx

 � 3
16 �u �

1

u�1

1�2

� 3
16 [( 1

2 � 2) � �1 � 1�] � 3
32

 y
3 s3�2

0
 

x 3

�4x 2 � 9�3�2  dx � �
3
16 y

1�2

1
 
1 � u 2

u 2  du � 3
16 y

1�2

1
 �1 � u�2 � du

|||| Figure 5 shows the graphs of the integrand
in Example 7 and its indefinite integral (with

). Which is which?C � 0

_4

_5

3

2

FIGURE 5
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equation . Then is the sum of the area of the 
triangle and the area of the region in the figure.] 

; 36. Evaluate the integral

Graph the integrand and its indefinite integral on the same
screen and check that your answer is reasonable. 

; 37. Use a graph to approximate the roots of the equation
. Then approximate the area bounded by

the curve and the line . 

38. A charged rod of length produces an electric field at point
given by

where is the charge density per unit length on the rod and 
is the free space permittivity (see the figure). Evaluate the inte-
gral to determine an expression for the electric field .

39. Find the area of the crescent-shaped region (called a lune)
bounded by arcs of circles with radii and . (See the figure.)

40. A water storage tank has the shape of a cylinder with diameter
10 ft. It is mounted so that the circular cross-sections are verti-
cal. If the depth of the water is 7 ft, what percentage of the
total capacity is being used?

41. A torus is generated by rotating the circle 
about the -axis. Find the volume enclosed by the torus.x

x 2 � �y � R�2 � r 2

R

r

Rr

0 x

y

L

P (a, b)

E�P�

�0�

E�P� � y
L�a

�a
 

�b

4��0�x 2 � b 2 �3�2  dx

P�a, b�
L

y � 2 � xy � x 2
s4 � x 2

x 2
s4 � x 2 � 2 � x

y 
dx

x 4
sx 2 � 2

O x

y

RQ
¨

P

PQRPOQ
Ax 2 � y 2 � r 2

11. 12.

14.

15. 16.

18.

19. 20.

21.

23. 24.

25. 26.

27. 28.

29. 30.

(a) Use trigonometric substitution to show that

(b) Use the hyperbolic substitution to show that

These formulas are connected by Formula 3.9.3.

32. Evaluate

(a) by trigonometric substitution.
(b) by the hyperbolic substitution .

33. Find the average value of , .

34. Find the area of the region bounded by the hyperbola
and the line . 

35. Prove the formula for the area of a sector of a circle
with radius and central angle . [Hint: Assume 
and place the center of the circle at the origin so it has the 

0 � � � ��2�r
A � 1

2 r 2�

x � 39x 2 � 4y 2 � 36

1 	 x 	 7f �x� � sx 2 � 1�x

x � a sinh t

y 
x 2

�x 2 � a 2 �3�2  dx

y 
dx

sx 2 � a 2
� sinh�1� x

a� � C

x � a sinh t

y 
dx

sx 2 � a 2
� ln(x � sx 2 � a 2 ) � C

31.

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

y
��2

0
 

cos t

s1 � sin2t
 dty xs1 � x 4 dx

y 
dx

�5 � 4x � x 2 �5�2y 
dx

�x 2 � 2x � 2�2

y 
x 2

s4x � x 2
 dxy 

1

s9x 2 � 6x � 8
 dx

y 
dt

st 2 � 6t � 13y s5 � 4x � x 2 dx

y
1

0
 sx 2 � 1 dx22.y

2�3

0
 x 3

s4 � 9x 2 dx

y 
t

s25 � t 2
 dty 

s1 � x 2

x
 dx

y 
dx

	�ax�2 � b 2 
3�2y 
x

sx 2 � 7
 dx17.

y 
dx

x 2
s16x 2 � 9y 

x 2

�a 2 � x 2 �3�2  dx

y 
du

us5 � u 2y 
sx 2 � 9

x 3  dx13.

y
1

0
 xsx 2 � 4 dxy s1 � 4x 2 dx
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|||| 7.4 I n t e g r a t i o n  o f  R a t i o n a l  F u n c t i o n s  b y  P a r t i a l  F r a c t i o n s

In this section we show how to integrate any rational function (a ratio of polynomials) by
expressing it as a sum of simpler fractions, called partial fractions, that we already know
how to integrate. To illustrate the method, observe that by taking the fractions 
and to a common denominator we obtain

If we now reverse the procedure, we see how to integrate the function on the right side of
this equation:

To see how the method of partial fractions works in general, let’s consider a rational
function

where and are polynomials. It’s possible to express as a sum of simpler fractions
provided that the degree of is less than the degree of . Such a rational function is called
proper. Recall that if

where , then the degree of is and we write .
If is improper, that is, , then we must take the preliminary step 

of dividing into (by long division) until a remainder is obtained such that
. The division statement is

where and are also polynomials.
As the following example illustrates, sometimes this preliminary step is all that is

required.

EXAMPLE 1 Find .

SOLUTION Since the degree of the numerator is greater than the degree of the denominator,
we first perform the long division. This enables us to write

 �
x 3

3
�

x 2

2
� 2x �  2 ln � x � 1 � � C

 y 
x 3 � x

x � 1
 dx � y �x 2 � x � 2 �

2

x � 1� dx

y 
x 3 � x

x � 1
 dx

RS

f �x� �
P�x�
Q�x�

� S�x� �
R�x�
Q�x�

1

deg�R� � deg�Q�
R�x�PQ

deg�P� 
 deg�Q�f
deg�P� � nnPan � 0

P�x� � anxn � an�1xn�1 � � � � � a1x � a0

QP
fQP

f �x� �
P�x�
Q�x�

 � 2 ln � x � 1 � � ln � x � 2 � � C

 y 
x � 5

x 2 � x � 2
 dx � y � 2

x � 1
�

1

x � 2� dx

2

x � 1
�

1

x � 2
�

2�x � 2� � �x � 1�
�x � 1��x � 2�

�
x � 5

x 2 � x � 2

1��x � 2�
2��x � 1�

x-1
≈+x +2

˛-≈
≈+x
≈-x

2x
2x-2

2

˛ +x)
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The next step is to factor the denominator as far as possible. It can be shown that
any polynomial can be factored as a product of linear factors (of the form ) and
irreducible quadratic factors (of the form , where ). For in-
stance, if , we could factor it as

The third step is to express the proper rational function (from Equation 1) as
a sum of partial fractions of the form

A theorem in algebra guarantees that it is always possible to do this. We explain the details
for the four cases that occur.

CASE I ■■ The denominator is a product of distinct linear factors.
This means that we can write

where no factor is repeated (and no factor is a constant multiple of another). In this case
the partial fraction theorem states that there exist constants such that

These constants can be determined as in the following example.

EXAMPLE 2 Evaluate .

SOLUTION Since the degree of the numerator is less than the degree of the denominator,
we don’t need to divide. We factor the denominator as

Since the denominator has three distinct linear factors, the partial fraction decomposition
of the integrand (2) has the form

To determine the values of , , and , we multiply both sides of this equation by the
product of the denominators, , obtaining

Expanding the right side of Equation 4 and writing it in the standard form for polyno-
mials, we get

x 2 � 2x � 1 � �2A � B � 2C �x 2 � �3A � 2B � C �x � 2A5

x 2 � 2x � 1 � A�2x � 1��x � 2� � Bx�x � 2� � Cx�2x � 1�4

x �2x � 1��x � 2�
CBA

x 2 � 2x � 1

x�2x � 1��x � 2�
�

A

x
�

B

2x � 1
�

C

x � 2
3

2x 3 � 3x 2 � 2x � x�2x 2 � 3x � 2� � x �2x � 1��x � 2�

y 
x 2 � 2x � 1

2x 3 � 3x 2 � 2x
 dx

R�x�
Q�x�

�
A1

a1x � b1
�

A2

a2x � b2
� � � � �

Ak

akx � bk
2

A1, A2, . . . , Ak

Q�x� � �a1x � b1 ��a2x � b2 � � � � �ak x � bk�

Q�x�

Ax � B

�ax 2 � bx � c� jor
A

�ax � b�i

R�x��Q�x�

Q�x� � �x 2 � 4��x 2 � 4� � �x � 2��x � 2��x 2 � 4�

Q�x� � x 4 � 16
b 2 � 4ac � 0ax 2 � bx � c

ax � bQ
Q�x�

|||| Another method for finding , , and 
is given in the note after this example.

CBA
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The polynomials in Equation 5 are identical, so their coefficients must be equal. The
coefficient of on the right side, , must equal the coefficient of on the
left side—namely, 1. Likewise, the coefficients of are equal and the constant terms are
equal. This gives the following system of equations for , , and :

Solving, we get , , and , and so

In integrating the middle term we have made the mental substitution , which
gives and .

NOTE ■■ We can use an alternative method to find the coefficients , , and in 
Example 2. Equation 4 is an identity; it is true for every value of . Let’s choose values of

that simplify the equation. If we put in Equation 4, then the second and third terms
on the right side vanish and the equation then becomes , or . Likewise,

gives and gives , so and . (You may object
that Equation 3 is not valid for , , or , so why should Equation 4 be valid for those
values? In fact, Equation 4 is true for all values of , even , , and . See Exercise 67
for the reason.)

EXAMPLE 3 Find , where .

SOLUTION The method of partial fractions gives

and therefore

Using the method of the preceding note, we put in this equation and get
, so . If we put , we get , so .

Thus

 �
1

2a
 (ln � x � a � � ln � x � a �) � C

 y 
dx

x 2 � a 2 �
1

2a
 y � 1

x � a
�

1

x � a� dx

B � �1��2a�B��2a� � 1x � �aA � 1��2a�A�2a� � 1
x � a

A�x � a� � B�x � a� � 1

1

x 2 � a 2 �
1

�x � a��x � a�
�

A

x � a
�

B

x � a

a � 0y 
dx

x 2 � a 2

�21
2x � 0x

�21
2x � 0

C � �
1

10B � 1
510C � �1x � �25B�4 � 1

4x � 1
2

A � 1
2�2A � �1

x � 0x
x

CBA

dx � du�2du � 2 dx
u � 2x � 1

 � 1
2 ln � x � �

1
10 ln � 2x � 1 � �

1
10 ln � x � 2 � � K

 y 
x 2 � 2x � 1

2x 3 � 3x 2 � 2x
 dx � y �1

2
 
1

x
�

1

5
 

1

2x � 1
�

1

10
 

1

x � 2� dx

C � �
1
10B � 1

5A � 1
2

 �2A �  2B �  2C � �1

 3A �  2B �  C � 2

 2A �  B �  2C � 1

CBA
x

x 22A � B � 2Cx 2
|||| Figure 1 shows the graphs of the integrand
in Example 2 and its indefinite integral (with

). Which is which?K � 0

FIGURE 1

_3

_2

2

3

|||| We could check our work by taking the terms
to a common denominator and adding them.
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Since , we can write the integral as

See Exercises 53–54 for ways of using Formula 6.

CASE II ■■ is a product of linear factors, some of which are repeated.
Suppose the first linear factor is repeated times; that is, occurs in
the factorization of . Then instead of the single term in Equation 2, we
would use

By way of illustration, we could write

but we prefer to work out in detail a simpler example.

EXAMPLE 4 Find .

SOLUTION The first step is to divide. The result of long division is

The second step is to factor the denominator . Since ,
we know that is a factor and we obtain

Since the linear factor occurs twice, the partial fraction decomposition is

Multiplying by the least common denominator, , we get

Now we equate coefficients:

 �A �  B �  C � 0

 A �  B �  2C � 4

 A �  B �  C � 0

 � �A � C �x 2 � �B � 2C �x � ��A � B � C �

 4x � A�x � 1��x � 1� � B�x � 1� � C�x � 1�28

�x � 1�2�x � 1�

4x

�x � 1�2�x � 1�
�

A

x � 1
�

B

�x � 1�2 �
C

x � 1

x � 1

 � �x � 1�2�x � 1�

 x 3 � x 2 � x � 1 � �x � 1��x 2 � 1� � �x � 1��x � 1��x � 1�

x � 1
Q�1� � 0Q�x� � x 3 � x 2 � x � 1

x 4 � 2x 2 � 4x � 1

x 3 � x 2 � x � 1
� x � 1 �

4x

x 3 � x 2 � x � 1

y 
x 4 � 2x 2 � 4x � 1

x 3 � x 2 � x � 1
 dx

x 3 � x � 1

x 2�x � 1�3 �
A

x
�

B

x 2 �
C

x � 1
�

D

�x � 1�2 �
E

�x � 1�3

A1

a1x � b1
�

A2

�a1x � b1�2 � � � � �
Ar

�a1x � b1�r7

A1��a1 x � b1�Q�x�
�a1x � b1�rr�a1x � b1�

Q�x�

y 
dx

x 2 � a 2 �
1

2a
 ln � x � a

x � a � � C6

ln x � ln y � ln�x�y�

|||| Another method for finding the coefficients:
Put in (8): .
Put : .
Put : .A � B � C � 1x � 0

C � �1x � �1
B � 2x � 1
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Solving, we obtain , , and , so

CASE III ■■ contains irreducible quadratic factors, none of which is repeated.
If has the factor , where , then, in addition to the partial
fractions in Equations 2 and 7, the expression for will have a term of the form

where and are constants to be determined. For instance, the function given by
has a partial fraction decomposition of the form

The term given in (9) can be integrated by completing the square and using the formula

EXAMPLE 5 Evaluate .

SOLUTION Since can’t be factored further, we write

Multiplying by , we have

Equating coefficients, we obtain

Thus , , and and so

y 
2x 2 � x � 4

x 3 � 4x
 dx � y �1

x
�

x � 1

x 2 � 4� dx

C � �1B � 1A � 1

4A � 4C � �1A � B � 2

 � �A � B�x 2 � Cx � 4A

 2x 2 � x � 4 � A�x 2 � 4� � �Bx � C �x

x�x 2 � 4�

2x 2 � x � 4

x �x 2 � 4�
�

A

x
�

Bx � C

x 2 � 4

x 3 � 4x � x�x 2 � 4�

y 
2x 2 � x � 4

x 3 � 4x
 dx

y 
dx

x 2 � a 2 �
1

a
 tan�1� x

a� � C10

x

�x � 2��x 2 � 1��x 2 � 4�
�

A

x � 2
�

Bx � C

x 2 � 1
�

Dx � E

x 2 � 4

f �x� � x�	�x � 2��x 2 � 1��x 2 � 4�

BA

Ax � B

ax 2 � bx � c
9

R�x��Q�x�
b 2 � 4ac � 0ax 2 � bx � cQ�x�

Q�x�

 �
x 2

2
� x �

2

x � 1
� ln � x � 1

x � 1 � � K

 �
x 2

2
� x � ln � x � 1 � �

2

x � 1
� ln � x � 1 � � K

 y 
x 4 � 2x 2 � 4x � 1

x 3 � x 2 � x � 1
 dx � y �x � 1 �

1

x � 1
�

2

�x � 1�2 �
1

x � 1� dx

C � �1B � 2A � 1
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In order to integrate the second term we split it into two parts:

We make the substitution in the first of these integrals so that .
We evaluate the second integral by means of Formula 10 with :

EXAMPLE 6 Evaluate .

SOLUTION Since the degree of the numerator is not less than the degree of the denomina-
tor, we first divide and obtain

Notice that the quadratic is irreducible because its discriminant is
. This means it can’t be factored, so we don’t need to use the 

partial fraction technique.
To integrate the given function we complete the square in the denominator:

This suggests that we make the substitution . Then, and
, so

NOTE ■■ Example 6 illustrates the general procedure for integrating a partial fraction of
the form

where b 2 � 4ac � 0
Ax � B

ax 2 � bx � c

 � x �
1
8 ln�4x 2 � 4x � 3� �

1

4s2
 tan�1�2x � 1

s2
� � C

 � x �
1
8 ln�u 2 � 2� �

1

4
�

1

s2
 tan�1� u

s2
� � C

 � x �
1
4 y 

u

u 2 � 2
 du �

1
4 y 

1

u 2 � 2
 du

 � x �
1
2 y 

1
2 �u � 1� � 1

u 2 � 2
 du � x �

1
4 y 

u � 1

u 2 � 2
 du

 y 
4x 2 � 3x � 2

4x 2 � 4x � 3
 dx � y �1 �

x � 1

4x 2 � 4x � 3� dx

x � �u � 1��2
du � 2 dxu � 2x � 1

4x 2 � 4x � 3 � �2x � 1�2 � 2

b 2 � 4ac � �32 � 0
4x 2 � 4x � 3

4x 2 � 3x � 2

4x 2 � 4x � 3
� 1 �

x � 1

4x 2 � 4x � 3

y 
4x 2 � 3x � 2

4x 2 � 4x � 3
 dx

 � ln � x � �
1
2 ln�x 2 � 4� �

1
2 tan�1�x�2� � K

 y 
2x 2 � x � 4

x�x 2 � 4�
 dx � y 

1

x
 dx � y 

x

x 2 � 4
 dx � y 

1

x 2 � 4
 dx

a � 2
du � 2x dxu � x 2 � 4

y 
x � 1

x 2 � 4
 dx � y 

x

x 2 � 4
 dx � y 

1

x 2 � 4
 dx
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We complete the square in the denominator and then make a substitution that brings the
integral into the form

Then the first integral is a logarithm and the second is expressed in terms of .

CASE IV ■■ contains a repeated irreducible quadratic factor.
If has the factor , where , then instead of the single
partial fraction (9), the sum

occurs in the partial fraction decomposition of . Each of the terms in (11) can be
integrated by first completing the square.

EXAMPLE 7 Write out the form of the partial fraction decomposition of the function

SOLUTION

EXAMPLE 8 Evaluate .

SOLUTION The form of the partial fraction decomposition is

Multiplying by , we have

If we equate coefficients, we get the system

which has the solution , , , , and . ThusE � 0D � 1C � �1B � �1A � 1

A � 1C � E � �12A � B � D � 2C � �1A � B � 0

 � �A � B�x 4 � Cx 3 � �2A � B � D�x 2 � �C � E�x � A

 � A�x 4 � 2x 2 � 1� � B�x 4 � x 2 � � C�x 3 � x� � Dx 2 � Ex

 �x 3 � 2x 2 � x � 1 � A�x 2 � 1�2 � �Bx � C �x�x 2 � 1� � �Dx � E�x

x�x 2 � 1�2

1 � x � 2x 2 � x 3

x�x 2 � 1�2 �
A

x
�

Bx � C

x 2 � 1
�

Dx � E

�x 2 � 1�2

y 
1 � x � 2x 2 � x 3

x�x 2 � 1�2  dx

� 
A

x
�

B

x � 1
�

Cx � D

x 2 � x � 1
�

Ex � F

x 2 � 1
�

Gx � H

�x 2 � 1�2 �
Ix � J

�x 2 � 1�3

x 3 � x 2 � 1

x�x � 1��x 2 � x � 1��x 2 � 1�3

x 3 � x 2 � 1

x�x � 1��x 2 � x � 1��x 2 � 1�3

R�x��Q�x�

A1x � B1

ax 2 � bx � c
�

A2x � B2

�ax 2 � bx � c�2 � � � � �
Ar x � Br

�ax 2 � bx � c�r11

b 2 � 4ac � 0�ax 2 � bx � c�rQ�x�
Q�x�

tan�1

y 
Cu � D

u 2 � a 2  du � C y 
u

u 2 � a 2  du � D y 
1

u 2 � a 2  du 

|||| It would be extremely tedious to work out by
hand the numerical values of the coefficients in
Example 7. Most computer algebra systems,
however, can find the numerical values very
quickly. For instance, the Maple command

or the Mathematica command

gives the following values:

I � �
1
2 , J � 1

2

E � 15
8 , F � �

1
8 , G � H � 3

4 ,

 A � �1,  B � 1
8 , C � D � �1,

Apart[f]

convert�f, parfrac, x�
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We note that sometimes partial fractions can be avoided when integrating a rational func-
tion. For instance, although the integral

could be evaluated by the method of Case III, it’s much easier to observe that if
, then and so

R a t i o n a l i z i n g  S u b s t i t u t i o n s

Some nonrational functions can be changed into rational functions by means of appropri-
ate substitutions. In particular, when an integrand contains an expression of the form 

, then the substitution may be effective. Other instances appear in the
exercises.

EXAMPLE 9 Evaluate .

SOLUTION Let . Then , so and . 
Therefore

We can evaluate this integral either by factoring as and using
partial fractions or by using Formula 6 with :

 � 2sx � 4 � 2 ln � sx � 4 � 2

sx � 4 � 2 � � C

 � 2u � 8 �
1

2 � 2
 ln � u � 2

u � 2 � � C

 y 
sx � 4

x
 dx � 2 y du � 8 y 

du

u 2 � 4

a � 2
�u � 2��u � 2�u 2 � 4

 � 2 y �1 �
4

u 2 � 4� du

 y 
sx � 4

x
 dx � y 

u

u 2 � 4
 2u du � 2 y 

u 2

u 2 � 4
 du

dx � 2u dux � u 2 � 4u 2 � x � 4u � sx � 4

y 
sx � 4

x
 dx

u � s
n

t�x�s
n

t�x�

y 
x 2 � 1

x�x 2 � 3�
 dx � 1

3 ln � x 3 � 3x � � C

du � �3x 2 � 3� dxu � x�x 2 � 3� � x 3 � 3x

y 
x 2 � 1

x�x 2 � 3�
 dx

 � ln � x � �
1
2 ln�x 2 � 1� � tan�1x �

1

2�x 2 � 1�
� K

 � y 
dx

x
� y 

x

x 2 � 1
 dx � y 

dx

x 2 � 1
� y 

x dx

�x 2 � 1�2

 y 
1 � x � 2x 2 � x 3

x�x 2 � 1�2  dx � y �1

x
�

x � 1

x 2 � 1
�

x

�x 2 � 1�2� dx

|||| In the second and fourth terms we made the
mental substitution .u � x 2 � 1



32.

33. 34.

35. 36.

37. 38.

39–48 |||| Make a substitution to express the integrand as a rational
function and then evaluate the integral.

39. 40.

41. 42.

44.

45. [Hint: Substitute .]

46. [Hint: Substitute .]

48.

49–50 |||| Use integration by parts, together with the techniques of
this section, to evaluate the integral.

49. 50.

; 51. Use a graph of to decide whether
is positive or negative. Use the graph to give a rough

estimate of the value of the integral and then use partial
fractions to find the exact value.

; 52. Graph both and an antiderivative on the
same screen.

53–54 |||| Evaluate the integral by completing the square and using
Formula 6.

54.

55. The German mathematician Karl Weierstrass (1815–1897)
noticed that the substitution will convert any t � tan�x�2�

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

y 
2x � 1

4x 2 � 12x � 7
 dxy 

dx

x 2 � 2x
53.

y � 1��x 3 � 2x 2 �

x
2
0  f �x� dx

f �x� � 1��x 2 � 2x � 3�

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

y x tan�1x dxy ln�x 2 � x � 2� dx

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

y 
cos x

sin2x � sin x
 dxy 

e 2x

e 2x � 3e x � 2
 dx47.

u � 12
sxy 

1

s
3 x � s

4 x
 dx

u � 6
sxy 

1

sx � s
3 x

 dx

y
3

1�3
 

sx

x 2 � x
 dxy 

x 3

s
3 x 2 � 1

 dx43.

y
1

0
 

1

1 � s
3 x

 dxy
16

9
 

sx

x � 4
 dx

y 
1

x � sx � 2
 dxy 

1

xsx � 1
 dx

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

y 
x 4 � 1

x �x 2 � 1�2  dxy 
x � 3

�x 2 � 2x � 4�2  dx

y
1

0
 

2x 3 � 5x

x 4 � 5x 2 � 4
 dxy 

dx

x 4 � x 2

y 
x 3

x 3 � 1
 dxy

5

2
 

x 2 � 2x

x 3 � 3x 2 � 4
 dx

y
1

0
 

x

x 2 � 4x � 13
 dxy 

1

x 3 � 1
 dx31.

1–6 |||| Write out the form of the partial fraction decomposition 
of the function (as in Example 7). Do not determine the numerical
values of the coefficients.

1. (a) (b)

2. (a) (b)

3. (a) (b)

4. (a) (b)

(a) (b)

6. (a) (b)

7–38 |||| Evaluate the integral.

7. 8.

9. 10.

12.

13. 14.

15. 16.

18.

19. 20.

21. 22.

24.

26.

27. 28.

30. y 
x 3 � 2x 2 � x � 1

x 4 � 5x 2 � 4
 dxy 

x � 4

x 2 � 2x � 5
 dx29.

y 
x 2 � 2x � 1

�x � 1�2�x 2 � 1�
 dxy 

x 3 � x 2 � 2x � 1

�x 2 � 1��x 2 � 2�
 dx

y 
x 2 � x � 6

x 3 � 3x
 dxy 

10

�x � 1��x 2 � 9�
 dx25.

y 
x 3

�x � 1�3  dxy 
x 2

�x � 1�3  dx23.

y 
ds

s 2�s � 1�2y 
5x 2 � 3x � 2

x 3 � 2x 2  dx

y 
x 2

�x � 3��x � 2�2  dxy 
1

�x � 5�2�x � 1�
 dx

y 
x 2 � 2x � 1

x 3 � x
 dxy

2

1
 

4y 2 � 7y � 12

y�y � 2��y � 3�
 dy17.

y
1

0
 
x 3 � 4x � 10

x 2 � x � 6
 dxy

1

0
 

2x � 3

�x � 1�2  dx

y 
1

�x � a��x � b�
 dxy 

ax

x 2 � bx
 dx

y
1

0
 

x � 1

x 2 � 3x � 2
 dxy

3

2
 

1

x 2 � 1
 dx11.

y 
1

�t � 4��t � 1�
 dty 

x � 9

�x � 5��x � 2�
 dx

y 
r 2

r � 4
 dry 

x

x � 6
 dx

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

1

x 6 � x 3

x 4

�x 3 � x��x 2 � x � 3�

t 4 � t 2 � 1

�t 2 � 1��t 2 � 4�2

x 4

x 4 � 1
5.

2x � 1

�x � 1�3�x 2 � 4�2

x 3

x 2 � 4x � 3

x 2

�x � 1��x 2 � x � 1�
2

x 2 � 3x � 4

x � 1

x 3 � x

x � 1

x 3 � x 2

1

x 3 � 2x 2 � x

2x

�x � 3��3x � 1�

|||| 7.4 Exercises
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rational function of and into an ordinary rational
function of .
(a) If , , sketch a right triangle or use

trigonometric identities to show that

(b) Show that

(c) Show that

56–59 |||| Use the substitution in Exercise 55 to transform the inte-
grand into a rational function of and then evaluate the integral.

56. 57.

58. 59.

60–61 |||| Find the area of the region under the given curve from 
to .

60. , ,

61. , ,

62. Find the volume of the resulting solid if the region under the
curve from to is rotated
about (a) the -axis and (b) the -axis.

63. One method of slowing the growth of an insect population
without using pesticides is to introduce into the population a
number of sterile males that mate with fertile females but pro-
duce no offspring. If represents the number of female insects
in a population, the number of sterile males introduced each
generation, and the population’s natural growth rate, then ther

S
P

yx
x � 1x � 0y � 1��x 2 � 3x � 2�

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

b � 3a � 2y �
x � 1

x � 1

b � 10a � 5y �
1

x 2 � 6x � 8

ba

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

y 
1

2 sin x � sin 2x
 dxy

��2

��3
 

1

1 � sin x � cos x
 dx

y 
1

3 sin x � 4 cos x
 dxy 

dx

3 � 5 sin x

t

dx �
2

1 � t 2  dt

cos x �
1 � t 2

1 � t 2 and sin x �
2t

1 � t 2

cos� x

2� �
1

s1 � t 2
and sin� x

2� �
t

s1 � t 2

�� � x � �t � tan�x�2�
t

cos xsin x female population is related to time by

Suppose an insect population with 10,000 females grows at a
rate of and 900 sterile males are added. Evaluate the
integral to give an equation relating the female population to
time. (Note that the resulting equation can’t be solved explic-
itly for .)

64. Factor as a difference of squares by first adding and
subtracting the same quantity. Use this factorization to evaluate

.

65. (a) Use a computer algebra system to find the partial fraction
decomposition of the function

(b) Use part (a) to find (by hand) and compare with
the result of using the CAS to integrate directly.
Comment on any discrepancy.

66. (a) Find the partial fraction decomposition of the function

(b) Use part (a) to find and graph and its indefinite
integral on the same screen.

(c) Use the graph of to discover the main features of the
graph of .

67. Suppose that , and are polynomials and

for all except when . Prove that for 
all . [Hint: Use continuity.]

68. If is a quadratic function such that and

is a rational function, find the value of .f ��0�

y 
 f �x�

x 2�x � 1�3  dx

f �0� � 1f

x
F�x� � G�x�Q�x� � 0x

F�x�
Q�x�

�
G�x�
Q�x�

QF, G

x f �x� dx
f

fx f �x� dx

f �x� �
12x 5 � 7x 3 � 13x 2 � 8

100x 6 � 80x 5 � 116x 4 � 80x 3 � 41x 2 � 20x � 4

CAS

f
x f �x� dx

f �x� �
4x 3 � 27x 2 � 5x � 32

30x 5 � 13x 4 � 50x 3 � 286x 2 � 299x � 70

CAS

x 1��x 4 � 1� dx

x 4 � 1

P

r � 0.10

t � y 
P � S

P��r � 1�P � S�
 dP

t

|||| 7.5 S t r a t e g y  f o r  I n t e g r a t i o n

As we have seen, integration is more challenging than differentiation. In finding the deriv-
ative of a function it is obvious which differentiation formula we should apply. But it may
not be obvious which technique we should use to integrate a given function.

Until now individual techniques have been applied in each section. For instance, we
usually used substitution in Exercises 5.5, integration by parts in Exercises 7.1, and partial
fractions in Exercises 7.4. But in this section we present a collection of miscellaneous inte-
grals in random order and the main challenge is to recognize which technique or formula
to use. No hard and fast rules can be given as to which method applies in a given situation,
but we give some advice on strategy that you may find useful.
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A prerequisite for strategy selection is a knowledge of the basic integration formulas.
In the following table we have collected the integrals from our previous list together with
several additional formulas that we have learned in this chapter. Most of them should be
memorized. It is useful to know them all, but the ones marked with an asterisk need not be
memorized since they are easily derived. Formula 19 can be avoided by using partial frac-
tions, and trigonometric substitutions can be used in place of Formula 20.

Table of Integration Formulas Constants of integration have been omitted.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

*19. *20.

Once you are armed with these basic integration formulas, if you don’t immediately see
how to attack a given integral, you might try the following four-step strategy.

1. Simplify the Integrand if Possible Sometimes the use of algebraic manipulation or
trigonometric identities will simplify the integrand and make the method of inte-
gration obvious. Here are some examples:

 � y sin � cos � d� � 1
2 y sin 2� d�

 y 
tan �

sec2�
 d� � y 

sin �

cos �
 cos2� d�

y sx (1 � sx) dx � y (sx � x) dx

y 
dx

sx 2 � a 2
� ln 	 x � sx 2 � a 2 	y 

dx

x 2 � a 2 �
1

2a
 ln 
 x � a

x � a 

y 

dx

sa 2 � x 2
� sin�1� x

a�y 
dx

x 2 � a 2 �
1

a
 tan�1� x

a�
y cosh x dx � sinh xy sinh x dx � cosh x

y cot x dx � ln 	 sin x 	y tan x dx � ln 	 sec x 	

y csc x dx � ln 	 csc x � cot x 	y sec x dx � ln 	 sec x � tan x 	

y csc x cot x dx � �csc xy sec x tan x dx � sec x

y csc2x dx � �cot xy sec2x dx � tan x

y cos x dx � sin xy sin x dx � �cos x

y ax dx �
ax

ln ay ex dx � ex

y 
1

x
 dx � ln 	 x 	�n � �1�y xn dx �

xn�1

n � 1



2. Look for an Obvious Substitution Try to find some function in the inte-
grand whose differential also occurs, apart from a constant factor.
For instance, in the integral

we notice that if , then . Therefore, we use the substitu-
tion instead of the method of partial fractions.

3. Classify the Integrand According to Its Form If Steps 1 and 2 have not led to the
solution, then we take a look at the form of the integrand .
(a) Trigonometric functions. If is a product of powers of and ,

of and , or of and , then we use the substitutions recom-
mended in Section 7.2.

(b) Rational functions. If is a rational function, we use the procedure of Sec-
tion 7.4 involving partial fractions.

(c) Integration by parts. If is a product of a power of (or a polynomial)
and a transcendental function (such as a trigonometric, exponential, or loga-
rithmic function), then we try integration by parts, choosing and accord-
ing to the advice given in Section 7.1. If you look at the functions in Exer-
cises 7.1, you will see that most of them are the type just described.

(d) Radicals. Particular kinds of substitutions are recommended when certain
radicals appear.
(i) If occurs, we use a trigonometric substitution according to the

table in Section 7.3.
(ii) If occurs, we use the rationalizing substitution .

More generally, this sometimes works for .

4. Try Again If the first three steps have not produced the answer, remember that
there are basically only two methods of integration: substitution and parts.
(a) Try substitution. Even if no substitution is obvious (Step 2), some inspiration

or ingenuity (or even desperation) may suggest an appropriate substitution.
(b) Try parts. Although integration by parts is used most of the time on products

of the form described in Step 3(c), it is sometimes effective on single func-
tions. Looking at Section 7.1, we see that it works on , , and ,
and these are all inverse functions.

(c) Manipulate the integrand. Algebraic manipulations (perhaps rationalizing the
denominator or using trigonometric identities) may be useful in transforming
the integral into an easier form. These manipulations may be more substantial
than in Step 1 and may involve some ingenuity. Here is an example:

 � y 
1 � cos x

sin2x
 dx � y �csc2x �

cos x

sin2x� dx

 y 
dx

1 � cos x
� y 

1

1 � cos x
�

1 � cos x

1 � cos x
 dx � y 

1 � cos x

1 � cos2x
 dx

ln xsin�1xtan�1x

s
n

t�x�
u � s

n ax � bs
n ax � b

s�x 2 � a 2

dvu

xf �x�

f

csc xcot xsec xtan x
cos xsin xf �x�

f �x�

u � x 2 � 1
du � 2x dxu � x 2 � 1

y 
x

x 2 � 1
 dx

du � t��x� dx
u � t�x�

 � y �1 � 2 sin x cos x� dx

 y �sin x � cos x�2 dx � y �sin2x � 2 sin x cos x � cos2x� dx
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(d) Relate the problem to previous problems. When you have built up some expe-
rience in integration, you may be able to use a method on a given integral that
is similar to a method you have already used on a previous integral. Or you
may even be able to express the given integral in terms of a previous one. For
instance, is a challenging integral, but if we make use of the
identity , we can write

and if has previously been evaluated (see Example 8 in Section 7.2),
then that calculation can be used in the present problem.

(e) Use several methods. Sometimes two or three methods are required to evalu-
ate an integral. The evaluation could involve several successive substitutions 
of different types, or it might combine integration by parts with one or more
substitutions.

In the following examples we indicate a method of attack but do not fully work out the
integral.

EXAMPLE 1

In Step 1 we rewrite the integral:

The integral is now of the form with odd, so we can use the advice in
Section 7.2.

Alternatively, if in Step 1 we had written

then we could have continued as follows with the substitution :

EXAMPLE 2

According to Step 3(d)(ii) we substitute . Then , so and

The integrand is now a product of and the transcendental function so it can be inte-
grated by parts.

euu

y esx dx � 2 y ueu du

dx � 2u dux � u 2u � sx

y esx dx
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EXAMPLE 6 How large should we take in order to guarantee that the Simpson’s Rule
approximation for is accurate to within ?

SOLUTION If , then . Since , we have and so

Therefore, we can take in (4). Thus, for an error less than we should
choose so that

This gives

or

Therefore, ( must be even) gives the desired accuracy. (Compare this with
Example 2, where we obtained for the Trapezoidal Rule and for the
Midpoint Rule.) 

EXAMPLE 7
(a) Use Simpson’s Rule with to approximate the integral .
(b) Estimate the error involved in this approximation.

SOLUTION
(a) If , then and Simpson’s Rule gives 

(b) The fourth derivative of is

and so, since , we have

Therefore, putting , and in (4), we see that the error is at
most

(Compare this with Example 3.) Thus, correct to three decimal places, we have

y
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0
 ex 2 
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76e�1�5

180�10�4 � 0.000115
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 � 1.462681
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 	e 0 � 4e 0.01 � 2e 0.04 � 4e 0.09 � 2e 0.16 � 4e 0.25 � 2e 0.36

 y
1

0
 ex2 

dx �
�x

3
 	 f �0� � 4 f �0.1� � 2 f �0.2� � � � � � 2 f �0.8� � 4 f �0.9� � f �1�


�x � 0.1n � 10

x
1
0  ex2 dxn � 10

n � 29n � 41
nn � 8

 n 	
1

s
4 0.00075
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 n 4 	
24

180�0.0001�

 
24�1�5

180n 4 
 0.0001

n
0.0001K � 24

� f �4��x� � � � 24

x 5 � � 24

1�x � 1x � 1f �4��x� � 24�x 5f �x� � 1�x

0.0001x
2
1  �1�x� dx

n

|||| Many calculators and computer algebra sys-
tems have a built-in algorithm that computes an
approximation of a definite integral. Some of
these machines use Simpson’s Rule; others use
more sophisticated techniques such as adaptive
numerical integration. This means that if a func-
tion fluctuates much more on a certain part of
the interval than it does elsewhere, then that
part gets divided into more subintervals. This
strategy reduces the number of calculations
required to achieve a prescribed accuracy.

|||| Figure 10 illustrates the calculation in
Example 7. Notice that the parabolic arcs are 
so close to the graph of that they are
practically indistinguishable from it.

y � e x2

0

y

x1

y=e≈

FIGURE 10
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(Round your answers to six decimal places.) Compare your results
to the actual value to determine the error in each approximation.

5. , 6. ,

7–18 |||| Use (a) the Trapezoidal Rule, (b) the Midpoint Rule, and
(c) Simpson’s Rule to approximate the given integral with the 
specified value of . (Round your answers to six decimal places.)

7. , 8. ,

9. , 10. ,

11. , 12. ,

13. , 14. ,

15. , 16. ,

17. , 18. ,

19. (a) Find the approximations and for the integral
.

(b) Estimate the errors in the approximations of part (a).
(c) How large do we have to choose so that the approxima-

tions and to the integral in part (a) are accurate to
within ?

20. (a) Find the approximations for .
(b) Estimate the errors involved in the approximations of

part (a).
(c) How large do we have to choose so that the approxima-

tions and to the integral in part (a) are accurate to
within 0.00001?

21. (a) Find the approximations and for and the 
corresponding errors and .

(b) Compare the actual errors in part (a) with the error esti-
mates given by (3) and (4).

(c) How large do we have to choose so that the approxima-
tions , , and to the integral in part (a) are accurate to
within ?

22. How large should be to guarantee that the Simpson’s Rule
approximation to is accurate to within ?

23. The trouble with the error estimates is that it is often very diffi-
cult to compute four derivatives and obtain a good upper bound

for by hand. But computer algebra systems have no� f �4��x� �K
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5

1
 
cos x

x
 dx

n � 8y
4

0
 sx sin x dxn � 4y
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1
 e 1�x dx

n � 8y
4

0
 s1 � sx dxn � 8y
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0
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3

0
 

dt
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n � 4y
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0
 sin�x 2 � dxn � 8y
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0
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n � 6y
1

0
 e�sx dxn � 8y

�

0
 x 2 sin x dx

Let , where is the function whose graph is
shown.
(a) Use the graph to find .
(b) Are these underestimates or overestimates of ?
(c) Use the graph to find . How does it compare with ?
(d) For any value of , list the numbers and in

increasing order.

2. The left, right, Trapezoidal, and Midpoint Rule approximations
were used to estimate , where is the function whose
graph is shown. The estimates were 0.7811, 0.8675, 0.8632,
and 0.9540, and the same number of subintervals were used in
each case.
(a) Which rule produced which estimate?
(b) Between which two approximations does the true value of

lie?

; Estimate using (a) the Trapezoidal Rule and
(b) the Midpoint Rule, each with . From a graph of the
integrand, decide whether your answers are underestimates or
overestimates. What can you conclude about the true value of
the integral?

; Draw the graph of in the viewing rectangle
by and let .

(a) Use the graph to decide whether , and under-
estimate or overestimate .

(b) For any value of , list the numbers and in
increasing order.

(c) Compute . From the graph, which do you
think gives the best estimate of ?

5–6 |||| Use (a) the Midpoint Rule and (b) Simpson’s Rule to
approximate the given integral with the specified value of .n

I
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1
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fx
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f

x

1

y

2

3

10 2 3 4
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IT2

I
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fI � x
4
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|||| 7.7 Exercises



528 ❙ ❙ ❙ ❙ CHAPTER 7 TECHNIQUES OF INTEGRATION

problem computing and graphing it, so we can easily find 
a value for from a machine graph. This exercise deals 
with approximations to the integral , where

.
(a) Use a graph to get a good upper bound for .
(b) Use to approximate .
(c) Use part (a) to estimate the error in part (b).
(d) Use the built-in numerical integration capability of your

CAS to approximate .
(e) How does the actual error compare with the error estimate

in part (c)?
(f) Use a graph to get a good upper bound for .
(g) Use to approximate .
(h) Use part (f) to estimate the error in part (g).
(i) How does the actual error compare with the error estimate

in part (h)?
(j) How large should be to guarantee that the size of the

error in using is less than ?

24. Repeat Exercise 23 for the integral .

25–26 |||| Find the approximations , and for ,
and . Then compute the corresponding errors , and .
(Round your answers to six decimal places. You may wish to use
the sum command on a computer algebra system.) What observa-
tions can you make? In particular, what happens to the errors when

is doubled?

25. 26.

27–28 |||| Find the approximations , , and for and .
Then compute the corresponding errors , and . (Round
your answers to six decimal places. You may wish to use the sum
command on a computer algebra system.) What observations can
you make? In particular, what happens to the errors when is 
doubled?

27. 28.

29. Estimate the area under the graph in the figure by using (a) the
Trapezoidal Rule, (b) the Midpoint Rule, and (c) Simpson’s
Rule, each with .

30. The widths (in meters) of a kidney-shaped swimming pool
were measured at 2-meter intervals as indicated in the figure. 
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0
 x 3 dx

n

EMEL, ER, ET16
n � 4, 8MnLn, Rn, Tn

y
1

�1
 s4 � x 3 dxCAS

0.0001Sn

n

IS10

� f �4��x� �

I

IM10

� f �x� �
f �x� � e cos x

I � x
2�

0  f �x� dx
K

f �4� Use Simpson’s Rule to estimate the area of the pool.

31. (a) Use the Midpoint Rule and the given data to estimate the
value of the integral .

(b) If it is known that for all , estimate the
error involved in the approximation in part (a).

32. A radar gun was used to record the speed of a runner during
the first 5 seconds of a race (see the table). Use Simpson’s 
Rule to estimate the distance the runner covered during those
5 seconds.

The graph of the acceleration of a car measured in is
shown. Use Simpson’s Rule to estimate the increase in the
velocity of the car during the 6-second time interval.

34. Water leaked from a tank at a rate of liters per hour, where
the graph of is as shown. Use Simpson’s Rule to estimate the
total amount of water that leaked out during the first six hours.

r

t0 642
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5.6 4.8
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x x

0.0 6.8 2.0 7.6
0.4 6.5 2.4 8.4
0.8 6.3 2.8 8.8
1.2 6.4 3.2 9.0
1.6 6.9

f �x�f �x�

t (s) (m�s) t (s) (m�s)

0 0 3.0 10.51
0.5 4.67 3.5 10.67
1.0 7.34 4.0 10.76
1.5 8.86 4.5 10.81
2.0 9.73 5.0 10.81
2.5 10.22
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39. The region bounded by the curves , , ,
and is rotated about the -axis. Use Simpson’s Rule with

to estimate the volume of the resulting solid.

40. The figure shows a pendulum with length that makes a maxi-
mum angle with the vertical. Using Newton’s Second Law 
it can be shown that the period (the time for one complete
swing) is given by

where and is the acceleration due to gravity. 
If m and , use Simpson’s Rule with to
find the period.

41. The intensity of light with wavelength traveling through 
a diffraction grating with slits at an angle is given by

, where and is the 
distance between adjacent slits. A helium-neon laser with
wavelength is emitting a narrow band of
light, given by , through a grating with
10,000 slits spaced apart. Use the Midpoint Rule with

to estimate the total light intensity emerg-
ing from the grating.

42. Use the Trapezoidal Rule with to approximate
. Compare your result to the actual value. Can

you explain the discrepancy?

43. Sketch the graph of a continuous function on for which
the Trapezoidal Rule with is more accurate than the
Midpoint Rule.

44. Sketch the graph of a continuous function on for which
the right endpoint approximation with is more accurate
than Simpson’s Rule.

If is a positive function and for , show
that

46. Show that if is a polynomial of degree 3 or lower, then 
Simpson’s Rule gives the exact value of .

47. Show that .

48. Show that .1
3 Tn �

2
3 Mn � S2n

1
2 �Tn � Mn � � T2n

x
b
a
 f �x� dx

f

Tn 
 y
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a
 f �x� dx 
 Mn

a � x � bf �x� 
 0f45.

n � 2
	0, 2


n � 2
	0, 2


x
20

0  cos��x� dx
n � 10

x
10�6

�10�6 I��� d�n � 10
10�4 m

�10�6 
 � 
 10�6
� � 632.8 � 10�9 m

dk � ��Nd sin ����I��� � N 2 sin2k�k 2
�N

�

¨¸

n � 10�0 � 42�L � 1
tk � sin( 1

2 �0 )

T � 4�L

t
 y

��2

0
 

dx

s1 � k 2 sin2x

T
�0

LCAS

n � 10
xx � 2

x � 0y � 0y � s
3 1 � x 3The table (supplied by San Diego Gas and Electric) gives the

power consumption in megawatts in San Diego County from
midnight to 6:00 A.M. on December 8, 1999. Use Simpson’s
Rule to estimate the energy used during that time period. (Use
the fact that power is the derivative of energy.)

36. Shown is the graph of traffic on an Internet service provider’s
T1 data line from midnight to 8:00 A.M. is the data through-
put, measured in megabits per second. Use Simpson’s Rule to
estimate the total amount of data transmitted during that time
period.

37. If the region shown in the figure is rotated about the -axis to
form a solid, use Simpson’s Rule with to estimate the
volume of the solid.

38. The table shows values of a force function where is
measured in meters and in newtons. Use Simpson’s Rule
to estimate the work done by the force in moving an object a
distance of 18 m.
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|||| 7.8 I m p r o p e r  I n t e g r a l s

In defining a definite integral we dealt with a function defined on a finite inter-
val and we assumed that does not have an infinite discontinuity (see Section 5.2).
In this section we extend the concept of a definite integral to the case where the interval is
infinite and also to the case where has an infinite discontinuity in . In either case
the integral is called an improper integral. One of the most important applications of this
idea, probability distributions, will be studied in Section 8.5.

T y p e  I :  I n f i n i t e  I n t e r v a l s

Consider the infinite region that lies under the curve , above the -axis, and to
the right of the line . You might think that, since is infinite in extent, its area must
be infinite, but let’s take a closer look. The area of the part of that lies to the left of the
line (shaded in Figure 1) is

Notice that no matter how large is chosen.

We also observe that

The area of the shaded region approaches as (see Figure 2), so we say that the area
of the infinite region is equal to and we write

Using this example as a guide, we define the integral of (not necessarily a positive
function) over an infinite interval as the limit of integrals over finite intervals.
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Definition of an Improper Integral of Type 1

(a) If exists for every number , then

provided this limit exists (as a finite number).

(b) If exists for every number , then

provided this limit exists (as a finite number).

The improper integrals and are called convergent if the
corresponding limit exists and divergent if the limit does not exist.

(c) If both and are convergent, then we define

In part (c) any real number can be used (see Exercise 74).

Any of the improper integrals in Definition 1 can be interpreted as an area provided that
is a positive function. For instance, in case (a) if and the integral 

is convergent, then we define the area of the region in
Figure 3 to be

This is appropriate because is the limit as of the area under the graph of
from to .

EXAMPLE 1 Determine whether the integral is convergent or divergent.

SOLUTION According to part (a) of Definition 1, we have

The limit does not exist as a finite number and so the improper integral is
divergent. 
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Let’s compare the result of Example 1 with the example given at the beginning of this 
section:

Geometrically, this says that although the curves and look very similar
for , the region under to the right of (the shaded region in Figure 4)
has finite area whereas the corresponding region under (in Figure 5) has infinite
area. Note that both and approach as but approaches faster than

. The values of 1�x don’t decrease fast enough for its integral to have a finite value.

EXAMPLE 2 Evaluate .

SOLUTION Using part (b) of Definition 1, we have

We integrate by parts with , so that , :

We know that as , and by l’Hospital’s Rule we have

Therefore

EXAMPLE 3 Evaluate .

SOLUTION It’s convenient to choose in Definition 1(c):

We must now evaluate the integrals on the right side separately:
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Since both of these integrals are convergent, the given integral is convergent and

Since , the given improper integral can be interpreted as the area of 
the infinite region that lies under the curve and above the -axis (see
Figure 6). 

EXAMPLE 4 For what values of is the integral

convergent?

SOLUTION We know from Example 1 that if , then the integral is divergent, so let’s
assume that . Then

If , then , so as , and . Therefore

and so the integral converges. But if , then and so

and the integral diverges. 

We summarize the result of Example 4 for future reference:

T y p e  2 :  D i s c o n t i n u o u s  I n t e g r a n d s

Suppose that is a positive continuous function defined on a finite interval but has
a vertical asymptote at . Let be the unbounded region under the graph of and above 
the -axis between and . (For Type 1 integrals, the regions extended indefinitely in a bax
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FIGURE 7
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|||| Parts (b) and (c) of Definition 3 are illustrated
in Figures 8 and 9 for the case where 
and has vertical asymptotes at and ,
respectively.

caf
f �x� � 0

0

y

xa t b

FIGURE 8

0

y

xa c b

FIGURE 9

horizontal direction. Here the region is infinite in a vertical direction.) The area of the part
of between and (the shaded region in Figure 7) is

If it happens that approaches a definite number as , then we say that the
area of the region is and we write

We use this equation to define an improper integral of Type 2 even when is not a posi-
tive function, no matter what type of discontinuity has at .

Definition of an Improper Integral of Type 2

(a) If is continuous on and is discontinuous at , then 

if this limit exists (as a finite number).

(b) If is continuous on and is discontinuous at , then 

if this limit exists (as a finite number).

The improper integral is called convergent if the corresponding limit
exists and divergent if the limit does not exist.

(c) If has a discontinuity at , where , and both and
are convergent, then we define

EXAMPLE 5 Find .

SOLUTION We note first that the given integral is improper because 
has the vertical asymptote . Since the infinite discontinuity occurs at the left end-
point of , we use part (b) of Definition 3:

Thus, the given improper integral is convergent and, since the integrand is positive, we
can interpret the value of the integral as the area of the shaded region in Figure 10.
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EXAMPLE 6 Determine whether converges or diverges.

SOLUTION Note that the given integral is improper because . Using
part (a) of Definition 3 and Formula 14 from the Table of Integrals, we have

because and as . Thus, the given improper integral is
divergent. 

EXAMPLE 7 Evaluate if possible.

SOLUTION Observe that the line is a vertical asymptote of the integrand. Since it
occurs in the middle of the interval , we must use part (c) of Definition 3 with

:

where

because as . Thus, is divergent. This implies that
is divergent. [We do not need to evaluate .]

| WARNING ■■ If we had not noticed the asymptote in Example 7 and had instead 
confused the integral with an ordinary integral, then we might have made the following
erroneous calculation:

This is wrong because the integral is improper and must be calculated in terms of limits.
From now on, whenever you meet the symbol you must decide, by looking

at the function on , whether it is an ordinary definite integral or an improper 
integral.

EXAMPLE 8 Evaluate .

SOLUTION We know that the function has a vertical asymptote at 0 since
. Thus, the given integral is improper and we have
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Now we integrate by parts with , , , and :

To find the limit of the first term we use l’Hospital’s Rule:

Therefore

Figure 11 shows the geometric interpretation of this result. The area of the shaded region
above and below the -axis is . 

A  C o m p a r i s o n  T e s t  f o r  I m p r o p e r  I n t e g r a l s

Sometimes it is impossible to find the exact value of an improper integral and yet it 
is important to know whether it is convergent or divergent. In such cases the following the-
orem is useful. Although we state it for Type 1 integrals, a similar theorem is true for
Type 2 integrals.

Comparison Theorem Suppose that and are continuous functions with
for .

(a) If is convergent, then is convergent.

(b) If is divergent, then is divergent.

We omit the proof of the Comparison Theorem, but Figure 12 makes it seem plausible.
If the area under the top curve is finite, then so is the area under the bottom curve

. And if the area under is infinite, then so is the area under .
[Note that the reverse is not necessarily true: If is convergent, may 
or may not be convergent, and if is divergent, may or may not be
divergent.]

EXAMPLE 9 Show that is convergent.

SOLUTION We can’t evaluate the integral directly because the antiderivative of is not
an elementary function (as explained in Section 7.5). We write
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and observe that the first integral on the right-hand side is just an ordinary definite inte-
gral. In the second integral we use the fact that for we have , so 
and therefore . (See Figure 13.) The integral of is easy to evaluate:

Thus, taking and in the Comparison Theorem, we see that
is convergent. It follows that is convergent.

In Example 9 we showed that is convergent without computing its value. In
Exercise 70 we indicate how to show that its value is approximately 0.8862. In probabil-
ity theory it is important to know the exact value of this improper integral, as we will see
in Section 8.5; using the methods of multivariable calculus it can be shown that the exact
value is . Table 1 illustrates the definition of an improper integral by showing how
the (computer-generated) values of approach as t becomes large. In fact,
these values converge quite quickly because very rapidly as .

EXAMPLE 10 The integral is divergent by the Comparison Theorem

because

and is divergent by Example 1 [or by (2) with ].

Table 2 illustrates the divergence of the integral in Example 10. It appears that the 
values are not approaching any fixed number.
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TABLE  2
t

2 0.8636306042
5 1.8276735512

10 2.5219648704
100 4.8245541204

1000 7.1271392134
10000 9.4297243064

x
t
1 ��1 � e�x ��x� dx

TABLE  1

t

1 0.7468241328
2 0.8820813908
3 0.8862073483
4 0.8862269118
5 0.8862269255
6 0.8862269255

x
t
0 e

�x2
 dx

2. Which of the following integrals are improper? Why?

(a) (b)

(c) (d) y
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Explain why each of the following integrals is improper.
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|||| 7.8 Exercises



39. 40.

41–46 |||| Sketch the region and find its area (if the area is finite).

41.

42.

;

; 44.

; 45.

; 46.

; 47. (a) If , use your calculator or computer to
make a table of approximate values of for ,
5, 10, 100, 1000, and 10,000. Does it appear that 
is convergent?

(b) Use the Comparison Theorem with to show
that is convergent.

(c) Illustrate part (b) by graphing and on the same screen
for . Use your graph to explain intuitively why

is convergent.

; 48. (a) If , use your calculator or computer to
make a table of approximate values of for ,
10, 100, 1000, and 10,000. Does it appear that is
convergent or divergent?

(b) Use the Comparison Theorem with to show
that is divergent.

(c) Illustrate part (b) by graphing and on the same screen
for . Use your graph to explain intuitively why

is divergent.

49–54 |||| Use the Comparison Theorem to determine whether the
integral is convergent or divergent.

49. 50.

52.

53. 54.

55. The integral

is improper for two reasons: The interval is infinite and
the integrand has an infinite discontinuity at 0. Evaluate it by
expressing it as a sum of improper integrals of Type 2 and
Type 1 as follows:
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3. Find the area under the curve from to 
and evaluate it for , , and . Then find the total
area under this curve for .

; 4. (a) Graph the functions and in the
viewing rectangles by and by .

(b) Find the areas under the graphs of and from to
and evaluate for , , , , , and .

(c) Find the total area under each curve for , if it exists.

5–40 |||| Determine whether each integral is convergent or
divergent. Evaluate those that are convergent.

5. 6.

8.

9. 10.

11. 12.

14.

15. 16.

17. 18.

19. 20.

22.

23. 24.

25. 26.

28.
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32.
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35. 36.

37. 38. y
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56. Evaluate

by the same method as in Exercise 55.

57–59 |||| Find the values of for which the integral converges and
evaluate the integral for those values of .

58.

59.

60. (a) Evaluate the integral for , , , and .
(b) Guess the value of when is an arbitrary posi-

tive integer.
(c) Prove your guess using mathematical induction.

(a) Show that is divergent.
(b) Show that

This shows that we can’t define

62. The average speed of molecules in an ideal gas is

where is the molecular weight of the gas, is the gas 
constant, is the gas temperature, and is the molecular
speed. Show that

63. We know from Example 1 that the region
has infinite area. Show 

that by rotating about the -axis we obtain a solid with 
finite volume.

64. Use the information and data in Exercises 29 and 30 of Sec-
tion 6.4 to find the work required to propel a 1000-kg satellite
out of Earth’s gravitational field.

65. Find the escape velocity that is needed to propel a rocket 
of mass out of the gravitational field of a planet with mass 

and radius . Use Newton’s Law of Gravitation (see Exer-
cise 29 in Section 6.4) and the fact that the initial kinetic
energy of supplies the needed work.

66. Astronomers use a technique called stellar stereography to
determine the density of stars in a star cluster from the
observed (two-dimensional) density that can be analyzed from 

1
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x �ln x� p  dxy
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x p  dx57.

p
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1

xsx 2 � 4
 dx

a photograph. Suppose that in a spherical cluster of radius 
the density of stars depends only on the distance from the
center of the cluster. If the perceived star density is given by

, where is the observed planar distance from the center of
the cluster, and is the actual density, it can be shown that

If the actual density of stars in a cluster is ,
find the perceived density .

67. A manufacturer of lightbulbs wants to produce bulbs that last
about 700 hours but, of course, some bulbs burn out faster than
others. Let be the fraction of the company’s bulbs that burn
out before hours, so always lies between 0 and 1.
(a) Make a rough sketch of what you think the graph of 

might look like.
(b) What is the meaning of the derivative ?
(c) What is the value of ? Why?

68. As we will see in Section 9.4, a radioactive substance decays
exponentially: The mass at time is , where

is the initial mass and is a negative constant. The mean
life of an atom in the substance is

For the radioactive carbon isotope, , used in radiocarbon
dating, the value of is . Find the mean life of a 

atom.

Determine how large the number has to be so that

70. Estimate the numerical value of by writing it as
the sum of and . Approximate the first inte-
gral by using Simpson’s Rule with and show that the
second integral is smaller than , which is less than
0.0000001.

71. If is continuous for , the Laplace transform of is
the function defined by

and the domain of is the set consisting of all numbers for
which the integral converges. Find the Laplace transforms of
the following functions.
(a) (b) (c)

72. Show that if for , where and are
constants, then the Laplace transform exists for .

73. Suppose that and for ,
where is continuous. If the Laplace transform of is F�s�f �t�f �
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5. State the rules for approximating the definite integral 
with the Midpoint Rule, the Trapezoidal Rule, and Simpson’s
Rule. Which would you expect to give the best estimate? How
do you approximate the error for each rule?

6. Define the following improper integrals.

(a) (b) (c)

7. Define the improper integral for each of the follow-
ing cases.
(a) has an infinite discontinuity at .
(b) has an infinite discontinuity at .
(c) has an infinite discontinuity at , where .

8. State the Comparison Theorem for improper integrals.

a � c � bcf
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(We could have used Formula 21 in the Table of Integrals.) Since , we have
, so and

Because of the presence of the square root sign in Formulas 2 and 4, the calculation of
an arc length often leads to an integral that is very difficult or even impossible to evaluate
explicitly. Thus, we sometimes have to be content with finding an approximation to the
length of a curve as in the following example.

EXAMPLE 3
(a) Set up an integral for the length of the arc of the hyperbola from the
point to the point .
(b) Use Simpson’s Rule with to estimate the arc length.

SOLUTION
(a) We have

and so the arc length is

(b) Using Simpson’s Rule (see Section 7.7) with , , , , and
, we have

 � 1.1321

 �
�x

3
 � f �1� � 4 f �1.1� � 2 f �1.2� � 4 f �1.3� � � � � � 2 f �1.8� � 4 f �1.9� � f �2��

 L � y
2

1
 �1 �

1

x 4  dx

f �x� � s1 � 1�x 4

�x � 0.1n � 10b � 2a � 1

L � y
2

1
 �1 � 	dy

dx
2

 dx � y
2

1
 �1 �

1

x 4  dx � y
2

1
 
sx 4 � 1

x 2  dx

 
dy

dx
� �

1

x 2y �
1

x

n � 10
(2, 12 )�1, 1�

xy � 1

0 x

y

1

1

x=¥

FIGURE 6

L �
s5

2
�

ln(s5 � 2)
4

sec 	 � s5sec2	 � 1 � tan2	 � 5
tan 	 � 2

|||| Figure 6 shows the arc of the parabola
whose length is computed in Example 2, together
with polygonal approximations having 
and line segments, respectively. For

the approximate length is , the
diagonal of a square. The table shows the
approximations that we get by dividing 
into equal subintervals. Notice that each time
we double the number of sides of the polygon,
we get closer to the exact length, which is

L �
s5

2
�

ln(s5 � 2)
4

� 1.478943

n
�0, 1�Ln

L1 � s2n � 1
n � 2

n � 1

|||| Checking the value of the definite integral
with a more accurate approximation produced by
a computer algebra system, we see that the
approximation using Simpson’s Rule is accurate
to four decimal places.

n

1 1.414
2 1.445
4 1.464
8 1.472

16 1.476
32 1.478
64 1.479

Ln
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T h e  A r c  L e n g t h  F u n c t i o n

We will find it useful to have a function that measures the arc length of a curve from a par-
ticular starting point to any other point on the curve. Thus, if a smooth curve has the
equation , , let be the distance along from the initial point

to the point . Then is a function, called the arc length function, and,
by Formula 2,

(We have replaced the variable of integration by so that does not have two meanings.)
We can use Part 1 of the Fundamental Theorem of Calculus to differentiate Equation 5
(since the integrand is continuous):

Equation 6 shows that the rate of change of with respect to is always at least 1 and is
equal to 1 when , the slope of the curve, is 0. The differential of arc length is

and this equation is sometimes written in the symmetric form

The geometric interpretation of Equation 8 is shown in Figure 7. It can be used as a
mnemonic device for remembering both of the Formulas 3 and 4. If we write ,
then from Equation 8 either we can solve to get (7), which gives (3), or we can solve to get

which gives (4).

EXAMPLE 4 Find the arc length function for the curve taking as
the starting point.

SOLUTION If , then

 s1 � � f ��x��2 � 2x �
1

8x

 � 4x 2 �
1

2
�

1

64x 2 � 	2x �
1

8x
2

 1 � � f ��x��2 � 1 � 	2x �
1

8x
2

� 1 � 4x 2 �
1

2
�

1

64x 2

 f ��x� � 2x �
1

8x

f �x� � x 2 �
1
8 ln x

P0�1, 1�y � x 2 �
1
8 ln x

ds � �1 � 	dx

dy
2

 dy

L � x ds

�ds�2 � �dx�2 � �dy�28

ds � �1 � 	dy

dx
2

 dx7

f ��x�
xs

ds

dx
� s1 � � f ��x��2 � �1 � 	dy

dx
2

6

xt

s�x� � y
x

a
 s1 � � f ��t��2 dt5

sQ�x, f �x��P0�a, f �a��
Cs�x�a � x � by � f �x�

C

FIGURE 7
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y
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ds dy
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Thus, the arc length function is given by

For instance, the arc length along the curve from to is

FIGURE 9FIGURE 8

P¸

1
8

y=≈-   ln x1
8

0 x

y

1

1

0 x

y

1 x

1

s(x)=≈+   ln x-1

s(x)

s�3� � 32 �
1
8 ln 3 � 1 � 8 �

ln 3

8
� 8.1373

�3, f �3���1, 1�

 � x 2 �
1
8 ln x � 1

 � y
x

1
 	2t �

1

8t
 dt � t 2 �
1
8 ln t]1

x

 s�x� � y
x

1
s1 � � f ��t��2 dt

8. ,

,

10. ,

,

12. ,

13. ,

14. ,

15. ,

16. , ,

17–20 |||| Set up, but do not evaluate, an integral for the length of
the curve.

17. ,

18. , 0 � x � 3y � 2x

0 � x � 2�y � cos x

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

a � 0a � x � by � ln	 e x � 1

e x � 1

0 � x � 1y � e x

0 � y � 2y 2 � 4x

0 � x � 1y � cosh x

1 � x � s3y � ln x

0 � x � ��4y � ln�sec x�11.

0 � x � ��3y � ln�cos x�

1 � y � 9x � 1
3 sy �y � 3�9.

2 � x � 4y �
x 2

2
�

ln x

4

1. Use the arc length formula (3) to find the length of the curve
, . Check your answer by noting that

the curve is a line segment and calculating its length by the dis-
tance formula.

2. Use the arc length formula to find the length of the curve
, . Check your answer by noting that

the curve is a quarter-circle.

; 3–4 |||| Graph the curve and visually estimate its length. Then find
its exact length.

3. ,

4. ,

5–16 |||| Find the length of the curve.

,

6. , ,

7. , 1 � x � 2y �
x 5

6
�

1

10x 3

y � 00 � x � 2y 2 � 4�x � 4�3

0 � x � 1y � 1 � 6x 3�25.

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

1
2 � x � 1y �

x 3

6
�

1

2x

1 � x � 3y � 2
3 �x 2 � 1�3�2

0 � x � 2y � s4 � x 2

�2 � x � 1y � 2 � 3x

|||| 8.1 Exercises

|||| Figure 8 shows the interpretation of the arc
length function in Example 4. Figure 9 shows the
graph of this arc length function. Why is 
negative when is less than ?1x

s�x�
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19. , 20.

21–24 |||| Use Simpson’s rule with to estimate the arc
length of the curve. Compare your answer with the value of the
integral produced by your calculator.

21. , 22. ,

23. , 24. ,

; 25. (a) Graph the curve , .
(b) Compute the lengths of inscribed polygons with , ,

and sides. (Divide the interval into equal subintervals.)
Illustrate by sketching these polygons (as in Figure 6).

(c) Set up an integral for the length of the curve.
(d) Use your calculator to find the length of the curve to four

decimal places. Compare with the approximations in
part (b).

; 26. Repeat Exercise 25 for the curve

27. Use either a computer algebra system or a table of integrals to
find the exact length of the arc of the curve that
lies between the points and .

28. Use either a computer algebra system or a table of integrals to
find the exact length of the arc of the curve that lies
between the points and . If your CAS has trouble
evaluating the integral, make a substitution that changes the
integral into one that the CAS can evaluate.

Sketch the curve with equation and use
symmetry to find its length.

30. (a) Sketch the curve .
(b) Use Formulas 3 and 4 to set up two integrals for the arc

length from to . Observe that one of these is 
an improper integral and evaluate both of them.

(c) Find the length of the arc of this curve from 
to .

Find the arc length function for the curve with start-
ing point .

; 32. (a) Graph the curve , .
(b) Find the arc length function for this curve with starting

point .
(c) Graph the arc length function.

33. A hawk flying at at an altitude of 180 m accidentally
drops its prey. The parabolic trajectory of the falling prey is
described by the equation

y � 180 �
x 2

45

15 m�s

P0(1, 7
12 )

x � 0y � 1
3 x 3 � 1��4x�

P0�1, 2�
y � 2x 3�231.

�8, 4�
��1, 1�

�1, 1��0, 0�

y 3 � x 2

x 2�3 � y 2�3 � 129.

�1, 1��0, 0�
y � x 4�3

CAS

(ln 3
4, 12 )�0, 0�

x � ln�1 � y 2 �
CAS

0 � x � 2�y � x � sin x

4
2n � 1

0 � x � 4y � x s3 4 � x

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

1 � x � 3y � x ln x0 � x � ��3y � sec x

1 � y � 2x � y � sy0 � x � 5y � xe�x

n � 10

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

x 2

a 2 �
 y 2

b 2 � 11 � y � 4x � y � y 3 until it hits the ground, where is its height above the ground
and is the horizontal distance traveled in meters. Calculate
the distance traveled by the prey from the time it is dropped
until the time it hits the ground. Express your answer correct to
the nearest tenth of a meter.

34. A steady wind blows a kite due west. The kite’s height above
ground from horizontal position to is given by

Find the distance traveled by the kite.

A manufacturer of corrugated metal roofing wants to produce
panels that are 28 in. wide and 2 in. thick by processing flat
sheets of metal as shown in the figure. The profile of the roof-
ing takes the shape of a sine wave. Verify that the sine curve
has equation and find the width of a flat
metal sheet that is needed to make a 28-inch panel. (Use your
calculator to evaluate the integral correct to four significant
digits.)

36. (a) The figure shows a telephone wire hanging between 
two poles at and . It takes the shape of a
catenary with equation . Find the
length of the wire.

; (b) Suppose two telephone poles are 50 ft apart and the length
of the wire between the poles is 51 ft. If the lowest point of
the wire must be 20 ft above the ground, how high up on
each pole should the wire be attached?

37. Find the length of the curve , .

; The curves with equations , , , , . . . , are
called fat circles. Graph the curves with , , , , and 
to see why. Set up an integral for the length of the fat circle
with . Without attempting to evaluate this integral, state
the value of

lim
k l �

 L2k

n � 2k
L2k

10864n � 2
86n � 4x n � y n � 138.

1 � x � 4y � x
x

1  st 3 � 1 dt

y

0 x_b b

y � c � a cosh�x�a�
x � bx � �b

28 in
2 inw

wy � sin��x�7�

35.

y � 150 �
1
40 �x � 50�2

x � 80 ftx � 0

x
y
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Arc Length Contest

The curves shown are all examples of graphs of continuous functions that have the following
properties.

1.

2.

3. The area under the graph of from 0 to 1 is equal to 1.

The lengths of these curves, however, are different.

Try to discover formulas for two functions that satisfy the given conditions 1, 2, and 3. (Your
graphs might be similar to the ones shown or could look quite different.) Then calculate the arc
length of each graph. The winning entry will be the one with the smallest arc length.

LÅ3.249

x

y

0 1

1

LÅ2.919

x

y

0 1

1

LÅ3.152

x

y

0 1

1

LÅ3.213

x

y

0 1

1

L

f

f �x�  0 for 0 � x � 1

f �0� � 0 and f �1� � 0

f

DISCOVERY PROJECT

|||| 8.2 A r e a  o f  a  S u r f a c e  o f  R e v o l u t i o n

A surface of revolution is formed when a curve is rotated about a line. Such a surface is
the lateral boundary of a solid of revolution of the type discussed in Sections 6.2 and 6.3.

We want to define the area of a surface of revolution in such a way that it corresponds
to our intuition. If the surface area is , we can imagine that painting the surface would
require the same amount of paint as does a flat region with area .

Let’s start with some simple surfaces. The lateral surface area of a circular cylinder with
radius and height is taken to be because we can imagine cutting the cylin-
der and unrolling it (as in Figure 1) to obtain a rectangle with dimensions and .

Likewise, we can take a circular cone with base radius and slant height , cut it along
the dashed line in Figure 2, and flatten it to form a sector of a circle with radius and cen-
tral angle . We know that, in general, the area of a sector of a circle with radius

and angle is (see Exercise 35 in Section 7.3) and so in this case it is

Therefore, we define the lateral surface area of a cone to be .A � �rl

A � 1
2 l 2
 � 1

2 l 2	2�r

l 
 � �rl

1
2 l 2

l


 � 2�r�l
l

lr
h2�r

A � 2�rhhr

A
A

h

2πr

FIGURE 1

h

r

cut



What about more complicated surfaces of revolution? If we follow the strategy we used
with arc length, we can approximate the original curve by a polygon. When this polygon
is rotated about an axis, it creates a simpler surface whose surface area approximates the
actual surface area. By taking a limit, we can determine the exact surface area.

The approximating surface, then, consists of a number of bands, each formed by rotat-
ing a line segment about an axis. To find the surface area, each of these bands can be 
considered a portion of a circular cone, as shown in Figure 3. The area of the band (or frus-
tum of a cone) with slant height and upper and lower radii and is found by sub-
tracting the areas of two cones:

From similar triangles we have

which gives

or

Putting this in Equation 1, we get

or

where is the average radius of the band.
Now we apply this formula to our strategy. Consider the surface shown in Figure 4,

which is obtained by rotating the curve , , about the -axis, where is
positive and has a continuous derivative. In order to define its surface area, we divide the
interval into n subintervals with endpoints and equal width , as we
did in determining arc length. If , then the point lies on the curve. The
part of the surface between and is approximated by taking the line segment 
and rotating it about the -axis. The result is a band with slant height and aver-
age radius so, by Formula 2, its surface area is

2� 
 yi�1 � yi

2
 � Pi�1Pi �

r � 1
2 �yi�1 � yi �

l � � Pi�1Pi �x
Pi�1Pixixi�1

Pi�xi, yi�yi � f �xi�
�xx0, x1, . . . , xn�a, b�

fxa � x � by � f �x�

r � 1
2 �r1 � r2 �

A � 2�rl2

A � � �r1l � r2l�

�r2 � r1�l1 � r1lr2l1 � r1l1 � r1l

l1

r1
�

l1 � l

r2

A � �r2�l1 � l � � �r1l1 � � ��r2 � r1�l1 � r2l�1

r2r1l

l¨

2πr

FIGURE 2
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FIGURE 4
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(a) Surface of revolution
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(b) Approximating band



As in the proof of Theorem 8.1.2, we have

where is some number in . When is small, we have and
also , since is continuous. Therefore

and so an approximation to what we think of as the area of the complete surface of revo-
lution is

This approximation appears to become better as and, recognizing (3) as a Riemann
sum for the function , we have

Therefore, in the case where is positive and has a continuous derivative, we define the
surface area of the surface obtained by rotating the curve , , about 
the -axis as

With the Leibniz notation for derivatives, this formula becomes

If the curve is described as , , then the formula for surface area
becomes

and both Formulas 5 and 6 can be summarized symbolically, using the notation for arc
length given in Section 8.1, as

S � y 2�y ds7

S � y
d

c
 2�y�1 � �dx

dy�2

 dy6

c � y � dx � t�y�

S � y
b

a
 2�y�1 � �dy

dx�2

 dx5

S � y
b

a
 2� f �x� s1 � � f ��x��2 dx4

x
a � x � by � f �x�

f

lim 
n l �

 	
n

i�1
 2� f �xi*� s1 � � f ��xi*��2 �x � y

b

a
 2� f �x� s1 � � f ��x��2 dx

t�x� � 2� f �x� s1 � � f ��x��2

n l �

	
n

i�1
 2� f �xi*� s1 � � f ��xi*��2 �x3

2� 
 yi�1 � yi

2
 
 Pi�1Pi 
 � 2� f �xi*� s1 � � f ��xi*��2 �x

fyi�1 � f �xi�1� � f �xi*�
yi � f �xi� � f �xi*��x�xi�1, xi�xi*


 Pi�1Pi 
 � s1 � � f ��xi*��2 �x

556 ❙ ❙ ❙ ❙ CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION



SECTION 8.2 AREA OF A SURFACE OF REVOLUTION ❙ ❙ ❙ ❙ 557

For rotation about the -axis, the surface area formula becomes

where, as before, we can use either

or

These formulas can be remembered by thinking of or as the circumference of a
circle traced out by the point on the curve as it is rotated about the -axis or -axis,
respectively (see Figure 5).

EXAMPLE 1 The curve , , is an arc of the circle .
Find the area of the surface obtained by rotating this arc about the -axis. (The surface is
a portion of a sphere of radius 2. See Figure 6.)

SOLUTION We have

and so, by Formula 5, the surface area is

 � 4� y
1

�1
 1 dx � 4� �2� � 8�

 � 2� y
1

�1
 s4 � x 2 

2

s4 � x 2
 dx

 � 2� y
1

�1
 s4 � x 2 �1 �

x 2

4 � x 2
 dx

 S � y
1

�1
 2�y �1 � �dy

dx�2

 dx

dy

dx
� 1

2 �4 � x 2 ��1�2��2x� �
�x

s4 � x 2

x
x 2 � y 2 � 4�1 � x � 1y � s4 � x 2

FIGURE 5 (a) Rotation about x-axis: S=j 2πy ds

(x, y)

y

circumference=2πy

x0

y

(b) Rotation about y-axis: S=j 2πx ds

(x, y)x

circumference=2πx

x0

y

yx�x, y�
2�x2�y

ds � �1 � �dx

dy�2

 dyds � �1 � �dy

dx�2

 dx

S � y 2�x ds8

y

|||| Figure 6 shows the portion of the sphere
whose surface area is computed in Example 1.
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FIGURE 6
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EXAMPLE 2 The arc of the parabola from to is rotated about the 
-axis. Find the area of the resulting surface.

SOLUTION 1 Using

and

we have, from Formula 8,

Substituting , we have . Remembering to change the limits of
integration, we have

SOLUTION 2 Using

and

we have

(where )

(as in Solution 1)

EXAMPLE 3 Find the area of the surface generated by rotating the curve ,
, about the -axis.

SOLUTION Using Formula 5 with

and
dy

dx
� exy � ex

x0 � x � 1
y � ex

 �
�

6
 (17s17 � 5s5)

u � 1 � 4y �
�

4
 y

17

5
 su du

 � 2� y
4

1
 sy �1 �

1

4y
 dy � � y

4

1
 s4y � 1 dy

 S � y 2�x ds � y
4

1
 2�x �1 � �dx

dy�2

 dy

dx

dy
�

1

2sy
x � sy

 �
�

6
 (17s17 � 5s5)

 S �
�

4
 y

17

5
 su du �

�

4
 [ 2

3 u 3�2]5
17

du � 8x dxu � 1 � 4x 2

 � 2� y
2

1
 x s1 � 4x 2 dx

 � y
2

1
 2�x �1 � �dy

dx�2

 dx

 S � y 2�x ds

dy

dx
� 2xy � x 2

y
�2, 4��1, 1�y � x 2|||| Figure 7 shows the surface of revolution

whose area is computed in Example 2.

|||| As a check on our answer to Example 2,
notice from Figure 7 that the surface area 
should be close to that of a circular cylinder with
the same height and radius halfway between 
the upper and lower radius of the surface:

. We computed that 
the surface area was

which seems reasonable. Alternatively, the sur-
face area should be slightly larger than the area
of a frustum of a cone with the same top and
bottom edges. From Equation 2, this is

.2� �1.5�(s10 ) � 29.80

�

6
 (17s17 � 5s5 ) � 30.85

2� �1.5��3� � 28.27



50 ft wide at the bottom and with a slant height of 70 ft. Find
the hydrostatic force on the dam when it is full of water.

15. A swimming pool is 20 ft wide and 40 ft long and its bottom is
an inclined plane, the shallow end having a depth of 3 ft and
the deep end, 9 ft. If the pool is full of water, find the hydro-
static force on (a) the shallow end, (b) the deep end, (c) one of
the sides, and (d) the bottom of the pool.

16. Suppose that a plate is immersed vertically in a fluid with den-
sity and the width of the plate is at a depth of meters
beneath the surface of the fluid. If the top of the plate is at
depth and the bottom is at depth , show that the hydrostatic
force on one side of the plate is

17. A vertical, irregularly shaped plate is submerged in water. The
table shows measurements of its width, taken at the indicated
depths. Use Simpson’s rule to estimate the force of the water
against the plate.

18. (a) Use the formula of Exercise 16 to show that

where is the -coordinate of the centroid of the plate and
is its area. This equation shows that the hydrostatic force

against a vertical plane region is the same as if the region 
were horizontal at the depth of the centroid of the region.

(b) Use the result of part (a) to give another solution to 
Exercise 9.

19–20 |||| Point-masses are located on the -axis as shown. Find
the moment of the system about the origin and the center of
mass .

19.

20.

21–22 |||| The masses are located at the points . Find the
moments and and the center of mass of the system.

21. , , ;

, ,

22. , , , ;

, , ,
■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

P4�6, �1�P3��3, �7�P2�3, 4�P1�1, �2�
m4 � 4m3 � 1m2 � 5m1 � 6

P3��2, �1�P2�3, �2�P1�1, 5�
m3 � 10m2 � 5m1 � 6

MyMx

Pimi

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

x0 3 7

m™=20 m£=10

_2

m¡=25

x0 2 5

m¡=40 m™=30

x
M

xmi

A
xx

F � ��tx �A

F � y
b

a
 �txw�x� dx

ba

xw�x��

23–26 |||| Sketch the region bounded by the curves, and visually
estimate the location of the centroid. Then find the exact coordi-
nates of the centroid.

23. ,

24. , ,

, , ,

26. , , ,

27–31 |||| Find the centroid of the region bounded by the given
curves.

27. ,

28. ,

, , ,

30. , , ,

31. ,

32–34 |||| Calculate the moments and and the center of mass
of a lamina with the given density and shape.

32.

34.

; 35. Find the centroid of the region bounded by the curves 
and , , to three decimal places. Sketch the
region and plot the centroid to see if your answer is reasonable.

; 36. Use a graph to find approximate -coordinates of the points of
intersection of the curves and . Then
find (approximately) the centroid of the region bounded by
these curves.

37. Prove that the centroid of any triangle is located at the point 
of intersection of the medians. [Hints: Place the axes so that
the vertices are , , and . Recall that a median 
is a line segment from a vertex to the midpoint of the oppo-

�c, 0��0, b��a, 0�

y � x 3 � xy � x � ln x
x

0 � x � 2y � x 2
y � 2x

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

x

y

0 r

r
quarter-circle

� � 2

x

y

0 1_1

2

x

y

0 1_1

1

_2

semicircle

� � 133.� � 5

MyMx

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

x � 0x � 5 � y 2

x � 2y � 1�xy � 0y � x

x � ��4x � 0y � cos xy � sin x29.

y � x 2y � x � 2

y � xy � sx

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

x � 2x � 1y � 0y � 1�x

x � 1x � 0y � 0y � e x25.

x � 0y � 03x � 2y � 6

y � 0y � 4 � x 2
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Depth (m) 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Plate width (m) 0 0.8 1.7 2.4 2.9 3.3 3.6
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40–42 |||| Use the Theorem of Pappus to find the volume of the
given solid.

40. A sphere of radius (Use Example 4.)

41. A cone with height and base radius 

42. The solid obtained by rotating the triangle with vertices ,
, and about the -axis

43. Prove Formulas 9.

44. Let be the region that lies between the curves 
and , , where and are integers with

.
(a) Sketch the region .
(b) Find the coordinates of the centroid of .
(c) Try to find values of and such that the centroid lies 

outside .�
nm

�
�

0 � n � m
nm0 � x � 1y � x n

y � x m�

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

x�5, 4��2, 5�
�2, 3�

rh

r

site side. Recall also that the medians intersect at a point two-
thirds of the way from each vertex (along the median) to the
opposite side.]

38–39 |||| Find the centroid of the region shown, not by integration,
but by locating the centroids of the rectangles and triangles (from
Exercise 37) and using additivity of moments.

38.

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

x

y

0 1_1

_1

2

1

2

_2

39.

x

y

0 1

1

3

2

3

_2

|||| 8.4 A p p l i c a t i o n s  t o  E c o n o m i c s  a n d  B i o l o g y

In this section we consider some applications of integration to economics (consumer sur-
plus) and biology (blood flow, cardiac output). Others are described in the exercises.

C o n s u m e r  S u r p l u s

Recall from Section 4.8 that the demand function is the price that a company has to
charge in order to sell units of a commodity. Usually, selling larger quantities requires
lowering prices, so the demand function is a decreasing function. The graph of a typical
demand function, called a demand curve, is shown in Figure 1. If is the amount of the
commodity that is currently available, then is the current selling price.

We divide the interval into subintervals, each of length , and let
be the right endpoint of the th subinterval, as in Figure 2. If, after the first 

units were sold, a total of only units had been available and the price per unit had been
set at dollars, then the additional units could have been sold (but no more). The
consumers who would have paid dollars placed a high value on the product; they
would have paid what it was worth to them. So, in paying only dollars they have saved
an amount of

Considering similar groups of willing consumers for each of the subintervals and adding
the savings, we get the total savings:

(This sum corresponds to the area enclosed by the rectangles in Figure 2.) If we let ,
this Riemann sum approaches the integral

which economists call the consumer surplus for the commodity.

y
X

0
 �p�x� � P� dx1

n l �

�
n

i�1
 �p�xi� � P� �x

�savings per unit��number of units� � �p�xi � � P� �x

P
p�xi�

�xp�xi�
xi

xi�1ixi* � xi

�x � X�nn�0, X�
P � p�X�

X

x
p�x�

0 x

p

P

X

(X, P)

p=p(x)

FIGURE 1
A typical demand curve
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P
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The consumer surplus represents the amount of money saved by consumers in pur-
chasing the commodity at price , corresponding to an amount demanded of . Figure 3
shows the interpretation of the consumer surplus as the area under the demand curve and
above the line .

EXAMPLE 1 The demand for a product, in dollars, is

Find the consumer surplus when the sales level is 500.

SOLUTION Since the number of products sold is , the corresponding price is

Therefore, from Definition 1, the consumer surplus is

B l o o d  F l o w

In Example 7 in Section 3.3 we discussed the law of laminar flow:

which gives the velocity of blood that flows along a blood vessel with radius and length
at a distance from the central axis, where is the pressure difference between the ends

of the vessel and is the viscosity of the blood. Now, in order to compute the rate of blood
flow, or flux (volume per unit time), we consider smaller, equally spaced radii . . . .
The approximate area of the ring (or washer) with inner radius and outer radius is

where

(See Figure 4.) If is small, then the velocity is almost constant throughout this ring and
can be approximated by . Thus, the volume of blood per unit time that flows across the
ring is approximately

and the total volume of blood that flows across a cross-section per unit time is approxi-
mately

 �
n

i�1
 2�riv�ri� �r

 �2�ri �r�v�ri� � 2�riv�ri � �r

v�ri�
�r

�r � ri � ri�1 2�ri �r

riri�1

r1, r2,


Prl
Rv

v�r� �
P

4l
 �R2 � r 2 �

 � $33,333.33

 � �125��500� � �0.1��500�2 �
�0.0001��500�3

3

 � 125x � 0.1x 2 � �0.0001�� x 3

3 	0
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 � y
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0
 �125 � 0.2x � 0.0001x 2 � dx

 y
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0
 �p�x� � P� dx � y
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0
 �1200 � 0.2x � 0.0001x 2 � 1075� dx
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(X, P)
P

X

p=p(x)

p=P

consumer
surplus
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This approximation is illustrated in Figure 5. Notice that the velocity (and hence the vol-
ume per unit time) increases toward the center of the blood vessel. The approximation gets
better as n increases. When we take the limit we get the exact value of the flux (or dis-
charge), which is the volume of blood that passes a cross-section per unit time:

The resulting equation

is called Poiseuille’s Law; it shows that the flux is proportional to the fourth power of the
radius of the blood vessel.

C a r d i a c  O u t p u t

Figure 6 shows the human cardiovascular system. Blood returns from the body through the
veins, enters the right atrium of the heart, and is pumped to the lungs through the pul-
monary arteries for oxygenation. It then flows back into the left atrium through the pulmo-
nary veins and then out to the rest of the body through the aorta. The cardiac output of
the heart is the volume of blood pumped by the heart per unit time, that is, the rate of flow
into the aorta.

The dye dilution method is used to measure the cardiac output. Dye is injected into the
right atrium and flows through the heart into the aorta. A probe inserted into the aorta mea-
sures the concentration of the dye leaving the heart at equally spaced times over a time
interval until the dye has cleared. Let be the concentration of the dye at time 
If we divide into subintervals of equal length , then the amount of dye that flows
past the measuring point during the subinterval from to is approximately

where is the rate of flow that we are trying to determine. Thus, the total amount of dye
is approximately

and, letting , we find that the amount of dye is

 A � F y
T

0
 c�t� dt

n l �

 �
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FIGURE 5

FIGURE 6
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1. The marginal cost function was defined to be the 
derivative of the cost function. (See Sections 3.3 and 4.8.) 
If the marginal cost of maufacturing meters of a fabric is

(measured in dollars per
meter) and the fixed start-up cost is , use the
Net Change Theorem to find the cost of producing the first
2000 units.

2. The marginal revenue from the sale of units of a product 
is . If the revenue from the sale of the first
1000 units is $12,400, find the revenue from the sale of the 
first 5000 units.

The marginal cost of producing units of a certain product 
is (in dollars per unit). 
Find the increase in cost if the production level is raised from
1200 units to 1600 units. 

4. The demand function for a certain commodity is 
Find the consumer surplus when the sales level is 30. Illustrate
by drawing the demand curve and identifying the consumer
surplus as an area.

A demand curve is given by . Find the con-
sumer surplus when the selling price is .$10

p � 450��x � 8�5.

p � 5 � x�10.

74 � 1.1x � 0.002x 2 � 0.00004x 3
x3.

12 � 0.0004x
x

C�0� � $20,000
C��x� � 5 � 0.008x � 0.000009x 2

x

C��x� 6. The supply function for a commodity gives the rela-
tion between the selling price and the number of units that
manufacturers will produce at that price. For a higher price,
manufacturers will produce more units, so is an increasing
function of . Let be the amount of the commodity currently
produced and let be the current price. Some pro-
ducers would be willing to make and sell the commodity for a
lower selling price and are therefore receiving more than their
minimal price. The excess is called the producer surplus. An
argument similar to that for consumer surplus shows that the
surplus is given by the integral

Calculate the producer surplus for the supply function
at the sales level . Illustrate by

drawing the supply curve and identifying the producer surplus
as an area.

7. If a supply curve is modeled by the equation
, find the producer surplus when the selling

price is $400.
p � 200 � 0.2x 3 / 2

X � 10pS�x� � 3 � 0.01x 2

y
X

0
 �P � pS�x�� dx

P � pS�X �
Xx

pS

pS�x�
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Thus, the cardiac output is given by

where the amount of dye is known and the integral can be approximated from the con-
centration readings.

EXAMPLE 2 A 5-mg bolus of dye is injected into a right atrium. The concentration of the
dye (in milligrams per liter) is measured in the aorta at one-second intervals as shown in
the chart. Estimate the cardiac output.

SOLUTION Here , , and . We use Simpson’s Rule to approximate the
integral of the concentration:

Thus, Formula 3 gives the cardiac output to be

� 0.12 L�s � 7.2 L�min

 F �
A

y
10

0  c�t� dt
�

5

41.87

 � 41.87

 � � 2�6.1� � 4�4.0� � 2�2.3� � 4�1.1� � 0�

 y
10

0
 c�t� dt � 1

3 �0 � 4�0.4� � 2�2.8� � 4�6.5� � 2�9.8� � 4�8.9�

T � 10�t � 1A � 5

A

F �
A

y
T

0
 c�t� dt

3

t t

0 0 6 6.1
1 0.4 7 4.0
2 2.8 8 2.3
3 6.5 9 1.1
4 9.8 10 0
5 8.9

c�t�c�t�

|||| 8.4 Exercises
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13. Use Poiseuille’s Law to calculate the rate of flow in a small
human artery where we can take , cm,

cm, and dynes�cm .

14. High blood pressure results from constriction of the arteries. 
To maintain a normal flow rate (flux), the heart has to pump
harder, thus increasing the blood pressure. Use Poiseuille’s
Law to show that if and are normal values of the radius
and pressure in an artery and the constricted values are and 

, then for the flux to remain constant, and are related by
the equation

Deduce that if the radius of an artery is reduced to three-fourths
of its former value, then the pressure is more than tripled.

The dye dilution method is used to measure cardiac output with
8 mg of dye. The dye concentrations, in mg�L, are modeled by

, , where is measured in seconds.
Find the cardiac output.

16. After an 8-mg injection of dye, the readings of dye concentra-
tion at two-second intervals are as shown in the table. Use
Simpson’s Rule to estimate the cardiac output.

t0 � t � 12c�t� � 1
4 t�12 � t�

15.

P

P0
� �R0

R 4

RPP
R

P0R0

2P � 4000l � 2
R � 0.008 � 0.027

8. For a given commodity and pure competition, the number of
units produced and the price per unit are determined as the
coordinates of the point of intersection of the supply and
demand curves. Given the demand curve and
the supply curve , find the consumer surplus
and the producer surplus. Illustrate by sketching the supply and
demand curves and identifying the surpluses as areas.

; 9. A company modeled the demand curve for its product 
(in dollars) by

Use a graph to estimate the sales level when the selling price is
$16. Then find (approximately) the consumer surplus for this
sales level.

A movie theater has been charging $7.50 per person and selling
about 400 tickets on a typical weeknight. After surveying their
customers, the theater estimates that for every 50 cents that
they lower the price, the number of moviegoers will increase
by 35 per night. Find the demand function and calculate the
consumer surplus when the tickets are priced at $6.00.

11. If the amount of capital that a company has at time is ,
then the derivative, , is called the net investment flow. Sup-
pose that the net investment flow is million dollars per year
(where is measured in years). Find the increase in capital (the
capital formation) from the fourth year to the eighth year. 

12. A hot, wet summer is causing a mosquito population explosion
in a lake resort area. The number of mosquitos is increasing at
an estimated rate of per week (where is mea-
sured in weeks). By how much does the mosquito population
increase between the fifth and ninth weeks of summer?

t2200 � 10e0.8t

t
st

f ��t�
f �t�t

10.

p �
800,000e�x�5000

x � 20,000

p � 20 � x�10
p � 50 � x�20

t t

0 0 12 3.9
2 2.4 14 2.3
4 5.1 16 1.6
6 7.8 18 0.7
8 7.6 20 0

10 5.4

c�t�c�t�

|||| 8.5 P r o b a b i l i t y

Calculus plays a role in the analysis of random behavior. Suppose we consider the choles-
terol level of a person chosen at random from a certain age group, or the height of an adult
female chosen at random, or the lifetime of a randomly chosen battery of a certain type.
Such quantities are called continuous random variables because their values actually
range over an interval of real numbers, although they might be measured or recorded only
to the nearest integer. We might want to know the probability that a blood cholesterol level
is greater than 250, or the probability that the height of an adult female is between 60 and
70 inches, or the probability that the battery we are buying lasts between 100 and 200
hours. If X represents the lifetime of that type of battery, we denote this last probability as
follows:

According to the frequency interpretation of probability, this number is the long-run pro-
portion of all batteries of the specified type whose lifetimes are between 100 and 200
hours. Since it represents a proportion, the probability naturally falls between 0 and 1.

P�100 � X � 200�
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Every continuous random variable X has a probability density function . This means
that the probability that X lies between a and b is found by integrating from a to b:

For example, Figure 1 shows the graph of a model of the probability density function 
for a random variable X defined to be the height in inches of an adult female in the United
States (according to data from the National Health Survey). The probability that the height
of a woman chosen at random from this population is between 60 and 70 inches is equal
to the area under the graph of from 60 to 70.

In general, the probability density function of a random variable X satisfies the con-
dition for all x. Because probabilities are measured on a scale from 0 to 1, it fol-
lows that

EXAMPLE 1 Let for and for all other values
of .
(a) Verify that is a probability density function.
(b) Find .

SOLUTION
(a) For we have , so for all . We also need to
check that Equation 2 is satisfied:

Therefore, is a probability density function.

(b) The probability that lies between 4 and 8 is 

EXAMPLE 2 Phenomena such as waiting times and equipment failure times are commonly
modeled by exponentially decreasing probability density functions. Find the exact form
of such a function.
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10

0
 �10x � x 2� dx

xf �x� � 00.006x�10 � x� � 00 � x � 10
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FIGURE 1
Probability density function
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SOLUTION Think of the random variable as being the time you wait on hold before an
agent of a company you’re telephoning answers your call. So instead of x, let’s use t to
represent time, in minutes. If is the probability density function and you call at time

, then, from Definition 1, represents the probability that an agent answers
within the first two minutes and is the probability that your call is answered
during the fifth minute.

It’s clear that for (the agent can’t answer before you place the call).
For we are told to use an exponentially decreasing function, that is, a function of
the form , where A and c are positive constants. Thus

We use condition 2 to determine the value of A:

Therefore, and so . Thus, every exponential density function has the form

A typical graph is shown in Figure 2.

A v e r a g e  V a l u e s

Suppose you’re waiting for a company to answer your phone call and you wonder how
long, on average, you can expect to wait. Let be the corresponding density function,
where t is measured in minutes, and think of a sample of N people who have called this
company. Most likely, none of them had to wait more than an hour, so let’s restrict our
attention to the interval . Let’s divide that interval into n intervals of length 
and endpoints . . . . (Think of as lasting a minute, or half a minute, or 10 sec-
onds, or even a second.) The probability that somebody’s call gets answered during the
time period from to is the area under the curve from to , which is
approximately equal to . (This is the area of the approximating rectangle in Fig-
ure 3, where is the midpoint of the interval.)

Since the long-run proportion of calls that get answered in the time period from to
is , we expect that, out of our sample of N callers, the number whose call was

answered in that time period is approximately and the time that each waited is
about . Therefore, the total time they waited is the product of these numbers: approxi-
mately . Adding over all such intervals, we get the approximate total of every-
body’s waiting times:
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If we now divide by the number of callers N, we get the approximate average waiting time:

We recognize this as a Riemann sum for the function . As the time interval shrinks
(that is, and ), this Riemann sum approaches the integral

This integral is called the mean waiting time.
In general, the mean of any probability density function is defined to be

The mean can be interpreted as the long-run average value of the random variable X. It can
also be interpreted as a measure of centrality of the probability density function.

The expression for the mean resembles an integral we have seen before. If is the
region that lies under the graph of , we know from Formula 8.3.8 that the x-coordinate
of the centroid of is

because of Equation 2. So a thin plate in the shape of balances at a point on the vertical
line . (See Figure 4.)

EXAMPLE 3 Find the mean of the exponential distribution of Example 2:

SOLUTION According to the definition of a mean, we have

To evaluate this integral we use integration by parts, with and :

The mean is , so we can rewrite the probability density function as
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EXAMPLE 4 Suppose the average waiting time for a customer’s call to be answered by a
company representative is five minutes.
(a) Find the probability that a call is answered during the first minute.
(b) Find the probability that a customer waits more than five minutes to be answered.

SOLUTION
(a) We are given that the mean of the exponential distribution is min and so,
from the result of Example 3, we know that the probability density function is 

Thus, the probability that a call is answered during the first minute is

So about 18% of customers’ calls are answered during the first minute.

(b) The probability that a customer waits more than five minutes is

About 37% of customers wait more than five minutes before their calls are answered.

Notice the result of Example 4(b): Even though the mean waiting time is 5 minutes,
only 37% of callers wait more than 5 minutes. The reason is that some callers have to wait
much longer (maybe 10 or 15 minutes), and this brings up the average.

Another measure of centrality of a probability density function is the median. That is a
number m such that half the callers have a waiting time less than m and the other callers
have a waiting time longer than m. In general, the median of a probability density func-
tion is the number m such that

This means that half the area under the graph of lies to the right of m. In Exercise 7 you
are asked to show that the median waiting time for the company described in Example 4
is approximately 3.5 minutes.
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N o r m a l  D i s t r i b u t i o n s

Many important random phenomena—such as test scores on aptitude tests, heights and
weights of individuals from a homogeneous population, annual rainfall in a given loca-
tion—are modeled by a normal distribution. This means that the probability density
function of the random variable X is a member of the family of functions

You can verify that the mean for this function is . The positive constant is called the
standard deviation; it measures how spread out the values of X are. From the bell-shaped
graphs of members of the family in Figure 5, we see that for small values of the values
of X are clustered about the mean, whereas for larger values of the values of X are more
spread out. Statisticians have methods for using sets of data to estimate and .

The factor is needed to make a probability density function. In fact, it can
be verified using the methods of multivariable calculus that

EXAMPLE 5 Intelligence Quotient (IQ) scores are distributed normally with mean 
100 and standard deviation 15. (Figure 6 shows the corresponding probability density
function.)
(a) What percentage of the population has an IQ score between 85 and 115?
(b) What percentage of the population has an IQ above 140?

SOLUTION
(a) Since IQ scores are normally distributed, we use the probability density function
given by Equation 3 with and :

Recall from Section 7.5 that the function doesn’t have an elementary antideriva-
tive, so we can’t evaluate the integral exactly. But we can use the numerical integration
capability of a calculator or computer (or the Midpoint Rule or Simpson’s Rule) to esti-
mate the integral. Doing so, we find that

So about 68% of the population has an IQ between 85 and 115, that is, within one stan-
dard deviation of the mean.
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(b) The probability that the IQ score of a person chosen at random is more than 140 is

To avoid the improper integral we could approximate it by the integral from 140 to 200.
(It’s quite safe to say that people with an IQ over 200 are extremely rare.) Then

Therefore, about 0.4% of the population has an IQ over 140.

P�X 	 140�  y
200
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1

15s2�
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�

140
 

1

15s2�
 e��x�100�2�450 dx

(b) Use the graph to find the following probabilities:
(i) (ii)

(c) Calculate the mean.

7. Show that the median waiting time for a phone call to the com-
pany described in Example 4 is about 3.5 minutes.

8. (a) A type of lightbulb is labeled as having an average lifetime
of 1000 hours. It’s reasonable to model the probability of
failure of these bulbs by an exponential density function
with mean . Use this model to find the probability
that a bulb
(i) fails within the first 200 hours,

(ii) burns for more than 800 hours.
(b) What is the median lifetime of these lightbulbs?

9. The manager of a fast-food restaurant determines that the 
average time that her customers wait for service is 2.5 minutes.
(a) Find the probability that a customer has to wait for more

than 4 minutes.
(b) Find the probability that a customer is served within the

first 2 minutes.
(c) The manager wants to advertise that anybody who isn’t

served within a certain number of minutes gets a free ham-
burger. But she doesn’t want to give away free hamburgers
to more than 2% of her customers. What should the adver-
tisement say?

10. According to the National Health Survey, the heights of adult
males in the United States are normally distributed with mean
69.0 inches and standard deviation 2.8 inches.
(a) What is the probability that an adult male chosen at random

is between 65 inches and 73 inches tall?
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y=ƒ
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y
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0.1
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P�3 � X � 8�P�X � 3�
Let be the probability density function for the lifetime of a
manufacturer’s highest quality car tire, where is measured in
miles. Explain the meaning of each integral.

(a) (b)

2. Let be the probability density function for the time it takes
you to drive to school in the morning, where is measured in
minutes. Express the following probabilities as integrals.
(a) The probability that you drive to school in less than 

15 minutes
(b) The probability that it takes you more than half an hour to

get to school

3. Let for and for all
other values of .
(a) Verify that is a probability density function.
(b) Find .

4. Let if and if 
or .
(a) For what value of is a probability density function?
(b) For that value of , find .
(c) Find the mean.

A spinner from a board game randomly indicates a real number
between 0 and 10. The spinner is fair in the sense that it indi-
cates a number in a given interval with the same probability as
it indicates a number in any other interval of the same length.
(a) Explain why the function

is a probability density function for the spinner’s values.
(b) What does your intuition tell you about the value of the

mean? Check your guess by evaluating an integral.

(a) Explain why the function whose graph is shown is a proba-
bility density function.
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1. (a) How is the length of a curve defined?
(b) Write an expression for the length of a smooth curve given

by , .
(c) What if is given as a function of ?

2. (a) Write an expression for the surface area of the surface
obtained by rotating the curve , , about
the -axis.

(b) What if is given as a function of ?
(c) What if the curve is rotated about the -axis?

3. Describe how we can find the hydrostatic force against a verti-
cal wall submersed in a fluid.

4. (a) What is the physical significance of the center of mass of a
thin plate?

(b) If the plate lies between and , where
, write expressions for the coordinates of the

center of mass.

5. What does the Theorem of Pappus say?

a � x � b
y � 0y � f �x�

y
yx

x
a � x � by � f �x�

yx
a � x � by � f �x�

6. Given a demand function , explain what is meant by the
consumer surplus when the amount of a commodity currently
available is and the current selling price is . Illustrate with a
sketch.

7. (a) What is the cardiac output of the heart?
(b) Explain how the cardiac output can be measured by the dye

dilution method.

8. What is a probability density function? What properties does
such a function have?

9. Suppose is the probability density function for the weight
of a female college student, where is measured in pounds.
(a) What is the meaning of the integral ?
(b) Write an expression for the mean of this density function.
(c) How can we find the median of this density function?

10. What is a normal distribution? What is the significance of the
standard deviation?
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15. The hydrogen atom is composed of one proton in the nucleus
and one electron, which moves about the nucleus. In the quan-
tum theory of atomic structure, it is assumed that the electron
does not move in a well-defined orbit. Instead, it occupies a
state known as an orbital, which may be thought of as a
“cloud” of negative charge surrounding the nucleus. At the
state of lowest energy, called the ground state, or 1s-orbital,
the shape of this cloud is assumed to be a sphere centered at
the nucleus. This sphere is described in terms of the probability
density function

where is the Bohr radius . The 
integral

gives the probability that the electron will be found within the
sphere of radius meters centered at the nucleus.
(a) Verify that is a probability density function.
(b) Find . For what value of does have its

maximum value?

; (c) Graph the density function.
(d) Find the probability that the electron will be within the

sphere of radius centered at the nucleus.
(e) Calculate the mean distance of the electron from the

nucleus in the ground state of the hydrogen atom.
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(b) What percentage of the adult male population is more than
6 feet tall?

The “Garbage Project” at the University of Arizona reports 
that the amount of paper discarded by households per week is
normally distributed with mean 9.4 lb and standard deviation
4.2 lb. What percentage of households throw out at least 10 lb
of paper a week?

12. Boxes are labeled as containing 500 g of cereal. The machine
filling the boxes produces weights that are normally distributed
with standard deviation 12 g.
(a) If the target weight is 500 g, what is the probability that the

machine produces a box with less than 480 g of cereal?
(b) Suppose a law states that no more than 5% of a manufac-

turer’s cereal boxes can contain less than the stated weight
of 500 g. At what target weight should the manufacturer set
its filling machine?

13. For any normal distribution, find the probability that the
random variable lies within two standard deviations of the
mean.

14. The standard deviation for a random variable with probability
density function and mean is defined by

Find the standard deviation for an exponential density function
with mean .
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1–2 |||| Find the length of the curve.

1. ,

2. ,

3. (a) Find the length of the curve

(b) Find the area of the surface obtained by rotating the curve
in part (a) about the -axis.

4. (a) The curve , , is rotated about the -axis.
Find the area of the resulting surface.

(b) Find the area of the surface obtained by rotating the curve
in part (a) about the -axis.

5. Use Simpson’s Rule with to estimate the length of the
curve , .

6. Use Simpson’s Rule with to estimate the area of the 
surface obtained by rotating the curve in Exercise 5 about the 
-axis.

7. Find the length of the curve

8. Find the area of the surface obtained by rotating the curve in
Exercise 7 about the -axis.

9. A gate in an irrigation canal is constructed in the form of a
trapezoid 3 ft wide at the bottom, 5 ft wide at the top, and 2 ft
high. It is placed vertically in the canal, with the water extend-
ing to its top. Find the hydrostatic force on one side of the gate.

10. A trough is filled with water and its vertical ends have the
shape of the parabolic region in the figure. Find the hydrostatic
force on one end of the trough.

11–12 |||| Find the centroid of the region bounded by the given
curves.

11. ,

12. , , ,

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■
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13–14 |||| Find the centroid of the region shown.

13. 14.

15. Find the volume obtained when the circle of radius 1 with cen-
ter is rotated about the -axis.

16. Use the Theorem of Pappus and the fact that the volume of a
sphere of radius is to find the centroid of the semi-
circular region bounded by the curve and 
the -axis.

17. The demand function for a commodity is given by
. Find the consumer surplus 

when the sales level is 100.

18. After a 6-mg injection of dye into a heart, the readings of 
dye concentration at two-second intervals are as shown in 
the table. Use Simpson’s Rule to estimate the cardiac output.

19. (a) Explain why the function

is a probability density function.
(b) Find .
(c) Calculate the mean. Is the value what you would expect?

20. Lengths of human pregnancies are normally distributed 
with mean 268 days and standard deviation 15 days. What per-
centage of pregnancies last between 250 days and 280 days?

21. The length of time spent waiting in line at a certain bank 
is modeled by an exponential density function with mean
8 minutes.
(a) What is the probability that a customer is served in the first

3 minutes?
(b) What is the probability that a customer has to wait more

than 10 minutes?
(c) What is the median waiting time?
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1. Find the area of the region .

2. Find the centroid of the region enclosed by the loop of the curve .

3. If a sphere of radius is sliced by a plane whose distance from the center of the sphere is ,
then the sphere is divided into two pieces called segments of one base. The corresponding
surfaces are called spherical zones of one base.
(a) Determine the surface areas of the two spherical zones indicated in the figure.
(b) Determine the approximate area of the Arctic Ocean by assuming that it is approximately

circular in shape, with center at the North Pole and “circumference” at north latitude.
Use mi for the radius of Earth.

(c) A sphere of radius is inscribed in a right circular cylinder of radius . Two planes per-
pendicular to the central axis of the cylinder and a distance apart cut off a spherical zone
of two bases on the sphere. Show that the surface area of the spherical zone equals the
surface area of the region that the two planes cut off on the cylinder.

(d) The Torrid Zone is the region on the surface of Earth that is between the Tropic of Cancer
( north latitude) and the Tropic of Capricorn ( south latitude). What is the
area of the Torrid Zone?

4. (a) Show that an observer at height above the north pole of a sphere of radius can see a
part of the sphere that has area

(b) Two spheres with radii and are placed so that the distance between their centers is ,
where . Where should a light be placed on the line joining the centers of the
spheres in order to illuminate the largest total surface?

5. Suppose that the density of seawater, , varies with the depth below the surface.
(a) Show that the hydrostatic pressure is governed by the differential equation

where is the acceleration due to gravity. Let and be the pressure and density at
. Express the pressure at depth as an integral.

(b) Suppose the density of seawater at depth is given by , where is a positive
constant. Find the total force, expressed as an integral, exerted on a vertical circular port-
hole of radius whose center is located at a distance below the surface.

6. The figure shows a semicircle with radius 1, horizontal diameter , and tangent lines at 
and . At what height above the diameter should the horizontal line be placed so as to mini-
mize the shaded area?

7. Let be a pyramid with a square base of side and suppose that is a sphere with its center
on the base of and is tangent to all eight edges of . Find the height of . Then find the
volume of the intersection of and . PS
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8. Consider a flat metal plate to be placed vertically under water with its top 2 m below the
surface of the water. Determine a shape for the plate so that if the plate is divided into any
number of horizontal strips of equal height, the hydrostatic force on each strip is the same.

9. A uniform disk with radius 1 m is to be cut by a line so that the center of mass of the smaller
piece lies halfway along a radius.  How close to the center of the disk should the cut be made?
(Express your answer correct to two decimal places.)

10. A triangle with area is cut from a corner of a square with side 10 cm, as shown in the
figure. If the centroid of the remaining region is 4 cm from the right side of the square, how
far is it from the bottom of the square?

11. In a famous 18th-century problem, known as Buffon’s needle problem, a needle of length is
dropped onto a flat surface (for example, a table) on which parallel lines units apart, ,
have been drawn. The problem is to determine the probability that the needle will come to rest
intersecting one of the lines. Assume that the lines run east-west, parallel to the -axis in a
rectangular coordinate system (as in the figure). Let be the distance from the “southern” end
of the needle to the nearest line to the north. (If the needle’s southern end lies on a line, let

. If the needle happens to lie east-west, let the “western” end be the “southern” end.) Let
be the angle that the needle makes with a ray extending eastward from the “southern” end.

Then and . Note that the needle intersects one of the lines only when
. Now, the total set of possibilities for the needle can be identified with the rectan-

gular region , , and the proportion of times that the needle intersects a
line is the ratio

This ratio is the probability that the needle intersects a line. Find the probability that the 
needle will intersect a line if . What if ?

12. If the needle in Problem 11 has length , it’s possible for the needle to intersect more
than one line.
(a) If , find the probability that a needle of length 7 will intersect at least one line.

[Hint: Proceed as in Problem 11. Define as before; then the total set of possibilities for
the needle can be identified with the same rectangular region , .
What portion of the rectangle corresponds to the needle intersecting a line?]

(b) If , find the probability that a needle of length 7 will intersect two lines.
(c) If , find a general formula for the probability that the needle intersects 

three lines.
2L 
 h 	 3L
L � 4

0 	 � 	 �0 	 y 	 L
y

L � 4

h � L

h � L�2h � L

area under y � h sin �

area of rectangle

0 	 � 	 �0 	 y 	 L
y 
 h sin �

0 	 � 	 �0 	 y 	 L
�
y � 0

y
x

L � hL
h
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Differential Equations

By analyzing pairs of differ-

ential equations we gain

insight into population

cycles of predators and

prey, such as the Canada

lynx and snowshoe hare.
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Perhaps the most important of all the applications of cal-

culus is to differential equations. When physical scientists

or social scientists use calculus, more often than not it is to

analyze a differential equation that has arisen in the pro-

cess of modeling some phenomenon that they are studying.

Although it is often impossible to find an explicit formula for the solution of a dif-

ferential equation, we will see that graphical and numerical approaches provide the

needed information.

|||| 9.1 M o d e l i n g  w i t h  D i f f e r e n t i a l  E q u a t i o n s

In describing the process of modeling in Section 1.2, we talked about formulating a math-
ematical model of a real-world problem either through intuitive reasoning about the phe-
nomenon or from a physical law based on evidence from experiments. The mathematical
model often takes the form of a differential equation, that is, an equation that contains an
unknown function and some of its derivatives. This is not surprising because in a real-
world problem we often notice that changes occur and we want to predict future behavior
on the basis of how current values change. Let’s begin by examining several examples of
how differential equations arise when we model physical phenomena.

M o d e l s  o f  P o p u l a t i o n  G r o w t h

One model for the growth of a population is based on the assumption that the population
grows at a rate proportional to the size of the population. That is a reasonable assumption
for a population of bacteria or animals under ideal conditions (unlimited environment,
adequate nutrition, absence of predators, immunity from disease).

Let’s identify and name the variables in this model:

The rate of growth of the population is the derivative . So our assumption that the
rate of growth of the population is proportional to the population size is written as the
equation

where k is the proportionality constant. Equation 1 is our first model for population
growth; it is a differential equation because it contains an unknown function P and its
derivative .

Having formulated a model, let’s look at its consequences. If we rule out a population
of 0, then for all t. So, if , then Equation 1 shows that for all t.
This means that the population is always increasing. In fact, as increases, Equation 1
shows that becomes larger. In other words, the growth rate increases as the popula-
tion increases.

dP�dt
P�t�

P��t� � 0k � 0P�t� � 0

dP�dt

dP

dt
� kP1

dP�dt

 P � the number of individuals in the population �the dependent variable�

 t � time �the independent variable�

|||| Now is a good time to read (or reread) the
discussion of mathematical modeling on page 25.
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Let’s try to think of a solution of Equation 1. This equation asks us to find a function
whose derivative is a constant multiple of itself. We know that exponential functions have
that property. In fact, if we let , then

Thus, any exponential function of the form is a solution of Equation 1. When
we study this equation in detail in Section 9.4, we will see that there is no other solution.

Allowing C to vary through all the real numbers, we get the family of solutions
whose graphs are shown in Figure 1. But populations have only positive 

values and so we are interested only in the solutions with . And we are probably con-
cerned only with values of t greater than the initial time . Figure 2 shows the physi-
cally meaningful solutions. Putting , we get , so the constant C
turns out to be the initial population, .

Equation 1 is appropriate for modeling population growth under ideal conditions, but
we have to recognize that a more realistic model must reflect the fact that a given envi-
ronment has limited resources. Many populations start by increasing in an exponential
manner, but the population levels off when it approaches its carrying capacity K (or
decreases toward K if it ever exceeds K ). For a model to take into account both trends, we
make two assumptions:

■■ if P is small (Initially, the growth rate is proportional to P.)

■■ if (P decreases if it ever exceeds K.)

A simple expression that incorporates both assumptions is given by the equation 

Notice that if P is small compared with K, then is close to 0 and so . If
, then is negative and so .

Equation 2 is called the logistic differential equation and was proposed by the Dutch
mathematical biologist Pierre-François Verhulst in the 1840s as a model for world popu-
lation growth. We will develop techniques that enable us to find explicit solutions of the
logistic equation in Section 9.5, but for now we can deduce qualitative characteristics of
the solutions directly from Equation 2. We first observe that the constant functions

and are solutions because, in either case, one of the factors on the right
side of Equation 2 is zero. (This certainly makes physical sense: If the population is ever
either 0 or at the carrying capacity, it stays that way.) These two constant solutions are
called equilibrium solutions.

If the initial population lies between 0 and K, then the right side of Equation 2 is
positive, so and the population increases. But if the population exceeds the car-
rying capacity , then is negative, so and the population
decreases. Notice that, in either case, if the population approaches the carrying capacity

, then , which means the population levels off. So we expect that the
solutions of the logistic differential equation have graphs that look something like the ones
in Figure 3. Notice that the graphs move away from the equilibrium solution and
move toward the equilibrium solution .P � K

P � 0

dP�dt l 0�P l K �

dP�dt � 01 � P�K�P � K �
dP�dt � 0

P�0�

P�t� � KP�t� � 0

dP�dt � 01 � P�KP � K
dP�dt � kPP�K

dP

dt
� kP�1 �

P

K�2

P � K
dP

dt
� 0

dP

dt
� kP

P�0�
P�0� � Cek�0� � Ct � 0

t � 0
C � 0

P�t� � Cekt

P�t� � Cekt

P��t� � C�kekt� � k�Cekt� � kP�t�

P�t� � Cekt

t

P

FIGURE 1
The family of solutions of dP/dt=kP

0 t

P

FIGURE 2
The family of solutions P(t)=Cekt

with C>0 and t˘0

FIGURE 3
Solutions of the logistic equation

t

P

0

P =K

P =0

equilibrium
solutions
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A  M o d e l  f o r  t h e  M o t i o n  o f  a  S p r i n g

Let’s now look at an example of a model from the physical sciences. We consider the
motion of an object with mass m at the end of a vertical spring (as in Figure 4). In Sec-
tion 6.4 we discussed Hooke’s Law, which says that if the spring is stretched (or com-
pressed) x units from its natural length, then it exerts a force that is proportional to x :

where k is a positive constant (called the spring constant). If we ignore any external resist-
ing forces (due to air resistance or friction) then, by Newton’s Second Law (force equals
mass times acceleration), we have

This is an example of what is called a second-order differential equation because it
involves second derivatives. Let’s see what we can guess about the form of the solution
directly from the equation. We can rewrite Equation 3 in the form

which says that the second derivative of x is proportional to x but has the opposite sign. We
know two functions with this property, the sine and cosine functions. In fact, it turns 
out that all solutions of Equation 3 can be written as combinations of certain sine 
and cosine functions (see Exercise 3). This is not surprising; we expect the spring to oscil-
late about its equilibrium position and so it is natural to think that trigonometric functions
are involved.

G e n e r a l  D i f f e r e n t i a l  E q u a t i o n s

In general, a differential equation is an equation that contains an unknown function and
one or more of its derivatives. The order of a differential equation is the order of the high-
est derivative that occurs in the equation. Thus, Equations 1 and 2 are first-order equations
and Equation 3 is a second-order equation. In all three of those equations the independent
variable is called t and represents time, but in general the independent variable doesn’t
have to represent time. For example, when we consider the differential equation

it is understood that y is an unknown function of x.
A function is called a solution of a differential equation if the equation is satisfied

when and its derivatives are substituted into the equation. Thus, is a solution of
Equation 4 if

for all values of x in some interval.
When we are asked to solve a differential equation we are expected to find all possible

solutions of the equation. We have already solved some particularly simple differential 

f ��x� � xf �x�

fy � f �x�
f

y� � xy4

d 2x

dt 2 � �
k

m
 x

m 
d 2x

dt 2 � �kx3

restoring force � �kx

FIGURE 4
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(c) Is there an equilibrium solution?
(d) If the initial charge is , use the direction field to

sketch the solution curve.
(e) If the initial charge is , use Euler’s method with

step size 0.1 to estimate the charge after half a second.

28. In Exercise 14 in Section 9.1 we considered a cup of cof-
fee in a room. Suppose it is known that the coffee cools 20
C

95
C

Q�0� � 0 C

Q�0� � 0 C
at a rate of per minute when its temperature is .
(a) What does the differential equation become in this case?
(b) Sketch a direction field and use it to sketch the solution

curve for the initial-value problem. What is the limiting
value of the temperature?

(c) Use Euler’s method with step size minutes to
estimate the temperature of the coffee after 10 minutes.

h � 2

70
C1
C

|||| 9.3 S e p a r a b l e  E q u a t i o n s

We have looked at first-order differential equations from a geometric point of view (direc-
tion fields) and from a numerical point of view (Euler’s method). What about the symbolic
point of view? It would be nice to have an explicit formula for a solution of a differential
equation. Unfortunately, that is not always possible. But in this section we examine a cer-
tain type of differential equation that can be solved explicitly.

A separable equation is a first-order differential equation in which the expression for
can be factored as a function of x times a function of y. In other words, it can be

written in the form

The name separable comes from the fact that the expression on the right side can be “sep-
arated” into a function of and a function of . Equivalently, if , we could write

where . To solve this equation we rewrite it in the differential form

so that all ’s are on one side of the equation and all ’s are on the other side. Then we inte-
grate both sides of the equation:

Equation 2 defines implicitly as a function of . In some cases we may be able to solve
for in terms of .

We use the Chain Rule to justify this procedure: If and satisfy (2), then

so

and

Thus, Equation 1 is satisfied.

h�y� 
dy

dx
� t�x�

 
d

dy
 �y h�y� dy� dy

dx
 � t�x�

 
d

dx
 �y h�y� dy� �

d

dx
 �y t�x� dx�

th
xy

xy

y h�y� dy � y t�x� dx2

xy

h�y� dy � t�x� dx

h�y� � 1�f �y�

dy

dx
�

t�x�
h�y�

1

f �y� � 0yx

dy

dx
� t�x�f �y�

dy�dx

|||| The technique for solving separable differen-
tial equations was first used by James Bernoulli
(in 1690) in solving a problem about pendulums
and by Leibniz (in a letter to Huygens in 1691).
John Bernoulli explained the general method in a
paper published in 1694.
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EXAMPLE 1

(a) Solve the differential equation .

(b) Find the solution of this equation that satisfies the initial condition .

SOLUTION
(a) We write the equation in terms of differentials and integrate both sides:

where is an arbitrary constant. (We could have used a constant on the left side and
another constant on the right side. But then we could combine these constants by
writing .)

Solving for , we get

We could leave the solution like this or we could write it in the form

where . (Since is an arbitrary constant, so is .)

(b) If we put in the general solution in part (a), we get . To satisfy the
initial condition , we must have and so .

Thus, the solution of the initial-value problem is

EXAMPLE 2 Solve the differential equation .

SOLUTION Writing the equation in differential form and integrating both sides, we have

where is a constant. Equation 3 gives the general solution implicitly. In this case it’s
impossible to solve the equation to express explicitly as a function of .

EXAMPLE 3 Solve the equation .

SOLUTION First we rewrite the equation using Leibniz notation:

dy

dx
� x 2y

y� � x 2y

xy
C

 y 2 � sin y � 2x 3 � C3

 y �2y � cos y�dy � y 6x 2 dx

 �2y � cos y�dy � 6x 2 dx

dy

dx
�

6x 2

2y � cos y

y � s
3 x 3 � 8

K � 8s
3 K � 2y�0� � 2

y�0� � s
3 K x � 0

KCK � 3C

y � s
3 x 3 � K 

y � s
3 x 3 � 3C 

y
C � C2 � C1

C2

C1C

1
3 y 3 � 1

3 x 3 � C

 y y 2dy � y x 2dx

y 2dy � x 2dx

y�0� � 2

dy

dx
�

x 2

y 2

|||| Some computer algebra systems can plot
curves defined by implicit equations. Figure 2
shows the graphs of several members of the
family of solutions of the differential equation 
in Example 2. As we look at the curves from left
to right, the values of are , , , , , ,
and .�3

�2�10123C

|||| Figure 1 shows graphs of several members
of the family of solutions of the differential 
equation in Example 1. The solution of the initial-
value problem in part (b) is shown in red.

3
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FIGURE 1
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FIGURE 2
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If , we can rewrite it in differential notation and integrate:

This equation defines implicitly as a function of . But in this case we can solve
explicitly for as follows:

so

We can easily verify that the function is also a solution of the given differential
equation. So we can write the general solution in the form

where is an arbitrary constant ( , or , or ).

EXAMPLE 4 In Section 9.2 we modeled the current in the electric circuit shown in
Figure 5 by the differential equation

Find an expression for the current in a circuit where the resistance is , the induc-
tance is 4 H, a battery gives a constant voltage of 60 V, and the switch is turned on when

. What is the limiting value of the current?

SOLUTION With L � 4, R � 12, and , the equation becomes

 4 
dI

dt
� 12I � 60

E�t� � 60

t � 0

12 �

L 
dI

dt
� RI � E�t�

I�t�

6

_6

_2 2

FIGURE 4FIGURE 3

2

_4

0 x

y

1 2_1_2

4

6

_2

_6

A � 0A � �eCA � eCA

y � Aex 3�3

y � 0

y � �eCex 3�3

 � y � � e ln � y � � e �x 3�3��C � eCex 3�3

y
xy

 ln � y � �
x 3

3
� C

 y 
dy

y
� y x 2 dx

 
dy

y
� x 2 dx y � 0

y � 0|||| If a solution is a function that satisfies
for some , it follows from a 

uniqueness theorem for solutions of differential
equations that for all .xy�x� � 0

xy�x� � 0
y

|||| Figure 3 shows a direction field for the differ-
ential equation in Example 3. Compare it with
Figure 4, in which we use the equation

to graph solutions for several values
of . If you use the direction field to sketch 
solution curves with -intercepts , , , ,
and , they will resemble the curves in
Figure 4.

�2
�1125y

A
y � Ae x 3/3

R

E

switch

L

FIGURE 5
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or

and the initial-value problem is

We recognize this equation as being separable, and we solve it as follows:

Since , we have , so A � 15 and the solution is

The limiting current, in amperes, is

O r t h o g o n a l  T r a j e c t o r i e s

An orthogonal trajectory of a family of curves is a curve that intersects each curve of the
family orthogonally, that is, at right angles (see Figure 7). For instance, each member of
the family of straight lines through the origin is an orthogonal trajectory of the
family of concentric circles with center the origin (see Figure 8). We say that
the two families are orthogonal trajectories of each other.

EXAMPLE 5 Find the orthogonal trajectories of the family of curves , where is
an arbitrary constant.

SOLUTION The curves form a family of parabolas whose axis of symmetry is 
the -axis. The first step is to find a single differential equation that is satisfied by all x

x � ky 2

kx � ky 2

x

y

FIGURE 8

orthogonal
trajectory

FIGURE 7

x 2 � y 2 � r 2
y � mx

 � 5 � 0 � 5

 lim
t l �

 I�t� � lim
t l �

 �5 � 5e�3t � � 5 � 5 lim
t l �

 e�3t

I�t� � 5 � 5e�3t

5 �
1
3 A � 0I�0� � 0

 I � 5 �
1
3 Ae�3t

 15 � 3I � �e�3Ce�3t � Ae�3t

 � 15 � 3I � � e�3�t�C�

 � 1
3 ln � 15 � 3I � � t � C

�15 � 3I � 0�y 
dI

15 � 3I
� y dt

I�0� � 0
dI

dt
� 15 � 3I

dI

dt
� 15 � 3I

|||| Figure 6 shows how the solution in
Example 4 (the current) approaches its limiting
value. Comparison with Figure 11 in Section 9.2
shows that we were able to draw a fairly accu-
rate solution curve from the direction field.

6

0 2.5
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FIGURE 6
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members of the family. If we differentiate , we get

This differential equation depends on , but we need an equation that is valid for all
values of simultaneously. To eliminate we note that, from the equation of the given
general parabola , we have and so the differential equation can be 
written as

or

This means that the slope of the tangent line at any point on one of the parabolas is
. On an orthogonal trajectory the slope of the tangent line must be the nega-

tive reciprocal of this slope. Therefore, the orthogonal trajectories must satisfy the differ-
ential equation

This differential equation is separable, and we solve it as follows:

where is an arbitrary positive constant. Thus, the orthogonal trajectories are the family
of ellipses given by Equation 4 and sketched in Figure 9.

Orthogonal trajectories occur in various branches of physics. For example, in an elec-
trostatic field the lines of force are orthogonal to the lines of constant potential. Also, the
streamlines in aerodynamics are orthogonal trajectories of the velocity-equipotential
curves.

M i x i n g  P r o b l e m s

A typical mixing problem involves a tank of fixed capacity filled with a thoroughly mixed
solution of some substance, such as salt. A solution of a given concentration enters the tank
at a fixed rate and the mixture, thoroughly stirred, leaves at a fixed rate, which may differ
from the entering rate. If denotes the amount of substance in the tank at time t, then

is the rate at which the substance is being added minus the rate at which it is being
removed. The mathematical description of this situation often leads to a first-order sepa-
rable differential equation. We can use the same type of reasoning to model a variety of
phenomena: chemical reactions, discharge of pollutants into a lake, injection of a drug into
the bloodstream.
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EXAMPLE 6 A tank contains 20 kg of salt dissolved in 5000 L of water. Brine that con-
tains 0.03 kg of salt per liter of water enters the tank at a rate of 25 L�min. The solution
is kept thoroughly mixed and drains from the tank at the same rate. How much salt
remains in the tank after half an hour?

SOLUTION Let be the amount of salt (in kilograms) after minutes. We are given that
and we want to find . We do this by finding a differential equation satis-

fied by . Note that is the rate of change of the amount of salt, so

where (rate in) is the rate at which salt enters the tank and (rate out) is the rate at which
salt leaves the tank. We have

The tank always contains 5000 L of liquid, so the concentration at time is 
(measured in kilograms per liter). Since the brine flows out at a rate of 25 L�min, we
have

Thus, from Equation 5 we get

Solving this separable differential equation, we obtain

Since , we have , so

Therefore

Since is continuous and and the right side is never 0, we deduce that
is always positive. Thus, and so

The amount of salt after 30 min is

y�30� � 150 � 130e�30�200 � 38.1 kg

y�t� � 150 � 130e�t�200

� 150 � y � � 150 � y150 � y�t�
y�0� � 20y�t�

� 150 � y � � 130e�t�200

�ln � 150 � y � �
t

200
� ln 130

�ln 130 � Cy�0� � 20

 �ln � 150 � y � �
t

200
� C

 y 
dy

150 � y
� y 

dt

200

dy

dt
� 0.75 �

 y�t�
200

�
150 � y�t�

200

rate out � �  y�t�
5000

 
kg

L ��25 
L

min� �
y�t�
200

 
kg

min

y�t��5000t

rate in � �0.03 
kg

L ��25 
L

min� � 0.75 
kg

min

dy

dt
� �rate in� � �rate out�5

dy�dty�t�
y�30�y�0� � 20

ty�t�

|||| Figure 10 shows the graph of the function
of Example 6. Notice that, as time goes by,

the amount of salt approaches 150 kg.
y�t�

t

y

0 200 400
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100
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FIGURE 10
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24. Solve the equation and graph several
members of the family of solutions (if your CAS does implicit
plots). How does the solution curve change as the constant 
varies?

25–26 ||||

(a) Use a computer algebra system to draw a direction field 
for the differential equation. Get a printout and use it to sketch
some solution curves without solving the differential equation.

(b) Solve the differential equation.
(c) Use the CAS to draw several members of the family of solutions

obtained in part (b). Compare with the curves from part (a).

25. 26.

; 27–30 |||| Find the orthogonal trajectories of the family of curves.
Use a graphing device to draw several members of each family on
a common screen.

27. 28.

30.

31. Solve the initial-value problem in Exercise 27 in Section 9.2 to
find an expression for the charge at time . Find the limiting
value of the charge.

32. In Exercise 28 in Section 9.2 we discussed a differential equa-
tion that models the temperature of a cup of coffee in a

room. Solve the differential equation to find an expression
for the temperature of the coffee at time .

In Exercise 13 in Section 9.1 we formulated a model for learn-
ing in the form of the differential equation

where measures the performance of someone learning a
skill after a training time , is the maximum level of per-
formance, and is a positive constant. Solve this differential
equation to find an expression for . What is the limit of this
expression?

34. In an elementary chemical reaction, single molecules of 
two reactants A and B form a molecule of the product C:

. The law of mass action states that the rate 
of reaction is proportional to the product of the concentrations
of A and B:

(See Example 4 in Section 3.3.) Thus, if the initial concentra-
tions are A moles�L and B moles�L and we write 	 � b
	 � a


d 
C	
dt

� k 
A	
B	

A � B l C

P�t�
k

Mt
P�t�

dP

dt
� k�M � P�

33.

t
20�C

95�C

t

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

y � ke�xy � �x � k��129.

x 2 � y 2 � ky � kx 2

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

y� � x 2�yy� � 1�y

CAS

C

y� � xsx 2 � 1��ye y �CAS1–10 |||| Solve the differential equation.

1. 2.

3. 4.

5. 6.

7. 8.

9.

11–18 |||| Find the solution of the differential equation that satisfies
the given initial condition.

11. ,

12. ,

13. ,

14. ,

,

16. ,

17. , ,

18. ,

19. Find an equation of the curve that satisfies and
whose -intercept is 7.

20. Find an equation of the curve that passes through the point
and whose slope at is .

21. (a) Solve the differential equation .

; (b) Solve the initial-value problem , ,
and graph the solution.

(c) Does the initial-value problem , ,
have a solution? Explain.

; 22. Solve the equation and graph several mem-
bers of the family of solutions. How does the solution curve
change as the constant varies?

Solve the initial-value problem , ,
and graph the solution (if your CAS does implicit plots).

y�0� � ��2y� � �sin x��sin y23.CAS

C

e�yy� � cos x � 0

y�0� � 2y� � 2xs1 � y 2
 

y�0� � 0y� � 2xs1 � y 2
 

y� � 2xs1 � y 2
 

y 2�x 3�x, y��1, 1�

y
dy�dx � 4x 3y
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C , then we have

(a) Assuming that , find as a function of . Use the fact
that the initial concentration of C is 0.

(b) Find assuming that . How does this expression
for simplify if it is known that after 
20 seconds?

35. In contrast to the situation of Exercise 34, experiments show
that the reaction satisfies the rate law

and so for this reaction the differential equation becomes

where and and are the initial concentrations of
hydrogen and bromine.
(a) Find as a function of in the case where . Use the

fact that .
(b) If , find as a function of . Hint: In performing the

integration, make the substitution 

36. A sphere with radius 1 m has temperature . It lies inside a
concentric sphere with radius 2 m and temperature . The
temperature at a distance from the common center of the
spheres satisfies the differential equation

If we let , then satisfies a first-order differential
equation. Solve it to find an expression for the temperature 
between the spheres.

A glucose solution is administered intravenously into the
bloodstream at a constant rate . As the glucose is added, it is
converted into other substances and removed from the blood-
stream at a rate that is proportional to the concentration at that
time. Thus, a model for the concentration of the glu-
cose solution in the bloodstream is

where is a positive constant.
(a) Suppose that the concentration at time is .

Determine the concentration at any time by solving the
differential equation.

(b) Assuming that , find and interpret
your answer.

38. A certain small country has $10 billion in paper currency in
circulation, and each day $50 million comes into the country’s
banks. The government decides to introduce new currency by
having the banks replace old bills with new ones whenever old 

lim t l � C�t�C0 � r�k

t
C0t � 0

k

dC

dt
� r � kC

C � C�t�

r
37.

T �r�
SS � dT�dr

d 2T

dr 2 �
2

r
 

dT

dr
� 0

rT �r�
25 �C

15 �C

u � sb � x .]
[xta 	 b

x�0� � 0
a � btx

bax � 
HBr	

dx

dt
� k�a � x��b � x�1�2

d 
HBr	
dt

� k 
H 2	
Br2	1�2

H2 � Br2  l  2HBr


C	 � a�2x �t�
a � bx �t�

txa � bCAS

dx

dt
� k�a � x��b � x�

	x � 
 currency comes into the banks. Let denote the amount
of new currency in circulation at time , with .
(a) Formulate a mathematical model in the form of an initial-

value problem that represents the “flow” of the new
currency into circulation.

(b) Solve the initial-value problem found in part (a).
(c) How long will it take for the new bills to account for 

of the currency in circulation?

39. A tank contains 1000 L of brine with 15 kg of dissolved salt.
Pure water enters the tank at a rate of 10 L�min. The solution
is kept thoroughly mixed and drains from the tank at the same
rate. How much salt is in the tank (a) after minutes and
(b) after 20 minutes?

40. A tank contains 1000 L of pure water. Brine that contains
0.05 kg of salt per liter of water enters the tank at a rate of
5 L�min. Brine that contains 0.04 kg of salt per liter of water
enters the tank at a rate of 10 L�min. The solution is kept thor-
oughly mixed and drains from the tank at a rate of 15 L�min.
How much salt is in the tank (a) after minutes and (b) after
one hour?

When a raindrop falls, it increases in size and so its mass at
time is a function of , . The rate of growth of the mass is

for some positive constant . When we apply Newton’s
Law of Motion to the raindrop, we get , where is
the velocity of the raindrop (directed downward) and is the
acceleration due to gravity. The terminal velocity of the
raindrop is . Find an expression for the terminal
velocity in terms of and .

42. An object of mass is moving horizontally through a medium
which resists the motion with a force that is a function of the
velocity; that is,

where and represent the velocity and position
of the object at time , respectively. For example, think of a
boat moving through the water.
(a) Suppose that the resisting force is proportional to the

velocity, that is, , a positive constant. (This
model is appropriate for small values of .) Let 
and be the initial values of and . Determine 
and at any time . What is the total distance that the
object travels from time ?

(b) For larger values of a better model is obtained by sup-
posing that the resisting force is proportional to the square
of the velocity, that is, , . (This model
was first proposed by Newton.) Let and be the initial
values of and . Determine and at any time . What is
the total distance that the object travels in this case?

43. Let be the area of a tissue culture at time and let be
the final area of the tissue when growth is complete. Most cell
divisions occur on the periphery of the tissue and the number
of cells on the periphery is proportional to . So a reason-sA�t�

MtA�t�

tsvsv
s0v0

k 	 0f �v� � �kv2

v
t � 0

ts
vsvs�0� � s0

v�0� � v0v
kf �v� � �kv

t
s � s�t�v � v�t�

m 
d 2s

dt 2 � m 
dv

dt
� f �v�

m

kt

lim t l � v�t�

t

v�mv�� � tm
kkm�t�

m�t�tt
41.

t

t

90%

x �0� � 0t
x � x �t�
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and so

(a) Suppose a rocket is fired vertically upward with an initial
velocity . Let be the maximum height above the surface
reached by the object. Show that

[Hint: By the Chain Rule, .]
(b) Calculate . This limit is called the escape

velocity for Earth.
(c) Use mi and ft�s to calculate in feet

per second and in miles per second.
ve

2
t � 32R � 3960

ve � limh l � v0

m �dv�dt� � mv �dv�dx�

v0 � � 2tRh

R � h

hv0

m 
dv

dt
� �

mtR2

�x � R�2

able model for the growth of tissue is obtained by assuming
that the rate of growth of the area is jointly proportional to

and .
(a) Formulate a differential equation and use it to show that 

the tissue grows fastest when .
(b) Solve the differential equation to find an expression 

for . Use a computer algebra system to perform the
integration.

44. According to Newton’s Law of Universal Gravitation, the 
gravitational force on an object of mass that has been
projected vertically upward from Earth’s surface is 

where is the object’s distance above the surface at
time , is Earth’s radius, and is the acceleration due to
gravity. Also, by Newton’s Second Law, F � ma � m �dv�dt�

tRt
x � x�t�

F �
mtR2

�x � R�2

m

A�t�
CAS

A�t� � M�3

M � A�t�sA�t�

How Fast Does a Tank Drain?

If water (or other liquid) drains from a tank, we expect that the flow will be greatest at first
(when the water depth is greatest) and will gradually decrease as the water level decreases. But
we need a more precise mathematical description of how the flow decreases in order to answer
the kinds of questions that engineers ask: How long does it take for a tank to drain completely?
How much water should a tank hold in order to guarantee a certain minimum water pressure for
a sprinkler system?

Let and be the height and volume of water in a tank at time . If water leaks through
a hole with area at the bottom of the tank, then Torricelli’s Law says that

where is the acceleration due to gravity. So the rate at which water flows from the tank is pro-
portional to the square root of the water height.

1. (a) Suppose the tank is cylindrical with height 6 ft and radius 2 ft and the hole is circular
with radius 1 in. If we take ft�s , show that satisfies the differential equation

(b) Solve this equation to find the height of the water at time , assuming the tank is full at
time .

(c) How long will it take for the water to drain completely?

2. Because of the rotation and viscosity of the liquid, the theoretical model given by Equation 1
isn’t quite accurate. Instead, the model

dh

dt
� ksh2

t � 0
t

dh

dt
� �

1

72
 sh

y2
t � 32

t

dV

dt
� �as2th1

a
tV�t�h�t�
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is often used and the constant (which depends on the physical properties of the liquid) is
determined from data concerning the draining of the tank.
(a) Suppose that a hole is drilled in the side of a cylindrical bottle and the height of the

water (above the hole) decreases from 10 cm to 3 cm in 68 seconds. Use Equation 2 to
find an expression for . Evaluate for .

(b) Drill a 4-mm hole near the bottom of the cylindrical part of a two-liter plastic soft-drink
bottle. Attach a strip of masking tape marked in centimeters from 0 to 10, with 0 corre-
sponding to the top of the hole. With one finger over the hole, fill the bottle with water 
to the 10-cm mark. Then take your finger off the hole and record the values of for

seconds. (You will probably find that it takes 68 seconds for
the level to decrease to .) Compare your data with the values of from
part (a). How well did the model predict the actual values?

3. In many parts of the world, the water for sprinkler systems in large hotels and hospitals is
supplied by gravity from cylindrical tanks on or near the roofs of the buildings. Suppose
such a tank has radius 10 ft and the diameter of the outlet is 2.5 inches. An engineer has to
guarantee that the water pressure will be at least 2160 for a period of 10 minutes.
(When a fire happens, the electrical system might fail and it could take up to 10 minutes for
the emergency generator and fire pump to be activated.) What height should the engineer
specify for the tank in order to make such a guarantee? (Use the fact that the water pressure
at a depth of feet is . See Section 8.3.)

4. Not all water tanks are shaped like cylinders. Suppose a tank has cross-sectional area at
height . Then the volume of water up to height is and so the Fundamental
Theorem of Calculus gives . It follows that

and so Torricelli’s Law becomes

(a) Suppose the tank has the shape of a sphere with radius 2 m and is initially half full of
water. If the radius of the circular hole is 1 cm and we take m�s , show that 
satisfies the differential equation

(b) How long will it take for the water to drain completely?

�4h � h2 � 
dh

dt
� �0.0001s20h

h2
t � 10

A�h� 
dh

dt
� �as2th

dV

dt
�

dV

dh
 
dh

dt
� A�h� 

dh

dt

dV�dh � A�h�
V � x

h
0  A�u� duhh

A�h�

P � 62.5dd

lb�ft 2

h�t�h � 3 cm
t � 10, 20, 30, 40, 50, 60

h�t�

t � 10, 20, 30, 40, 50, 60h�t�h�t�

h

k
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Which Is Faster, Going Up or Coming Down?

Suppose you throw a ball into the air. Do you think it takes longer to reach its maximum 
height or to fall back to Earth from its maximum height? We will solve the problem in this pro-
ject but, before getting started, think about that situation and make a guess based on your physi-
cal intuition.

1. A ball with mass is projected vertically upward from Earth’s surface with a positive initial
velocity . We assume the forces acting on the ball are the force of gravity and a retarding
force of air resistance with direction opposite to the direction of motion and with magnitude

, where is a positive constant and is the velocity of the ball at time . In bothtv�t�pp � v�t� �

v0

m

APPLIED PROJECT

|||| This part of the project is best done as a
classroom demonstration or as a group project
with three students in each group: a timekeeper
to call out seconds, a bottle keeper to estimate
the height every 10 seconds, and a record keeper
to record these values.
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the ascent and the descent, the total force acting on the ball is . [During ascent,
is positive and the resistance acts downward; during descent, is negative and the

resistance acts upward.] So, by Newton’s Second Law, the equation of motion is

Solve this differential equation to show that the velocity is

2. Show that the height of the ball, until it hits the ground, is

3. Let be the time that the ball takes to reach its maximum height. Show that

Find this time for a ball with mass 1 kg and initial velocity 20 m�s. Assume the air
resistance is of the speed.

; 4. Let be the time at which the ball falls back to Earth. For the particular ball in Problem 3,
estimate by using a graph of the height function . Which is faster, going up or coming
down?

5. In general, it’s not easy to find because it’s impossible to solve the equation 
explicitly. We can, however, use an indirect method to determine whether ascent or descent
is faster; we determine whether is positive or negative. Show that

where . Then show that and the function

is increasing for . Use this result to decide whether is positive or negative. What
can you conclude? Is ascent or descent faster?

y�2t1�x 	 1

f �x� � x �
1

x
� 2 ln x

x 	 1x � e pt1�m

y�2t1� �
m 2

t

p 2  �x �
1

x
� 2 ln x�

y�2t1�

y�t� � 0t2

y�t�t2

t2

1
10

t1 �
m

p
 ln�mt � pv0

mt
�

t1

y�t� � �v0 �
mt

p � 
m

p
 �1 � e�pt�m � �

mtt

p

v�t� � �v0 �
mt

p �e�pt�m �
mt

p

mv� � �pv � mt

v�t�v�t�
�pv � mt|||| In modeling force due to air resistance,

various functions have been used, depending
on the physical characteristics and speed of
the ball. Here we use a linear model, ,
but a quadratic model ( on the way up
and on the way down) is another pos-
sibility for higher speeds (see Exercise 42 in
Section 9.3). For a golf ball, experiments
have shown that a good model is 
going up and coming down. But no
matter which force function is used
[where for and 
for ], the answer to the question
remains the same. See F. Brauer, “What
Goes Up Must Come Down, Eventually,”
Amer. Math. Monthly 108 (2001),
pp. 437–440.

v � 0
f �v� � 0v 	 0f �v� 	 0

�f �v�
p� v �1.3

�pv 1.3

pv 2

�pv 2

�pv
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One of the models for population growth that we considered in Section 9.1 was based 
on the assumption that the population grows at a rate proportional to the size of the 
population:

Is that a reasonable assumption? Suppose we have a population (of bacteria, for instance)

dP

dt
� kP



with size and at a certain time it is growing at a rate of bacteria per
hour. Now let’s take another 1000 bacteria of the same type and put them with the first
population. Each half of the new population was growing at a rate of 300 bacteria per hour.
We would expect the total population of 2000 to increase at a rate of 600 bacteria per 
hour initially (provided there’s enough room and nutrition). So if we double the size, we
double the growth rate. In general, it seems reasonable that the growth rate should be pro-
portional to the size.

The same assumption applies in other situations as well. In nuclear physics, the mass
of a radioactive substance decays at a rate proportional to the mass. In chemistry, the rate
of a unimolecular first-order reaction is proportional to the concentration of the substance.
In finance, the value of a savings account with continuously compounded interest increases
at a rate proportional to that value.

In general, if is the value of a quantity at time and if the rate of change of with
respect to is proportional to its size at any time, then

where is a constant. Equation 1 is sometimes called the law of natural growth (if )
or the law of natural decay (if ). Because it is a separable differential equation we
can solve it by the methods of Section 9.3:

where A ( or 0) is an arbitrary constant. To see the significance of the constant A,
we observe that

Therefore, A is the initial value of the function.
Because Equation 1 occurs so frequently in nature, we summarize what we have just

proved for future use.

The solution of the initial-value problem

is

P o p u l a t i o n  G r o w t h

What is the significance of the proportionality constant k? In the context of population
growth, we can write

1

P
 
dP

dt
� kor

dP

dt
� kP3

y�t� � y0ekt

y�0� � y0
dy

dt
� ky

2

y�0� � Aek � 0 � A

� 
eC

 y � Aekt

 � y � � ekt�C � eCekt

 ln � y � � kt � C

 y 
dy

y
� y k dt

k � 0
k 	 0k

dy

dt
� ky1

y�t�t
ytyy�t�

P� � 300P � 1000
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The quantity

is the growth rate divided by the population size; it is called the relative growth rate.
According to (3), instead of saying “the growth rate is proportional to population size” we
could say “the relative growth rate is constant.” Then (2) says that a population with con-
stant relative growth rate must grow exponentially. Notice that the relative growth rate k
appears as the coefficient of t in the exponential function . For instance, if

and t is measured in years, then the relative growth rate is k � 0.02 and the population
grows at a rate of 2% per year. If the population at time 0 is , then the expression for the
population is

EXAMPLE 1 Assuming that the growth rate is proportional to population size, use the data
in Table 1 to model the population of the world in the 20th century. What is the relative
growth rate? How well does the model fit the data?

SOLUTION We measure the time t in years and let t � 0 in the year 1900. We measure the
population in millions of people. Then the initial condition is We are
assuming that the growth rate is proportional to population size, so the initial-value prob-
lem is

From (2) we know that the solution is

One way to estimate the relative growth rate k is to use the fact that the population in
1910 was 1750 million. Therefore

We solve this equation for k:

Thus, the relative growth rate is about 0.6% per year and the model becomes

P�t� � 1650e 0.005884t

 k �
1

10
 ln 

1750

1650
� 0.005884

 e 10k �
1750

1650

P�10� � 1650ek�10� � 1750

P�t� � 1650ekt

P�0� � 1650
dP

dt
� kP

P�0� � 1650.P�t�

P�t� � P0e 0.02t

P0

dP

dt
� 0.02P

y0ekt

1

P
 
dP

dt
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Population
Year (millions)

1900 1650
1910 1750
1920 1860
1930 2070
1940 2300
1950 2560
1960 3040
1970 3710
1980 4450
1990 5280
2000 6080

TABLE  1



Table 2 and Figure 1 allow us to compare the predictions of this model with the actual
data. You can see that the predictions become quite inaccurate after about 30 years and
they underestimate by a factor of more than 2 in 2000.

Another possibility for estimating k would be to use the given population for 1950,
for instance, instead of 1910. Then

The estimate for the relative growth rate is now 0.88% per year and the model is

The predictions with this second model are shown in Table 3 and Figure 2. This expo-
nential model is more accurate over a longer period of time, but it too lags behind reality
in recent years.

FIGURE 2 Another model for world population growth

6000

P

t20 40 60 80 100
Years since 1900

Population
(in millions)

P=1650e0.0087846t

P�t� � 1650e 0.0087846t

 k �
1

50
 ln 

2560

1650
� 0.0087846

 P�50� � 1650e 50k � 2560

FIGURE 1  A possible model for world population growth
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TABLE  3

Year Model Population

1900 1650 1650
1910 1802 1750
1920 1967 1860
1930 2148 2070
1940 2345 2300
1950 2560 2560
1960 2795 3040
1970 3052 3710
1980 3332 4450
1990 3638 5280
2000 3972 6080

TABLE  2

Year Model Population

1900 1650 1650
1910 1750 1750
1920 1856 1860
1930 1969 2070
1940 2088 2300
1950 2214 2560
1960 2349 3040
1970 2491 3710
1980 2642 4450
1990 2802 5280
2000 2972 6080

|||| In Section 1.5 we modeled the same data
with an exponential function, but there we used
the method of least squares.
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EXAMPLE 2 Use the data in Table 1 to model the population of the world in the second
half of the 20th century. Use the model to estimate the population in 1993 and to predict
the population in the year 2010.

SOLUTION Here we let in the year 1950. Then the initial-value problem is

and the solution is

Let’s estimate k by using the population in 1960:

The relative growth rate is about 1.7% per year and the model is

We estimate that the world population in 1993 was

The model predicts that the population in 2010 will be

The graph in Figure 3 shows that the model is fairly accurate to date, so the estimate for
1993 is quite reliable. But the prediction for 2010 is riskier.

FIGURE 3
A model for world population growth
in the second half of the 20th century
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R a d i o a c t i v e  D e c a y

Radioactive substances decay by spontaneously emitting radiation. If is the mass
remaining from an initial mass of the substance after time t, then the relative decay rate

has been found experimentally to be constant. (Since is negative, the relative decay
rate is positive.) It follows that

where k is a negative constant. In other words, radioactive substances decay at a rate pro-
portional to the remaining mass. This means that we can use (2) to show that the mass
decays exponentially:

Physicists express the rate of decay in terms of half-life, the time required for half of
any given quantity to decay.

EXAMPLE 3 The half-life of radium-226 ( ) is 1590 years.
(a) A sample of radium-226 has a mass of 100 mg. Find a formula for the mass of 
that remains after years.
(b) Find the mass after 1000 years correct to the nearest milligram.
(c) When will the mass be reduced to 30 mg?

SOLUTION
(a) Let be the mass of radium-226 (in milligrams) that remains after years. Then

and , so (2) gives

In order to determine the value of , we use the fact that . Thus

and

Therefore

We could use the fact that to write the expression for in the alternative
form

(b) The mass after 1000 years is 

m�1000� � 100e��ln 2�1590�1000 � 65 mg

m�t� � 100 � 2�t�1590

m�t�e ln 2 � 2

m�t� � 100e��ln 2�1590�t

 k � �
ln 2

1590

 1590k � ln 12 � �ln 2

e 1590k � 1
2so100e 1590k � 50

y�1590� � 1
2 �100�k

m�t� � m�0�ekt � 100ekt

y�0� � 100dm�dt � km
tm�t�

t
. 88
226Ra

. 88
226Ra

m�t� � m0ekt

dm

dt
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dm�dt
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1

m
 
dm

dt

m0
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(c) We want to find the value of such that , that is,

We solve this equation for by taking the natural logarithm of both sides:

Thus

As a check on our work in Example 3, we use a graphing device to draw the graph of
in Figure 4 together with the horizontal line . These curves intersect when

, and this agrees with the answer to part (c).

N e w t o n ’s  L a w  o f  C o o l i n g

Newton’s Law of Cooling states that the rate of cooling of an object is proportional to
the temperature difference between the object and its surroundings, provided that this
difference is not too large. (This law also applies to warming.) If we let be the tem-
perature of the object at time and be the temperature of the surroundings, then we
can formulate Newton’s Law of Cooling as a differential equation:

where is a constant. We could solve this equation as a separable differential equation
by the method of Section 9.3, but an easier method is to make the change of variable

. Because is constant, we have and so the equation
becomes

We can then use (2) to find an expression for , from which we can find .

EXAMPLE 4 A bottle of soda pop at room temperature ( F) is placed in a refrigerator
where the temperature is F. After half an hour the soda pop has cooled to F.
(a) What is the temperature of the soda pop after another half hour?
(b) How long does it take for the soda pop to cool to F?

SOLUTION
(a) Let be the temperature of the soda after minutes. The surrounding temperature
is , so Newton’s Law of Cooling states that

If we let , then , so is a solution of the
initial-value problem

y�0� � 28
dy

dt
� ky

yy�0� � T�0� � 44 � 72 � 44 � 28y � T � 44

dT

dt
� k�T � 44)

Ts � 44� F
tT�t�

50�

61�44�
72�

Ty

dy

dt
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y��t� � T��t�Tsy�t� � T�t� � Ts

k

dT
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� k�T � Ts�

Tst
T�t�

t � 2800
m � 30m�t�

 t � �1590 
ln 0.3

ln 2
� 2762 years

 �
ln 2

1590
 t � ln 0.3

t

e��ln 2�1590�t � 0.3or100e��ln 2�1590�t � 30

m�t� � 30t

m=30
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m=100e_(ln 2)t/1590

FIGURE 4
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and by (2) we have

We are given that , so and

Taking logarithms, we have

Thus

So after another half hour the pop has cooled to about F.
(b) We have when

The pop cools to F after about 1 hour 33 minutes.

Notice that in Example 4, we have 

which is to be expected. The graph of the temperature function is shown in Figure 5.

C o n t i n u o u s l y  C o m p o u n d e d  I n t e r e s t

EXAMPLE 5 If $1000 is invested at 6% interest, compounded annually, then after 1 year
the investment is worth , after 2 years it’s worth

, and after years it’s worth . In general, if
an amount is invested at an interest rate in this example), then after 

years it’s worth . Usually, however, interest is compounded more frequently,
say, times a year. Then in each compounding period the interest rate is and there
are compounding periods in years, so the value of the investment is

A0�1 �
r

n�nt

tnt
r�nn

A0�1 � r�tt
�r � 0.06rA0

$1000�1.06�tt$�1000�1.06�	1.06 � $1123.60
$1000�1.06� � $1060

lim
t l �

 T�t� � lim
t l �

 �44 � 28e�0.01663t� � 44 � 28 � 0 � 44

50�

     t �
ln( 6

28)
�0.01663

� 92.6

e�0.01663 t � 6
28

44 � 28e�0.01663t � 50

T�t� � 50
54�

T�60� � 44 � 28e�0.01663�60� � 54.3

  T�t� � 44 � 28e�0.01663t

  y�t� � 28e�0.01663t

k �
ln(17

28)
30

� �0.01663

e30k � 17
2828e30k � 17

y�30� � 61 � 44 � 17T�30� � 61

y�t� � y�0�ekt � 28ekt
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For instance, after 3 years at 6% interest a $1000 investment will be worth

You can see that the interest paid increases as the number of compounding periods 
increases. If we let , then we will be compounding the interest continuously and
the value of the investment will be

(where )

But the limit in this expression is equal to the number e (see Equation 3.8.6). So with
continuous compounding of interest at interest rate r, the amount after t years is

If we differentiate this equation, we get

which says that, with continuous compounding of interest, the rate of increase of an
investment is proportional to its size.

Returning to the example of $1000 invested for 3 years at 6% interest, we see that
with continuous compounding of interest the value of the investment will be

Notice how close this is to the amount we calculated for daily compounding, $1197.20.
But the amount is easier to compute if we use continuous compounding.

 � $1000e 0.18 � $1197.22

 A�3� � $1000e �0.06�3

 
dA

dt
� rA0ert � rA�t�

A�t� � A0ert

m � n�r � A0
 lim
m l �

 �1 �
1

m�m�rt

 � A0
lim
n l �

 �1 �
r

n�n�r�rt

 A�t� � lim
n l �

 A0�1 �
r

n�nt

� lim
n l �

 A0
�1 �
r

n�n�r�rt

n l �
�n�

 with daily compounding $1000�1 �
0.06

365 �365 � 3

� $1197.20

 with monthly compounding $1000�1.005�36 � $1196.68

 with quarterly compounding $1000�1.015�12 � $1195.62

 with semiannual compounding $1000�1.03�6 � $1194.05

 with annual compounding $1000�1.06�3 � $1191.02



(a) Use the exponential model and the census figures for 1900
and 1910 to predict the population in 2000. Compare with
the actual figure and try to explain the discrepancy.

(b) Use the exponential model and the census figures for 1980
and 1990 to predict the population in 2000. Compare with
the actual population. Then use this model to predict the
population in the years 2010 and 2020.

; (c) Graph both of the exponential functions in parts (a) and (b)
together with a plot of the actual population. Are these
models reasonable ones?

7. Experiments show that if the chemical reaction 

takes place at , the rate of reaction of dinitrogen pent-
oxide is proportional to its concentration as follows:

(See Example 4 in Section 3.3.)
(a) Find an expression for the concentration N O after 

seconds if the initial concentration is .
(b) How long will the reaction take to reduce the concentration

of N O to 90% of its original value?

8. Bismuth-210 has a half-life of 5.0 days. 
(a) A sample originally has a mass of 800 mg. Find a formula

for the mass remaining after days.
(b) Find the mass remaining after 30 days.
(c) When is the mass reduced to 1 mg?
(d) Sketch the graph of the mass function.

The half-life of cesium-137 is 30 years. Suppose we have a
100-mg sample.
(a) Find the mass that remains after years.
(b) How much of the sample remains after 100 years?
(c) After how long will only 1 mg remain?

10. After 3 days a sample of radon-222 decayed to 58% of its orig-
inal amount. 
(a) What is the half-life of radon-222?
(b) How long would it take the sample to decay to 10% of its

original amount?

t

9.

t

52

Ct
5	2�

�
d�N2O5	

dt
� 0.0005�N2O5	

45�C

N2O5 l 2NO2 �
1
2 O2

1. A population of protozoa develops with a constant relative
growth rate of 0.7944 per member per day. On day zero the
population consists of two members. Find the population size
after six days.

2. A common inhabitant of human intestines is the bacterium
Escherichia coli. A cell of this bacterium in a nutrient-broth
medium divides into two cells every 20 minutes. The initial
population of a culture is 60 cells.
(a) Find the relative growth rate.
(b) Find an expression for the number of cells after hours.
(c) Find the number of cells after 8 hours.
(d) Find the rate of growth after 8 hours.
(e) When will the population reach 20,000 cells?

A bacteria culture starts with 500 bacteria and grows at a rate
proportional to its size. After 3 hours there are 8000 bacteria. 
(a) Find an expression for the number of bacteria after hours.
(b) Find the number of bacteria after 4 hours.
(c) Find the rate of growth after 4 hours.
(d) When will the population reach 30,000?

4. A bacteria culture grows with constant relative growth rate.
After 2 hours there are 600 bacteria and after 8 hours the count
is 75,000. 
(a) Find the initial population.
(b) Find an expression for the population after hours.
(c) Find the number of cells after 5 hours.
(d) Find the rate of growth after 5 hours.
(e) When will the population reach 200,000?

The table gives estimates of the world population, in millions,
from 1750 to 2000:

(a) Use the exponential model and the population figures for
1750 and 1800 to predict the world population in 1900 and
1950. Compare with the actual figures.

(b) Use the exponential model and the population figures for
1850 and 1900 to predict the world population in 1950.
Compare with the actual population.

(c) Use the exponential model and the population figures for
1900 and 1950 to predict the world population in 2000.
Compare with the actual population and try to explain the
discrepancy.

6. The table gives the population of the United States, in millions,
for the years 1900–2000.

5.

t

t

3.

t

|||| 9.4 Exercises
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Year Population Year Population

1750 790 1900 1650
1800 980 1950 2560
1850 1260 2000 6080

Year Population Year Population

1900 76 1960 179
1910 92 1970 203
1920 106 1980 227
1930 123 1990 250
1940 131 2000 275
1950 150
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; (b) Suppose $500 is borrowed and the interest is compounded
continuously. If is the amount due after years, where

, graph for each of the interest rates 14%,
10%, and 6% on a common screen.

(a) If $3000 is invested at 5% interest, find the value of the
investment at the end of 5 years if the interest is com-
pounded (i) annually, (ii) semiannually, (iii) monthly,
(iv) weekly, (v) daily, and (vi) continuously.

(b) If is the amount of the investment at time for the case
of continuous compounding, write a differential equation
and an initial condition satisfied by .

20. (a) How long will it take an investment to double in value if
the interest rate is 6% compounded continuously?

(b) What is the equivalent annual interest rate?

21. Consider a population with constant relative birth and
death rates and , respectively, and a constant emigration
rate , where , , and are positive constants. Assume that

. Then the rate of change of the population at time is
modeled by the differential equation

where 

(a) Find the solution of this equation that satisfies the initial
condition 

(b) What condition on will lead to an exponential expansion
of the population?

(c) What condition on will result in a constant population? 
A population decline?

(d) In 1847, the population of Ireland was about 8 million and
the difference between the relative birth and death rates was
1.6% of the population. Because of the potato famine in the
1840s and 1850s, about 210,000 inhabitants per year emi-
grated from Ireland. Was the population expanding or
declining at that time?

Let be a positive number. A differential equation of the form

where is a positive constant, is called a doomsday equation
because the exponent in the expression is larger than that
for natural growth (that is, ).
(a) Determine the solution that satisfies the initial condition

(b) Show that there is a finite time (doomsday) such that
.

(c) An especially prolific breed of rabbits has the growth term
. If 2 such rabbits breed initially and the warren has

16 rabbits after three months, then when is doomsday?
ky 1.01

lim t l T � y�t� � �
t � T

y�0� � y0.

ky
ky 1�c

k

dy

dt
� ky 1�c

c22.

m

m
P�0� � P0.

k � � � 	
dP

dt
� kP � m

t� 
 	
m	�m

	�
P � P�t�

A�t�

tA�t�

19.

A�t�0 � t � 2
tA�t�

11. Scientists can determine the age of ancient objects by a method
called radiocarbon dating. The bombardment of the upper
atmosphere by cosmic rays converts nitrogen to a radioactive
isotope of carbon, C, with a half-life of about 5730 years.
Vegetation absorbs carbon dioxide through the atmosphere and
animal life assimilates C through food chains. When a plant
or animal dies, it stops replacing its carbon and the amount of 

C begins to decrease through radioactive decay. Therefore,
the level of radioactivity must also decay exponentially. A
parchment fragment was discovered that had about 74% as
much C radioactivity as does plant material on Earth today.
Estimate the age of the parchment.

12. A curve passes through the point and has the property
that the slope of the curve at every point is twice the 
-coordinate of . What is the equation of the curve?

A roast turkey is taken from an oven when its temperature has
reached and is placed on a table in a room where the
temperature is .
(a) If the temperature of the turkey is after half an hour,

what is the temperature after 45 min?
(b) When will the turkey have cooled to ?

14. A thermometer is taken from a room where the temperature is
C to the outdoors, where the temperature is . After one

minute the thermometer reads C.
(a) What will the reading on the thermometer be after one

more minute?
(b) When will the thermometer read C?

15. When a cold drink is taken from a refrigerator, its temperature
is C. After 25 minutes in a C room its temperature has
increased to C.
(a) What is the temperature of the drink after 50 minutes?
(b) When will its temperature be C?

16. A freshly brewed cup of coffee has temperature C in a C
room. When its temperature is C, it is cooling at a rate of 

C per minute. When does this occur?

17. The rate of change of atmospheric pressure with respect to
altitude is proportional to , provided that the temperature is
constant. At C the pressure is kPa at sea level and

kPa at m.
(a) What is the pressure at an altitude of 3000 m?
(b) What is the pressure at the top of Mount McKinley, at an

altitude of 6187 m?

18. (a) If $500 is borrowed at 14% interest, find the amounts 
due at the end of 2 years if the interest is compounded
(i) annually, (ii) quarterly, (iii) monthly, (iv) daily,
(v) hourly, and (vi) continuously.

h � 100087.14
101.315�

Ph
P

1�
70�

20�95�

15�

10�
20�5�

6�

12�
5�C20�

100�F

150�F
75�F

185�F
13.

Py
P

�0, 5�

14

14

14

14



622 ❙ ❙ ❙ ❙ CHAPTER 9 DIFFERENTIAL EQUATIONS

Calculus and Baseball

In this project we explore three of the many applications of calculus to baseball. The physical
interactions of the game, especially the collision of ball and bat, are quite complex and their
models are discussed in detail in a book by Robert Adair, The Physics of Baseball, 3d ed. 
(New York: HarperPerennial, 2002).

1. It may surprise you to learn that the collision of baseball and bat lasts only about a thou-
sandth of a second. Here we calculate the average force on the bat during this collision by
first computing the change in the ball’s momentum.

The of an object is the product of its mass and its velocity , that is,
. Suppose an object, moving along a straight line, is acted on by a force 

that is a continuous function of time.
(a) Show that the change in momentum over a time interval is equal to the integral of

from to ; that is, show that

This integral is called the impulse of the force over the time interval.
(b) A pitcher throws a 90-mi�h fastball to a batter, who hits a line drive directly back 

to the pitcher. The ball is in contact with the bat for 0.001 s and leaves the bat with
velocity 110 mi�h. A baseball weighs 5 oz and, in U.S. Customary units, its mass is
measured in slugs: where .
(i) Find the change in the ball’s momentum.

(ii) Find the average force on the bat.

2. In this problem we calculate the work required for a pitcher to throw a 90-mi�h fastball by
first considering kinetic energy.

The kinetic energy of an object of mass and velocity is given by . Sup-
pose an object of mass , moving in a straight line, is acted on by a force that
depends on its position . According to Newton’s Second Law

where and denote the acceleration and velocity of the object. 
(a) Show that the work done in moving the object from a position to a position is equal

to the change in the object’s kinetic energy; that is, show that

where and are the velocities of the object at the positions and .
Hint: By the Chain Rule,

(b) How many foot-pounds of work does it take to throw a baseball at a speed of 
90 mi�h?

3. (a) An outfielder fields a baseball 280 ft away from home plate and throws it directly to the
catcher with an initial velocity of 100 ft�s. Assume that the velocity of the ball after

seconds satisfies the differential equation because of air resistance.
How long does it take for the ball to reach home plate? (Ignore any vertical motion of
the ball.)

(b) The manager of the team wonders whether the ball will reach home plate sooner if it 
is relayed by an infielder. The shortstop can position himself directly between the out-
fielder and home plate, catch the ball thrown by the outfielder, turn, and throw the ball to 

dv�dt � �v�10t
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dt
� m 
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ds
 
ds
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APPLIED PROJECT

An overhead view of the position of a
baseball bat, shown every fiftieth of
a second during a typical swing.
(Adapted from The Physics of Baseball)

Batter’s box
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the catcher with an initial velocity of 105 ft�s. The manager clocks the relay time of the
shortstop (catching, turning, throwing) at half a second. How far from home plate should
the shortstop position himself to minimize the total time for the ball to reach the plate?
Should the manager encourage a direct throw or a relayed throw? What if the shortstop
can throw at 115 ft�s?

; (c) For what throwing velocity of the shortstop does a relayed throw take the same time as a
direct throw?

|||| 9.5 T h e  L o g i s t i c  E q u a t i o n

In this section we discuss in detail a model for population growth, the logistic model, that
is more sophisticated than exponential growth. In doing so we use all the tools at our dis-
posal—direction fields and Euler’s method from Section 9.2 and the explicit solution of
separable differential equations from Section 9.3. In the exercises we investigate other pos-
sible models for population growth, some of which take into account harvesting and sea-
sonal growth.

T h e  L o g i s t i c  M o d e l

As we discussed in Section 9.1, a population often increases exponentially in its early
stages but levels off eventually and approaches its carrying capacity because of limited
resources. If is the size of the population at time t, we assume that

This says that the growth rate is initially close to being proportional to size. In other words,
the relative growth rate is almost constant when the population is small. But we also want
to reflect the fact that the relative growth rate decreases as the population P increases and
becomes negative if P ever exceeds its carrying capacity K, the maximum population that
the environment is capable of sustaining in the long run. The simplest expression for the
relative growth rate that incorporates these assumptions is

Multiplying by P, we obtain the model for population growth known as the logistic dif-
ferential equation:

Notice from Equation 1 that if P is small compared with K, then is close to 0 and so
. However, if (the population approaches its carrying capacity), then

, so . We can deduce information about whether solutions increase or
decrease directly from Equation 1. If the population P lies between 0 and K, then the right
side of the equation is positive, so and the population increases. But if the pop-
ulation exceeds the carrying capacity , then is negative, so 
and the population decreases.

dP�dt � 01 � P�K�P 
 K�
dP�dt 
 0

dP�dt l 0P�K l 1
P l KdP�dt � kP

P�K

dP
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if P is small
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D i r e c t i o n  F i e l d s

Let’s start our more detailed analysis of the logistic differential equation by looking at a
direction field.

EXAMPLE 1 Draw a direction field for the logistic equation with and carrying
capacity . What can you deduce about the solutions?

SOLUTION In this case the logistic differential equation is

A direction field for this equation is shown in Figure 1. We show only the first quadrant
because negative populations aren’t meaningful and we are interested only in what hap-
pens after .

The logistic equation is autonomous ( depends only on P, not on t), so the
slopes are the same along any horizontal line. As expected, the slopes are positive for

and negative for .
The slopes are small when P is close to 0 or 1000 (the carrying capacity). Notice that

the solutions move away from the equilibrium solution and move toward the
equilibrium solution .

In Figure 2 we use the direction field to sketch solution curves with initial populations
, , and . Notice that solution curves that start below

are increasing and those that start above are decreasing. The slopes
are greatest when and, therefore, the solution curves that start below 
have inflection points when . In fact we can prove that all solution curves that
start below have an inflection point when P is exactly 500 (see Exercise 9).

FIGURE 2
Solution curves for the logistic

equation in Example 1
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FIGURE 1
Direction field for the logistic

equation in Example 1
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E u l e r ’s  M e t h o d

Next let’s use Euler’s method to obtain numerical estimates for solutions of the logistic dif-
ferential equation at specific times.

EXAMPLE 2 Use Euler’s method with step sizes 20, 10, 5, 1, and 0.1 to estimate the popu-
lation sizes and , where P is the solution of the initial-value problem

SOLUTION With step size , , , and

we get, using the notation of Section 9.2,

Thus, our estimates for the population sizes at times and are

For smaller step sizes we need to program a calculator or computer. The table gives 
the results.

Figure 3 shows a graph of the Euler approximations with step sizes and 
We see that the Euler approximation with looks very much like the lower solution
curve that we drew using a direction field in Figure 2.

FIGURE 3
Euler approximations of the
solution curve in Example 2

0 t

P

80604020

1000

h=1

h=10

h � 1
h � 1.h � 10

P�80� � 1032P�40� � 539

t � 80t � 40

 P4 � 936.69 � 20F�60, 936.69� � 1031.57

 P3 � 539.14 � 20F�40, 539.14� � 936.69

 P2 � 244 � 20F�20, 244� � 539.14

 P1 � 100 � 20F�0, 100� � 244

F�t, P� � 0.08P�1 �
P

1000�
P0 � 100t0 � 0h � 20

P�0� � 100
dP

dt
� 0.08P�1 �

P

1000�
P�80�P�40�

SECTION 9.5 THE LOGISTIC EQUATION ❙ ❙ ❙ ❙ 625

Step size Euler estimate of Euler estimate of 

20 539 1032
10 647 997
5 695 991
1 725 986
0.1 731 985

P�80�P�40�
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T h e  A n a l y t i c  S o l u t i o n

The logistic equation (1) is separable and so we can solve it explicitly using the method of
Section 9.3. Since

we have

To evaluate the integral on the left side, we write

Using partial fractions (see Section 7.4), we get

This enables us to rewrite Equation 2:

where . Solving Equation 3 for P, we get

so

We find the value of A by putting in Equation 3. If , then (the initial
population), so
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Thus, the solution to the logistic equation is

Using the expression for in Equation 4, we see that

which is to be expected.

EXAMPLE 3 Write the solution of the initial-value problem

and use it to find the population sizes and . At what time does the population
reach 900?

SOLUTION The differential equation is a logistic equation with , carrying capac-
ity , and initial population . So Equation 4 gives the population at
time t as

Thus

So the population sizes when and 80 are

The population reaches 900 when

Solving this equation for t, we get

So the population reaches 900 when t is approximately 55. As a check on our work, we
graph the population curve in Figure 4 and observe where it intersects the line .
The cursor indicates that .t 	 55

P � 900

 t �
ln 81
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	 54.9

 �0.08t � ln 1
81 � �ln 81
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|||| Compare the solution curve in Figure 4 with
the lowest solution curve we drew from the
direction field in Figure 2.

|||| Compare these values with the Euler 
estimates from Example 2:
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C o m p a r i s o n  o f  t h e  N a t u r a l  G r o w t h  a n d  L o g i s t i c  M o d e l s

In the 1930s the biologist G. F. Gause conducted an experiment with the protozoan Para-
mecium and used a logistic equation to model his data. The table gives his daily count 
of the population of protozoa. He estimated the initial relative growth rate to be 0.7944 and
the carrying capacity to be 64.

EXAMPLE 4 Find the exponential and logistic models for Gause’s data. Compare the 
predicted values with the observed values and comment on the fit.

SOLUTION Given the relative growth rate and the initial population , the
exponential model is

Gause used the same value of k for his logistic model. [This is reasonable because
is small compared with the carrying capacity ( ). The equation

shows that the value of k for the logistic model is very close to the value for the expo-
nential model.]

Then the solution of the logistic equation in Equation 4 gives

where

So

We use these equations to calculate the predicted values (rounded to the nearest integer)
and compare them in the table.

We notice from the table and from the graph in Figure 5 that for the first three or four
days the exponential model gives results comparable to those of the more sophisticated
logistic model. For , however, the exponential model is hopelessly inaccurate, but
the logistic model fits the observations reasonably well.

t � 5

P�t� �
64

1 � 31e�0.7944 t

A �
K � P0

P0
�

64 � 2

2
� 31

P�t� �
K

1 � Ae�kt �
64

1 � Ae�0.7944t

1

P0
 
dP

dt �
t�0

� k�1 �
2

64� 	 k

K � 64P0 � 2

P�t� � P0ekt � 2e 0.7944t

P0 � 2k � 0.7944

t (days) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P (observed) 2 3 22 16 39 52 54 47 50 76 69 51 57 70 53 59 57

P (logistic model) 2 4 9 17 28 40 51 57 61 62 63 64 64 64 64 64 64

P (exponential model) 2 4 10 22 48 106 . . .

t (days) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P (observed) 2 3 22 16 39 52 54 47 50 76 69 51 57 70 53 59 57
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O t h e r  M o d e l s  f o r  P o p u l a t i o n  G r o w t h

The Law of Natural Growth and the logistic differential equation are not the only equa-
tions that have been proposed to model population growth. In Exercise 14 we look at 
the Gompertz growth function and in Exercises 15 and 16 we investigate seasonal-
growth models.

Two of the other models are modifications of the logistic model. The differential 
equation

has been used to model populations that are subject to “harvesting” of one sort or another.
(Think of a population of fish being caught at a constant rate). This equation is explored
in Exercises 11 and 12.

For some species there is a minimum population level m below which the species tends
to become extinct. (Adults may not be able to find suitable mates.) Such populations have
been modeled by the differential equation

where the extra factor, , takes into account the consequences of a sparse popula-
tion (see Exercise 13).

1 � m�P

dP

dt
� kP�1 �

P

K��1 �
m

P�

dP

dt
� kP�1 �

P

K� � c

FIGURE 5
The exponential and logistic

models for the Paramecium data

0 t

P

161284

60

P=2e0.7944t

40

20
P= 64

1+31e_0.7944t

0 t

P

604020

150

100

50

Suppose that a population develops according to the logistic
equation

where is measured in weeks.
(a) What is the carrying capacity? What is the value of ?
(b) A direction field for this equation is shown at the right.

Where are the slopes close to 0? Where are they largest?
Which solutions are increasing? Which solutions are
decreasing?

(c) Use the direction field to sketch solutions for initial popu-
lations of 20, 40, 60, 80, 120, and 140. What do these 

k
t

dP

dt
� 0.05P � 0.0005P2

1.

|||| 9.5 Exercises
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5. The population of the world was about 5.3 billion in 1990.
Birth rates in the 1990s ranged from 35 to 40 million per year
and death rates ranged from 15 to 20 million per year. Let’s
assume that the carrying capacity for world population is
100 billion.
(a) Write the logistic differential equation for these data.

(Because the initial population is small compared to the
carrying capacity, you can take to be an estimate of the
initial relative growth rate.)

(b) Use the logistic model to estimate the world population in
the year 2000 and compare with the actual population of
6.1 billion.

(c) Use the logistic model to predict the world population in
the years 2100 and 2500.

(d) What are your predictions if the carrying capacity is 
50 billion?

6. (a) Make a guess as to the carrying capacity for the U.S. 
population. Use it and the fact that the population was
250 million in 1990 to formulate a logistic model for the
U.S. population.

(b) Determine the value of in your model by using the fact
that the population in 2000 was 275 million.

(c) Use your model to predict the U.S. population in the years
2100 and 2200.

(d) Use your model to predict the year in which the U.S. popu-
lation will exceed 300 million.

One model for the spread of a rumor is that the rate of spread
is proportional to the product of the fraction of the population
who have heard the rumor and the fraction who have not heard
the rumor.
(a) Write a differential equation that is satisfied by .
(b) Solve the differential equation.
(c) A small town has 1000 inhabitants. At 8 A.M., 80 people

have heard a rumor. By noon half the town has heard it. At
what time will of the population have heard the rumor?

8. Biologists stocked a lake with 400 fish and estimated the 
carrying capacity (the maximal population for the fish of that
species in that lake) to be 10,000. The number of fish tripled in
the first year.
(a) Assuming that the size of the fish population satisfies the

logistic equation, find an expression for the size of the pop-
ulation after years.

(b) How long will it take for the population to increase 
to 5000?

(a) Show that if satisfies the logistic equation (1), then

(b) Deduce that a population grows fastest when it reaches half
its carrying capacity.

; 10. For a fixed value of (say ), the family of logistic
functions given by Equation 4 depends on the initial value 
and the proportionality constant . Graph several members of k

P0

K � 10K

d 2P

dt 2 � k 2P�1 �
P

K��1 �
2P

K �
P9.

t

90%

y

y
7.

k

k

solutions have in common? How do they differ? Which
solutions have inflection points? At what population levels
do they occur?

(d) What are the equilibrium solutions? How are the other solu-
tions related to these solutions?

; 2. Suppose that a population grows according to a logistic model
with carrying capacity 6000 and per year.
(a) Write the logistic differential equation for these data.
(b) Draw a direction field (either by hand or with a computer

algebra system). What does it tell you about the solution
curves?

(c) Use the direction field to sketch the solution curves for 
initial populations of 1000, 2000, 4000, and 8000. What
can you say about the concavity of these curves? What is
the significance of the inflection points?

(d) Program a calculator or computer to use Euler’s method
with step size to estimate the population after
50 years if the initial population is 1000.

(e) If the initial population is 1000, write a formula for the
population after years. Use it to find the population after
50 years and compare with your estimate in part (d).

(f) Graph the solution in part (e) and compare with the
solution curve you sketched in part (c).

The Pacific halibut fishery has been modeled by the differential
equation

where is the biomass (the total mass of the members of 
the population) in kilograms at time (measured in years), the
carrying capacity is estimated to be , and

per year.
(a) If , find the biomass a year later.
(b) How long will it take for the biomass to reach ?

4. The table gives the number of yeast cells in a new laboratory
culture.

(a) Plot the data and use the plot to estimate the carrying
capacity for the yeast population.

(b) Use the data to estimate the initial relative growth rate.
(c) Find both an exponential model and a logistic model for

these data.
(d) Compare the predicted values with the observed values,

both in a table and with graphs. Comment on how well
your models fit the data.

(e) Use your logistic model to estimate the number of yeast
cells after 7 hours.

4 � 107 kg
y�0� � 2 � 107 kg

k � 0.71
K � 8 � 107 kg
t

y�t�

dy

dt
� ky�1 �

y

K�
3.

t

h � 1

k � 0.0015

Time (hours) Yeast cells Time (hours) Yeast cells

0 18 10 509
2 39 12 597
4 80 14 640
6 171 16 664
8 336 18 672
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this family. How does the graph change when varies? How
does it change when varies?

Let’s modify the logistic differential equation of Example 1 as
follows:

(a) Suppose represents a fish population at time , where 
is measured in weeks. Explain the meaning of the term .

(b) Draw a direction field for this differential equation.
(c) What are the equilibrium solutions?
(d) Use the direction field to sketch several solution curves.

Describe what happens to the fish population for various
initial populations.

(e) Solve this differential equation explicitly, either by using
partial fractions or with a computer algebra system. Use the
initial populations 200 and 300. Graph the solutions and
compare with your sketches in part (d).

12. Consider the differential equation

as a model for a fish population, where is measured in weeks
and is a constant.
(a) Use a CAS to draw direction fields for various values of .
(b) From your direction fields in part (a), determine the values

of for which there is at least one equilibrium solution. For
what values of does the fish population always die out?

(c) Use the differential equation to prove what you discovered
graphically in part (b).

(d) What would you recommend for a limit to the weekly catch
of this fish population?

There is considerable evidence to support the theory that for
some species there is a minimum population such that the
species will become extinct if the size of the population falls
below . This condition can be incorporated into the logistic
equation by introducing the factor . Thus, the modi-
fied logistic model is given by the differential equation

(a) Use the differential equation to show that any solution is
increasing if and decreasing if .

(b) For the case where , , and ,
draw a direction field and use it to sketch several solution
curves. Describe what happens to the population for various
initial populations. What are the equilibrium solutions?

(c) Solve the differential equation explicitly, either by using
partial fractions or with a computer algebra system. Use the
initial population .P0

m � 200K � 1000k � 0.08
0 � P � mm � P � K

dP

dt
� kP�1 �

P

K��1 �
m

P�
�1 � m�P�

m

m
13.

c
c

c
c

t

dP

dt
� 0.08P�1 �

P

1000� � c

CAS

CAS

�15
ttP�t�

dP

dt
� 0.08P�1 �

P

1000� � 15

11.

k
P0 (d) Use the solution in part (c) to show that if , then the

species will become extinct. [Hint: Show that the numera-
tor in your expression for is 0 for some value of .]

14. Another model for a growth function for a limited population is
given by the Gompertz function, which is a solution of the
differential equation 

where is a constant and is the carrying capacity.
(a) Solve this differential equation.
(b) Compute .
(c) Graph the Gompertz growth function for ,

, and , and compare it with the logistic
function in Example 3. What are the similarities? What are
the differences?

(d) We know from Exercise 9 that the logistic function grows
fastest when . Use the Gompertz differential equa-
tion to show that the Gompertz function grows fastest 
when .

15. In a seasonal-growth model, a periodic function of time is
introduced to account for seasonal variations in the rate of
growth. Such variations could, for example, be caused by 
seasonal changes in the availability of food.
(a) Find the solution of the seasonal-growth model

where , , and are positive constants.

; (b) By graphing the solution for several values of , , and ,
explain how the values of , , and affect the solution.
What can you say about ?

16. Suppose we alter the differential equation in Exercise 15 as 
follows:

(a) Solve this differential equation with the help of a table of
integrals or a CAS.

; (b) Graph the solution for several values of , , and . How do
the values of , , and affect the solution? What can you
say about in this case?

17. Graphs of logistic functions (Figures 2 and 4) look suspiciously
similar to the graph of the hyperbolic tangent function
(Figure 3 in Section 3.9). Explain the similarity by showing
that the logistic function given by Equation 4 can be written as 

where .  Thus, the logistic function is really just a
shifted hyperbolic tangent.

c � �ln A��k

P�t� � 1
2 K [1 � tanh(1

2 k� t � c�)]

lim t l � P�t�
	rk

	rk

P�0� � P0
dP

dt
� kP cos2�rt � 	�

lim t l � P�t�
	rk

	rk
	rk

P�0� � P0
dP

dt
� kP cos�rt � 	�

P � K�e

P � K�2

c � 0.05P0 � 100
K � 1000

lim t l � P�t�

Kc

dP

dt
� c ln�K

P�P

tP�t�

P0 � m
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|||| 9.6 L i n e a r  E q u a t i o n s

A first-order linear differential equation is one that can be put into the form

where and are continuous functions on a given interval. This type of equation occurs
frequently in various sciences, as we will see.

An example of a linear equation is because, for , it can be written
in the form

Notice that this differential equation is not separable because it’s impossible to factor the
expression for as a function of x times a function of y. But we can still solve the equa-
tion by noticing, by the Product Rule, that

and so we can rewrite the equation as

If we now integrate both sides of this equation, we get

or

If we had been given the differential equation in the form of Equation 2, we would have
had to take the preliminary step of multiplying each side of the equation by x.

It turns out that every first-order linear differential equation can be solved in a similar
fashion by multiplying both sides of Equation 1 by a suitable function called an 
integrating factor. We try to find so that the left side of Equation 1, when multiplied by

, becomes the derivative of the product :

If we can find such a function , then Equation 1 becomes

Integrating both sides, we would have

so the solution would be

y�x� �
1

I�x�
 
y I�x�Q�x� dx � C�4

I�x�y � y I�x�Q�x� dx � C

�I�x�y�
 � I�x�Q�x�

I

I�x��y
 � P�x�y� � �I�x�y�
3

I�x�yI�x�
I

I�x�

y � x �
C

x
xy � x 2 � C

�xy�
 � 2x

xy
 � y � �xy�


y


y
 �
1

x
 y � 22

x � 0xy
 � y � 2x

QP

dy

dx
� P�x�y � Q�x�1



To find such an , we expand Equation 3 and cancel terms:

This is a separable differential equation for , which we solve as follows:

where . We are looking for a particular integrating factor, not the most general
one, so we take A � 1 and use

Thus, a formula for the general solution to Equation 1 is provided by Equation 4, where 
is given by Equation 5. Instead of memorizing this formula, however, we just remember
the form of the integrating factor.

To solve the linear differential equation , multiply both sides by
the integrating factor and integrate both sides.

EXAMPLE 1 Solve the differential equation .

SOLUTION The given equation is linear since it has the form of Equation 1 with
and . An integrating factor is

Multiplying both sides of the differential equation by , we get

or

Integrating both sides, we have

 y � 2 � Ce�x 3

 ex 3
y � y 6x 2ex 3 dx � 2ex 3

� C

 
d

dx
 �ex 3

y� � 6x 2ex 3

 ex 3
 
dy

dx
� 3x 2ex 3

y � 6x 2ex 3

ex 3

I�x� � e x 3x 2 dx � ex3

Q�x� � 6x 2P�x� � 3x 2

dy

dx
� 3x 2 y � 6x 2

I�x� � e x P�x� dx
y
 � P�x�y � Q�x�

I

I�x� � e x P�x� dx5

A � �eC

 I � Ae x P�x� dx

 ln � I � � y P�x� dx

 y 
dI

I
� y P�x� dx

I

 I�x�P�x� � I
�x�

 I�x�y
 � I�x�P�x�y � �I�x�y�
 � I
�x�y � I�x�y


I
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FIGURE 1

6

_3

_1.5 1.8

C=2
C=1

C=_2

C=_1

C=0

|||| Figure 1 shows the graphs of several mem-
bers of the family of solutions in Example 1.
Notice that they all approach as .x l �2
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EXAMPLE 2 Find the solution of the initial-value problem

SOLUTION We must first divide both sides by the coefficient of to put the differential
equation into standard form:

The integrating factor is

Multiplication of Equation 6 by gives

Then

and so

Since , we have

Therefore, the solution to the initial-value problem is

EXAMPLE 3 Solve .

SOLUTION The given equation is in the standard form for a linear equation. Multiplying by
the integrating factor

we get

or

Therefore

Recall from Section 7.5 that can’t be expressed in terms of elementary functions.
Nonetheless, it’s a perfectly good function and we can leave the answer as 

y � e�x 2
 y ex 2 dx � Ce�x 2

x ex 2 dx

 ex 2
y � y ex 2

 dx � C

 (ex 2
y)
 � ex 2

 ex 2
y
 � 2xex 2

y � ex 2

 e x 2x dx � ex 2

y
 � 2xy � 1

y �
ln x � 2

x

2 �
ln 1 � C

1
� C

y�1� � 2

y �
ln x � C

x

xy � y 
1

x
 dx � ln x � C

�xy�
 �
1

x
orxy
 � y �

1

x

x

I�x� � e x �1�x� dx � e ln x � x

x � 0y
 �
1

x
 y �

1

x 26

y


y�1� � 2x � 0x 2y
 � xy � 1

|||| The solution of the initial-value problem in
Example 2 is shown in Figure 2.

FIGURE 2

(1, 2)

5

_5

0 4

|||| Even though the solutions of the differential
equation in Example 3 are expressed in terms of
an integral, they can still be graphed by a com-
puter algebra system (Figure 3).

FIGURE 3

C=2

C=_2

2.5

_2.5

_2.5 2.5
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Another way of writing the solution is

(Any number can be chosen for the lower limit of integration.)

A p p l i c a t i o n  t o  E l e c t r i c  C i r c u i t s

In Section 9.2 we considered the simple electric circuit shown in Figure 4: An electro-
motive force (usually a battery or generator) produces a voltage of volts (V) and a cur-
rent of amperes (A) at time . The circuit also contains a resistor with a resistance of

ohms ( ) and an inductor with an inductance of henries (H).
Ohm’s Law gives the drop in voltage due to the resistor as . The voltage drop due to

the inductor is . One of Kirchhoff’s laws says that the sum of the voltage drops is
equal to the supplied voltage . Thus, we have

which is a first-order linear differential equation. The solution gives the current at time .

EXAMPLE 4 Suppose that in the simple circuit of Figure 4 the resistance is and the
inductance is 4 H. If a battery gives a constant voltage of 60 V and the switch is closed
when so the current starts with , find (a) , (b) the current after 1 s, and
(c) the limiting value of the current.

SOLUTION
(a) If we put , , and in Equation 7, we obtain the initial-value
problem

or

Multiplying by the integrating factor , we get

Since , we have , so and

I�t� � 5�1 � e�3t �

C � �55 � C � 0I�0� � 0

 I�t� � 5 � Ce�3t

 e 3tI � y 15e 3t dt � 5e 3t � C

 
d

dt
 �e 3tI� � 15e 3t

 e 3t 
dI

dt
� 3e 3tI � 15e 3t

e x 3 dt � e 3t

I�0� � 0 
dI

dt
� 3I � 15

I�0� � 0 4 
dI

dt
� 12I � 60

E�t� � 60R � 12L � 4

I�t�I�0� � 0t � 0

12 �

tI

L 
dI

dt
� RI � E�t�7

E�t�
L�dI�dt�

RI
L�R

tI�t�
E�t�

y � e�x 2
 y

x

0
 e t 2 dt � Ce�x 2

FIGURE 4

R

E

switch

L

|||| The differential equation in Example 4 is
both linear and separable, so an alternative
method is to solve it as a separable equation
(Example 4 in Section 9.3). If we replace the bat-
tery by a generator, however, we get an equation
that is linear but not separable (Example 5).
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(b) After 1 second the current is

(c)

EXAMPLE 5 Suppose that the resistance and inductance remain as in Example 4 
but, instead of the battery, we use a generator that produces a variable voltage of

volts. Find .

SOLUTION This time the differential equation becomes

The same integrating factor gives

Using Formula 98 in the Table of Integrals, we have

Since , we get

so I�t� � 5
101 �sin 30t � 10 cos 30t� �

50
101 e�3t

�
50
101 � C � 0

I�0� � 0

 I � 5
101 �sin 30t � 10 cos 30t� � Ce�3t

 e 3tI � y 15e 3t sin 30t dt � 15 
e 3t

909
 �3 sin 30t � 30 cos 30t� � C

d

dt
 �e 3tI� � e 3t 

dI

dt
� 3e 3tI � 15e 3t sin 30t

e 3t

dI

dt
� 3I � 15 sin 30tor4 

dI

dt
� 12I � 60 sin 30t

I�t�E�t� � 60 sin 30t

 � 5 � 0 � 5

 � 5 � 5 lim
t l �

 e�3t

 lim
t l �

 I�t� � lim
t l �

 5�1 � e�3t �

I�1� � 5�1 � e�3 � � 4.75 A

|||| Figure 6 shows the graph of the current
when the battery is replaced by a generator.

FIGURE 6

2

_2

2.50

FIGURE 5

6

0 2.5

y=5

|||| Figure 5 shows how the current in Example 4
approaches its limiting value.

1–4 |||| Determine whether the differential equation is linear.

1. 2.

3. 4.

5–14 |||| Solve the differential equation.

6.

7. 8.

10.

11.
dy

dx
� 2xy � x 2

1 � xy � xy�

xy� � y � sx9.

x 2y� � 2xy � cos 2 xxy� � 2y � x 2

y� � x � 5yy� � 2y � 2e x5.

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

y� � cos y � tan xxy� � ln x � x 2y � 0

y � sin x � x 3y�y� � e xy � x 2y 2
12. ,

13. ,

14.

15–20 |||| Solve the initial-value problem.

15. ,

16. , ,

17. , v�0� � 5
dv

dt
� 2tv � 3t 2e t 2

y�1� � 0t � 0t 
dy

dt
� 2y � t 3

y�0� � 2y� � x � y

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

t ln t 
dr

dt
� r � te t

t � 0�1 � t� 
du

dt
� u � 1 � t

���2 � x � ��2
dy

dx
� x sin 2x � y tan x

|||| 9.6 Exercises
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capacitor is , where is the charge (in coulombs), so in
this case Kirchhoff’s Law gives

But (see Example 3 in Section 3.3), so we have

Suppose the resistance is , the capacitance is F, a 
battery gives a constant voltage of 60 V, and the initial charge
is C. Find the charge and the current at time .

30. In the circuit of Exercise 29, , , ,
and . Find the charge and the current at time .

Let be the performance level of someone learning a skill 
as a function of the training time . The graph of is called a
learning curve. In Exercise 13 in Section 9.1 we proposed the
differential equation

as a reasonable model for learning, where is a positive
constant. Solve it as a linear differential equation and use your
solution to graph the learning curve.

32. Two new workers were hired for an assembly line. Jim
processed 25 units during the first hour and 45 units during the
second hour. Mark processed 35 units during the first hour and
50 units the second hour. Using the model of Exercise 31 and
assuming that , estimate the maximum number of
units per hour that each worker is capable of processing.

In Section 9.3 we looked at mixing problems in which the 
volume of fluid remained constant and saw that such problems
give rise to separable equations. (See Example 6 in that
section.) If the rates of flow into and out of the system are dif-
ferent, then the volume is not constant and the resulting differ-
ential equation is linear but not separable.

A tank contains 100 L of water. A solution with a salt
concentration of is added at a rate of . The 
solution is kept mixed and is drained from the tank at a rate 
of . If is the amount of salt (in kilograms) after 

minutes, show that satisfies the differential equation

Solve this equation and find the concentration after 20 minutes.

34. A tank with a capacity of 400 L is full of a mixture of water
and chlorine with a concentration of 0.05 g of chlorine per liter.
In order to reduce the concentration of chlorine, fresh water is
pumped into the tank at a rate of . The mixture is kept 4 L�s

dy

dt
� 2 �

3y

100 � 2t

yt
y�t�3 L�min

5 L�min0.4 kg�L

33.

P�0� � 0

k

dP

dt
� k�M � P�t��

Pt
P�t�31.

tE�t� � 10 sin 60t
Q�0� � 0C � 0.01 FR � 2 	

tQ�0� � 0

0.055 	

R 
dQ

dt
�

1

C
 Q � E�t�

I � dQ�dt

RI �
Q

C
� E�t�

QQ�C18. , ,

,

20. , ,

; 21–22 |||| Solve the differential equation and use a graphing cal-
culator or computer to graph several members of the family of
solutions. How does the solution curve change as varies?

21. ,

22.

23. A Bernoulli differential equation (named after James
Bernoulli) is of the form

Observe that, if or , the Bernoulli equation is linear. 
For other values of , show that the substitution trans-
forms the Bernoulli equation into the linear equation

24–26 |||| Use the method of Exercise 23 to solve the differential
equation.

24.

26.

27. In the circuit shown in Figure 4, a battery supplies a constant
voltage of 40 V, the inductance is 2 H, the resistance is ,
and .
(a) Find .
(b) Find the current after s.

28. In the circuit shown in Figure 4, a generator supplies a voltage
of volts, the inductance is H, the resistance
is , and A.
(a) Find .
(b) Find the current after s.

; (c) Use a graphing device to draw the graph of the current
function.

29. The figure shows a circuit containing an electromotive force,
a capacitor with a capacitance of farads (F), and a resistor
with a resistance of ohms ( ). The voltage drop across the 

C

E R

	R
C
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1E�t� � 40 sin 60t
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(a) Solve this as a linear equation to show that

(b) What is the limiting velocity?
(c) Find the distance the object has fallen after seconds.

36. If we ignore air resistance, we can conclude that heavier
objects fall no faster than lighter objects. But if we take air
resistance into account, our conclusion changes. Use the
expression for the velocity of a falling object in Exercise 35(a)
to find and show that heavier objects do fall faster than
lighter ones.

dv�dm

t

v �
mt

c
 �1 � e�ct�m �

stirred and is pumped out at a rate of . Find the amount
of chlorine in the tank as a function of time.

35. An object with mass is dropped from rest and we assume
that the air resistance is proportional to the speed of the object.
If is the distance dropped after seconds, then the speed is

and the acceleration is . If is the acceleration
due to gravity, then the downward force on the object is

, where is a positive constant, and Newton’s Second
Law gives

m 
dv

dt
� mt � cv

cmt � cv

ta � v��t�v � s��t�
ts�t�

m

10 L�s

|||| 9.7 P r e d a t o r - P r e y  S y s t e m s

We have looked at a variety of models for the growth of a single species that lives alone in
an environment. In this section we consider more realistic models that take into account
the interaction of two species in the same habitat. We will see that these models take the
form of a pair of linked differential equations.

We first consider the situation in which one species, called the prey, has an ample food
supply and the second species, called the predators, feeds on the prey. Examples of prey
and predators include rabbits and wolves in an isolated forest, food fish and sharks, aphids
and ladybugs, and bacteria and amoebas. Our model will have two dependent variables and
both are functions of time. We let be the number of prey (using R for rabbits) and 
be the number of predators (with W for wolves) at time t.

In the absence of predators, the ample food supply would support exponential growth
of the prey, that is,

In the absence of prey, we assume that the predator population would decline at a rate pro-
portional to itself, that is,

With both species present, however, we assume that the principal cause of death among the
prey is being eaten by a predator, and the birth and survival rates of the predators depend
on their available food supply, namely, the prey. We also assume that the two species
encounter each other at a rate that is proportional to both populations and is therefore pro-
portional to the product RW. (The more there are of either population, the more encoun-
ters there are likely to be.) A system of two differential equations that incorporates these
assumptions is as follows:

where k, r, a, and b are positive constants. Notice that the term �aRW decreases the nat-
ural growth rate of the prey and the term bRW increases the natural growth rate of the
predators.

 
dW

dt
� �rW � bRW 

dR

dt
� kR � aRW1

where r is a positive constant
dW

dt
� �rW

where k is a positive constant
dR

dt
� kR

W�t�R�t�

W represents the predator.

R represents the prey.



The equations in (1) are known as the predator-prey equations, or the Lotka-Volterra
equations. A solution of this system of equations is a pair of functions and that
describe the populations of prey and predator as functions of time. Because the system is
coupled (R and W occur in both equations), we can’t solve one equation and then the other;
we have to solve them simultaneously. Unfortunately, it is usually impossible to find
explicit formulas for R and W as functions of t. We can, however, use graphical methods
to analyze the equations. 

EXAMPLE 1 Suppose that populations of rabbits and wolves are described by the Lotka-
Volterra equations (1) with k � 0.08, a � 0.001, r � 0.02, and b � 0.00002. The time 
is measured in months.
(a) Find the constant solutions (called the equilibrium solutions) and interpret 
the answer.
(b) Use the system of differential equations to find an expression for .
(c) Draw a direction field for the resulting differential equation in the RW-plane. Then
use that direction field to sketch some solution curves.
(d) Suppose that, at some point in time, there are 1000 rabbits and 40 wolves. Draw the
corresponding solution curve and use it to describe the changes in both population levels.
(e) Use part (d) to make sketches of R and W as functions of t.

SOLUTION
(a) With the given values of k, a, r, and b, the Lotka-Volterra equations become

Both R and W will be constant if both derivatives are 0, that is,

One solution is given by R � 0 and W � 0. (This makes sense: If there are no rabbits or
wolves, the populations are certainly not going to increase.) The other constant solution is

So the equilibrium populations consist of 80 wolves and 1000 rabbits. This means that
1000 rabbits are just enough to support a constant wolf population of 80. There are nei-
ther too many wolves (which would result in fewer rabbits) nor too few wolves (which
would result in more rabbits).

(b) We use the Chain Rule to eliminate t:

so
dW

dR
�

dW

dt

dR

dt

�
�0.02W � 0.00002RW

0.08R � 0.001RW

dW

dt
�

dW

dR
 
dR

dt

R �
0.02

0.00002
� 1000W �

0.08

0.001
� 80

 W� � W��0.02 � 0.00002R� � 0

 R� � R�0.08 � 0.001W� � 0

 
dW

dt
� �0.02W � 0.00002RW

 
dR

dt
� 0.08R � 0.001RW

dW�dR

t

W�t�R�t�
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|||| The Lotka-Volterra equations were proposed
as a model to explain the variations in the shark
and food-fish populations in the Adriatic Sea 
by the Italian mathematician Vito Volterra
(1860–1940).
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(c) If we think of W as a function of R, we have the differential equation

We draw the direction field for this differential equation in Figure 1 and we use it to
sketch several solution curves in Figure 2. If we move along a solution curve, we
observe how the relationship between R and W changes as time passes. Notice that the
curves appear to be closed in the sense that if we travel along a curve, we always return
to the same point. Notice also that the point (1000, 80) is inside all the solution curves.
That point is called an equilibrium point because it corresponds to the equilibrium solu-
tion R � 1000, W � 80.

When we represent solutions of a system of differential equations as in Figure 2, we
refer to the RW-plane as the phase plane, and we call the solution curves phase trajec-
tories. So a phase trajectory is a path traced out by solutions as time goes by. A
phase portrait consists of equilibrium points and typical phase trajectories, as shown in
Figure 2.

(d) Starting with 1000 rabbits and 40 wolves corresponds to drawing the solution curve
through the point . Figure 3 shows this phase trajectory with the direction
field removed. Starting at the point at time t � 0 and letting t increase, do we move
clockwise or counterclockwise around the phase trajectory? If we put R � 1000 and 

FIGURE 3
Phase trajectory through (1000, 40)
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W � 40 in the first differential equation, we get

Since , we conclude that R is increasing at and so we move counter-
clockwise around the phase trajectory.

We see that at there aren’t enough wolves to maintain a balance between the popu-
lations, so the rabbit population increases. That results in more wolves and eventually
there are so many wolves that the rabbits have a hard time avoiding them. So the number
of rabbits begins to decline (at , where we estimate that R reaches its maximum popu-
lation of about 2800). This means that at some later time the wolf population starts to
fall (at , where R � 1000 and ). But this benefits the rabbits, so their popula-
tion later starts to increase (at , where W � 80 and ). As a consequence, the
wolf population eventually starts to increase as well. This happens when the populations
return to their initial values of R � 1000 and W � 40, and the entire cycle begins again.

(e) From the description in part (d) of how the rabbit and wolf populations rise and fall,
we can sketch the graphs of and . Suppose the points , , and in Figure 3
are reached at times , , and . Then we can sketch graphs of R and W as in Figure 4.

To make the graphs easier to compare, we draw the graphs on the same axes but with
different scales for R and W, as in Figure 5. Notice that the rabbits reach their maximum
populations about a quarter of a cycle before the wolves.

FIGURE 5
Comparison of the rabbit

and wolf populations
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FIGURE 4
Graphs of the rabbit and wolf
populations as functions of time
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An important part of the modeling process, as we discussed in Section 1.2, is to inter-
pret our mathematical conclusions as real-world predictions and to test the predictions
against real data. The Hudson’s Bay Company, which started trading in animal furs in
Canada in 1670, has kept records that date back to the 1840s. Figure 6 shows graphs of the
number of pelts of the snowshoe hare and its predator, the Canada lynx, traded by the com-
pany over a 90-year period. You can see that the coupled oscillations in the hare and lynx
populations predicted by the Lotka-Volterra model do actually occur and the period of
these cycles is roughly 10 years.

Although the relatively simple Lotka-Volterra model has had some success in explain-
ing and predicting coupled populations, more sophisticated models have also been pro-
posed. One way to modify the Lotka-Volterra equations is to assume that, in the absence
of predators, the prey grow according to a logistic model with carrying capacity K. Then
the Lotka-Volterra equations (1) are replaced by the system of differential equations

This model is investigated in Exercises 9 and 10.
Models have also been proposed to describe and predict population levels of two

species that compete for the same resources or cooperate for mutual benefit. Such models
are explored in Exercise 2.

 
dW

dt
� �rW � bRW 
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FIGURE 6
Relative abundance of hare and lynx

from Hudson’s Bay Company records

2. Each system of differential equations is a model for two
species that either compete for the same resources or cooperate
for mutual benefit (flowering plants and insect pollinators, for
instance). Decide whether each system describes competition
or cooperation and explain why it is a reasonable model. (Ask
yourself what effect an increase in one species has on the
growth rate of the other.)

(a)

(b)

 
dy

dt
� 0.2y � 0.00008y 2 � 0.0002xy

 
dx

dt
� 0.15x � 0.0002x 2 � 0.0006xy

 
dy

dt
� 0.08x � 0.00004xy

 
dx

dt
� 0.12x � 0.0006x 2 � 0.00001xy

For each predator-prey system, determine which of the vari-
ables, or , represents the prey population and which
represents the predator population. Is the growth of the prey
restricted just by the predators or by other factors as well? Do
the predators feed only on the prey or do they have additional
food sources? Explain.

(a)

(b)

 
dy

dt
� �0.015y � 0.00008xy

 
dx

dt
� 0.2x � 0.0002x 2 � 0.006xy

 
dy

dt
� 0.1y � 0.005xy

 
dx

dt
� �0.05x � 0.0001xy

yx
1.

|||| 9.7 Exercises
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3–4 |||| A phase trajectory is shown for populations of rabbits 
and foxes .
(a) Describe how each population changes as time goes by.
(b) Use your description to make a rough sketch of the graphs of R

and F as functions of time.

4.

5–6 |||| Graphs of populations of two species are shown. Use them
to sketch the corresponding phase trajectory.

0 t
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�F�
�R� 6.

In Example 1(b) we showed that the rabbit and wolf popula-
tions satisfy the differential equation

By solving this separable differential equation, show that

where is a constant.
It is impossible to solve this equation for as an explicit

function of (or vice versa). If you have a computer algebra
system that graphs implicitly defined curves, use this equation
and your CAS to draw the solution curve that passes through
the point and compare with Figure 3.

8. Populations of aphids and ladybugs are modeled by the 
equations

(a) Find the equilibrium solutions and explain their 
significance.

(b) Find an expression for .
(c) The direction field for the differential equation in part (b) is

shown. Use it to sketch a phase portrait. What do the phase
trajectories have in common?
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(b) Find all the equilibrium solutions and explain their 
significance.

(c) The figure shows the phase trajectory that starts at the point
. Describe what eventually happens to the rabbit

and wolf populations.
(d) Sketch graphs of the rabbit and wolf populations as func-

tions of time.

10. In Exercise 8 we modeled populations of aphids and ladybugs
with a Lotka-Volterra system. Suppose we modify those equa-
tions as follows:

(a) In the absence of ladybugs, what does the model predict
about the aphids?

(b) Find the equilibrium solutions.
(c) Find an expression for .
(d) Use a computer algebra system to draw a direction field for

the differential equation in part (c). Then use the direction
field to sketch a phase portrait. What do the phase trajecto-
ries have in common?

(e) Suppose that at time there are 1000 aphids and
200 ladybugs. Draw the corresponding phase trajectory and
use it to describe how both populations change.

(f) Use part (e) to make rough sketches of the aphid and 
ladybug populations as functions of . How are the graphs
related to each other?

t

t � 0

dL�dA

 
dL

dt
� �0.5L � 0.0001AL

 
dA

dt
� 2A�1 � 0.0001A� � 0.01AL

CAS

�1000, 40�

(d) Suppose that at time there are 1000 aphids and
200 ladybugs. Draw the corresponding phase trajectory and
use it to describe how both populations change.

(e) Use part (d) to make rough sketches of the aphid and lady-
bug populations as functions of . How are the graphs
related to each other?

9. In Example 1 we used Lotka-Volterra equations to model popu-
lations of rabbits and wolves. Let’s modify those equations as
follows:

(a) According to these equations, what happens to the rabbit
population in the absence of wolves?
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|||| 9 Review
■■ C O N C E P T  C H E C K  ■■

7. (a) Write a differential equation that expresses the law of 
natural growth. What does it say in terms of relative 
growth rate?

(b) Under what circumstances is this an appropriate model for
population growth?

(c) What are the solutions of this equation?

8. (a) Write the logistic equation.
(b) Under what circumstances is this an appropriate model for

population growth?

9. (a) Write Lotka-Volterra equations to model populations of
food fish and sharks .

(b) What do these equations say about each population in the
absence of the other?

�S��F�

1. (a) What is a differential equation?
(b) What is the order of a differential equation?
(c) What is an initial condition?

2. What can you say about the solutions of the equation
just by looking at the differential equation?

3. What is a direction field for the differential equation
?

4. Explain how Euler’s method works.

5. What is a separable differential equation? How do you solve it?

6. What is a first-order linear differential equation? How do you
solve it?

y� � F�x, y�

y� � x 2 � y 2
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5. The equation is linear.

6. The equation is linear.

7. If is the solution of the initial-value problem

then .lim t l � y � 5

y�0� � 1
dy

dt
� 2y�1 �

y

5	
y

y� � xy � e y

e xy� � yDetermine whether the statement is true or false. If it is true, explain why. 
If it is false, explain why or give an example that disproves the statement.

1. All solutions of the differential equation are
decreasing functions.

2. The function is a solution of the differential
equation .

3. The equation is separable.

4. The equation is separable.y� � 3y � 2x � 6xy � 1

y� � x � y

x 2 y� � xy � 1
f �x� � �ln x��x

y� � �1 � y 4

(b) Use Euler’s method with step size 0.1 to estimate 
where is the solution of the initial-value problem in
part (a). Compare with your estimate from part (a).

(c) On what lines are the centers of the horizontal line
segments of the direction field in part (a) located? What
happens when a solution curve crosses these lines?

4. (a) Use Euler’s method with step size 0.2 to estimate ,
where is the solution of the initial-value problem

(b) Repeat part (a) with step size 0.1.
(c) Find the exact solution of the differential equation and

compare the value at 0.4 with the approximations in
parts (a) and (b).

5–8 |||| Solve the differential equation.

5. 6.

7. 8.
■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

x 2y� � y � 2x 3e�1�x�3y 2 � 2y�y� � x cos x

dx
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� 1 � t � x � txy� � xe�sin x � y cos x

y�0� � 1y� � 2xy 2
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1. (a) A direction field for the differential equation
is shown. Sketch the graphs of the

solutions that satisfy the given initial conditions.
(i) (ii)

(iii) (iv)

(b) If the initial condition is , for what values of is
finite? What are the equilibrium solutions?

2. (a) Sketch a direction field for the differential equation
. Then use it to sketch the four solutions that 

satisfy the initial conditions , ,
and .

(b) Check your work in part (a) by solving the differential
equation explicitly. What type of curve is each solution
curve?

3. (a) A direction field for the differential equation 
is shown. Sketch the solution of the initial-value problem

Use your graph to estimate the value of .y�0.3�

y�0� � 1y� � x 2 � y 2

y� � x 2 � y 2

y��2� � 1
y�2� � 1,y�0� � �1y�0� � 1

y� � x�y
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y
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lim t l � y�t�
cy�0� � c

y�0� � 4.3y�0� � 3
y�0� � 1y�0� � �0.3

y� � y�y � 2��y � 4�

■■ T R U E - F A L S E  Q U I Z  ■■

■■ E X E R C I S E S  ■■
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19. The von Bertalanffy growth model is used to predict the length
of a fish over a period of time. If is the largest length

for a species, then the hypothesis is that the rate of growth in
length is proportional to , the length yet to be achieved.
(a) Formulate and solve a differential equation to find an

expression for .
(b) For the North Sea haddock it has been determined that

, cm, and the constant of propor-
tionality is . What does the expression for become
with these data?

20. A tank contains 100 L of pure water. Brine that contains 
0.1 kg of salt per liter enters the tank at a rate of 10 L�min. 
The solution is kept thoroughly mixed and drains from the tank
at the same rate. How much salt is in the tank after 6 minutes?

21. One model for the spread of an epidemic is that the rate of
spread is jointly proportional to the number of infected people
and the number of uninfected people. In an isolated town of
5000 inhabitants, 160 people have a disease at the beginning of
the week and 1200 have it at the end of the week. How long
does it take for of the population to become infected? 

22. The Brentano-Stevens Law in psychology models the way that
a subject reacts to a stimulus. It states that if represents the
reaction to an amount of stimulus, then the relative rates of
increase are proportional:

where is a positive constant. Find as a function of .

23. The transport of a substance across a capillary wall in lung
physiology has been modeled by the differential equation

where is the hormone concentration in the bloodstream, is
time, is the maximum transport rate, is the volume of the
capillary, and is a positive constant that measures the affinity
between the hormones and the enzymes that assist the process.
Solve this differential equation to find a relationship between 
and .

24. Populations of birds and insects are modeled by the equations

(a) Which of the variables, or , represents the bird popula-
tion and which represents the insect population? Explain.
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9–11 |||| Solve the initial-value problem.

9.

10. , ,

11. ,

; 12. Solve the initial-value problem , and
graph the solution.

13–14 |||| Find the orthogonal trajectories of the family of curves.

13. 14.

15. A bacteria culture starts with 1000 bacteria and the growth 
rate is proportional to the number of bacteria. After 2 hours the
population is 9000.
(a) Find an expression for the number of bacteria after hours.
(b) Find the number of bacteria after 3 h.
(c) Find the rate of growth after 3 h.
(d) How long does it take for the number of bacteria to double?

16. An isotope of strontium, , has a half-life of 25 years. 
(a) Find the mass of that remains from a sample of 18 mg

after years.
(b) How long would it take for the mass to decay to 2 mg?

17. Let be the concentration of a drug in the bloodstream. 
As the body eliminates the drug, decreases at a rate that is
proportional to the amount of the drug that is present at the
time. Thus, , where is a positive number
called the elimination constant of the drug. 
(a) If is the concentration at time , find the concentra-

tion at time .
(b) If the body eliminates half the drug in 30 h, how long does

it take to eliminate 90% of the drug? 

18. (a) The population of the world was 5.28 billion in 1990 and
6.07 billion in 2000. Find an exponential model for these
data and use the model to predict the world population in
the year 2020.

(b) According to the model in part (a), when will the world
population exceed 10 billion?

(c) Use the data in part (a) to find a logistic model for the pop-
ulation. Assume a carrying capacity of 100 billion. Then
use the logistic model to predict the population in 2020.
Compare with your prediction from the exponential model.

(d) According to the logistic model, when will the world popu-
lation exceed 10 billion? Compare with your prediction in
part (b).

t
t � 0C0

kC��t� � �kC�t�

C�t�
C�t�

t

90Sr

90Sr

t

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

y �
k
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(b) Find the equilibrium solutions and explain their 
significance.

(c) Find an expression for .
(d) The direction field for the differential equation in part (c) is

shown. Use it to sketch the phase trajectory corresponding
to initial populations of 100 birds and 40,000 insects. Then
use the phase trajectory to describe how both populations
change.

(e) Use part (d) to make rough sketches of the bird and insect
populations as functions of time. How are these graphs
related to each other?

25. Suppose the model of Exercise 24 is replaced by the equations

(a) According to these equations, what happens to the insect
population in the absence of birds?

(b) Find the equilibrium solutions and explain their 
significance.

(c) The figure shows the phase trajectory that starts with
100 birds and 40,000 insects. Describe what eventually
happens to the bird and insect populations.
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(d) Sketch graphs of the bird and insect populations as
functions of time.

26. Barbara weighs 60 kg and is on a diet of 1600 calories per day,
of which 850 are used automatically by basal metabolism. She
spends about 15 cal�kg�day times her weight doing exercise. If
1 kg of fat contains 10,000 cal and we assume that the storage
of calories in the form of fat is efficient, formulate a dif-
ferential equation and solve it to find her weight as a function
of time. Does her weight ultimately approach an equilibrium
weight?

27. When a flexible cable of uniform density is suspended between
two fixed points and hangs of its own weight, the shape

of the cable must satisfy a differential equation of the
form

where is a positive constant. Consider the cable shown in the
figure.
(a) Let in the differential equation. Solve the result-

ing first-order differential equation (in ), and then integrate
to find .

(b) Determine the length of the cable.
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(b, h)(_b, h)

y
z

z � dy�dx

k

d 2y

dx 2 � k�1 � �dy

dx�2

y � f �x�

100%

x

y

15000

100

4500025000 35000

120

140

160

180

200

220

240

260

10000



1. Find all functions such that is continuous and

2. A student forgot the Product Rule for differentiation and made the mistake of thinking 
that . However, he was lucky and got the correct answer. The function that he
used was and the domain of his problem was the interval . What was the
function ?

3. Let be a function with the property that , , and for
all real numbers and . Show that for all and deduce that .

4. Find all functions that satisfy the equation

5. A peach pie is taken out of the oven at 5:00 P.M. At that time it is piping hot: . 
At 5:10 P.M. its temperature is ; at 5:20 P.M. it is . What is the temperature of the
room?

6. Snow began to fall during the morning of February 2 and continued steadily into the after-
noon. At noon a snowplow began removing snow from a road at a constant rate. The plow
traveled 6 km from noon to 1 P.M. but only 3 km from 1 P.M. to 2 P.M. When did the snow
begin to fall? [Hints: To get started, let be the time measured in hours after noon; let 
be the distance traveled by the plow at time ; then the speed of the plow is . Let be 
the number of hours before noon that it began to snow. Find an expression for the height 
of the snow at time . Then use the given information that the rate of removal (in ) 
is constant.]

7. A dog sees a rabbit running in a straight line across an open field and gives chase. In a rectan-
gular coordinate system (as shown in the figure), assume:

(i) The rabbit is at the origin and the dog is at the point at the instant the dog first
sees the rabbit.

(ii) The rabbit runs up the -axis and the dog always runs straight for the rabbit.
(iii) The dog runs at the same speed as the rabbit.

(a) Show that the dog’s path is the graph of the function , where satisfies the differ-
ential equation 

(b) Determine the solution of the equation in part (a) that satisfies the initial conditions
when . [Hint: Let in the differential equation and solve the

resulting first-order equation to find ; then integrate to find .]
(c) Does the dog ever catch the rabbit?

8. (a) Suppose that the dog in Problem 7 runs twice as fast as the rabbit. Find a differential
equation for the path of the dog. Then solve it to find the point where the dog catches the
rabbit.

(b) Suppose the dog runs half as fast as the rabbit. How close does the dog get to the rabbit?
What are their positions when they are closest?
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9. A planning engineer for a new alum plant must present some estimates to his company regard-
ing the capacity of a silo designed to contain bauxite ore until it is processed into alum. The
ore resembles pink talcum powder and is poured from a conveyor at the top of the silo. The
silo is a cylinder 100 ft high with a radius of 200 ft. The conveyor carries and
the ore maintains a conical shape whose radius is 1.5 times its height.
(a) If, at a certain time , the pile is 60 ft high, how long will it take for the pile to reach the

top of the silo?
(b) Management wants to know how much room will be left in the floor area of the silo when

the pile is 60 ft high. How fast is the floor area of the pile growing at that height?
(c) Suppose a loader starts removing the ore at the rate of when the height of

the pile reaches 90 ft. Suppose, also, that the pile continues to maintain its shape. How
long will it take for the pile to reach the top of the silo under these conditions?

10. Find the curve that passes through the point and has the property that if the tangent line
is drawn at any point on the curve, then the part of the tangent line that lies in the first
quadrant is bisected at .

11. Recall that the normal line to a curve at a point on the curve is the line that passes through
and is perpendicular to the tangent line at . Find the curve that passes through the point

and has the property that if the normal line is drawn at any point on the curve, then the 
-intercept of the normal line is always 6.

12. Find all curves with the property that if the normal line is drawn at any point on the curve,
then the part of the normal line between and the -axis is bisected by the -axis.yxP

P

y
�3, 2�

PP
P

P
P

�3, 2�

20,000� ft3�h

t

60,000� ft3�h



Parametric Equations and 
Polar Coordinates

Parametric curves are used to

represent letters and other sym-

bols on laser printers. See the

Laboratory Project on page 669.



So far we have described plane curves by giving as a

function of or as a function of 

or by giving a relation between and that defines 

implicitly as a function of . In this chapter

we discuss two new methods for describing curves.

Some curves, such as the cycloid, are best handled when both and are given

in terms of a third variable called a parameter . Other curves,

such as the cardioid, have their most convenient description when we use a new

coordinate system, called the polar coordinate system.

|||| 10.1 C u r v e s  D e f i n e d  b y  P a r a m e t r i c  E q u a t i o n s

Imagine that a particle moves along the curve C shown in Figure 1. It is impossible to
describe C by an equation of the form because C fails the Vertical Line Test. But
the x- and y-coordinates of the particle are functions of time and so we can write 
and . Such a pair of equations is often a convenient way of describing a curve and
gives rise to the following definition.

Suppose that and are both given as functions of a third variable (called a param-
eter) by the equations

(called parametric equations). Each value of determines a point , which we can
plot in a coordinate plane. As varies, the point varies and traces out a
curve , which we call a parametric curve. The parameter t does not necessarily repre-
sent time and, in fact, we could use a letter other than t for the parameter. But in many
applications of parametric curves, t does denote time and therefore we can interpret

as the position of a particle at time t.

EXAMPLE 1 Sketch and identify the curve defined by the parametric equations

SOLUTION Each value of gives a point on the curve, as shown in the table. For instance, if
, then , and so the corresponding point is . In Figure 2 we plot the

points determined by several values of the parameter and we join them to produce
a curve.

A particle whose position is given by the parametric equations moves along the curve
in the direction of the arrows as increases. Notice that the consecutive points marked on t

FIGURE 2
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the curve appear at equal time intervals but not at equal distances. That is because the
particle slows down and then speeds up as increases.

It appears from Figure 2 that the curve traced out by the particle may be a parabola.
This can be confirmed by eliminating the parameter as follows. We obtain 
from the second equation and substitute into the first equation. This gives

and so the curve represented by the given parametric equations is the parabola
.

No restriction was placed on the parameter in Example 1, so we assumed that t could
be any real number. But sometimes we restrict t to lie in a finite interval. For instance, the
parametric curve

shown in Figure 3 is the part of the parabola in Example 1 that starts at the point and
ends at the point . The arrowhead indicates the direction in which the curve is traced
as increases from 0 to 4.

In general, the curve with parametric equations

has initial point and terminal point .

EXAMPLE 2 What curve is represented by the parametric equations , ,
?

SOLUTION If we plot points, it appears that the curve is a circle. We can confirm this
impression by eliminating Observe that

Thus, the point moves on the unit circle . Notice that in this example
the parameter can be interpreted as the angle (in radians) shown in Figure 4. As 
increases from 0 to , the point moves once around the circle in
the counterclockwise direction starting from the point .

EXAMPLE 3 What curve is represented by the parametric equations , ,
?0 � t � 2�

y � cos 2tx � sin 2t
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SOLUTION Again we have

so the parametric equations again represent the unit circle . But as 
increases from 0 to , the point starts at and moves twice
around the circle in the clockwise direction as indicated in Figure 5.

Examples 2 and 3 show that different sets of parametric equations can represent the
same curve. Thus, we distinguish between a curve, which is a set of points, and a para-
metric curve, in which the points are traced in a particular way.

EXAMPLE 4 Sketch the curve with parametric equations , .

SOLUTION Observe that and so the point moves on the parabola
. But note also that, since , we have , so the paramet-

ric equations represent only the part of the parabola for which . Since 
is periodic, the point moves back and forth infinitely often along the
parabola from to . (See Figure 6.)
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Module 10.1A gives an animation of the
relationship between motion along a
parametric curve , and

motion along the graphs of and as functions
of . Clicking on TRIG gives you the family of 
parametric curves

If you choose and click
START, you will see how the graphs of 
and relate to the circle in Example 2. If
you choose , , you will see
graphs as in Figure 7. By clicking on PAUSE and
then repeatedly on STEP, you can see from the
color coding how motion along the graphs of

and corresponds to motion
along the parametric curve, which is called a
Lissajous figure.
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G r a p h i n g  D e v i c e s

Most graphing calculators and computer graphing programs can be used to graph curves
defined by parametric equations. In fact, it’s instructive to watch a parametric curve being
drawn by a graphing calculator because the points are plotted in order as the correspond-
ing parameter values increase.

EXAMPLE 5 Use a graphing device to graph the curve .

SOLUTION If we let the parameter be , then we have the equations

Using these parametric equations to graph the curve, we obtain Figure 8. It would be
possible to solve the given equation for y as four functions of x and
graph them individually, but the parametric equations provide a much easier method.

In general, if we need to graph an equation of the form , we can use the para-
metric equations

Notice also that curves with equations (the ones we are most familiar with—
graphs of functions) can also be regarded as curves with parametric equations

Graphing devices are particularly useful when sketching complicated curves. For 
instance, the curves shown in Figures 9 and 10 would be virtually impossible to produce
by hand.

One of the most important uses of parametric curves is in computer-aided design
(CAD). In the Laboratory Project after Section 10.2 we will investigate special parametric
curves, called Bézier curves, that are used extensively in manufacturing, especially in the
automotive industry. These curves are also employed in specifying the shapes of letters and
other symbols in laser printers.

T h e  C y c l o i d

EXAMPLE 6 The curve traced out by a point on the circumference of a circle as the
circle rolls along a straight line is called a cycloid (see Figure 11). If the circle has
radius and rolls along the -axis and if one position of is the origin, find parametric
equations for the cycloid.

Pxr

P

FIGURE 10
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SOLUTION We choose as parameter the angle of rotation of the circle when is
at the origin). Suppose the circle has rotated through radians. Because the circle has
been in contact with the line, we see from Figure 12 that the distance it has rolled from
the origin is

Therefore, the center of the circle is . Let the coordinates of be . Then
from Figure 12 we see that

Therefore, parametric equations of the cycloid are

One arch of the cycloid comes from one rotation of the circle and so is described by
. Although Equations 1 were derived from Figure 12, which illustrates the

case where , it can be seen that these equations are still valid for other
values of (see Exercise 37).

Although it is possible to eliminate the parameter from Equations 1, the resulting
Cartesian equation in and is very complicated and not as convenient to work with as
the parametric equations.

One of the first people to study the cycloid was Galileo, who proposed that bridges be
built in the shape of cycloids and who tried to find the area under one arch of a cycloid.
Later this curve arose in connection with the brachistochrone problem: Find the curve
along which a particle will slide in the shortest time (under the influence of gravity) from
a point to a lower point not directly beneath . The Swiss mathematician John
Bernoulli, who posed this problem in 1696, showed that among all possible curves that
join to , as in Figure 13, the particle will take the least time sliding from to if the
curve is part of an inverted arch of a cycloid.

The Dutch physicist Huygens had already shown that the cycloid is also the solution to
the tautochrone problem; that is, no matter where a particle is placed on an inverted
cycloid, it takes the same time to slide to the bottom (see Figure 14). Huygens proposed
that pendulum clocks (which he invented) swing in cycloidal arcs because then the pen-
dulum takes the same time to make a complete oscillation whether it swings through a
wide or a small arc.

F a m i l i e s  o f  P a r a m e t r i c  C u r v e s

EXAMPLE 7 Investigate the family of curves with parametric equations

What do these curves have in common? How does the shape change as increases?a
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8. ,

,

10. ,

11–18 ||||

(a) Eliminate the parameter to find a Cartesian equation of the
curve.

(b) Sketch the curve and indicate with an arrow the direction in
which the curve is traced as the parameter increases.

11. , ,

12. , ,

,

14. , ,

15. ,

16. , , t 	 1y � stx � ln t

y � e �tx � e t

���2 � � � ��2y � tan �x � sec �

y � cos2�x � sin2�13.

���2 � � � ��2y � 5 sin �x � 4 cos �

0 � � � �y � cos �x � sin �

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

y � t 3x � t 2

y � 1 � tx � st9.

y � 2 � t 2x � 1 � 3t
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SOLUTION We use a graphing device to produce the graphs for the cases , ,
, , , , , and shown in Figure 15. Notice that all of these curves (except

the case ) have two branches, and both branches approach the vertical asymptote
as approaches from the left or right.

When , both branches are smooth; but when reaches , the right branch
acquires a sharp point, called a cusp. For between and 0 the cusp turns into a loop,
which becomes larger as approaches 0. When , both branches come together and
form a circle (see Example 2). For between 0 and 1, the left branch has a loop, which
shrinks to become a cusp when . For , the branches become smooth again,
and as increases further, they become less curved. Notice that the curves with posi-
tive are reflections about the -axis of the corresponding curves with a negative.

These curves are called conchoids of Nicomedes after the ancient Greek scholar
Nicomedes. He called them conchoids because the shape of their outer branches 
resembles that of a conch shell or mussel shell.
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1–4 |||| Sketch the curve by using the parametric equations to plot
points. Indicate with an arrow the direction in which the curve is
traced as increases.

1. , ,

2. , ,

3. , ,

, ,

5–10 ||||

(a) Sketch the curve by using the parametric equations to plot
points. Indicate with an arrow the direction in which the curve
is traced as t increases.

(b) Eliminate the parameter to find a Cartesian equation of 
the curve.

5. ,

6. , ,

7. , , �3 � t � 4y � 5 � 2tx � t 2 � 2

�2 � t � 3y � 5 � 2tx � 1 � t

y � 2t � 1x � 3t � 5

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

�2 � t � 2y � e t � tx � e�t � t4.

�� � t � �y � t 2x � 5 sin t

0 � t � 2�y � t � cos tx � 2 cos t

0 � t � 5y � t 2 � 4 tx � 1 � st

t

|||| 10.1 Exercises

FIGURE 15 Members of the family
x=a+cos t, y=a tan t+sin t,
all graphed in the viewing rectangle
�_4, 4� by �_4, 4�
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17. ,

18. ,

19–22 |||| Describe the motion of a particle with position as 
varies in the given interval.

19. , ,

20. , ,

, ,

22. , ,

23. Suppose a curve is given by the parametric equations ,
, where the range of is and the range of is

. What can you say about the curve?

24. Match the graphs of the parametric equations and
in (a)–(d) with the parametric curves labeled I–IV.

Give reasons for your choices.
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y � sinh tx � cosh t 25–27 |||| Use the graphs of and to sketch the
parametric curve , . Indicate with arrows the direc-
tion in which the curve is traced as increases.

25.

26.

27.

28. Match the parametric equations with the graphs labeled I–VI.
Give reasons for your choices. (Do not use a graphing device.)
(a) ,
(b) ,

(c) ,
(d) ,
(e) ,
(f) ,

; 29. Graph the curve .x � y � 3y 3 � y 5
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figure, using the angle as the parameter. Then eliminate the
parameter and identify the curve.

40. If and are fixed numbers, find parametric equations for the
curve that consists of all possible positions of the point in
the figure, using the angle as the parameter. The line segment

is tangent to the larger circle.

41. A curve, called a witch of Maria Agnesi, consists of all pos-
sible positions of the point in the figure. Show that parametric
equations for this curve can be written as 

Sketch the curve.

42. Find parametric equations for the curve that consists of all pos-
sible positions of the point in the figure, where .
Sketch the curve. (This curve is called the cissoid of Diocles
after the Greek scholar Diocles, who introduced the cissoid as
a graphical method for constructing the edge of a cube whose
volume is twice that of a given cube.)
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EXAMPLE 5 Sketch the polar curve .

SOLUTION This curve consists of all points such that the polar angle is 1 radian. It
is the straight line that passes through and makes an angle of 1 radian with the polar
axis (see Figure 7). Notice that the points on the line with are in the first
quadrant, whereas those with are in the third quadrant.

EXAMPLE 6
(a) Sketch the curve with polar equation .
(b) Find a Cartesian equation for this curve.

SOLUTION
(a) In Figure 8 we find the values of for some convenient values of and plot the
corresponding points . Then we join these points to sketch the curve, which appears
to be a circle. We have used only values of between 0 and , since if we let increase
beyond , we obtain the same points again.

(b) To convert the given equation into a Cartesian equation we use Equations 1 and 2.
From we have , so the equation becomes ,
which gives

or

Completing the square, we obtain

which is an equation of a circle with center and radius 1.
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FIGURE 8
Table of values and

graph of  r=2 cos ̈
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|||| Figure 9 shows a geometrical illustration
that the circle in Example 6 has the equation

. The angle is a right angle
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EXAMPLE 7 Sketch the curve .

SOLUTION Instead of plotting points as in Example 6, we first sketch the graph of
in Cartesian coordinates in Figure 10 by shifting the sine curve up one

unit. This enables us to read at a glance the values of that correspond to increasing
values of . For instance, we see that as increases from 0 to , (the distance from )
increases from 1 to 2, so we sketch the corresponding part of the polar curve in Figure
11(a). As increases from to , Figure 10 shows that decreases from 2 to 1, so we
sketch the next part of the curve as in Figure 11(b). As increases from to ,

decreases from 1 to 0 as shown in part (c). Finally, as increases from to ,
increases from 0 to 1 as shown in part (d). If we let increase beyond or decrease

beyond 0, we would simply retrace our path. Putting together the parts of the curve from
Figure 11(a)–(d), we sketch the complete curve in part (e). It is called a cardioid
because it’s shaped like a heart.

EXAMPLE 8 Sketch the curve .

SOLUTION As in Example 7, we first sketch , , in Cartesian coordi-
nates in Figure 12. As increases from 0 to , Figure 12 shows that decreases from
1 to 0 and so we draw the corresponding portion of the polar curve in Figure 13 (indi-
cated by !). As increases from to , goes from 0 to . This means that the
distance from increases from 0 to 1, but instead of being in the first quadrant this
portion of the polar curve (indicated by @) lies on the opposite side of the pole in the
third quadrant. The remainder of the curve is drawn in a similar fashion, with the arrows
and numbers indicating the order in which the portions are traced out. The resulting
curve has four loops and is called a four-leaved rose.

¨=0
¨=π

⑧

¨=3π
4

¨=π
2

¨=π
4

FIGURE 12
r=cos 2¨ in Cartesian coordinates

FIGURE 13
Four-leaved rose r=cos 2¨
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FIGURE 10
r=1+sin ̈  in Cartesian coordinates,
0¯¨¯2π
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¨π 2π3π
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FIGURE 11
Stages in sketching the
cardioid r=1+sin ¨

Module 10.3 helps you see how polar
curves are traced out by showing anima-
tions similar to Figures 10–13. Tangents
to these polar curves can also be visual-
ized as in Figure 15 (see page 676).
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S y m m e t r y

When we sketch polar curves it is sometimes helpful to take advantage of symmetry. The
following three rules are explained by Figure 14.

(a) If a polar equation is unchanged when is replaced by , the curve is symmetric
about the polar axis.

(b) If the equation is unchanged when is replaced by , or when is replaced by
, the curve is symmetric about the pole. (This means that the curve remains

unchanged if we rotate it through 180° about the origin.)

(c) If the equation is unchanged when is replaced by , the curve is symmetric
about the vertical line .

The curves sketched in Examples 6 and 8 are symmetric about the polar axis, since
. The curves in Examples 7 and 8 are symmetric about because

and . The four-leaved rose is also symmetric
about the pole. These symmetry properties could have been used in sketching the curves.
For instance, in Example 6 we need only have plotted points for and then
reflected about the polar axis to obtain the complete circle.

T a n g e n t s  t o  P o l a r  C u r v e s

To find a tangent line to a polar curve we regard as a parameter and write its para-
metric equations as

Then, using the method for finding slopes of parametric curves (Equation 10.2.2) and the
Product Rule, we have

We locate horizontal tangents by finding the points where (provided that
). Likewise, we locate vertical tangents at the points where (pro-

vided that ).
Notice that if we are looking for tangent lines at the pole, then and Equation 3 sim-

plifies to
dr

d�
� 0if
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dx
� tan �
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For instance, in Example 8 we found that when or . This
means that the lines and (or and ) are tangent lines to

at the origin.

EXAMPLE 9
(a) For the cardioid of Example 7, find the slope of the tangent line 
when .
(b) Find the points on the cardioid where the tangent line is horizontal or vertical.

SOLUTION Using Equation 3 with , we have

(a) The slope of the tangent at the point where is

(b) Observe that

Therefore, there are horizontal tangents at the points , , and
vertical tangents at and . When , both and are
0, so we must be careful. Using l’Hospital’s Rule, we have
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By symmetry,

Thus, there is a vertical tangent line at the pole (see Figure 15).

NOTE ■■ Instead of having to remember Equation 3, we could employ the method used to
derive it. For instance, in Example 9 we could have written

Then we have

which is equivalent to our previous expression.

G r a p h i n g  P o l a r  C u r v e s  w i t h  G r a p h i n g  D e v i c e s

Although it’s useful to be able to sketch simple polar curves by hand, we need to use a
graphing calculator or computer when we are faced with a curve as complicated as the one
shown in Figure 16.

Some graphing devices have commands that enable us to graph polar curves directly.
With other machines we need to convert to parametric equations first. In this case we take
the polar equation and write its parametric equations as

Some machines require that the parameter be called rather than .

EXAMPLE 10 Graph the curve .

SOLUTION Let’s assume that our graphing device doesn’t have a built-in polar graphing
command. In this case we need to work with the corresponding parametric equations,
which are

In any case we need to determine the domain for . So we ask ourselves: How many
complete rotations are required until the curve starts to repeat itself? If the answer is 
, then

and so we require that be an even multiple of . This will first occur when
. Therefore, we will graph the entire curve if we specify that .

Switching from to , we have the equations

and Figure 17 shows the resulting curve. Notice that this rose has 16 loops.
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EXAMPLE 11 Investigate the family of polar curves given by . How does
the shape change as changes? (These curves are called limaçons, after a French word
for snail, because of the shape of the curves for certain values of .)

SOLUTION Figure 18 shows computer-drawn graphs for various values of . For 
there is a loop that decreases in size as decreases. When the loop disappears and
the curve becomes the cardioid that we sketched in Example 7. For between 1 and the
cardioid’s cusp is smoothed out and becomes a “dimple.” When decreases from to 0,
the limaçon is shaped like an oval. This oval becomes more circular as , and when

the curve is just the circle .

The remaining parts of Figure 18 show that as becomes negative, the shapes change
in reverse order. In fact, these curves are reflections about the horizontal axis of the cor-
responding curves with positive .c

c

c=2.5

c=0 c=_0.2 c=_0.5 c=_0.8 c=_1

c=_2

c=1.7 c=1 c=0.7 c=0.5 c=0.2

r � 1c � 0
c l 0

1
2c

1
2c

c � 1c
c � 1c

c
c

r � 1 � c sin �

|||| In Exercise 53 you are asked to prove analyti-
cally what we have discovered from the graphs
in Figure 18.

FIGURE 18
Members of the family of
limaçons r=1+c sin ̈

6. (a) (b)

7–12 |||| Sketch the region in the plane consisting of points whose
polar coordinates satisfy the given conditions.

7.

8. ,

9. ,

10. ,

,

12. ,

13. Find the distance between the points with polar coordinates
and .

14. Find a formula for the distance between the points with polar
coordinates and .�r2, �2 ��r1, �1�

�3, 3��4��1, ��6�

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

��4 � � � 3��4�1 � r � 1

5��3 � � � 7��32 � r � 311.

3��4 � � � 5��42 � r � 5

���2 � � � ��60 � r � 4

��3 � � � 2��3r 
 0

1 � r � 2

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

��2, 3�(�1, �s3)1–2 |||| Plot the point whose polar coordinates are given. Then find
two other pairs of polar coordinates of this point, one with 
and one with .

1. (a) (b) (c)

2. (a) (b) (c)

3–4 |||| Plot the point whose polar coordinates are given. Then find
the Cartesian coordinates of the point.

3. (a) (b) (c)

4. (a) (b) (c)

5–6 |||| The Cartesian coordinates of a point are given.
(i) Find polar coordinates of the point, where and

.
(ii) Find polar coordinates of the point, where and

.

5. (a) (b) (2s3, �2)�1, 1�

0 � � � 2�
r � 0�r, ��

0 � � � 2�
r � 0�r, ��

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

��2, �5��6��4, 3���2, 2��3�

��1, ��3�(2s2, 3��4)�3, ��2�

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

��1, ���2��2, ���7��3, 0�

�3, 2���2, ��4��1, ��2�

r � 0
r � 0

|||| 10.3 Exercises



15–20 |||| Identify the curve by finding a Cartesian equation for the
curve.

15. 16.

18.

19. 20.

21–26 |||| Find a polar equation for the curve represented by the
given Cartesian equation.

21. 22.

23. 24.

26.

27–28 |||| For each of the described curves, decide if the curve
would be more easily given by a polar equation or a Cartesian
equation. Then write an equation for the curve.

27. (a) A line through the origin that makes an angle of with
the positive -axis

(b) A vertical line through the point 

28. (a) A circle with radius 5 and center 
(b) A circle centered at the origin with radius 4

29–46 |||| Sketch the curve with the given polar equation.

29. 30.

31. 32.

33. 34.

, 36. ,

37. 38.

40.

41. 42.

43. 44.

45. 46.

47–48 |||| The figure shows the graph of as a function of in
Cartesian coordinates. Use it to sketch the corresponding polar
curve.

48.

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

¨

r

0 π 2π

1

2

¨

r

0 π 2π

2

_2

47.

�r

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

r � 1 � 2 cos���2�r � 1 � 2 cos 2�

r 2� � 1r � 2 cos �3��2�

r 2 � sin 2�r 2 � 4 cos 2�

r � sin 5�r � 2 cos 4�39.

r � 2 cos 3�r � sin 2�

� 
 1r � ln �� 
 0r � �35.

r � 1 � 3 cos �r � 2�1 � sin ��

r � �3 cos �r � sin �

r 2 � 3r � 2 � 0� � ���6

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

�2, 3�

�3, 3�
x

��6

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

x 2 � y 2 � 1x 2 � y 2 � 2cx25.

x � y � 9x � �y 2

x 2 � y 2 � 9x � 3

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

r � tan � sec �r � csc �

r � 2 sin � � 2 cos �r � 3 sin �17.

r cos � � 1r � 2

49. Show that the polar curve (called a conchoid)
has the line as a vertical asymptote by showing that

. Use this fact to help sketch the conchoid.

50. Show that the curve (also a conchoid) has the
line as a horizontal asymptote by showing that

. Use this fact to help sketch the conchoid.

51. Show that the curve (called a cissoid of 
Diocles) has the line as a vertical asymptote. Show also
that the curve lies entirely within the vertical strip .
Use these facts to help sketch the cissoid.

52. Sketch the curve .

(a) In Example 11 the graphs suggest that the limaçon
has an inner loop when . 

Prove that this is true, and find the values of that 
correspond to the inner loop.

(b) From Figure 18 it appears that the limaçon loses its dimple
when . Prove this.

54. Match the polar equations with the graphs labeled I–VI. Give
reasons for your choices. (Don’t use a graphing device.)
(a) (b)
(c) (d)
(e) (f)

55–60 |||| Find the slope of the tangent line to the given polar curve
at the point specified by the value of .

55. , 56. ,

, 58. ,

59. , 60. ,

61–66 |||| Find the points on the given curve where the tangent line
is horizontal or vertical.

62.

63. 64.

65. 66.
■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

r 2 � sin 2�r � cos 2�

r � e �r � 1 � cos �

r � cos � � sin �r � 3 cos �61.

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

� � ��6r � sin 3�� � ��6r � 1 � cos �

� � er � ln �� � �r � 1��57.

� � ��3r � 2 � sin �� � ��6r � 2 sin �

�

I II

IV V VI

III

r � 1�s� r � 1 � 4 cos 5�
r � � sin �r � sec�3��
r � sin���4�r � sin���2�

c � 1
2

�
� c � � 1r � 1 � c sin �

53.

�x 2 � y 2 �3 � 4x 2 y 2

0 � x � 1
x � 1

r � sin � tan �

lim r l�	 y � �1
y � �1

r � 2 � csc �

lim r l�	 x � 2
x � 2

r � 4 � 2 sec �
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Show that the polar equation , where
, represents a circle, and find its center and radius.

68. Show that the curves and intersect at
right angles.

; 69–74 |||| Use a graphing device to graph the polar curve. Choose
the parameter interval to make sure that you produce the entire
curve.

69. (nephroid of Freeth)

70. (hippopede)

71. (butterfly curve)

72.

73.

74.

; 75. How are the graphs of and
related to the graph of ? 

In general, how is the graph of related to the
graph of ?

; 76. Use a graph to estimate the -coordinate of the highest points
on the curve . Then use calculus to find the exact
value.

; 77. (a) Investigate the family of curves defined by the polar equa-
tions , where is a positive integer. How is the
number of loops related to ?

(b) What happens if the equation in part (a) is replaced by
?

; 78. A family of curves is given by the equations ,
where is a real number and is a positive integer. How does
the graph change as increases? How does it change as 
changes? Illustrate by graphing enough members of the family
to support your conclusions.

; 79. A family of curves has polar equations

r �
1 � a cos �

1 � a cos �

cn
nc

r � 1 � c sin n�

r � � sin n� �

n
nr � sin n�

r � sin 2�
y

r � f ���
r � f �� � ��

r � 1 � sin �r � 1 � sin�� � ��3�
r � 1 � sin�� � ��6�

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

r � cos���2� � cos���3�

r � 2 � 5 sin���6�

r � sin2�4�� � cos�4��

r � e sin � � 2 cos�4��

r � s1 � 0.8 sin 2� 

r � 1 � 2 sin���2�

r � a cos �r � a sin �

ab � 0
r � a sin � � b cos �67. Investigate how the graph changes as the number changes. In

particular, you should identify the transitional values of for
which the basic shape of the curve changes.

; 80. The astronomer Giovanni Cassini (1625–1712) studied the
family of curves with polar equations

where and are positive real numbers. These curves are
called the ovals of Cassini even though they are oval shaped
only for certain values of and . (Cassini thought that these
curves might represent planetary orbits better than Kepler’s
ellipses.) Investigate the variety of shapes that these curves
may have. In particular, how are and related to each other
when the curve splits into two parts?

81. Let be any point (except the origin) on the curve . If
is the angle between the tangent line at and the radial line
, show that

[Hint: Observe that in the figure.]

82. (a) Use Exercise 81 to show that the angle between the tangent
line and the radial line is at every point on the
curve .

; (b) Illustrate part (a) by graphing the curve and the tangent
lines at the points where and .

(c) Prove that any polar curve with the property that
the angle between the radial line and the tangent line is a
constant must be of the form , where and are
constants.

kCr � Ce k�


r � f ���

��2� � 0

r � e �

 � ��4

O
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ÿ

¨ ˙

r=f(¨ )

 � � � �
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dr�d�

OP
P

r � f ���P

ca

ca

ca

r 4 � 2c2r 2 cos 2� � c 4 � a 4 � 0 

a
a

|||| 10.4 A r e a s  a n d  L e n g t h s  i n  P o l a r  C o o r d i n a t e s

In this section we develop the formula for the area of a region whose boundary is given by
a polar equation. We need to use the formula for the area of a sector of a circle

where, as in Figure 1, is the radius and is the radian measure of the central angle.
Formula 1 follows from the fact that the area of a sector is proportional to its central angle:

. (See also Exercise 35 in Section 7.3.)A � ���2���r 2 � 1
2 r 2�

�r

A � 1
2 r 2�1

¨

r

FIGURE 1



Let be the region, illustrated in Figure 2, bounded by the polar curve 
and by the rays and , where is a positive continuous function and where

. We divide the interval into subintervals with endpoints , ,
, . . . , and equal width . The rays then divide into smaller regions with

central angle . If we choose in the th subinterval , then the
area of the th region is approximated by the area of the sector of a circle with central
angle and radius . (See Figure 3.)

Thus, from Formula 1 we have

and so an approximation to the total area of is

It appears from Figure 3 that the approximation in (2) improves as . But the sums
in (2) are Riemann sums for the function , so

It therefore appears plausible (and can in fact be proved) that the formula for the area of
the polar region is

Formula 3 is often written as

with the understanding that . Note the similarity between Formulas 1 and 4.
When we apply Formula 3 or 4 it is helpful to think of the area as being swept out by

a rotating ray through that starts with angle and ends with angle .

EXAMPLE 1 Find the area enclosed by one loop of the four-leaved rose .

SOLUTION The curve was sketched in Example 8 in Section 10.3. Notice from
Figure 4 that the region enclosed by the right loop is swept out by a ray that rotates from

to . Therefore, Formula 4 gives
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EXAMPLE 2 Find the area of the region that lies inside the circle and outside
the cardioid .

SOLUTION The cardioid (see Example 7 in Section 10.3) and the circle are sketched in
Figure 5 and the desired region is shaded. The values of and in Formula 4 are deter-
mined by finding the points of intersection of the two curves. They intersect when

, which gives , so , . The desired area can be
found by subtracting the area inside the cardioid between and from
the area inside the circle from to . Thus

Since the region is symmetric about the vertical axis , we can write

[because ]

Example 2 illustrates the procedure for finding the area of the region bounded by two
polar curves. In general, let be a region, as illustrated in Figure 6, that is bounded by
curves with polar equations , , , and , where 
and . The area of is found by subtracting the area inside 
from the area inside , so using Formula 3 we have

| CAUTION ■■ The fact that a single point has many representations in polar coordinates
sometimes makes it difficult to find all the points of intersection of two polar curves. For
instance, it is obvious from Figure 5 that the circle and the cardioid have three points 
of intersection; however, in Example 2 we solved the equations and

and found only two such points, and . The origin is also
a point of intersection, but we can’t find it by solving the equations of the curves because
the origin has no single representation in polar coordinates that satisfies both equations.
Notice that, when represented as or , the origin satisfies and so it
lies on the circle; when represented as , it satisfies and so it lies on
the cardioid. Think of two points moving along the curves as the parameter value 
increases from 0 to . On one curve the origin is reached at and ; on the
other curve it is reached at . The points don’t collide at the origin because they
reach the origin at different times, but the curves intersect there nonetheless.

Thus, to find all points of intersection of two polar curves, it is recommended that you
draw the graphs of both curves. It is especially convenient to use a graphing calculator or
computer to help with this task.
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EXAMPLE 3 Find all points of intersection of the curves and .

SOLUTION If we solve the equations and , we get and, there-
fore, � , , , . Thus, the values of between 0 and that sat-
isfy both equations are , , , . We have found four points of
intersection: , , and .

However, you can see from Figure 7 that the curves have four other points of inter-
section—namely, , , , and . These can be found using
symmetry or by noticing that another equation of the circle is and then solving
the equations and .

A r c  L e n g t h

To find the length of a polar curve , , we regard as a parameter and
write the parametric equations of the curve as

Using the Product Rule and differentiating with respect to , we obtain

so, using , we have

Assuming that is continuous, we can use Theorem 10.2.6 to write the arc length as

Therefore, the length of a curve with polar equation , , is

EXAMPLE 4 Find the length of the cardioid .

SOLUTION The cardioid is shown in Figure 8. (We sketched it in Example 7 in
Section 10.3.) Its full length is given by the parameter interval , so
Formula 5 gives 

 � y
2�

0
 s2 � 2 sin �  d�

 L � y
2�

0
 �r 2 � � dr

d�2

 d� � y
2�

0
 s�1 � sin ��2 � cos2�  d�

0 	 � 	 2�

r � 1 � sin �

L � y
b

a
 �r 2 � � dr

d�2

 d�5

a 	 � 	 br � f ���

L � y
b

a
 �� dx

d�2

� � dy

d�2

 d�

f �

 � � dr

d�
2

� r 2

 � � � dr

d�
2

 sin2� � 2r 
dr

d�
 sin � cos � � r 2 cos2�

 � dx

d�
2

� � dy

d�
2

� � dr

d�
2

cos2� � 2r 
dr

d�
 cos � sin � � r 2 sin2�

cos2� � sin2� � 1

dy

d�
�

dr

d�
 sin � � r cos �

dx

d�
�

dr

d�
 cos � � r sin �

�

y � r sin � � f ��� sin �x � r cos � � f ��� cos �

�a 	 � 	 br � f ���

r � �
1
2r � cos 2�

r � �
1
2

( 1
2, 5��3)(1

2, 4��3)(1
2, 2��3)(1

2, ��3)

(1
2, 11��6)(1

2, 5��6), ( 1
2, 7��6)(1

2, ��6)
11��67��65��6��6� �

2��11��37��35��3��32�
cos 2� � 1

2r � 1
2r � cos 2�

r � 1
2r � cos 2�
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FIGURE 7

r=cos 2¨

1
2r=

”   ,     ’
1
2

π
3

”   ,    ’
1
2

π
6

O

FIGURE 8
r=1+sin ¨
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We could evaluate this integral by multiplying and dividing the integrand by
, or we could use a computer algebra system. In any event, we find that 

the length of the cardioid is L � 8.
s2 � 2 sin � 

(inner loop)

22. Find the area enclosed by the loop of the strophoid
.

23–28 |||| Find the area of the region that lies inside the first curve
and outside the second curve.

23. , 24. ,

25. , 26. ,

,

28. ,

29–34 |||| Find the area of the region that lies inside both curves.

29. , 30. ,

, 32. ,

33. ,

34. , , ,

35. Find the area inside the larger loop and outside the smaller loop
of the limaçon .

36. Find the area between a large loop and the enclosed small loop
of the curve .

37–42 |||| Find all points of intersection of the given curves.

37. ,

38. ,

39. ,

40. ,

,

42. ,

; 43. The points of intersection of the cardioid and the
spiral loop , , can’t be found exactly.
Use a graphing device to find the approximate values of at
which they intersect. Then use these values to estimate the area
that lies inside both curves.

; 44. Use a graph to estimate the values of for which the curves
and intersect. Then estimate the

area that lies inside both curves.
r � 6 sin �r � 3 � sin 5�

�

�
���2 	 � 	 ��2r � 2�

r � 1 � sin �

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

r 2 � cos 2�r 2 � sin 2�

r � sin 2�r � sin �41.

r � sin 3�r � cos 3�

r � 1 � cos �r � cos �

r � 2 cos 2�r � 2

r � cos �r � sin �

r � 1 � 2 cos 3�

r � 1
2 � cos �

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

b � 0a � 0r � b cos �r � a sin �

r � 2r � 3 � 2 sin �

r � 1r 2 � 2 sin 2�r � cos 2�r � sin 2�31.

r � sin �r � sin 2�r � cos �r � sin �

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

r � 3 cos �r � 1 � cos �

r � 1 � cos �r � 3 cos �27.

r � 3 sin �r � 2 � sin �r � 2r 2 � 8 cos 2�

r � 1r � 1 � sin �r � 2r � 4 sin �

r � 2 cos � � sec �

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

r � 1 � 2 sin �21.1–4 |||| Find the area of the region that is bounded by the given
curve and lies in the specified sector.

1. ,

2. ,

3. ,

4. ,

5–8 |||| Find the area of the shaded region.

5. 6.

8.

9–14 |||| Sketch the curve and find the area that it encloses.

9. 10.

12.

13. 14.

; 15–16 |||| Graph the curve and find the area that it encloses.

15. 16.

17–21 |||| Find the area of the region enclosed by one loop of 
the curve.

17. 18.

19. 20. r � 2 cos 4�r � 3 cos 5�

r � 4 sin 3�r � sin 2�

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

r � 2 sin � � 3 sin 9�r � 1 � 2 sin 6�

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

r � 2 � cos 2�r � 2 cos 3�

r 2 � sin 2�r 2 � 4 cos 2�11.

r � 3�1 � cos � �r � 3 cos �

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

r=sin 4¨r=4+3 sin ¨

7.

r=1+sin ¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨r=¨



SECTION 11.2 SERIES ❙ ❙ ❙ ❙ 713

|||| 11.2 S e r i e s

If we try to add the terms of an infinite sequence we get an expression of the form

which is called an infinite series (or just a series) and is denoted, for short, by the symbol

But does it make sense to talk about the sum of infinitely many terms?
It would be impossible to find a finite sum for the series

because if we start adding the terms we get the cumulative sums 1, 3, 6, 10, 15, 21, . . .
and, after the th term, we get , which becomes very large as increases.

However, if we start to add the terms of the series

1

2
�

1

4
�

1

8
�

1

16
�

1

32
�

1

64
� � � � �

1

2n � � � �

nn�n � 1�
2n

1 � 2 � 3 � 4 � 5 � � � � � n � � � �

� anor�
�

n�1
 an

a1 � a2 � a3 � � � � � an � � � �1

�an �n�1
�

Logistic Sequences

A sequence that arises in ecology as a model for population growth is defined by the logistic
difference equation

where measures the size of the population of the generation of a single species. To keep
the numbers manageable, is a fraction of the maximal size of the population, so .
Notice that the form of this equation is similar to the logistic differential equation in Section 9.5.
The discrete model—with sequences instead of continuous functions—is preferable for modeling
insect populations, where mating and death occur in a periodic fashion.

An ecologist is interested in predicting the size of the population as time goes on, and asks
these questions: Will it stabilize at a limiting value? Will it change in a cyclical fashion? Or will
it exhibit random behavior?

Write a program to compute the first terms of this sequence starting with an initial popula-
tion . Use this program to do the following.

1. Calculate 20 or 30 terms of the sequence for and for two values of such that
. Graph the sequences. Do they appear to converge? Repeat for a different value

of between 0 and 1. Does the limit depend on the choice of ? Does it depend on the
choice of ?

2. Calculate terms of the sequence for a value of between 3 and 3.4 and plot them. What do
you notice about the behavior of the terms?

3. Experiment with values of between 3.4 and 3.5. What happens to the terms?

4. For values of between 3.6 and 4, compute and plot at least 100 terms and comment on the
behavior of the sequence. What happens if you change by 0.001? This type of behavior is
called chaotic and is exhibited by insect populations under certain conditions.

p0

k

k

k

k
p0p0

1 � k � 3
kp0 � 1

2

p0, where 0 � p0 � 1
n

0 
 pn 
 1pn

nthpn

pn�1 � kpn�1 � pn �

CAS

LABORATORY PROJECT
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we get , , , , , , . . . , , . . . . The table shows that as we add more and more
terms, these partial sums become closer and closer to 1. (See also Figure 11 in A Preview
of Calculus, page 7.) In fact, by adding sufficiently many terms of the series we can make
the partial sums as close as we like to 1. So it seems reasonable to say that the sum of this
infinite series is 1 and to write

We use a similar idea to determine whether or not a general series (1) has a sum. We
consider the partial sums

and, in general,

These partial sums form a new sequence , which may or may not have a limit. If
exists (as a finite number), then, as in the preceding example, we call it the

sum of the infinite series .

Definition Given a series , let denote its th
partial sum:

If the sequence is convergent and exists as a real number, then
the series is called convergent and we write

The number is called the sum of the series. Otherwise, the series is called divergent.

Thus, when we write we mean that by adding sufficiently many terms of
the series we can get as close as we like to the number . Notice that

EXAMPLE 1 An important example of an infinite series is the geometric series

a � 0a � ar � ar 2 � ar 3 � � � � � arn�1 � � � � � �
�

n�1
 arn�1

�
�

n�1
 an � lim 

n l �
 �

n

i�1
 ai

s
��

n�1 an � s

s

�
�

n�1
 an � sora1 � a2 � � � � � an � � � � � s

� an

lim n l � sn � s�sn �

sn � �
n

i�1
 ai � a1 � a2 � � � � � an

nsn��
n�1 an � a1 � a2 � a3 � � � �2

� an

lim n l � sn � s
�sn �

sn � a1 � a2 � a3 � � � � � an � �
n

i�1
 ai

 s4 � a1 � a2 � a3 � a4

 s3 � a1 � a2 � a3

 s2 � a1 � a2

 s1 � a1

�
�

n�1
 

1

2n �
1

2
�

1

4
�

1

8
�

1

16
� � � � �

1

2n � � � � � 1

1 � 1
2n63
64

31
32

15
16

7
8

3
4

1
2n Sum of first n terms

1 0.50000000
2 0.75000000
3 0.87500000
4 0.93750000
5 0.96875000
6 0.98437500
7 0.99218750

10 0.99902344
15 0.99996948
20 0.99999905
25 0.99999997

|||| Compare with the improper integral

To find this integral we integrate from 1 to and
then let . For a series, we sum from 1 to 
and then let .n l �

nt l�

t

y
�

1
 f �x� dx � lim

t l �
 y

t

1
 f �x� dx



SECTION 11.2 SERIES ❙ ❙ ❙ ❙ 715

Each term is obtained from the preceding one by multiplying it by the common ratio .
(We have already considered the special case where and on page 713.)

If , then . Since doesn’t exist, the
geometric series diverges in this case.

If , we have

and

Subtracting these equations, we get

If , we know from (11.1.8) that as , so

Thus, when the geometric series is convergent and its sum is .
If or , the sequence is divergent by (11.1.8) and so, by Equation 3,

does not exist. Therefore, the geometric series diverges in those cases.

We summarize the results of Example 1 as follows.

The geometric series

is convergent if and its sum is

If , the geometric series is divergent.

EXAMPLE 2 Find the sum of the geometric series

SOLUTION The first term is and the common ratio is . Since , the
series is convergent by (4) and its sum is

5 �
10

3
�

20

9
�

40

27
� � � � �

5

1 � (� 2
3 ) �

5
5
3

� 3

 r  � 2
3 � 1r � �

2
3a � 5

5 �
10
3 �

20
9 �

40
27 � � � �

 r  � 1

 r  � 1�
�

n�1
 arn�1 �

a

1 � r

 r  � 1

�
�

n�1
 arn�1 � a � ar � ar 2 � � � �

4

lim n l � sn

�rn �r � 1r 
 �1
a
�1 � r� r  � 1

lim 
n l �

 sn � lim 
n l �

 
a�1 � rn �

1 � r
�

a

1 � r
�

a

1 � r
 lim 
n l �

 rn �
a

1 � r

n l �rn l 0�1 � r � 1

 sn �
a�1 � rn �

1 � r
3

 sn � rsn � a � arn

 rsn �  ar � ar 2 � � � � � arn�1 � arn

 sn �  a � ar � ar 2 � � � � � arn�1

r � 1

lim n l � snsn � a � a � � � � � a � na l ��r � 1
r � 1

2a � 1
2

r

|||| Figure 1 provides a geometric demonstration
of the result in Example 1. If the triangles are
constructed as shown and is the sum of the
series, then, by similar triangles,

s

a
�

a

a � ar
so s �

a

1 � r

s

FIGURE 1

aa

a

ara-ar

ar

ar@

ar#

ar@

s

|||| In words: The sum of a convergent geometric
series is

first term

1 � common ratio
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EXAMPLE 3 Is the series convergent or divergent?

SOLUTION Let’s rewrite the nth term of the series in the form :

We recognize this series as a geometric series with and . Since , the
series diverges by (4).

EXAMPLE 4 Write the number . . . as a ratio of integers.

SOLUTION

After the first term we have a geometric series with and . 
Therefore

EXAMPLE 5 Find the sum of the series , where .

SOLUTION Notice that this series starts with and so the first term is . (With
series, we adopt the convention that even when .) Thus

This is a geometric series with and . Since , it converges and
(4) gives

�
�

n�0
 xn �

1

1 � x
5

 r  �  x  � 1r � xa � 1

�
�

n�0
 xn � 1 � x � x 2 � x 3 � x 4 � � � �

x � 0x 0 � 1
x 0 � 1n � 0

 x  � 1�
�

n�0
 xn

 �
23

10
�

17

990
�

1147

495

 2.317 � 2.3 �

17

103

1 �
1

102

� 2.3 �

17

1000

99

100

r � 1
102a � 17
103

2.3171717. . . � 2.3 �
17

103 �
17

105 �
17

107 � � � �

2.317 � 2.3171717

r � 1r � 4
3a � 4

�
�

n�1
 22n31�n � �

�

n�1
 

4n

3n�1 � �
�

n�1
 4( 4

3 )n�1

arn�1

�
�

n�1
 22n31�n

FIGURE 2

0 n

sn

20

3

|||| What do we really mean when we say that
the sum of the series in Example 2 is 3? Of
course, we can’t literally add an infinite number
of terms, one by one. But, according to Definition
2, the total sum is the limit of the sequence of
partial sums. So, by taking the sum of sufficiently
many terms, we can get as close as we like to
the number 3. The table shows the first ten par-
tial sums and the graph in Figure 2 shows how
the sequence of partial sums approaches 3.

sn

|||| Another way to identify and is to write
out the first few terms:

4 �
16
3 �

64
9 � � � �

ra

n

1 5.000000
2 1.666667
3 3.888889
4 2.407407
5 3.395062
6 2.736626
7 3.175583
8 2.882945
9 3.078037

10 2.947975

sn

Module 11.2 explores a series that
depends on an angle in a triangle and
enables you to see how rapidly the
series converges when varies.
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EXAMPLE 6 Show that the series is convergent, and find its sum.

SOLUTION This is not a geometric series, so we go back to the definition of a convergent
series and compute the partial sums.

We can simplify this expression if we use the partial fraction decomposition

(see Section 7.4). Thus, we have

and so

Therefore, the given series is convergent and

EXAMPLE 7 Show that the harmonic series

is divergent.

SOLUTION

 � 1 �
1
2 �

1
2 �

1
2 �

1
2 � 1 �

4
2

 � 1 �
1
2 � ( 1

4 �
1
4 ) � ( 1

8 � � � � �
1
8 ) � ( 1

16 � � � � �
1
16 )

 s16 � 1 �
1
2 � ( 1

3 �
1
4 ) � ( 1
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|||| Notice that the terms cancel in pairs. This is
an example of a telescoping sum: Because of
all the cancellations, the sum collapses (like an
old-fashioned collapsing telescope) into just two
terms.

|||| Figure 3 illustrates Example 6 by showing
the graphs of the sequence of terms

and the sequence of
partial sums. Notice that and .
See Exercises 54 and 55 for two geometric inter-
pretations of Example 6.
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Similarly, , , and in general

This shows that as and so is divergent. Therefore, the harmonic
series diverges.

Theorem If the series is convergent, then .

Proof Let . Then . Since is convergent, the
sequence is convergent. Let . Since as , we also
have . Therefore

NOTE 1 ■■ With any series we associate two sequences: the sequence of its par-
tial sums and the sequence of its terms. If is convergent, then the limit of the
sequence is (the sum of the series) and, as Theorem 6 asserts, the limit of the
sequence is 0.

| NOTE 2 ■■ The converse of Theorem 6 is not true in general. If , we cannot
conclude that is convergent. Observe that for the harmonic series we have

as , but we showed in Example 7 that is divergent.

The Test for Divergence If does not exist or if , then the

series is divergent.

The Test for Divergence follows from Theorem 6 because, if the series is not divergent,
then it is convergent, and so .

EXAMPLE 8 Show that the series diverges.

SOLUTION

So the series diverges by the Test for Divergence.

NOTE 3 ■■ If we find that , we know that is divergent. If we find that
, we know nothing about the convergence or divergence of . Remem-

ber the warning in Note 2: If , the series might converge or it might
diverge.
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|||| The method used in Example 7 for showing
that the harmonic series diverges is due to the
French scholar Nicole Oresme (1323–1382).
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Theorem If and are convergent series, then so are the series 
(where is a constant), , and , and

(i) (ii)

(iii)

These properties of convergent series follow from the corresponding Limit Laws for
Sequences in Section 11.1. For instance, here is how part (ii) of Theorem 8 is proved:

Let

The nth partial sum for the series is

and, using Equation 5.2.9, we have

Therefore, is convergent and its sum is

EXAMPLE 9 Find the sum of the series .

SOLUTION The series is a geometric series with and , so

In Example 6 we found that

So, by Theorem 8, the given series is convergent and
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NOTE 4 ■■ A finite number of terms doesn’t affect the convergence or divergence of a
series. For instance, suppose that we were able to show that the series

is convergent. Since

it follows that the entire series is convergent. Similarly, if it is known that
the series converges, then the full series

is also convergent.

�
�

n�1
 an � �

N

n�1
 an � �
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n�N�1
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n�N�1 an

��
n�1 n��n 3 � 1�
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n 3 � 1
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1

2
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2

9
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3

28
� �
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n�4
 

n

n 3 � 1

�
�

n�4
 

n

n 3 � 1

14.

15. 16.

18.

19. 20.

21. 22.

24.

25. 26.

27. 28.

29. 30.

32.

33. 34.

35–40 |||| Express the number as a ratio of integers.

36.

37. 38.

39. 40.
■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

5.60210.123456

6.2543.417 � 3.417417417 . . .

0.73 � 0.73737373 . . .0.2 � 0.2222 . . .35.
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4 n17.
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��6�n�1

5 n�1�
�

n�1
 5( 2

3 )n�1

1 � 0.4 � 0.16 � 0.064 � � � �1. (a) What is the difference between a sequence and a series?
(b) What is a convergent series? What is a divergent series?

2. Explain what it means to say that .

; 3–8 |||| Find at least 10 partial sums of the series. Graph both the
sequence of terms and the sequence of partial sums on the same
screen. Does it appear that the series is convergent or divergent? 
If it is convergent, find the sum. If it is divergent, explain why.

4.

5. 6.

7. 8.

Let .

(a) Determine whether is convergent.
(b) Determine whether is convergent.

10. (a) Explain the difference between

(b) Explain the difference between

11–34 |||| Determine whether the series is convergent or divergent.
If it is convergent, find its sum.

11. 12.
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|||| 11.2 Exercises
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41–45 |||| Find the values of for which the series converges. Find
the sum of the series for those values of .

42.

43. 44.

45.

46. We have seen that the harmonic series is a divergent series
whose terms approach 0. Show that

is another series with this property.

47–48 |||| Use the partial fraction command on your CAS to find a
convenient expression for the partial sum, and then use this expres-
sion to find the sum of the series. Check your answer by using the
CAS to sum the series directly.

47. 48.

If the partial sum of a series is

find and .

50. If the partial sum of a series is ,
find and .

51. When money is spent on goods and services, those that receive
the money also spend some of it. The people receiving some 
of the twice-spent money will spend some of that, and so on.
Economists call this chain reaction the multiplier effect. In a
hypothetical isolated community, the local government begins
the process by spending dollars. Suppose that each recipient
of spent money spends and saves of the money
that he or she receives. The values and s are called the mar-
ginal propensity to consume and the marginal propensity to
save and, of course, .
(a) Let be the total spending that has been generated after 

transactions. Find an equation for .
(b) Show that , where . The number 

is called the multiplier. What is the multiplier if the
marginal propensity to consume is ?

Note: The federal government uses this principle to justify
deficit spending. Banks use this principle to justify lend-
ing a large percentage of the money that they receive in
deposits.

52. A certain ball has the property that each time it falls from a
height onto a hard, level surface, it rebounds to a height ,
where . Suppose that the ball is dropped from an ini-
tial height of meters.H

0 � r � 1
rhh
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Snn
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c
100s%100c%
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n�1 annth

��
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n � 1

n � 1

��
n�1 annth49.

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

�
�

n�1
 
n2 � 3n � 1

�n2 � n�2�
�

n�1
 

1

�4n � 1��4n � 3�

CAS

�
�

n�1
 ln�1 �

1

n�

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

�
�

n�0
 
cos n x

2n

�
�

n�0
 
�x � 3�n

2n�
�

n�0
 4nx n

�
�

n�1
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x n

3n41.

x
x (a) Assuming that the ball continues to bounce indefinitely,

find the total distance that it travels. (Use the fact that the
ball falls in .)

(b) Calculate the total time that the ball travels.
(c) Suppose that each time the ball strikes the surface 

with velocity it rebounds with velocity , where
. How long will it take for the ball to come 

to rest?

What is the value of if ?

; 54. Graph the curves , , for 
on a common screen. By finding the areas between successive
curves, give a geometric demonstration of the fact, shown in
Example 6, that

55. The figure shows two circles and of radius 1 that touch at
. is a common tangent line; is the circle that touches ,
, and ; is the circle that touches , , and ; is the

circle that touches , , and . This procedure can be contin-
ued indefinitely and produces an infinite sequence of circles

. Find an expression for the diameter of and thus
provide another geometric demonstration of Example 6.

56. A right triangle is given with and . 
is drawn perpendicular to , is drawn perpendicular

to , , and this process is continued indefinitely as
shown in the figure. Find the total length of all the 
perpendiculars

in terms of and .
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nitely many numbers. Give examples of some numbers in
the Cantor set.

(b) The Sierpinski carpet is a two-dimensional counterpart of
the Cantor set. It is constructed by removing the center one-
ninth of a square of side 1, then removing the centers of the
eight smaller remaining squares, and so on. (The figure
shows the first three steps of the construction.) Show that
the sum of the areas of the removed squares is 1. This
implies that the Sierpinski carpet has area 0.

66. (a) A sequence is defined recursively by the equation
for , where and can be any

real numbers. Experiment with various values of and 
and use your calculator to guess the limit of the sequence.

(b) Find in terms of and by expressing
in terms of and summing a series.

67. Consider the series

(a) Find the partial sums and . Do you recognize the
denominators? Use the pattern to guess a formula for .

(b) Use mathematical induction to prove your guess.
(c) Show that the given infinite series is convergent, and find

its sum.

68. In the figure there are infinitely many circles approaching the
vertices of an equilateral triangle, each circle touching other
circles and sides of the triangle. If the triangle has sides of
length 1, find the total area occupied by the circles.

sn

s4s1, s2, s3,

�
�

n�1
 

n

�n � 1�!

a2 � a1an�1 � an

a2a1limn l � an

a2a1

a2a1n 
 3an � 1
2 �an�1 � an�2 �

�an �

What is wrong with the following calculation?

(Guido Ubaldus thought that this proved the existence of God
because “something has been created out of nothing.”)

58. Suppose that is known to be a convergent
series. Prove that is a divergent series.

59. Prove part (i) of Theorem 8.

60. If is divergent and , show that is divergent.

61. If is convergent and is divergent, show that the series
is divergent. [Hint: Argue by contradiction.]

62. If and are both divergent, is necessarily
divergent?

Suppose that a series has positive terms and its partial
sums satisfy the inequality for all . Explain why

must be convergent.

64. The Fibonacci sequence was defined in Section 11.1 by the
equations

Show that each of the following statements is true.

(a)

(b)

(c)

The Cantor set, named after the German mathematician Georg
Cantor (1845–1918), is constructed as follows. We start with
the closed interval and remove the open interval .
That leaves the two intervals and and we remove
the open middle third of each. Four intervals remain and again
we remove the open middle third of each of them. We continue
this procedure indefinitely, at each step removing the open 
middle third of every interval that remains from the preceding
step. The Cantor set consists of the numbers that remain in

after all those intervals have been removed.
(a) Show that the total length of all the intervals that are

removed is 1. Despite that, the Cantor set contains infi-

[0, 1]

[ 2
3, 1][0, 13 ]

( 1
3, 23 )[0, 1]
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|||| 11.3 T h e  I n t e g r a l  T e s t  a n d  E s t i m a t e s  o f  S u m s

In general, it is difficult to find the exact sum of a series. We were able to accomplish this
for geometric series and the series because in each of those cases we could
find a simple formula for the th partial sum . But usually it isn’t easy to compute

. Therefore, in the next few sections we develop several tests that enable us to
determine whether a series is convergent or divergent without explicitly finding its sum.
(In some cases, however, our methods will enable us to find good estimates of the sum.)
Our first test involves improper integrals.

We begin by investigating the series whose terms are the reciprocals of the squares of
the positive integers:

There’s no simple formula for the sum of the first n terms, but the computer-generated
table of values given in the margin suggests that the partial sums are approaching a num-
ber near 1.64 as and so it looks as if the series is convergent.

We can confirm this impression with a geometric argument. Figure 1 shows the curve
and rectangles that lie below the curve. The base of each rectangle is an interval

of length 1; the height is equal to the value of the function at the right endpoint
of the interval. So the sum of the areas of the rectangles is

If we exclude the first rectangle, the total area of the remaining rectangles is smaller
than the area under the curve for , which is the value of the integral

. In Section 7.8 we discovered that this improper integral is convergent and has
value 1. So the picture shows that all the partial sums are less than

Thus, the partial sums are bounded. We also know that the partial sums are increasing
(because all the terms are positive). Therefore, the partial sums converge (by the Mono-
tonic Sequence Theorem) and so the series is convergent. The sum of the series (the limit
of the partial sums) is also less than 2:
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[The exact sum of this series was found by the Swiss mathematician Leonhard Euler
(1707–1783) to be , but the proof of this fact is quite difficult. (See Problem 6 in the
Problems Plus following Chapter 15.)]

Now let’s look at the series

The table of values of suggests that the partial sums aren’t approaching a finite number,
so we suspect that the given series may be divergent. Again we use a picture for confir-
mation. Figure 2 shows the curve , but this time we use rectangles whose tops
lie above the curve.

The base of each rectangle is an interval of length 1. The height is equal to the value of
the function at the left endpoint of the interval. So the sum of the areas of all the
rectangles is

This total area is greater than the area under the curve for , which is equal
to the integral . But we know from Section 7.8 that this improper integral is
divergent. In other words, the area under the curve is infinite. So the sum of the series must
be infinite; that is, the series is divergent.

The same sort of geometric reasoning that we used for these two series can be used to
prove the following test. (The proof is given at the end of this section.)

The Integral Test Suppose is a continuous, positive, decreasing function on 
and let . Then the series is convergent if and only if the improper
integral is convergent. In other words:

(i) If is convergent, then is convergent.

(ii) If is divergent, then is divergent.

NOTE ■■ When we use the Integral Test it is not necessary to start the series or the inte-
gral at . For instance, in testing the series
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Also, it is not necessary that be always decreasing. What is important is that be ulti-
mately decreasing, that is, decreasing for larger than some number . Then is
convergent, so is convergent by Note 4 of Section 11.2.

EXAMPLE 1 Test the series for convergence or divergence.

SOLUTION The function is continuous, positive, and decreasing on
so we use the Integral Test:

Thus, is a convergent integral and so, by the Integral Test, the series
is convergent.

EXAMPLE 2 For what values of is the series convergent?

SOLUTION If , then . If , then . In either
case , so the given series diverges by the Test for Divergence (11.2.7).

If , then the function is clearly continuous, positive, and decreasing
on . We found in Chapter 7 [see (7.8.2)] that

It follows from the Integral Test that the series converges if and diverges 
if . (For , this series is the harmonic series discussed in Example 7 in
Section 11.2.)

The series in Example 2 is called the p-series. It is important in the rest of this chapter,
so we summarize the results of Example 2 for future reference as follows.

The -series is convergent if and divergent if .

EXAMPLE 3
(a) The series

is convergent because it is a p-series with .
(b) The series

is divergent because it is a p-series with .p � 1
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NOTE ■■ We should not infer from the Integral Test that the sum of the series is equal
to the value of the integral. In fact,

Therefore, in general,

EXAMPLE 4 Determine whether the series converges or diverges.

SOLUTION The function is positive and continuous for because the
logarithm function is continuous. But it is not obvious whether or not is decreasing, so
we compute its derivative:

Thus, when , that is, . It follows that is decreasing when 
and so we can apply the Integral Test:

Since this improper integral is divergent, the series is also divergent by the
Integral Test.

E s t i m a t i n g  t h e  S u m  o f  a  S e r i e s

Suppose we have been able to use the Integral Test to show that a series is conver-
gent and we now want to find an approximation to the sum of the series. Of course, any
partial sum is an approximation to because . But how good is such an
approximation? To find out, we need to estimate the size of the remainder

The remainder is the error made when , the sum of the first terms, is used as an
approximation to the total sum.

We use the same notation and ideas as in the Integral Test, assuming that is decreas-
ing on . Comparing the areas of the rectangles with the area under for 
in Figure 3, we see that

Similarly, we see from Figure 4 that
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So we have proved the following error estimate.

Remainder Estimate for the Integral Test Suppose , where is a continu-
ous, positive, decreasing function for and is convergent. If ,
then

EXAMPLE 5
(a) Approximate the sum of the series by using the sum of the first 10 terms.
Estimate the error involved in this approximation. 
(b) How many terms are required to ensure that the sum is accurate to within ?

SOLUTION In both parts (a) and (b) we need to know . With ,
we have

(a)

According to the remainder estimate in (2), we have

So the size of the error is at most .

(b) Accuracy to within means that we have to find a value of such that
. Since

we want

Solving this inequality, we get

We need 32 terms to ensure accuracy to within .

If we add to each side of the inequalities in (2), we get
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because . The inequalities in (3) give a lower bound and an upper bound 
for . They provide a more accurate approximation to the sum of the series than the partial
sum does.

EXAMPLE 6 Use (3) with to estimate the sum of the series .

SOLUTION The inequalities in (3) become

From Example 5 we know that

so

Using , we get

If we approximate by the midpoint of this interval, then the error is at most half the
length of the interval. So

If we compare Example 6 with Example 5, we see that the improved estimate in (3) can
be much better than the estimate . To make the error smaller than we had to
use 32 terms in Example 5 but only 10 terms in Example 6.

P r o o f  o f  t h e  I n t e g r a l  T e s t

We have already seen the basic idea behind the proof of the Integral Test in Figures 1 and
2 for the series and . For the general series look at Figures 5 and 6. The
area of the first shaded rectangle in Figure 5 is the value of at the right endpoint of ,
that is, . So, comparing the areas of the shaded rectangles with the area under

from 1 to , we see that

(Notice that this inequality depends on the fact that is decreasing.) Likewise, Figure 6
shows that
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(i) If is convergent, then (4) gives

since . Therefore

Since for all , the sequence is bounded above. Also

since . Thus, is an increasing bounded sequence and so it is 
convergent by the Monotonic Sequence Theorem (11.1.11). This means that is 
convergent.

(ii) If is divergent, then as because . But (5)
gives

and so . This implies that and so diverges.� ansn l �sn�1 l �
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1. Draw a picture to show that

What can you conclude about the series?

2. Suppose is a continuous positive decreasing function for
and . By drawing a picture, rank the following

three quantities in increasing order:

3–8 |||| Use the Integral Test to determine whether the series is 
convergent or divergent.

3. 4. 5.

6. 8.

9–24 |||| Determine whether the series is convergent or divergent.
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25–28 |||| Find the values of for which the series is convergent.
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|||| 11.4 T h e  C o m p a r i s o n  T e s t s

In the comparison tests the idea is to compare a given series with a series that is known to
be convergent or divergent. For instance, the series

reminds us of the series , which is a geometric series with and and
is therefore convergent. Because the series (1) is so similar to a convergent series, we have
the feeling that it too must be convergent. Indeed, it is. The inequality

shows that our given series (1) has smaller terms than those of the geometric series and
therefore all its partial sums are also smaller than 1 (the sum of the geometric series). This
means that its partial sums form a bounded increasing sequence, which is convergent. It 
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36. (a) Show that the series is convergent.
(b) Find an upper bound for the error in the approximation

.
(c) What is the smallest value of such that this upper bound

is less than ?
(d) Find for this value of .

(a) Use (4) to show that if is the partial sum of the har-
monic series, then

(b) The harmonic series diverges, but very slowly. Use part (a)
to show that the sum of the first million terms is less than
15 and the sum of the first billion terms is less than 22.

38. Use the following steps to show that the sequence

has a limit. (The value of the limit is denoted by and is called
Euler’s constant.)
(a) Draw a picture like Figure 6 with and interpret

as an area [or use (5)] to show that for all .
(b) Interpret

as a difference of areas to show that . There-
fore, is a decreasing sequence.

(c) Use the Monotonic Sequence Theorem to show that is
convergent.

39. Find all positive values of for which the series 
converges.
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29. The Riemann zeta-function is defined by

and is used in number theory to study the distribution of prime
numbers. What is the domain of ?

30. (a) Find the partial sum of the series . Estimate the
error in using as an approximation to the sum of the
series.

(b) Use (3) with to give an improved estimate of 
the sum.

(c) Find a value of so that is within of the sum.

(a) Use the sum of the first 10 terms to estimate the sum of the
series . How good is this estimate?

(b) Improve this estimate using (3) with .
(c) Find a value of that will ensure that the error in the

approximation is less than .

32. Find the sum of the series correct to three decimal
places.

33. Estimate to within .

34. How many terms of the series would you need
to add to find its sum to within ?

35. Show that if we want to approximate the sum of the series
so that the error is less than 5 in the ninth decimal

place, then we need to add more than terms!1011,301
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also follows that the sum of the series is less than the sum of the geometric series:

Similar reasoning can be used to prove the following test, which applies only to series
whose terms are positive. The first part says that if we have a series whose terms are
smaller than those of a known convergent series, then our series is also convergent. The
second part says that if we start with a series whose terms are larger than those of a known
divergent series, then it too is divergent.

The Comparison Test Suppose that and are series with positive terms.

(i) If is convergent and for all , then is also convergent.

(ii) If is divergent and for all , then is also divergent.

Proof
(i) Let

Since both series have positive terms, the sequences and are increasing
. Also , so for all . Since .

Thus, for all . This means that is increasing and bounded above and there-
fore converges by the Monotonic Sequence Theorem. Thus, converges.

(ii) If is divergent, then (since is increasing). But so .
Thus, . Therefore, diverges.

In using the Comparison Test we must, of course, have some known series for the
purpose of comparison. Most of the time we use either a -series [ converges if

and diverges if ; see (11.3.1)] or a geometric series [ converges if
and diverges if ; see (11.2.4)].

EXAMPLE 1 Determine whether the series converges or diverges.

SOLUTION For large the dominant term in the denominator is so we compare the
given series with the series . Observe that

because the left side has a bigger denominator. (In the notation of the Comparison Test,
is the left side and is the right side.) We know that

is convergent because it’s a constant times a -series with . Therefore

is convergent by part (i) of the Comparison Test.
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|||| It is important to keep in mind the distinction
between a sequence and a series. A sequence is
a list of numbers, whereas a series is a sum.
With every series there are associated two
sequences: the sequence of terms and the
sequence of partial sums.�sn �

�an �
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Standard Series for Use
with the Comparison Test



NOTE 1 ■■ Although the condition or in the Comparison Test is given for
all , we need verify only that it holds for , where is some fixed integer, because
the convergence of a series is not affected by a finite number of terms. This is illustrated
in the next example.

EXAMPLE 2 Test the series for convergence or divergence.

SOLUTION This series was tested (using the Integral Test) in Example 4 in Section 11.3,
but it is also possible to test it by comparing it with the harmonic series. Observe that

for and so

We know that is divergent ( -series with ). Thus, the given series is diver-
gent by the Comparison Test.

NOTE 2 ■■ The terms of the series being tested must be smaller than those of a convergent
series or larger than those of a divergent series. If the terms are larger than the terms of a
convergent series or smaller than those of a divergent series, then the Comparison Test
doesn’t apply. Consider, for instance, the series

The inequality

is useless as far as the Comparison Test is concerned because is convergent
and . Nonetheless, we have the feeling that ought to be convergent
because it is very similar to the convergent geometric series . In such cases the fol-
lowing test can be used.

The Limit Comparison Test Suppose that and are series with positive terms. If

where c is a finite number and , then either both series converge or both
diverge.

Proof Let m and M be positive numbers such that . Because is close to
c for large n, there is an integer N such that
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|||| Exercises 40 and 41 deal with the cases
and .c � �c � 0
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If converges, so does . Thus, converges by part (i) of the Comparison
Test. If diverges, so does and part (ii) of the Comparison Test shows that 
diverges.

EXAMPLE 3 Test the series for convergence or divergence.

SOLUTION We use the Limit Comparison Test with

and obtain

Since this limit exists and is a convergent geometric series, the given series con-
verges by the Limit Comparison Test.

EXAMPLE 4 Determine whether the series converges or diverges.

SOLUTION The dominant part of the numerator is and the dominant part of the denom-
inator is . This suggests taking

Since is divergent ( -series with ), the given series diverges
by the Limit Comparison Test.

Notice that in testing many series we find a suitable comparison series by keeping
only the highest powers in the numerator and denominator.

E s t i m a t i n g  S u m s

If we have used the Comparison Test to show that a series converges by comparison
with a series , then we may be able to estimate the sum by comparing remainders.
As in Section 11.3, we consider the remainder

For the comparison series we consider the corresponding remainder

Tn � t � tn � bn�1 � bn�2 � � � �

� bn

Rn � s � sn � an�1 � an�2 � � � �

� an� bn

� an

� bn

p � 1
2 � 1p� bn � 2 � 1�n 1�2

 � lim 
n l �

 

2 �
3

n

2 5

n 5 � 1

�
2 � 0

2s0 � 1
� 1

 lim 
n l �

 
an

bn
� lim 

n l �
 
2n 2 � 3n

s5 � n 5
�

n 1�2

2
� lim 

n l �
 
2n 5�2 � 3n 3�2

2s5 � n 5

bn �
2n 2

n 5�2 �
2

n 1�2an �
2n 2 � 3n

s5 � n 5

sn5 � n 5�2

2n 2

�
�

n�1
 
2n 2 � 3n

s5 � n 5

� 1�2n

lim
n l �

 
an

bn
� lim

n l �
 
1��2n � 1	

1�2n � lim
n l �

 
2n

2n � 1
� lim

n l �
 

1

1 � 1�2n � 1 � 0

bn �
1

2nan �
1

2n � 1

�
�

n�1
 

1

2n � 1

� an� mbn� bn

� an� Mbn� bn



Since for all , we have . If is a -series, we can estimate its remain-
der as in Section 11.3. If is a geometric series, then is the sum of a geometric
series and we can sum it exactly (see Exercises 35 and 36). In either case we know that 
is smaller than .

EXAMPLE 5 Use the sum of the first 100 terms to approximate the sum of the series
. Estimate the error involved in this approximation.

SOLUTION Since

the given series is convergent by the Comparison Test. The remainder for the compari-
son series was estimated in Example 5 in Section 11.3 using the Remainder Esti-
mate for the Integral Test. There we found that

Therefore, the remainder for the given series satisfies

With we have

Using a programmable calculator or a computer, we find that

with error less than .0.00005

�
�

n�1
 

1

n 3 � 1
� �

100

n�1
 

1

n 3 � 1
� 0.6864538

R100 	
1

2�100	2 � 0.00005

n � 100

Rn 	 Tn 	
1

2n 2

Rn

Tn 	 y
�

n
 

1

x 3  dx �
1

2n 2

� 1�n 3
Tn

1

n 3 � 1
�

1

n 3

� 1��n 3 � 1	

Tn

Rn

Tn� bnTn

p� bnRn 	 Tnnan 	 bn
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7.

9.

11. 12.

13. 14.

15. 16.

18. �
�

n�1
 

1

2n � 3�
�

n�1
 

1

sn 2 � 1
17.

�
�

n�1
 

1

sn 3 � 1�
�

n�1
 
2 � ��1	 n

nsn

�
�

n�2
 

sn

n � 1�
�

n�1
 
n � 1

n4 n

�
�

n�0
 
1 � sin n

10 n�
�

n�2
 
n 2 � 1

n 3 � 1

�
�

n�1
 

n 2 � 1

3n 4 � 1
10.�

�

n�1
 

cos2 n

n 2 � 1

�
�

n�1
 
4 � 3n

2n8.�
�

n�1
 
n � 1

n 2

Suppose and are series with positive terms and is
known to be convergent.
(a) If for all , what can you say about ? Why?
(b) If for all , what can you say about ? Why?

2. Suppose and are series with positive terms and is
known to be divergent.
(a) If for all n, what can you say about ? Why?
(b) If for all n, what can you say about ? Why?

3–32 |||| Determine whether the series converges or diverges.

3. 4.

5. 6. �
�

n�2
 

1

n � sn�
�

n�1
 

5

2 � 3n

�
�

n�1
 

2

n 3 � 4�
�

n�1
 

1

n 2 � n � 1

� anan � bn

� anan � bn

� bn� bn� an

� annan � bn

� annan � bn

� bn� bn� an1.

|||| 11.4 Exercises
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38. For what values of does the series converge?

39. Prove that if and converges, then also
converges.

40. (a) Suppose that and are series with positive terms
and is convergent. Prove that if

then is also convergent.
(b) Use part (a) to show that the series converges.

(i) (ii)

(a) Suppose that and are series with positive terms
and is divergent. Prove that if

then is also divergent.
(b) Use part (a) to show that the series diverges.

(i) (ii)

42. Give an example of a pair of series and with positive
terms where and diverges, but 
converges. [Compare with Exercise 40.]

43. Show that if and then is
divergent.

44. Show that if and is convergent, then 
is convergent.

45. If is a convergent series with positive terms, is it true that
is also convergent?

46. If and are both convergent series with positive terms,
is it true that is also convergent?� an bn

� bn� an

� sin�an 	
� an

� ln�1 � an 	� anan � 0

� anlim n l � nan � 0, an � 0

� an� bnlim n l � �an�bn	 � 0
� bn� an

�
�

n�1
 
ln n

n�
�

n�2
 

1

ln n

� an

lim 
n l �

 
an

bn
� �

� bn

� bn� an41.

�
�

n�1
 

ln n

snen�
�

n�1
 
ln n

n3

� an

lim 
n l �

 
an

bn
� 0

� bn

� bn� an

� an
2� anan � 0

��
n�2 1��n p ln n	p

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

32.

33–36 |||| Use the sum of the first 10 terms to approximate the sum
of the series. Estimate the error.

33. 34.

35. 36.

The meaning of the decimal representation of a number
(where the digit is one of the numbers 0, 1, 

2, . . . , 9) is that

Show that this series always converges.

0.d1d2d3d4 . . . �
d1

10
�

d2

102 �
d3

103 �
d4

104 � � � �

di0.d1d2d3 . . .
37.

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

�
�

n�1
 

n

�n � 1	3n�
�

n�1
 

1

1 � 2n

�
�

n�1
 
1 � cos n

n 5�
�

n�1
 

1

n 4 � n 2

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

�
�

n�1
 

1

n 1�1�n�
�

n�1
 sin�1

n�31.

�
�

n�1
 
n!

n n�
�

n�1
 

1

n!

�
�

n�1
 

2n 2 � 7n

3n�n 2 � 5n � 1	�
�

n�1
 �1 �

1

n�2

 e�n

�
�

n�1
 

n � 5

s
3 n 7 � n 2�

�

n�1
 

1 � n � n 2

s1 � n 2 � n 6

�
�

n�1
 

n 2 � 5n

n 3 � n � 1�
�

n�1
 

5 � 2n

�1 � n 2	2

�
�

n�3
 

n � 2

�n � 1	 3�
�

n�1
 

1

1 � sn

�
�

n�1
 
1 � 2n

1 � 3n�
�

n�1
 

2n

1 � 3n

|||| 11.5 A l t e r n a t i n g  S e r i e s

The convergence tests that we have looked at so far apply only to series with positive
terms. In this section and the next we learn how to deal with series whose terms are not
necessarily positive. Of particular importance are alternating series, whose terms alternate
in sign.

An alternating series is a series whose terms are alternately positive and negative. Here
are two examples:

 �
1

2
�

2

3
�

3

4
�

4

5
�

5

6
�

6

7
� � � � � �

�

n�1
 ��1	n 

n

n � 1

 1 �
1

2
�

1

3
�

1

4
�

1

5
�

1

6
� � � � � �

�

n�1
 
��1	n�1

n



We see from these examples that the th term of an alternating series is of the form

where is a positive number. (In fact, .)
The following test says that if the terms of an alternating series decrease toward 0 in

absolute value, then the series converges.

The Alternating Series Test If the alternating series

satisfies

(i)

(ii)

then the series is convergent.

Before giving the proof let’s look at Figure 1, which gives a picture of the idea behind
the proof. We first plot on a number line. To find we subtract , so is to the
left of . Then to find we add , so is to the right of . But, since , is to
the left of . Continuing in this manner, we see that the partial sums oscillate back and
forth. Since , the successive steps are becoming smaller and smaller. The even par-
tial sums , , , . . . are increasing and the odd partial sums , , , . . . are decreasing.
Thus, it seems plausible that both are converging to some number , which is the sum of
the series. Therefore, in the following proof we consider the even and odd partial sums 
separately.

Proof of the Alternating Series Test We first consider the even partial sums:

In general

Thus

But we can also write

s2n � b1 � �b2 � b3 	 � �b4 � b5 	 � � � � � �b2n�2 � b2n�1	 � b2n

0 	 s2 	 s4 	 s6 	 � � � 	 s2n 	 � � �

since b2n 	 b2n�1s2n � s2n�2 � �b2n�1 � b2n 	 � s2n�2

since b4 	 b3s4 � s2 � �b3 � b4 	 � s2

since b2 	 b1 s2 � b1 � b2 � 0

0 s¡s™ s£s¢ s∞sß s

b¡

-b™
+b£

-b¢
+b∞

-bß

FIGURE 1

s
s5s3s1s6s4s2

bn l 0
s1

s3b3 � b2s2s3b3s3s1

s2b2s2s1 � b1

lim 
n l �

 bn � 0

for all nbn�1 	 bn

�bn � 0	�
�

n�1
 ��1	n�1bn � b1 � b2 � b3 � b4 � b5 � b6 � � � �

bn � � an �bn

an � ��1	nbnoran � ��1	n�1bn

n
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Every term in brackets is positive, so for all . Therefore, the sequence of
even partial sums is increasing and bounded above. It is therefore convergent by the
Monotonic Sequence Theorem. Let’s call its limit , that is,

Now we compute the limit of the odd partial sums:

[by condition (ii)]

Since both the even and odd partial sums converge to , we have (see
Exercise 72 in Section 11.1) and so the series is convergent.

EXAMPLE 1 The alternating harmonic series

satisfies

(i) because

(ii)

so the series is convergent by the Alternating Series Test.

EXAMPLE 2 The series is alternating but

so condition (ii) is not satisfied. Instead, we look at the limit of the nth term of the series:

This limit does not exist, so the series diverges by the Test for Divergence.

EXAMPLE 3 Test the series for convergence or divergence.

SOLUTION The given series is alternating so we try to verify conditions (i) and (ii) of the
Alternating Series Test.

Unlike the situation in Example 1, it is not obvious that the sequence given by
is decreasing. However, if we consider the related functionbn � n 2��n 3 � 1	

�
�

n�1
 ��1	n�1 

n 2

n 3 � 1

lim 
n l �

 an � lim 
n l �

 
��1	n3n

4n � 1

lim 
n l �

 bn � lim 
n l �

 
3n

4n � 1
� lim 

n l �
 

3

4 �
1

n

�
3

4

�
�

n�1
 
��1	n3n

4n � 1

lim 
n l �

 bn � lim 
n l �

 
1

n
� 0

1

n � 1
�

1

n
bn�1 � bn

1 �
1

2
�

1

3
�

1

4
� � � � � �

�

n�1
 
��1	n�1

n

lim n l � sn � ss

 � s

 � s � 0

 � lim 
n l �

 s2n � lim 
n l �

 b2n�1

 lim 
n l �

 s2n�1 � lim 
n l �

�s2n � b2n�1	

lim 
n l �

 s2n � s

s

�s2n �ns2n 	 b1

|||| Figure 2 illustrates Example 1 by showing
the graphs of the terms and
the partial sums . Notice how the values of 
zigzag across the limiting value, which appears
to be about . In fact, the exact sum of the
series is (see Exercise 36).ln 2 � 0.693

0.7

sn sn

an � ��1	n�1�n

FIGURE 2

0 n

1
�sn�

�an�



, we find that

Since we are considering only positive , we see that if , that is,
. Thus, is decreasing on the interval . This means that 

and therefore when . (The inequality can be verified directly but
all that really matters is that the sequence is eventually decreasing.)

Condition (ii) is readily verified:

Thus, the given series is convergent by the Alternating Series Test.

E s t i m a t i n g  S u m s

A partial sum of any convergent series can be used as an approximation to the total sum
, but this is not of much use unless we can estimate the accuracy of the approximation. The

error involved in using is the remainder . The next theorem says that for
series that satisfy the conditions of the Alternating Series Test, the size of the error is
smaller than , which is the absolute value of the first neglected term.

Alternating Series Estimation Theorem If is the sum of an alternating
series that satisfies

(i) and (ii)

then

Proof We know from the proof of the Alternating Series Test that s lies between any two
consecutive partial sums and . It follows that

EXAMPLE 4 Find the sum of the series correct to three decimal places.

(By definition, .)

SOLUTION We first observe that the series is convergent by the Alternating Series Test
because

(i)

(ii) so as n l �
1

n!
l 00 �

1

n!
�

1

n
l 0

1

�n � 1	!
�

1

n!�n � 1	
�

1

n!

0! � 1
�
�

n�0
 
��1	n

n!

� s � sn � 	 � sn�1 � sn � � bn�1

sn�1sn

� Rn � � � s � sn � 	 bn�1

lim 
n l �

 bn � 00 	 bn�1 	 bn

s � � ��1	n�1bn

bn�1

Rn � s � sns � sn

s
sn

lim 
n l �

 bn � lim 
n l �

 
n 2

n 3 � 1
� lim 

n l �
 

1

n

1 �
1

n 3

� 0

�bn �
b2 � b1n � 2bn�1 � bn

f �n � 1	 � f �n	(s3 2, �)fx � s
3 2

2 � x 3 � 0f ��x	 � 0x

f ��x	 �
x�2 � x 3 	
�x 3 � 1	2

f �x	 � x 2��x 3 � 1	
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|||| Instead of verifying condition (i) of the Alter-
nating Series Test by computing a derivative, we
could verify that directly by using the
technique of Solution 1 of Example 11 in
Section 11.1.

bn�1 � bn

|||| You can see geometrically why the 
Alternating Series Estimation Theorem is true 
by looking at Figure 1 (on page 736). Notice that

, , and so on. Notice
also that lies between any two consecutive
partial sums.

s
� s � s5 � � b6s � s4 � b5



To get a feel for how many terms we need to use in our approximation, let’s write out
the first few terms of the series:

Notice that

and

By the Alternating Series Estimation Theorem we know that

This error of less than does not affect the third decimal place, so we have

correct to three decimal places.

| NOTE ■■ The rule that the error (in using to approximate ) is smaller than the first ne-
glected term is, in general, valid only for alternating series that satisfy the conditions 
of the Alternating Series Estimation Theorem. The rule does not apply to other types of
series.

ssn

s � 0.368

0.0002

� s � s6 � 	 b7 � 0.0002

s6 � 1 � 1 �
1
2 �

1
6 �

1
24 �

1
120 �

1
720 � 0.368056

b7 � 1
5040 �

1
5000 � 0.0002

 � 1 � 1 �
1
2 �

1
6 �

1
24 �

1
120 �

1
720 �

1
5040 � � � �

 s �
1

0!
�

1

1!
�

1

2!
�

1

3!
�

1

4!
�

1

5!
�

1

6!
�

1

7!
� � � �
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1. (a) What is an alternating series?
(b) Under what conditions does an alternating series converge?
(c) If these conditions are satisfied, what can you say about the

remainder after terms?

2–20 |||| Test the series for convergence or divergence.

2.

4.

5. 6.

8.

9. 10.

12.

14. �
�

n�1
 ��1	n�1 

ln n

n�
�

n�2
 ��1	n 

n

ln n
13.

�
�

n�1
 ��1	n�1 e 1�n

n�
�

n�1
 ��1	n�1 n 2

n 3 � 4
11.

�
�

n�1
 ��1	n sn

1 � 2sn�
�

n�1
 

��1	n�1

4n 2 � 1

�
�

n�1
 ��1	n 

2n

4n 2 � 1�
�

n�1
 ��1	n 3n � 1

2n � 1
7.

�
�

n�1
 
��1	n�1

3n � 1�
�

n�1
 
��1	n�1

sn

1

ln 2
�

1

ln 3
�

1

ln 4
�

1

ln 5
�

1

ln 6
� � � �

4
7 �

4
8 �

4
9 �

4
10 �

4
11 � � � �3.

�
1
3 �

2
4 �

3
5 �

4
6 �

5
7 � � � �

n

15. 16.

18.

19. 20.

; 21–22 |||| Calculate the first 10 partial sums of the series and graph
both the sequence of terms and the sequence of partial sums on the
same screen. Estimate the error in using the 10th partial sum to
approximate the total sum.

21. 22.

23–26 |||| How many terms of the series do we need to add in order
to find the sum to the indicated accuracy?

24. (� error � � 0.001)�
�

n�1
 
��1	n�1

n 4

(� error � � 0.01)�
�

n�1
 
��1	n�1

n 223.

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

�
�

n�1
 
��1	n�1

n 3�
�

n�1
 
��1	n�1

n 3�2

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

�
�

n�1
��

n

5�n

�
�

n�1
 ��1	n 

n n

n!

�
�

n�1
 ��1	n cos�

n ��
�

n�1
 ��1	n sin�

n �17.

�
�

n�1
 
sin�n�2	

n!�
�

n�1
 
cos n

n 3�4

|||| 11.5 Exercises

|||| In Section 11.10 we will prove that
for all , so what we have

obtained in Example 4 is actually an approxi-
mation to the number .e�1

xe x � ��
n�0 x n�n!
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34.

35. Show that the series , where if is odd
and if is even, is divergent. Why does the Alter-
nating Series Test not apply?

36. Use the following steps to show that

Let and be the partial sums of the harmonic and alter-
nating harmonic series.
(a) Show that .
(b) From Exercise 38 in Section 11.3 we have

as

and therefore

as

Use these facts together with part (a) to show that
as .n l �s2n l ln 2

n l �h2n � ln�2n� l �

n l �hn � ln n l �

s2n � h2n � hn

snhn

�
�

n�1
 
��1�n�1

n
� ln 2

nbn � 1�n 2
nbn � 1�n� ��1�n�1bn

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

�
�

n�2
 ��1�n�1 

�ln n� p

n
25.

26.

27–30 |||| Approximate the sum of the series correct to four decimal
places.

27. 28.

29. 30.

31. Is the 50th partial sum of the alternating series
an overestimate or an underestimate of the 

total sum? Explain.

32–34 |||| For what values of is each series convergent?

33. �
�

n�1
 
��1�n

n � p�
�

n�1
 
��1�n�1

n p32.

p

��
n�1 ��1�n�1�n

s50

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

�
�

n�1
 
��1�n

3 n n!�
�

n�1
 
��1�n�1 n 2

10 n

�
�

n�1
 
��1�n n

8n�
�

n�1
 
��1�n�1

n 5

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

(� error � � 0.002)�
�

n�1
 
��1�nn

4n

(� error � � 0.01)�
�

n�1
 
��2�n

n!

|||| 11.6 A b s o l u t e  C o n v e r g e n c e  a n d  t h e  R a t i o  a n d  R o o t  T e s t s

Given any series , we can consider the corresponding series

whose terms are the absolute values of the terms of the original series.

Definition A series is called absolutely convergent if the series of
absolute values is convergent.

Notice that if is a series with positive terms, then and so absolute con-
vergence is the same as convergence in this case.

EXAMPLE 1 The series

is absolutely convergent because

is a convergent -series ( ).p � 2p

�
�

n�1
 � ��1�n�1

n 2 � � �
�

n�1
 

1

n 2 � 1 �
1

22 �
1

32 �
1

42 � � � �

�
�

n�1
 
��1�n�1

n 2 � 1 �
1

22 �
1

32 �
1

42 � � � �

� an � � an� an

� � an �
� an1

�
�

n�1
 � an � � � a1 � � � a2 � � � a3 � � � � �

� an

|||| We have convergence tests for series with
positive terms and for alternating series. But
what if the signs of the terms switch back and
forth irregularly? We will see in Example 3 that
the idea of absolute convergence sometimes
helps in such cases.
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EXAMPLE 2 We know that the alternating harmonic series

is convergent (see Example 1 in Section 11.5), but it is not absolutely convergent
because the corresponding series of absolute values is

which is the harmonic series ( -series with ) and is therefore divergent.

Definition A series is called conditionally convergent if it is convergent
but not absolutely convergent.

Example 2 shows that the alternating harmonic series is conditionally convergent. Thus,
it is possible for a series to be convergent but not absolutely convergent. However, the next
theorem shows that absolute convergence implies convergence.

Theorem If a series is absolutely convergent, then it is convergent.

Proof Observe that the inequality

is true because is either or . If is absolutely convergent, then is
convergent, so is convergent. Therefore, by the Comparison Test,
is convergent. Then

is the difference of two convergent series and is therefore convergent.

EXAMPLE 3 Determine whether the series

is convergent or divergent.

SOLUTION This series has both positive and negative terms, but it is not alternating. 
(The first term is positive, the next three are negative, and the following three are posi-
tive. The signs change irregularly.) We can apply the Comparison Test to the series of
absolute values

Since for all , we have

� cos n �
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1

n 2

n� cos n � � 1

�
�

n�1
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n 2 � � �
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 � cos n �

n 2
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n 2 �
cos 1

12 �
cos 2

22 �
cos 3
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� an � � (an � � an �) � � � an �

� (an � � an �)� 2� an �
� � an �� an�anan� an �

0 � an � � an � � 2� an �

� an3

� an2

p � 1p

�
�

n�1
 � ��1�n�1

n � � �
�

n�1
 
1

n
� 1 �

1

2
�

1

3
�

1

4
� � � �

�
�

n�1
 
��1�n�1

n
� 1 �

1

2
�

1

3
�

1

4
� � � �

|||| Figure 1 shows the graphs of the terms 
and partial sums of the series in Example 3.
Notice that the series is not alternating but has
positive and negative terms.
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FIGURE 1
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We know that is convergent ( -series with ) and therefore is
convergent by the Comparison Test. Thus, the given series is absolutely
convergent and therefore convergent by Theorem 3.

The following test is very useful in determining whether a given series is absolutely
convergent.

The Ratio Test

(i) If , then the series is absolutely convergent 

(and therefore convergent).

(ii) If or , then the series 

is divergent.

(iii) If , the Ratio Test is inconclusive; that is, no conclusion can

be drawn about the convergence or divergence of .

Proof
(i) The idea is to compare the given series with a convergent geometric series. Since

, we can choose a number such that . Since

the ratio will eventually be less than ; that is, there exists an integer 
such that

or, equivalently,

Putting successively equal to , , , . . . in (4), we obtain

and, in general,

Now the series

�
�

k�1
 � aN � r k � � aN � r � � aN � r 2 � � aN � r 3 � � � �

for all k 	 1� aN�k � � � aN � r k5

 � aN�3 � � � aN�2 � r � � aN � r 3

 � aN�2 � � � aN�1 � r � � aN � r 2

 � aN�1 � � � aN � r

N � 2N � 1Nn

� an�1 � � � an � r whenever n 	 N4

� an�1

an
� � r whenever n 	 N 

Nr� an�1�an �

L � randlim 
n l �

 � an�1

an
� � L

L � r � 1rL � 1

� an

lim 
n l �

 � an�1

an
� � 1

�
�

n�1
 anlim 

n l �
 � an�1

an
� � �lim 

n l �
 � an�1

an
� � L 
 1

�
�

n�1
 anlim 

n l �
 � an�1

an
� � L � 1

� �cos n��n 2

� � cos n ��n 2p � 2p� 1�n 2
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is convergent because it is a geometric series with . So the inequality (5),
together with the Comparison Test, shows that the series

is also convergent. It follows that the series is convergent. (Recall that a finite
number of terms doesn’t affect convergence.) Therefore, is absolutely convergent.

(ii) If or , then the ratio will eventually be
greater than 1; that is, there exists an integer such that

This means that whenever and so

Therefore, diverges by the Test for Divergence.

NOTE ■■ Part (iii) of the Ratio Test says that if , the test gives no
information. For instance, for the convergent series we have

whereas for the divergent series we have

Therefore, if , the series might converge or it might diverge. In
this case the Ratio Test fails and we must use some other test.

EXAMPLE 4 Test the series for absolute convergence.

SOLUTION We use the Ratio Test with :

Thus, by the Ratio Test, the given series is absolutely convergent and therefore 
convergent.
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1. If the radius of convergence of the power series 
is 10, what is the radius of convergence of the series

? Why?

2. Suppose you know that the series converges for
. What can you say about the following series? Why?

3–10 |||| Find a power series representation for the function and
determine the interval of convergence.

3. 4.

5.

8.

9. 10.

11–12 |||| Express the function as the sum of a power series by first
using partial fractions. Find the interval of convergence.

11.

12.

(a) Use differentiation to find a power series representation for

What is the radius of convergence?
(b) Use part (a) to find a power series for

(c) Use part (b) to find a power series for

14. (a) Find a power series representation for .
What is the radius of convergence?

(b) Use part (a) to find a power series for .
(c) Use part (a) to find a power series for .f �x� � ln�x 2 � 1�

f �x� � x ln�1 � x�

f �x� � ln�1 � x�

f �x� �
x 2

�1 � x�3

f �x� �
1

�1 � x�3

f �x� �
1

�1 � x�2

13.

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

f �x� �
7x � 1

3x 2 � 2x � 1

f �x� �
3

x 2 � x � 2

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

f �x� �
x 2

a 3 � x 3f �x� �
x

9 � x 2

f �x� �
x

4x � 1
f �x� �

1

x � 5
7.

f �x� �
1

1 � 9x 26.f �x� �
1

1 � x 3

f �x� �
3

1 � x 4f �x� �
1

1 � x

�
�

n�0
 

bn

n � 1
 x n�1


 x 
 � 2
	�

n�0 bn x n

	�
n�1 ncn x n�1

	�
n�0 cn x n 15–18 |||| Find a power series representation for the function and

determine the radius of convergence.

16.

17. 18.

; 19–22 |||| Find a power series representation for , and graph and
several partial sums on the same screen. What happens as 
increases?

19. 20.

22.

23–26 |||| Evaluate the indefinite integral as a power series. What is
the radius of convergence?

24.

25. 26.

27–30 |||| Use a power series to approximate the definite integral to
six decimal places.

27. 28.

29. 30.

31. Use the result of Example 6 to compute correct to five
decimal places.

32. Show that the function

is a solution of the differential equation

33. (a) Show that (the Bessel function of order 0 given in
Example 4) satisfies the differential equation

(b) Evaluate correct to three decimal places.x
1

0  J0�x� dx

x 2J0��x� � xJ0��x� � x 2J0�x� � 0

J0

f ��x� � f �x� � 0

f �x� � �
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��1�nx 2n
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x 3  dx

y 
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 dty 

t

1 � t 8  dt23.
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1 � x�21.

f �x� �
1

x 2 � 25
f �x� � ln�3 � x�

nsn�x�
ff

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

f �x� � arctan�x�3�f �x� �
x 3

�x � 2�2

f �x� �
x 2

�1 � 2x�2f �x� � ln�5 � x�15.
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|||| 11.9 Exercises
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38. (a) Starting with the geometric series , find the sum of
the series

(b) Find the sum of each of the following series.

(i) , (ii)

(c) Find the sum of each of the following series.

(i) ,

(ii) (iii)

39. Use the power series for to prove the following expres-
sion for as the sum of an infinite series:

40. (a) By completing the square, show that 

(b) By factoring as a sum of cubes, rewrite the integral
in part (a).  Then express as the sum of a power
series and use it to prove the following formula for :

� �
3s3

4
 �

�

n�0
 
��1�n

8 n � 2

3n � 1
�

1

3n � 2�
�

1��x 3 � 1�
x 3 � 1

y
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x 2 � x � 1
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3s3

� � 2s3 �
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n�0
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tan �1x
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n2

2n�
�

n�2
 
n2 � n

2n

� x � � 1�
�

n�2
 n�n � 1�x n

�
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n�1
 

n

2n� x � � 1�
�

n�1
 nx n

� x � � 1 �
�

n�1
 nx n�1

	�
n�0 x n34. The Bessel function of order 1 is defined by

(a) Show that satisfies the differential equation

(b) Show that .

(a) Show that the function

is a solution of the differential equation

(b) Show that .

36. Let . Show that the series converges
for all values of but the series of derivatives diverges
when , an integer. For what values of does the
series converge?

Let

Find the intervals of convergence for , , and .f �f �f

f �x� � �
�

n�1
 
x n

n2

37.

	 fn��x�
xnx � 2n�

	 fn��x�x
	 fn�x�fn�x� � �sin nx��n2

f �x� � e x

f ��x� � f �x�

f �x� � �
�

n�0
 
x n

n!

35.

J0��x� � �J1�x�

x 2J1��x� � xJ1��x� � �x 2 � 1�J1�x� � 0

J1

J1�x� � �
�

n�0
 

��1�nx 2n�1

n!�n � 1�!22n�1

|||| 11.10 T a y l o r  a n d  M a c l a u r i n  S e r i e s

In the preceding section we were able to find power series representations for a certain
restricted class of functions. Here we investigate more general problems: Which functions
have power series representations? How can we find such representations?

We start by supposing that is any function that can be represented by a power series

Let’s try to determine what the coefficients must be in terms of . To begin, notice that
if we put in Equation 1, then all terms after the first one are 0 and we get

By Theorem 11.9.2, we can differentiate the series in Equation 1 term by term:

and substitution of in Equation 2 gives

f ��a� � c1

x � a

� x � a � � Rf ��x� � c1 � 2c2�x � a� � 3c3�x � a�2 � 4c4�x � a�3 � 	 	 	2

f �a� � c0

x � a
fcn

� x � a � � Rf �x� � c0 � c1�x � a� � c2�x � a�2 � c3�x � a�3 � c4�x � a�4 � 	 	 	1

f
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Now we differentiate both sides of Equation 2 and obtain

Again we put in Equation 3. The result is

Let’s apply the procedure one more time. Differentiation of the series in Equation 3 gives

and substitution of in Equation 4 gives

By now you can see the pattern. If we continue to differentiate and substitute , we
obtain

Solving this equation for the th coefficient 

This formula remains valid even for if we adopt the conventions that and
. Thus, we have proved the following theorem.

Theorem If has a power series representation (expansion) at , that is, if

then its coefficients are given by the formula

Substituting this formula for back into the series, we see that if has a power series
expansion at , then it must be of the following form.

 � f �a� �
 f ��a�
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 f ��a�
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a
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 f �n��a�
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n�0
cn�x � a�n

af5

f �0� � f
0! � 1n � 0

cn �
 f �n��a�

n!

cn, we getn

f �n��a� � 2 � 3 � 4 � 	 	 	 � ncn � n!cn

x � a

f 
�a� � 2 � 3c3 � 3!c3

x � a

� x � a � � Rf 
�x� � 2 � 3c3 � 2 � 3 � 4c4�x � a� � 3 � 4 � 5c5�x � a�2 � 	 	 	4

f ��a� � 2c2

x � a
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The series in Equation 6 is called the Taylor series of the function f at a (or about a
or centered at a). For the special case the Taylor series becomes

This case arises frequently enough that it is given the special name Maclaurin series.

NOTE ■■ We have shown that if can be represented as a power series about , then is
equal to the sum of its Taylor series. But there exist functions that are not equal to the sum
of their Taylor series. An example of such a function is given in Exercise 62.

EXAMPLE 1 Find the Maclaurin series of the function and its radius of 
convergence.

SOLUTION If , then , so for all . Therefore, the
Taylor series for at 0 (that is, the Maclaurin series) is

To find the radius of convergence we let . Then

so, by the Ratio Test, the series converges for all and the radius of convergence is
.

The conclusion we can draw from Theorem 5 and Example 1 is that if has a power
series expansion at 0, then

So how can we determine whether does have a power series representation?
Let’s investigate the more general question: Under what circumstances is a function

equal to the sum of its Taylor series? In other words, if has derivatives of all orders, when
is it true that

As with any convergent series, this means that is the limit of the sequence of partial
sums. In the case of the Taylor series, the partial sums are
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nf �n��0� � e 0 � 1f �n��x� � exf �x� � ex
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faf

f �x� � �
�

n�0
 
 f �n��0�

n!
 xn � f �0� �

 f ��0�
1!

 x �
 f ��0�

2!
 x 2 � 	 	 	7

a � 0
|||| The Taylor series is named after the English
mathematician Brook Taylor (1685–1731) and the
Maclaurin series is named in honor of the Scot-
tish mathematician Colin Maclaurin (1698–1746)
despite the fact that the Maclaurin series is
really just a special case of the Taylor series. But
the idea of representing particular functions as
sums of power series goes back to Newton, and
the general Taylor series was known to the Scot-
tish mathematician James Gregory in 1668 and
to the Swiss mathematician John Bernoulli in 
the 1690s. Taylor was apparently unaware of the
work of Gregory and Bernoulli when he published
his discoveries on series in 1715 in his book
Methodus incrementorum directa et inversa.
Maclaurin series are named after Colin Maclau-
rin because he popularized them in his calculus
textbook Treatise of Fluxions published in 1742.
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Notice that is a polynomial of degree called the nth-degree Taylor polynomial of f
at a. For instance, for the exponential function , the result of Example 1 shows
that the Taylor polynomials at 0 (or Maclaurin polynomials) with , 2, and 3 are

The graphs of the exponential function and these three Taylor polynomials are drawn in
Figure 1.

In general, is the sum of its Taylor series if

If we let

so that

then is called the remainder of the Taylor series. If we can somehow show that
, then it follows that

We have therefore proved the following.

Theorem If , where is the nth-degree Taylor polyno-
mial of at and

for , then is equal to the sum of its Taylor series on the interval
.

In trying to show that for a specific function , we usually use the
following fact.

Taylor’s Inequality If for , then the remainder 
of the Taylor series satisfies the inequality

To see why this is true for n � 1, we assume that . In particular, we have
, so for we have

An antiderivative of is , so by Part 2 of the Fundamental Theorem of Calculus, we
have

f ��x� � f ��a� � M�x � a�orf ��x� � f ��a� � M�x � a�
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a
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 � x � a �n�1
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af
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x 3
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x 2
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|||| As increases, appears to approach
in Figure 1. This suggests that is equal to

the sum of its Taylor series.
e xe x
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0 x
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y=´
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FIGURE 1
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Thus

But . So

A similar argument, using , shows that

So

Although we have assumed that , similar calculations show that this inequality is
also true for .

This proves Taylor’s Inequality for the case where . The result for any n is proved
in a similar way by integrating times. (See Exercise 61 for the case .)

NOTE ■■ In Section 11.12 we will explore the use of Taylor’s Inequality in approximating
functions. Our immediate use of it is in conjunction with Theorem 8.

In applying Theorems 8 and 9 it is often helpful to make use of the following fact.

for every real number x

This is true because we know from Example 1 that the series converges for all 
and so its th term approaches 0.

EXAMPLE 2 Prove that is equal to the sum of its Maclaurin series.

SOLUTION If , then for all n. If d is any positive number and
, then . So Taylor’s Inequality, with and ,

says that

for

Notice that the same constant works for every value of n. But, from Equa-
tion 10, we have
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�x � a�2

2

 y
x

a
 f ��t� dt � y

x

a
 � f ��a� � M�t � a�� dt|||| As alternatives to Taylor’s Inequality, we

have the following formulas for the remainder
term. If is continuous on an interval and

, then

This is called the integral form of the remainder
term. Another formula, called Lagrange’s form of
the remainder term, states that there is a number

between and such that

This version is an extension of the Mean Value
Theorem (which is the case ).

Proofs of these formulas, together with dis-
cussions of how to use them to solve the exam-
ples of Sections 11.10 and 11.12, are given on the
web site

www.stewartcalculus.com

Click on Additional Topics and then on Formulas
for the Remainder Term in Taylor series.

n � 0

Rn�x� �
f �n�1��z�
�n � 1�!

 �x � a�n�1

axz

Rn�x� �
1

n!
 y

x

a
 �x � t�n f �n�1��t� dt

x � I
If �n�1�
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It follows from the Squeeze Theorem that and therefore
for all values of x. By Theorem 8, is equal to the sum of its 

Maclaurin series, that is,

In particular, if we put in Equation 11, we obtain the following expression for the
number as a sum of an infinite series:

EXAMPLE 3 Find the Taylor series for at .

SOLUTION We have and so, putting in the definition of a Taylor series
(6), we get

Again it can be verified, as in Example 1, that the radius of convergence is . As in
Example 2 we can verify that , so

We have two power series expansions for , the Maclaurin series in Equation 11 and
the Taylor series in Equation 13. The first is better if we are interested in values of near
0 and the second is better if is near 2.

EXAMPLE 4 Find the Maclaurin series for and prove that it represents for all .

SOLUTION We arrange our computation in two columns as follows:

Since the derivatives repeat in a cycle of four, we can write the Maclaurin series as 
follows:

� x �
x 3

3!
�

x 5

5!
�

x 7

7!
� 	 	 	 � �

�

n�0
��1�n 

x 2n�1

�2n � 1�!

f �0� �
 f ��0�

1!
 x �

 f ��0�
2!

 x 2 �
 f 
�0�

3!
 x 3 � 	 	 	

 f �4��x� � sin x  f �4��0� � 0

 f 
�x� � �cos x f 
�0� � �1

 f ��x� � �sin x  f ��0� � 0

 f ��x� � cos x  f ��0� � 1

 f �x� � sin x  f �0� � 0

xsin xsin x

x
x

ex

for all xex � �
�

n�0
 
e 2

n!
 �x � 2�n13

lim n l � Rn�x� � 0
R � �

�
�

n�0
 
 f �n��2�

n!
 �x � 2�n � �

�

n�0
 
e 2

n!
 �x � 2�n

a � 2f �n��2� � e 2

a � 2f �x� � ex

e � �
�

n�0
 

1

n!
� 1 �

1

1!
�

1

2!
�

1

3!
� 	 	 	12

e
x � 1

for all xex � �
�

n�0
 
xn

n!
11

exlim n l � Rn�x� � 0
lim n l � � Rn�x� � � 0

|||| In 1748 Leonard Euler used Equation 12 to
find the value of correct to digits. In 2000
Xavier Gourdon and S. Kondo, again using the
series in (12), computed to more than twelve
billion decimal places. The special techniques
they employed to speed up the computation are
explained on the web page

www.numbers.computation.free.fr

e

23e
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Since is or , we know that for all x. So we can
take in Taylor’s Inequality:

By Equation 10 the right side of this inequality approaches 0 as , so
by the Squeeze Theorem. It follows that as , so

is equal to the sum of its Maclaurin series by Theorem 8.

We state the result of Example 4 for future reference.

EXAMPLE 5 Find the Maclaurin series for .

SOLUTION We could proceed directly as in Example 4 but it’s easier to differentiate the
Maclaurin series for given by Equation 15:

Since the Maclaurin series for converges for all , Theorem 2 in Section 11.9 tells
us that the differentiated series for also converges for all . Thus

EXAMPLE 6 Find the Maclaurin series for the function .

SOLUTION Instead of computing derivatives and substituting in Equation 7, it’s easier to
multiply the series for (Equation 16) by :

EXAMPLE 7 Represent as the sum of its Taylor series centered at .��3f �x� � sin x

x cos x � x �
�

n�0
��1�n 

x 2n

�2n�!
� �

�

n�0
��1�n 

x 2n�1

�2n�!

xcos x

f �x� � x cos x

for all x � �
�

n�0
��1�n 

x 2n

�2n�!

 cos x � 1 �
x 2

2!
�

x 4

4!
�

x 6

6!
� 	 	 	16

xcos x
xsin x

 � 1 �
3x 2

3!
�

5x 4

5!
�

7x 6

7!
� 	 	 	 � 1 �

x 2

2!
�

x 4

4!
�

x 6

6!
� 	 	 	

 cos x �
d

dx
 �sin x� �

d

dx
 �x �

x 3

3!
�

x 5

5!
�

x 7

7!
� 	 	 	�

sin x

cos x

for all x � �
�

n�0
��1�n 

x 2n�1

�2n � 1�!

 sin x � x �
x 3

3!
�

x 5

5!
�

x 7

7!
� 	 	 	15

sin xn l �Rn�x� l 0� Rn�x� �l 0
n l �

� Rn�x� � �
M

�n � 1�! � xn�1 � � � x �n�1

�n � 1�!
14

M � 1
� f �n�1��x� � � 1�cos x�sin xf �n�1��x�

|||| The Maclaurin series for , , and 
that we found in Examples 2, 4, and 5 were dis-
covered, using different methods, by Newton.
(There is evidence that the series for and

were known to Indian astronomers more
than a century before Newton, but this knowl-
edge didn’t spread to the rest of the world.)

These equations are remarkable because they
say we know everything about each of these
functions if we know all its derivatives at the
single number 0.

cos x
sin x

cos xsin xe x

FIGURE 2

0 x

y

1

1

y=sin x

T∞

T£

T¡

|||| Figure 2 shows the graph of together
with its Taylor (or Maclaurin) polynomials

Notice that, as increases, becomes a
better approximation to .sin x

Tn�x�n

 T5�x� � x �
x 3

3!
�

x 5

5!

 T3�x� � x �
x 3

3!

 T1�x� � x

sin x
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SOLUTION Arranging our work in columns, we have

and this pattern repeats indefinitely. Therefore, the Taylor series at is

The proof that this series represents for all is very similar to that in Example 4.
[Just replace by in (14).] We can write the series in sigma notation if we
separate the terms that contain :

The power series that we obtained by indirect methods in Examples 5 and 6 and in
Section 11.9 are indeed the Taylor or Maclaurin series of the given functions because
Theorem 5 asserts that, no matter how a power series representation 
is obtained, it is always true that . In other words, the coefficients are
uniquely determined.

We collect in the following table, for future reference, some important Maclaurin series
that we have derived in this section and the preceding one.

��1, 1�tan�1x � �
�

n�0
��1�n 

x 2n�1

2n � 1
� x �

x 3

3
�

x 5

5
�

x 7

7
� 	 	 	

���, ��cos x � �
�

n�0
��1�n 

x 2n

�2n�!
� 1 �

x 2

2!
�

x 4

4!
�

x 6

6!
� 	 	 	

���, ��sin x � �
�

n�0
��1�n 

x 2n�1

�2n � 1�!
� x �

x 3

3!
�

x 5

5!
�

x 7

7!
� 	 	 	

���, ��ex � �
�

n�0
 
xn

n!
� 1 �

x

1!
�

x 2

2!
�

x 3

3!
� 	 	 	

��1, 1�
1

1 � x
� �

�

n�0
 xn � 1 � x � x 2 � x 3 � 	 	 	

cn � f �n��a��n!
f �x� � 	 cn�x � a�n

sin x � �
�

n�0
 
��1�n

s3

2�2n�! �x �
�

3 �2n

� �
�

n�0
 

��1�n

2�2n � 1�!�x �
�

3 �2n�1

s3
x � ��3x

xsin x

�
s3

2
�

1

2 � 1!
 �x �

�

3 � �
s3

2 � 2!
 �x �

�

3 �2

�
1

2 � 3!
 �x �

�

3 �3

� 	 	 	

f��

3 � �

 f ���

3 �
1!

 �x �
�

3 � �

 f ���

3 �
2!

 �x �
�

3 �2

�

 f 
��

3 �
3!

 �x �
�

3 �3

� 	 	 	

��3

 f 
��

3 � � �
1

2
 f 
�x� � �cos x

 f ���

3 � � �
s3

2
 f ��x� � �sin x

 f ���

3 � �
1

2
 f ��x� � cos x

 f��

3 � �
s3

2
 f �x� � sin x

|||| We have obtained two different series repre-
sentations for , the Maclaurin series in
Example 4 and the Taylor series in Example 7. It
is best to use the Maclaurin series for values of

near 0 and the Taylor series for near .
Notice that the third Taylor polynomial in Fig-
ure 3 is a good approximation to near 
but not as good near 0. Compare it with the third
Maclaurin polynomial in Figure 2, where the
opposite is true.

T3

��3sin x
T3

��3xx

sin x

0 x

y

π
3

y=sin x

T£

FIGURE 3

Important Maclaurin series and 
their intervals of convergence
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One reason that Taylor series are important is that they enable us to integrate functions
that we couldn’t previously handle. In fact, in the introduction to this chapter we men-
tioned that Newton often integrated functions by first expressing them as power series and
then integrating the series term by term. The function can’t be integrated by
techniques discussed so far because its antiderivative is not an elementary function (see
Section 7.5). In the following example we use Newton’s idea to integrate this function.

EXAMPLE 8
(a) Evaluate as an infinite series.

(b) Evaluate correct to within an error of .

SOLUTION
(a) First we find the Maclaurin series for . Although it’s possible to use the
direct method, let’s find it simply by replacing with in the series for given in
the table of Maclaurin series. Thus, for all values of x,

Now we integrate term by term:

This series converges for all because the original series for converges for all .

(b) The Evaluation Theorem gives

The Alternating Series Estimation Theorem shows that the error involved in this approxi-
mation is less than

Another use of Taylor series is illustrated in the next example. The limit could be found
with l’Hospital’s Rule, but instead we use a series.

EXAMPLE 9 Evaluate .lim 
x l 0

 
ex � 1 � x

x 2

1

11 � 5!
�

1

1320
� 0.001

  1 �
1
3 �

1
10 �

1
42 �

1
216  0.7475

 � 1 �
1
3 �

1
10 �

1
42 �

1
216 � 	 	 	

 y
1

0
 e�x 2

 dx � �x �
x 3

3 � 1!
�

x 5

5 � 2!
�

x 7

7 � 3!
�

x 9

9 � 4!
� 	 	 	�

0

1

xe�x 2
x

 � C � x �
x 3

3 � 1!
�

x 5

5 � 2!
�

x 7

7 � 3!
� 	 	 	 � ��1�n 

x 2n�1

�2n � 1�n!
� 	 	 	

 y e�x 2
 dx � y �1 �

x 2

1!
�

x 4

2!
�

x 6

3!
� 	 	 	 � ��1�n 

x 2n

n!
� 	 	 	� dx

e�x 2
� �

�

n�0
 
��x 2 �n

n!
� �

�

n�0
 ��1�n 

x 2n

n!
� 1 �

x 2

1!
�

x 4

2!
�

x 6

3!
� 	 	 	

ex�x 2x
f �x� � e�x 2

0.001x
1
0  e�x 2

 dx

x e�x 2
 dx

f �x� � e�x 2

Module 11.10/11.12 enables you to see
how successive Taylor polynomials
approach the original function.

|||| We can take in the antiderivative 
in part (a).

C � 0
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SOLUTION Using the Maclaurin series for , we have

because power series are continuous functions.

M u l t i p l i c a t i o n  a n d  D i v i s i o n  o f  P o w e r  S e r i e s

If power series are added or subtracted, they behave like polynomials (Theorem 11.2.8
shows this). In fact, as the following example illustrates, they can also be multiplied and
divided like polynomials. We find only the first few terms because the calculations for the
later terms become tedious and the initial terms are the most important ones.

EXAMPLE 10 Find the first three nonzero terms in the Maclaurin series for (a) and
(b) .

SOLUTION
(a) Using the Maclaurin series for and in the table on page 767, we have

We multiply these expressions, collecting like terms just as for polynomials:

Thus

(b) Using the Maclaurin series in the table, we have

tan x �
sin x

cos x
�

x �
x 3

3!
�

x 5

5!
� 	 	 	

1 �
x 2

2!
�

x 4

4!
� 	 	 	

ex sin x � x � x 2 �
1
3 x 3 � 	 	 	

	 	 	�
1
3 x 3�x 2�x

	 	 	�
1
6 x 4�

1
6 x 3�

	 	 	�
1
6 x 4�

1
2 x 3�x 2�x

	 	 	�
1
6 x 3�x

	 	 	�
1
6 x 3�

1
2 x 2�x1 �

ex sin x � �1 �
x

1!
�

x 2

2!
�

x 3

3!
� 	 	 	��x �

x 3

3!
� 	 	 	�

sin xex

tan x
ex sin x

 �
1

2

 � lim 
x l 0

 �1

2
�

x

3!
�

x 2

4!
�

x 3

5!
� 	 	 	�

� lim 
x l 0

 

x 2

2!
�

x 3

3!
�

x4

4!
� 	 	 	

x 2

 lim 
x l 0

 
ex � 1 � x

x 2 � lim 
x l 0

 
�1 �

x

1!
�

x 2

2!
�

x 3

3!
� 	 	 	� � 1 � x

x 2

ex

|||| Some computer algebra systems compute
limits in this way.
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We use a procedure like long division:

Thus

Although we have not attempted to justify the formal manipulations used in Exam-
ple 10, they are legitimate. There is a theorem which states that if both and

converge for and the series are multiplied as if they were polyno-
mials, then the resulting series also converges for and represents . For
division we require ; the resulting series converges for sufficiently small .� x �b0 � 0

f �x�t�x�� x � � R
� x � � Rt�x� � � bnxn

f �x� � � cnxn

tan x � x �
1
3 x 3 �

2
15 x 5 � � � �

 215 x 5 � � � �

 13 x 3 �  16 x 5 � � � �

 13 x 3 �  130 x 5 � � � �

 x �
1
2 x 3 �  124 x 5 � � ��

 1 �
1
2 x 2 �

1
24 x 4 � � � ��x � 1

6 x 3 �  1
120 x 5 � � � �

 x �
1
3 x 3 �  215 x 5 � � � �

11–18 |||| Find the Taylor series for centered at the given value
of . [Assume that has a power series expansion. Do not show
that .]

11. ,

12. ,

,

14. ,

15. ,

16. ,

17. ,

18. ,

19. Prove that the series obtained in Exercise 3 represents for
all .

20. Prove that the series obtained in Exercise 16 represents 
for all .

21. Prove that the series obtained in Exercise 9 represents 
for all .

22. Prove that the series obtained in Exercise 10 represents 
for all .

23–32 |||| Use a Maclaurin series derived in this section to obtain
the Maclaurin series for the given function.

23. 24.

25. 26.

27. f �x� � x cos 2x28.f �x� � x 2e�x

f �x� � sin�x 4 �f �x� � x tan�1x

f �x� � e�x�2f �x� � cos �x

x
cosh x

x
sinh x

x
sin x

x
cos x

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

a � 1f �x� � x �2

a � 9f �x� � 1�sx

a � ��2f �x� � sin x

a � �f �x� � cos x

a � 2f �x� � ln x

a � 3f �x� � e x13.

a � �1f �x� � x 3

a � 2f �x� � 1 � x � x 2

Rn�x� l 0
fa

f �x�1. If for all , write a formula for .

2. (a) The graph of is shown. Explain why the series

is not the Taylor series of centered at 1.

(b) Explain why the series

is not the Taylor series of centered at 2.

3–10 |||| Find the Maclaurin series for using the definition of 
a Maclaurin series. [Assume that has a power series expansion.
Do not show that .] Also find the associated radius of
convergence.

4.

6.

7. 8.

9. 10.
■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

f �x� � cosh xf �x� � sinh x

f �x� � xexf �x� � e5x

f �x� � ln�1 � x�f �x� � �1 � x��35.

f �x� � sin 2xf �x� � cos x3.

Rn�x� l 0
f

f �x�

f

2.8 � 0.5�x � 2� � 1.5�x � 2�2 � 0.1�x � 2�3 � � � �

y

0 x

f

1

1

f

1.6 � 0.8�x � 1� � 0.4�x � 1�2 � 0.1�x � 1�3 � � � �

f

b8xf �x� � ��
n�0 bn�x � 5�n

|||| 11.10 Exercises
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29. [Hint: Use .]

30.

32.

; 33–36 |||| Find the Maclaurin series of (by any method) and its
radius of convergence. Graph and its first few Taylor polynomials
on the same screen. What do you notice about the relationship
between these polynomials and ?

33. 34.

36.

37. Use the Maclaurin series for to calculate correct to five
decimal places.

38. Use the Maclaurin series for to compute correct to
five decimal places.

39–42 |||| Evaluate the indefinite integral as an infinite series.

39. 40.

41. 42.

43–46 |||| Use series to approximate the definite integral to within
the indicated accuracy.

43. (three decimal places)

44. (five decimal places)

45.

46.

47–49 |||| Use series to evaluate the limit.

47. 48. lim
x l  0

 
1 � cos x

1 � x � e xlim
x l  0

 
x � tan�1x

x 3

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

(� error � � 0.001)y
0.5

0
 x 2e�x 2

 dx

(� error � � 10�8)y
0.1

0
 

dx

s1 � x 3

y
0.2

0
 �tan �1�x 3 � � sin�x 3�� dx

y
1

0
 x cos�x 3 � dx

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

y 
e x � 1

x
 dxy sx 3 � 1 dx

y 
sin x

x
 dxy x cos�x 3� dx

sin 3�sin x

e�0.2e x

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

f �x� � 2 xf �x� � cos�x 2 �35.

f �x� � e�x2
� cos xf �x� � s1 � x

f

f
f

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

f �x� � 	1
6

x � sin x

x 3 if x � 0

if x � 0

f �x� � 	
1

sin x

x
if x � 0

if x � 0
31.

f �x� � cos2x

sin2x � 1
2 �1 � cos 2x�f �x� � sin2x

50. Use the series in Example 10(b) to evaluate

We found this limit in Example 4 in Section 4.4 using l’Hospi-
tal’s Rule three times. Which method do you prefer?

51–54 |||| Use multiplication or division of power series to find the
first three nonzero terms in the Maclaurin series for each function.

52.

53. 54.

55–60 |||| Find the sum of the series.

56.

57. 58.

59.

60.

61. Prove Taylor’s Inequality for , that is, prove that if
for , then

62. (a) Show that the function defined by

is not equal to its Maclaurin series.

; (b) Graph the function in part (a) and comment on its behavior
near the origin.

f �x� � 	e�1�x 2

0

if x � 0

if x � 0

� R2�x� � 	
M

6
 � x � a �3 for � x � a � 	 d

� x � a � 	 d� f 
�x� � 	 M
n � 2

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

1 � ln 2 �
�ln 2�2

2!
�

�ln 2�3

3!
� � � �

3 �
9

2!
�

27

3!
�

81

4!
� � � �



�

n�0
 

3n

5nn!

�

n�0
 

��1�n� 2n�1

42n�1�2n � 1�!



�

n�0
 
��1�n� 2n

62n�2n�!

�

n�0
��1�n 

x 4n

n!
55.

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

y � e x ln�1 � x�y �
x

sin x

y � sec xy � e�x 2

 cos x51.

lim
x l 0

 
tan x � x

x 3

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

lim
x l  0

 
sin x � x �

1
6 x 3

x 549.
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An Elusive Limit

This project deals with the function

1. Use your computer algebra system to evaluate for and .
Does it appear that has a limit as ?

2. Use the CAS to graph near . Does it appear that has a limit as ?

3. Try to evaluate with l’Hospital’s Rule, using the CAS to find derivatives of the
numerator and denominator. What do you discover? How many applications of l’Hospital’s
Rule are required?

4. Evaluate by using the CAS to find sufficiently many terms in the Taylor series 
of the numerator and denominator. (Use the command taylor in Maple or Series in 
Mathematica.)

5. Use the limit command on your CAS to find directly. (Most computer algebra
systems use the method of Problem 4 to compute limits.)

6. In view of the answers to Problems 4 and 5, how do you explain the results of Problems 1
and 2?

limx  l  0 f �x�

limx  l  0 f �x�

limx  l  0 f �x�

x l 0fx � 0f

x l 0f
0.0001x � 1, 0.1, 0.01, 0.001,f �x�

f �x� �
sin�tan x� � tan�sin x�

arcsin�arctan x� � arctan�arcsin x�

CAS

LABORATORY PROJECT

|||| 11.11 T h e  B i n o m i a l  S e r i e s

You may be acquainted with the Binomial Theorem, which states that if and are any
real numbers and is a positive integer, then

The traditional notation for the binomial coefficients is

which enables us to write the Binomial Theorem in the abbreviated form

�a � b�k � 

k

n�0
 � k

n�ak�nbn

n � 1, 2, . . . , k� k

n� �
k�k � 1��k � 2� � � � �k � n � 1�

n!� k

0� � 1

� � � � � kab k�1 � bk

� � � � �
k�k � 1��k � 2� � � � �k � n � 1�

n!
 ak�nbn

�a � b�k � ak � kak�1b �
k�k � 1�

2!
 ak�2b 2 �

k�k � 1��k � 2�
3!

 ak�3b 3

k
ba



In particular, if we put and , we get

One of Newton’s accomplishments was to extend the Binomial Theorem (Equation 1) to
the case in which is no longer a positive integer. (See the Writing Project on page 776.)
In this case the expression for is no longer a finite sum; it becomes an infinite
series. To find this series we compute the Maclaurin series of in the usual way:

. .

. .

. .

Therefore, the Maclaurin series of is

This series is called the binomial series. If its th term is 

Thus, by the Ratio Test, the binomial series converges if and diverges if .
The following theorem states that is equal to the sum of its Maclaurin series.

It is possible to prove this by showing that the remainder term approaches 0, but that
turns out to be quite difficult. The proof outlined in Exercise 19 is much easier.

The Binomial Series If is any real number and , then

where and � k

0� � 1�n � 1�� k

n� �
k�k � 1� � � � �k � n � 1�

n!

 � 

�

n�0
 � k

n�xn

 �1 � x�k � 1 � kx �
k�k � 1�

2!
 x 2 �

k�k � 1��k � 2�
3!

 x 3 � � � �

� x � � 1k2

Rn�x�
�1 � x�k

� x � � 1� x � � 1

 � � k � n �
n � 1

 � x � �
1 �

k

n


1 �
1

n

 � x � l � x � as n l �

  an�1

an
 �  k�k � 1� � � � �k � n � 1��k � n�xn�1

�n � 1�!
�

n!

k�k � 1� � � � �k � n � 1�xn 
an, thenn



�

n�0
 
 f �n��0�

n!
 xn � 


�

n�0
 
k�k � 1� � � � �k � n � 1�

n!
 xn

f �x� � �1 � x�k

 f �n��x� � k�k � 1� � � � �k � n � 1��1 � x�k�n f �n��0� � k�k � 1� � � � �k � n � 1�

 f 
�x� � k�k � 1��k � 2��1 � x�k�3  f 
�0� � k�k � 1��k � 2�

 f �x� � k�k � 1��1 � x�k�2  f �0� � k�k � 1�

 f ��x� � k�1 � x�k�1  f ��0� � k

 f �x� � �1 � x�k  f �0� � 1

�1 � x�k
�1 � x�k

k

�1 � x�k � 

k

n�0
 � k

n�xn1

b � xa � 1
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Although the binomial series always converges when , the question of whether
or not it converges at the endpoints, , depends on the value of . It turns out that the
series converges at 1 if and at both endpoints if . Notice that if is a
positive integer and , then the expression for contains a factor , so � 0
for . This means that the series terminates and reduces to the ordinary Binomial
Theorem (Equation 1) when is a positive integer.

As we have seen, the binomial series is just a special case of the Maclaurin series; it
occurs so frequently that it is worth remembering.

EXAMPLE 1 Expand as a power series.

SOLUTION We use the binomial series with . The binomial coefficient is

and so, when ,

EXAMPLE 2 Find the Maclaurin series for the function and its radius of
convergence.

SOLUTION As given, is not quite of the form so we rewrite it as follows:

Using the binomial series with and with replaced by , we have

 �
1

2
 �1 �

1

8
 x �

1 � 3

2!82  x 2 �
1 � 3 � 5

3!83  x 3 � � � � �
1 � 3 � 5 � � � � � �2n � 1�

n!8n  xn � � � ��
� � � � �

(� 1
2)(� 3

2)(� 5
2) � � � (� 1

2 � n � 1)
n!

 ��
x

4�n

� � � ��
 � 

1

2
 �1 � ��

1

2���
x

4� �
(� 1

2 )(� 3
2 )

2!
 ��

x

4�2

�
(� 1

2)(� 3
2)(� 5

2)
3!

 ��
x

4�3

 
1

s4 � x
�

1

2
 �1 �

x

4��1�2

�
1

2
 


�

n�0
 ��

1
2

n ���
x

4�n

�x�4xk � �
1
2

1

s4 � x
�

1

�4�1 �
x

4�
�

1

2�1 �
x

4

�
1

2
 �1 �

x

4��1�2

�1 � x�kf �x�

f �x� �
1

s4 � x

 � 

�

n�0
 ��1�n�n � 1�xn � 1 � 2x � 3x 2 � 4x 3 � � � �

 
1

�1 � x�2 � �1 � x��2 � 

�

n�0
 ��2

n �xn

� x � � 1

 �
��1�n 2 � 3 � 4 � � � � � n�n � 1�

n!
� ��1�n�n � 1�

 ��2

n � �
��2���3���4� � � � ��2 � n � 1�

n!

k � �2

1

�1 � x�2

k
n � k

( k
n )�k � k�( k

n )n � k
kk � 0�1 � k 	 0

k�1
� x � � 1



1–8 |||| Use the binomial series to expand the function as a power
series. State the radius of convergence.

1. 2.

4.

5. 6.

8.

; 9–10 |||| Use the binomial series to expand the function as a
Maclaurin series and to find the first three Taylor polynomials ,

, and . Graph the function and these Taylor polynomials in the
interval of convergence.

9. 10.

(a) Use the binomial series to expand .
(b) Use part (a) to find the Maclaurin series for .

12. (a) Use the binomial series to expand .
(b) Use part (a) to find the Maclaurin series for .

13. (a) Expand as a power series.
(b) Use part (a) to estimate correct to four decimal

places.

14. (a) Expand as a power series.
(b) Use part (a) to estimate correct to three decimal

places.
1�s

4 1.1
1�s

4 1 � x

s
3 1.01

s
3 1 � x

sinh�1x
1�s1 � x 2

sin�1x
1�s1 � x 211.

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

s
3 1 � 4x�1 � 2x�3�4

T3T2

T1

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

x 2

s2 � x

x

s4 � x 2
7.

1

s
5 32 � x

s
4 1 � 8x

�1 � x�2�31

�2 � x�33.

1

�1 � x�4s1 � x

15. (a) Expand as a power series.
(b) Use part (a) to find the sum of the series

16. (a) Expand as a power series.
(b) Use part (a) to find the sum of the series

(a) Use the binomial series to find the Maclaurin series of
.

(b) Use part (a) to evaluate .

18. (a) Use the binomial series to find the Maclaurin series of
.

(b) Use part (a) to evaluate .

19. Use the following steps to prove (2).

(a) Let . Differentiate this series to show that

(b) Let and show that .
(c) Deduce that .

20. In Exercise 53 in Section 10.2 it was shown that the length of
the ellipse , , where , is

where is the eccentricity of the ellipse.
Expand the integrand as a binomial series and use the result of
Exercise 44 in Section 7.1 to express as a series in powers of
the eccentricity up to the term in .e 6

L

e � sa 2 � b 2 �a

L � 4a y
��2

0
 s1 � e 2 sin2 �  d�

a � b � 0y � a cos �x � a sin �

t�x� � �1 � x�k
h��x� � 0h�x� � �1 � x��k

t�x�

�1 � x � 1t��x� �
kt�x�
1 � x

x n( k
n )t�x� � ��

n�0 

f �9��0�
f �x� � 1�s1 � x 3

f �10��0�
f �x� � s1 � x 2

17.



�

n�1
 
n 2

2n

f �x� � �x � x 2 ���1 � x�3



�

n�1
 

n

2n

f �x� � x��1 � x�2
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|||| 11.11 Exercises

We know from (2) that this series converges when , that is, , so the
radius of convergence is .

FIGURE 1

0 x

y

1

4_4

T¡
T™
T£y= 1

œ4-xœ„„„„

R � 4
� x � � 4� �x�4 � � 1

|||| A binomial series is a special case of a 
Taylor series. Figure 1 shows the graphs of the
first three Taylor polynomials computed from the
answer to Example 2.
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|||| 11.12 A p p l i c a t i o n s  o f  T a y l o r  P o l y n o m i a l s

In this section we explore two types of applications of Taylor polynomials. First we look
at how they are used to approximate functions––computer scientists like them because
polynomials are the simplest of functions. Then we investigate how physicists and engi-
neers use them in such fields as relativity, optics, blackbody radiation, electric dipoles, the
velocity of water waves, and building highways across a desert.

A p p r o x i m a t i n g  F u n c t i o n s  b y  P o l y n o m i a l s

Suppose that is equal to the sum of its Taylor series at a:

f �x� � 

�

n�0
 
 f �n��a�

n!
 �x � a�n

f �x�

How Newton Discovered the Binomial Series

The Binomial Theorem, which gives the expansion of , was known to Chinese mathe-
maticians many centuries before the time of Newton for the case where the exponent k is a 
positive integer. In 1665, when he was 22, Newton was the first to discover the infinite series
expansion of when k is a fractional exponent (positive or negative). He didn’t publish 
his discovery, but he stated it and gave examples of how to use it in a letter (now called the 
epistola prior) dated June 13, 1676, that he sent to Henry Oldenburg, secretary of the Royal
Society of London, to transmit to Leibniz. When Leibniz replied, he asked how Newton had
discovered the binomial series. Newton wrote a second letter, the epistola posterior of October
24, 1676, in which he explained in great detail how he arrived at his discovery by a very indirect
route. He was investigating the areas under the curves from 0 to x for , 1, 2,
3, 4, . . . . These are easy to calculate if n is even. By observing patterns and interpolating, New-
ton was able to guess the answers for odd values of n. Then he realized he could get the same
answers by expressing as an infinite series.

Write a report on Newton’s discovery of the binomial series. Start by giving the statement of
the binomial series in Newton’s notation (see the epistola prior on page 285 of [4] or page 402 
of [2]). Explain why Newton’s version is equivalent to Theorem 2 on page 773. Then read New-
ton’s epistola posterior (page 287 in [4] or page 404 in [2]) and explain the patterns that Newton
discovered in the areas under the curves . Show how he was able to guess the
areas under the remaining curves and how he verified his answers. Finally, explain how these
discoveries led to the binomial series. The books by Edwards [1] and Katz [3] contain commen-
taries on Newton’s letters.

1. C. H. Edwards, The Historical Development of the Calculus (New York: Springer-Verlag,
1979), pp. 178–187.

2. John Fauvel and Jeremy Gray, eds., The History of Mathematics: A Reader (London:
MacMillan Press, 1987).

3. Victor Katz, A History of Mathematics: An Introduction (New York: HarperCollins, 1993),
pp. 463–466.

4. D. J. Struik, ed., A Sourcebook in Mathematics, 1200–1800 (Princeton, N.J.: Princeton 
University Press, 1969).

y � �1 � x 2 �n�2

�1 � x 2 �n�2

n � 0y � �1 � x 2 �n�2

�a � b�k

�a � b�k

WRITING PROJECT
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In Section 11.10 we introduced the notation for the th partial sum of this series and
called it the th-degree Taylor polynomial of at . Thus

Since is the sum of its Taylor series, we know that as and so can
be used as an approximation to : .

Notice that the first-degree Taylor polynomial

is the same as the linearization of f at a that we discussed in Section 3.11. Notice also that
and its derivative have the same values at a that and have. In general, it can be

shown that the derivatives of at agree with those of up to and including derivatives
of order (see Exercise 36).

To illustrate these ideas let’s take another look at the graphs of and its first few
Taylor polynomials, as shown in Figure 1. The graph of is the tangent line to 
at ; this tangent line is the best linear approximation to near . The graph 
of is the parabola , and the graph of is the cubic curve

, which is a closer fit to the exponential curve than .
The next Taylor polynomial would be an even better approximation, and so on.

The values in the table give a numerical demonstration of the convergence of the Taylor
polynomials to the function . We see that when x � 0.2 the convergence is
very rapid, but when x � 3 it is somewhat slower. In fact, the farther x is from 0, the more
slowly converges to .

When using a Taylor polynomial to approximate a function , we have to ask the
questions: How good an approximation is it? How large should we take to be in order to
achieve a desired accuracy? To answer these questions we need to look at the absolute
value of the remainder:

There are three possible methods for estimating the size of the error:

1. If a graphing device is available, we can use it to graph and thereby esti-
mate the error.

2. If the series happens to be an alternating series, we can use the Alternating Series
Estimation Theorem.

3. In all cases we can use Taylor’s Inequality (Theorem 11.10.9), which says that if
, then

EXAMPLE 1
(a) Approximate the function by a Taylor polynomial of degree 2 at .
(b) How accurate is this approximation when ?7 	 x 	 9

a � 8f �x� � s
3 x

� Rn�x� � 	
M

�n � 1�!
 � x � a �n�1

� f �n�1��x� � 	 M

� Rn�x� �

� Rn�x� � � � f �x� � Tn�x� �

n
fTn

exTn�x�

y � exTn�x�

T4

T2y � exy � 1 � x � x 2�2 � x 3�6
T3y � 1 � x � x 2�2T2

�0, 1�ex�0, 1�
y � exT1

y � ex
n

faTn

f �fT1

T1�x� � f �a� � f ��a��x � a�

f �x� � Tn�x�f
Tnn l �Tn�x� l f �x�f

 � f �a� �
 f ��a�

1!
 �x � a� �

 f �a�
2!

 �x � a�2 � � � � �
 f �n��a�

n!
 �x � a�n

 Tn�x� � 

n

i�0
 
 f �i��a�

i!
 �x � a�i

afn
nTn�x�

1.220000 8.500000
1.221400 16.375000
1.221403 19.412500
1.221403 20.009152
1.221403 20.079665

1.221403 20.085537e x

T10�x�
T8�x�
T6�x�
T4�x�
T2�x�

x � 3.0x � 0.2

0 x

y

y=´

y=T£(x)

(0, 1)

y=T™(x)

y=T¡(x)

y=T™(x)

y=T£(x)

FIGURE 1



SOLUTION
(a)

Thus, the second-degree Taylor polynomial is

The desired approximation is

(b) The Taylor series is not alternating when , so we can’t use the Alternating
Series Estimation Theorem in this example. But we can use Taylor’s Inequality with 
n � 2 and a � 8:

where . Because , we have and so

Therefore, we can take M � 0.0021. Also , so and
. Then Taylor’s Inequality gives

Thus, if , the approximation in part (a) is accurate to within .

Let’s use a graphing device to check the calculation in Example 1. Figure 2 shows that
the graphs of and are very close to each other when is near 8. Figure
3 shows the graph of computed from the expression

We see from the graph that

when . Thus, the error estimate from graphical methods is slightly better than
the error estimate from Taylor’s Inequality in this case.

7 	 x 	 9

� R2�x� � � 0.0003

� R2�x� � � � s
3 x � T2�x� �

� R2�x� �
xy � T2�x�y � s

3 x

0.00047 	 x 	 9

� R2�x� � 	
0.0021

3!
� 13 �

0.0021

6
� 0.0004

� x � 8 � 	 1
�1 	 x � 8 	 17 	 x 	 9

f 
�x� �
10

27
�

1

x 8�3 	
10

27
�

1

78�3 � 0.0021

x 8�3 � 78�3x � 7� f 
�x� � 	 M

� R2�x� � 	
M

3! � x � 8 �3

x � 8

s
3 x � T2�x� � 2 �

1
12 �x � 8� �

1
288 �x � 8�2

 � 2 �
1
12 �x � 8� �

1
288 �x � 8�2

 T2�x� � f �8� �
 f ��8�

1!
 �x � 8� �

 f �8�
2!

 �x � 8�2

 f 
�x� � 10
27 x�8�3

 f �x� � �
2
9 x�5�3  f �8� � �

1
144

 f ��x� � 1
3 x�2�3  f ��8� � 1

12

 f �x� � s
3 x � x 1�3 f �8� � 2
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2.5

0 15

T™

y=#œ„x

0.0003

7 9

y=|R™(x)|

0

FIGURE 2

FIGURE 3
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EXAMPLE 2
(a) What is the maximum error possible in using the approximation 

when ? Use this approximation to find correct to six decimal
places.
(b) For what values of is this approximation accurate to within ?

SOLUTION
(a) Notice that the Maclaurin series

is alternating for all nonzero values of , and the successive terms decrease in size
because , so we can use the Alternating Series Estimation Theorem. The error in
approximating by the first three terms of its Maclaurin series is at most

If , then , so the error is smaller than

To find we first convert to radian measure.

Thus, correct to six decimal places, .

(b) The error will be smaller than if

Solving this inequality for , we get

So the given approximation is accurate to within when .

What if we use Taylor’s Inequality to solve Example 2? Since , we
have and so

So we get the same estimates as with the Alternating Series Estimation Theorem.

� R6�x� � 	
1

7!
 � x �7

� f �7��x� � 	 1
f �7��x� � �cos x

� x � � 0.820.00005

� x � � �0.252�1�7 � 0.821or� x �7 � 0.252

x

� x �7

5040
� 0.00005

0.00005

sin 12� � 0.207912

 � 0.20791169

 �
�

15
� � �

15�3 1

3!
� � �

15�5 1

5!

 sin 12� � sin�12�

180 � � sin� �

15�
sin 12�

�0.3�7

5040
� 4.3 � 10�8

� x � 	 0.3�0.3 	 x 	 0.3

 x 7

7!  � � x �7

5040

sin x
� x � � 1

x

sin x � x �
x 3

3!
�

x 5

5!
�

x 7

7!
� � � �

0.00005x

sin 12��0.3 	 x 	 0.3

sin x � x �
x 3

3!
�

x 5

5!

Module 11.10/11.12 graphically shows
the remainders in Taylor polynomial
approximations.



780 ❙ ❙ ❙ ❙ CHAPTER 11 INFINITE SEQUENCES AND SERIES

What about graphical methods? Figure 4 shows the graph of

and we see from it that when . This is the same estimate
that we obtained in Example 2. For part (b) we want , so we graph both

and in Figure 5. By placing the cursor on the right intersection
point we find that the inequality is satisfied when . Again this is the same esti-
mate that we obtained in the solution to Example 2.

If we had been asked to approximate instead of in Example 2, it would
have been wise to use the Taylor polynomials at (instead of ) because they
are better approximations to for values of close to . Notice that is close to

(or radians) and the derivatives of are easy to compute at .
Figure 6 shows the graphs of the Maclaurin polynomial approximations

to the sine curve. You can see that as increases, is a good approximation to on
a larger and larger interval.

One use of the type of calculation done in Examples 1 and 2 occurs in calculators and
computers. For instance, when you press the or key on your calculator, or when a
computer programmer uses a subroutine for a trigonometric or exponential or Bessel func-
tion, in many machines a polynomial approximation is calculated. The polynomial is often
a Taylor polynomial that has been modified so that the error is spread more evenly through-
out an interval.

A p p l i c a t i o n s  t o  P h y s i c s

Taylor polynomials are also used frequently in physics. In order to gain insight into an
equation, a physicist often simplifies a function by considering only the first two or three
terms in its Taylor series. In other words, the physicist uses a Taylor polynomial as an
approximation to the function. Taylor’s Inequality can then be used to gauge the accuracy
of the approximation. The following example shows one way in which this idea is used in
special relativity.

EXAMPLE 3 In Einstein’s theory of special relativity the mass of an object moving with
velocity is

where is the mass of the object when at rest and is the speed of light. The kinetic cm0

m �
m0

s1 � v 2�c 2

v

exsin

FIGURE 6

0 x

y

T¶

T∞

T£
y=sin x

T¡

sin xTn�x�n

 T5�x� � x �
x 3

3!
�

x 5

5!
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energy of the object is the difference between its total energy and its energy at rest:

(a) Show that when is very small compared with , this expression for agrees with
classical Newtonian physics: .
(b) Use Taylor’s Inequality to estimate the difference in these expressions for when

m�s.

SOLUTION
(a) Using the expressions given for and , we get 

With , the Maclaurin series for is most easily computed as a
binomial series with . (Notice that because .) Therefore, we have

and

If is much smaller than , then all terms after the first are very small when compared
with the first term. If we omit them, we get

(b) If , , and M is a number such that
, then we can use Taylor’s Inequality to write

We have and we are given that m�s, so

Thus, with m�s,

So when m�s, the magnitude of the error in using the Newtonian expression
for kinetic energy is at most .�4.2 � 10�10 �m0

� v � � 100

� R1�x� � �
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2
�

3m0c 2

4�1 � 1002�c 2 �5�2 �
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3m0c 2

4�1 � v 2�c 2 �5�2 �
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|||| The upper curve in Figure 7 is the graph of
the expression for the kinetic energy of an
object with velocity in special relativity. The
lower curve shows the function used for in
classical Newtonian physics. When is much
smaller than the speed of light, the curves are
practically identical.
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Another application to physics occurs in optics. Figure 8 is adapted from Optics,
4th ed., by Eugene Hecht (Reading, MA: Addison-Wesley, 2002), page 153. It depicts a
wave from the point source S meeting a spherical interface of radius R centered at C. The
ray SA is refracted toward P.

Using Fermat’s principle that light travels so as to minimize the time taken, Hecht
derives the equation

where and are indexes of refraction and , , , and are the distances indicated in
Figure 8. By the Law of Cosines, applied to triangles ACS and ACP, we have

Because Equation 1 is cumbersome to work with, Gauss, in 1841, simplified it by using
the linear approximation for small values of . (This amounts to using the
Taylor polynomial of degree 1.) Then Equation 1 becomes the following simpler equation
[as you are asked to show in Exercise 32(a)]:

The resulting optical theory is known as Gaussian optics, or first-order optics, and has
become the basic theoretical tool used to design lenses.

A more accurate theory is obtained by approximating by its Taylor polynomial of
degree 3 (which is the same as the Taylor polynomial of degree 2). This takes into account
rays for which is not so small, that is, rays that strike the surface at greater distances h
above the axis. In Exercise 32(b) you are asked to use this approximation to derive the
more accurate equation

The resulting optical theory is known as third-order optics.
Other applications of Taylor polynomials to physics and engineering are explored in

Exercises 30, 31, 33, 34, and 35 and in the Applied Project on page 785.
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; 1. (a) Find the Taylor polynomials up to degree 6 for
centered at . Graph and these polyno-

mials on a common screen.
(b) Evaluate and these polynomials at , , and .
(c) Comment on how the Taylor polynomials converge to .

; 2. (a) Find the Taylor polynomials up to degree 3 for 
centered at . Graph and these polynomials on a
common screen.

(b) Evaluate and these polynomials at and 1.3.
(c) Comment on how the Taylor polynomials converge to .

; 3–10 |||| Find the Taylor polynomial for the function at the
number . Graph and on the same screen.

3. , ,

4. , ,

, ,

6. , ,

7. , ,

8. , ,

, ,

10. , ,

11–12 |||| Use a computer algebra system to find the Taylor poly-
nomials at for the given values of . Then graph these
polynomials and on the same screen.

11. ,

12. ,

13–22 ||||

(a) Approximate by a Taylor polynomial with degree at the
number .

(b) Use Taylor’s Inequality to estimate the accuracy of the approxi-
mation when x lies in the given interval.

; (c) Check your result in part (b) by graphing .

13. , , ,

14. , , ,

15. , , ,

16. , , ,

17. , , ,

, , ,

, , , 0 � x � 0.1n � 3a � 0f �x� � e x 2

19.

0.5 � x � 1.5n � 3a � 1f �x� � ln�1 � 2x�18.

0 � x � ��6n � 3a � 0f �x� � tan x

0 � x � 2��3n � 4a � ��3f �x� � cos x

0.8 � x � 1.2n � 3a � 1f �x� � x 2�3

0.9 � x � 1.1n � 2a � 1f �x� � x�2

4 � x � 4.2n � 2a � 4f �x� � sx

� Rn�x� �
f �x� � Tn�x�

a
nf

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

n � 1, 3, 5, 7, 9f �x� � tan x

n � 2, 4, 6, 8f �x� � sec x

f
na � 0Tn

CAS

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

n � 2a � 1f �x� � s3 � x 2

n � 3a � 0f �x� � xe �2x9.

n � 3a � 1f �x� �
ln x

x

n � 3a � 0f �x� � arcsin x

n � 4a � 2��3f �x� � cos x

n � 3a � ��6f �x� � sin x5.

n � 3a � 2f �x� � e x

n � 4a � 1f �x� � ln x

Tnfa
fTn�x�

f �x�
x � 0.9f

fa � 1
f �x� � 1�x

f �x�
���2x � ��4f

fa � 0f �x� � cos x

20. , , ,

21. , , ,

22. , , ,

23. Use the information from Exercise 5 to estimate 
correct to five decimal places.

24. Use the information from Exercise 16 to estimate 
correct to five decimal places.

Use Taylor’s Inequality to determine the number of terms of
the Maclaurin series for that should be used to estimate 
to within .

26. How many terms of the Maclaurin series for do you
need to use to estimate to within ?

; 27–28 |||| Use the Alternating Series Estimation Theorem or 
Taylor’s Inequality to estimate the range of values of for which
the given approximation is accurate to within the stated error.
Check your answer graphically.

27.

28.

A car is moving with speed 20 m�s and acceleration 2 m�s
at a given instant. Using a second-degree Taylor polynomial,
estimate how far the car moves in the next second. Would it 
be reasonable to use this polynomial to estimate the distance
traveled during the next minute?

30. The resistivity of a conducting wire is the reciprocal of the
conductivity and is measured in units of ohm-meters ( -m).
The resistivity of a given metal depends on the temperature
according to the equation

where is the temperature in C. There are tables that list the
values of (called the temperature coefficient) and (the
resistivity at C) for various metals. Except at very low tem-
peratures, the resistivity varies almost linearly with temperature
and so it is common to approximate the expression for by
its first- or second-degree Taylor polynomial at .
(a) Find expressions for these linear and quadratic 

approximations.

; (b) For copper, the tables give C and
-m. Graph the resistivity of copper 

and the linear and quadratic approximations for 
C C.� t � 1000��250�

� 20 � 1.7 � 10�8
� � 0.0039��

t � 20
�t�

20�
 20�

�t

�t� �  20 e ��t�20�

�


229.
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(� error � � 0.005)cos x � 1 �
x 2

2
�

x 4

24

(� error � � 0.01)sin x � x �
x 3

6

x

0.001ln 1.4
ln�1 � x�

0.00001
e 0.1e x

25.

cos 69�

sin 35�
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�1 � x � 1n � 5a � 0f �x� � sinh 2x

�1 � x � 1n � 4a � 0f �x� � x sin x

0.5 � x � 1.5n � 3a � 1f �x� � x ln x
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If is not too large, the approximation ,
obtained by using only the first term in the series, is often
used. A better approximation is obtained by using two
terms:

(b) Notice that all the terms in the series after the first one have
coefficients that are at most . Use this fact to compare this
series with a geometric series and show that

(c) Use the inequalities in part (b) to estimate the period of a
pendulum with meter and . How does it com-
pare with the estimate ? What if ?

35. If a surveyor measures differences in elevation when making
plans for a highway across a desert, corrections must be made
for the curvature of the Earth.
(a) If is the radius of the Earth and is the length of the

highway, show that the correction is

(b) Use a Taylor polynomial to show that

(c) Compare the corrections given by the formulas in parts (a)
and (b) for a highway that is 100 km long. (Take the radius
of Earth to be 6370 km.)

36. Show that and have the same derivatives at up to order .

37. In Section 4.9 we considered Newton’s method for approxi-
mating a root of the equation , and from an initial
approximation we obtained successive approximations , 

, . . . , where

Use Taylor’s Inequality with , , and to show
that if exists on an interval containing , , and ,
and , for all , then

[This means that if is accurate to decimal places, then 
is accurate to about decimal places. More precisely, if the
error at stage is at most , then the error at stage is
at most .]�M�2K �10�2m

n � 110�mn
2d

xn�1dxn

� xn�1 � r � �
M

2K � xn � r �2

x � I� f ��x� � � K� f 	�x� � � M
xn�1xnrIf 	�x�

x � ra � xnn � 1

xn�1 � xn �
 f �xn�
f ��xn�

x3

x2x1

f �x� � 0r

nafTn

R

L C

R

C �
L 2

2R
�

5L 4

24R 3

C � R sec�L�R� � R

LR

�0 � 42�T � 2�sL�t

�0 � 10�L � 1

2�L

t
  (1 �

1
4 k 2 ) � T � 2�L

t
 

4 � 3k 2

4 � 4k 2

1
4

T � 2�L

t
  (1 �

1
4 k 2 )

T � 2�sL�t�0; (c) For what values of does the linear approximation agree
with the exponential expression to within one percent?

An electric dipole consists of two electric charges of equal
magnitude and opposite signs. If the charges are and and
are located at a distance from each other, then the electric
field at the point in the figure is

By expanding this expression for as a series in powers of
, show that is approximately proportional to when

is far away from the dipole.

32. (a) Derive Equation 3 for Gaussian optics from Equation 1 by
approximating in Equation 2 by its first-degree Taylor
polynomial.

(b) Show that if is replaced by its third-degree Taylor
polynomial in Equation 2, then Equation 1 becomes Equa-
tion 4 for third-order optics. [Hint: Use the first two terms
in the binomial series for and . Also, use .]

33. If a water wave with length moves with velocity across a
body of water with depth , as in the figure, then

(a) If the water is deep, show that .
(b) If the water is shallow, use the Maclaurin series for to

show that . (Thus, in shallow water the velocity of
a wave tends to be independent of the length of the wave.)

(c) Use the Alternating Series Estimation Theorem to show that
if , then the estimate is accurate to within

.

34. The period of a pendulum with length that makes a maxi-
mum angle with the vertical is

where and is the acceleration due to gravity. (In
Exercise 40 in Section 7.7 we approximated this integral using
Simpson’s Rule.)
(a) Expand the integrand as a binomial series and use the result

of Exercise 44 in Section 7.1 to show that
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Radiation from the Stars

Any object emits radiation when heated. A blackbody is a system that absorbs all the radiation
that falls on it. For instance, a matte black surface or a large cavity with a small hole in its wall
(like a blastfurnace) is a blackbody and emits blackbody radiation. Even the radiation from the
Sun is close to being blackbody radiation.

Proposed in the late 19th century, the Rayleigh-Jeans Law expresses the energy density of
blackbody radiation of wavelength as

where is measured in meters, is the temperature in kelvins (K), and is Boltzmann’s con-
stant. The Rayleigh-Jeans Law agrees with experimental measurements for long wavelengths but
disagrees drastically for short wavelengths. [The law predicts that as but
experiments have shown that .] This fact is known as the ultraviolet catastrophe.

In 1900 Max Planck found a better model (known now as Planck’s Law) for blackbody 
radiation:

where is measured in meters, is the temperature (in kelvins), and

1. Use l’Hospital’s Rule to show that

for Planck’s Law. So this law models blackbody radiation better than the Rayleigh-Jeans
Law for short wavelengths.

2. Use a Taylor polynomial to show that, for large wavelengths, Planck’s Law gives approxi-
mately the same values as the Rayleigh-Jeans Law.

; 3. Graph as given by both laws on the same screen and comment on the similarities and
differences. Use K (the temperature of the Sun). (You may want to change from
meters to the more convenient unit of micrometers: �m m.)

4. Use your graph in Problem 3 to estimate the value of for which is a maximum under
Planck’s Law.

; 5. Investigate how the graph of changes as varies. (Use Planck’s Law.) In particular, graph
for the stars Betelgeuse ( ), Procyon ( ), and Sirius ( ) as

well as the Sun. How does the total radiation emitted (the area under the curve) vary with ?
Use the graph to comment on why Sirius is known as a blue star and Betelgeuse as a red
star.

T
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 f ��� � 0

 k � Boltzmann’s constant � 1.3807 � 10�23 J�K

 c � speed of light � 2.997925 � 108 m�s

 h � Planck’s constant � 6.6262 � 10�34 J
s
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1. (a) What is a convergent sequence?
(b) What is a convergent series?
(c) What does mean?
(d) What does mean?

2. (a) What is a bounded sequence?
(b) What is a monotonic sequence?
(c) What can you say about a bounded monotonic sequence?

3. (a) What is a geometric series? Under what circumstances is it
convergent? What is its sum?

(b) What is a -series? Under what circumstances is it 
convergent?

4. Suppose and is the partial sum of the series.
What is ? What is ?

5. State the following.
(a) The Test for Divergence
(b) The Integral Test
(c) The Comparison Test
(d) The Limit Comparison Test
(e) The Alternating Series Test
(f) The Ratio Test
(g) The Root Test

6. (a) What is an absolutely convergent series?
(b) What can you say about such a series?
(c) What is a conditionally convergent series?

7. (a) If a series is convergent by the Integral Test, how do you
estimate its sum?

(b) If a series is convergent by the Comparison Test, how do
you estimate its sum?

limn l � snlimn l � an

nthsn� an � 3

p

��
n�1 an � 3

limn l � an � 3

(c) If a series is convergent by the Alternating Series Test, how
do you estimate its sum?

8. (a) Write the general form of a power series.
(b) What is the radius of convergence of a power series?
(c) What is the interval of convergence of a power 

series?

9. Suppose is the sum of a power series with radius of con-
vergence .
(a) How do you differentiate ? What is the radius of conver-

gence of the series for ?
(b) How do you integrate ? What is the radius of convergence

of the series for ?

10. (a) Write an expression for the th-degree Taylor polynomial
of centered at .

(b) Write an expression for the Taylor series of centered at .
(c) Write an expression for the Maclaurin series of .
(d) How do you show that is equal to the sum of its 

Taylor series?
(e) State Taylor’s Inequality.

11. Write the Maclaurin series and the interval of convergence for
each of the following functions.
(a) (b)
(c) (d)
(e)

12. Write the binomial series expansion of . What is the
radius of convergence of this series?

�1 � x�k

tan�1x
cos xsin x
e x1��1 � x�

f �x�
f

af
af

n

x f �x� dx
f
f �

f
R
f �x�
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Determine whether the statement is true or false. If it is true, explain why.
If it is false, explain why or give an example that disproves the statement.

1. If , then is convergent.

2. The series is convergent.

3. If , then .

4. If is convergent, then is convergent.

5. If is convergent, then is convergent.

6. If diverges when , then it diverges when .

7. The Ratio Test can be used to determine whether 
converges.

8. The Ratio Test can be used to determine whether 
converges.

9. If and diverges, then diverges.� an� bn0 � an � bn

� 1�n!

� 1�n 3

x � 10x � 6� cnx n

� cn��6�n� cn6n

� cn��2�n� cn6n

limn l � a2n�1 � Llimn l � an � L

��
n�1 n �sin 1

� anlimn l � an � 0

10.

11. If , then .

12. If is divergent, then is divergent.

13. If converges for all , then
.

14. If and are divergent, then is divergent.

15. If and are divergent, then is divergent.

16. If is decreasing and for all , then is 
convergent.

17. If and converges, then converges.

18. If and , then .limn l � an � 0limn l � �an�1�an� � 1an � 0

� ��1�nan� anan � 0

�an �nan � 0�an �

�anbn ��bn ��an �

�an � bn ��bn ��an �

f ��0� � 2
xf �x� � 2x � x 2 �

1
3 x 3 � 
 
 


� � an �� an

limn l � � n � 0�1 � � � 1

�
�

n�0
 
��1�n

n!
�

1

e



1–8 |||| Determine whether the sequence is convergent or divergent.
If it is convergent, find its limit.

1. 2.

3. 4.

5. 6.

7. 8.

9. A sequence is defined recursively by the equations ,
. Show that is increasing and for

all . Deduce that is convergent and find its limit.

; 10. Show that and use a graph to find the small-
est value of that corresponds to in the precise defini-
tion of a limit.

11–22 |||| Determine whether the series is convergent or divergent.

11. 12.

13. 14.

15. 16.

17. 18.

19.

20. 21.

22.

23–26 |||| Determine whether the series is conditionally convergent,
absolutely convergent, or divergent.

23. 24.

25. 26.
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���10�n�n!���1 � 3�n�4n �

an �
ln n

sn
an �

n sin n

n 2 � 1

an � cos�n��2�an �
n 3

1 � n 2

an �
9n�1

10nan �
2 � n 3
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27–31 |||| Find the sum of the series.

27. 28.

29.

30.

31.

32. Express the repeating decimal as a fraction.

33. Show that for all .

34. For what values of does the series converge?

35. Find the sum of the series correct to four 
decimal places.

36. (a) Find the partial sum of the series and estimate
the error in using it as an approximation to the sum of the
series.

(b) Find the sum of this series correct to five decimal places.

37. Use the sum of the first eight terms to approximate the sum of
the series . Estimate the error involved in this
approximation.

38. (a) Show that the series is convergent.

(b) Deduce that .

39. Prove that if the series is absolutely convergent, then
the series

is also absolutely convergent.

40–43 |||| Find the radius of convergence and interval of conver-
gence of the series.

40. 41.

42. 43.

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■
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4.17326326326 . . .
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57. , , ,

58. , , ,

59. Use series to evaluate the following limit.

60. The force due to gravity on an object with mass at a height 
above the surface of the Earth is

where is the radius of the Earth and is the acceleration due
to gravity.
(a) Express as a series in powers of .

; (b) Observe that if we approximate by the first term in the
series, we get the expression that is usually used
when is much smaller than . Use the Alternating Series
Estimation Theorem to estimate the range of values of for
which the approximation is accurate to within .
(Use km.)

61. Suppose that for all .
(a) If is an odd function, show that

(b) If is an even function, show that

62. If , show that .f �2n��0� �
�2n�!

n!
f �x� � e x 2

c1 � c3 � c5 � 
 
 
 � 0

f

c0 � c2 � c4 � 
 
 
 � 0

f
xf �x� � ��

n�0 cn x n

R � 6400
1%F � mt

h
Rh
F � mt

F
h�RF

tR

F �
mtR2

�R � h�2

hm

lim
x l 0

 
sin x � x

x 3

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

0 � x � ��6n � 2a � 0f �x� � sec x

0.9 � x � 1.1n � 3a � 1f �x� � sx44. Find the radius of convergence of the series

45. Find the Taylor series of at .

46. Find the Taylor series of at .

47–54 |||| Find the Maclaurin series for and its radius of conver-
gence. You may use either the direct method (definition of a
Maclaurin series) or known series such as geometric series,
binomial series, or the Maclaurin series for , , and .

47. 48.

49. 50.

51. 52.

53. 54.

55. Evaluate as an infinite series.

56. Use series to approximate correct to two
decimal places.

57–58 ||||

(a) Approximate by a Taylor polynomial with degree at the
number .

; (b) Graph and on a common screen.
(c) Use Taylor’s Inequality to estimate the accuracy of the approxi-

mation when lies in the given interval.

; (d) Check your result in part (c) by graphing .� Rn�x� �
xf �x� � Tn�x�

Tnf
a

nf

x
1
0  s1 � x 4 dx

y 
e x

x
 dx

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■
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788 ❙ ❙ ❙ ❙ CHAPTER 11 INFINITE SEQUENCES AND SERIES



PROBLEMS 
PLUS 1. If , find .

2. A function is defined by

Where is continuous?

3. (a) Show that .

(b) Find the sum of the series

4. Let be a sequence of points determined as in the figure. Thus ,
, and angle is a right angle. Find .

5. To construct the snowflake curve , start with an equilateral triangle with sides of length . 
Step 1 in the construction is to divide each side into three equal parts, construct an equilateral
triangle on the middle part, and then delete the middle part (see the figure). Step 2 is to repeat
Step 1 for each side of the resulting polygon. This process is repeated at each succeeding step.
The snowflake curve is the curve that results from repeating this process indefinitely.
(a) Let , , and represent the number of sides, the length of a side, and the total length of

the th approximating curve (the curve obtained after Step of the construction), respec-
tively. Find formulas for , , and .

(b) Show that as .
(c) Sum an infinite series to find the area enclosed by the snowflake curve. 

Parts (b) and (c) show that the snowflake curve is infinitely long but encloses only a finite area.

6. Find the sum of the series

where the terms are the reciprocals of the positive integers whose only prime factors are 2s
and 3s.

7. (a) Show that for ,

if the left side lies between and .
(b) Show that

(c) Deduce the following formula of John Machin (1680–1751):

4 arctan 15 � arctan 1
239 �

�

4

arctan 120
119 � arctan 1

239 �
�

4

��2���2

arctan x � arctan y � arctan 
x � y

1 � xy

xy � �1

1 �
1

2
�

1

3
�

1

4
�

1

6
�

1

8
�

1

9
�

1

12
� � � �

21 3

n l �pn l �
pnlnsn

nn
pnlnsn

1

limn l � �Pn APn�1APn Pn�1� Pn Pn�1 � � 2n�1
� AP1 � � 1�Pn �

�
�

n�1
 

1

2n  tan 
x

2n

tan 12 x � cot 12 x � 2 cot x

f

f �x� � lim 
n l �

 
x 2n � 1

x 2n � 1

f

f �15��0�f �x� � sin�x 3 �

P∞

8
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P¡A

4

2

1
1

FIGURE FOR PROBLEM 4



(d) Use the Maclaurin series for to show that

(e) Show that

(f) Deduce that, correct to seven decimal places,

Machin used this method in 1706 to find correct to 100 decimal places. Recently, with the
aid of computers, the value of has been computed to increasingly greater accuracy. In 1999,
Takahashi and Kanada, using methods of Borwein and Brent Salamin, calculated the value of

to 206,158,430,000 decimal places!

8. (a) Prove a formula similar to the one in Problem 7(a) but involving instead of .
(b) Find the sum of the series

9. Find the interval of convergence of and find its sum.

10. If , show that

If you don’t see how to prove this, try the problem-solving strategy of using analogy (see
page 80). Try the special cases and first. If you can see how to prove the asser-
tion for these cases, then you will probably see how to prove it in general.

11. Find the sum of the series .

12. Suppose you have a large supply of books, all the same size, and you stack them at the edge
of a table, with each book extending farther beyond the edge of the table than the one beneath
it. Show that it is possible to do this so that the top book extends entirely beyond the table. In
fact, show that the top book can extend any distance at all beyond the edge of the table if the
stack is high enough. Use the following method of stacking: The top book extends half its
length beyond the second book. The second book extends a quarter of its length beyond the
third. The third extends one-sixth of its length beyond the fourth, and so on. (Try it yourself
with a deck of cards.) Consider centers of mass.

13. Let

Show that .

14. If , evaluate the expression

1 �
1

2 p �
1

3p �
1

4 p � � � �
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 ln	1 �
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lim
n l �

 (a0 sn � a1 sn � 1 � a2 sn � 2 � � � � � ak sn � k ) � 0
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��
n�1 n3x n
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 arccot�n 2 � n � 1�

arctanarccot

�
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�
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� � 3.1415927
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239 � 0.004184077 

0.197395560 � arctan 15 � 0.197395562 
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15. Suppose that circles of equal diameter are packed tightly in rows inside an equilateral tri-
angle. (The figure illustrates the case .) If is the area of the triangle and is the total
area occupied by the rows of circles, show that

16. A sequence is defined recursively by the equations

Find the sum of the series .

17. Taking the value of at 0 to be 1 and integrating a series term-by-term, show that

18. Starting with the vertices , , , of a square, we construct further
points as shown in the figure: is the midpoint of is the midpoint of is the
midpoint of , and so on. The polygonal spiral path approaches a
point inside the square.
(a) If the coordinates of are , show that and find a

similar equation for the -coordinates.
(b) Find the coordinates of .

19. If has positive radius of convergence and , show that

20. Right-angled triangles are constructed as in the figure. Each triangle has height 1 and its base
is the hypotenuse of the preceding triangle. Show that this sequence of triangles makes indefi-
nitely many turns around by showing that is a divergent series.

21. Consider the series whose terms are the reciprocals of the positive integers that can be written
in base 10 notation without using the digit 0. Show that this series is convergent and the sum
is less than 90.

22. (a) Show that the Maclaurin series of the function

is

where is the Fibonacci number, that is, , , and 
for . [Hint: Write and multiply both sides
of this equation by .]

(b) By writing as a sum of partial fractions and thereby obtaining the Maclaurin series in
a different way, find an explicit formula for the Fibonacci number.nth

f �x�
1 � x � x 2

x��1 � x � x 2� � c0 � c1x � c2 x 2 � . . .n 	 3
fn � fn�1 � fn�2f2 � 1f1 � 1nthfn

�
�

n�1
 fn x nf �x� �

x

1 � x � x 2

¨¡
¨™

¨£

P

1

1

11

1

�
 nP

n 	 1ndn � �
n

i�1
 ici dn�i

e f �x� � ��
n�0 dn x nf �x� � ��

m�0 cm x m

P
y

1
2 xn � xn�1 � xn�2 � xn�3 � 2�xn, yn �Pn

P
P1P2P3P4 P5P6 P7 . . .P3P4

P2P3, P7P1P2, P6P5

P4�0, 0�P3�1, 0�P2�1, 1�P1�0, 1�

y
1

0  
x x dx �   �

�

n�1
 
��1�n�1

nn   

x x

��
n�0 an

n�n � 1�an � �n � 1��n � 2�an�1 � �n � 3�an�2a0 � a1 � 1

�an �

lim 
n l �

 
An

A
�

�

2s3

n
AnAn � 4

n

FIGURE FOR PROBLEM 15

P¡ P™

P¢ P£

P∞

Pß

P¶

Pˆ

P˜

P¡¸

FIGURE FOR PROBLEM 18



Vectors and the Geometry of Space

Wind velocity is a vector because

it has both magnitude and direc-

tion.  Pictured are velocity vectors

indicating the wind pattern over

San Francisco Bay at 12:00 P.M.

on June 11, 2002.



In this chapter we introduce vectors and coordinate systems for

three-dimensional space. This will be the setting for our study of

the calculus of functions of two variables in Chapter 14 because

the graph of such a function is a surface in space. In this chapter

we will see that vectors provide particularly simple descriptions

of lines and planes in space.

|||| 12.1 T h r e e - D i m e n s i o n a l  C o o r d i n a t e  S y s t e m s

To locate a point in a plane, two numbers are necessary. We know that any point in 
the plane can be represented as an ordered pair of real numbers, where is the 
-coordinate and is the -coordinate. For this reason, a plane is called two-dimensional.

To locate a point in space, three numbers are required. We represent any point in space by
an ordered triple of real numbers.

In order to represent points in space, we first choose a fixed point (the origin) and
three directed lines through that are perpendicular to each other, called the coordinate
axes and labeled the -axis, -axis, and -axis. Usually we think of the - and -axes as
being horizontal and the -axis as being vertical, and we draw the orientation of the axes
as in Figure 1. The direction of the -axis is determined by the right-hand rule as illus-
trated in Figure 2: If you curl the fingers of your right hand around the -axis in the direc-
tion of a counterclockwise rotation from the positive -axis to the positive -axis, then
your thumb points in the positive direction of the -axis.

The three coordinate axes determine the three coordinate planes illustrated in Fig-
ure 3(a). The -plane is the plane that contains the - and -axes; the -plane contains
the - and -axes; the -plane contains the - and -axes. These three coordinate planes
divide space into eight parts, called octants. The first octant, in the foreground, is deter-
mined by the positive axes.

Because many people have some difficulty visualizing diagrams of three-dimensional
figures, you may find it helpful to do the following [see Figure 3(b)]. Look at any bottom
corner of a room and call the corner the origin. The wall on your left is in the -plane, the
wall on your right is in the -plane, and the floor is in the -plane. The -axis runs along
the intersection of the floor and the left wall. The -axis runs along the intersection of the
floor and the right wall. The -axis runs up from the floor toward the ceiling along the inter-
section of the two walls. You are situated in the first octant, and you can now imagine seven
other rooms situated in the other seven octants (three on the same floor and four on the
floor below), all connected by the common corner point .O
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xxyyz
xz

FIGURE 3 (a) Coordinate planes

y

z

x

O

yz-plane

xy-plane

xz-plane

(b)

z

O

right wall

left w
all

y
x floor

zxxzzy
yzyxxy

z
yx90�

z
z

z
yxzyx

O
O

�a, b, c�

ybx
a�a, b�

FIGURE 2
Right-hand rule

O

z

y

x

FIGURE 1
Coordinate axes

x

z

y



794 ❙ ❙ ❙ ❙ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

Now if is any point in space, let be the (directed) distance from the -plane to 
let be the distance from the -plane to and let be the distance from the -plane to

. We represent the point by the ordered triple of real numbers and we call , ,
and the coordinates of ; is the -coordinate, is the -coordinate, and is the 
-coordinate. Thus, to locate the point we can start at the origin and move 
units along the -axis, then units parallel to the -axis, and then units parallel to the

-axis as in Figure 4.
The point determines a rectangular box as in Figure 5. If we drop a perpen-

dicular from to the -plane, we get a point with coordinates called the pro-
jection of on the -plane. Similarly, and are the projections of on
the -plane and -plane, respectively.

As numerical illustrations, the points and are plotted in
Figure 6.

The Cartesian product is the set of all ordered
triples of real numbers and is denoted by . We have given a one-to-one correspon-
dence between points in space and ordered triples in . It is called a three-
dimensional rectangular coordinate system. Notice that, in terms of coordinates, the
first octant can be described as the set of points whose coordinates are all positive.

In two-dimensional analytic geometry, the graph of an equation involving and is a
curve in . In three-dimensional analytic geometry, an equation in , , and represents
a surface in .

EXAMPLE 1 What surfaces in are represented by the following equations?
(a) (b)

SOLUTION
(a) The equation represents the set , which is the set of all points
in whose -coordinate is . This is the horizontal plane that is parallel to the -plane
and three units above it as in Figure 7(a).

FIGURE 7 (c) y=5, a line in R@
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(b) The equation represents the set of all points in whose -coordinate is 5.
This is the vertical plane that is parallel to the -plane and five units to the right of it as
in Figure 7(b).

NOTE ■■ When an equation is given, we must understand from the context whether it rep-
resents a curve in or a surface in . In Example 1, represents a plane in , but
of course can also represent a line in if we are dealing with two-dimensional ana-
lytic geometry. See Figure 7(b) and (c).

In general, if is a constant, then represents a plane parallel to the -plane,
is a plane parallel to the -plane, and is a plane parallel to the -plane. In

Figure 5, the faces of the rectangular box are formed by the three coordinate planes 
(the -plane), (the -plane), and (the -plane), and the planes , ,
and .

EXAMPLE 2 Describe and sketch the surface in represented by the equation .

SOLUTION The equation represents the set of all points in whose - and -coordinates
are equal, that is, . This is a vertical plane that intersects the 

-plane in the line , . The portion of this plane that lies in the first octant is
sketched in Figure 8.

The familiar formula for the distance between two points in a plane is easily extended
to the following three-dimensional formula.

Distance Formula in Three Dimensions The distance between the points
and is

To see why this formula is true, we construct a rectangular box as in Figure 9, where 
and are opposite vertices and the faces of the box are parallel to the coordinate planes.
If and are the vertices of the box indicated in the figure, then

Because triangles and are both right-angled, two applications of the Pythago-
rean Theorem give

and

Combining these equations, we get

Therefore  � P1P2 � � s�x2 � x1�2 � �y2 � y1�2 � �z2 � z1�2

 � �x2 � x1�2 � �y2 � y1�2 � �z2 � z1�2
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EXAMPLE 3 The distance from the point to the point is

EXAMPLE 4 Find an equation of a sphere with radius and center .

SOLUTION By definition, a sphere is the set of all points whose distance from 
is . (See Figure 10.) Thus, is on the sphere if and only if . Squaring both

sides, we have or

The result of Example 4 is worth remembering.

Equation of a Sphere An equation of a sphere with center and radius is

In particular, if the center is the origin , then an equation of the sphere is

EXAMPLE 5 Show that is the equation of a
sphere, and find its center and radius.

SOLUTION We can rewrite the given equation in the form of an equation of a sphere if we
complete squares:

Comparing this equation with the standard form, we see that it is the equation of a
sphere with center and radius .

EXAMPLE 6 What region in is represented by the following inequalities?

SOLUTION The inequalities

can be rewritten as

so they represent the points whose distance from the origin is at least 1 and at
most 2. But we are also given that , so the points lie on or below the xy-plane.
Thus, the given inequalities represent the region that lies between (or on) the spheres

and and beneath (or on) the xy-plane. It is sketched
in Figure 11.

x 2 � y 2 � z2 � 4x 2 � y 2 � z2 � 1

z � 0
�x, y, z�

 1 � sx 2 � y 2 � z 2 � 2

1 � x 2 � y 2 � z2 � 4

z � 01 � x 2 � y 2 � z2 � 4

� 3

s8 � 2s2��2, 3, �1�

 �x � 2�2 � �y � 3�2 � �z � 1�2 � 8

 �x 2 � 4x � 4� � �y 2 � 6y � 9� � �z2 � 2z � 1� � �6 � 4 � 9 � 1

x 2 � y 2 � z2 � 4x � 6y � 2z � 6 � 0

x 2 � y 2 � z2 � r 2

O

�x � h�2 � �y � k�2 � �z � l�2 � r 2

rC�h, k, l�

�x � h�2 � �y � k�2 � �z � l�2 � r 2 

� PC �2 � r 2
� PC � � rPrC

P�x, y, z�

C�h, k, l �r

 � s1 � 4 � 4 � 3

 � PQ � � s�1 � 2�2 � ��3 � 1�2 � �5 � 7�2

Q�1, �3, 5�P�2, �1, 7�

FIGURE 10

0

z

x
y

r

P(x, y, z)

C(h, k, l)

FIGURE 11

z

yx

0
1

2



15–18 |||| Show that the equation represents a sphere, and find its
center and radius.

15.

16.

17.

18.

19. (a) Prove that the midpoint of the line segment from
to is

(b) Find the lengths of the medians of the triangle with vertices
, , and .

20. Find an equation of a sphere if one of its diameters has end-
points and .

Find equations of the spheres with center that touch
(a) the -plane, (b) the -plane, (c) the -plane.

22. Find an equation of the largest sphere with center (5, 4, 9) that
is contained in the first octant.

23–34 |||| Describe in words the region of represented by the
equation or inequality.

23. 24.

25. 26.

28.

29.

30.

31. 32.

34.

35–38 |||| Write inequalities to describe the region.

35. The half-space consisting of all points to the left of the 
-plane

36. The solid rectangular box in the first octant bounded by the
planes , , and 

The region consisting of all points between (but not on) the
spheres of radius and centered at the origin, where 

38. The solid upper hemisphere of the sphere of radius 2 centered
at the origin

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

r � RRr
37.

z � 3y � 2x � 1

xz

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

xyz � 0x 2 � z 2 � 933.

x 2 � y 2 � 1x 2 � y 2 � z2 � 2z � 3

1 � x 2 � y 2 � z2 � 25

x 2 � y 2 � z2 � 1

y � z0 � z � 627.

y 	 0x � 3

x � 10y � �4

� 3

xzyzxy
�2, �3, 6�21.

�4, 3, 10��2, 1, 4�

C�4, 1, 5�B��2, 0, 5�A�1, 2, 3�

� x1 � x2

2
, 

 y1 � y2

2
, 

z1 � z2

2 �
P2�x2, y2, z2 �P1�x1, y1, z1�

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

4x 2 � 4y2 � 4z2 � 8x � 16y � 1

x 2 � y 2 � z 2 � x � y � z

x 2 � y 2 � z 2 � 4x � 2y

x 2 � y 2 � z2 � 6x � 4y � 2z � 11
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1. Suppose you start at the origin, move along the -axis a
distance of 4 units in the positive direction, and then move
downward a distance of 3 units. What are the coordinates 
of your position?

2. Sketch the points , , , and 
on a single set of coordinate axes.

3. Which of the points , , and is
closest to the -plane? Which point lies in the -plane?

4. What are the projections of the point (2, 3, 5) on the -, -,
and -planes? Draw a rectangular box with the origin and

as opposite vertices and with its faces parallel to the
coordinate planes. Label all vertices of the box. Find the length
of the diagonal of the box.

Describe and sketch the surface in represented by the equa-
tion .

6. (a) What does the equation represent in ? What does
it represent in ? Illustrate with sketches.

(b) What does the equation represent in ? What does
represent? What does the pair of equations ,
represent? In other words, describe the set of points

such that and . Illustrate with a sketch.

7. Show that the triangle with vertices , ,
and is an equilateral triangle.

8. Find the lengths of the sides of the triangle with vertices
, , and . Is a right 

triangle? Is it an isosceles triangle?

9. Determine whether the points lie on a straight line.
(a)
(b)

10. Find the distance from to each of the following.
(a) The -plane (b) The -plane
(c) The -plane (d) The -axis
(e) The -axis (f ) The -axis

11. Find an equation of the sphere with center and
radius 5. What is the intersection of this sphere with the 

-plane?

12. Find an equation of the sphere with center and
radius . Describe its intersection with each of the coordinate
planes.

Find an equation of the sphere that passes through the point 
and has center .

14. Find an equation of the sphere that passes through the origin
and whose center is .�1, 2, 3�

�3, 8, 1��4, 3, �1�
13.

s7
�6, 5, �2�

xz

�1, �4, 3�

zy
xxz
yzxy

�3, 7, �5�

K�0, 3, �4�, L�1, 2, �2�, M�3, 0, 1�
A�5, 1, 3�, B�7, 9, �1�, C�1, �15, 11�

ABCC�3, �2, 1�B�3, 4, �2�A�1, 2, �3�

R��1, 1, 2�
Q�1, 2, �1�P��2, 4, 0�

z � 5y � 3�x, y, z�
z � 5

y � 3z � 5
�3y � 3

�3
�2x � 4

x � y � 2
�35.

�2, 3, 5�
xz

yzxy

yzxz
R�0, 3, 8�Q��5, �1, 4�P�6, 2, 3�

�1, �1, 2��2, 4, 6��4, 0, �1��0, 5, 2�

x

|||| 12.1 Exercises



the points on are directly beneath, or above, the points 
on .)
(a) Find the coordinates of the point on the line .
(b) Locate on the diagram the points , , and , where 

the line intersects the -plane, the -plane, and the 
-plane, respectively.

40. Consider the points such that the distance from to
is twice the distance from to . Show

that the set of all such points is a sphere, and find its center and
radius.

Find an equation of the set of all points equidistant from the
points and . Describe the set.

42. Find the volume of the solid that lies inside both of the spheres

and x 2 � y 2 � z2 � 4

x 2 � y 2 � z2 � 4x � 2y � 4z � 5 � 0

B�6, 2, �2�A��1, 5, 3�
41.

B�6, 2, �2�PA��1, 5, 3�
PP

xz
yzxyL1

CBA
L1P

L1

L239. The figure shows a line in space and a second line 
which is the projection of on the -plane. (In other words,

x

0

z

y

1

1 1

L¡

L™

P

xyL1

L2, L
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|||| 12.4 T h e  C r o s s  P r o d u c t

The cross product of two vectors and , unlike the dot product, is a vector. For
this reason it is also called the vector product. Note that is deÞned only when and

are three-dimensional vectors.

Definition If and , then the cross product of 
and is the vector

This may seem like a strange way of deÞning a product. The reason for the particular
form of DeÞnition 1 is that the cross product deÞned in this way has many useful proper-
ties, as we will soon see. In particular, we will show that the vector is perpendicu-
lar to both and .

In order to make DeÞnition 1 easier to remember, we use the notation of determinants.
A determinant of order 2 is deÞned by

For example,

A determinant of order 3 can be deÞned in terms of second-order determinants as 
follows:

� a1

b1

c1

a2

b2

c2

a3

b3

c3 � � a1 	 b2

c2

b3

c3
	 � a2 	 b1

c1

b3

c3
	 � a3 	 b1

c1

b2

c2
	2

	 2

� 6

1

4 	 � 2�4� � 1� � 6� � 14

	 a

c

b

d 	 � ad � bc

ba
a � b

a � b � � a2b3 � a3b2, a3b1 � a1b3, a1b2 � a2b1 �

b
ab � � b1, b2, b3 �a � � a1, a2, a3 �1

b
aa � b

baa � b

Use Theorem 3 to prove the Cauchy-Schwarz Inequality:

58. The Triangle Inequality for vectors is

(a) Give a geometric interpretation of the Triangle Inequality.
(b) Use the Cauchy-Schwarz Inequality from Exercise 57 to

prove the Triangle Inequality. [Hint: Use the fact that
and use Property 3 of the

dot product.]

59. The Parallelogram Law states that 

(a) Give a geometric interpretation of the Parallelogram Law.
(b) Prove the Parallelogram Law. (See the hint in Exercise 58.)

� a � b �2 � � a � b �2 � 2 � a �2 � 2 � b �2

� a � b �2 � �a � b�  �  �a � b�

� a � b � � � a � � � b �

� a � b � � � a � � b �

57., and as shown in the Þgure. Then the centroid
is .

54. If , where , , and are all nonzero 
vectors, show that bisects the angle between and .

55. Prove Properties 2, 4, and 5 of the dot product (Theorem 2).

56. Suppose that all sides of a quadrilateral are equal in length and
opposite sides are parallel. Use vector methods to show that the
diagonals are perpendicular.

bac
cbac � � a � b � � b � a

�

�
�

�

�

�

�

	

]( 1
2 , 12 , 12 )

�1, 1, 1��0, 0, 1�



Observe that each term on the right side of Equation 2 involves a number in the Þrst row
of the determinant, and is multiplied by the second-order determinant obtained from the
left side by deleting the row and column in which appears. Notice also the minus sign
in the second term. For example,

If we now rewrite DeÞnition 1 using second-order determinants and the standard basis
vectors , , and , we see that the cross product of the vectors and

is

In view of the similarity between Equations 2 and 3, we often write

Although the Þrst row of the symbolic determinant in Equation 4 consists of vectors, if we
expand it as if it were an ordinary determinant using the rule in Equation 2, we obtain
Equation 3. The symbolic formula in Equation 4 is probably the easiest way of remem-
bering and computing cross products.

EXAMPLE 1 If and , then

EXAMPLE 2 Show that for any vector in .

SOLUTION If , then

 � 0 i � 0 j � 0 k � 0

 � �a2a3 � a3a2�  i � �a1a3 � a3a1�  j � �a1a2 � a2a1�  k

 a � a � � i
a1

a1

j
a2

a2

k
a3

a3 �
a � � a1, a2, a3 �

V3aa � a � 0

 � � � 15 � 28�  i � � � 5 � 8�  j � �7 � 6�  k � � 43 i � 13 j � k

 � 	 3

7

4

� 5 	 i � 	 1

2

4

� 5 	 j � 	 1

2

3

7 	 k
 a � b � � i

1

2

j
3

7

k
4

� 5 �
b � � 2, 7, � 5 �a � � 1, 3, 4 �

a � b � � i
a1

b1

j
a2

b2

k
a3

b3 �4

a � b � 	 a2

b2

a3

b3
	 i � 	 a1

b1

a3

b3
	 j � 	 a1

b1

a2

b2
	 k3

b � b1 i � b2 j � b3 k
a � a1 i � a2 j � a3 kkji

 � 1�0 � 4� � 2�6 � 5� � � � 1�� 12 � 0� � � 38

 � 1

3

� 5

2

0

4

� 1

1

2 � � 1 	 0

4

1

2 	 � 2 	 3

� 5

1

2 	 � � � 1�  	 3

� 5

0

4 	

ai

ai

ai
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One of the most important properties of the cross product is given by the following 
theorem.

Theorem The vector is orthogonal to both and .

Proof In order to show that is orthogonal to , we compute their dot product as
follows:

A similar computation shows that . Therefore, is orthogonal to
both and .

If and are represented by directed line segments with the same initial point (as in
Figure 1), then Theorem 5 says that the cross product points in a direction perpen-
dicular to the plane through and . It turns out that the direction of is given by the
right-hand rule: If the Þngers of your right hand curl in the direction of a rotation (through
an angle less than ) from to , then your thumb points in the direction of .

Now that we know the direction of the vector , the remaining thing we need to
complete its geometric description is its length . This is given by the following 
theorem.

Theorem If is the angle between and (so ), then

Proof From the deÞnitions of the cross product and length of a vector, we have

(by Theorem 12.3.3)

Taking square roots and observing that because when
, we have

Since a vector is completely determined by its magnitude and direction, we can now say
that is the vector that is perpendicular to both and , whose orientation is deter-baa � b

� a � b � � � a � � b � sin 
0 �  � �

sin  � 0ssin 2 � sin 

 � � a �2� b �2 sin2

 � � a �2� b �2�1 � cos2 �

 � � a �2� b �2 � � a �2� b �2 cos2

 � � a �2� b �2 � �a � b�2

 � �a2
1 � a2

2 � a2
3 �� b2

1 � b2
2 � b2

3 � � �a1b1 � a2b2 � a3b3 �2

�  a2
1b2

2 � 2a1a2b1b2 � a2
2b2

1

 � a2
2b2

3 � 2a2a3b2b3 � a2
3b2

2 � a2
3 b2

1 � 2a1a3b1b3 � a2
1b2

3

 � a � b �2 � �a2b3 � a3b2�2 � �a3b1 � a1b3�2 � �a1b2 � a2b1�2

� a � b � � � a � � b � sin 

0 �  � �ba6

� a � b �
a � b

a � bba180�

a � bba
a � b

ba

ba
a � b�a � b� � b � 0

 � 0

 � a1a2b3 � a1b2a3 � a1a2b3 � b1a2a3 � a1b2a3 � b1a2a3

 � a1�a2b3 � a3b2 � � a2�a1b3 � a3b1� � a3�a1b2 � a2b1�

 �a � b� � a � 	 a2

b2

a3

b3
	 a1 � 	 a1

b1

a3

b3
	 a2 � 	 a1

b1

a2

b2
	 a3

aa � b

baa � b5
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FIGURE 1

a b

axb




Geometric characterization of a � b

Visual 12.4 shows how changes
as changes.b

a � b



mined by the right-hand rule, and whose length is . In fact, that is exactly how
physicists define .

Corollary Two nonzero vectors and are parallel if and only if

Proof Two nonzero vectors and are parallel if and only if or . In either case
, so and therefore .

The geometric interpretation of Theorem 6 can be seen by looking at Figure 2. If and
are represented by directed line segments with the same initial point, then they determine

a parallelogram with base , altitude , and area

Thus, we have the following way of interpreting the magnitude of a cross product.

The length of the cross product is equal to the area of the parallelogram
determined by and .

EXAMPLE 3 Find a vector perpendicular to the plane that passes through the points
, , and .

SOLUTION The vector PQ
l

PR
l

is perpendicular to both PQ
l

and PR
l

and is therefore per-
pendicular to the plane through , , and . We know from (12.2.1) that

PQ
l

PR
l

We compute the cross product of these vectors:

PQ
l

PR
l

So the vector is perpendicular to the given plane. Any nonzero scalar
multiple of this vector, such as , is also perpendicular to the plane.

EXAMPLE 4 Find the area of the triangle with vertices , , 
and .

SOLUTION In Example 3 we computed that PQ
l

PR
l

. The area of the
parallelogram with adjacent sides and is the length of this cross product:

PQ
l

PR
l

The area of the triangle is half the area of this parallelogram, that is, .5
2 s82PQRA

� s� � 40�2 � � � 15�2 � 152 � 5s82���
PRPQ

� � � 40, � 15, 15 ��

R�1, � 1, 1�
Q� � 2, 5, � 1�P�1, 4, 6�

� � 8, � 3, 3 �
� � 40, � 15, 15 �

 � � � 5 � 35�  i � �15 � 0�  j � �15 � 0�  k � � 40 i � 15 j � 15k

� � i
� 3

0

j
1

� 5

k
� 7

� 5 ��

� �1 � 1�  i � � � 1 � 4�  j � �1 � 6�  k � � 5 j � 5k

� � � 2 � 1�  i � �5 � 4�  j � � � 1 � 6�  k � � 3 i � j � 7k

RQP
�

R�1, � 1, 1�Q� � 2, 5, � 1�P�1, 4, 6�

ba
a � b

A � � a �(� b � sin  ) � � a � b �

� b � sin � a �
b

a

a � b � 0� a � b � � 0sin  � 0
� � 0ba

a � b � 0

ba7

a � b
� a � � b � sin 
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a

b




�b � sin�


FIGURE 2



If we apply Theorems 5 and 6 to the standard basis vectors , , and using ,
we obtain

Observe that

Thus, the cross product is not commutative. Also

whereas

So the associative law for multiplication does not usually hold; that is, in general,

However, some of the usual laws of algebra do hold for cross products. The following the-
orem summarizes the properties of vector products.

Theorem If , , and are vectors and is a scalar, then

1. a � b � � b � a

2. (ca) � b � c(a � b) � a � (cb)

3. a � (b � c) � a � b � a � c

4. (a � b) � c � a � c � b � c

5.

6.

These properties can be proved by writing the vectors in terms of their components 
and using the deÞnition of a cross product. We give the proof of Property 5 and leave the
remaining proofs as exercises.

Proof of Property 5 If , , and , then

The product that occurs in Property 5 is called the scalar triple product of
the vectors , , and . Notice from Equation 9 that we can write the scalar triple product
as a determinant:

a � �b � c� � � a1

b1

c1

a2

b2

c2

a3

b3

c3 �10

cba
a � �b � c�

 � �a � b� � c

 � �a2b3 � a3b2 �c1 � �a3b1 � a1b3 �c2 � �a1b2 � a2b1�c3

 � a1b2c3 � a1b3c2 � a2b3c1 � a2b1c3 � a3b1c2 � a3b2c1

 a � �b � c� � a1�b2c3 � b3c2� � a2�b3c1 � b1c3� � a3�b1c2 � b2c1�9

c � � c1, c2, c3 �b � � b1, b2, b3 �a � � a1, a2, a3 �

a � �b � c� � �a � c� b � �a � b� c

a � � b � c� � �a � b� � c

ccba8

�a � b� � c � a � �b � c�

 �i � i� � j � 0 � j � 0

 i � �i � j� � i � k � � j

i � j � j � i

 i � k � � j  k � j � � i j � i � � k

 k � i � j j � k � i i � j � k

 � � � 2kji
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The geometric signiÞcance of the scalar triple product can be seen by considering the
parallelepiped determined by the vectors , , and (Figure 3). The area of the base 
parallelogram is . If is the angle between and , then the height 
of the parallelepiped is . (We must use instead of in case

.) Therefore, the volume of the parallelepiped is

Thus, we have proved the following formula.

The volume of the parallelepiped determined by the vectors , , and is the
magnitude of their scalar triple product:

If we use the formula in (11) and discover that the volume of the parallelepiped 
determined by a, b, and c is 0, then the vectors must lie in the same plane; that is, they are
coplanar.

EXAMPLE 5 Use the scalar triple product to show that the vectors ,
, and are coplanar.

SOLUTION We use Equation 10 to compute their scalar triple product:

Therefore, by (11) the volume of the parallelepiped determined by , , and is 0. This
means that , , and are coplanar.

The idea of a cross product occurs often in physics. In particular, we consider a force 
acting on a rigid body at a point given by a position vector . (For instance, if we tighten
a bolt by applying a force to a wrench as in Figure 4, we produce a turning effect.) The
torque (relative to the origin) is deÞned to be the cross product of the position and force
vectors

and measures the tendency of the body to rotate about the origin. The direction of the
torque vector indicates the axis of rotation. According to Theorem 6, the magnitude of the
torque vector is

where is the angle between the position and force vectors. Observe that the only com-
ponent of that can cause a rotation is the one perpendicular to , that is, . The
magnitude of the torque is equal to the area of the parallelogram determined by and .Fr

� F � sin rF


� � � � � r � F � � � r � � F � sin 

� � r � F

�

r
F

cba
cba

 � 1�18� � 4�36� � 7� � 18� � 0

 � 1 	 � 1

� 9

4

18 	 � 4 	 2

0

4

18 	 � 7 	 2

0

� 1

� 9 	
 a � �b � c� � � 1

2

0

4

� 1

� 9

� 7

4

18 �
c � � 0, � 9, 18 �b � � 2, � 1, 4 �

a � � 1, 4, � 7 �

V � � a � �b � c� �

cba11

V � Ah � � b � c � � a � � cos  � � � a � �b � c� �

 
 � � 2
cos � cos  �h � � a � � cos  �

hb � caA � � b � c �
cba
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bxc

c
�

FIGURE 3

FIGURE 4

r

F

�






1–7 |||| Find the cross product and verify that it is orthogonal
to both a and b.

1. ,

2. ,

3. ,

4. ,

5. ,

6. ,

,

8. If a � i � 2k and b � j � k, Þnd a � b. Sketch a, b, and 
a � b as vectors starting at the origin.

State whether each expression is meaningful. If not, explain
why. If so, state whether it is a vector or a scalar.
(a) (b)
(c) (d)
(e) (f)

10–11 |||| Find and determine whether u � v is directed
into the page or out of the page.

10. 11.

The Þgure shows a vector in the -plane and a vector in
the direction of . Their lengths are and 
(a) Find .� a � b �

� b � � 2.� a � � 3k
bxya12.

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

���

�u ���

�v ���

���
�u ���

�v ���

� u � v �

�a � b� � �c � d��a � b� � �c � d�
�a � b� � ca � �b � c�
a � �b � c�a � �b � c�

9.

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

b � � 1, 2t, 3t 2 �a � � t, t 2, t 3 �7.

b � 2 i � et j � e� t ka � i � et j � e� t k

b � i � 2 j � 3ka � 3 i � 2 j � 4 k

b � i � j � ka � i � j � k

b � j � 2ka � 2 i � j � k

b � � � 1, 0, 2 �a � � 5, 1, 4 �

b � � 0, 3, 1 �a � � 1, 2, 0 �

a � b (b) Use the right-hand rule to decide whether the components
of are positive, negative, or 0.

13. If and , Þnd and .

14. If , , and , show
that .

Find two unit vectors orthogonal to both and
.

16. Find two unit vectors orthogonal to both and .

17. Show that for any vector in .

18. Show that for all vectors and in .

19. Prove Property 1 of Theorem 8.

20. Prove Property 2 of Theorem 8.

21. Prove Property 3 of Theorem 8.

22. Prove Property 4 of Theorem 8.

23. Find the area of the parallelogram with vertices ,
, , and .

24. Find the area of the parallelogram with vertices ,
, , and .

25–28 |||| (a) Find a vector orthogonal to the plane through the
points , , and , and (b) Þnd the area of triangle .

, , R�0, 0, 3�Q�0, 2, 0�P�1, 0, 0�25.

PQRRQP

N�3, 7, 3�M�3, 8, 6�L�1, 3, 6�
K�1, 2, 3�

D�2, � 1�C�4, 2�B�0, 4�
A� � 2, 1�

V3ba�a � b� � b � 0

V3a0 � a � 0 � a � 0

2 i � ki � j � k

� 0, 4, 4 �
� 1, � 1, 1 �15.

a � �b � c� � �a � b� � c
c � � 0, 0, � 4 �b � � � 1, 1, 0 �a � � 3, 1, 2 �

b � aa � bb � � 0, 1, 3 �a � � 1, 2, 1 �

�

	

�

b

a

a � b

|||| 12.4 Exercises
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EXAMPLE 6 A bolt is tightened by applying a 40-N force to a 0.25-m wrench as shown in
Figure 5. Find the magnitude of the torque about the center of the bolt.

SOLUTION The magnitude of the torque vector is

If the bolt is right-threaded, then the torque vector itself is

where is a unit vector directed down into the page.n

� � � � ��n � 9.66 n

 � 10 sin 75� � 9.66 N�m � 9.66 J

 � � � � � r � F � � � r � � F � sin 75� � �0.25�� 40�  sin 75�

FIGURE 5

���

��  N
����  m



SECTION 12.4 THE CROSS PRODUCT ❙ ❙ ❙ ❙ 821

26. , ,

27. , ,

28. , ,

29–30 |||| Find the volume of the parallelepiped determined by the
vectors , , and .

29. , ,

30. , ,

31–32 |||| Find the volume of the parallelepiped with adjacent edges
, , and .

31. , , ,

32. , , ,

33. Use the scalar triple product to verify that the vectors
, , and 

are coplanar.

34. Use the scalar triple product to determine whether the points
, , , and lie in the same

plane.

35. A bicycle pedal is pushed by a foot with a 60-N force as
shown. The shaft of the pedal is 18 cm long. Find the
magnitude of the torque about .

36. Find the magnitude of the torque about if a 36-lb force is
applied as shown.

37. A wrench 30 cm long lies along the positive -axis and grips a
bolt at the origin. A force is applied in the direction 
at the end of the wrench. Find the magnitude of the force
needed to supply 100 J of torque to the bolt.

38. Let v � 5 j and let u be a vector with length 3 that starts at 
the origin and rotates in the xy-plane. Find the maximum and

� 0, 3, � 4 �
y

���
��� lb

�� ft

�� ft
�

P

��

���
��  N

�

P

S�6, 2, 8�R�3, � 1, 2�Q�2, 4, 6�P�1, 0, 1�

c � 7 i � 3 j � 2kb � i � ja � 2 i � 3 j � k

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

S�6, � 1, 4�R� � 1, 0, 1�Q�2, 4, 5�P�0, 1, 2�

S�2, � 2, 2�R�3, � 1, 1�Q�4, 1, 0�P�2, 0, � 1�

PSPRPQ

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

c � � i � j � kb � i � j � ka � i � j � k

c � � 4, � 2, 5 �b � � 0, 1, 2 �a � � 6, 3, � 1 �

cba

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

R�5, 2, 2�Q�3, 1, 0�P�2, 0, � 3�

R�5, 3, 1�Q�4, 1, � 2�P�0, � 2, 0�

R�3, 0, 6�Q� � 1, 3, 4�P�2, 1, 5� minimum values of the length of the vector u � v. In what
direction does u � v point?

(a) Let be a point not on the line that passes through the
points and . Show that the distance from the point 
to the line is

where QR
l

and QP
l

.
(b) Use the formula in part (a) to Þnd the distance from 

the point to the line through and
.

40. (a) Let be a point not on the plane that passes through the
points , , and . Show that the distance from to the
plane is

where QR
l

, QS
l

, and QP
l

.
(b) Use the formula in part (a) to Þnd the distance from the

point to the plane through the points ,
, and .

Prove that .

42. Prove part 6 of Theorem 8, that is,

43. Use Exercise 42 to prove that

44. Prove that

Suppose that .
(a) If , does it follow that ?
(b) If , does it follow that ?
(c) If and , does it follow 

that ?

46. If , , and are noncoplanar vectors, let

(These vectors occur in the study of crystallography. Vectors of
the form , where each is an integer, form
a lattice for a crystal. Vectors written similarly in terms of ,

, and form the reciprocal lattice.)
(a) Show that is perpendicular to if .
(b) Show that for .

(c) Show that .k1 � �k2 � k3 � �
1

v1 � �v2 � v3 �

i � 1, 2, 3k i � vi � 1
i � jvjk i

k3k2

k1

nin1 v1 � n2 v2 � n3 v3

k3 �
v1 � v2

v1 � �v2 � v3 �

k2 �
v3 � v1

v1 � �v2 � v3 �
k1 �

v2 � v3

v1 � �v2 � v3 �

v3v2v1

b � c
a � b � a � ca � b � a � c

b � ca � b � a � c
b � ca � b � a � c

a � 045.

�a � b� � �c � d� � 	 a � c
a � d

b � c
b � d 	

a � �b � c� � b � �c � a� � c � �a � b� � 0

a � �b � c� � �a � c� b � �a � b� c

�a � b� � �a � b� � 2�a � b�41.

S�0, 0, 3�R�0, 2, 0�
Q�1, 0, 0�P�2, 1, 4�

c �b �a �

d � �� a � b� � c �
� a � b �

PdSRQ
P

R� � 1, 4, 7�
Q�0, 6, 8�P�1, 1, 1�

b �a �

d � � a � b �
� a �

L
PdRQ

LP39.



|||| 12.5 E q u a t i o n s  o f  L i n e s  a n d  P l a n e s

A line in the -plane is determined when a point on the line and the direction of the line
(its slope or angle of inclination) are given. The equation of the line can then be written
using the point-slope form.

Likewise, a line in three-dimensional space is determined when we know a point
on and the direction of . In three dimensions the direction of a line is con-

veniently described by a vector, so we let be a vector parallel to . Let be an
arbitrary point on and let and be the position vectors of and (that is, they have
representations OPA and OPA). If is the vector with representation P PA, as in Figure 1,
then the Triangle Law for vector addition gives . But, since and are parallel 
vectors, there is a scalar such that . Thus 

which is a vector equation of . Each value of the parameter gives the position vector
of a point on . In other words, as varies, the line is traced out by the tip of the vec-

tor . As Figure 2 indicates, positive values of correspond to points on that lie on one
side of , whereas negative values of correspond to points that lie on the other side of 

If the vector that gives the direction of the line is written in component form as
, then we have . We can also write and

, so the vector equation (1) becomes

� x, y, z � � � x0 � ta, y0 � tb, z0 � tc �

r0 � � x0, y0, z0 �
r � � x, y, z �tv � � ta, tb, tc �v � � a, b, c �

Lv
P0.tP0

Ltr
tLr

tL

r � r0 � tv1

a � tvt
var � r0 � a

0a0

PP0rr0L
P� x, y, z�Lv

LLP0� x0, y0, z0�
L

xy
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The Geometry of a Tetrahedron

A tetrahedron is a solid with four vertices, , , , and , and four triangular faces as shown in
the figure.

1. Let , , , and be vectors with lengths equal to the areas of the faces opposite the
vertices , , , and , respectively, and directions perpendicular to the respective faces and
pointing outward. Show that

2. The volume of a tetrahedron is one-third the distance from a vertex to the opposite face,
times the area of that face.
(a) Find a formula for the volume of a tetrahedron in terms of the coordinates of its vertices 

, , , and .
(b) Find the volume of the tetrahedron whose vertices are , , ,

and .

3. Suppose the tetrahedron in the figure has a trirectangular vertex S. (This means that the three
angles at S are all right angles.) Let A, B, and C be the areas of the three faces that meet at S,
and let D be the area of the opposite face PQR. Using the result of Problem 1, or otherwise,
show that

(This is a three-dimensional version of the Pythagorean Theorem.)

D 2 � A2 � B 2 � C 2

S�3, � 1, 2�
R�1, 1, 2�Q�1, 2, 3�P�1, 1, 1�

SRQP

V

v1 � v2 � v3 � v4 � 0

SRQP
v4v3v2v1

SRQP

DISCOVERY PROJECT
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Two vectors are equal if and only if corresponding components are equal. Therefore, we
have the three scalar equations:

where . These equations are called parametric equations of the line through the
point and parallel to the vector . Each value of the parameter 
gives a point on .

EXAMPLE 1
(a) Find a vector equation and parametric equations for the line that passes through the
point and is parallel to the vector .
(b) Find two other points on the line.

SOLUTION
(a) Here and , so the vector equa-
tion (1) becomes

or

Parametric equations are

(b) Choosing the parameter value gives , , and so is a
point on the line. Similarly, gives the point .

The vector equation and parametric equations of a line are not unique. If we change the
point or the parameter or choose a different parallel vector, then the equations change. For
instance, if, instead of , we choose the point in Example 1, then the para-
metric equations of the line become

Or, if we stay with the point but choose the parallel vector , we
arrive at the equations

In general, if a vector is used to describe the direction of a line , then
the numbers , , and are called direction numbers of . Since any vector parallel to 
could also be used, we see that any three numbers proportional to , , and could also be
used as a set of direction numbers for .

Another way of describing a line is to eliminate the parameter from Equations 2. If
none of , , or is , we can solve each of these equations for , equate the results, and
obtain

x � x0

a
�

y � y0

b
�

z � z0

c
3

t0cba
tL

L
cba

vLcba
Lv � � a, b, c �

z � 3 � 4ty � 1 � 8tx � 5 � 2t

2 i � 8 j � 4k�5, 1, 3�

z � 1 � 2ty � 5 � 4tx � 6 � t

�6, 5, 1��5, 1, 3�

�4, � 3, 5�t � � 1
�6, 5, 1�z � 1, y � 5x � 6t � 1

z � 3 � 2ty � 1 � 4tx � 5 � t

 r � �5 � t�  i � �1 � 4t�  j � �3 � 2t�  k

 r � �5 i � j � 3k� � t�i � 4 j � 2k�

v � i � 4 j � 2kr0 � � 5, 1, 3 � � 5 i � j � 3k

i � 4 j � 2k�5, 1, 3�

L� x, y, z�
tv � � a, b, c �P0� x0, y0, z0�

Lt � �

z � z0 � cty � y0 � btx � x0 � at2
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FIGURE 3

|||| Figure 3 shows the line in Example 1 and
its relation to the given point and to the vector
that gives its direction.

L



These equations are called symmetric equations of . Notice that the numbers , , and
that appear in the denominators of Equations 3 are direction numbers of , that is, com-

ponents of a vector parallel to . If one of , , or is , we can still eliminate . For
instance, if , we could write the equations of as

This means that lies in the vertical plane .

EXAMPLE 2
(a) Find parametric equations and symmetric equations of the line that passes through
the points and .
(b) At what point does this line intersect the -plane?

SOLUTION
(a) We are not explicitly given a vector parallel to the line, but observe that the vector 

with representation is parallel to the line and

Thus, direction numbers are , , and . Taking the point as
,we see that parametric equations (2) are

and symmetric equations (3) are

(b) The line intersects the -plane when , so we put in the symmetric equa-
tions and obtain

This gives and , so the line intersects the -plane at the point .

In general, the procedure of Example 2 shows that direction numbers of the line
through the points and are , , and and so
symmetric equations of are

Often, we need a description, not of an entire line, but of just a line segment. How, for
instance, could we describe the line segment in Example 2? If we put in the para-
metric equations in Example 2(a), we get the point and if we put we get

. So the line segment is described by the parametric equations

or by the corresponding vector equation

0 � t � 1r� t� � � 2 � t, 4 � 5t, � 3 � 4 t �

 x � 2 � t y � 4 � 5t z � � 3 � 4t� � � � 0 � t � 1

AB�3, � 1, 1�
t � 1�2, 4, � 3�

t � 0AB

x � x0

x1 � x0
�

y � y0

y1 � y0
�

z � z0

z1 � z0

L
z1 � z0y1 � y0x1 � x0P1� x1, y1, z1�P0� x0, y0, z0 �

L

( 11
4 , 1

4 , 0)xyy � 1
4x � 11

4

x � 2

1
�

y � 4

� 5
�

3

4

z � 0z � 0xy

x � 2

1
�

y � 4

� 5
�

z � 3

4

z � � 3 � 4ty � 4 � 5tx � 2 � t

P0

�2, 4, � 3�c � 4b � � 5a � 1

v � � 3 � 2, � 1 � 4, 1 � � � 3� � � � 1, � 5, 4 �

AB
l

v

xy
B�3, � 1, 1�A�2, 4, � 3�

x � x0L

y � y0

b
�

z � z0

c
x � x0

La � 0
t0cbaL

Lc
baL
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|||| Figure 4 shows the line in Example 2 and
the point where it intersects the -plane.xyP
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In general, we know from Equation 1 that the vector equation of a line through the (tip
of the) vector in the direction of a vector is . If the line also passes through
(the tip of) , then we can take and so its vector equation is

The line segment from to is given by the parameter interval .

The line segment from to is given by the vector equation

EXAMPLE 3 Show that the lines and with parametric equations

are skew lines; that is, they do not intersect and are not parallel (and therefore do not lie
in the same plane).

SOLUTION The lines are not parallel because the corresponding vectors and
are not parallel. (Their components are not proportional.) If and had a

point of intersection, there would be values of and such that

But if we solve the Þrst two equations, we get and , and these values donÕt
satisfy the third equation. Therefore, there are no values of and that satisfy the three
equations. Thus, and do not intersect. Hence, and are skew lines.

P l a n e s

Although a line in space is determined by a point and a direction, a plane in space is more
difÞcult to describe. A single vector parallel to a plane is not enough to convey the Òdirec-
tionÓ of the plane, but a vector perpendicular to the plane does completely specify its direc-
tion. Thus, a plane in space is determined by a point in the plane and a 
vector that is orthogonal to the plane. This orthogonal vector is called a normal 
vector. Let be an arbitrary point in the plane, and let and be the position 
vectors of and . Then the vector is represented by P PA. (See Figure 6.) The nor-
mal vector is orthogonal to every vector in the given plane. In particular, is orthogonal
to and so we have

which can be rewritten as

Either Equation 5 or Equation 6 is called a vector equation of the plane.

n � r � n � r06

n � �r � r0 � � 05

r � r0

nn
0r � r0PP0

rr0P� x, y, z�
nn

P0� x0, y0, z0�

L 2L1L 2L1

st
s � 8

5t � 11
5

 4 �   t � � 3 � 4s

 � 2 �  3t � 3 � s

 1 �  t � 2s

st
L 2L1� 2, 1, 4 �

� 1, 3, � 1 �

 x � 2s  y � 3 � s  z � � 3 � 4s

 x � 1 � t y � � 2 � 3t z � 4 � t

L 2L1

0 � t � 1r� t� � �1 � t� r0 � tr1

r1r04

0 � t � 1r1r0

r � r0 � t �r1 � r0� � �1 � t� r0 � tr1

v � r1 � r0r1

r � r0 � tvvr0
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|||| The lines and in Example 3, shown in
Figure 5, are skew lines.
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To obtain a scalar equation for the plane, we write , , and
. Then the vector equation (5) becomes

or

Equation 7 is the scalar equation of the plane through with normal vector
.

EXAMPLE 4 Find an equation of the plane through the point with normal vector
. Find the intercepts and sketch the plane.

SOLUTION Putting , , , , , and in Equation 7, we
see that an equation of the plane is

or

To Þnd the -intercept we set in this equation and obtain . Similarly, the
-intercept is 4 and the -intercept is 3. This enables us to sketch the portion of the plane

that lies in the Þrst octant (see Figure 7).

By collecting terms in Equation 7 as we did in Example 4, we can rewrite the equation
of a plane as

where . Equation 8 is called a linear equation in , , and . Con-
versely, it can be shown that if , , and are not all 0, then the linear equation (8) repre-
sents a plane with normal vector . (See Exercise 73.)

EXAMPLE 5 Find an equation of the plane that passes through the points ,
, and .

SOLUTION The vectors and corresponding to PQ
l

and PR
l

are

Since both and lie in the plane, their cross product is orthogonal to the plane
and can be taken as the normal vector. Thus

With the point and the normal vector , an equation of the plane is

or  6x � 10y � 7z � 50

 12� x � 1� � 20� y � 3� � 14�z � 2� � 0

nP�1, 3, 2�

n � a � b � � i
2

4

j
� 4

� 1

k
4

� 2 � � 12 i � 20 j � 14 k

a � bba

b � � 4, � 1, � 2 �a � � 2, � 4, 4 �

ba

R�5, 2, 0�Q�3, � 1, 6�
P�1, 3, 2�

� a, b, c �
cba

zyxd � � �ax0 � by0 � cz0 �

ax � by � cz � d � 08

zy
x � 6y � z � 0x

 2x � 3y � 4z � 12

 2� x � 2� � 3� y � 4� � 4�z � 1� � 0

z0 � � 1y0 � 4x0 � 2c � 4b � 3a � 2

n � � 2, 3, 4 �
�2, 4, � 1�

n � � a, b, c �
P0� x0, y0, z0 �

a� x � x0 � � b� y � y0 � � c�z � z0 � � 07

� a, b, c � � � x � x0, y � y0, z � z0 � � 0

r0 � � x0, y0, z0 �
r � � x, y, z �n � � a, b, c �
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|||| Figure 8 shows the portion of the plane in
Example 5 that is enclosed by triangle .PQR
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EXAMPLE 6 Find the point at which the line with parametric equations ,
, intersects the plane .

SOLUTION We substitute the expressions for , , and from the parametric equations into
the equation of the plane:

This simpliÞes to , so . Therefore, the point of intersection occurs
when the parameter value is . Then , ,

and so the point of intersection is 

Two planes are parallel if their normal vectors are parallel. For instance, the planes
and are parallel because their normal vectors are

and and . If two planes are not parallel, then
they intersect in a straight line and the angle between the two planes is deÞned as the acute
angle between their normal vectors (see angle in Figure 9).

EXAMPLE 7
(a) Find the angle between the planes and .
(b) Find symmetric equations for the line of intersection of these two planes.

SOLUTION
(a) The normal vectors of these planes are

and so, if is the angle between the planes, Corollary 12.3.6 gives

(b) We Þrst need to Þnd a point on . For instance, we can Þnd the point where the line
intersects the -plane by setting in the equations of both planes. This gives the
equations and , whose solution is , . So the point

lies on .
Now we observe that, since lies in both planes, it is perpendicular to both of the

normal vectors. Thus, a vector parallel to is given by the cross product

and so the symmetric equations of can be written as

NOTE ■■ Since a linear equation in , , and represents a plane and two nonparallel
planes intersect in a line, it follows that two linear equations can represent a line. The
points that satisfy both and a2x � b2y � c2z � d2 � 0a1x � b1y � c1z � d1 � 0� x, y, z�

zyx

x � 1

5
�

 y

� 2
�

z

� 3

L

v � n1 � n2 � � i
1

1

j
1

� 2

k
1

3 � � 5 i � 2 j � 3 k

Lv
L

L�1, 0, 0�
y � 0x � 1x � 2y � 1x � y � 1

z � 0xy
L

 � � cos� 1� 2

s42� 	 72�

 cos � �
n1 � n2

� n1 � � n2 �
�

1�1� � 1� � 2� � 1�3�
s1 � 1 � 1 s1 � 4 � 9

�
2

s42

�

n2 � � 1, � 2, 3 �n1 � � 1, 1, 1 �

L
x � 2y � 3z � 1x � y � z � 1

�

n2 � 2n1n2 � � 2, 4, � 6 �n1 � � 1, 2, � 3 �
2x � 4y � 6z � 3x � 2y � 3z � 4

� � 4, 8, 3� .z � 5 � 2 � 3
y � � 4� � 2� � 8x � 2 � 3� � 2� � � 4t � � 2

t � � 2� 10t � 20

4�2 � 3t� � 5� � 4t� � 2�5 � t� � 18

zyx

4x � 5y � 2z � 18z � 5 � ty � � 4t
x � 2 � 3t
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FIGURE 9
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|||| Another way to find the line of intersection is
to solve the equations of the planes for two of
the variables in terms of the third, which can be
taken as the parameter.

|||| Figure 10 shows the planes in Example 7 and
their line of intersection .L

�

� �

��������� �������

�
!
�
�
�

��
��

�
�

�� �
�

��

FIGURE 10



lie on both of these planes, and so the pair of linear equations represents the line of inter-
section of the planes (if they are not parallel). For instance, in Example 7 the line was
given as the line of intersection of the planes and . The
symmetric equations that we found for could be written as

which is again a pair of linear equations. They exhibit as the line of intersection of the
planes and . (See Figure 11.)

In general, when we write the equations of a line in the symmetric form

we can regard the line as the line of intersection of the two planes

EXAMPLE 8 Find a formula for the distance from a point to the plane
.

SOLUTION Let be any point in the given plane and let be the vector corre-

sponding to P PA. Then

From Figure 12 you can see that the distance from to the plane is equal to the
absolute value of the scalar projection of onto the normal vector . (See
Section 12.3.) Thus

Since lies in the plane, its coordinates satisfy the equation of the plane and so we
have . Thus, the formula for can be written as

EXAMPLE 9 Find the distance between the parallel planes and
.

SOLUTION First we note that the planes are parallel because their normal vectors
and are parallel. To Þnd the distance between the planes, 

we choose any point on one plane and calculate its distance to the other plane. In par-
ticular, if we put in the equation of the Þrst plane, we get and so 10x � 5y � z � 0

D� 5, 1, � 1 �� 10, 2, � 2 �

5x � y � z � 1
10x � 2y � 2z � 5

D � � ax1 � by1 � cz1 � d �
sa 2 � b 2 � c 2

9

Dax0 � by0 � cz0 � d � 0
P0

 � � �ax1 � by1 � cz1� � �ax0 � by0 � cz0 � �
sa 2 � b 2 � c 2

 � � a� x1 � x0 � � b� y1 � y0 � � c�z1 � z0 � �
sa 2 � b 2 � c 2

 D � � compn b � � � n � b �
� n �

n � � a, b, c �b
P1D

b � � x1 � x0, y1 � y0, z1 � z0 �

10

bP0� x0, y0, z0 �

ax � by � cz � d � 0
P1� x1, y1, z1�D

y � y0

b
�

z � z0

c
and

x � x0

a
�

y � y0

b

x � x0

a
�

y � y0

b
�

z � z0

c

y
� � 2� � z
� � 3�� x � 1�
 5 � y
� � 2�
L

y

� 2
�

z

� 3
and

x � 1

5
�

y

� 2

L
x � 2y � 3z � 1x � y � z � 1

L
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|||| Figure 11 shows how the line in Example 7
can also be regarded as the line of intersection
of planes derived from its symmetric equations.

L
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2–5 |||| Find a vector equation and parametric equations for 
the line.

2. The line through the point and parallel to the 
vector 

3. The line through the point and parallel to the 
vector 

4. The line through the origin and parallel to the line ,
, 

The line through the point (1, 0, 6) and perpendicular to the
plane 

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

x � 3y � z � 5
5.

z � 4 � 3ty � 1 � t
x � 2t

� 3, 1, � 8 �
� � 2, 4, 10�

2 i � 4 j � 5k
�1, 0, � 3�

1. Determine whether each statement is true or false.
(a) Two lines parallel to a third line are parallel.
(b) Two lines perpendicular to a third line are parallel.
(c) Two planes parallel to a third plane are parallel.
(d) Two planes perpendicular to a third plane are parallel.
(e) Two lines parallel to a plane are parallel.
(f) Two lines perpendicular to a plane are parallel.
(g) Two planes parallel to a line are parallel.
(h) Two planes perpendicular to a line are parallel.
(i) Two planes either intersect or are parallel.
( j) Two lines either intersect or are parallel.
(k) A plane and a line either intersect or are parallel.

|||| 12.5 Exercises

is a point in this plane. By Formula 9, the distance between and the
plane is

So the distance between the planes is .

EXAMPLE 10 In Example 3 we showed that the lines

are skew. Find the distance between them.

SOLUTION Since the two lines and are skew, they can be viewed as lying on two
parallel planes and . The distance between and is the same as the distance
between and , which can be computed as in Example 9. The common normal 
vector to both planes must be orthogonal to both (the direction of )
and (the direction of ). So a normal vector is

If we put in the equations of , we get the point on and so an equa-
tion for is

If we now set in the equations for , we get the point on . So 
the distance between and is the same as the distance from to

. By Formula 9, this distance is

D � � 13�1� � 6� � 2� � 5�4� � 3 �
s132 � � � 6�2 � � � 5�2

�
8

s230
	 0.53

13x � 6y � 5z � 3 � 0
�1, � 2, 4�L2L1

P1�1, � 2, 4�L1t � 0

13x � 6y � 5z � 3 � 0or13� x � 0� � 6� y � 3� � 5�z � 3� � 0

P2

L2�0, 3, � 3�L2s � 0

n � v1 � v2 � � i
1

2

j
3

1

k
� 1

4 � � 13 i � 6 j � 5k

L2v2 � � 2, 1, 4 �
L1v1 � � 1, 3, � 1 �

P2P1

L2L1P2P1

L2L1

 L2: x � 2s  y � 3 � s  z � � 3 � 4s

 L1: x � 1 � t y � � 2 � 3t z � 4 � t

s3
 6

D � � 5(1
2 ) � 1�0� � 1�0� � 1 �
s52 � 12 � � � 1�2

�
3
2

3s3
�

s3

6

5x � y � z � 1 � 0
(1

2, 0, 0)( 1
2, 0, 0)



6–12 |||| Find parametric equations and symmetric equations for the
line.

6. The line through the origin and the point 

7. The line through the points and 

8. The line through the points and 

The line through the points and 

10. The line through and perpendicular to both 
and 

11. The line through and parallel to the line

12. The line of intersection of the planes 
and 

Is the line through and parallel to the
line through and ?

14. Is the line through and perpendicular to the
line through and ?

15. (a) Find symmetric equations for the line that passes through
the point and is parallel to the line with para-
metric equations , , .

(b) Find the points in which the required line in part (a) inter-
sects the coordinate planes.

16. (a) Find parametric equations for the line through that
is perpendicular to the plane .

(b) In what points does this line intersect the coordinate
planes?

17. Find a vector equation for the line segment from 
to .

18. Find parametric equations for the line segment from 
to .

19–22 |||| Determine whether the lines and are parallel, skew,
or intersecting. If they intersect, Þnd the point of intersection.

: , ,

: , ,

20. : , ,

: , ,

21. : , :

22. :

:

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

x � 2

1
�

y � 6

� 1
�

z � 2

3
L2

x � 1

2
�

y � 3

2
�

z � 2

� 1
L1

x � 3

� 4
�

y � 2

� 3
�

z � 1

2
L2

x

1
�

y � 1

2
�

z � 2

3
L1

z � 1 � 3sy � 4 � sx � � 1 � sL2

z � 2 � ty � 3tx � 1 � 2tL1

z � sy � 4 � 3sx � 1 � 2sL2

z � � 3ty � 1 � 9tx � � 6tL119.

L2L1

�5, 6, � 3�
�10, 3, 1�

�4, 6, 1�
�2, � 1, 4�

2x � y � z � 1
�5, 1, 0�

z � 5 � 7ty � 3tx � 1 � 2t
�0, 2, � 1�

�5, 1, 4�� � 3, 2, 0�
�2, 5, 3��4, 1, � 1�

�5, 3, 14��10, 18, 4�
� � 2, 0 � 3�� � 4, � 6, 1�13.

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

x � z � 0
x � y � z � 1

x � 2 � 1
2 y � z � 3

�1, � 1, 1�

j � k
i � j�2, 1, 0�

�2, 1, � 3�(0, 12 , 1)9.

�2, 4, 5��6, 1, � 3�

� � 4, 3, 0��1, 3, 2�

�1, 2, 3�

23–38 |||| Find an equation of the plane.

23. The plane through the point and perpendicular to the
vector 

24. The plane through the point and with normal 
vector 

25. The plane through the point and with normal vector

26. The plane through the point and perpendicular to
the line , , 

27. The plane through the origin and parallel to the plane

28. The plane through the point and parallel to the
plane 

29. The plane through the point and parallel to the plane

30. The plane that contains the line , , 
and is parallel to the plane 

The plane through the points , , and 

32. The plane through the origin and the points 
and 

33. The plane through the points , , and

34. The plane that passes through the point and contains
the line , , 

35. The plane that passes through the point and contains
the line , , 

36. The plane that passes through the point and 
contains the line with symmetric equations 

37. The plane that passes through the point and contains
the line of intersection of the planes and

38. The plane that passes through the line of intersection of the
planes and and is perpendicular to the
plane 

39–41 |||| Find the point at which the line intersects the given plane.

39. , , ;

40. , , ;

41. ;

42. Where does the line through and intersect
the plane ?

43. Find direction numbers for the line of intersection of the planes
and .

44. Find the cosine of the angle between the planes 
and .x � 2y � 3z � 1

x � y � z � 0

x � z � 0x � y � z � 1

x � y � z � 6
�4, � 2, 2��1, 0, 1�

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

4x � y � 3z � 8x � y � 1 � 2z

x � 2y � z � 1 � 0z � 2 � 3ty � 4tx � 1 � 2t

x � y � 2z � 9z � 5ty � 2 � tx � 3 � t

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

x � y � 2z � 1
y � 2z � 3x � z � 1

2x � y � 3z � 1
x � y � z � 2

� � 1, 2, 1�

x � 2y � 3z
�1, � 1, 1�

z � 7 � 4 ty � 3 � 5tx � 4 � 2t
�6, 0, � 2�

z � 2 � ty � 1 � tx � 3t
�1, 2, 3�

� � 1, � 2, � 3�
�8, 2, 4��3, � 1, 2�

�5, 1, 3�
�2, � 4, 6�

�1, 1, 0��1, 0, 1��0, 1, 1�31.

2x � 4y � 8z � 17
z � 8 � ty � tx � 3 � 2t

3x � 7z � 12
�4, � 2, 3�

x � y � z � 2 � 0
� � 1, 6, � 5�

2x � y � 3z � 1

z � 4 � 3ty � 2tx � 1 � t
� � 2, 8, 10�

i � j � k
�1, � 1, 1�

j � 2k
�4, 0, � 3�

� � 2, 1, 5 �
�6, 3, 2�
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45–50 |||| Determine whether the planes are parallel, perpendicular,
or neither. If neither, Þnd the angle between them.

,

46. ,

47. ,

48. ,

49. ,

50. ,

51–52 |||| (a) Find symmetric equations for the line of intersection
of the planes and (b) Þnd the angle between the planes.

51. ,    

52. ,

53–54 |||| Find parametric equations for the line of intersection of
the planes.

53. ,

54. ,

55. Find an equation for the plane consisting of all points that are
equidistant from the points and .

56. Find an equation for the plane consisting of all points that are
equidistant from the points and .

Find an equation of the plane with -intercept , -intercept ,
and -intercept .

58. (a) Find the point at which the given lines intersect:

and

(b) Find an equation of the plane that contains these lines.

59. Find parametric equations for the line through the point
that is parallel to the plane and 

perpendicular to the line , , .

60. Find parametric equations for the line through the point
that is perpendicular to the line , 

, and intersects this line.

61. Which of the following four planes are parallel? Are any of
them identical?

z � 2x � y � 3P4:� 6x � 3y � 9z � 5P3:

4x � 2y � 2z � 6P2:4x � 2y � 6z � 3P1:

z � 2ty � 1 � t
x � 1 � t�0, 1, 2�

z � 2ty � 1 � tx � 1 � t
x � y � z � 2�0, 1, 2�

 r � � 2, 0, 2 � � s � � 1, 1, 0 �

 r � � 1, 1, 0 � � t � 1, � 1, 2 �

cz
byax57.

�2, � 4, 3�� � 4, 2, 1�

�0, 1, 1��1, 1, 0�

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

x � 3y � z � 2 � 02x � 5z � 3 � 0

2x � 5y � z � 1z � x � y

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

2x � y � z � 1x � 2y � z � 1

3x � 4y � 5z � 6x � y � z � 2

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

2x � y � 2z � 1x � 2y � 2z � 1

8y � 1 � 2x � 4zx � 4y � 2z

x � 6y � 4z � 32x � 3y � 4z � 5

x � y � z � 1x � y � z � 1

3x � 12y � 6z � 12z � 4y � x

� 3x � 6y � 7z � 0x � 4y � 3z � 145.

62. Which of the following four lines are parallel? Are any of them
identical?

, ,

63–64 |||| Use the formula in Exercise 39 in Section 12.4 to Þnd the
distance from the point to the given line.

63. ; , ,

64. ; , ,

65–66 |||| Find the distance from the point to the given plane.

65. ,

66. ,

67–68 |||| Find the distance between the given parallel planes.

67. ,

68. ,

Show that the distance between the parallel planes
and is

70. Find equations of the planes that are parallel to the plane
and two units away from it.

71. Show that the lines with symmetric equations and
are skew, and Þnd the distance between

these lines.

72. Find the distance between the skew lines with parametric 
equations , , , and ,

, .

73. If , , and are not all 0, show that the equation
represents a plane and is a

normal vector to the plane.
Hint: Suppose and rewrite the equation in the form

74. Give a geometric description of each family of planes.
(a)
(b)
(c) y cos � � z sin � � 1

x � y � cz � 1
x � y � z � c

a�x �
d

a� � b� y � 0� � c�z � 0� � 0

a � 0

� a, b, c �ax � by � cz � d � 0
cba

z � � 2 � 6sy � 5 � 15s
x � 1 � 2sz � 2ty � 1 � 6tx � 1 � t

x � 1 � y
 2 � z
 3
x � y � z

x � 2y � 2z � 1

D � � d1 � d2 �
sa 2 � b 2 � c 2

ax � by � cz � d2 � 0ax � by � cz � d1 � 0
69.

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

x � 2y � 3z � 13x � 6y � 9z � 4

3x � 6y � 3z � 4z � x � 2y � 1

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

4x � 6y � z � 5�3, � 2, 7�

x � 2y � 2z � 1�2, 8, 5�

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

z � 1 � 2ty � 3tx � 5 � t�1, 0, � 1�

z � 5ty � 2 � 3tx � 2 � t�1, 2, 3�

r � � 2, 1, � 3 � � t � 2, 2, � 10 �L4:

x � 1 � t, y � 4 � t, z � 1 � tL3:

x � 1 � y � 2 � 1 � zL2:

z � 2 � 5ty � tx � 1 � tL1:
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Putting 3D in Perspective

Computer graphics programmers face the same challenge as the great painters of the past: how 
to represent a three-dimensional scene as a flat image on a two-dimensional plane (a screen or a
canvas). To create the illusion of perspective, in which closer objects appear larger than those
farther away, three-dimensional objects in the computer’s memory are projected onto a rect-
angular screen window from a viewpoint where the eye, or camera, is located. The viewing
volume––the portion of space that will be visible––is the region contained by the four planes that
pass through the viewpoint and edge of the screen window. If objects in the scene extend beyond
these four planes, they must be truncated before pixel data are sent to the screen. These planes
are therefore called clipping planes.

1. Suppose the screen is represented by a rectangle in the -plane with vertices 
and , and the camera is placed at . A line in the scene passes
through the points and . At what points should be clipped
by the clipping planes?

2. If the clipped line segment is projected on the screen window, identify the resulting line
segment.

3. Use parametric equations to plot the edges of the screen window, the clipped line segment,
and its projection on the screen window. Then add sight lines connecting the viewpoint to
each end of the clipped segments to verify that the projection is correct.

4. A rectangle with vertices , , , and
is added to the scene. The line intersects this rectangle. To make the rect-

angle appear opaque, a programmer can use hidden line rendering which removes portions
of objects that are behind other objects. Identify the portion of that should be removed.L

L�599, 67, 122�
�657, � 111, 86��563, 31, 242��621, � 147, 206�

L�860, 105, 264��230, � 285, 102�
L�1000, 0, 0��0, � 400, 600�

�0, � 400, 0�yz

LABORATORY PROJECT

|||| 12.6 C y l i n d e r s  a n d  Q u a d r i c  S u r f a c e s

We have already looked at two special types of surfaces — planes (in Section 12.5) and
spheres (in Section 12.1). Here we investigate two other types of surfaces — cylinders and
quadric surfaces.

In order to sketch the graph of a surface, it is useful to determine the curves of inter-
section of the surface with planes parallel to the coordinate planes. These curves are called
traces (or cross-sections) of the surface.

C y l i n d e r s

A cylinder is a surface that consists of all lines (called rulings) that are parallel to a given
line and pass through a given plane curve.

EXAMPLE 1 Sketch the graph of the surface .

SOLUTION Notice that the equation of the graph, , doesn’t involve y. This means that
any vertical plane with equation (parallel to the -plane) intersects the graph in a
curve with equation . So these vertical traces are parabolas. Figure 1 shows how
the graph is formed by taking the parabola in the -plane and moving it in thexzz � x 2

z � x 2
xzy � k

z � x 2

z � x 2
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direction of the y-axis. The graph is a surface, called a parabolic cylinder, made up of
inÞnitely many shifted copies of the same parabola. Here the rulings of the cylinder are
parallel to the y-axis.

We noticed that the variable y is missing from the equation of the cylinder in Exam-
ple 1. This is typical of a surface whose rulings are parallel to one of the coordinate axes.
If one of the variables x, y, or is missing from the equation of a surface, then the surface
is a cylinder.

EXAMPLE 2 Identify and sketch the surfaces.
(a) (b)

SOLUTION
(a) Since is missing and the equations , represent a circle with
radius 1 in the plane , the surface is a circular cylinder whose axis is
the -axis (see Figure 2). Here the rulings are vertical lines.

(b) In this case x is missing and the surface is a circular cylinder whose axis is the x-axis
(see Figure 3). It is obtained by taking the circle , in the -plane and
moving it parallel to the x-axis.

� NOTE ■■ When you are dealing with surfaces, it is important to recognize that an equation
like represents a cylinder and not a circle. The trace of the cylinder

in the -plane is the circle with equations , .

Q u a d r i c  S u r f a c e s

A quadric surface is the graph of a second-degree equation in three variables , , and .
The most general such equation is

Ax 2 � By 2 � Cz2 � Dxy � Eyz � Fxz � Gx � Hy � Iz � J � 0

zyx

z � 0x 2 � y 2 � 1xyx 2 � y 2 � 1
x 2 � y 2 � 1

FIGURE 2   ����� FIGURE 3   ������

�

	


�

�

	



yzx � 0y 2 � z2 � 1

z
x 2 � y 2 � 1z � k

z � kx 2 � y 2 � 1z

y 2 � z 2 � 1x 2 � y 2 � 1

z

FIGURE 1
The surface ���� is a parabolic cylinder. 
 	

�

�



where , , are constants, but by translation and rotation it can be brought into
one of the two standard forms

or

Quadric surfaces are the counterparts in three dimensions of the conic sections in the plane.
(See Section 10.5 for a review of conic sections.)

EXAMPLE 3 Use traces to sketch the quadric surface with equation

SOLUTION By substituting , we Þnd that the trace in the xy-plane is ,
which we recognize as an equation of an ellipse. In general, the horizontal trace in the
plane is

which is an ellipse, provided that , that is, .
Similarly, the vertical traces are also ellipses:

Figure 4 shows how drawing some traces indicates the shape of the surface. ItÕs called an
ellipsoid because all of its traces are ellipses. Notice that it is symmetric with respect to
each coordinate plane; this is a reßection of the fact that its equation involves only even
powers of x, y, and .

EXAMPLE 4 Use traces to sketch the surface .

SOLUTION If we put , we get , so the -plane intersects the surface in a
parabola. If we put (a constant), we get . This means that if we 
slice the graph with any plane parallel to the -plane, we obtain a parabola that opens
upward. Similarly, if , the trace is , which is again a parabola that
opens upward. If we put , we get the horizontal traces , which we
recognize as a family of ellipses. Knowing the shapes of the traces, we can sketch the
graph in Figure 5. Because of the elliptical and parabolic traces, the quadric surface

is called an elliptic paraboloid.

FIGURE 5
The surface ������  is an elliptic

paraboloid. Horizontal traces are ellipses;
vertical traces are parabolas. 
 	

�

�

z � 4x 2 � y 2

4x 2 � y 2 � kz � k
z � 4x 2 � k 2y � k

yz
z � y 2 � 4k 2x � k

yzz � y 2x � 0

z � 4x 2 � y 2

z

 x 2 �
z2

4
� 1 �

k 2

9
 y � k �if � 3 � k � 3�

 
y 2

9
�

z2

4
� 1 � k 2  x � k �if � 1 � k � 1�

� 2 � k � 2k 2 � 4

z � kx 2 �
y 2

9
� 1 �

k 2

4

z � k

x 2 � y 2� 9 � 1z � 0

x 2 �
y 2

9
�

z2

4
� 1

Ax 2 � By 2 � Iz � 0Ax 2 � By 2 � Cz2 � J � 0

C, . . . , JBA
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EXAMPLE 5 Sketch the surface .

SOLUTION The traces in the vertical planes are the parabolas , which
open upward. The traces in are the parabolas , which open down-
ward. The horizontal traces are , a family of hyperbolas. We draw the fami-
lies of traces in Figure 6, and we show how the traces appear when placed in their
correct planes in Figure 7.

In Figure 8 we Þt together the traces from Figure 7 to form the surface ,
a hyperbolic paraboloid. Notice that the shape of the surface near the origin resembles
that of a saddle. This surface will be investigated further in Section 14.7 when we dis-
cuss saddle points.

EXAMPLE 6 Sketch the surface .

SOLUTION The trace in any horizontal plane is the ellipse

x 2

4
� y 2 � 1 �

k 2

4
z � k

z � k

x 2

4
� y 2 �

z 2

4
� 1

FIGURE 8
The surface �����  is a

hyperbolic paraboloid.
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z � y 2 � x 2

y 2 � x 2 � k
z � � x 2 � k 2y � k

z � y 2 � k 2x � k

z � y 2 � x 2

FIGURE 6
Vertical traces are parabolas;
horizontal traces are hyperbolas.
All traces are labeled with the
value of k.

FIGURE 7
Traces moved to their
correct planes

Traces in 
��  are ����� �
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Traces in 	��
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Traces in ���
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In Module 12.6A you can investigate
how traces determine the shape of a
surface.



but the traces in the - and -planes are the hyperbolas

This surface is called a hyperboloid of one sheet and is sketched in Figure 9.

The idea of using traces to draw a surface is employed in three-dimensional graphing
software for computers. In most such software, traces in the vertical planes and

are drawn for equally spaced values of , and parts of the graph are eliminated using
hidden line removal. Table 1 shows computer-drawn graphs of the six basic types of
quadric surfaces in standard form. All surfaces are symmetric with respect to the -axis. If
a quadric surface is symmetric about a different axis, its equation changes accordingly.

z

ky � k
x � k

x 2

4
�

z 2

4
� 1 y � 0 and y2 �

z 2

4
� 1 x � 0

yzxz
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Surface Equation Surface Equation

Ellipsoid Cone

Elliptic Paraboloid Hyperboloid of One Sheet

Hyperbolic Paraboloid Hyperboloid of Two Sheets
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FIGURE 9

��������� ���������
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Horizontal traces are ellipses.

Vertical traces in the planes
and are

hyperbolas if but are
pairs of lines if .k � 0

k � 0
y � kx � k

z 2

c 2 �
x 2

a 2 �
y 2

b 2

All traces are ellipses.

If , the ellipsoid is
a sphere.

a � b � c

x 2

a 2 �
y 2

b 2 �
z 2

c 2 � 1

Horizontal traces are ellipses.

Vertical traces are hyperbolas.

The axis of symmetry
corresponds to the variable
whose coefÞcient is negative.

x 2

a 2 �
y 2

b 2 �
z 2

c 2 � 1

Horizontal traces are ellipses.

Vertical traces are parabolas.

The variable raised to the
Þrst power indicates the axis
of the paraboloid.

z

c
�

x 2

a 2 �
y 2

b 2

Horizontal traces in are
ellipses if or .

Vertical traces are hyperbolas.

The two minus signs indicate
two sheets.

k � � ck � c
z � k

�
x 2

a 2 �
y 2

b 2 �
z 2

c 2 � 1

Horizontal traces are
hyperbolas.

Vertical traces are parabolas.

The case where is
illustrated.

c � 0

z

c
�

x 2

a 2 �
y 2

b 2

TABLE 1 Graphs of quadric surfaces



SECTION 12.6 CYLINDERS AND QUADRIC SURFACES ❙ ❙ ❙ ❙ 837

EXAMPLE 7 Identify and sketch the surface .

SOLUTION Dividing by , we Þrst put the equation in standard form:

Comparing this equation with Table 1, we see that it represents a hyperboloid of two
sheets, the only difference being that in this case the axis of the hyperboloid is the 
-axis. The traces in the - and -planes are the hyperbolas

The surface has no trace in the -plane, but traces in the vertical planes for
are the ellipses

which can be written as

These traces are used to make the sketch in Figure 10.

EXAMPLE 8 Classify the quadric surface .

SOLUTION By completing the square we rewrite the equation as

Comparing this equation with Table 1, we see that it represents an elliptic paraboloid.
Here, however, the axis of the paraboloid is parallel to the -axis, and it has been shifted
so that its vertex is the point . The traces in the plane are the
ellipses

The trace in the -plane is the parabola with equation , . The
paraboloid is sketched in Figure 11.

z � 0y � 1 � � x � 3�2xy

y � k� x � 3�2 � 2z2 � k � 1

y � k �k � 1��3, 1, 0�
y

y � 1 � � x � 3�2 � 2z2

x 2 � 2z2 � 6x � y � 10 � 0

y � k
x 2

k 2

4
� 1

�
z 2

2�k 2

4
� 1� � 1

y � kx 2 �
z2

2
�

k 2

4
� 1

� k � � 2
y � kxz

 x � 0
y 2

4
�

z2

2
� 1and z � 0� x 2 �

 y 2

4
� 1

yzxyy

� x 2 �
y 2

4
�

z2

2
� 1

� 4

4x 2 � y 2 � 2z2 � 4 � 0

FIGURE 11
�������
�	�����
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FIGURE 10
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����������

5. 6.

7. 8.

(a) Find and identify the traces of the quadric surface
and explain why the graph looks like the

graph of the hyperboloid of one sheet in Table 1.
(b) If we change the equation in part (a) to ,

how is the graph affected?
(c) What if we change the equation in part (a) to

?x 2 � y2 � 2y � z2 � 0

x 2 � y2 � z2 � 1

x 2 � y2 � z2 � 1
9.

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

x 2 � y 2 � 1z � cos x

yz � 4x � y 2 � 01. (a) What does the equation represent as a curve in ?
(b) What does it represent as a surface in ?
(c) What does the equation represent?

2. (a) Sketch the graph of as a curve in .
(b) Sketch the graph of as a surface in .
(c) Describe and sketch the surface .

3–8 |||| Describe and sketch the surface.

3.

4. z � 4 � x 2

y 2 � 4z 2 � 4

z � e y
�3y � e x

�2y � e x

z � y 2
�3

�2y � x 2

|||| 12.6 Exercises

In Module 12.6B you can see how
changing , , and in Table 1 affects
the shape of the quadric surface.

cba



10. (a) Find and identify the traces of the quadric surface
and explain why the graph looks like

the graph of the hyperboloid of two sheets in Table 1.
(b) If the equation in part (a) is changed to ,

what happens to the graph? Sketch the new graph.

11–20 |||| Find the traces of the given surface in the planes ,
, . Then identify the surface and sketch it.

11. 12.

13. 14.

15. 16.

17. 18.

20.

21–28 |||| Match the equation with its graph (labeled IÐVIII). Give
reasons for your choices.

21. 22.

23. 24.

25. 26.

27. 28.

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

y � x 2 � z2x 2 � 2z2 � 1

y 2 � x 2 � 2z2y � 2x 2 � z2

� x 2 � y 2 � z2 � 1x 2 � y 2 � z2 � 1

9x 2 � 4y 2 � z2 � 1x 2 � 4y 2 � 9z2 � 1

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

16x 2 � y 2 � 4z2y � z2 � x 219.

x 2 � 4y 2 � z2 � 4x 2 � 4z2 � y � 0

25y 2 � z2 � 100 � 4x 2� x 2 � 4y 2 � z 2 � 4

z � x 2 � y 2y 2 � x 2 � z2

4y � x 2 � z 24x 2 � 9y 2 � 36z2 � 36

z � ky � k
x � k

x 2 � y2 � z2 � 1

� x 2 � y2 � z2 � 1
29–36 |||| Reduce the equation to one of the standard forms,
classify the surface, and sketch it.

29. 30.

31. 32.

33.

34.

35.

36.

� 37–40 |||| Use a computer with three-dimensional graphing soft-
ware to graph the surface. Experiment with viewpoints and with
domains for the variables until you get a good view of the surface.

37. 38.

39. 40.

41. Sketch the region bounded by the surfaces 
and for .

42. Sketch the region bounded by the paraboloids 
and .

43. Find an equation for the surface obtained by rotating the
parabola about the -axis.

44. Find an equation for the surface obtained by rotating the line
about the -axis.

45. Find an equation for the surface consisting of all points that 
are equidistant from the point and the plane .
Identify the surface.

46. Find an equation for the surface consisting of all points for
which the distance from to the -axis is twice the distance
from to the -plane. Identify the surface.

47. Show that if the point lies on the hyperbolic parabo-
loid , then the lines with parametric equations

, , and ,
, both lie entirely on this parabo-

loid. (This shows that the hyperbolic paraboloid is what is
called a ruled surface; that is, it can be generated by the
motion of a straight line. In fact, this exercise shows that
through each point on the hyperbolic paraboloid there are two
generating lines. The only other quadric surfaces that are ruled
surfaces are cylinders, cones, and hyperboloids of one sheet.)

48. Show that the curve of intersection of the surfaces
and 

lies in a plane.

� 49. Graph the surfaces and on a common
screen using the domain , and observe the
curve of intersection of these surfaces. Show that the projection
of this curve onto the -plane is an ellipse.xy

� y � � 1.2� x � � 1.2
z � 1 � y 2z � x 2 � y 2

2x 2 � 4y 2 � 2z2 � 5y � 0x 2 � 2y 2 � z2 � 3x � 1

z � c � 2�b � a�ty � b � t
x � a � tz � c � 2�b � a�ty � b � tx � a � t

z � y 2 � x 2
�a, b, c�

yzP
xP

P

x � 1� � 1, 0, 0�

xx � 3y

yy � x 2

z � 2 � x 2 � y 2
z � x 2 � y 2

1 � z � 2x 2 � y 2 � 1
z � � x 2 � y 2

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

z � y 2 � xyz2 � x 2 � 4y 2

8x 2 � 15y 2 � 5z2 � 100z � 3x 2 � 5y 2

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

x 2 � y 2 � z2 � 2x � 2y � 4z � 2 � 0

x 2 � y 2 � z 2 � 4x � 2y � 2z � 4 � 0

4y 2 � z 2 � x � 16y � 4z � 20 � 0

4x 2 � y 2 � 4z2 � 4y � 24z � 36 � 0

4x � y 2 � 4z2 � 0x � 2y 2 � 3z 2

x 2 � 2y 2 � 3z 2z 2 � 4x2 � 9y2 � 36
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|||| 12.7 C y l i n d r i c a l  a n d  S p h e r i c a l  C o o r d i n a t e s

Recall that in plane geometry we introduced the polar coordinate system in order to give
a convenient description of certain curves and regions. (See Section 10.3.) In three dimen-
sions there are two coordinate systems that are similar to polar coordinates and give 
convenient descriptions of some commonly occurring surfaces and solids. They will be
especially useful in Chapter 15 when we compute volumes and triple integrals.

C y l i n d r i c a l  C o o r d i n a t e s

In the cylindrical coordinate system, a point in three-dimensional space is represented
by the ordered triple , where and are polar coordinates of the projection of 
onto the -plane and is the directed distance from the -plane to (see Figure 1).

To convert from cylindrical to rectangular coordinates, we use the equations

whereas to convert from rectangular to cylindrical coordinates, we use

These equations follow from Equations 10.3.1 and 10.3.2.

EXAMPLE 1
(a) Plot the point with cylindrical coordinates and Þnd its rectangular 
coordinates.
(b) Find cylindrical coordinates of the point with rectangular coordinates .

SOLUTION
(a) The point with cylindrical coordinates is plotted in Figure 2. From
Equations 1, its rectangular coordinates are

Thus, the point is in rectangular coordinates.

(b) From Equations 2 we have

so

z � � 7

� �
7	
4

� 2n	tan � �
� 3

3
� � 1

r � � 32 � � � 3�2 � 3 � 2

(� 1, � 3, 1)

 z � 1

 y � 2 sin 
2	
3

� 2�� 3

2 �� � 3

 x � 2 cos 
2	
3

� 2��
1

2�� � 1

�2, 2	 � 3, 1�

�3, � 3, � 7�

�2, 2	 � 3, 1�

z � ztan � �
y

x
r 2 � x 2 � y 22

z � zy � r sin �x � r cos �1

Pxyzxy
P�r�r, � , z�

P

�

�

�




�

	
�

���������

� ���������

FIGURE 1
The cylindrical coordinates of a point

FIGURE 2
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Therefore, one set of cylindrical coordinates is . Another is
. As with polar coordinates, there are inÞnitely many choices.

Cylindrical coordinates are useful in problems that involve symmetry about an axis, and
the -axis is chosen to coincide with this axis of symmetry. For instance, the axis of the
circular cylinder with Cartesian equation is the -axis. In cylindrical coordi-
nates this cylinder has the very simple equation . (See Figure 3.) This is the reason
for the name ÒcylindricalÓcoordinates.

EXAMPLE 2 Describe the surface whose equation in cylindrical coordinates is .

SOLUTION The equation says that the -value, or height, of each point on the surface is the
same as r, the distance from the point to the -axis. Because doesnÕt appear, it can
vary. So any horizontal trace in the plane is a circle of radius k. These
traces suggest that the surface is a cone. This prediction can be conÞrmed by converting
the equation into rectangular coordinates. From the Þrst equation in (2) we have

We recognize the equation (by comparison with Table 1 in Section 12.6) as
being a circular cone whose axis is the -axis (see Figure 4).

EXAMPLE 3 Find an equation in cylindrical coordinates for the ellipsoid
.

SOLUTION Since from Equations 2, we have

So an equation of the ellipsoid in cylindrical coordinates is .

S p h e r i c a l  C o o r d i n a t e s

The spherical coordinates of a point in space are shown in Figure 5, where
is the distance from the origin to , is the same angle as in cylindrical coor-

dinates, and is the angle between the positive -axis and the line segment . Note that

The spherical coordinate system is especially useful in problems where there is symmetry
about a point, and the origin is placed at this point. For example, the sphere with center the
origin and radius has the simple equation (see Figure 6); this is the reason for 
the name ÒsphericalÓcoordinates. The graph of the equation is a vertical half-plane 

FIGURE 6   �� , a sphere FIGURE 7   �� , a half-plane
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FIGURE 8   !� , a half-cone
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� � c

 � cc

0 � � � 	
 � 0

OPz�
�P
 � � OP �
P� 
 , � , � �

z2 � 1 � 4r 2

z2 � 1 � 4� x 2 � y 2 � � 1 � 4r 2

r 2 � x 2 � y 2

4x 2 � 4y 2 � z2 � 1

z
z2 � x 2 � y 2

z2 � r 2 � x 2 � y 2

z � k �k � 0�
�z

z

z � r

r � c
zx 2 � y 2 � c 2

z

(3 � 2, � 	 � 4, � 7)
(3 � 2, 7	 � 4, � 7)
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FIGURE 4
��� , a cone
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FIGURE 5
The spherical coordinates of a point
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(see Figure 7), and the equation represents a half-cone with the -axis as its axis (see
Figure 8).

The relationship between rectangular and spherical coordinates can be seen from Fig-
ure 9. From triangles and we have

But and , so to convert from spherical to rectangular coordinates,
we use the equations

Also, the distance formula shows that

We use this equation in converting from rectangular to spherical coordinates.

EXAMPLE 4 The point is given in spherical coordinates. Plot the point and
Þnd its rectangular coordinates.

SOLUTION We plot the point in Figure 10. From Equations 3 we have

Thus, the point is in rectangular coordinates.

EXAMPLE 5 The point is given in rectangular coordinates. Find spherical
coordinates for this point.

SOLUTION From Equation 4 we have

and so Equations 3 give

(Note that because .) Therefore, spherical coordinates of the
given point are .�4, 	 � 2, 2	 � 3�

y � 2 � 3 � 0� � 3	 � 2

� �
	
2

 cos � �
x


 �sin �
� 0

� �
2	
3

 cos � �
z



�

� 2

4
� �

1

2


 � � x 2 � y 2 � z 2 � � 0 � 12 � 4 � 4

(0, 2 � 3, � 2)

(� 3� 2, � 3� 2, 1)�2, 	 � 4, 	 � 3�

 z � 
 �cos � � 2 cos 
	
3

� 2(1
2 ) � 1

 y � 
 �sin � �sin � � 2 sin 
	
3

 sin 
	
4

� 2�� 3

2 �� 1

� 2�� � 3

2

 x � 
  sin �  cos � � 2 sin 
	
3

 cos 
	
4

� 2�� 3

2 �� 1

� 2�� � 3

2

�2, 	 � 4, 	 � 3�


 2 � x 2 � y 2 � z24

z � 
 �cos �y � 
 �sin � � sin �x � 
 �sin � � cos �3

y � r sin �x � r cos �

r � 
 �sin �z � 
 �cos �

OPPOPQ

z� � c
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EXAMPLE 6 Find an equation in spherical coordinates for the hyperboloid of two sheets
with equation .

SOLUTION Substituting the expressions in Equations 3 into the given equation, we have

or

EXAMPLE 7 Find a rectangular equation for the surface whose spherical equation is
.

SOLUTION From Equations 4 and 3 we have

or

which is the equation of a sphere with center and radius .

EXAMPLE 8 Use a computer to draw a picture of the solid that remains when a hole of
radius 3 is drilled through the center of a sphere of radius 4.

SOLUTION To keep the equations simple, let’s choose the coordinate system so that the
center of the sphere is at the origin and the axis of the cylinder that forms the hole is the
-axis. We could use either cylindrical or spherical coordinates to describe the solid, but

the description is somewhat simpler if we use cylindrical coordinates. Then the equa-
tion of the cylinder is and the equation of the sphere is , or

. The points in the solid lie outside the cylinder and inside the sphere, so
they satisfy the inequalities

To ensure that the computer graphs only the appropriate parts of these surfaces, we find
where they intersect by solving the equations and :

The solid lies between and , so we ask the computer to graph the sur-
faces with the following equations and domains:

The resulting picture, shown in Figure 11, is exactly what we want.

 � � 7 � z � � 7 0 � � � 2� r � � 16 � z 2

 � � 7 � z � � 7 0 � � � 2� r � 3

z � � 7z � � � 7

z � � � 7 �  z2 � 7 �  16 � z2 � 9 �  � 16 � z 2 � 3

r � � 16 � z 2r � 3

3 � r � � 16 � z 2

r 2 � z2 � 16
x 2 � y 2 � z2 � 16r � 3

z

1
2(0, 12, 0)

x 2 � (y � 1
2 )2 � z2 � 1

4

x 2 � y 2 � z2 � � 2 � � �sin � � sin 	 � y

� � sin � � sin 	

 � 2�sin2	 � cos 2� � cos2	 � � 1

 � 2�sin2	 ��cos2� � sin2� � � cos2	 � � 1

 � 2 sin2	 � cos2� � � 2 sin2	 � sin2� � � 2 cos2	 � 1

x 2 � y 2 � z2 � 1

FIGURE 11

|||| Most three-dimensional graphing programs
can graph surfaces whose equations are given 
in cylindrical or spherical coordinates. As
Example 8 demonstrates, this is often the most
convenient way of drawing a solid.

In Module 12.7 you can investigate 
families of surfaces in cylindrical and
spherical coordinates.

3–8 |||| Plot the point whose cylindrical coordinates are given. Then
find the rectangular coordinates of the point.

3. 4.

5. 6. �1, � , e��3, 0, � 6�

�1, 3� � 2, 2��2, � � 4, 1�

1. What are cylindrical coordinates? For what types of surfaces do
they provide convenient descriptions?

2. What are spherical coordinates? For what types of surfaces do
they provide convenient descriptions?

|||| 12.7 Exercises
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7. 8.

9–12 |||| Change from rectangular to cylindrical coordinates.

10.

11. 12.

13–18 |||| Plot the point whose spherical coordinates are given.
Then Þnd the rectangular coordinates of the point.

14.

15. 16.

17. 18.

19–22 |||| Change from rectangular to spherical coordinates.

19. 20.

21. 22.

23–26 |||| Change from cylindrical to spherical coordinates.

23. 24.

25. 26.

27–30 |||| Change from spherical to cylindrical coordinates.

27. 28.

29. 30.

31–36 |||| Describe in words the surface whose equation is given.

31. 32.

33. 34.

36.

37–48 |||| Identify the surface whose equation is given.

37. 38.

39. 40.

42.

43. 44.

45.

46.

47. 48.
■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

� 2 � 6� � 8 � 0r 2 � r

� 2�sin2	 � 4 cos2	 � � 1

� 2�sin2	 �cos2� � cos2	 � � 4

r 2 � 2z2 � 4r 2 � z2 � 25

� � 2 cos 	r � 2 cos �41.

� �sin 	 � 2� �cos 	 � 2

r � 4 sin �z � r 2

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

� � � � 3	 � � � 335.

	 � � � 2	 � 0

� � 3r � 3

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

�4, � � 4, � � 3��8, � � 6, � � 2�

(2 � 2, 3� � 2, � � 2)�2, 0, 0�

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

�4, � � 8, 3�(� 3, � � 2, � 1)
(� 6, � � 4, � 2)(1, � � 6, � 3)

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

(� 1, 1, � 6)�0, � 1, � 1�

(0, � 3, 1)(1, � 3, 2� 3)

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

�2, � � 4, � � 3��2, � � 3, � � 4�

�5, � ,�� � 2��1, � � 6, � � 6�

�3, 0, � ��1, 0, 0�13.

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

�3, 4, 5�(� 1, � � 3, 2)
�3, 3, � 2��1, � 1, 4�9.

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

�5, � � 6, 6��4, � � � 3, 5� 49–56 |||| Write the equation (a) in cylindrical coordinates and 
(b) in spherical coordinates.

49. 50.

51. 52.

53. 54.

56.

57–62 |||| Sketch the solid described by the given inequalities.

57.

58. ,

59. , ,

60. ,

61. , ,

62. ,

63. A cylindrical shell is 20 cm long, with inner radius 6 cm and
outer radius 7 cm. Write inequalities that describe the shell in
an appropriate coordinate system. Explain how you have posi-
tioned the coordinate system with respect to the shell.

64. (a) Find inequalities that describe a hollow ball with diameter
30 cm and thickness 0.5 cm. Explain how you have posi-
tioned the coordinate system that you have chosen.

(b) Suppose the ball is cut in half. Write inequalities that
describe one of the halves.

A solid lies above the cone and below the
sphere . Write a description of the solid in
terms of inequalities involving spherical coordinates.

� 66. Use a graphing device to draw the solid enclosed by the parab-
oloids and .

� 67. Use a graphing device to draw a silo consisting of a cylinder
with radius 3 and height 10 surmounted by a hemisphere.

68. The latitude and longitude of a point in the Northern Hemi-
sphere are related to spherical coordinates , , as follows.
We take the origin to be the center of the Earth and the positive
-axis to pass through the North Pole. The positive -axis

passes through the point where the prime meridian (the merid-
ian through Greenwich, England) intersects the equator. Then
the latitude of is and the longitude is

. Find the great-circle distance from Los Ange-
les (lat. N, long. W) to MontrŽal (lat. N,
long. W). Take the radius of the Earth to be 3960 mi. 
(A great circle is the circle of intersection of a sphere and a
plane through the center of the sphere.)

73.60

45.50
118.25
34.06


� � 360
 � � 

� � 90
 � 	 
P

xz

	��
P

z � 5 � x 2 � y 2z � x 2 � y 2

x 2 � y 2 � z2 � z
z � � x 2 � y 265.

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

� � 20 � 	 � � � 3

0 � � � sec 	0 � 	 � � � 6� � � 2 � � � � � 2

� � 2 � 	 � �2 � � � 3

0 � � � � � 20 � 	 � � � 2� � 2

r � z � 20 � � � � � 2

r 2 � z � 2 � r 2

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

z � x 2 � y 2x 2 � y 2 � 2y55.

y 2 � z2 � 1x 2 � y 2 � 2z2 � 4

x 2 � y 2 � z 2 � 2z � 0x � 3

x 2 � y 2 � z 2 � 2z � x 2 � y 2
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� Families of Surfaces

In this project you will discover the interesting shapes that members of families of surfaces can
take. You will also see how the shape of the surface evolves as you vary the constants.

1. Use a computer to investigate the family of surfaces

How does the shape of the graph depend on the numbers and ?

2. Use a computer to investigate the family of surfaces . In particular, you
should determine the transitional values of for which the surface changes from one type of
quadric surface to another.

3. Members of the family of surfaces given in spherical coordinates by the equation

have been suggested as models for tumors and have been called bumpy spheres and wrinkled
spheres. Use a computer to investigate this family of surfaces, assuming that and are
positive integers. What roles do the values of and play in the shape of the surface?nm

nm

� � 1 � 0.2 sin m�  sin n	

c
z � x 2 � y 2 � cxy

ba

z � �ax 2 � by 2 �e � x 2� y 2

LABORATORY PROJECT

1. What is the difference between a vector and a scalar?

2. How do you add two vectors geometrically? How do you add
them algebraically?

3. If a is a vector and c is a scalar, how is ca related to a geo-
metrically? How do you Þnd ca algebraically?

4. How do you Þnd the vector from one point to another?

5. How do you Þnd the dot product of two vectors if you
know their lengths and the angle between them? What if you
know their components?

6. How are dot products useful?

7. Write expressions for the scalar and vector projections of b
onto a. Illustrate with diagrams.

8. How do you Þnd the cross product a  b of two vectors if you
know their lengths and the angle between them? What if you
know their components?

9. How are cross products useful?

10. (a) How do you Þnd the area of the parallelogram determined
by a and b?

(b) How do you Þnd the volume of the parallelepiped deter-
mined by a, b, and c?

11. How do you Þnd a vector perpendicular to a plane?

a � b

12. How do you Þnd the angle between two intersecting planes?

13. Write a vector equation, parametric equations, and symmetric
equations for a line.

14. Write a vector equation and a scalar equation for a plane.

15. (a) How do you tell if two vectors are parallel?
(b) How do you tell if two vectors are perpendicular?
(c) How do you tell if two planes are parallel?

16. (a) Describe a method for determining whether three points 
, , and lie on the same line.

(b) Describe a method for determining whether four points 
, , , and lie in the same plane.

17. (a) How do you Þnd the distance from a point to a line?
(b) How do you Þnd the distance from a point to a plane?
(c) How do you Þnd the distance between two lines?

18. What are the traces of a surface? How do you Þnd them?

19. Write equations in standard form of the six types of quadric
surfaces.

20. (a) Write the equations for converting from cylindrical to 
rectangular coordinates. In what situation would you use
cylindrical coordinates?

(b) Write the equations for converting from spherical to rectan-
gular coordinates. In what situation would you use spheri-
cal coordinates?

SRQP

RQP

|||| 12 Review
■■ C O N C E P T  C H E C K  ■■



1. (a) Find an equation of the sphere with center and
radius 3.

(b) Find the center and radius of the sphere

2. Copy the vectors in the Þgure and use them to draw each of the
following vectors.
(a) (b)
(c) (d)

3. If u and v are the vectors shown in the Þgure, Þnd and
. Is u  v directed into the page or out of it?

4. Calculate the given quantity if

(a) (b)
(c) (d)
(e) (f)
(g) (h)
(i) ( j)
(k) The angle between and (correct to the nearest degree)ba

proja bcomp a b
a  �b  c�c  c
a � �b  c�� b  c �
a  ba � b
� b �2a � 3b

c � j � 5kb � 3 i � 2 j � ka � i � j � 2k

���

�v ���

�u ���

� u  v �
u � v

a
b

2a � b� 1
2 a

a � ba � b

x 2 � y 2 � z2 � 4x � 6y � 10z � 2 � 0

�1, � 1, 2�

■■ E X E R C I S E S  ■■
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■■ T R U E - F A L S E  Q U I Z  ■■

Determine whether the statement is true or false. If it is true, explain why.
If it is false, explain why or give an example that disproves the statement.

1. For any vectors and in , .

2. For any vectors and in , .

3. For any vectors and in , .

4. For any vectors and in and any scalar ,
.

5. For any vectors and in and any scalar ,
.

6. For any vectors , , and in ,
.�u � v�  w � u  w � v  w

V3wvu

k�u  v� � �ku�  v
kV3vu

k�u � v� � �ku� � v
kV3vu

� u  v � � � v  u �V3vu

u  v � v  uV3vu

u � v � v � uV3vu

7. For any vectors , , and in , 
.

8. For any vectors , , and in ,
.

9. For any vectors and in , .

10. For any vectors and in , .

11. The cross product of two unit vectors is a unit vector.

12. A linear equation represents a line 
in space.

13. The set of points is a circle.

14. If and , then .u � v � � u1v1, u2v2 	v � � v1, v2 	u � � u1, u2 	

{� x, y, z� � x 2 � y 2 � 1}

Ax � By � Cz � D � 0

�u � v�  v � u  vV3vu

�u  v� � u � 0V3vu

u  �v  w� � �u  v�  w
V3wvu

u � �v  w� � �u  v� � w
V3wvu

5. Find the values of such that the vectors and
are orthogonal.

6. Find two unit vectors that are orthogonal to both 
and .

7. Suppose that . Find
(a) (b)
(c) (d)

8. Show that if , , and are in , then

9. Find the acute angle between two diagonals of a cube.

10. Given the points , , , and
, Þnd the volume of the parallelepiped with adjacent

edges , , and .

11. (a) Find a vector perpendicular to the plane through the points
, , and .

(b) Find the area of triangle .

12. A constant force moves an object along
the line segment from to . Find the work done
if the distance is measured in meters and the force in newtons.

13. A boat is pulled onto shore using two ropes, as shown in the
diagram. If a force of 255 N is needed, Þnd the magnitude of
the force in each rope.

�	�
�	�

���� N

�5, 3, 8��1, 0, 2�
F � 3 i � 5 j � 10k

ABC
C�1, 4, 3�B�2, 0, � 1�A�1, 0, 0�

ADACAB
D�0, 3, 2�

C� � 1, 1, 4�B�2, 3, 0�A�1, 0, 1�

�a  b� � �� b  c�  �c  a�� � �a � �b  c�� 2

V3cba

�u  v� � vv � �u  w�
u � �w  v��u  v� � w

u � �v  w� � 2

i � 2 j � 3k
j � 2k

� 2x, 4, x 	
� 3, 2, x 	x



14. Find the magnitude of the torque about if a 50-N force is
applied as shown.

15–17 |||| Find parametric equations for the line.

15. The line through and 

16. The line through and parallel to the line

17. The line through and perpendicular to the plane

18–20 |||| Find an equation of the plane.

18. The plane through and parallel to 

19. The plane through , , and 

20. The plane through that contains the line ,
, 

21. Find the point in which the line with parametric equations
, , intersects the plane

.

22. Find the distance from the origin to the line ,
, .

23. Determine whether the lines given by the symmetric 
equations

and

are parallel, skew, or intersecting.

24. (a) Show that the planes and
are neither parallel nor perpendicular.

(b) Find, correct to the nearest degree, the angle between these
planes.

2x � 3y � 4z � 5
x � y � z � 1

 
x � 1

6
�

y � 3

� 1
�

z � 5

2

 
x � 1

2
�

y � 2

3
�

z � 3

4

z � � 1 � 2ty � 2 � t
x � 1 � t

2x � y � z � 2
z � 4ty � 1 � 3tx � 2 � t

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

z � 1 � 3ty � 3 � t
x � 2t�1, 2, � 2�

�6, 3, 1��4, 0, 2��3, � 1, 1�

x � 4y � 3z � 1�2, 1, 0�

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

2x � y � 5z � 12
� � 2, 2, 4�

1
3 � x � 4� � 1

2 y � z � 2
�1, 0, � 1�

�1, 1, 5��4, � 1, 2�




�	� cm

�	� N
�	�

P 25. Find the distance between the planes 
and .

26–34 |||| Identify and sketch the graph of each surface.

26. 27.

28. 29.

30.

31.

32.

33.

34.

35. An ellipsoid is created by rotating the ellipse 
about the -axis. Find an equation of the ellipsoid.

36. A surface consists of all points such that the distance from 
to the plane is twice the distance from to the point

. Find an equation for this surface and identify it.

37. The cylindrical coordinates of a point are . Find
the rectangular and spherical coordinates of the point.

38. The rectangular coordinates of a point are . Find the
cylindrical and spherical coordinates of the point.

39. The spherical coordinates of a point are . Find the
rectangular and cylindrical coordinates of the point.

40–43 |||| Identify the surface whose equation is given.

40. 41.

42. 43.

44–46 |||| Write the equation in cylindrical coordinates and in
spherical coordinates.

44. 45.

46.

47. The parabola , is rotated about the -axis. Write
an equation of the resulting surface in cylindrical coordinates.

48. Sketch the solid consisting of all points with spherical coordi-
nates such that , , and

.0 � � � 2 cos 	
0 � 	 � � � 60 � � � � � 2� � , � , 	 �

zx � 0z � 4y 2

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

x 2 � y 2 � z2 � 2x

x 2 � y 2 � z2 � 4x 2 � y 2 � 4

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

� � 3 sec 	r � cos �

� � � � 4	 � � � 4

�8, � � 4, � � 6�

�2, 2, � 1�

(2� 3, � � 3, 2)
�0, � 1, 0�

Py � 1P
P

x
4x 2 � y 2 � 16

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

x � y2 � z2 � 2y � 4z � 5

4x 2 � 4y 2 � 8y � z 2 � 0

y 2 � z 2 � 1 � x 2

� 4x 2 � y 2 � 4z 2 � 4

4x � y � 2z � 4

x 2 � y 2 � 4z 2y � z 2

x � zx � 3

3x � y � 4z � 24
3x � y � 4z � 2
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1. Each edge of a cubical box has length 1 m. The box contains nine spherical balls with the
same radius . The center of one ball is at the center of the cube and it touches the other eight
balls. Each of the other eight balls touches three sides of the box. Thus, the balls are tightly
packed in the box. (See the Þgure.) Find . (If you have trouble with this problem, read about
the problem-solving strategy entitled Use analogy on page 80.)

2. Let be a solid box with length , width , and height . Let be the set of all points that
are a distance at most 1 from some point of . Express the volume of in terms of , , 
and .

3. Let be the line of intersection of the planes and , 
where is a real number.
(a) Find symmetric equations for .
(b) As the number varies, the line sweeps out a surface . Find an equation for the curve

of intersection of with the horizontal plane (the trace of in the plane ).
(c) Find the volume of the solid bounded by and the planes and .

4. A plane is capable of ßying at a speed of 180 km� h in still air. The pilot takes off from an
airÞeld and heads due north according to the planeÕs compass. After 30 minutes of ßight time,
the pilot notices that, due to the wind, the plane has actually traveled 80 km at an angle 5¡ east
of north.
(a) What is the wind velocity?
(b) In what direction should the pilot have headed to reach the intended destination?

5. Suppose a block of mass is placed on an inclined plane, as shown in the Þgure. The blockÕs
descent down the plane is slowed by friction; if is not too large, friction will prevent the
block from moving at all. The forces acting on the block are the weight , where 
( is the acceleration due to gravity); the normal force (the normal component of the reac-
tionary force of the plane on the block), where ; and the force F due to friction,
which acts parallel to the inclined plane, opposing the direction of motion. If the block is at
rest and is increased, must also increase until ultimately reaches its maximum,
beyond which the block begins to slide. At this angle , it has been observed that is
proportional to . Thus, when is maximal, we can say that , where is 
called the coefficient of static friction and depends on the materials that are in contact.
(a) Observe that N � F � W � 0 and deduce that .
(b) Suppose that, for , an additional outside force is applied to the block, horizontally

from the left, and let . If is small, the block may still slide down the plane; if 
is large enough, the block will move up the plane. Let be the smallest value of that
allows the block to remain motionless (so that is maximal).

By choosing the coordinate axes so that lies along the -axis, resolve each force into
components parallel and perpendicular to the inclined plane and show that

and

(c) Show that

Does this equation seem reasonable? Does it make sense for ? As ?
Explain.

(d) Let be the largest value of that allows the block to remain motionless. (In which
direction is heading?) Show that

Does this equation seem reasonable? Explain.

hmax � m �  tan� � � � s�

F
hhmax

� � 90
� � � s

hmin � m �  tan� � � � s�

hmin cos � � � s n � m�  sin �hmin sin � � m �  cos � � n

xF
� F �

hhmin

hh� H � � h
H� � � s

� s � tan � s

� s� F � � � s n� F �n
� F �� s

� F �� F ��

� N � � n
N�

� W � � m�W
�

m

z � 1z � 0S
z � tSz � tS

SLc
L

c
x � cy � cz � � 1cx � y � z � cL

H
WLSB

SHWLB

r

r

PROBLEMS 
PLUS

�

N F

W

FIGURE FOR PROBLEM 5

1 m

1 m
1 m1 m
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EXAMPLE 1
(a) Find the derivative of .
(b) Find the unit tangent vector at the point where .

SOLUTION
(a) According to Theorem 2, we differentiate each component of r :

(b) Since and , the unit tangent vector at the point is

EXAMPLE 2For the curve , Þnd and sketch the position vector
and the tangent vector .

SOLUTIONWe have

The curve is a plane curve and elimination of the parameter from the equations ,
gives , . In Figure 2 we draw the position vector

starting at the origin and the tangent vector starting at the corresponding point .

EXAMPLE 3Find parametric equations for the tangent line to the helix with parametric
equations

at the point .

SOLUTIONThe vector equation of the helix is , so

The parameter value corresponding to the point is , so the tangent
vector there is . The tangent line is the line through 
parallel to the vector , so by Equations 12.5.2 its parametric equations are

Just as for real-valued functions, the second derivativeof a vector function r is the
derivative of , that is, . For instance, the second derivative of the function in
Example 3 is

A curve given by a vector function on an interval is called smoothif is contin-
uous and (except possibly at any endpoints of ). For instance, the helix in
Example 3 is smooth because is never 0.

EXAMPLE 4Determine whether the semicubical parabola is smooth.r �t� � � 1 � t 3, t 2 �

r �� t�
Ir �� t� � 0

r �Ir �t�

r � � t� � � � 2 cos t, � sin t, 0�

r � � �r � � �r �

� �
�
2

� ty � 1x � � 2t

� � 2, 0, 1�
�0, 1, � � 2�r �� � � 2� � � � 2, 0, 1�

t � � � 2�0, 1, � � 2�

r �� t� � � � 2 sin t, cos t, 1�

r �t� � � 2 cos t, sin t, t �

�0, 1, � � 2�

� � ty � sin tx � 2 cos t

�1, 1�r ��1�
r �1� � i � jx � 0y � 2 � x2y � 2 � t

x � � t

r ��1� �
1
2

 i � jandr ��t� �
1

2� t
 i � j

r ��1�r �1�
r �� t�r �t� � � t i � �2 � t�  j

T�0� �
r ��0�

� r ��0� �
�

j � 2k
� 1 � 4

�
1

� 5
 j �

2
� 5

 k

�1, 0, 0�r ��0� � j � 2kr �0� � i

r �� t� � 3t2 i � �1 � t�e� t j � 2 cos 2t k

t � 0
r �t� � �1 � t 3�

 

i � te� t j � sin 2t k

FIGURE 3
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�
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�

�
��

�
�
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|||| The helix and the tangent line in Example 3
are shown in Figure 3.

�

�

�

��

r �� r ���

�����

FIGURE 2



SOLUTIONSince

we have and, therefore, the curve is not smooth. The point that cor-
responds to is (1, 0), and we see from the graph in Figure 4 that there is a sharp
corner, called a cusp, at (1, 0). Any curve with this type of behaviorÑ an abrupt change
in directionÑ is not smooth.

A curve, such as the semicubical parabola, that is made up of a Þnite number of smooth
pieces is called piecewise smooth.

Differentiation Rules

The next theorem shows that the differentiation formulas for real-valued functions have
their counterparts for vector-valued functions.

TheoremSuppose and are differentiable vector functions, is a scalar, and
is a real-valued function. Then

1.

2.

3.

4.

5.

6. (Chain Rule)

This theorem can be proved either directly from DeÞnition 1 or by using Theorem 2 and
the corresponding differentiation formulas for real-valued functions. The proofs of Formulas
1, 2, 3, 5, and 6 are left as exercises.

Proof of Formula 4Let

Then

so the ordinary Product Rule gives

 � u��t� � v�t� � u�t� � v��t�

 � �
3

i� 1
 f �i � t� � i � t� � �

3

i� 1
 fi � t� � �i � t�

 � �
3

i� 1
 	 f �i � t� � i � t� � fi � t� � �i � t�


 
d
dt

 	u�t� � v�t�
 �
d
dt

 �
3

i� 1
 fi � t� � i � t� � �

3

i� 1
 
d
dt

 	 fi � t� � i � t�


u�t� � v�t� � f1�t� � 1� t� � f2�t� � 2� t� � f3�t� � 3� t� � �
3

i� 1
 fi� t� � i� t�

v�t� � � � 1� t� , � 2� t� , � 3�t� �u�t� � � f1�t� , f2�t� , f3�t� �

d
dt

 	u� f �t��
 � f �� t� u�� f � t��

d
dt

 	u�t� � v�t�
 � u��t� � v�t� � u�t� � v��t�

d
dt

 	u�t� � v�t�
 � u��t� � v�t� � u�t� � v��t�

d
dt

 	 f � t� u�t�
 � f �� t� u�t� � f � t� u��t�

d
dt

 	cu�t�
 � cu��t�

d
dt

 	u�t� � v�t�
 � u��t� � v��t�

f
cvu3

t � 0
r ��0� � � 0, 0� � 0

r ��t� � � 3t2, 2t �
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�

���

cusp

FIGURE 4
The curve r ��� k��� ���� � l
is not smooth.
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EXAMPLE 5Show that if (a constant), then is orthogonal to for all .

SOLUTIONSince

and is a constant, Formula 4 of Theorem 3 gives

Thus, , which says that is orthogonal to .
Geometrically, this result says that if a curve lies on a sphere with center the origin,

then the tangent vector is always perpendicular to the position vector .

Integrals

The deÞnite integralof a continuous vector function can be deÞned in much the same
way as for real-valued functions except that the integral is a vector. But then we can
express the integral of in terms of the integrals of its component functions , , and as
follows. (We use the notation of Chapter 5.)

and so

This means that we can evaluate an integral of a vector function by integrating each com-
ponent function.

We can extend the Fundamental Theorem of Calculus to continuous vector functions as
follows:

where is an antiderivative of , that is, . We use the notation for
indeÞnite integrals (antiderivatives).

EXAMPLE 6If , then

where is a vector constant of integration, and

�
� � 2

0
 r �t�  dt � [2 sin t i � cos t j � t 2 k]0

� � 2
� 2i � j �

� 2

4
 k

C

 � 2 sin t i � cos t j � t 2 k � C

 �  r �t�  dt � ��  2 cos t dt� i � ��  sin t dt� j � ��  2t dt� k

r �t� � 2 cos t i � sin t j � 2t k

�  r �t�  dtR��t� � r � t�rR

�
b

a
 r �t�  dt � R�t�]b

a � R�b� � R�a�

�
b

a
 r �t�  dt � �� b

a
 f �t�  dt� i � �� b

a
 � � t�  dt� j � �� b

a
 h�t� dt� k

 � lim 
n� 	

 ��
n

i� 1
 f � t*i �  
 t� i � ��

n

i� 1
 � � t*i �  
 t� j � ��

n

i� 1
 h�t*i �  
 t� k�

 �
b

a
 r �t�  dt � lim 

n� 	
 �

n

i� 1
 r �t*i �  
 t

h�fr

r �t�

r �t�r �� t�

r � t�r �� t�r �� t� � r � t� � 0

0 �
d
dt

 	r �t� � r � t�
 � r �� t� � r � t� � r � t� � r �� t� � 2r ��t� � r � t�

c2

r �t� � r � t� � � r � t� �2 � c2

tr �t�r �� t�� r � t� � � c
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12.

13.

14.

16.

17Ð20|||| Find the unit tangent vector at the point with the
given value of the parameter .

17. ,

18. ,

,

20. ,

21. If , Þnd and 

22. If , Þnd , , and 

23Ð26|||| Find parametric equations for the tangent line to the
curve with the given parametric equations at the speciÞed point.

23. ; (1, 1, 1)

24. ;

, , ;

26. , , ;

� 27Ð28|||| Find parametric equations for the tangent line to the
curve with the given parametric equations at the speciÞed point.
Illustrate by graphing both the curve and the tangent line on a com-
mon screen.

27. , , ;

28. , , ;

Determine whether the curve is smooth.
(a) (b)
(c)

30. (a) Find the point of intersection of the tangent lines to the
curve at the points where

and .
� (b) Illustrate by graphing the curve and both tangent lines.

31. The curves and inter-
sect at the origin. Find their angle of intersection correct to the
nearest degree.

32. At what point do the curves and
intersect? Find their angle of inter-

section correct to the nearest degree.
r 2�s� � � 3 � s, s � 2, s2 �

r 1�t� � � t, 1 � t, 3 � t 2 �

r 2�t� � � sin t, sin 2t, t �r 1�t� � � t, t 2, t 3 �

t � 0.5t � 0
r �t� � � sin � t, 2 sin � t, cos � t �

r �t� � � cos3t, sin3t �
r �t� � � t 3 � t, t 4, t 5 �r �t� � � t 3, t 4, t 5 �

29.

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

�1, 3, 3�� � 3e� 2ty � 3e2tx � cos t

� � � 4, 1, 1�� � � 2 sin ty � � 2 cos tx � t

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

�0, 2, 1�� � t 2y � 2� tx � ln t

�1, 0, 1�� � e� ty � e� t sin tx � e� t cos t25.

�� 1, 1, 1�x � t 2 � 1, y � t 2 � 1, � � t � 1

x � t 5, y � t 4, � � t 3

r �� t� � r � � t� .r � �0�T�0�r �t� � � e2t, e� 2t, te2t �

r �� t� � r � � t� .r �� t� , T�1�, r � � t� , r �t� � � t, t 2, t 3 �

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

t � � � 4r �t� � 2 sin t i � 2 cos t j � tan t k

t � 0r �t� � cos t i � 3t j � 2 sin 2t k19.

t � 1r �t� � 4� t i � t 2 j � t k

t � 1r �t� � � 6t 5, 4t 3, 2t �

t
T�t�

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

r � t� � t a � �b � t c�

r �t� � a � t b � t 2 c15.

r �t� � at cos 3t i � b sin3t j � c cos3t k

r �t� � et 2

i � j � ln�1 � 3t�  k

r �t� � sin� 1t i � � 1 � t 2 j � kThe Þgure shows a curve given by a vector function .
(a) Draw the vectors and .
(b) Draw the vectors

(c) Write expressions for and the unit tangent vector T(4).
(d) Draw the vector T(4).

2. (a) Make a large sketch of the curve described by the vector
function , , and draw the vectors
r (1), r (1.1), and r (1.1) � r (1).

(b) Draw the vector starting at (1, 1) and compare it with
the vector

Explain why these vectors are so close to each other in
length and direction.

3Ð8 ||||

(a) Sketch the plane curve with the given vector equation.
(b) Find .
(c) Sketch the position vector and the tangent vector for

the given value of .

3. ,

4. ,

,

6. ,

7. ,

8. ,

9Ð16 |||| Find the derivative of the vector function.

9. 10.

11. r �t� � i � j � e4t k

r �t� � � cos 3t, t, sin 3t �r �t� � � t 2, 1 � t, � t �

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

t � � � 3r �t� � 2 sin t i � 3 cos t j

t � 0r �t� � et i � e3t j

t � 0r �t� � et i � e� t j

t � 1r �t� � �1 � t� i � t 2 j5.

t � 1r �t� � � 1 � t, � t �
t � � � 4r �t� � � cos t, sin t �

t
r �� t�r � t�

r �� t�

r �1.1� � r �1�
0.1

r ��1�

0 � t � 2r �t� � � t 2, t �

�

�� �

�

��

�

�

r 
���

r 
���

r 
�

r ��4�

r �4.2� � r �4�
0.2

and
r �4.5� � r �4�

0.5

r �4.2� � r �4�r �4.5� � r �4�
r �t�C1.

|||| 13.2 Exercises
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|||| 13.3 Arc Length and Curvature

In Section 10.2 we deÞned the length of a plane curve with parametric equations ,
, , as the limit of lengths of inscribed polygons and, for the case where

and are continuous, we arrived at the formula

The length of a space curve is deÞned in exactly the same way (see Figure 1). Suppose
that the curve has the vector equation , , or, equivalently,
the parametric equations , , , where , , and are continuous.
If the curve is traversed exactly once as increases from to , then it can be shown that
its length is

Notice that both of the arc length formulas (1) and (2) can be put into the more com-
pact form

L � �
b

a
 � r �� t� � dt3

 � �
b

a
 � �dx

dt�
2

� �dy
dt�

2

� �d�
dt�

2

 dt

 L � �
b

a
 � 	 f �� t�
 2 � 	 � �� t�
 2 � 	h��t�
 2 dt2

bat
h�� �f �� � h�t�y � � � t�x � f � t�

a � t � br �t� � � f � t� , � � t� , h�t� �

L � �
b

a
 � 	 f �� t�
 2 � 	 � �� t�
 2 dt � �

b

a
 � �dx

dt�2

� �dy
dt�2

 dt1

� �f �
a � t � by � � �t�

x � f � t�

FIGURE 1
The length of a space curve is the limit
of lengths of inscribed polygons.

�

�

�
�

33Ð38|||| Evaluate the integral.

33.

34.

35.

36.

37.

38.

Find if and .

40. Find if and
.

41. Prove Formula 1 of Theorem 3.

42. Prove Formula 3 of Theorem 3.

r �0� � i � j � 2k
r ��t� � sin t i � cos t j � 2t kr �t�

r �0� � jr �� t� � t 2 i � 4t 3 j � t 2 kr �t�39.

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

�  �cos � t i � sin � t j � t k� dt

�  �et i � 2t j � ln t k� dt

�
4

1
 �� t i � te� t j �

1
t 2  k� dt

�
� � 2

0
 �3 sin2t cos t i � 3 sin t cos2t j � 2 sin t cos t k� dt

�
1

0
 � 4

1 � t 2  j �
2t

1 � t 2  k� dt

�
1

0
 �16t3 i � 9t2 j � 25t 4 k� dt

43. Prove Formula 5 of Theorem 3.

44. Prove Formula 6 of Theorem 3.

45. If and 
Þnd .

46. If and are the vector functions in Exercise 45,Þnd
.

47. Show that if is a vector function such that exists, then

48. Find an expression for .

If , show that .

[Hint: ]
50. If a curve has the property that the position vector is

always perpendicular to the tangent vector , show that 
the curve lies on a sphere with center the origin.

51. If , show that

u��t� � r �t� � 	r �� t� � r � � t�


u�t� � r �t� � 	r �� t� � r � � t�


r �� t�
r � t�

� r � t� �2 � r �t� � r � t�

d
dt

 � r �t� � �
1

� r �t� �
 r �t� � r �� t�r � t� � 049.

d
dt

 	u�t� � �v�t� � w�t��


d
dt

 	r �t� � r �� t�
 � r � t� � r � � t�

r �r

�d� dt� 	u�t� � v�t�

vu

�d� dt� 	u�t� � v�t�

v�t� � t i � cos t j � sin t k ,u�t� � i � 2t 2 j � 3t 3 k
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because, for plane curves ,

whereas, for space curves ,

EXAMPLE 1Find the length of the arc of the circular helix with vector equation
from the point to the point .

SOLUTIONSince , we have

The arc from to is described by the parameter interval 
and so, from Formula 3, we have

A single curve can be represented by more than one vector function. For instance, the
twisted cubic

could also be represented by the function

where the connection between the parameters and is given by . We say that
Equations 4 and 5 are parametrizations of the curve . If we were to use Equation 3 to
compute the length of using Equations 4 and 5, we would get the same answer. In gen-
eral, it can be shown that when Equation 3 is used to compute the length of any piecewise-
smooth curve, the arc length is independent of the parametrization that is used.

Now we suppose that is a piecewise-smooth curve given by a vector function
, , and is traversed exactly once as increases

from to . We deÞne its arc length function by

Thus, is the length of the part of between and . (See Figure 3.) If we differ-
entiate both sides of Equation 6 using Part 1 of the Fundamental Theorem of Calculus, we
obtain

It is often useful to parametrize a curve with respect to arc lengthbecause arc length
arises naturally from the shape of the curve and does not depend on a particular coordinate
system. If a curve is already given in terms of a parameter and is the arc length
function given by Equation 6, then we may be able to solve for as a function of :
Then the curve can be reparametrized in terms of by substituting for : . Thus,
if s � 3 for instance, is the position vector of the point 3 units of length along the
curve from its starting point.

r �t�3��
r � r �t�s��ts

t � t�s�.st
s�t�tr �t�

ds
dt

� � r �� t� �7

r �t�r �a�Cs�t�

s�t� � �
t

a
 � r ��u� � du � �

t

a
 � �dx

du�
2

� �dy
du�

2

� �d�
du�

2

 du6

sba
tCa � t � br �t� � f � t� i � � � t� j � h�t� k

C

C
C

t � euut

0 � u � ln 2r 2�u� � � eu, e2u, e3u�5

1 � t � 2r 1�t� � � t, t 2, t 3 �4

C

L � �
2�

0
 � r �� t� � dt � �

2�

0
 � 2 dt � 2� 2�

0 � t � 2��1, 0, 2� ��1, 0, 0�

� r �� t� � � � � � sin t�2 � cos2t � 1 � � 2

r ��t� � � sin t i � cos t j � k

�1, 0, 2� ��1, 0, 0�r �t� � cos t i � sin t j � t k

� r �� t� � � � f �� t� i � � �� t� j � h��t� k � � � 	 f �� t�
 2 � 	 � �� t�
 2 � 	h��t�
 2

r �t� � f � t� i � � � t� j � h�t� k

� r �� t� � � � f �� t� i � � �� t� j � � � 	 f �� t�
 2 � 	 � �� t�
 2

r �t� � f � t� i � � � t� j

|||| Piecewise-smooth curves were introduced on
page 859.

FIGURE 3

�

�

�
�

�

r ��

r ��

���

|||| Figure 2 shows the arc of the helix whose
length is computed in Example 1.

�

� �

FIGURE 2

��������

���������



EXAMPLE 2Reparametrize the helix with respect to arc
length measured from in the direction of increasing .

SOLUTIONThe initial point corresponds to the parameter value . From
Example 1 we have

and so

Therefore, and the required reparametrization is obtained by substituting for :

Curvature

If is a smooth curve deÞned by the vector function , then . Recall that the unit
tangent vector is given by

and indicates the direction of the curve. From Figure 4 you can see that changes direc-
tion very slowly when is fairly straight, but it changes direction more quickly when 
bends or twists more sharply.

The curvature of at a given point is a measure of how quickly the curve changes direc-
tion at that point. SpeciÞcally, we deÞne it to be the magnitude of the rate of change of the
unit tangent vector with respect to arc length. (We use arc length so that the curvature will
be independent of the parametrization.)

Definition The curvature of a curve is

where is the unit tangent vector.

The curvature is easier to compute if it is expressed in terms of the parameter instead
of , so we use the Chain Rule (Theorem 13.2.3, Formula 6) to write

But from Equation 7, so

EXAMPLE 3Show that the curvature of a circle of radius is .1� aa

 �t� � � T��t� �
� r �� t� �9

ds� dt � � r �� t� �

 � � dT
ds � � � dT� dt

ds� dt �and
dT
dt

�
dT
ds

 
ds
dt

s
t

T

 � � dT
ds �

8

C

CC
T�t�

T�t� �
r �� t�

� r �� t� �
 

T�t�
r �� t� � 0rC

r �t�s�� � cos(s� � 2) i � sin(s� � 2) j � (s� � 2) k

tt � s� � 2

s � s�t� � �
t

0
 � r ��u� � du � �

t

0
 � 2 du � � 2t

ds
dt

� � r �� t� � � � 2

t � 0�1, 0, 0�

t�1, 0, 0�
r �t� � cos t i � sin t j � t k

864 � � � � CHAPTER 13VECTOR FUNCTIONS

FIGURE 4
Unit tangent vectors at equally spaced
points on C

�

�

� �
�

Visual 13.3A shows animated unit tan-
gent vectors, like those in Figure 4, for a
variety of plane curves and space curves.
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SOLUTIONWe can take the circle to have center the origin, and then a parametrization is

Therefore

so

and

This gives , so using Equation 9, we have

The result of Example 3 shows that small circles have large curvature and large circles
have small curvature, in accordance with our intuition. We can see directly from the deÞ-
nition of curvature that the curvature of a straight line is always 0 because the tangent vec-
tor is constant.

Although Formula 9 can be used in all cases to compute the curvature, the formula
given by the following theorem is often more convenient to apply.

TheoremThe curvature of the curve given by the vector function is

Proof Since and , we have

so the Product Rule (Theorem 13.2.3, Formula 3) gives

Using the fact that (see Example 2 in Section 12.4), we have

Now for all , so and are orthogonal by Example 5 in Section 13.2.
Therefore, by Theorem 12.4.6,

Thus

and  � � T� �
� r � �

� � r � � r � �
� r � �3

� T� � � � r � � r � �
�ds� dt�2 � � r � � r � �

� r � �2
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EXAMPLE 4Find the curvature of the twisted cubic at a general point
and at .

SOLUTIONWe Þrst compute the required ingredients:

Theorem 10 then gives

At the origin the curvature is .

For the special case of a plane curve with equation , we can choose as the
parameter and write . Then and .
Since and , we have . We also have

and so, by Theorem 10,

EXAMPLE 5Find the curvature of the parabola at the points , ,
and .

SOLUTIONSince and , Formula 11 gives

The curvature at is . At it is . At it is
. Observe from the expression for or the graph of in Fig-

ure 5 that as . This corresponds to the fact that the parabola appears
to become ßatter as .

The Normal and Binormal Vectors

At a given point on a smooth space curve , there are many vectors that are orthogonal
to the unit tangent vector . We single out one by observing that, since for
all , we have by Example 5 in Section 13.2, so is orthogonal to T��t�T�t� � T��t� � 0t

� T�t� � � 1T�t�
r �t�

x �  �	
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FIGURE 5
The parabola ���  and its
curvature function
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. Note that is itself not a unit vector. But if is also smooth, we can deÞne the
principal unit normal vector (or simply unit normal ) as

The vector is called the binormal vector. It is perpendicular to both 
and and is also a unit vector. (See Figure 6.)

EXAMPLE 6Find the unit normal and binormal vectors for the circular helix

SOLUTIONWe Þrst compute the ingredients needed for the unit normal vector:

This shows that the normal vector at a point on the helix is horizontal and points toward
the -axis. The binormal vector is

The plane determined by the normal and binormal vectors and at a point on a
curve is called the normal plane of at . It consists of all lines that are orthogonal 
to the tangent vector . The plane determined by the vectors and is called the oscu-
lating plane of at . The name comes from the Latin osculum, meaning Òkiss.ÓIt is the
plane that comes closest to containing the part of the curve near . (For a plane curve, the
osculating plane is simply the plane that contains the curve.)

The circle that lies in the osculating plane of at , has the same tangent as at , lies
on the concave side of (toward which points), and has radius (the reciprocal
of the curvature) is called the osculating circle(or the circle of curvature) of at . It is
the circle that best describes how behaves near ; it shares the same tangent, normal,
and curvature at .

EXAMPLE 7Find the equations of the normal plane and osculating plane of the helix in
Example 6 at the point .

SOLUTIONThe normal plane at has normal vector , so an equation
is
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FIGURE 7

|||| We can think of the normal vector as indi-
cating the direction in which the curve is turning 
at each point.

N��

T��
B��

FIGURE 6

|||| Figure 7 illustrates Example 6 by showing
the vectors , , and at two locations on the
helix. In general, the vectors , , and , start-
ing at the various points on a curve, form a set of
orthogonal vectors, called the frame, that
moves along the curve as varies. This 
frame plays an important role in the branch of
mathematics known as differential geometry and
in its applications to the motion of spacecraft.

TNBt
TNB

BNT
BNT

Visual 13.3B shows how the TNB frame
moves along several curves.
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The osculating plane at contains the vectors and , so its normal vector is
. From Example 6 we have

A simpler normal vector is , so an equation of the osculating plane is

EXAMPLE 8Find and graph the osculating circle of the parabola at the origin.

SOLUTIONFrom Example 5 the curvature of the parabola at the origin is . So the
radius of the osculating circle at the origin is and its center is . Its equation
is therefore

For the graph in Figure 9 we use parametric equations of this circle:

We summarize here the formulas for unit tangent, unit normal and binormal vectors,
and curvature.
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So far we have dealt with the calculus of functions of a single

variable. But, in the real world, physical quantities often

depend on two or more variables, so in this chapter we turn

our attention to functions of several variables and extend the

basic ideas of differential calculus to such functions.

|||| 14.1 Functions of Several Variables

In this section we study functions of two or more variables from four points of view:

�� verbally (by a description in words)

�� numerically (by a table of values)

�� algebraically (by an explicit formula)

�� visually (by a graph or level curves)

Functions of Two Variables

The temperature at a point on the surface of the Earth at any given time depends on the
longitude and latitude of the point. We can think of as being a function of the two
variables and , or as a function of the pair . We indicate this functional dependence
by writing .

The volume of a circular cylinder depends on its radius and height . In fact, we
know that . We say that is a function of and , and we write .

Definition A function f of two variables is a rule that assigns to each ordered pair
of real numbers in a set a unique real number denoted by . The set

is the domain of and its range is the set of values that takes on, that is,
.

We often write to make explicit the value taken on by at the general point
. The variables and are independent variablesand is the dependent variable.

[Compare this with the notation for functions of a single variable.]
A function of two variables is just a function whose domain is a subset of and whose

range is a subset of . One way of visualizing such a function is by means of an arrow dia-
gram (see Figure 1), where the domain is represented as a subset of the -plane.

FIGURE 1
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If a function is given by a formula and no domain is speciÞed, then the domain of 
is understood to be the set of all pairs for which the given expression is a well-
deÞned real number.

EXAMPLE 1Find the domains of the following functions and evaluate .

(a) (b)

SOLUTION

(a)

The expression for makes sense if the denominator is not 0 and the quantity under the
square root sign is nonnegative. So the domain of is

The inequality , or , describes the points that lie on or above
the line , while means that the points on the line must be
excluded from the domain. (See Figure 2.)

(b)

Since is deÞned only when , that is, , the domain of is
. This is the set of points to the left of the parabola . (See

Figure 3.)

Not all functions are given by explicit formulas. The function in the next example is
described verbally and by numerical estimates of its values.

EXAMPLE 2In regions with severe winter weather, the wind-chill indexis often used to
describe the apparent severity of the cold. This index W is a subjective temperature that
depends on the actual temperature T and the wind speed . So W is a function of T and ,
and we can write . Table 1 records values of W compiled by the National
Weather Service of the U.S. and the Meteorological Service of Canada.
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|||| THE NEW WIND-CHILL INDEX
A new wind-chill index was introduced in
November of 2001 and is more accurate than the
old index at measuring how cold it feels when
itÕs windy. The new index is based on a model of
how fast a human face loses heat. It was devel-
oped through clinical trials in which volunteers
were exposed to a variety of temperatures and
wind speeds in a refrigerated wind tunnel.
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TABLE 1
Wind-chill index as a function of air

temperature and wind speed



For instance, the table shows that if the temperature is and the wind speed is
50 km� h, then subjectively it would feel as cold as a temperature of about with
no wind. So

EXAMPLE 3In 1928 Charles Cobb and Paul Douglas published a study in which they
modeled the growth of the American economy during the period 1899Ð1922. They con-
sidered a simpliÞed view of the economy in which production output is determined by
the amount of labor involved and the amount of capital invested. While there are many
other factors affecting economic performance, their model proved to be remarkably
accurate. The function they used to model production was of the form

where P is the total production (the monetary value of all goods produced in a year),
L is the amount of labor (the total number of person-hours worked in a year), and K is
the amount of capital invested (the monetary worth of all machinery, equipment, and
buildings). In Section 14.3 we will show how the form of Equation 1 follows from cer-
tain economic assumptions.

Cobb and Douglas used economic data published by the government to obtain
Table 2. They took the year 1899 as a baseline and P, L, and K for 1899 were each
assigned the value 100. The values for other years were expressed as percentages of 
the 1899 Þgures.

Cobb and Douglas used the method of least squares to Þt the data of Table 2 to the
function

(See Exercise 71 for the details.)
If we use the model given by the function in Equation 2 to compute the production in

the years 1910 and 1920, we get the values

which are quite close to the actual values, 159 and 231.
The production function (1) has subsequently been used in many settings, ranging

from individual Þrms to global economic questions. It has become known as the 
Cobb-Douglas production function. Its domain is because 
L and K represent labor and capital and are therefore never negative.

EXAMPLE 4Find the domain and range of

SOLUTIONThe domain of is

which is the disk with center and radius 3. (See Figure 4.) The range of is

�� � � � � 9 � x2 � y2, � x, y� � D�

��0, 0�
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�� L, K� � L � 0, K � 0�

 P�194, 407� � 1.01�194�0.75�407�0.25 � 235.8

 P�147, 208� � 1.01�147�0.75�208�0.25 � 161.9

P�L, K� � 1.01L0.75K0.252

P�L, K� � bL	 K1� 	1

f � � 5, 50� � � 15

� 15
C
� 5
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TABLE 2

. Year P L K

1899 100 100 100
1900 101 105 107
1901 112 110 114
1902 122 117 122
1903 124 122 131
1904 122 121 138
1905 143 125 149
1906 152 134 163
1907 151 140 176
1908 126 123 185
1909 155 143 198
1910 159 147 208
1911 153 148 216
1912 177 155 226
1913 184 156 236
1914 169 152 244
1915 189 156 266
1916 225 183 298
1917 227 198 335
1918 223 201 366
1919 218 196 387
1920 231 194 407
1921 179 146 417
1922 240 161 431
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Since is a positive square root, . Also

So the range is

Graphs

Another way of visualizing the behavior of a function of two variables is to consider its
graph.

Definition If is a function of two variables with domain D, then the graph of
is the set of all points in such that and is in D.

Just as the graph of a function of one variable is a curve with equation , so
the graph of a function of two variables is a surface with equation . We can
visualize the graph of as lying directly above or below its domain in the -plane
(see Figure 5).

EXAMPLE 5Sketch the graph of the function .

SOLUTIONThe graph of has the equation , or , which
represents a plane. To graph the plane we Þrst Þnd the intercepts. Putting in
the equation, we get as the -intercept. Similarly, the -intercept is 3 and the 
-intercept is 6. This helps us sketch the portion of the graph that lies in the Þrst octant

(Figure 6).

The function in Example 5 is a special case of the function

which is called a linear function. The graph of such a function has the equation
, or , so it is a plane. In much the same way that

linear functions of one variable are important in single-variable calculus, we will see that
linear functions of two variables play a central role in multivariable calculus.

EXAMPLE 6Sketch the graph of .� � x, y� � � 9 � x2 � y2

ax � by � � � c � 0� � ax � by � c

f � x, y� � ax � by � c
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SOLUTIONThe graph has equation . We square both sides of this equa-
tion to obtain , or , which we recognize as an equa-
tion of the sphere with center the origin and radius 3. But, since , the graph of is
just the top half of this sphere (see Figure 7).

EXAMPLE 7Use a computer to draw the graph of the Cobb-Douglas production function
.

SOLUTIONFigure 8 shows the graph of P for values of the labor L and capitalK that lie
between 0 and 300. The computer has drawn the surface by plotting vertical traces. 
We see from these traces that the value of the production P increases as either L or K
increases, as is to be expected.

EXAMPLE 8Find the domain and range and sketch the graph of .

SOLUTIONNotice that is deÞned for all possible ordered pairs of real numbers ,
so the domain is , the entire xy-plane. The range ofh is the set of all nonnega-
tive real numbers. [Notice that and , so for all x and y.]

The graph of h has the equation , which is the elliptic paraboloid that
we sketched in Example 4 in Section 12.6. Horizontal traces are ellipses and vertical
traces are parabolas (see Figure 9).

Computer programs are readily available for graphing functions of two variables. In
most such programs, traces in the vertical planes and are drawn for equally
spaced values of and parts of the graph are eliminated using hidden line removal.k
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Figure 10 shows computer-generated graphs of several functions. Notice that we get an 
especially good picture of a function when rotation is used to give views from different
vantage points. In parts (a) and (b) the graph of is very ßat and close to the -plane
except near the origin; this is because is very small when or is large.

Level Curves

So far we have two methods for visualizing functions: arrow diagrams and graphs. A third
method, borrowed from mapmakers, is a contour map on which points of constant eleva-
tion are joined to form contour curves,or level curves.

Definition The level curvesof a function of two variables are the curves with
equations , where is a constant (in the range of ).

A level curve is the set of all points in the domain of at which takes on
a given value . In other words, it shows where the graph of has height .

You can see from Figure 11 the relation between level curves and horizontal traces. The
level curves are just the traces of the graph of in the horizontal plane 
projected down to the -plane. So if you draw the level curves of a function and visual-xy
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ize them being lifted up to the surface at the indicated height, then you can mentally piece 
together a picture of the graph. The surface is steep where the level curves are close
together. It is somewhat ßatter where they are farther apart.

One common example of level curves occurs in topographic maps of mountainous
regions, such as the map in Figure 12. The level curves are curves of constant elevation
above sea level. If you walk along one of these contour lines you neither ascend nor descend.
Another common example is the temperature function introduced in the opening paragraph
of this section. Here the level curves are called isothermals and join locations with the
same temperature. Figure 13 shows a weather map of the world indicating the average
January temperatures. The isothermals are the curves that separate the colored bands.

FIGURE 13
World mean sea-level temperatures

in January in degrees Celsius

FIGURE 11



In Example 2 we considered the function , where
W is the wind-chill index, T is the actual temperature, and is
the wind speed. A numerical representation is given in Table 1.
(a) What is the value of ? What is its meaning?
(b) Describe in words the meaning of the question ÒFor what

value of is ?Ó Then answer the question.f � � 20, v� � � 30v

f �� 15, 40�

v
W � f �T, v�1.
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ItÕs very difÞcult to visualize a function of three variables by its graph, since that
would lie in a four-dimensional space. However, we do gain some insight into by exam-
ining its level surfaces, which are the surfaces with equations , where is 
a constant. If the point moves along a level surface, the value of remains
Þxed.

EXAMPLE 15Find the level surfaces of the function

SOLUTIONThe level surfaces are , where . These form a family 
of concentric spheres with radius . (See Figure 20.) Thus, as varies over any
sphere with center , the value of remains Þxed.

Functions of any number of variables can also be considered. A function of n variables
is a rule that assigns a number to an -tuple of real
numbers. We denote by the set of all such n-tuples. For example, if a company uses 
different ingredients in making a food product, is the cost per unit of the ith ingredient,
and units of the ith ingredient are used, then the total cost of the ingredients is a func-
tion of the variables :

The function is a real-valued function whose domain is a subset of . Sometimes we
will use vector notation to write such functions more compactly: If ,
we often write in place of . With this notation we can rewrite the
function deÞned in Equation 3 as

where and denotes the dot product of the vectors c and x in .
In view of the one-to-one correspondence between points in and

their position vectors in , we have three ways of looking at a func-
tion deÞned on a subset of :

1. As a function of real variables 

2. As a function of a single point variable 

3. As a function of a single vector variable 

We will see that all three points of view are useful.

x � � x1, x2, . . . , xn�

� x1, x2, . . . , xn�

x1, x2, . . . , xnn

� nf
Vnx � � x1, x2, . . . , xn�

� n� x1, x2, . . . , xn�
Vnc � xc � � c1, c2, . . . , cn�

f � x� � c � x

f � x1, x2, . . . , xn�f � x�
x � � x1, x2, . . . , xn�

� nf

C � f � x1, x2, . . . , xn� � c1x1 � c2x2 � � � � � cnxn3

x1, x2, . . . , xnn
Cxi

ci

n� n
� x1, x2, . . . , xn�n� � f � x1, x2, . . . , xn�

f � x, y, � �O
�x, y, � �� k

k � 0x2 � y2 � � 2 � k

f � x, y, � � � x2 � y2 � � 2

f � x, y, � �� x, y, � �
kf � x, y, � � � k

f
f

FIGURE 20
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(c) Describe in words the meaning of the question ÒFor what
value of T is ?Ó Then answer the question.

(d) What is the meaning of the function ?
Describe the behavior of this function.

(e) What is the meaning of the function ?
Describe the behavior of this function.

W � f �T, 50�

W � f �� 5, v�
f �T, 20� � � 49

|||| 14.1 Exercises



6. Let .
(a) Evaluate .
(b) Evaluate .
(c) Find and sketch the domain of .
(d) Find the range of .

7. Let .
(a) Evaluate .
(b) Find the domain of .
(c) Find the range of .

8. Find and sketch the domain of the function
. What is the range of ?

9. Let .
(a) Evaluate .
(b) Find the domain of .
(c) Find the range of .

10. Let .
(a) Evaluate .
(b) Find the domain of .
(c) Find the range of .

11Ð20|||| Find and sketch the domain of the function.

11. 12.

14.

15.

16.

18.

19.

20.
�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

f � x, y, � � � ln�16 � 4x2 � 4y2 � � 2�

f � x, y, � � � � 1 � x2 � y2 � � 2

f � x, y� � � x2 � y2 � 1 � ln�4 � x2 � y2�

f � x, y� �
� y � x2

1 � x217.

f � x, y� � � y � x ln� y � x�

f � x, y� �
3x � 5y

x2 � y2 � 4

f � x, y� �
x � 3y
x � 3y

f � x, y� � ln�9 � x2 � 9y2�13.

f � x, y� � � x � � yf � x, y� � � x � y

�
�

� �2, � 2, 4�
� � x, y, � � � ln�25 � x2 � y2 � � 2�

f
f

f �2, � 1, 6�
f � x, y, � � � e� � � x2� y2

ff � x, y� � � 1 � x � y2

f
f

f �2, 0�
f � x, y� � x2e3xy

f
f

f �e, 1�
f �1, 1�

f � x, y� � ln� x � y � 1�
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2. The temperature-humidity index(or humidex, for short) is the
perceived air temperature when the actual temperature is and
the relative humidity is , so we can write . The fol-
lowing table of values of is an excerpt from a table compiled
by the National Oceanic and Atmospheric Administration.

TABLE 3Apparent temperature as a function
of temperature and humidity

(a) What is the value of ? What is its meaning?
(b) For what value of is ?
(c) For what value of is ?
(d) What are the meanings of the functions 

and ? Compare the behavior of these two
functions of .

3. Verify for the Cobb-Douglas production function

discussed in Example 3 that the production will be doubled 
if both the amount of labor and the amount of capital are 
doubled. Is this also true for the general production function

?

4. The wind-chill index discussed in Example 2 has been 
modeled by the following function:

Check to see how closely this model agrees with the values in
Table 1 for a few values of and .

The wave heights h in the open sea depend on the speed 
of the wind and the length of time t that the wind has been
blowing at that speed. Values of the function are
recorded in feet in the following table.
(a) What is the value of ? What is its meaning?
(b) What is the meaning of the function ? Describe

the behavior of this function.
(c) What is the meaning of the function ? Describe

the behavior of this function.
h � f �v, 30�

h � f �30, t�
f �40, 15�

h � f �v, t�

v5.

vT

W�T, v� � 13.12� 0.6215T � 11.37v0.16 � 0.3965Tv0.16

W

P�L, K� � bL� K1� �

P�L, K� � 1.01L0.75K 0.25

h
I � f �100, h�

I � f �80, h�
f �T, 50� � 88T
f �90, h� � 100h

f �95, 70�

77

82

87

93

99

78

84

90

96

104

79

86

93

101

110

81

88

96

107

120
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90

100

114
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124

144

�
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I
I � f �T, h�h

T
I
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21Ð29|||| Sketch the graph of the function.

21. 22.

24.

25. 26.

27.

28.

29.

30. Match the function with its graph (labeled IÐVI). Give reasons
for your choices.
(a)

(d)

(e)

31. A contour map for a function is shown. Use it to esti-
mate the values of and . What can you say
about the shape of the graph?

�

�� �

�
�� �� �� ��

��

��

��

f �3, � 2�f � � 3, 3�
f

� �

� �� �

V VI

�

�

�

�

��

III IV



As we have seen in the case of the heat index function, partial derivatives can also be
interpreted as rates of change. If , then represents the rate of change of 
with respect to when is Þxed. Similarly, represents the rate of change of with
respect to when is Þxed.

EXAMPLE 2If , Þnd and and interpret these num-
bers as slopes.

SOLUTIONWe have

The graph of is the paraboloid and the vertical plane inter-
sects it in the parabola , . (As in the preceding discussion, we label 
it in Figure 2.) The slope of the tangent line to this parabola at the point is

. Similarly, the curve in which the plane intersects the parabo-
loid is the parabola , , and the slope of the tangent line at is

. (See Figure 3.)

Figure 4 is a computer-drawn counterpart to Figure 2. Part (a) shows the plane 
intersecting the surface to form the curve and part (b) shows and . [We have used
the vector equations for and for .]
Similarly, Figure 5 corresponds to Figure 3.

FIGURE 4

FIGURE 5
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T1r �t� � 	 1 � t, 1, 1� 2t 
C1r �t� � 	 t, 1, 2� t 2 

T1C1C1

y � 1

fy�1, 1� � � 4
�1, 1, 1�x � 1� � 3 � 2y2

x � 1C2fx�1, 1� � � 2
�1, 1, 1�C1

y � 1� � 2 � x2
y � 1� � 4 � x2 � 2y2f

 fy�1, 1� � � 4 fx�1, 1� � � 2

 fy� x, y� � � 4y fx� x, y� � � 2x

fy�1, 1�fx�1, 1�f � x, y� � 4 � x2 � 2y2

xy
� � �  yyx

� � �  x� � f � x, y�
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EXAMPLE 3If , calculate and .

SOLUTIONUsing the Chain Rule for functions of one variable, we have

EXAMPLE 4Find and if is deÞned implicitly as a function of and by the
equation

SOLUTIONTo Þnd , we differentiate implicitly with respect to , being careful to treat
as a constant:

Solving this equation for , we obtain

Similarly, implicit differentiation with respect to gives

Functions of More than Two Variables

Partial derivatives can also be deÞned for functions of three or more variables. For example,
if is a function of three variables , , and , then its partial derivative with respect to 
is deÞned as

and it is found by regarding and as constants and differentiating with respect
to . If , then can be interpreted as the rate of change of with
respect to x when y and are held Þxed. But we canÕt interpret it geometrically because the
graph off lies in four-dimensional space.

In general, if is a function of variables, , its partial derivative
with respect to the ith variable is

 u
 xi

� lim
h �  0

 
 f � x1, . . . , xi� 1, xi � h, xi� 1, . . . , xn� � f � x1, . . . , xi , . . . , xn�

h

xi

u � f � x1, x2, . . . , xn�nu

�
wfx �  w�  xw � f � x, y, � �x

f � x, y, � ��y

fx� x, y, � � � lim
h �  0

 
 f � x � h, y, � � � f � x, y, � �

h

x�yxf

 �
 y

� �
y2 � 2x�
� 2 � 2xy

y

 �
 x

� �
x2 � 2y�
� 2 � 2xy

 � �  x

3x2 � 3� 2 
 �
 x

� 6y� � 6xy 
 �
 x

� 0

y
x � �  x

x3 � y3 � � 3 � 6xy� � 1

yx� � �  y � �  x

 
 f
 y

� cos� x
1 � y �


 y

 � x
1 � y � � cos� x

1 � y �
x

�1 � y�2

 
 f
 x

� cos� x
1 � y �


 x

 � x
1 � y � cos� x

1 � y �
1

1 � y

 f
 y

 f
 x

f � x, y� � sin� x
1 � y

In Visual 14.3 you can zoom and 
rotate the surfaces in Figure 6 and 
Exercises 41Ð44.

|||| Some computer algebra systems can plot
surfaces deÞned by implicit equations in three
variables. Figure 6 shows such a plot of the
surface deÞned by the equation in Example 4.

FIGURE 6



and we also write

EXAMPLE 5Find , , and if .

SOLUTIONHolding and constant and differentiating with respect to , we have

Similarly,

Higher Derivatives

If is a function of two variables, then its partial derivatives and are also functions of
two variables, so we can consider their partial derivatives , , , and ,
which are called the second partial derivativesof . If , we use the following
notation:

Thus, the notation (or ) means that we Þrst differentiate with respect to and
then with respect to , whereas in computing the order is reversed.

EXAMPLE 6Find the second partial derivatives of

SOLUTIONIn Example 1 we found that

Therefore

 fyy �

 y

 �3x2y2 � 4y� � 6x2y � 4 fyx �

 x

 �3x2y2 � 4y� � 6xy2

 fxy �

 y

 �3x2 � 2xy3� � 6xy2 fxx �

 x

 �3x2 � 2xy3� � 6x � 2y3

fy� x, y� � 3x2y2 � 4yfx� x, y� � 3x2 � 2xy3

f � x, y� � x3 � x2y3 � 2y2

fyxy
x 2f�  y  xfx y

 � fy�y � fyy � f22 �

 y

 �  f
 y �

 2f
 y2 �

 2�
 y2

 � fy�x � fyx � f21 �

 x

 �  f
 y �

 2f
 x  y

�
 2�

 x  y

 � fx�y � fxy � f12 �

 y

 �  f
 x �

 2f
 y  x

�
 2�

 y  x

 � fx�x � fxx � f11 �

 x

 �  f
 x �

 2f
 x2 �

 2�
 x2

� � f � x, y�f
� fy�y� fy�x� fx�y� fx�x

fyfxf

f� �
exy

�
andfy � xex y ln �

fx � yex y ln �

x�y

f � x, y, � � � ex y ln �f�fyfx

 u
 xi

�
 f
 xi

� fx i
� fi � Di f
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Notice that in Example 6. This is not just a coincidence. It turns out that the
mixed partial derivatives and are equal for most functions that one meets in practice.
The following theorem, which was discovered by the French mathematician Alexis Clairaut
(1713Ð1765), gives conditions under which we can assert that . The proof is given
in Appendix F.

ClairautÕs TheoremSuppose is deÞned on a disk that contains the point . 
If the functions and are both continuous on , then

Partial derivatives of order 3 or higher can also be deÞned. For instance,

fx yy � � fx y�y �
�
� y

 � � 2f
� y � x� �

� 3f
� y2 � x

fx y�a, b� � fyx�a, b�

Dfyxfx y

�a, b�Df

fx y � fyx

fyxfx y

fx y � fyx

�� ��

� �
�

��

��

���

�� � �
�

�
�

� �

	

	 ��

FIGURE 7
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37. ;

38. ;

39Ð40|||| Use the deÞnition of partial derivatives as limits (4) to
Þnd and .

39. 40.

41Ð44|||| Use implicit differentiation to Þnd and .
(You can see what these surfaces look like in TEC Visual 14.3.)

41. 42.

43. 44.

45Ð46|||| Find and .

45. (a) (b)

(a) (b)
(c)

47Ð52|||| Find all the second partial derivatives.

47. 48.

49. 50.

51. 52.

53Ð56|||| Verify that the conclusion of ClairautÕs Theorem holds,
that is, .

53. 54.

55. 56.

57Ð64|||| Find the indicated partial derivative.

57. ; ,

58. ; ,

59. ; ,

60. ; ,

61. ;

62. ;

63. ; ,

64. ;

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

� 6u
� x � y2 � � 3u � xayb� c

� 3w

� x2 � y
� 3w

� � � y � x
w �

x
y � 2�

� 3�
� u � v � w

� � u� v � w

� 3u
� r 2 � 

u � er  �sin 

frstfrssf �r, s, t� � r ln�rs2t 3�

fy��fxy�f � x, y, � � � cos�4x � 3y � 2� �

ftxxftt tf � x, t� � x2e� ct

fyyyfxxyf � x, y� � 3xy4 � x3y2

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

u � xyeyu � ln � x2 � y2

u � x4y2 � 2xy5u � x sin� x � 2y�

ux y � uyx

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

v � � x � y2u � e� s sin t

� � y tan 2x� � x�� x � y�

f � x, y� � ln�3x � 5y�f � x, y� � x4 � 3x2y3

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

� � f � x� y�
� � f � xy�� � f � x� � � y�46.

� � f � x � y�� � f � x� � � � y�

� � � � y� � � � x

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

sin� xy� � � x � 2y � 3�x � � � arctan� y� �

y� � ln� x � � �x2 � y2 � � 2 � 3xy�

� � � � y� � � � x

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

f � x, y� � � 3x � yf � x, y� � x2 � xy � 2y2

fy� x, y�fx� x, y�

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

fv�2, 0, 3�f �u, v, w� � w tan�uv�

f� �3, 2, 1�f � x, y, � � � x�� y � � � Use the table of values of to estimate the values of
, , and .

66. Level curves are shown for a function . Determine whether
the following partial derivatives are positive or negative at the
point .
(a) (b) (c)
(d) (e)

67. Verify that the function is a solution of the
heat conduction equation .

68. Determine whether each of the following functions is a solution
of LaplaceÕs equation .
(a)
(b)
(c)
(d)
(e)
(f)

69. Verify that the function is a solution of
the three-dimensional Laplace equation .

70. Show that each of the following functions is a solution of the
wave equation .
(a)
(b)
(c)
(d)

71. If and are twice differentiable functions of a single vari-
able, show that the function

is a solution of the wave equation given in Exercise 70.

72. If , where , 
show that

� 2u
� x2

1
�

� 2u
� x2

2
� � � � �

� 2u
� x2

n
� u

a2
1 � a2

2 � � � � � a2
n � 1u � ea1x1� a2 x2�� � �� an xn

u� x, t� � f � x � at� � � � x � at�

�f

u � sin� x � at� � ln� x � at�
u � � x � at�6 � � x � at�6
u � t�� a2t 2 � x2�
u � sin�kx� sin�akt�

ut t � a2uxx

uxx � uyy � u�� � 0
u � 1� � x2 � y2 � � 2

u � e� x cos y � e� y cos x
u � sin x cosh y � cos x sinh y
u � ln � x2 � y2

u � x3 � 3xy2
u � x2 � y2
u � x2 � y2

uxx � uyy � 0

ut � � 2uxx

u � e� � 2k2t sin kx

�� � � 
 �

�

�

�

fyyfxy

fxxfyfx
P

f

12.5

18.1

20.0

10.2

17.5

22.4

9.3

15.9

26.1

�
�

2.5

3.0

3.5

1.8 2.0 2.2

fx y�3, 2�fx�3, 2.2�fx�3, 2�
f � x, y�65.



If , , are the sides of a triangle and , , are the opposite
angles, Þnd , , by implicit differentiation of
the Law of Cosines.

You are told that there is a function whose partial derivatives
are and . Should you
believe it?

� 84. The paraboloid intersects the plane
in a parabola. Find parametric equations for the tangent

line to this parabola at the point . Use a computer to
graph the paraboloid, the parabola, and the tangent line on the
same screen.

85. The ellipsoid intersects the plane 
in an ellipse. Find parametric equations for the tangent line to
this ellipse at the point .

86. In a study of frost penetration it was found that the temperature
at time (measured in days) at a depth (measured in feet)

can be modeled by the function

where and is a positive constant.
(a) Find . What is its physical signiÞcance?
(b) Find . What is its physical signiÞcance?
(c) Show that satisÞes the heat equation for a cer-

tain constant .
� (d) If , , and , use a computer to graph

.
(e) What is the physical signiÞcance of the term in the

expression ?

87. Use ClairautÕs Theorem to show that if the third-order partial
derivatives of are continuous, then

88. (a) How many th-order partial derivatives does a function of
two variables have?

(b) If these partial derivatives are all continuous, how many of
them can be distinct?

(c) Answer the question in part (a) for a function of three 
variables.

89. If , Þnd .
[Hint: Instead of Þnding Þrst, note that itÕs easier to 
use Equation 1 or Equation 2.]

90. If , Þnd .

91. Let

� (a) Use a computer to graph .
(b) Find and when .
(c) Find and using Equations 2 and 3.
(d) Show that and .
(e) Does the result of part (d) contradict ClairautÕs Theorem?

Use graphs of and to illustrate your answer.fyxfxy

CAS

fyx�0, 0� � 1fxy�0, 0� � � 1
fy�0, 0�fx�0, 0�

� x, y� � �0, 0�fy� x, y�fx� x, y�
f

f � x, y� � �
0

x3y � xy3

x2 � y2 if

if

� x, y� � �0, 0�

� x, y� � �0, 0�

fx�0, 0�f � x, y� � �3 x3 � y3

fx� x, y�
fx�1, 0�f � x, y� � x� x2 � y2� � 3� 2esin� x 2y�

n

fx yy � fyx y � fyyx

f

sin�� t � � x�
� � x

T� x, t�
T1 � 10T0 � 0� � 0.2

k
Tt � kTxxT

� T� � t
� T� � x

�� � 2� � 365

T� x, t� � T0 � T1e� � x sin�� t � � x�

xtT

�1, 2, 2�

y � 24x2 � 2y2 � � 2 � 16

�1, 2, � 4�
x � 1

� � 6 � x � x2 � 2y2

fy� x, y� � 3x � yfx� x, y� � x � 4y
f83.

� A� � c� A� � b� A� � a
CBAcba82.73. Show that the function is a solution of the 

equation

74. Show that the Cobb-Douglas production function 
satisÞes the equation

75. Show that the Cobb-Douglas production function satisÞes
by solving the differential equation

(See Equation 5.)

76. The temperature at a point on a ßat metal plate is given
by , where is measured in C
and in meters. Find the rate of change of temperature with
respect to distance at the point in (a) the -direction and
(b) the -direction.

The total resistance produced by three conductors with resis-
tances , , connected in a parallel electrical circuit is
given by the formula

Find .

78. The gas law for a Þxed mass of an ideal gas at absolute tem-
perature , pressure , and volume is , where 
is the gas constant. Show that

79. For the ideal gas of Exercise 78, show that

80. The wind-chill index is modeled by the function

where is the temperature and is the wind speed
. When and , by how much

would you expect the apparent temperature to drop if the 
actual temperature decreases by ? What if the wind speed
increases by ?

81. The kinetic energy of a body with mass and velocity is
. Show that

� K
� m

 
� 2K
� v2 � K

K � 1
2 mv2

vm

1 km� h
1
C

v � 30 km� hT � � 15
C� km� h�
v� 
C�T

W � 13.12� 0.6215T � 11.37v0.16 � 0.3965Tv0.16 

T
� P
� T

 
� V
� T

� mR

� P
� V

 
� V
� T

 
� T
� P

� � 1

RPV � mRTVPT
m

� R� � R1

1
R

�
1
R1

�
1
R2

�
1
R3

R3R2R1

R77.

y
x�2, 1�

x, y

TT� x, y� � 60�� 1 � x2 � y2�

� x, y�

dP
dL

� �  
P
L

P�L, K0� � C1�K0�L�

L 
� P
� L

� K 
� P
� K

� �� � � �P

P � bL� K �

� 3�
� x3 �

� 3�
� y3 � x 

� 3�
� x � y2 � y 

� 3�
� x2 � y

� � xey � yex
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|||| 14.4 Tangent Planes and Linear Approximations

One of the most important ideas in single-variable calculus is that as we zoom in toward a
point on the graph of a differentiable function, the graph becomes indistinguishable from
its tangent line and we can approximate the function by a linear function. (See Sec-
tion 3.11.) Here we develop similar ideas in three dimensions. As we zoom in toward a
point on a surface that is the graph of a differentiable function of two variables, the sur-
face looks more and more like a plane (its tangent plane) and we can approximate the func-
tion by a linear function of two variables. We also extend the idea of a differential to func-
tions of two or more variables.

Tangent Planes

Suppose a surface has equation , where has continuous Þrst partial deriva-
tives, and let be a point on . As in the preceding section, let and be the
curves obtained by intersecting the vertical planes and with the surface .
Then the point lies on both and . Let and be the tangent lines to the curves 
and at the point . Then the tangent planeto the surface at the point is deÞned to
be the plane that contains both tangent lines and . (See Figure 1.)

We will see in Section 14.6 that if is any other curve that lies on the surface and
passes through , then its tangent line at also lies in the tangent plane. Therefore, you
can think of the tangent plane to at as consisting of all possible tangent lines at to
curves that lie on and pass through . The tangent plane at is the plane that most
closely approximates the surface near the point .

We know from Equation 12.5.7 that any plane passing through the point 
has an equation of the form

By dividing this equation by and letting and , we can write it in
the form

If Equation 1 represents the tangent plane at , then its intersection with the plane 
must be the tangent line . Setting in Equation 1 gives

and we recognize these as the equations (in point-slope form) of a line with slope . 
But from Section 14.3 we know that the slope of the tangent is . Therefore,

.
Similarly, putting in Equation 1, we get , which must repre-

sent the tangent line , so .

Suppose has continuous partial derivatives. An equation of the tangent plane
to the surface at the point is

� � � 0 � fx� x0, y0�� x � x0� � fy� x0, y0�� y � y0�

P� x0, y0, � 0�� � f � x, y�
f2

b � fy� x0, y0�T2

� � � 0 � b� y � y0�x � x0

a � fx� x0, y0�
fx� x0, y0�T1

a

y � y0� � � 0 � a� x � x0�

y � y0T1

y � y0P

� � � 0 � a� x � x0� � b� y � y0�1

b � � B� Ca � � A� CC

A�x � x0� � B� y � y0� � C�� � � 0� � 0

P�x0, y0, � 0�
PS

PPS
PPS

PP
SC

T2T1

PSPC2

C1T2T1C2C1P
Sx � x0y � y0

C2C1SP�x0, y0, � 0�
f� � f � x, y�S
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��

� �

� ��

�

FIGURE 1
The tangent plane contains the
tangent lines ��  and ���

|||| Note the similarity between the equation of
a tangent plane and the equation of a tangent
line:

y � y0 � f �� x0 �� x � x0�
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EXAMPLE 1Find the tangent plane to the elliptic paraboloid at the 
point .

SOLUTIONLet . Then

Then (2) gives the equation of the tangent plane at as

or

Figure 2(a) shows the elliptic paraboloid and its tangent plane at (1, 1, 3) that we found
in Example 1. In parts (b) and (c) we zoom in toward the point (1, 1, 3) by restricting the
domain of the function . Notice that the more we zoom in, the ßatter
the graph appears and the more it resembles its tangent plane.

In Figure 3 we corroborate this impression by zooming in toward the point (1, 1) on a
contour map of the function . Notice that the more we zoom in, the
more the level curves look like equally spaced parallel lines, which is characteristic of a
plane.

FIGURE 3
Zooming in toward �����
on a contour map of
	���������� 0.95 1.05

1.05

0.8 1.2

1.2

0.5 1.5

1.5

f � x, y� � 2x2 � y2

FIGURE 2  The elliptic paraboloid ������  appears to coincide with its tangent plane as we zoom in toward ������� .
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f � x, y� � 2x2 � y2

 � � 4x � 2y � 3

 � � 3 � 4� x � 1� � 2� y � 1�

�1, 1, 3�

 fx�1, 1� � 4  fy�1, 1� � 2

 fx� x, y� � 4x fy� x, y� � 2y

f � x, y� � 2x2 � y2

�1, 1, 3�
� � 2x2 � y2

Visual 14.4 shows an animation of
Figures 2 and 3.
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Linear Approximations

In Example 1 we found that an equation of the tangent plane to the graph of the function
at the point (1, 1, 3) is . Therefore, in view of the

visual evidence in Figures 2 and 3, the linear function of two variables

is a good approximation to when is near (1, 1). The function L is called the
linearizationof f at (1, 1) and the approximation

is called the linear approximation or tangent plane approximation of f at (1, 1).
For instance, at the point (1.1, 0.95) the linear approximation gives

which is quite close to the true value of . But if
we take a point farther away from (1, 1), such as (2, 3), we no longer get a good approxi-
mation. In fact, whereas .

In general, we know from (2) that an equation of the tangent plane to the graph of a
function f of two variables at the point is

The linear function whose graph is this tangent plane, namely

is called the linearization of f at and the approximation

is called the linear approximation or the tangent plane approximationof at
We have deÞned tangent planes for surfaces , where has continuous Þrst

partial derivatives. What happens if and are not continuous? Figure 4 pictures such a
function; its equation is

You can verify (see Exercise 42) that its partial derivatives exist at the origin and, in fact,
and , but and are not continuous. The linear approximation

would be , but at all points on the line . So a function of two
variables can behave badly even though both of its partial derivatives exist. To rule out
such behavior, we formulate the idea of a differentiable function of two variables.

Recall that for a function of one variable, , if x changes from a to we
deÞned the increment of as

� y � f �a � � x� � f �a�

y
a � � x,y � f � x�

y � xf � x, y� � 1
2f � x, y� � 0

fyfxfy�0, 0� � 0fx�0, 0� � 0

f � x, y� � �
0

xy
x2 � y2 if

if

� x, y� � �0, 0�

� x, y� � �0, 0�

fyfx
f� � f � x, y�

�a, b�.f

f � x, y� � f �a, b� � fx�a, b�� x � a� � fy�a, b�� y � b�4

�a, b�

L� x, y� � f �a, b� � fx�a, b�� x � a� � fy�a, b�� y � b�3

� � f �a, b� � fx�a, b�� x � a� � fy�a, b�� y � b�

�a, b, f �a, b��

f �2, 3� � 17L�2, 3� � 11

f �1.1, 0.95� � 2�1.1�2 � �0.95�2 � 3.3225

f �1.1, 0.95� � 4�1.1� � 2�0.95� � 3 � 3.3

f � x, y� � 4x � 2y � 3

� x, y�f � x, y�

L� x, y� � 4x � 2y � 3

� � 4x � 2y � 3f � x, y� � 2x2 � y2
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If we take and in Equation 10, then the differen-
tial of is

So, in the notation of differentials, the linear approximation (4) can be written as

Figure 7 is the three-dimensional counterpart of Figure 6 and shows the geometric inter-
pretation of the differential and the increment : represents the change in height of
the tangent plane, whereas represents the change in height of the surface 
when changes from to .

EXAMPLE 4
(a) If , Þnd the differential .
(b) If changes from 2 to and changes from 3 to , compare the values of 
and .

SOLUTION
(a) DeÞnition 10 gives

(b) Putting , , , and , we get

The increment of is

Notice that but is easier to compute.

EXAMPLE 5The base radius and height of a right circular cone are measured as 10 cm
and 25 cm, respectively, with a possible error in measurement of as much as cm 0.1

d�� � � d�

 � 0.6449

 � �� 2.05�2 � 3�2.05�� 2.96� � �2.96�2� � �22 � 3�2�� 3� � 32�

 � � � f �2.05, 2.96� � f �2, 3�

�

 � 0.65

 d� � �2�2� � 3�3�� 0.05� �3�2� � 2�3��� � 0.04�

dy � � y � � 0.04y � 3dx � � x � 0.05x � 2

d� �
� �
� x

 dx �
� �
� y

 dy � �2x � 3y� dx � �3x � 2y� dy

d�
� �2.96y2.05x

d�� � f � x, y� � x2 � 3xy � y2

FIGURE 7 
��������� 	 ������	���� � ����������
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�a � � x, b � � y��a, b�� x, y�
� � f � x, y�� �

d�� �d�

f � x, y� � f �a, b� � d�

d� � fx�a, b�� x � a� � fy�a, b�� y � b�
�

dy � � y � y � bdx � � x � x � a

|||| In Example 4, is close to because the
tangent plane is a good approximation to the 
surface near . 
(See Figure 8.)

�2, 3, 13�� � x2 � 3xy � y2
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in each. Use differentials to estimate the maximum error in the calculated volume of the
cone.

SOLUTIONThe volume of a cone with base radius and height is . So the
differential of is

Since each error is at most cm, we have , . To Þnd the largest
error in the volume we take the largest error in the measurement of and of . Therefore,
we take and along with , . This gives

Thus, the maximum error in the calculated volume is about cm cm .

Functions of Three or More Variables

Linear approximations, differentiability, and differentials can be deÞned in a similar man-
ner for functions of more than two variables. A differentiable function is deÞned by an
expression similar to the one in DeÞnition 7. For such functions the linear approximation
is

and the linearization is the right side of this expression.
If , then the increment of is

The differential is deÞned in terms of the differentials , , and of the indepen-
dent variables by

EXAMPLE 6The dimensions of a rectangular box are measured to be 75 cm, 60 cm,
and 40 cm, and each measurement is correct to within cm. Use differentials to esti-
mate the largest possible error when the volume of the box is calculated from these 
measurements.

SOLUTIONIf the dimensions of the box are , , and , its volume is and so

We are given that , , and . To Þnd the largest error in
the volume, we therefore use , , and together with ,

, and :

Thus, an error of only cm in measuring each dimension could lead to an error of as
much as 1980 cm in the calculated volume! This may seem like a large error, but itÕs
only about 1% of the volume of the box.

3
0.2

 � 1980

 � V � dV � �60�� 40�� 0.2� � �75�� 40�� 0.2� � �75�� 60�� 0.2�

� � 40y � 60
x � 75d� � 0.2dy � 0.2dx � 0.2

� � � � 	 0.2� � y� 	 0.2� � x� 	 0.2

dV �
� V
� x

 dx �
� V
� y

 dy �
� V
� �

 d� � y�  dx � x�  dy � xy d�

V � xy��yx

0.2

dw �
� w

� x
 dx �

� w

� y
 dy �

� w

� �
 d�

d�dydxdw

� w � f � x � � x, y � � y, � � � � � � f � x, y, � �

ww � f � x, y, � �
L� x, y, � �

f � x, y, � � � f �a, b, c� � fx�a, b, c�� x � a� � fy�a, b, c�� y � b� � f� �a, b, c�� � � c�

33 � 6320


dV �
500


3
 �0.1� �

100

3

 �0.1� � 20


h � 25r � 10dh � 0.1dr � 0.1
hr

� � h� 	 0.1� � r � 	 0.10.1

dV �
� V
� r

 dr �
� V
� h

 dh �
2
 rh

3
 dr �


 r 2

3
 dh

V
V � 
 r 2h� 3hrV
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20. The wave heights in the open sea depend on the speed 
of the wind and the length of time that the wind has been
blowing at that speed. Values of the function are
recorded in the following table.

Use the table to Þnd a linear approximation to the wave height
function when is near 40 knots and is near 20 hours. Then
estimate the wave heights when the wind has been blowing for
24 hours at 43 knots.

21. Use the table in Example 3 to Þnd a linear approximation to
the heat index function when the temperature is near 
and the relative humidity is near 80%. Then estimate the heat
index when the temperature is and the relative humidity 
is 78%.

22. The wind-chill index is the perceived temperature when the
actual temperature is and the wind speed is , so we can
write . The following table of values is an excerpt
from Table 1 in Section 14.1.

Use the table to Þnd a linear approximation to the wind-chill
index function when is near and is near 50 km� h.
Then estimate the wind-chill index when the temperature is

and the wind speed is 55 km� h.

23Ð28|||| Find the differential of the function.

23. 24.

25. 26. u � r�� s � 2t�u � et sin �

v � y cos xy� � x3 ln� y2�

� 17�C

v� 15�CT

� 18

� 24

� 30

� 37

� 20

� 26

� 33

� 39

� 21

� 27

� 34

� 41

� 22

� 29

� 35

� 42

� 23

� 30

� 36

� 43

�
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tv
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h � f �v, t�
t

vh1Ð6 |||| Find an equation of the tangent plane to the given surface at
the speciÞed point.

1. ,

2. ,

3. ,

4. ,

5. ,

6. ,

� 7Ð8 |||| Graph the surface and the tangent plane at the given point.
(Choose the domain and viewpoint so that you get a good view of
both the surface and the tangent plane.) Then zoom in until the 
surface and the tangent plane become indistinguishable.

7. ,

8. ,

9Ð10 |||| Draw the graph of and its tangent plane at the given
point. (Use your computer algebra system both to compute the 
partial derivatives and to graph the surface and its tangent plane.)
Then zoom in until the surface and the tangent plane become 
indistinguishable.

9.

10.

11Ð16|||| Explain why the function is differentiable at the given
point. Then Þnd the linearization of the function at 
that point.

, 12. ,

13. , 14. ,

15. ,

16. ,

17. Find the linear approximation of the function
at and use it to approximate

.

� 18. Find the linear approximation of the function
at and use it to approximate

. Illustrate by graphing and the tangent plane.

Find the linear approximation of the function
at and use it to

approximate the number .� �3.02� 2 � �1.97� 2 � �5.99� 2

�3, 2, 6�f � x, y, � � � � x2 � y2 � � 2

19.

ff �6.9, 2.06�
�7, 2�f � x, y� � ln� x � 3y�

f �1.95, 1.08�
�2, 1�f � x, y� � � 20 � x2 � 7y2

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

� � 3, 2�f � x, y� � sin�2x � 3y�

�1, 0�f � x, y� � tan� 1� x � 2y�

�3, 0�f � x, y� � � x � e4y�0, 0�f � x, y� � ex cos xy

�6, 3�f � x, y� � x� y�1, 4�f � x, y� � x� y11.

L� x, y�

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

f � x, y� �
� 1 � 4x2 � 4y2

1 � x4 � y4 ,� � �1, 1, 1�

f � x, y� � e� � x2� y2�� 15�sin2x � cos2y�,� � �2, 3, f �2, 3��

fCAS

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

�1, 1, 
 � 4�� � arctan� xy2�

�1, 1, 5�� � x2 � xy � 3y2

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

�1, � 1, 1�� � ex2� y2

�2, 2, 2�� � y cos� x � y�

�1, 4, 0�� � y ln x

�1, � 1, 1�� � � 4 � x2 � 2y2

�1, 2, 18�� � 9x2 � y2 � 6x � 3y � 5

�� 1, 2, 4�� � 4x2 � y2 � 2y

|||| 14.4 Exercises
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27. 28.

If and changes from to 
compare the values of and .

30. If and changes from to
, compare the values of and .

31. The length and width of a rectangle are measured as 30 cm and
24 cm, respectively, with an error in measurement of at most

cm in each. Use differentials to estimate the maximum
error in the calculated area of the rectangle.

32. The dimensions of a closed rectangular box are measured as
80 cm, 60 cm, and 50 cm, respectively, with a possible error 
of cm in each dimension. Use differentials to estimate the
maximum error in calculating the surface area of the box.

33. Use differentials to estimate the amount of tin in a closed tin
can with diameter 8 cm and height 12 cm if the tin is cm
thick.

34. Use differentials to estimate the amount of metal in a closed
cylindrical can that is 10 cm high and 4 cm in diameter if the
metal in the top and bottom is cm thick and the metal in the
sides is cm thick.

A boundary stripe 3 in. wide is painted around a rectangle
whose dimensions are 100 ft by 200 ft. Use differentials to
approximate the number of square feet of paint in the stripe.

36. The pressure, volume, and temperature of a mole of an ideal
gas are related by the equation , where is
measured in kilopascals, in liters, and in kelvins. Use dif-
ferentials to Þnd the approximate change in the pressure if the
volume increases from 12 L to 12.3 L and the temperature
decreases from 310 K to 305 K.

TV
PPV � 8.31T

35.

0.05
0.1

0.04

0.2

0.1

d�� ��2.96, � 0.95�
�3, � 1�� x, y�� � x2 � xy � 3y2

d�� �
�1.05, 2.1�,�1, 2�� x, y�� � 5x2 � y229.

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

w � xyex�w � ln� x2 � y2 � � 2 37. If is the total resistance of three resistors, connected in paral-
lel, with resistances , , , then

If the resistances are measured in ohms as ,
, and , with a possible error of in

each case, estimate the maximum error in the calculated value
of .

38. Four positive numbers, each less than 50, are rounded to the
Þrst decimal place and then multiplied together. Use differen-
tials to estimate the maximum possible error in the computed
product that might result from the rounding.

39Ð40|||| Show that the function is differentiable by Þnding 
values of and that satisfy DeÞnition 7.

40.

Prove that if is a function of two variables that is differen-
tiable at , then is continuous at .

Hint: Show that

42. (a) The function

was graphed in Figure 4. Show that and 
both exist but is not differentiable at . [Hint: Use
the result of Exercise 41.]

(b) Explain why and are not continuous at .�0, 0�fyfx

�0, 0�f
fy�0, 0�fx�0, 0�

f � x, y� � 	
0

xy
x2 � y2 if

if

� x, y� � �0, 0�

� x, y� � �0, 0�

lim
�� x, � y�  �  �0, 0�

 
 f �a � � x, b � � y� � f �a, b�

�a, b�f�a, b�
f41.

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

f � x, y� � xy � 5y2f � x, y� � x2 � y239.

� 2� 1

R

0.5%R3 � 50 �R2 � 40 �
R1 � 25 �

1
R

�
1
R1

�
1
R2

�
1
R3

R3R2R1

R

|||| 14.5 The Chain Rule

Recall that the Chain Rule for functions of a single variable gives the rule for differentiat-
ing a composite function: If and , where and are differentiable func-
tions, then is indirectly a differentiable function of and

For functions of more than one variable, the Chain Rule has several versions, each of
them giving a rule for differentiating a composite function. The Þrst version (Theorem 2)
deals with the case where and each of the variables and is, in turn, a func-
tion of a variable . This means that is indirectly a function of , , and the
Chain Rule gives a formula for differentiating as a function of . We assume that is dif-
ferentiable (DeÞnition 14.4.7). Recall that this is the case when and are continuous
(Theorem 14.4.8).

fyfx
ft�

� � f � � � t� , h�t��t�t
yx� � f � x, y�

dy
dt

�
dy
dx

 
dx
dt

1

ty
�fx � � � t�y � f � x�
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The Chain Rule (Case 1)Suppose that is a differentiable function of 
and , where and are both differentiable functions of . Then is
a differentiable function of and

Proof A change of in produces changes of in and in . These, in turn, pro-
duce a change of in , and from DeÞnition 14.4.7 we have

where and as . [If the functions and are not
deÞned at , we can deÞne them to be 0 there.] Dividing both sides of this equation
by , we have

If we now let , then because is differentiable and
therefore continuous. Similarly, . This, in turn, means that and , so

Since we often write in place of , we can rewrite the Chain Rule in the form

EXAMPLE 1If , where and ,Þnd when .

SOLUTIONThe Chain Rule gives

ItÕs not necessary to substitute the expressions for and in terms of . We simply tyx

 � �2xy � 3y4�� 2 cos 2t� � � x2 � 12xy3�� � sin t�

 
d�
dt

�
� �
� x

 
dx
dt

�
� �
� y

 
dy
dt

t � 0d� � dty � cos tx � sin 2t� � x2y � 3xy4

d�
dt

�
� �
� x

 
dx
dt

�
� �
� y

 
dy
dt

� f� � x� � � � x

 �
� f
� x

 
dx
dt

�
� f
� y

 
dy
dt

 �
� f
� x

 
dx
dt

�
� f
� y

 
dy
dt

� 0 �
dx
dt

� 0 �
dy
dt

 �
� f
� x

 lim
� t �  0

 
� x
� t

�
� f
� y

 lim
� t �  0

 
� y
� t

� lim
� t �  0

 � 1 lim
� t �  0

 
� x
� t

� lim
� t �  0

 � 2 lim
� t �  0

 
� y
� t

 
d�
dt

� lim
� t �  0

 
� �
� t

� 2 � 0� 1 � 0� y � 0
�� x � � � t � � t� � � � t� � 0� t � 0

� �
� t

�
� f
� x

 
� x
� t

�
� f
� y

 
� y
� t

� � 1 
� x
� t

� � 2 
� y
� t

� t
�0, 0�

� 2� 1� � x, � y� � �0, 0�� 2 � 0� 1 � 0

� � �
� f
� x

� x �
� f
� y

� y � � 1 � x � � 2 � y

�� �
y� yx� xt� t

d�
dt

�
� f
� x

 
dx
dt

�
� f
� y

 
dy
dt

t
�ty � h�t�x � � � t�y

x� � f � x, y�2

|||| Notice the similarity to the deÞnition of the
differential:

d� �
� �
� x

 dx �
� �
� y

 dy



observe that when we have x � sin 0 � 0 and y � cos 0 � 1. Therefore,

The derivative in Example 1 can be interpreted as the rate of change of with respect
to as the point moves along the curve with parametric equations ,

. (See Figure 1.) In particular, when , the point is and 
is the rate of increase as we move along the curve through . If, for instance,

represents the temperature at the point , then the compos-
ite function represents the temperature at points on and the deriva-
tive represents the rate at which the temperature changes along .

EXAMPLE 2The pressure (in kilopascals), volume (in liters), and temperature 
(in kelvins) of a mole of an ideal gas are related by the equation . Find the
rate at which the pressure is changing when the temperature is and increasing at a
rate of and the volume is 100 L and increasing at a rate of .

SOLUTIONIf represents the time elapsed in seconds, then at the given instant we have
, , , . Since

the Chain Rule gives

The pressure is decreasing at a rate of about kPa� s.

We now consider the situation where but each of and is a function of two
variables and : , . Then is indirectly a function of and and we
wish to Þnd and . Recall that in computing we hold Þxed and compute
the ordinary derivative of with respect to . Therefore, we can apply Theorem 2 to obtain

A similar argument holds for and so we have proved the following version of the
Chain Rule.

The Chain Rule (Case 2)Suppose that is a differentiable function of 
and , where and are differentiable functions of s and t. Then

 
� �
� t

�
� �
� x

 
� x
� t

�
� �
� y

 
� y
� t

 
� �
� s

�
� �
� x

 
� x
� s

�
� �
� y

 
� y
� s

y � h�s, t�x � � �s, t�y
x� � f � x, y�3

� � � � s

� �
� t

�
� �
� x

 
� x
� t

�
� �
� y

 
� y
� t

t�
s� � � � t� � � � t� � � � s

ts�y � h�s, t�x � � �s, t�ts
yx� � f � x, y�

0.042

 �
8.31
100

 �0.1� �
8.31�300�

1002  �0.2� � � 0.04155

 
dP
dt

�
� P
� T

 
dT
dt

�
� P
� V

 
dV
dt

�
8.31

V
 
dT
dt

�
8.31T

V2  
dV
dt

P � 8.31
T
V

dV� dt � 0.2V � 100dT� dt � 0.1T � 300
t

0.2 L� s0.1 K� s
300 K

PV � 8.31T
TVP

Cd� � dt
C� � T�sin 2t, cos t�

� x, y�� � T� x, y� � x2y � 3xy4
�0, 1�C

d�� dt � 6�0, 1�� x, y�t � 0y � cos t
x � sin 2tC�x, y�t

�

d�
dt 


t� 0
� �0 � 3�� 2 cos 0� � �0 � 0�� � sin 0� � 6

t � 0
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FIGURE 1
The curve 	� sin�� ���� cos� 
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EXAMPLE 3If , where and ,Þnd and .

SOLUTIONApplying Case 2 of the Chain Rule, we get

Case 2 of the Chain Rule contains three types of variables: and are independent
variables, and are called intermediate variables, and is the dependentvariable.
Notice that Theorem 3 has one term for each intermediate variable and each of these terms
resembles the one-dimensional Chain Rule in Equation 1.

To remember the Chain Rule itÕs helpful to draw the tree diagram in Figure 2. We draw
branches from the dependent variable to the intermediate variables and to indicate
that is a function of and . Then we draw branches from and to the independent
variables and . On each branch we write the corresponding partial derivative. To Þnd

we Þnd the product of the partial derivatives along each path from to and then
add these products:

Similarly, we Þnd by using the paths from to .
Now we consider the general situation in which a dependent variable is a function of

intermediate variables , , each of which is, in turn, a function of independent
variables , . Notice that there are terms, one for each intermediate variable. The
proof is similar to that of Case 1.

The Chain Rule (General Version)Suppose that is a differentiable function of the
variables , , and each is a differentiable function of the variables
, , . Then is a function of , , and

for each , , .

EXAMPLE 4Write out the Chain Rule for the case where and ,
, , and .

SOLUTIONWe apply Theorem 4 with and . Figure 3 shows the tree diagram.
Although we havenÕt written the derivatives on the branches, itÕs understood that if a
branch leads from to , then the partial derivative for that branch is . With the aid � y� � uuy

m � 2n � 4

t � t�u, v�� � � �u, v�y � y�u, v�
x � x�u, v�w � f � x, y, � , t�

m. . . ,2i � 1

� u
� ti

�
� u
� x1

 
� x1

� ti
�

� u
� x2

 
� x2

� ti
�    �

� u
� xn

 
� xn

� ti

tm. . . ,t2t1utm. . . ,t2t1
mxjxn. . . ,x2x1n

u4

ntm. . . ,t1
mxn. . . ,x1n

u
t�� � � � t

� �
� s

�
� �
� x

 
� x
� s

�
� �
� y

 
� y
� s

s�� � � � s
ts

yxyx�
yx�

�yx
ts

 � 2stest2 sin �s2t� � s2est2 cos�s2t�

 
� �
� t

�
� �
� x

 
� x
� t

�
� �
� y

 
� y
� t

� �ex sin y�� 2st� � �ex cos y�� s2�

 � t 2est2 sin �s2t� � 2stest2 cos�s2t�

 
� �
� s

�
� �
� x

 
� x
� s

�
� �
� y

 
� y
� s

� �ex sin y�� t 2� � �ex cos y�� 2st�

� � � � t� � � � sy � s2tx � st2� � ex sin y

FIGURE 2
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of the tree diagram we can now write the required expressions:

EXAMPLE 5If , where , , and ,Þnd the
value of when , , .

SOLUTIONWith the help of the tree diagram in Figure 4, we have

When , , and , we have , , and , so

EXAMPLE 6If and is differentiable, show that satisÞes the
equation

SOLUTIONLet and . Then and the Chain Rule
gives

Therefore

EXAMPLE 7If has continuous second-order partial derivatives and 
and ,Þnd (a) and (b) .

SOLUTION
(a) The Chain Rule gives

(b) Applying the Product Rule to the expression in part (a), we get

 � 2 
� �
� x

� 2r 
�
� r

 �� �
� x� � 2s 

�
� r

 �� �
� y�

    
� 2�
� r 2 �

�
� r �2r 

� �
� x

� 2s 
� �
� y�

5

� �
� r

�
� �
� x

 
� x
� r

�
� �
� y

 
� y
� r

�
� �
� x

 �2r� �
� �
� y

 �2s�

� 2� � � r 2� � � � ry � 2rs
x � r 2 � s2� � f � x, y�

t 
� �
� s

� s 
� �
� t

� �2st 
� f
� x

� 2st 
� f
� y� � �� 2st 

� f
� x

� 2st 
� f
� y� � 0

 
� �
� t

�
� f
� x

 
� x
� t

�
� f
� y

 
� y
� t

�
� f
� x

 � � 2t� �
� f
� y

 �2t�

 
� �
� s

�
� f
� x

 
� x
� s

�
� f
� y

 
� y
� s

�
� f
� x

 �2s� �
� f
� y

 � � 2s�

� �s, t� � f � x, y�y � t 2 � s2x � s2 � t 2

t 
� �
� s

� s 
� �
� t

� 0

�f� �s, t� � f �s2 � t 2, t 2 � s2�

� u
� s

� �64�� 2� � �16�� 4� � �0�� 0� � 192

� � 0y � 2x � 2t � 0s � 1r � 2

 � �4x3y�� ret � � � x4 � 2y� 3�� 2rse� t � � �3y2� 2�� r 2 sin t�

 
� u
� s

�
� u
� x

 
� x
� s

�
� u
� y

 
� y
� s

�
� u
� �

 
� �
� s

t � 0s � 1r � 2� u� � s
� � r 2ssin ty � rs2e� tx � rsetu � x4y � y2� 3

 
� w

� v
�

� w

� x
 
� x
� v

�
� w

� y
 
� y
� v

�
� w

� �
 
� �
� v

�
� w

� t
 
� t
� v

 
� w

� u
�

� w

� x
 
� x
� u

�
� w
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� y
� u

�
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� �
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�
� w
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� t
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But, using the Chain Rule again (see Figure 5), we have

Putting these expressions into Equation 5 and using the equality of the mixed second-
order derivatives, we obtain

Implicit Differentiation

The Chain Rule can be used to give a more complete description of the process of implicit
differentiation that was introduced in Sections 3.6 and 14.3. We suppose that an equa-
tion of the form deÞnes implicitly as a differentiable function of , that is,

, where for all in the domain of . If is differentiable, we can
apply Case 1 of the Chain Rule to differentiate both sides of the equation with
respect to . Since both and are functions of , we obtain

But , so if we solve for and obtain

To derive this equation we assumed that deÞnes implicitly as a function
of . The Implicit Function Theorem, proved in advanced calculus, gives conditions
under which this assumption is valid. It states that if is deÞned on a disk containing

where , , and and are continuous on the disk, then the
equation deÞnes as a function of near the point and the derivative of
this function is given by Equation 6.

EXAMPLE 8Find if .x3 � y3 � 6xyy�

�a, b�xyF�x, y� � 0
FyFxFy�a, b� � 0F�a, b� � 0�a, b�,

F
x

yF�x, y� � 0

dy
dx

� �

� F
� x
� F
� y

� �
Fx

Fy
6

dy� dx� F� � y � 0dx� dx � 1

� F
� x

 
dx
dx

�
� F
� y

 
dy
dx

� 0

xyxx
F�x, y� � 0

FfxF�x, f � x�� � 0y � f � x�
xyF�x, y� � 0

 � 2 
� �
� x

� 4r 2 
� 2�
� x2 � 8rs 

� 2�
� x � y

� 4s2 
� 2�
� y2

 
� 2�
� r 2 � 2 

� �
� x

� 2r�2r 
� 2�
� x2 � 2s 

� 2�
� y � x� � 2s�2r 

� 2�
� x � y

� 2s 
� 2�
� y2�

 �
� 2�

� x � y
 �2r� �

� 2�
� y2  �2s�

 
�
� r

 �� �
� y� �

�
� x

 �� �
� y� 

� x
� r

�
�
� y

 �� �
� y� 

� y
� r

 �
� 2�
� x2  �2r� �

� 2�
� y � x

 �2s�

 
�
� r

 �� �
� x� �

�
� x

 �� �
� x� 

� x
� r

�
�
� y

 �� �
� x� 

� y
� r

FIGURE 5
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SOLUTIONThe given equation can be written as

so Equation 6 gives

Now we suppose that is given implicitly as a function by an equation of
the form . This means that for all in the domain of
. If and are differentiable, then we can use the Chain Rule to differentiate the equa-

tion as follows:

But

so this equation becomes

If , we solve for and obtain the Þrst formula in Equations 7. The formula
for is obtained in a similar manner.

Again, a version of the Implicit Function Theorem gives conditions under which 
our assumption is valid. If is deÞned within a sphere containing , where

, , and , , and are continuous inside the sphere, then the
equation deÞnes as a function of and near the point and this
function is differentiable, with partial derivatives given by (7).

EXAMPLE 9Find and if .

SOLUTIONLet . Then, from Equations 7, we have

 
� �
� y

� �
Fy

F�
� �

3y2 � 6x�
3� 2 � 6xy

� �
y2 � 2x�
� 2 � 2xy

 
� �
� x

� �
Fx

F�
� �

3x2 � 6y�
3� 2 � 6xy

� �
x2 � 2y�
� 2 � 2xy

F�x, y, � � � x3 � y3 � � 3 � 6xy� � 1

x3 � y3 � � 3 � 6xy� � 1
� �
� y

� �
� x

�a, b, c�yx�F� x, y, � � � 0
F�FyFxF��a, b, c� � 0F�a, b, c� � 0

�a, b, c�F

� �
� y

� �

� F
� y
� F
� �

� �
� x

� �

� F
� x
� F
� �

7

� � � � y
� � � � x� F� � � � 0

� F
� x

�
� F
� �

 
� �
� x

� 0

�
� x

 � y� � 0and
�
� x

 � x� � 1

� F
� x

 
� x
� x

�
� F
� y

 
� y
� x

�
� F
� �

 
� �
� x

� 0

F�x, y, � � � 0
fFf

� x, y�F� x, y, f � x, y�� � 0F� x, y, � � � 0
� � f � x, y��

dy
dx

� �
Fx

Fy
� �

3x2 � 6y
3y2 � 6x

� �
x2 � 2y
y2 � 2x

F�x, y� � x3 � y3 � 6xy � 0

|||| The solution to Example 9 should be 
compared to the one in Example 4 in 
Section 14.3.

|||| The solution to Example 8 should be
compared to the one in Example 2 in 
Section 3.6.



21Ð26|||| Use the Chain Rule to Þnd the indicated partial 
derivatives.

21. , , ;

, , when , ,

22. , , ;

, , when , ,

23. , , ,
;

, when 

24. , , , ;

, when 

25. , , , ;

, , when 

26. , , , ;

, , when 

27Ð30|||| Use Equation 6 to Þnd .

27. 28.

29. 30.

31Ð34|||| Use Equations 7 to Þnd and .

31.

33. 34.

The temperature at a point is , measured in degrees
Celsius. A bug crawls so that its position after seconds is
given by , where and are measured
in centimeters. The temperature function satisÞes 
and . How fast is the temperature rising on the
bugÕs path after 3 seconds?

36. Wheat production in a given year, , depends on the average
temperature and the annual rainfall . Scientists estimate 
that the average temperature is rising at a rate of 0.15¡C� year
and rainfall is decreasing at a rate of 0.1 cm� year. They also
estimate that, at current production levels, and

.
(a) What is the signiÞcance of the signs of these partial 

derivatives?
(b) Estimate the current rate of change of wheat production,

.dW� dt

� W� � R � 8
� W� � T � � 2

RT
W

Ty�2, 3� � 3
Tx�2, 3� � 4

yxx � � 1 � t, y � 2 � 1
3 t

t
T� x, y�� x, y�35.

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

y� � ln� x � � �x � � � arctan� y� �

xy� � cos� x � y � � �32.x2 � y2 � � 2 � 3xy�

� � � � y� � � � x

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

sin x � cos y � sin x cos ycos� x � y� � xey

y5 � x2y3 � 1 � yex 2

� xy � 1 � x2y

dy� dx

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

r � 1, s � 0, t � 1
� Y
� t

� Y
� s

� Y
� r

w � t � rv � s � tu � r � sY � w tan� 1�uv�

p � 2, r � 3, � � 0
� u
� �

� u
� r

� u
� p

� � p � ry � pr sin �x � pr cos �u � x2 � y�

u � 3, v � � 1
� M
� v

� M
� u

� � u � vy � u � vx � 2uvM � xey� � 2

x � y � 1
� R
� y

� R
� x

w � 2xy
v � 2x � yu � x � 2yR � ln�u2 � v2 � w2�

t � 0y � 2x � 1
� u
� t

� u
� y

� u
� x
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NOTE 2�� If , the test gives no information: could have a local maximum or local
minimum at , or could be a saddle point of .

NOTE 3�� To remember the formula for itÕs helpful to write it as a determinant:

EXAMPLE 3Find the local maximum and minimum values and saddle points of
.

SOLUTIONWe Þrst locate the critical points:

Setting these partial derivatives equal to 0, we obtain the equations

To solve these equations we substitute from the Þrst equation into the second
one. This gives

so there are three real roots: , , . The three critical points are , ,
and .

Next we calculate the second partial derivatives and :

Since , it follows from case (c) of the Second Derivatives Test that
the origin is a saddle point; that is, has no local maximum or minimum at . 
Since and , we see from case (a) of the test that

is a local minimum. Similarly, we have and
, so is also a local minimum.

The graph of is shown in Figure 4.

FIGURE 5
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�

f
f � � 1, � 1� � � 1fxx� � 1, � 1� � 12  0

D�� 1, � 1� � 128  0f �1, 1� � � 1
fxx�1, 1� � 12  0D�1, 1� � 128  0

�0, 0�f
D�0, 0� � � 16 � 0

D�x, y� � fxx fyy � � fx y�2 � 144x2y2 � 16

fyy � 12y2fx y � � 4fxx � 12x2

D�x, y�
� � 1, � 1�

�1, 1��0, 0�� 11x � 0

0 � x9 � x � x� x8 � 1� � x� x4 � 1�� x4 � 1� � x� x2 � 1�� x2 � 1�� x4 � 1�

y � x3

y3 � x � 0andx3 � y � 0

fy � 4y3 � 4xfx � 4x3 � 4y

f � x, y� � x4 � y4 � 4xy � 1

D � � fxx

fyx

fx y

fyy
� � fxx fyy � � fx y�2

D
f�a, b��a, b�

fD � 0
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|||| A contour map of the function in Example 3
is shown in Figure 5. The level curves near 
and are oval in shape and indicate
that as we move away from or 
in any direction the values of are increasing.
The level curves near , on the other hand,
resemble hyperbolas. They reveal that as we
move away from the origin (where the value of 
is ), the values of decrease in some directions
but increase in other directions. Thus, the contour
map suggests the presence of the minima and
saddle point that we found in Example 3.

f1
f

�0, 0�
f

� � 1, � 1��1, 1�
� � 1, � 1�

�1, 1�
f

�
�

�

FIGURE 4
���#��#!�� ���
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EXAMPLE 4Find and classify the critical points of the function

Also Þnd the highest point on the graph of .

SOLUTIONThe Þrst-order partial derivatives are

So to Þnd the critical points we need to solve the equations

From Equation 4 we see that either

In the Þrst case ( ), Equation 5 becomes , so and we
have the critical point .

In the second case , we get

and, putting this in Equation 5, we have . So we have to
solve the cubic equation

Using a graphing calculator or computer to graph the function

as in Figure 6, we see that Equation 7 has three real roots. By zooming in, we can Þnd
the roots to four decimal places:

(Alternatively, we could have used NewtonÕs method or a rootÞnder to locate these
roots.) From Equation 6, the corresponding -values are given by

If , then x has no corresponding real values. If , then
. If , then . So we have a total of Þve critical

points, which are analyzed in the following chart. All quantities are rounded to two 
decimal places.

x � � 2.6442y � 1.8984x � � 0.8567
y � 0.6468y � � 2.5452

x � � � 5y � 2.5

x

 y � 1.8984 y � 0.6468 y � � 2.5452

� � y� � 4y3 � 21y � 12.5

4y3 � 21y � 12.5� 07

25y � 12.5� 4y � 4y3 � 0

x2 � 5y � 2.56

�10y � 5 � 2x2 � 0�
�0, 0�

y � 0� 4y�1 � y2� � 0x � 0

10y � 5 � 2x2 � 0orx � 0

 5x2 � 4y � 4y3 � 05

 2x�10y � 5 � 2x2� � 04

fy � 10x2 � 8y � 8y3fx � 20xy � 10x � 4x3

f

f � x, y� � 10x2y � 5x2 � 4y2 � x4 � 2y4

FIGURE 6

�� ���

In Module 14.7 you can use contour
maps to estimate the locations of 
critical points.
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Figures 7 and 8 give two views of the graph of and we see that the surface opens
downward. [This can also be seen from the expression for : The dominant terms
are when and are large.] Comparing the values of at its local maxi-
mum points, we see that the absolute maximum value of is . In
other words, the highest points on the graph of are .

EXAMPLE 5Find the shortest distance from the point to the plane
.

SOLUTIONThe distance from any point to the point is

but if lies on the plane , then and so we have
. We can minimize by minimizing the simpler

expression

d2 � f � x, y� � � x � 1�2 � y2 � �6 � x � 2y�2

dd � � � x � 1� 2 � y2 � �6 � x � 2y� 2

� � 4 � x � 2yx � 2y � � � 4� x, y, � �

d � � � x � 1�2 � y2 � � � � 2�2

�1, 0, � 2�� x, y, � �

x � 2y � � � 4
�1, 0, � 2�

FIGURE 9
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�

� � 2.64, 1.90, 8.50�f
f � � 2.64, 1.90� � 8.50f

f� y�� x�� x2 � 2y4
f � x, y�

f

Critical point Value of D Conclusion

0.00 � 10.00 80.00 local maximum

8.50 � 55.93 2488.71 local maximum

� 1.48 � 5.87 � 187.64 saddle point�� 0.86, 0.65�

�� 2.64, 1.90�

�0, 0�

fxxf

|||| The Þve critical points of the function in
Example 4 are shown in red in the contour map
of in Figure 9.f

f

Visual 14.7 shows several families 
of surfaces. The surface in Figures 7 
and 8 is a member of one of these 
families.
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By solving the equations

we Þnd that the only critical point is . Since , , and , we
have and , so by the Second Derivatives Test 
has a local minimum at . Intuitively, we can see that this local minimum is actually
an absolute minimum because there must be a point on the given plane that is closest to

. If and , then

The shortest distance from to the plane is .

EXAMPLE 6A rectangular box without a lid is to be made from 12 m of cardboard. Find
the maximum volume of such a box.

SOLUTIONLet the length, width, and height of the box (in meters) be , , and , as shown
in Figure 10. Then the volume of the box is

We can express as a function of just two variables and by using the fact that the
area of the four sides and the bottom of the box is

Solving this equation for , we get , so the expression for 
becomes

We compute the partial derivatives:

If is a maximum, then , but or gives , so we
must solve the equations

These imply that and so . (Note that and must both be positive in this
problem.) If we put in either equation we get , which gives ,

, and .
We could use the Second Derivatives Test to show that this gives a local maximum 

of , or we could simply argue from the physical nature of this problem that there must
be an absolute maximum volume, which has to occur at a critical point of , so it must
occur when , , . Then , so the maximum volume of
the box is 4 m .3

V � 2 � 2 � 1 � 4� � 1y � 2x � 2
V

V

� � �12 � 2 � 2��� 2�2 � 2�� � 1y � 2
x � 212 � 3x2 � 0x � y

yxx � yx2 � y2

12 � 2xy � y2 � 012 � 2xy � x2 � 0

V � 0y � 0x � 0� V� � x � � V� � y � 0V

� V
� y

�
x2�12 � 2xy � y2�

2� x � y�2

� V
� x

�
y2�12 � 2xy � x2�

2� x � y�2

V � xy 
12 � xy
2� x � y�

�
12xy � x2y2

2� x � y�

V� � �12 � xy��� 2� x � y���

2x� � 2y� � xy � 12

yxV

V � xy�

�yx

2

5� 6� 6x � 2y � � � 4�1, 0, � 2�

d � � �x � 1�2 � y2 � �6 � x � 2y�2 � � (5
6)2 � (5

3)2 � (5
6)2 �

5� 6
6

y � 5
3x � 11

6�1, 0, � 2�

(11
6 , 53)

ffxx � 0D�x, y� � fxx fy y � � fx y�2 � 24 � 0
fyy � 10fx y � 4fxx � 4(11

6 , 53)

 fy � 2y � 4�6 � x � 2y� � 4x � 10y � 24 � 0

 fx � 2� x � 1� � 2�6 � x � 2y� � 4x � 4y � 14 � 0

|||| Example 5 could also be solved using 
vectors. Compare with the methods of 
Section 12.5.

FIGURE 10
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Absolute Maximum and Minimum Values

For a function of one variable the Extreme Value Theorem says that if is continuous
on a closed interval , then has an absolute minimum value and an absolute maxi-
mum value. According to the Closed Interval Method in Section 4.1, we found these by
evaluating not only at the critical numbers but also at the endpoints and .

There is a similar situation for functions of two variables. Just as a closed interval con-
tains its endpoints, a closed setin is one that contains all its boundary points. [A bound-
ary point of D is a point such that every disk with center contains points in D
and also points not in D.] For instance, the disk

which consists of all points on and inside the circle , is a closed set because it
contains all of its boundary points (which are the points on the circle ). But if
even one point on the boundary curve were omitted, the set would not be closed. (See
Figure 11.)

A bounded setin is one that is contained within some disk. In other words, it is
Þnite in extent. Then, in terms of closed and bounded sets, we can state the following coun-
terpart of the Extreme Value Theorem in two dimensions.

Extreme Value Theorem for Functions of Two VariablesIf is continuous on a closed,
bounded set in , then attains an absolute maximum value and an
absolute minimum value at some points and in .

To Þnd the extreme values guaranteed by Theorem 8, we note that, by Theorem 2, if 
has an extreme value at , then is either a critical point of or a boundary
point of . Thus, we have the following extension of the Closed Interval Method.

To Þnd the absolute maximum and minimum values of a continuous function
on a closed, bounded set :

1. Find the values of at the critical points of in .

2. Find the extreme values of on the boundary of .

3. The largest of the values from steps 1 and 2 is the absolute maximum value; 
the smallest of these values is the absolute minimum value.

EXAMPLE 7Find the absolute maximum and minimum values of the function
on the rectangle .

SOLUTIONSince is a polynomial, it is continuous on the closed, bounded rectangle ,
so Theorem 8 tells us there is both an absolute maximum and an absolute minimum.
According to step 1 in (9), we Þrst Þnd the critical points. These occur when

so the only critical point is , and the value of there is .f �1, 1� � 1f�1, 1�

fy � � 2x � 2 � 0fx � 2x � 2y � 0

Df

D � 	� x, y� � 0 � x � 3, 0 � y � 2
f � x, y� � x2 � 2xy � 2y

Df

Dff

Df
9

D
f� x1, y1�� x1, y1�

f

D� x2, y2�� x1, y1�f � x2, y2�
f � x1, y1�f� 2D

f8

� 2

x2 � y2 � 1
x2 � y2 � 1

D � 	� x, y� � x2 � y2 � 1


�a, b��a, b�
� 2

baf

f�a, b�
ff

SECTION 14.7MAXIMUM AND MINIMUM VALUES� � � � 959

(a) Closed sets

(b) Sets that are not closed

FIGURE 11
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In step 2 we look at the values of on the boundary of , which consists of the four
line segments , , , shown in Figure 12. On we have and

This is an increasing function of , so its minimum value is and its maxi-
mum value is . On we have and

This is a decreasing function of , so its maximum value is and its minimum
value is . On we have and

By the methods of Chapter 4, or simply by observing that , we see
that the minimum value of this function is and the maximum value is

. Finally, on we have and

with maximum value and minimum value . Thus, on the bound-
ary, the minimum value of is 0 and the maximum is 9.

In step 3 we compare these values with the value at the critical point and
conclude that the absolute maximum value of on is and the absolute
minimum value is . Figure 13 shows the graph of .

We close this section by giving a proof of the Þrst part of the Second Derivatives Test.
Part (b) has a similar proof.

Proof of Theorem 3, Part (a)We compute the second-order directional derivative of in the
direction of . The Þrst-order derivative is given by Theorem 14.6.3:

Applying this theorem a second time, we have

(by ClairautÕs Theorem) � fxxh2 � 2fxyhk � fyyk2

 � � fxxh � fyxk�h � � fxyh � fyyk�k

 D2
u f � Du�Du f � �

�
� x

 �Du f �h �
�
� y

 �Du f �k

Du f � fxh � fyk

u � � h, k�
f

FIGURE 13
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ff �0, 0� � f �2, 2� � 0
f �3, 0� � 9Df

f �1, 1� � 1
f

f �0, 0� � 0f �0, 2� � 4

0 � y � 2f �0, y� � 2y

x � 0L4f �0, 2� � 4
f �2, 2� � 0

f � x, 2� � � x � 2�2

0 � x � 3f � x, 2� � x2 � 4x � 4

y � 2L3f �3, 2� � 1
f �3, 0� � 9y

0 � y � 2f �3, y� � 9 � 4y

x � 3L2f �3, 0� � 9
f �0, 0� � 0x

0 � x � 3f � x, 0� � x2

y � 0L1L4L3L2L1

Df	

��
��
�

�
����
������

������

����
���

�� ��

��

FIGURE 12
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If we complete the square in this expression, we obtain

We are given that and . But and are con-
tinuous functions, so there is a disk with center and radius such that

and whenever is in . Therefore, by looking at Equation
10, we see that whenever is in . This means that if is the curve
obtained by intersecting the graph of with the vertical plane through in
the direction of , then is concave upward on an interval of length . This is true in
the direction of every vector , so if we restrict to lie in , the graph of lies
above its horizontal tangent plane at . Thus, whenever is in .
This shows that is a local minimum.f �a, b�

B� x, y�f � x, y� � f �a, b�P
fB�x, y�u

2	Cu
P�a, b, f �a, b��f

CB�x, y�Du
2 f � x, y� � 0

B�x, y�D�x, y� � 0fxx� x, y� � 0
	 � 0�a, b�B

D � fxx fyy � f x y
2fxxD�a, b� � 0fxx�a, b� � 0

D2
u f � fxxh �

 fx y

fxx
 k�2

�
k2

fxx
 � fxx fyy � f 2

xy�10

4.

5Ð18 |||| Find the local maximum and minimum values and saddle
point(s) of the function. If you have three-dimensional graphing
software, graph the function with a domain and viewpoint that
reveal all the important aspects of the function.

5.

6.

7.

8.

9.

10.

11.

12.

14.

15. 16.

17. 18.
�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

f � x, y� � x2ye� x2� y2
f � x, y� � � x2 � y2�ey2� x2

f � x, y� � �2x � x2�� 2y � y2�f � x, y� � x sin y

f � x, y� � x2 � y2 �
1

x2y2f � x, y� � ex cos y13.

f � x, y� � xy�1 � x � y�

f � x, y� � 1 � 2xy � x2 � y2

f � x, y� � 2x3 � xy2 � 5x2 � y2

f � x, y� � �1 � xy�� x � y�

f � x, y� � e4y� x2� y2

f � x, y� � x4 � y4 � 4xy � 2

f � x, y� � x3y � 12x2 � 8y

f � x, y� � 9 � 2x � 4y � x2 � 4y2

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��
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f � x, y� � 3x � x3 � 2y2 � y4Suppose (1, 1) is a critical point of a function with contin-
uous second derivatives. In each case, what can you say 
about ?
(a)

(b)

2. Suppose (0, 2) is a critical point of a function � with contin-
uous second derivatives. In each case, what can you say 
about � ?
(a)

(b)

(c)

3Ð4 |||| Use the level curves in the Þgure to predict the location of
the critical points of and whether has a saddle point or a local
maximum or minimum at each of those points. Explain your
reasoning. Then use the Second Derivatives Test to conÞrm your
predictions.
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f � x, y� � 4 � x3 � y3 � 3xy3.

ff

� yy�0, 2� � 9� x y�0, 2� � 6, � xx�0, 2� � 4, 

� yy�0, 2� � � 8� x y�0, 2� � 2, � xx�0, 2� � � 1, 

� yy�0, 2� � 1� x y�0, 2� � 6, � xx�0, 2� � � 1, 

fyy�1, 1� � 2fx y�1, 1� � 3, fxx�1, 1� � 4, 

fyy�1, 1� � 2fx y�1, 1� � 1, fxx�1, 1� � 4, 
f

f1.

|||| 14.7 Exercises



an absolute maximum. But this is not true for functions of two
variables. Show that the function

has exactly one critical point, and that has a local maximum
there that is not an absolute maximum. Then use a computer to
produce a graph with a carefully chosen domain and viewpoint
to see how this is possible.

37. Find the shortest distance from the point to the 
plane .

38. Find the point on the plane that is closest to the
point .

Find the points on the surface that are closest to
the origin.

40. Find the points on the surface that are closest to 
the origin.

Find three positive numbers whose sum is 100 and whose 
product is a maximum.

42. Find three positive numbers , , and whose sum is 100 such
that is a maximum.

43. Find the volume of the largest rectangular box with edges 
parallel to the axes that can be inscribed in the ellipsoid 

44. Solve the problem in Exercise 43 for a general ellipsoid 

45. Find the volume of the largest rectangular box in the Þrst
octant with three faces in the coordinate planes and one vertex
in the plane .

46. Find the dimensions of the rectangular box with largest 
volume if the total surface area is given as 64 cm .

47. Find the dimensions of a rectangular box of maximum volume
such that the sum of the lengths of its 12 edges is a constant .

48. The base of an aquarium with given volume is made of slate
and the sides are made of glass. If slate costs Þve times as
much (per unit area) as glass,Þnd the dimensions of the aquar-
ium that minimize the cost of the materials.

A cardboard box without a lid is to have a volume of
32,000 cm Find the dimensions that minimize the amount 
of cardboard used.

50. A rectangular building is being designed to minimize heat loss.
The east and west walls lose heat at a rate of per
day, the north and south walls at a rate of per day,
the ßoor at a rate of per day, and the roof at a rate of

per day. Each wall must be at least 30 m long, the
height must be at least 4 m, and the volume must be exactly

.
(a) Find and sketch the domain of the heat loss as a function of

the lengths of the sides.

4000 m3

5 units� m2
1 unit� m2

8 units� m2
10 units� m2

3.
49.

V

c

2

x � 2y � 3� � 6

x2

a2 �
y2

b2 �
� 2

c2 � 1

9x2 � 36y2 � 4� 2 � 36

xayb� c
�yx

41.

x2y2� � 1

� 2 � xy � 139.

�1, 2, 3�
x � y � � � 4

x � y � � � 1
�2, 1, � 1�

f

f � x, y� � 3xey � x3 � e3y

� 19Ð22|||| Use a graph and/or level curves to estimate the local 
maximum and minimum values and saddle point(s) of the function.
Then use calculus to Þnd these values precisely.

19.

20.

21. ,
,

22. ,
,

� 23Ð26|||| Use a graphing device as in Example 4 (or NewtonÕs
method or a rootÞnder) to Þnd the critical points of correct to
three decimal places. Then classify the critical points and Þnd the
highest or lowest points on the graph.

23.

24.

25.

26.

27Ð34|||| Find the absolute maximum and minimum values of on
the set .

27. , is the closed triangular region
with vertices , , and 

28. , is the closed triangular region
with vertices , , and 

,

30. ,

31. ,

32. ,

33. ,

34. , is the quadrilateral whose
vertices are , , , and .

� 35. For functions of one variable it is impossible for a continuous
function to have two local maxima and no local minimum. But
for functions of two variables such functions exist. Show that
the function

has only two critical points, but has local maxima at both of
them. Then use a computer to produce a graph with a carefully
chosen domain and viewpoint to see how this is possible.

� 36. If a function of one variable is continuous on an interval and
has only one critical number, then a local maximum has to be 

f � x, y� � � � x2 � 1�2 � � x2y � x � 1�2

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

� � 2, � 2��2, 2��2, 3�� � 2, 3�
Df � x, y� � x3 � 3x � y3 � 12y

D � 	� x, y� � x2 � y2 � 1
f � x, y� � 2x3 � y4

D � 	� x, y� � x � 0, y � 0, x2 � y2 � 3
f � x, y� � xy2

D � 	� x, y� � 0 � x � 3, 0 � y � 2

f � x, y� � x4 � y4 � 4xy � 2

D � 	� x, y� � 0 � x � 4, 0 � y � 5

f � x, y� � 4x � 6y � x2 � y2

D � 	� x, y� � � x � � 1, � y � � 1

f � x, y� � x2 � y2 � x2y � 429.

�1, 4��5, 0��1, 0�
Df � x, y� � 3 � xy � x � 2y

�0, 3��2, 0��0, 0�
Df � x, y� � 1 � 4x � 5y

D
f

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

f � x, y� � ex � y4 � x3 � 4 cos y

f � x, y� � 2x � 4x2 � y2 � 2xy2 � x4 � y4

f � x, y� � 5 � 10xy � 4x2 � 3y � y4

f � x, y� � x4 � 5x2 � y2 � 3x � 2

f

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

0 � y � 
 � 40 � x � 
 � 4
f � x, y� � sin x � sin y � cos� x � y�

0 � y � 2
0 � x � 2

f � x, y� � sin x � sin y � sin� x � y�

f � x, y� � xye� x2� y2

f � x, y� � 3x2y � y3 � 3x2 � 3y2 � 2
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(b) Find the dimensions that minimize heat loss. (Check both
the critical points and the points on the boundary of the
domain.)

(c) Could you design a building with even less heat loss if the
restrictions on the lengths of the walls were removed?

51. If the length of the diagonal of a rectangular box must be ,
what is the largest possible volume?

52. Three alleles (alternative versions of a gene) A, B, and O 
determine the four blood types A (AA or AO), B (BB or BO),
O (OO), and AB. The Hardy-Weinberg Law states that the pro-
portion of individuals in a population who carry two different
alleles is

where , , and are the proportions of A, B, and O in the 
population. Use the fact that to show that is
at most .

53. Suppose that a scientist has reason to believe that two quan-
tities and are related linearly, that is, , at least
approximately, for some values of and . The scientist per-
forms an experiment and collects data in the form of points

, , , and then plots these points. The
points donÕt lie exactly on a straight line, so the scientist wants
to Þnd constants and so that the line ÒÞtsÓthe
points as well as possible. (See the Þgure.) 

y � mx � bbm

. . . , � xn, yn�� x2, y2�� x1, y1�

bm
y � mx � byx

2
3

Pp � q � r � 1
rqp

P � 2pq � 2pr � 2rq

L

Let be the vertical deviation of the point
from the line. The method of least squaresdetermines

and so as to minimize , the sum of the squares of
these deviations. Show that, according to this method, the line
of best Þt is obtained when

Thus, the line is found by solving these two equations in the
two unknowns and . (See Section 1.2 for a further discus-
sion and applications of the method of least squares.)

54. Find an equation of the plane that passes through the point
and cuts off the smallest volume in the Þrst octant.�1, 2, 3�

bm

 m �
n

i� 1
 xi

2 � b �
n

i� 1
 xi � �

n

i� 1
 xi yi

 m �
n

i� 1
 xi � bn � �

n

i� 1
 yi

� n
i� 1 di

2bm
�xi , yi�

di � yi � �mxi � b�

	

�

� ��!�
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Designing a Dumpster

For this project we locate a trash dumpster in order to study its shape and construction. We 
then attempt to determine the dimensions of a container of similar design that minimize con-
struction cost.

1. First locate a trash dumpster in your area. Carefully study and describe all details of its
construction, and determine its volume. Include a sketch of the container.

2. While maintaining the general shape and method of construction, determine the dimensions
such a container of the same volume should have in order to minimize the cost of construc-
tion. Use the following assumptions in your analysis:

The sides, back, and front are to be made from 12-gauge (0.1046 inch thick) steel sheets,
which cost $0.70 per square foot (including any required cuts or bends).

The base is to be made from a 10-gauge (0.1345 inch thick) steel sheet, which costs $0.90
per square foot.

Lids cost approximately $50.00 each, regardless of dimensions.

Welding costs approximately $0.18 per foot for material and labor combined.

Give justiÞcation of any further assumptions or simpliÞcations made of the details of 
construction.

3. Describe how any of your assumptions or simpliÞcations may affect the Þnal result.

4. If you were hired as a consultant on this investigation, what would your conclusions be?
Would you recommend altering the design of the dumpster? If so, describe the savings that
would result.

APPLIED PROJECT
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Quadratic Approximations and Critical Points

The Taylor polynomial approximation to functions of one variable that we discussed in Chap-
ter 11 can be extended to functions of two or more variables. Here we investigate quadratic
approximations to functions of two variables and use them to give insight into the Second
Derivatives Test for classifying critical points.

In Section 14.4 we discussed the linearization of a function of two variables at a 
point :

Recall that the graph of is the tangent plane to the surface at and the
corresponding linear approximation is . The linearization is also called the
Þrst-degree Taylor polynomialof at .

1. If has continuous second-order partial derivatives at , then the second-degree Taylor
polynomial of at is

and the approximation is called the quadratic approximation to at
. Verify that has the same Þrst- and second-order partial derivatives as at .

2. (a) Find the Þrst- and second-degree Taylor polynomials and of 
at (0, 0).

� (b) Graph , , and . Comment on how well and approximate .

3. (a) Find the Þrst- and second-degree Taylor polynomials and for 
at (1, 0).

(b) Compare the values of , , and at (0.9, 0.1).
� (c) Graph , , and . Comment on how well and approximate .

4. In this problem we analyze the behavior of the polynomial 
(without using the Second Derivatives Test) by identifying the graph as a paraboloid.
(a) By completing the square, show that if , then

(b) Let . Show that if and , then has a local minimum 
at (0, 0).

(c) Show that if and , then has a local maximum at (0, 0).
(d) Show that if , then (0, 0) is a saddle point.

5. (a) Suppose is any function with continuous second-order partial derivatives such that
and (0, 0) is a critical point of . Write an expression for the second-degree

Taylor polynomial, , of at (0, 0).
(b) What can you conclude about from Problem 4?
(c) In view of the quadratic approximation , what does part (b) suggest

about ?f
f � x, y� � Q� x, y�

Q
fQ

ff �0, 0� � 0
f

D � 0
fa � 0D � 0

fa � 0D � 0D � 4ac � b2

f � x, y� � ax2 � bxy � cy2 � a�x �
b
2a

 y�2

� 4ac � b2

4a2 �y2�
a � 0

f � x, y� � ax2 � bxy � cy2

fQLQLf
fQL

f � x, y� � xeyQL

fQLQLf

f � x, y� � e� x 2� y 2
QL

�a, b�fQ�a, b�
ff � x, y� � Q� x, y�

 �  12 fxx�a, b�� x � a�2 � fx y�a, b�� x � a�� y � b� � 1
2 fyy�a, b�� y � b�2

 Q� x, y� � f �a, b� � fx�a, b�� x � a� � fy�a, b�� y � b�

�a, b�f
�a, b�f

�a, b�f
Lf � x, y� � L� x, y�
�a, b, f �a, b��� � f � x, y�L

L� x, y� � f �a, b� � fx�a, b�� x � a� � fy�a, b�� y � b�

�a, b�
f
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|||| 14.8 Lagrange Multipliers

In Example 6 in Section 14.7 we maximized a volume function subject to the 
constraint , which expressed the side condition that the surface area
was 12 m . In this section we present LagrangeÕs method for maximizing or minimizing 
a general function subject to a constraint (or side condition) of the form

.
ItÕs easier to explain the geometric basis of LagrangeÕs method for functions of two

variables. So we start by trying to Þnd the extreme values of subject to a constraint
of the form . In other words, we seek the extreme values of when the
point is restricted to lie on the level curve . Figure 1 shows this curve
together with several level curves of . These have the equations where ,
, , , . To maximize subject to is to Þnd the largest value of such

that the level curve intersects . It appears from Figure 1 that this
happens when these curves just touch each other, that is, when they have a common tan-
gent line. (Otherwise, the value of c could be increased further.) This means that the nor-
mal lines at the point where they touch are identical. So the gradient vectors are
parallel; that is, for some scalar .

This kind of argument also applies to the problem of Þnding the extreme values of
subject to the constraint . Thus, the point is restricted to lie

on the level surface with equation . Instead of the level curves in Figure 1,
we consider the level surfaces and argue that if the maximum value of 
is , then the level surface is tangent to the level surface

and so the corresponding gradient vectors are parallel.
This intuitive argument can be made precise as follows. Suppose that a function has

an extreme value at a point on the surface and let be a curve with vector
equation that lies on and passes through . If is the parameter
value corresponding to the point , then . The composite function

represents the values that takes on the curve . Since has an
extreme value at , it follows that has an extreme value at , so . But
if is differentiable, we can use the Chain Rule to write

This shows that the gradient vector is orthogonal to the tangent vector 
to every such curve . But we already know from Section 14.6 that the gradient vector 
of , , is also orthogonal to . (See Equation 14.6.18.) This means thatr ��t0� � � x0, y0, � 0��

C
r ��t0� f � x0, y0, � 0�

 �  f � x0, y0, � 0� � r �� t0�

 0 � h��t0� � fx� x0, y0, � 0� x��t0� � fy� x0, y0, � 0�y��t0� � f� � x0, y0, � 0� � �� t0�

f
h��t0� � 0t0h� x0, y0, � 0�

fCfh�t� � f � x�t� , y�t�, � � t��
r � t0� � � x0, y0, � 0�P

t0PSr �t� � � x�t� , y�t�, � � t� �
CSP�x0, y0, � 0�

f
� � x, y, � � � k

f � x, y, � � � cf � x0, y0, � 0� � c
ff � x, y, � � � c

� � x, y, � � � kS
�x, y, � �� � x, y, � � � kf � x, y, � �

FIGURE 1
�
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� f � x0, y0� � �  � � x0, y0�
� x0, y0�

� � x, y� � kf � x, y� � c
c� � x, y� � kf � x, y�111098
c � 7f � x, y� � c,f

� � x, y� � k� x, y�
f � x, y�� � x, y� � k

f � x, y�

� � x, y, � � � k
f � x, y, � �

2
2x� � 2y� � xy � 12

V � xy�
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Visual 14.8 animates Figure 1 for both
level curves and level surfaces.
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the gradient vectors and must be parallel. Therefore, if
, there is a number such that

The number in Equation 1 is called a Lagrange multiplier . The procedure based on
Equation 1 is as follows.

Method of Lagrange MultipliersTo Þnd the maximum and minimum values of
subject to the constraint [assuming that these extreme 

values exist and on the surface ]:

(a) Find all values of , , , and such that

and

(b) Evaluate at all the points that result from step (a). The largest of
these values is the maximum value of ; the smallest is the minimum value 
of .

If we write the vector equation in terms of its components, then the equa-
tions in step (a) become

This is a system of four equations in the four unknowns , , , and , but it is not neces-
sary to Þnd explicit values for .

For functions of two variables the method of Lagrange multipliers is similar to the
method just described. To Þnd the extreme values of subject to the constraint

, we look for values of , , and such that

This amounts to solving three equations in three unknowns:

Our Þrst illustration of LagrangeÕs method is to reconsider the problem given in
Example 6 in Section 14.7.

EXAMPLE 1A rectangular box without a lid is to be made from 12 m of cardboard. Find
the maximum volume of such a box.

SOLUTIONAs in Example 6 in Section 14.7 we let , , and be the length, width, and
height, respectively, of the box in meters. Then we wish to maximize

subject to the constraint

� � x, y, � � � 2x� � 2y� � xy � 12

V � xy�

�yx

2

� � x, y� � kfy � � � yfx � � � x

� � x, y� � kand� f � x, y� � � � � � x, y�

�yx� � x, y� � k
f � x, y�

�
��yx

� � x, y, � � � kf� � � � �fy � � � yfx � � � x

� f � � � �

f
f

� x, y, � �f

 � � x, y, � � � k

 � f � x, y, � � � � � � � x, y, � �

��yx

� � x, y, � � � k� � � 0
� � x, y, � � � kf � x, y, � �

�

� f � x0, y0, � 0� � � � � � x0, y0, � 0�1

�� � � x0, y0, � 0� � 0
� � � x0, y0, � 0�� f � x0, y0, � 0�

|||| In deriving LagrangeÕs method we assumed
that . In each of our examples you can
check that at all points where

.� � x, y, � � � k
� � � 0

� � � 0

|||| Lagrange multipliers are named after the
French-Italian mathematician Joseph-Louis
Lagrange (1736Ð1813). See page 292 for a 
biographical sketch of Lagrange.
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Using the method of Lagrange multipliers, we look for values of , , , and such that
and . This gives the equations

which become

There are no general rules for solving systems of equations. Sometimes some ingenuity
is required. In the present example you might notice that if we multiply (2) by (3) by ,
and (4) by , then the left sides of these equations will be identical. Doing this, we have

We observe that because would imply from (2), (3), and
(4) and this would contradict (5). Therefore, from (6) and (7) we have

which gives . But (since would give ), so . From (7) and
(8) we have

which gives and so (since ) . If we now put in (5),
we get

Since , , and are all positive, we therefore have , , and as before.

EXAMPLE 2Find the extreme values of the function on the 
circle .

SOLUTIONWe are asked for the extreme values of subject to the constraint
. Using Lagrange multipliers, we solve the equations ,

, which can be written as

or as

x2 � y2 � 111

 4y � 2y�10

 2x � 2x�9

� � x, y� � 1fy � � � yfx � � � x

� � x, y� � 1
� f � � � �� � x, y� � x2 � y2 � 1

f

x2 � y2 � 1
f � x, y� � x2 � 2y2

y � 2x � 2� � 1�yx

4� 2 � 4� 2 � 4� 2 � 12

x � y � 2�y � 2�x � 02x� � xy

2y� � xy � 2x� � 2y�

x � yV � 0� � 0� � 0x� � y�

2x� � xy � 2y� � xy

y� � x� � xy � 0� � 0� � 0

 xy� � � �2x� � 2y� �8

 xy� � � �2y� � xy�7

 xy� � � �2x� � xy�6

�
yx,

2x� � 2y� � xy � 125

 xy � � �2x � 2y�4

 x� � � �2� � x�3

 y� � � �2� � y�2

2x� � 2y� � xy � 12V� � � � �Vy � � � yVx � � � x

� � x, y, � � � 12� V � � � �
��yx

|||| Another method for solving the system of
equations (2Ð5) is to solve each of Equations 2,
3, and 4 for and then to equate the resulting
expressions.

�

|||| In geometric terms, Example 2 asks for the
highest and lowest points on the curve in Fig-
ure 2 that lies on the paraboloid 
and directly above the constraint circle

.x2 � y2 � 1

� � x2 � 2y2
C

FIGURE 2

�

�
�
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�
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From (9) we have or . If , then (11) gives . If , then
from (10), so then (11) gives . Therefore, has possible extreme values 

at the points , , , and . Evaluating at these four points, we
Þnd that

Therefore, the maximum value of on the circle is and the
minimum value is . Checking with Figure 2, we see that these values look
reasonable.

EXAMPLE 3Find the extreme values of on the disk .

SOLUTIONAccording to the procedure in (14.7.9), we compare the values of at the criti-
cal points with values at the points on the boundary. Since and , the only
critical point is . We compare the value of at that point with the extreme values
on the boundary from Example 2:

Therefore, the maximum value of on the disk is and the
minimum value is .

EXAMPLE 4Find the points on the sphere that are closest to and far-
thest from the point .

SOLUTIONThe distance from a point to the point is

but the algebra is simpler if we instead maximize and minimize the square of the 
distance:

The constraint is that the point lies on the sphere, that is,

According to the method of Lagrange multipliers, we solve , . This gives

The simplest way to solve these equations is to solve for , , and in terms of from
(12), (13), and (14), and then substitute these values into (15). From (12) we have

x �
3

1 � �
orx�1 � � � � 3orx � 3 � x�

��yx

x2 � y2 � � 2 � 415

 2�� � 1� � 2� �14

 2� y � 1� � 2y�13

 2� x � 3� � 2x�12

� � 4� f � � � �

� � x, y, � � � x2 � y2 � � 2 � 4

� x, y, � �

d2 � f � x, y, � � � � x � 3�2 � � y � 1�2 � � � � 1�2

d � � � x � 3� 2 � � y � 1� 2 � � � � 1� 2

�3, 1, � 1�� x, y, � �

�3, 1, � 1�
x2 � y2 � � 2 � 4

f �0, 0� � 0
f �0, � 1� � 2x2 � y2 � 1f

f �0, � 1� � 2f � � 1, 0� � 1f �0, 0� � 0

f�0, 0�
fy � 4yfx � 2x

f

x2 � y2 � 1f � x, y� � x2 � 2y2

f � � 1, 0� � 1
f �0, � 1� � 2x2 � y2 � 1f

f � � 1, 0� � 1f �1, 0� � 1f �0, � 1� � 2f �0, 1� � 2

f� � 1, 0��1, 0��0, � 1��0, 1�
fx � � 1y � 0

� � 1y � � 1x � 0� � 1x � 0|||| The geometry behind the use of Lagrange
multipliers in Example 2 is shown in Figure 3.
The extreme values of 
correspond to the level curves that touch the 
circle .x2 � y2 � 1

f � x, y� � x2 � 2y2

FIGURE 3
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[Note that because is impossible from (12).] Similarly, (13) and (14)
give

Therefore, from (15) we have

which gives , , so

These values of then give the corresponding points :

and

ItÕs easy to see that has a smaller value at the Þrst of these points, so the closest point
is and the farthest is .

Two Constraints

Suppose now that we want to Þnd the maximum and minimum values of a function
subject to two constraints (side conditions) of the form and

. Geometrically, this means that we are looking for the extreme values of 
when is restricted to lie on the curve of intersection of the level surfaces

and . (See Figure 5.) Suppose has such an extreme value at a
point . We know from the beginning of this section that is orthogonal to 
there. But we also know that is orthogonal to and is orthogonal to

, so and are both orthogonal to . This means that the gradient vector
is in the plane determined by and . (We assume

that these gradient vectors are not zero and not parallel.) So there are numbers and 
(called Lagrange multipliers) such that

In this case LagrangeÕs method is to look for extreme values by solving Þve equations in
the Þve unknowns , , , , and . These equations are obtained by writing Equation 16
in terms of its components and using the constraint equations:

 h� x, y, � � � c

 � � x, y, � � � k

 f� � � � � � � h�

 fy � � � y � � hy

 fx � � � x � � hx

���yx

� f � x0, y0, � 0� � � � � � x0, y0, � 0� � � � h� x0, y0, � 0�16

��
� h� x0, y0, � 0�� � � x0, y0, � 0�� f � x0, y0, � 0�

C� h� �h� x, y, � � � c
� h� � x, y, � � � k� �

C� fP� x0, y0, � 0�
fh� x, y, � � � c� � x, y, � � � k

C�x, y, � �
fh� x, y, � � � c

� � x, y, � � � kf � x, y, � �

(� 6� � 11, � 2� � 11, 2� � 11)(6� � 11, 2� � 11, � 2� � 11)
f

��
6

� 11
, �

2
� 11

, 
2

� 11�� 6
� 11

, 
2

� 11
, �

2
� 11�

�x, y, � ��

� � 1 �
� 11

2

1 � � � � � 11� 2�1 � � �2 � 11
4

32

�1 � � �2 �
12

�1 � � �2 �
� � 1�2

�1 � � �2 � 4

� � �
1

1 � �
y �

1
1 � �

� � 11 � � � 0
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|||| Figure 4 shows the sphere and the nearest
point in Example 4. Can you see how to Þnd
the coordinates of without using calculus?P

P

FIGURE 4
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FIGURE 5
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EXAMPLE 5Find the maximum value of the function on the
curve of intersection of the plane and the cylinder .

SOLUTIONWe maximize the function subject to the constraints
and . The Lagrange condition is

, so we solve the equations

Putting [from (19)] in (17), we get , so . Similarly, (18)
gives . Substitution in (21) then gives

and so , . Then , , and, from (20),
. The corresponding values of are

Therefore, the maximum value of on the given curve is .3 � � 29f

	
2

� 29
� 2��

5
� 29� � 3�1 �

7
� 29� � 3 � � 29

f� � 1 � x � y � 1 � 7� � 29
y � � 5� � 29x � 	 2� � 29� � � � 29� 2� 2 � 29

4

1
� 2 �

25
4� 2 � 1

y � 5�� 2� �
x � � 1� �2x� � � 2� � 3

 x2 � y2 � 121

 x � y � � � 120

 3 � �19

 2 � � � � 2y�18

 1 � � � 2x�17

� f � � � � � � � h
h� x, y, � � � x2 � y2 � 1� � x, y, � � � x � y � � � 1

f � x, y, � � � x � 2y � 3�

x2 � y2 � 1x � y � � � 1
f � x, y, � � � x � 2y � 3�

� 2. (a) Use a graphing calculator or computer to graph the circle
. On the same screen, graph several curves of

the form until you Þnd two that just touch the
circle. What is the signiÞcance of the values of for these
two curves?

(b) Use Lagrange multipliers to Þnd the extreme values of
subject to the constraint .

Compare your answers with those in part (a).

3Ð17 |||| Use Lagrange multipliers to Þnd the maximum and mini-
mum values of the function subject to the given constraint(s).

;

4. ;

5. ;

6. ; x4 � y4 � 1f � x, y� � x2 � y2

x2 � 2y2 � 6f � x, y� � x2y

x2 � y2 � 13f � x, y� � 4x � 6y

x2 � y2 � 1f � x, y� � x2 � y23.

x2 � y2 � 1f � x, y� � x2 � y

c
x2 � y � c

x2 � y2 � 1

Pictured are a contour map of and a curve with equation
. Estimate the maximum and minimum values 

of subject to the constraint that . Explain your 
reasoning.

�

��

��
��

��
��

��


�

	�

��������

� � x, y� � 8f
� � x, y� � 8

f1.

FIGURE 6

�
�

�

�	
�


�	

�

	




�

�

	

|||| The cylinder intersects the
plane in an ellipse (Figure 6).
Example 5 asks for the maximum value of 
when is restricted to lie on the ellipse.� x, y, � �

f
x � y � � � 1

x2 � y2 � 1

|||| 14.8 Exercises
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divide into subrectangles. Let and be the Riemann sums
computed using lower left corners and upper right corners,
respectively. Without calculating the numbers , , and ,
arrange them in increasing order and explain your reasoning.

8. The Þgure shows level curves of a function in the square
. Use them to estimate to the

nearest integer.

A contour map is shown for a function on the square
.

(a) Use the Midpoint Rule with to estimate the
value of .

(b) Estimate the average value of .

10. The contour map shows the temperature, in degrees Fahrenheit,
at 3:00 P.M. on May 1, 1996, in Colorado. (The state measures
388 mi east to west and 276 mi north to south.) Use the Mid-
point Rule with to estimate the average temperature
in Colorado at that time.

m � n � 4

�

�

!

&

! & �

10

10

10 20

20

30

300 0

f
�� R f � x, y� dA

m � n � 2
R � �0, 4� � �0, 4�

f9.

��

�

�

�

-
��

��

�!�,
�&

�� R f � x, y� dAR � �0, 1� � �0, 1�
f

ULV

ULR

11Ð13|||| Evaluate the double integral by Þrst identifying it as the
volume of a solid.

11.

12.

14. The integral , where ,
represents the volume of a solid. Sketch the solid.

15. Use a programmable calculator or computer (or the sum 
command on a CAS) to estimate

where . Use the Midpoint Rule with the 
following numbers of squares of equal size: 1, 4, 16, 64, 256,
and 1024.

16. Repeat Exercise 15 for the integral .

If is a constant function, , and 
, show that 

18. If , show that 0� �� R sin� x � y� dA � 1.R � �0, 1� � �0, 1�

�� R k dA � k�b � a�� d � c�.R � �a, b� � �c, d�
f � x, y� � kf17.

�� R cos� x4 � y4� dA

R � �0, 1� � �0, 1�

��
R

 e� x 2� y 2

 dA

R � �0, 4� � �0, 2��� R � 9 � y2 dA

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

�� R �4 � 2y� dA, R � �0, 1� � �0, 1�13.

�� R �5 � x� dA, R � �� x, y� � 0 � x � 5, 0 � y � 3�

�� R 3 dA, R � �� x, y� � � 2 � x � 2, 1 � y � 6�

74

74

70
70

7674

74

70
70

7674

74

70
70

66

62

58

54

76

68

68

|||| 15.2 Iterated Integrals

Recall that it is usually difÞcult to evaluate single integrals directly from the deÞnition of
an integral, but the Fundamental Theorem of Calculus provides a much easier method. The
evaluation of double integrals from Þrst principles is even more difÞcult, but in this sec-
tion we see how to express a double integral as an iterated integral, which can then be eval-
uated by calculating two single integrals.
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Suppose that is a function of two variables that is continuous on the rectangle
. We use the notation to mean that is held Þxed and

is integrated with respect to from to . This procedure is called par-
tial integration with respect to . (Notice its similarity to partial differentiation.) Now

is a number that depends on the value of , so it deÞnes a function of :

If we now integrate the function with respect to from to , we get

The integral on the right side of Equation 1 is called an iterated integral. Usually the
brackets are omitted. Thus

means that we Þrst integrate with respect to from to and then with respect to from
to .
Similarly, the iterated integral

means that we Þrst integrate with respect to (holding Þxed) from to and
then we integrate the resulting function of with respect to from to Notice
that in both Equations 2 and 3 we work from the inside out.

EXAMPLE 1Evaluate the iterated integrals.

(a) (b)

SOLUTION
(a) Regarding as a constant, we obtain

Thus, the function in the preceding discussion is given by in this example.
We now integrate this function of from 0 to 3:

 � �
3

0
 32 x2 dx �

x3

2 �0

3

�
27
2

 �
3

0
 �

2

1
 x2y dy dx � �

3

0
 �� 2

1
 x2y dy� dx

x
A�x� � 3

2 x2A

 � x2�22

2 � � x2�12

2 � � 3
2 x2

 �
2

1
 x2y dy � �x2 

y2

2 �y� 1

y� 2

x

�
2

1
 �

3

0
 x2y dx dy�

3

0
 �

2

1
 x2y dy dx

y � d.y � cyy
x � bx � ayx

�
d

c
 �

b

a
 f � x, y� dx dy � �

d

c
 �� b

a
 f � x, y� dx� dy3

ba
xdcy

�
b

a
 �

d

c
 f � x, y� dy dx � �

b

a
 �� d

c
 f � x, y� dy� dx2

�
b

a
 A� x� dx � �

b

a
 �� d

c
 f � x, y� dy� dx1

x � bx � axA

A�x� � �
d

c
 f � x, y� dy

xx� d
c  f � x, y� dy

y
y � dy � cyf � x, y�

x� d
c  f � x, y� dyR � �a, b	 � �c, d	

f



(b) Here we Þrst integrate with respect to :

Notice that in Example 1 we obtained the same answer whether we integrated with
respect to or Þrst. In general, it turns out (see Theorem 4) that the two iterated integrals
in Equations 2 and 3 are always equal; that is, the order of integration does not matter.
(This is similar to ClairautÕs Theorem on the equality of the mixed partial derivatives.)

The following theorem gives a practical method for evaluating a double integral by
expressing it as an iterated integral (in either order).

FubiniÕs TheoremIf is continuous on the rectangle 
, , then

More generally, this is true if we assume that is bounded on , is discontinu-
ous only on a Þnite number of smooth curves, and the iterated integrals exist.

The proof of FubiniÕs Theorem is too difÞcult to include in this book, but we can at least
give an intuitive indication of why it is true for the case where . Recall that 
if is positive, then we can interpret the double integral as the volume of
the solid that lies above and under the surface . But we have another for-
mula that we used for volume in Chapter 6, namely,

where is the area of a cross-section of in the plane through perpendicular to the 
-axis. From Figure 1 you can see that is the area under the curve whose equation

is , where is held constant and . Therefore

and we have

A similar argument, using cross-sections perpendicular to the -axis as in Figure 2, shows
that

EXAMPLE 2Evaluate the double integral , where 
, . (Compare with Example 3 in Section 15.1.)1 � y � 2
R � �� x, y� � 0 � x � 2

�� R � x � 3y2�  dA

��
R

 f � x, y� dA � �
d

c
 �

b

a
 f � x, y� dx dy

y

��
R

 f � x, y� dA � V � �
b

a
 A� x� dx � �

b

a
 �

d

c
 f � x, y� dy dx

A�x� � �
d

c
 f � x, y� dy

c � y � dx� � f � x, y�
CA�x�x

xSA�x�

V � �
b

a
 A� x� dx

� � f � x, y�RS
V�� R f � x, y� dAf

f � x, y� � 0

fRf

��
R

 f � x, y� dA � �
b

a
 �

d

c
 f � x, y� dy dx � �

d

c
 �

b

a
 f � x, y� dx dy

c � y � d
R � �� x, y� � a � x � b
f4

xy

 � �
2

1
 9y dy � 9 

y2

2 �1

2

�
27
2

 �
2

1
 �

3

0
 x2y dx dy � �

2

1
 �� 3

0
 x2y dx� dy � �

2

1
 �x3

3
 y�

x� 0

x� 3

 dy

x
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FIGURE 1
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�

|||| Theorem 4 is named after the Italian mathe-
matician Guido Fubini (1879Ð1943), who proved
a very general version of this theorem in 1907.
But the version for continuous functions was
known to the French mathematician Augustin-
Louis Cauchy almost a century earlier.

Visual 15.2 illustrates FubiniÕs Theorem
by showing an animation of Figures 1
and 2.

FIGURE 2
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SOLUTION 1FubiniÕs Theorem gives

SOLUTION 2Again applying FubiniÕs Theorem, but this time integrating with respect to 
Þrst, we have

EXAMPLE 3Evaluate , where .

SOLUTION 1If we Þrst integrate with respect to , we get

SOLUTION 2If we reverse the order of integration, we get

To evaluate the inner integral we use integration by parts with

and so

 � �
� cos � x

x
�

sin � x
x2

 � �
� cos � x

x
�

1
x2  [sin� xy�]y� 0

y� �

 �
�

0
 y sin� xy� dy � �

y cos� xy�
x �

y� 0

y� �

�
1
x

 �
�

0
 cos� xy� dy

 v � �
cos� xy�

x
 du � dy

 dv � sin� xy� dy u � y

��
R

 y sin� xy� dA � �
2

1
 �

�

0
 y sin� xy� dy dx

 � � 1
2 sin 2y � sin y]0

�
� 0

 � �
�

0
 � � cos 2y � cos y� dy

 � �
�

0
 [� cos� xy�]x� 1

x� 2
 dy

 ��
R

 y sin� xy� dA � �
�

0
 �

2

1
 y sin� xy� dx dy

x

R � �1, 2	 � �0, � 	�� R y sin� xy� dA

 � �
2

1
 �2 � 6y2�  dy � 2y � 2y3]1

2
� � 12

 � �
2

1

 �x2

2
� 3xy2�

x� 0

x� 2

 dy

 ��
R

 � x � 3y2�  dA � �
2

1
 �

2

0
 � x � 3y2�  dx dy

x

 � �
2

0
 � x � 7� dx �

x2

2
� 7x�

0

2

� � 12

 � �
2

0

 [xy � y3]y� 1
y� 2

 dx

 ��
R

 � x � 3y2�  dA � �
2

0
 �

2

1
 � x � 3y2�  dy dx

FIGURE 3
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� ��� � ��� � �
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�
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�� ������

FIGURE 4

���� sin	��
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�
�� �� �

�
�

�

|||| Notice the negative answer in Example 2;
nothing is wrong with that. The function in
that example is not a positive function, so its
integral doesn’t represent a volume. From
Figure 3 we see that is always negative on 

, so the value of the integral is the negative of
the volume that lies above the graph of and 
below .R

f
R

f

f

|||| For a function that takes on both positive
and negative values, is a differ-
ence of volumes: , where is the vol-
ume above and below the graph of and is
the volume below and above the graph. The
fact that the integral in Example 3 is means
that these two volumes and are equal.
(See Figure 4.)

V2V1

0
R

V2fR
V1V1 � V2

�� R f � x, y� dA
f
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If we now integrate the Þrst term by parts with and , we get
, , and

Therefore

and so

EXAMPLE 4Find the volume of the solid that is bounded by the elliptic paraboloid
, the planes and , and the three coordinate planes.

SOLUTIONWe Þrst observe that is the solid that lies under the surface 
and above the square . (See Figure 5.) This solid was considered in
Example 1 in Section 15.1, but we are now in a position to evaluate the double integral
using FubiniÕs Theorem. Therefore

In the special case where can be factored as the product of a function of only
and a function of only, the double integral of can be written in a particularly simple
form. To be speciÞc, suppose that and . Then
FubiniÕs Theorem gives

In the inner integral is a constant, so is a constant and we can write

since is a constant. Therefore, in this case, the double integral of can be writ-
ten as the product of two single integrals:

where R � �a, b	 � �c, d	��
R

 � � x�h� y� dA � �
b

a
 � � x� dx �

d

c
 h� y� dy

f� b
a � � x� dx

 � �
b

a
 � � x� dx �

d

c
 h� y� dy

 �
d

c
 �� b

a
 � � x�h� y� dx� dy � �

d

c
 �h� y��� b

a
 � � x� dx�� dy

h� y�y

��
R

 f � x, y� dA � �
d

c
 �

b

a
 � � x�h� y� dx dy � �

d

c
 �� b

a
 � � x�h� y� dx� dy

R � �a, b	 � �c, d	f � x, y� � � � x�h� y�
fy

xf � x, y�

 � �
2

0
 ( 88

3 � 4y2) dy � [ 88
3 y � 4

3y3]0
2

� 48

 � �
2

0
 [16x � 1

3x3 � 2y2x]x� 0
x� 2

 dy

 V � ��
R

 �16 � x2 � 2y2�  dA � �
2

0
 �

2

0
 �16 � x2 � 2y2�  dx dy

R � �0, 2	 � �0, 2	
� � 16 � x2 � 2y2S

y � 2x � 2x2 � 2y2 � � � 16
S

 � �
sin 2�

2
� sin � � 0

 �
2

1
 �

�

0
 y sin� xy� dy dx � ��

sin � x
x �

1

2

�  ��
� cos � x

x
�

sin � x
x2 � dx � �

sin � x
x

�  ��
� cos � x

x � dx � �
sin� x

x
� �  

sin � x
x2  dx 

v � sin � xdu � dx x2
dv � � cos � x dxu � � 1 x

FIGURE 5
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� �

�

���

��

��

�

���
�

|||| In Example 2, Solutions 1 and 2 are equally
straightforward, but in Example 3 the first solu-
tion is much easier than the second one. There-
fore, when we evaluate double integrals it is
wise to choose the order of integration that gives
simpler integrals.
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EXAMPLE 5If , then

FIGURE 6

�

�

�

�

 � [� cos x]0
�  2 [sin y]0

�  2
� 1 � 1 � 1

 ��
R

 sin x cos y dA � �
�  2

0
 sin x dx �

�  2

0
 cos y dy

R � �0, �  2	 � �0, �  2	

|||| The function in
Example 5 is positive on , so the integral rep-
resents the volume of the solid that lies above 
and below the graph of shown in Figure 6.f

R
R

f � x, y� � sin x cos y

16. ,

,

18. ,

19. ,

20. ,

21Ð22 |||| Sketch the solid whose volume is given by the iterated
integral.

22.

23. Find the volume of the solid that lies under the plane
and above the rectangle

.

24. Find the volume of the solid that lies under the hyperbolic
paraboloid and above the square

.R � �� 1, 1	 � �0, 2	
� � 4 � x2 � y2

R � �� x, y� � 0 � x � 1,� � 2 � y � 3

3x � 2y � � � 12

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

�
1

0
 �

1

0
 �2 � x2 � y2�  dy dx

�
1

0
 �

1

0
 �4 � x � 2y� dx dy21.

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

R � �1, 2	 � �0, 1	��
R

 
x

x2 � y2  dA

R � �0, 1	 � �0, 2	��
R

 xyex2y dA

R � �0, 1	 � �0, 1	��
R

 
x

1 � xy
 dA

R � �0, �  6	 � �0, �  3	��
R

 x sin� x � y� dA17.

R � �� x, y� � 0 � x � 1,� 0 � y � 1
��
R

 
1 � x2

1 � y2  dA
1Ð2 |||| Find and .

1. 2.

3Ð12 |||| Calculate the iterated integral.

4.

5. 6.

7. 8.

10.

11.

12.

13Ð20 |||| Calculate the double integral.

13. ,

14. ,

, R � �� x, y� � 0 � x � 1,� � 3 � y � 3
��
R

 
xy2

x2 � 1
 dA15.

R � �� x, y� � 0 � x � � ,� 0 � y � �  2
��
R

 cos� x � 2y� dA

R � �� x, y� � 0 � x � 3,� 0 � y � 1
��
R

 �6x2y3 � 5y4� dA

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

�
1

0
 �

1

0
 

xy
� x2 � y2 � 1

 dy dx

�
ln

 
2

0
 �

ln
 
5

0
 e2x� y dx dy

�
2

1
�

1

0
 � x � y� � 2 dx dy�

4

1
 �

2

1
 �x

y
�

y
x� dy dx9.

� 1

0
�

2

1
 
xex

y
 dy dx�

2

0
 �

1

0
 � 2x � y� 8 dx dy

�
4

1
 �

2

0
 (x � � y) dx dy�

2

0
 �

�  2

0
 x sin y dy dx

�
4

2
 �

1

� 1
 � x2 � y2� dy dx�

3

1
 �

1

0
 �1 � 4xy� dx dy3.

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

f � x, y� �
y

x � 2
f � x, y� � 2x � 3x2y

� 4
0  f � x, y� dy� 3

0  f � x, y� dx

|||| 15.2 Exercises



SECTION 15.3 DOUBLE INTEGRALS OVER GENERAL REGIONS� � � � 995

32. Graph the solid that lies between the surfaces
and for ,

. Use a computer algebra system to approximate the
volume of this solid correct to four decimal places.

33Ð34 |||| Find the average value of over the given rectangle.

, has vertices , , , 

34. ,

35. Use your CAS to compute the iterated integrals 

Do the answers contradict FubiniÕs Theorem? Explain what is
happening.

36. (a) In what way are the theorems of Fubini and Clairaut 
similar?

(b) If is continuous on and 

for , , show that .� xy � � yx � f � x, y�c � y � da � x � b

� � x, y� � �
x

a
 �

y

c
  f �s, t�  dt ds

�a, b	 � �c, d	f � x, y�

�
1

0
 �

1

0
 

x � y
� x � y�3  dx dyand�

1

0
 �

1

0
 

x � y
� x � y�3  dy dx

CAS

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

R � �0, 4	 � �0, 1	f � x, y� � ey� x � ey

�1, 0��1, 5�� � 1, 5�� � 1, 0�Rf � x, y� � x2y33.

f

� y � � 1
� x � � 1� � 2 � x2 � y2� � e� x 2

cos � x2 � y2�
CASFind the volume of the solid lying under the elliptic 

paraboloid and above the rectangle
.

26. Find the volume of the solid enclosed by the surface
and the planes , , , 

and .

27. Find the volume of the solid bounded by the surface
and the planes , , , , 

and .

28. Find the volume of the solid bounded by the elliptic paraboloid
, the planes and , and the

coordinate planes.

29. Find the volume of the solid in the Þrst octant bounded by the
cylinder and the plane .

30. (a) Find the volume of the solid bounded by the surface
and the planes , , , ,

and .
� (b) Use a computer to draw the solid.

31. Use a computer algebra system to Þnd the exact value of the
integral , where . Then use the
CAS to draw the solid whose volume is given by the integral.

R � �0, 1	 � �0, 1	�� R x
5y3ex y dA

CAS

� � 0
y � 3y � 0x � � 2x � 2� � 6 � xy

x � 2� � 9 � y2

y � 2x � 3� � 1 � � x � 1�2 � 4y2

� � 0
y � 1y � 0x � 1x � 0� � x� x2 � y

� � 0
y � �y � 0x � 	 1� � 1 � ex sin y

R � �� 1, 1	 � � � 2, 2	
x2 4 � y2 9 � � � 1

25.

|||| 15.3 Double Integrals over General Regions

For single integrals, the region over which we integrate is always an interval. But for 
double integrals, we want to be able to integrate a function not just over rectangles but
also over regions of more general shape, such as the one illustrated in Figure 1. We sup-
pose that is a bounded region, which means that can be enclosed in a rectangular
region as in Figure 2. Then we deÞne a new function with domain by

�

�

�

�

�

� �

�

�

FIGURE 2FIGURE 1

F�x, y� � �0
f � x, y� if

if
� x, y� is in D
�x, y� is in R but not in D

1

RFR
DD

D
f



If the double integral of F exists over R, then we deÞne the double integral of over 
D by

DeÞnition 2 makes sense because R is a rectangle and so has been previ-
ously deÞned in Section 15.1. The procedure that we have used is reasonable because the
values of are 0 when lies outside and so they contribute nothing to the inte-
gral. This means that it doesnÕt matter what rectangle we use as long as it contains .

In the case where we can still interpret as the volume of the
solid that lies above and under the surface (the graph of ). You can see that
this is reasonable by comparing the graphs of and in Figures 3 and 4 and remember-
ing that is the volume under the graph of .

Figure 4 also shows that is likely to have discontinuities at the boundary points of 
Nonetheless, if is continuous on and the boundary curve of is Òwell behavedÓ 

(in a sense outside the scope of this book), then it can be shown that exists
and therefore exists. In particular, this is the case for the following types 
of regions.

A plane region is said to be of type I if it lies between the graphs of two continuous
functions of , that is,

where and are continuous on . Some examples of type I regions are shown in
Figure 5.

In order to evaluate when is a region of type I, we choose a rectangle
that contains , as in Figure 6, and we let be the function given by

Equation 1; that is, agrees with on and is outside . Then, by FubiniÕs Theorem,

Observe that if or because then lies outside .
Therefore

�
d

c
 F� x, y� dy � �

� 2� x�

� 1� x�
 F� x, y� dy � �

� 2� x�

� 1� x�
 f � x, y� dy

D�x, y�y 
 � 2� x�y � � 1� x�F� x, y� � 0

��
D

 f � x, y� dA � ��
R

 F� x, y� dA � �
b

a
 �

d

c
 F� x, y� dy dx

D0FDfF
FDR � �a, b	 � �c, d	

D�� D   f � x, y� dA

FIGURE 5   Some type I regions
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�a, b	� 2� 1

D � �� x, y� � a � x � b, � 1� x� � y � � 2� x�


x
D

�� D f � x, y� dA
�� R F� x, y� dA

DDfD.
F

F�� R F� x, y� dA
Ff

f� � f � x, y�D
�� D f � x, y� dAf � x, y� � 0

DR
D�x, y�F� x, y�

�� R F� x, y� dA

where F is given by Equation 1��
D

 f � x, y� dA � ��
R

 F� x, y� dA2

f
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because when . Thus, we have the following formula
that enables us to evaluate the double integral as an iterated integral.

If is continuous on a type I regionD such that

then

The integral on the right side of (3) is an iterated integral that is similar to the ones we
considered in the preceding section, except that in the inner integral we regard as being
constant not only in but also in the limits of integration, and 

We also consider plane regions of type II , which can be expressed as 

where and are continuous. Two such regions are illustrated in Figure 7.
Using the same methods that were used in establishing (3), we can show that

where D is a type II region given by Equation 4.

EXAMPLE 1 Evaluate , where is the region bounded by the parabolas
and .

SOLUTIONThe parabolas intersect when , that is, , so . We
note that the region , sketched in Figure 8, is a type I region but not a type II region
and we can write

Since the lower boundary is and the upper boundary is , Equation 3
gives

 � � 3 
x5

5
�

x4

4
� 2 

x3

3
�

x2

2
� x�

� 1

1

�
32
15

 � �
1

� 1
 � � 3x4 � x3 � 2x2 � x � 1� dx

 � �
1

� 1
 �x�1 � x2� � �1 � x2�2 � x�2x2� � �2x2�2	  dx

 � �
1

� 1
 [xy � y2]y� 2x2

y� 1� x2

 dx

 ��
D

 � x � 2y� dA � �
1

� 1
 �

1� x2

2x2
 � x � 2y� dy dx

y � 1 � x2y � 2x2

D � �� x, y� � � 1 � x � 1, 2x2 � y � 1 � x2


D
x � 	 1x2 � 12x2 � 1 � x2

y � 1 � x2y � 2x2
D�� D � x � 2y� dA

��
D

 f � x, y� dA � �
d

c
 �

h2� y�

h1� y�
 f � x, y� dx dy5

h2h1

D � �� x, y� � c � y � d, h1� y� � x � h2� y�
4

� 2� x�.� 1� x�f � x, y�
x

��
D

 f � x, y� dA � �
b

a
 �

� 2� x�

� 1� x�
 f � x, y� dy dx

D � �� x, y� � a � x � b, � 1� x� � y � � 2� x�


f3

� 1� x� � y � � 2� x�F� x, y� � f � x, y�
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FIGURE 7
Some type II regions
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NOTE�� When we set up a double integral as in Example 1, it is essential to draw a 
diagram. Often it is helpful to draw a vertical arrow as in Figure 8. Then the limits of 
integration for the inner integral can be read from the diagram as follows: The arrow 
starts at the lower boundary , which gives the lower limit in the integral, and 
the arrow ends at the upper boundary , which gives the upper limit of integration.
For a type II region the arrow is drawn horizontally from the left boundary to the right
boundary.

EXAMPLE 2 Find the volume of the solid that lies under the paraboloid and
above the region in the -plane bounded by the line and the parabola .

SOLUTION 1From Figure 9 we see that is a type I region and

Therefore, the volume under and above is

SOLUTION 2From Figure 10 we see that can also be written as a type II region:

Therefore, another expression for is

EXAMPLE 3 Evaluate where is the region bounded by the line and
the parabola .

SOLUTIONThe region is shown in Figure 12. Again is both type I and type II, but 
the description of as a type I region is more complicated because the lower boundary
consists of two parts. Therefore, we prefer to express as a type II region:

D � { (x, y) � � 2 � y � 4,� 1
2
 y2 � 3 � x � y � 1}

D
D

DD

y2 � 2x � 6
y � x � 1D�� D xy dA,

 � 2
15y5 2 � 2

7y7 2 � 13
96y4]0

4 � 216
35

 � �
4

0

 �x3

3
� y2x�

x� 1
2 y

x� � y

 dy � �
4

0

 �y3 2

3
� y5 2 �

y3

24
�

y3

2 � dy

 V � ��
D

 � x2 � y2�  dA � �
4

0
 � � y

1
2 y

� x2 � y2�  dx dy

V

D � { �x, y� � 0 � y � 4,� 1
2
 y � x � � y}

D

 � �
2

0

 ��
x6

3
� x4 �

14x3

3 � dx � �
x7

21
�

x5

5
�

7x4

6 �0

2

�
216
35

 � �
2

0

 �x2y �
 y3

3 �y� x2

y� 2x

 dx � �
2

0
 �x2�2x� �

�2x�3

3
� x2x2 �

� x2�3

3 � dx

 V � ��
D

 � x2 � y2�  dA � �
2

0
 �

2x

x2
 � x2 � y2�  dy dx

D� � x2 � y2

D � �� x, y� � 0 � x � 2, x2 � y � 2x


D

y � x2y � 2xxyD
� � x2 � y2

y � � 2� x�
y � � 1� x�
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FIGURE 10
D as a type II region

FIGURE 9
D as a type I region
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|||| Figure 11 shows the solid whose volume 
is calculated in Example 2. It lies above the 

-plane, below the paraboloid ,
and between the plane and the
parabolic cylinder .y � x2
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FIGURE 11

��

�

��$%�

����

��$



Then (5) gives

If we had expressed as a type I region using Figure 12(a), then we would have
obtained

but this would have involved more work than the other method.

EXAMPLE 4 Find the volume of the tetrahedron bounded by the planes ,
, , and .

SOLUTIONIn a question such as this, itÕs wise to draw two diagrams: one of the three-
dimensional solid and another of the plane region over which it lies. Figure 13 shows
the tetrahedron bounded by the coordinate planes , , the vertical plane

, and the plane . Since the plane intersects the 
-plane (whose equation is ) in the line , we see that lies above the

triangular region in the -plane bounded by the lines , , and .
(See Figure 14.)

The plane can be written as , so the required volume
lies under the graph of the function and above

D � { �x, y� � 0 � x � 1,� x 2 � y � 1 � x 2}

� � 2 � x � 2y
� � 2 � x � 2yx � 2y � � � 2

x � 0x � 2y � 2x � 2yxyD
Tx � 2y � 2� � 0xy

x � 2y � � � 2x � 2y � � � 2x � 2y
� � 0x � 0T

D

� � 0x � 0x � 2y
x � 2y � � � 2

��
D

 xy dA � �
� 1

� 3
 � � 2x� 6

� � 2x� 6
 xy dy dx � �

5

� 1
 � � 2x� 6

x� 1
 xy dy dx

D

 �
1
2 ��

y6

24
� y4 � 2 

y3

3
� 4y2�

� 2

4

� 36

 � 1
2 �

4

� 2

 ��
y5

4
� 4y3 � 2y2 � 8y� dy

 � 1
2 �

4

� 2
 y[� y � 1� 2 � ( 1

2 y
2 � 3)2] dy

 ��
D

 xy dA � �
4

� 2
 �

y� 1

1
2
 y2� 3

 
xy dx dy � �

4

� 2

 �x2

2
 y�

x� 1
2y2� 3

x� y� 1

 dy
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Therefore

EXAMPLE 5Evaluate the iterated integral .

SOLUTIONIf we try to evaluate the integral as it stands, we are faced with the task of Þrst
evaluating . But itÕs impossible to do so in Þnite terms since is
not an elementary function. (See the end of Section 7.5.) So we must change the order 
of integration. This is accomplished by Þrst expressing the given iterated integral as a
double integral. Using (3) backward, we have

where

We sketch this region in Figure 15. Then from Figure 16 we see that an alternative
description of is

This enables us to use (5) to express the double integral as an iterated integral in the
reverse order:

Properties of Double Integrals

We assume that all of the following integrals exist. The Þrst three properties of double inte-
grals over a region follow immediately from DeÞnition 2 and Properties 7, 8, and 9 in
Section 15.1.

yy
D

 c f�x, y� dA � c yy
D

 f �x, y� dA7

yy
D

 � f �x, y� � t�x, y�� dA � yy
D

 f �x, y� dA � yy
D

 t�x, y� dA6

D

 � 1
2�1 � cos 1�

 � y
1

0
 y sin�y2� dy � �

1
2 cos�y2�]0

1

 � y
1

0
 y

y

0
 sin�y2� dx dy � y

1

0
 [x sin�y2�]x� 0

x� y  dy

 y
1

0
 y

1

x
 sin�y2� dy dx � yy

D

 sin�y2� dA

D � ��x, y� � 0 � y � 1, 0 � x � y�
D

D

D � ��x, y� � 0 � x � 1, x � y � 1�

y
1

0
 y

1

x
 sin�y2� dy dx � yy

D

 sin�y2� dA

x sin�y2� dyx sin�y2� dy

x
1
0 x1

x sin�y2� dy dx

 � y
1

0
 �x2 � 2x � 1� dx �

x3

3
� x2 � x	

0

1

�
1
3

 � y
1

0

 
2 � x � x�1 �
x
2� � �1 �

x
2�2

� x �
x2

2
�

x2

4 	 dx

 � y
1

0
 [2y � xy � y2]y� x2

y� 1�x2

 dx

 V � yy
D

 �2 � x � 2y� dA � y
1

0
 y

1�x2

x2
 �2 � x � 2y� dy dx

1 x0

y

D

y=1

y=x

x0

y

1

Dx=0
x=y

FIGURE 16
D as a type II region

FIGURE 15
D as a type I region



If for all in , then 

The next property of double integrals is similar to the property of single integrals given
by the equation .

If , where and donÕt overlap except perhaps on their boundaries
(see Figure 17), then

Property 9 can be used to evaluate double integrals over regions that are neither type I
nor type II but can be expressed as a union of regions of type I or type II. Figure 18 illus-
trates this procedure. (See Exercises 49 and 50.)

The next property of integrals says that if we integrate the constant function 
over a region , we get the area of :

Figure 19 illustrates why Equation 10 is true: A solid cylinder whose base is and whose
height is 1 has volume , but we know that we can also write its volume
as .

Finally, we can combine Properties 7, 8, and 10 to prove the following property. (See
Exercise 53.)

If for all in , then

EXAMPLE 6Use Property 11 to estimate the integral , where is the disk
with center the origin and radius 2.

SOLUTIONSince and , we have 
and therefore

Thus, using , , and in Property 11, we obtain

4�

e
� yy

D

 esin x cos y dA � 4�e 

A�D� � ��2�2M � em � e�1 � 1e

e�1 � esin x cos y � e1 � e

�1 � sin x cos y � 1�1 � cos y � 1�1 � sin x � 1

DxxD esin x cos y dA

mA�D� � yy
D

 f �x, y� dA � MA�D�

D�x, y�m � f �x, y� � M11

xxD 1 dA
A�D� � 1 � A�D�

D

yy
D

 1 dA � A�D�10

DD
f �x, y� � 1

D

yy
D

 f �x, y� dA � yy
D1

 f �x, y� dA � yy
D2

 f �x, y� dA9

D2D1D � D1 � D2

x
b
a f �x� dx � x

c
a f �x� dx � x

b
c  f �x� dx

yy
D

 f �x, y� dA � yy
D

 t�x, y� dA8

D�x, y�f �x, y� � t�x, y�
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Under the surface and above the triangle with vertices
, , and 

22. Enclosed by the paraboloid and the planes ,
, , 

23. Bounded by the planes , , , and

24. Bounded by the planes , , , and 

25. Enclosed by the cylinders , and the planes 
, 

26. Bounded by the cylinder and the planes 
, in the Þrst octant

27. Bounded by the cylinder and the planes ,
, in the Þrst octant

28. Bounded by the cylinders and 

; 29. Use a graphing calculator or computer to estimate the 
-coordinates of the points of intersection of the curves 

and . If is the region bounded by these curves,
estimate .

; 30. Find the approximate volume of the solid in the Þrst octant 
that is bounded by the planes , , and and the
cylinder . (Use a graphing device to estimate the
points of intersection.)

31Ð32|||| Find the volume of the solid by subtracting two volumes.

31. The solid enclosed by the parabolic cylinders ,
and the planes ,

32. The solid enclosed by the parabolic cylinder and the
planes , 

33Ð36|||| Use a computer algebra system to Þnd the exact volume
of the solid.

33. Under the surface and above the region
bounded by the curves and for 

34. Between the paraboloids and 
and inside the cylinder 

35. Enclosed by 

36. Enclosed by 

37Ð42|||| Sketch the region of integration and change the order of
integration.

37. 38. y
1

0
 y

4

4x
 f �x, y� dy dxy

4

0
 y

sx

0
 f �x, y� dy dx

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

� � x2 � y2 and � � 2y

� � 1 � x2 � y2 and � � 0

x2 � y2 � 1
� � 8 � x2 � 2y2� � 2x2 � y2

x � 0y � x2 � xy � x3 � x
� � x3y4 � xy2

CAS

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

� � 2 � y� � 3y
y � x2

2x � 2y � � � 10 � 0
x � y � � � 2y � x2 � 1

y � 1 � x2

y � cos x
� � x� � 0y � x

xxD x dA
Dy � 3x � x2

y � x4x

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

y2 � � 2 � r 2x2 � y2 � r 2

� � 0x � 0
y � �x2 � y2 � 1

� � 0x � 0
x � 2y,y2 � � 2 � 4

y � 4� � 0
y � x2� � x2

� � 0x � y � 2y � x� � x

x � y � � � 1
� � 0y � 0x � 0

� � 0y � xy � 1
x � 0� � x2 � 3y2

�1, 2��4, 1��1, 1�
� � xy21.1Ð6 |||| Evaluate the iterated integral.

1. 2.

3. 4.

6.

7Ð18 |||| Evaluate the double integral.

7.

8.

9.

10.

11. ,

12. ,

, is bounded by , ,

14. , is bounded by 

15. ,

is the triangular region with vertices (0, 2), (1, 1), and 

16.

is bounded by the circle with center the origin and radius 2

18. is the triangular region with vertices ,

, and 

19Ð28|||| Find the volume of the given solid.

19. Under the plane and above the region
bounded by and 

20. Under the surface and above the region bounded
by and x � y3x � y2

� � 2x � y2

y � x4y � x
x � 2y � � � 0

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

�0, 3��1, 2�

�0, 0�yy
D

 2xy dA, D

D

yy
D

 �2x � y� dA,17.

yy
D

 xy2 dA, D is enclosed by x � 0 and x � s1 � y2

�3, 2�D

yy
D

 y3 dA

y � sx and y � x2Dyy
D

 �x � y� dA

x � 1y � x2y � 0Dyy
D

 x cos y dA13.

D � ��x, y� � 0 � y � 1,� 0 � x � y�yy
D

 xsy2 � x2 dA

D � ��x, y� � 1 � y � 2,� y � x � y3�yy
D

 exy dA

yy
D

 ey2
 dA, D � ��x, y� � 0 � y � 1,� 0 � x � y�

yy
D

 
2y

x2 � 1
 dA, D � { �x, y� � 0 � x � 1,� 0 � y � sx}

yy
D

 
4y

x3 � 2
 dA, D � ��x, y� � 1 � x � 2,� 0 � y � 2x�

yy
D

 x3y2 dA, D � ��x, y� � 0 � x � 2,� �x � y � x�

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

y
1

0
 y

v

0
 s1 � v 2 du dvy

�2

0
 y

cos �

0
 esin � dr d�5.

y
1

0
 y

2�x

x
 �x2 � y� dy dxy

1

0
 y

ey

y
 sx dx dy

y
2

1
 y

2

y
 xy dx dyy

1

0
 y

x2

0
 �x � 2y� dy dx

|||| 15.3 Exercises
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51Ð52|||| Use Property 11 to estimate the value of the integral.

51. ,

52. , is the disk with center the origin and radius 

53. Prove Property 11.

In evaluating a double integral over a region , a sum of 
iterated integrals was obtained as follows:

Sketch the region and express the double integral as an 
iterated integral with reversed order of integration.

55. Evaluate , where

[Hint: Exploit the fact that is symmetric with respect to both
axes.]

56. Use symmetry to evaluate , where 
is the region bounded by the square with vertices 
and .

57. Compute , where is the disk
, by Þrst identifying the integral as the volume 

of a solid.

58. Graph the solid bounded by the plane and 
the paraboloid and Þnd its exact volume.
(Use your CAS to do the graphing, to Þnd the equations of the
boundary curves of the region of integration, and to evaluate
the double integral.)

� � 4 � x2 � y2
x � y � � � 1CAS

x2 � y2 � 1
DxxD s1 � x2 � y2 dA

�0, �5�
��5, 0�

DxxD �2 � 3x � 4y� dA

D

D � ��x, y� � x2 � y2 � 2�.
xxD �x2 tan x � y3 � 4� dA

D

yy
D

 f �x, y� dA � y
1

0
 y

2y

0
 f �x, y� dx dy � y

3

1
 y

3�y

0
 f �x, y� dx dy

D54.

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

1
2Dyy

D

 ex 2�y 2 dA

D � �0, 1� 	 �0, 1�yy
D

 sx3 � y3 dA

39. 40.

42.

43Ð48|||| Evaluate the integral by reversing the order of 
integration.

44.

45. 46.

47.

48.

49Ð50|||| Express as a union of regions of type I or type II and
evaluate the integral.

50.

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

x0

y

y=_1

x=_1

x=1

x=¥

y=1+≈

Dx0

y

1

_1

_1 1

D
(1, 1)

yy
D

 xy dAyy
D

 x2 dA49.

D

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

y
8

0
 y

2

sy3
 ex4

 dx dy

y
1

0
 y

�2

arcsin y
 cos x s1 � cos2x dx dy

y
1

0
 y

1

x2
 x3 sin�y3� dy dxy

3

0
y

9

y2
 y cos�x2� dx dy

y
1

0
 y

1

sy
 sx3 � 1 dx dyy

1

0
 y

3

3y
 ex2 

dx dy43.

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

y
1

0
 y

�4

arctan x
 f �x, y� dy dxy

2

1
 y

ln
 
x

0
 f �x, y� dy dx41.

y
3

0
 y

s9�y

0
 f �x, y� dx dyy

3

0
 y

s9�y 2 
�s9�y 2

  f �x, y� dx dy

|||| 15.4 Double Integrals in Polar Coordinates

Suppose that we want to evaluate a double integral , where is one of the
regions shown in Figure 1. In either case the description of in terms of rectangular coor-
dinates is rather complicated but is easily described using polar coordinates.

FIGURE 1

x0

y

R

≈+¥=1

(a) R=s(r, ¨) | 0¯r¯1, 0¯¨¯2πd

x0

y

R

≈+¥=4

≈+¥=1

(b) R=s(r, ¨) | 1¯r¯2, 0¯¨¯πd

R
R

RxxR f �x, y� dA
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Recall from Figure 2 that the polar coordinates of a point are related to the rect-
angular coordinates by the equations

(See Section 10.3.)
The regions in Figure 1 are special cases of a polar rectangle

which is shown in Figure 3. In order to compute the double integral , where
is a polar rectangle, we divide the interval into subintervals of equal

width and we divide the interval into subintervals of
equal width . Then the circles and the rays divide the polar
rectangle R into the small polar rectangles shown in Figure 4.

The ÒcenterÓ of the polar subrectangle

has polar coordinates

We compute the area of using the fact that the area of a sector of a circle with radius 
and central angle is . Subtracting the areas of two such sectors, each of which has
central angle , we Þnd that the area of is

Although we have deÞned the double integral in terms of ordinary rect-
angles, it can be shown that, for continuous functions , we always obtain the same 
answer using polar rectangles. The rectangular coordinates of the center of are

, so a typical Riemann sum is

�
m

i� 1
 �

n

j� 1
 f �r i*  cos � j* , r i*  sin � j* � 
Ai � �

m

i� 1
 �

n

j� 1
 f �r i*  cos � j* , r i*  sin � j* � r i* 
r 
�1

�r i* cos � j* , r i*  sin � j* �
Rij

f
xxR  f �x, y� dA

 � 1
2 �ri � ri�1��ri � ri�1� 
� � r i* 
r 
�

 
Ai � 1
2r i

2 
� �
1
2r i�1
2 
� � 1

2
 �r i

2 � r i�1
2 � 
�

Rij
� � � j � � j�1

1
2r 2��

rRij

� j* � 1
2��j�1 � �j �r i* � 1

2�ri�1 � ri �

Rij � ��r, �� � ri�1 � r � ri , � j�1 � � � � j �

FIGURE 3  Polar rectangle FIGURE 4  Dividing R into polar subrectangles

O

∫
å

r=a ¨=å

¨=∫
r=b

R

Î¨

¨=¨j

¨=¨j_1

(ri* , ¨j*)

r=ri_1

r=ri

Rij

O

� � � jr � ri
� � �� � ��n
��j�1, �j �n��, ��
r � �b � a�m

�ri�1, ri �m�a, b�R
xxR f �x, y� dA

R � ��r, �� � a � r � b, � � � � ��

y � r sin �x � r cos �r 2 � x2 � y2

�x, y�
�r, ��

O

y

x

¨

x

y
r

P(r, ̈ )=P(x, y)

FIGURE 2



If we write , then the Riemann sum in Equation 1 can be writ-
ten as

which is a Riemann sum for the double integral

Therefore, we have

Change to Polar Coordinates in a Double IntegralIf is continuous on a polar rect-
angle given by , , where , then

The formula in (2) says that we convert from rectangular to polar coordinates in a 
double integral by writing and , using the appropriate limits of 

| integration for and , and replacing by . Be careful not to forget the additional
factor r on the right side of Formula 2. A classical method for remembering this is shown
in Figure 5, where the ÒinÞnitesimalÓ polar rectangle can be thought of as an ordinary rect-
angle with dimensions and and therefore has ÒareaÓ 

EXAMPLE 1Evaluate , where is the region in the upper half-plane
bounded by the circles and .

SOLUTIONThe region can be described as

It is the half-ring shown in Figure 1(b), and in polar coordinates it is given by , 1 � r � 2

R � ��x, y� � y � 0, 1 � x2 � y2 � 4�

R

x2 � y2 � 4x2 � y2 � 1
RxxR �3x � 4y2� dA

O

d¨

r d¨

dr

dA

r

FIGURE 5

dA � r dr d�.drr d�

r dr d�dA�r
y � r sin �x � r cos �

yy
R

 f �x, y� dA � y
�

�
 y

b

a
 f �r cos �, r sin �� r dr d�

0 � � � � � 2�� � � � �0 � a � r � bR
f2

 � y
�

�
 y

b

a
 f �r cos �, r sin �� r dr d�

 � lim 
m, n � 

 �
m

i� 1
 �

n

j� 1
 t�r i* , � j* � 
r 
� � y

�

�
y

b

a
 t�r, � � dr d�

 yy
R

 f �x, y� dA � lim 
m, n � 

 �
m

i� 1
 �

n

j� 1
 f �r i*  cos � j* , r i*  sin � j* � 
Ai

y
�

�
 y

b

a
 t�r, �� dr d�

�
m

i� 1
 �

n

j� 1
 t�r i* , � j* � 
r 
�

t�r, �� � r f �r cos �, r sin ��
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. Therefore, by Formula 2,

EXAMPLE 2Find the volume of the solid bounded by the plane and the paraboloid
.

SOLUTIONIf we put in the equation of the paraboloid, we get . This
means that the plane intersects the paraboloid in the circle , so the solid lies
under the paraboloid and above the circular disk given by [see Figures 6
and 1(a)]. In polar coordinates is given by , . Since

, the volume is

If we had used rectangular coordinates instead of polar coordinates, then we would have
obtained

which is not easy to evaluate because it involves Þnding the following integrals:

What we have done so far can be extended to the more complicated type of region
shown in Figure 7. ItÕs similar to the type II rectangular regions considered in Section 15.3.
In fact, by combining Formula 2 in this section with Formula 15.3.5, we obtain the fol-
lowing formula.

If is continuous on a polar region of the form

then yy
D

 f �x, y� dA � y
�

�
 y

h2���

h1���
 f �r cos �, r sin �� r dr d�

D � ��r, �� � � � � � �, h1��� � r � h2����

f3

y �1 � x2�32 dxy x2
s1 � x2 dxy s1 � x2 dx

V � yy
D

 �1 � x2 � y2� dA � y
1

�1
 y

s1�x2

�s1�x2
 �1 � x2 � y2� dy dx

 � y
2�

0
 d� y

1

0
 �r � r 3� dr � 2�
 r 2

2
�

r 4

4 	0

1

�
�

2

 V � yy
D

 �1 � x2 � y2� dA � y
2�

0
 y

1

0
 �1 � r 2� r dr d�

1 � x2 � y2 � 1 � r 2
0 � � � 2�0 � r � 1D

x2 � y2 � 1D
x2 � y2 � 1

x2 � y2 � 1� � 0

� � 1 � x2 � y2
� � 0

 � 7 sin � �
15�

2
�

15
4

 sin 2�	
0

�

�
15�

2

 � y
�

0
 [7 cos � �

15
2 �1 � cos 2��] d�

 � y
�

0
 [r 3 cos � � r 4 sin2�]r� 1

r� 2
 d� � y

�

0
 �7 cos � � 15 sin2� � d�

 � y
�

0
 y

2

1
 �3r 2 cos � � 4r 3 sin2�� dr d�

 yy
R

 �3x � 4y2� dA � y
�

0
 y

2

1
 �3r cos � � 4r 2 sin2�� r dr d�

0 � � � �
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FIGURE 6

y

0

(0, 0, 1)

D
x

z

O

∫
å

r=h¡(¨)

¨=å

¨=∫ r=h™(¨)

D

FIGURE 7
D=s(r, ¨) | å¯¨¯∫, h¡(̈ )¯r¯h™(̈ )d

|||| Here we use the trigonometric identity

See Section 7.2 for advice on integrating 
trigonometric functions.

sin2� � 1
2 �1 � cos 2��



In particular, taking , , and in this formula, we see
that the area of the region bounded by , , and is

and this agrees with Formula 10.4.3.

EXAMPLE 3Use a double integral to Þnd the area enclosed by one loop of the four-leaved
rose .

SOLUTIONFrom the sketch of the curve in Figure 8 we see that a loop is given by the
region

So the area is

EXAMPLE 4Find the volume of the solid that lies under the paraboloid ,
above the -plane, and inside the cylinder .

SOLUTIONThe solid lies above the disk whose boundary circle has equation
or, after completing the square,

(see Figures 9 and 10). In polar coordinates we have and , so
the boundary circle becomes , or . Thus, the disk is given by

and, by Formula 3, we have

 � 2[ 3
2� � sin 2� �

1
8 sin 4�]0

�2
� 2�3

2���

2� �
3�

2

 � 2 y
�2

0
 �1 � 2 cos 2� �

1
2�1 � cos 4��� d�

 � 8 y
�2

0
 cos4� d� � 8 y

�2

0
 �1 � cos 2�

2 �2

 d�

 � y
�2

��2
 
 r 4

4 	0

2 cos �

d� � 4 y
�2

��2
 cos4� d�

 V � yy
D

 �x2 � y2� dA � y
�2

��2
 y

2
 
cos �

0
 r 2 r dr d�

D � { �r, � � � ��2 � � � �2,� 0 � r � 2 cos �}
Dr � 2 cos �r 2 � 2r cos �

x � r cos �x2 � y2 � r 2

�x � 1�2 � y2 � 1

x2 � y2 � 2x
D

x2 � y2 � 2xxy
� � x2 � y2

 � 1
4 y

�4

��4
 �1 � cos 4�� d� � 1

4 [� �
1
4 sin 4�]��4

�4
�

�

8

 � y
�4

��4
 [ 1

2r 2]0
cos 2� d� � 1

2 y
�4

��4
 cos2 2� d�

 A�D� � yy
D

 dA � y
�4

��4
 y

cos
 
2�

0
 r dr d�

D � { �r, �� � ��4 � � � �4,� 0 � r � cos 2�}

r � cos 2�

 � y
�

�

 
 r 2

2 	0

h���

d� � y
�

�
 12�h����2 d�

 A�D� � yy
D

 1 dA � y
�

�
 y

h���

0
 r dr d�

r � h���� � �� � �D
h2��� � h���h1��� � 0f �x, y� � 1
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FIGURE 8

¨=π
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¨=_π
4

FIGURE 9
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x1 2

D
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FIGURE 10
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12. ,
where 

, where D is the region bounded by the
semicircle and the y-axis

14. , where is the region in the Þrst quadrant enclosed
by the circle 

15. ,
where 

16. , where is the region in the Þrst quadrant that lies
between the circles and 

17Ð20|||| Use a double integral to Þnd the area of the region.

One loop of the rose 

18. The region enclosed by the curve 

19. The region within both of the circles and 

20. The region inside the circle and outside the 
circle 

21Ð27|||| Use polar coordinates to Þnd the volume of the given
solid.

Under the paraboloid and above the 
disk 

22. Inside the sphere and outside the 
cylinder 

23. A sphere of radius 

24. Bounded by the paraboloid and the 
plane 

Above the cone and below the sphere

26. Bounded by the paraboloids and

27. Inside both the cylinder and the ellipsoid

28. (a) A cylindrical drill with radius is used to bore a hole
through the center of a sphere of radius . Find the volume
of the ring-shaped solid that remains.

(b) Express the volume in part (a) in terms of the height of
the ring. Notice that the volume depends only on , not on

or .

29Ð32|||| Evaluate the iterated integral by converting to polar 
coordinates.

29. 30. y
a

�a
 y

sa2�y2

0
 �x2 � y2�3�2 dx dyy

1

0
 y

s1�x2

0
 ex 2�y 2 dy dx

r 2r 1

h
h

r 2

r 1

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

4x2 � 4y2 � � 2 � 64
x2 � y2 � 4

� � 4 � x2 � y2
� � 3x2 � 3y2

x2 � y2 � � 2 � 1
� � sx2 � y225.

� � 4
� � 10 � 3x2 � 3y2

a

x2 � y2 � 4
x2 � y2 � � 2 � 16

x2 � y2 � 9
� � x2 � y221.

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

r � 2
r � 4 sin �

r � sin �r � cos �

r � 4 � 3 cos �

r � cos 3�17.

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

x2 � y2 � 2xx2 � y2 � 4
DxxD x dA

R � ��x, y� � 1 � x2 � y2 � 4,� 0 � y � x�
xxR arctan� y�x� dA

x2 � y2 � 25
RxxR yex dA

x � s4 � y2

xxD e�x 2�y 2
 dA13.

R � ��x, y� � x2 � y2 � 4,� x � 0�
xxR s4 � x2 � y2 dA1Ð6 |||| A region is shown. Decide whether to use polar coordi-

nates or rectangular coordinates and write as an iter-
ated integral, where is an arbitrary continuous function on .

1. 2.

3. 4.

6.

7Ð8 |||| Sketch the region whose area is given by the integral and
evaluate the integral.

7. 8.

9Ð16 |||| Evaluate the given integral by changing to polar 
coordinates.

9. ,
where is the disk with center the origin and radius 3

10. , where is the region that lies to the left of
the -axis between the circles and 

11. , where is the region that lies above the
-axis within the circle x2 � y2 � 9x

RxxR cos�x2 � y2� dA

x2 � y2 � 4x2 � y2 � 1y
RxxR �x � y� dA

D
xxD xy dA

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

y
��2

0
 y

4 cos �

0
 r dr d�y

2�

�
 y

7

4
 r dr d�

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

0

2

y

x

R

20
52

5

2

y

x

R

5.

0 31

3

1

y

x

R

0 2

2

y

x

R

0 2

2

y

x

R

0 2

2

y

x

R

Rf
xxR f �x, y� dA

R

|||| 15.4 Exercises
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32.

33. A swimming pool is circular with a 40-ft diameter. The depth
is constant along east-west lines and increases linearly from
2 ft at the south end to 7 ft at the north end. Find the volume of
water in the pool.

34. An agricultural sprinkler distributes water in a circular pattern
of radius 100 ft. It supplies water to a depth of feet per hour
at a distance of feet from the sprinkler.
(a) What is the total amount of water supplied per hour to 

the region inside the circle of radius centered at the 
sprinkler?

(b) Determine an expression for the average amount of water
per hour per square foot supplied to the region inside the
circle of radius .

Use polar coordinates to combine the sum

into one double integral. Then evaluate the double integral.

36. (a) We define the improper integral (over the entire plane 

 � lim
a �  �

  yy
Da

 e��x 2�y 2 � dA

 I � yy
� 2

 e��x 2�y 2 � dA � y
�

��
 y

�

��
 e��x 2�y 2 � dy dx

� 2�

y
1

1�s2
 y

x

s1�x2
 xy dy dx � y

s2

1
 y

x

0
 xy dy dx � y

2

s2
 y

s4�x2

0
 xy dy dx

35.

R

R

r
e�r

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

y
2

0
 y

s2x�x2

0
 sx2 � y2 dy dxy

2

0
 y

s4�y2

�s4�y2
 x2y2 dx dy31. where is the disk with radius and center the origin. 

Show that

(b) An equivalent definition of the improper integral in part (a)
is

where is the square with vertices . Use this to
show that

(c) Deduce that

(d) By making the change of variable , show that

(This is a fundamental result for probability and statistics.)

37. Use the result of Exercise 36 part (c) to evaluate the following
integrals.

(a) (b) y
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 e�x 2�2 dx � s2�

t � s2x

y
�

��
 e�x 2 dx � s�

y
�

��
 e�x 2 dx y

�

��
 e�y 2 dy � �

�	a, 	a�Sa

yy
� 2
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 yy
Sa

 e��x 2�y 2 � dA

y
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 y

�

��
 e��x 2�y 2 � dA � �

aDa

|||| 15.5 Applications of Double Integrals

We have already seen one application of double integrals: computing volumes. Another
geometric application is finding areas of surfaces and this will be done in the next section.
In this section we explore physical applications such as computing mass, electric charge,
center of mass, and moment of inertia. We will see that these physical ideas are also impor-
tant when applied to probability density functions of two random variables.

Density and Mass

In Section 8.3 we were able to use single integrals to compute moments and the center of
mass of a thin plate or lamina with constant density. But now, equipped with the double
integral, we can consider a lamina with variable density. Suppose the lamina occupies a
region of the -plane and its density (in units of mass per unit area) at a point in

is given by , where is a continuous function on . This means that

where and are the mass and area of a small rectangle that contains and the
limit is taken as the dimensions of the rectangle approach 0. (See Figure 1.)

�x, y�
A
m

��x, y� � lim 

m

A

D���x, y�D
�x, y�xyD

FIGURE 1
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To find the total mass of the lamina we divide a rectangle containing into sub-
rectangles of the same size (as in Figure 2) and consider to be 0 outside . If
we choose a point in , then the mass of the part of the lamina that occupies 
is approximately , where is the area of . If we add all such masses, we
get an approximation to the total mass:

If we now increase the number of subrectangles, we obtain the total mass of the lamina
as the limiting value of the approximations:

Physicists also consider other types of density that can be treated in the same manner.
For example, if an electric charge is distributed over a region and the charge density (in
units of charge per unit area) is given by at a point in , then the total charge

is given by

EXAMPLE 1Charge is distributed over the triangular region in Figure 3 so that the
charge density at is , measured in coulombs per square meter (C�m ).
Find the total charge.

SOLUTIONFrom Equation 2 and Figure 3 we have

Thus, the total charge is C.

Moments and Centers of Mass

In Section 8.3 we found the center of mass of a lamina with constant density; here we con-
sider a lamina with variable density. Suppose the lamina occupies a region and has den-
sity function . Recall from Chapter 8 that we defined the moment of a particle about
an axis as the product of its mass and its directed distance from the axis. We divide into
small rectangles as in Figure 2. Then the mass of is approximately , so we
can approximate the moment of with respect to the -axis by

If we now add these quantities and take the limit as the number of subrectangles becomes
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large, we obtain the moment of the entire lamina about the x-axis:

Similarly, the moment about the y-axis is 

As before, we define the center of mass so that and . The physi-
cal significance is that the lamina behaves as if its entire mass is concentrated at its center
of mass. Thus, the lamina balances horizontally when supported at its center of mass (see
Figure 4).

The coordinates of the center of mass of a lamina occupying the region 
D and having density function �(x, y) are

where the mass is given by

EXAMPLE 2Find the mass and center of mass of a triangular lamina with vertices ,
, and if the density function is .

SOLUTIONThe triangle is shown in Figure 5. (Note that the equation of the upper bound-
ary is .) The mass of the lamina is

Then the formulas in (5) give
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The center of mass is at the point .

EXAMPLE 3The density at any point on a semicircular lamina is proportional to the dis-
tance from the center of the circle. Find the center of mass of the lamina.

SOLUTIONLet’s place the lamina as the upper half of the circle (see Fig-
ure 6). Then the distance from a point to the center of the circle (the origin) is

. Therefore, the density function is

where is some constant. Both the density function and the shape of the lamina suggest
that we convert to polar coordinates. Then and the region is given by

, . Thus, the mass of the lamina is

Both the lamina and the density function are symmetric with respect to the -axis, so the
center of mass must lie on the -axis, that is, . The -coordinate is given by

Therefore, the center of mass is located at the point .

Moment of Inertia

The moment of inertia (also called the second moment) of a particle of mass about an
axis is defined to be , where is the distance from the particle to the axis. We extend
this concept to a lamina with density function and occupying a region by pro-
ceeding as we did for ordinary moments. We divide into small rectangles, approximate
the moment of inertia of each subrectangle about the -axis, and take the limit of the sum x
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|||| Compare the location of the center of mass
in Example 3 with Example 4 in Section 8.3
where we found that the center of mass of a
lamina with the same shape but uniform density
is located at the point .�0, 4a��3���



as the number of subrectangles becomes large. The result is the moment of inertia of the
lamina about the x-axis:

Similarly, the moment of inertia about the y-axis is

It is also of interest to consider the moment of inertia about the origin, also called the
polar moment of inertia:

Note that .

EXAMPLE 4Find the moments of inertia , , and of a homogeneous disk with den-
sity , center the origin, and radius . 

SOLUTIONThe boundary of is the circle and in polar coordinates is
described by , . Let’s compute first:

Instead of computing and directly, we use the facts that and 
(from the symmetry of the problem). Thus

In Example 4 notice that the mass of the disk is

so the moment of inertia of the disk about the origin (like a wheel about its axle) can be
written as

Thus, if we increase the mass or the radius of the disk, we thereby increase the moment of
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inertia. In general, the moment of inertia plays much the same role in rotational motion
that mass plays in linear motion. The moment of inertia of a wheel is what makes it diffi-
cult to start or stop the rotation of the wheel, just as the mass of a car is what makes it dif-
ficult to start or stop the motion of the car.

The radius of gyration of a lamina about an axisis the number such that

where is the mass of the lamina and is the moment of inertia about the given axis.
Equation 9 says that if the mass of the lamina were concentrated at a distance from the
axis, then the moment of inertia of this “point mass” would be the same as the moment of
inertia of the lamina.

In particular, the radius of gyration with respect to the -axis and the radius of gyra-
tion with respect to the -axis are given by the equations

Thus is the point at which the mass of the lamina can be concentrated without chang-
ing the moments of inertia with respect to the coordinate axes. (Note the analogy with the
center of mass.)

EXAMPLE 5Find the radius of gyration about the -axis of the disk in Example 4.

SOLUTIONAs noted, the mass of the disk is , so from Equations 10 we have

Therefore, the radius of gyration about the -axis is

which is half the radius of the disk.

Probability

In Section 8.5 we considered the probability density function of a continuous random
variable X. This means that for all x, , and the probability that X
lies between a and b is found by integratingf from a to b:

Now we consider a pair of continuous random variables X and Y, such as the lifetimes
of two components of a machine or the height and weight of an adult female chosen at ran-
dom. The joint density function of X and Y is a functionf of two variables such that the
probability that lies in a region D is
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In particular, if the region is a rectangle, the probability that X lies between a and b and Y
lies between c and d is

(See Figure 7.)

Because probabilities aren’t negative and are measured on a scale from 0 to 1, the joint
density function has the following properties:

As in Exercise 36 in Section 15.4, the double integral over is an improper integral
defined as the limit of double integrals over expanding circles or squares and we can write

EXAMPLE 6If the joint density function for X and Y is given by

find the value of the constant C. Then find .

SOLUTIONWe find the value of C by ensuring that the double integral off is equal to 1.
Because outside the rectangle , we have

Therefore, and so .C � 1
15001500C � 1
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The probability that X lies between
 a and b and Y lies between c and d

is the volume that lies above the
rectangle D=[a, b]x[c, d] and

 below the graph of the joint
density function.
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Now we can compute the probability that X is at most 7 and Y is at least 2:

Suppose X is a random variable with probability density function and Y is a ran-
dom variable with density function . Then X and Y are called independent random
variables if their joint density function is the product of their individual density functions:

In Section 8.5 we modeled waiting times by using exponential density functions

where is the mean waiting time. In the next example we consider a situation with two
independent waiting times.

EXAMPLE 7 The manager of a movie theater determines that the average time moviegoers
wait in line to buy a ticket for this week’s film is 10 minutes and the average time they
wait to buy popcorn is 5 minutes. Assuming that the waiting times are independent, find
the probability that a moviegoer waits a total of less than 20 minutes before taking his or
her seat.

SOLUTIONAssuming that both the waiting time X for the ticket purchase and the waiting
time Y in the refreshment line are modeled by exponential probability density functions,
we can write the individual density functions as

Since X and Y are independent, the joint density function is the product:

We are asked for the probability that :

where D is the triangular region shown in Figure 8. Thus
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This means that about 75% of the moviegoers wait less than 20 minutes before taking
their seats.

Expected Values

Recall from Section 8.5 that if X is a random variable with probability density function
then its meanis

Now if X and Y are random variables with joint density functionf, we define the X-mean
and Y-mean, also called the expected valuesof X and Y, to be

Notice how closely the expressions for and in (11) resemble the moments and 
of a lamina with density function in Equations 3 and 4. In fact, we can think of proba-
bility as being like continuously distributed mass. We calculate probability the way we cal-
culate mass—by integrating a density function. And because the total “probability mass”
is 1, the expressions for and in (5) show that we can think of the expected values of X
and Y, and , as the coordinates of the “center of mass” of the probability distribution.

In the next example we deal with normal distributions. As in Section 8.5, a single ran-
dom variable is normally distributedif its probability density function is of the form

where is the mean and is the standard deviation.

EXAMPLE 8 A factory produces (cylindrically shaped) roller bearings that are sold as
having diameter 4.0 cm and length 6.0 cm. In fact, the diameters X are normally distrib-
uted with mean 4.0 cm and standard deviation 0.01 cm while the lengths Y are normally
distributed with mean 6.0 cm and standard deviation 0.01 cm. Assuming that X and Y
are independent, write the joint density function and graph it. Find the probability that 
a bearing randomly chosen from the production line has either length or diameter that
differs from the mean by more than 0.02 cm.

SOLUTIONWe are given that X and Y are normally distributed with , 
and . So the individual density functions for X and Y are
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Since X and Y are independent, the joint density function is the product:

A graph of this function is shown in Figure 9.
LetÕs Þrst calculate the probability that both X and Y differ from their means by less

than 0.02 cm. Using a calculator or computer to estimate the integral, we have

Then the probability that either X or Y differs from its mean by more than 0.02 cm is
approximately

1 � 0.91� 0.09
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11. A lamina occupies the part of the disk in the Þrst
quadrant. Find its center of mass if the density at any point is
proportional to its distance from the -axis.

12. Find the center of mass of the lamina in Exercise 11 if the 
density at any point is proportional to the square of its distance
from the origin.

Find the center of mass of a lamina in the shape of an isosceles
right triangle with equal sides of length if the density at any
point is proportional to the square of the distance from the ver-
tex opposite the hypotenuse.

14. A lamina occupies the region inside the circle 
but outside the circle . Find the center of mass if
the density at any point is inversely proportional to its distance
from the origin.

15. Find the moments of inertia , , for the lamina of
Exercise 7.

16. Find the moments of inertia , , for the lamina of 
Exercise 12.

17. Find the moments of inertia , , for the lamina of 
Exercise 9.

18. Consider a square fan blade with sides of length 2 and the
lower left corner placed at the origin. If the density of the blade
is , is it more difÞcult to rotate the blade
about the -axis or the -axis?yx

��x, y� � 1 � 0.1x

I 0I yI x

I 0I yI x

I 0I yI x

x2 � y2 � 1
x2 � y2 � 2y

a
13.

x

x2 � y2 � 1Electric charge is distributed over the rectangle ,
so that the charge density at is

(measured in coulombs per square meter).
Find the total charge on the rectangle.

2. Electric charge is distributed over the disk so 
that the charge density at is 
(measured in coulombs per square meter). Find the total charge
on the disk.

3Ð10 |||| Find the mass and center of mass of the lamina that 
occupies the region and has the given density function .

3. ;

4. ;

is the triangular region with vertices , , ;

6. is the triangular region with vertices , , ;

7. is bounded by , , , and ; 

8. is bounded by , , and ; 

9. is bounded by the parabola and the line ;

10. ;
�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

��x, y� � xD � ��x, y� 	 0 � y � cos x, 0 � x � ��2


��x, y� � 3
y � x � 2x � y2D

��x, y� � xx � 1y � 0y � sxD

��x, y� � yx � 1x � 0y � 0y � exD

��x, y� � x
�4, 0��1, 1��0, 0�D

��x, y� � x � y
�0, 3��2, 1��0, 0�D5.

��x, y� � cxyD � ��x, y� 	 0 � x � a, 0 � y � b


��x, y� � xy2D � ��x, y� 	 0 � x � 2, �1 � y � 1


�D

� �x, y� � x � y � x2 � y2�x, y�
x2 � y2 � 4

� �x, y� � 2xy � y2
�x, y�0 � y � 2

1 � x � 31.

|||| 15.5 Exercises

FIGURE 9
Graph of the bivariate normal joint
density function in Example 8
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SECTION 15.6SURFACE AREA� � � � 1019

19Ð20|||| Use a computer algebra system to find the mass, center of
mass, and moments of inertia of the lamina that occupies the region

and has the given density function.

19. ;

20. is enclosed by the cardioid ;

21. A lamina with constant density occupies a square
with vertices , , , and . Find the moments
of inertia and and the radii of gyration and.

22. A lamina with constant density occupies the region
under the curve from to . Find the
moments of inertia and and the radii of gyration and .

The joint density function for a pair of random variables and
is

(a) Find the value of the constant .
(b) Find .
(c) Find .

24. (a) Verify that

is a joint density function.
(b) If and are random variables whose joint density func-

tion is the function in part (a), find
(i) (ii)

(c) Find the expected values of and .

Suppose and are random variables with joint density 
function

(a) Verify that is indeed a joint density function.
(b) Find the following probabilities.

(i) (ii)
(c) Find the expected values of and .

26. (a) A lamp has two bulbs of a type with an average lifetime of
1000 hours. Assuming that we can model the probability of
failure of these bulbs by an exponential density function 

YX
P�X � 2, Y � 4�P�Y 	 1�

f

f �x, y� � �0.1e��0.5x�0.2y�

0
if x 	 0, y 	 0
otherwise

YX25.

YX
P(X 	

1
2, Y �

1
2 )P(X 	

1
2 )

f
YX

f �x, y� � �4xy
0

if 0 � x � 1, 0 � y � 1
otherwise

P�X � Y � 1�
P�X � 1, Y � 1�

C

f �x, y� � �Cx�1 � y�
0

if 0 � x � 1, 0 � y � 2
otherwise

Y
X23.

yxI yI x

x � �x � 0y � sin x
��x, y� � �

yxI yI x

�0, a��a, a��a, 0��0, 0�
��x, y� � �

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

��x, y� � sx2 � y2

r � 1 � cos 
D

��x, y� � xyD � ��x, y� 	 0 � y � sin x, 0 � x � � 


D

CAS with mean , find the probability that both of the
lamp’s bulbs fail within 1000 hours.

(b) Another lamp has just one bulb of the same type as in
part (a). If one bulb burns out and is replaced by a bulb 
of the same type, find the probability that the two bulbs fail
within a total of 1000 hours.

27. Suppose that and are independent random variables, where
is normally distributed with mean 45 and standard deviation

0.5 and is normally distributed with mean 20 and standard
deviation 0.1.
(a) Find .
(b) Find .

28. Xavier and Yolanda both have classes that end at noon and they
agree to meet every day after class. They arrive at the coffee
shop independently. Xavier’s arrival time is and Yolanda’s
arrival time is , where and are measured in minutes after
noon. The individual density functions are

(Xavier arrives sometime after noon and is more likely to arrive
promptly than late. Yolanda always arrives by 12:10 P.M. and is
more likely to arrive late than promptly.) After Yolanda arrives,
she’ll wait for up to half an hour for Xavier, but he won’t wait
for her. Find the probability that they meet.

29. When studying the spread of an epidemic, we assume that the
probability that an infected individual will spread the disease to
an uninfected individual is a function of the distance between
them. Consider a circular city of radius 10 mi in which the
population is uniformly distributed. For an uninfected individ-
ual at a fixed point , assume that the probability func-
tion is given by

where denotes the distance between and .
(a) Suppose the exposure of a person to the disease is the sum

of the probabilities of catching the disease from all mem-
bers of the population. Assume that the infected people are
uniformly distributed throughout the city, with infected
individuals per square mile. Find a double integral that 
represents the exposure of a person residing at .

(b) Evaluate the integral for the case in which is the center of
the city and for the case in which is located on the edge
of the city. Where would you prefer to live?

A
A

A

k

APd�P, A�

f �P� � 1
20�20 � d�P, A��

A�x0, y0�

f2�y� � � 1
50y
0

if 0 � y � 10
otherwise

f1�x� � �e�x

0
if x 	 0
if x � 0

YXY
X

P�4�X � 45�2 � 100�Y � 20�2 � 2�
P�40 � X � 50, 20� Y � 25�

Y
X

YXCAS

� � 1000

|||| 15.6 Surface Area

In this section we apply double integrals to the problem of computing the area of a surface.
In Section 8.2 we found the area of a very special type of surface—a surface of revolu-
tion—by the methods of single-variable calculus. Here we compute the area of a surface
with equation , the graph of a function of two variables.� � f �x, y�

|||| In Section 16.6 we will deal with areas of
more general surfaces, called parametric
surfaces, and so it is possible to omit this sec-
tion if that later section will be covered.



Let be a surface with equation , where has continuous partial derivatives.
For simplicity in deriving the surface area formula, we assume that and the
domain of is a rectangle. We divide into small rectangles with area .
If is the corner of closest to the origin, let , be the point on 
directly above it (see Figure 1). The tangent plane to at is an approximation to near

. So the area of the part of this tangent plane (a parallelogram) that lies directly
above is an approximation to the area of the part of that lies directly above .
Thus, the sum is an approximation to the total area of , and this approximation
appears to improve as the number of rectangles increases. Therefore, we define the sur-
face areaof to be

To find a formula that is more convenient than Equation 1 for computational purposes,
we let and be the vectors that start at and lie along the sides of the parallelogram
with area . (See Figure 2.) Then . Recall from Section 14.3 that 
and are the slopes of the tangent lines through in the directions of and .
Therefore

and

Thus

From Definition 1 we then have

and by the definition of a double integral we get the following formula.

The area of the surface with equation , where and 
are continuous, is

A�S� � yy
D

 s� fx�x, y��2 � � fy�x, y��2 � 1 dA

fyfx� � f �x, y�, �x, y� � D2

 � lim 
m, n � �

 �
m

i� 1
 �

n

j� 1
 s� fx�xi, yj ��2 � � fy�xi, yj ��2 � 1 A

 A�S� � lim 
m, n � �

 �
m

i� 1
 �

n

j� 1
 Tij

Tij � 	 a � b 	 � s� fx�xi, yj ��2 � � fy�xi, yj ��2 � 1 A

 � ��fx�xi, yj � i � fy�xi, yj � j � k� A

 � �fx�xi, yj � x y i � fy�xi, yj � x y j � x y k

 a � b � 	 i
x
0

j
0

y

k
fx�xi, yj � x
fy�xi, yj � y 	

 b � y j � fy�xi, yj � yk

 a � x i � fx�xi, yj � x k

baPijfy�xi, yj �
fx�xi, yj �Tij � 	 a � b 	Tij

Pijba

A�S� � lim 
m, n � �

 �
m

i� 1
 �

n

j� 1
 Tij1

S

S Tij

RijSSijRij

TijPij

SPijS
Sf �xi, yj��Pij �xi, yjRij�xi, yj �

A � x yRijDfD
f �x, y� 	 0

f� � f �x, y�S
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having charge density is

If we have three continuous random variables X, Y, and Z, their joint density function
is a function of three variables such that the probability that lies in E is

In particular,

The joint density function satisfies

EXAMPLE 5Find the center of mass of a solid of constant density that is bounded by the
parabolic cylinder and the planes , , and .

SOLUTIONThe solid and its projection onto the -plane are shown in Figure 14. The
lower and upper surfaces of are the planes and , so we describe as a
type 1 region:

Then, if the density is , the mass is
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Because of the symmetry of and about the -plane, we can immediately say that
and, therefore, . The other moments are

Therefore, the center of mass is

�x, y, � � � 
My�

m
, 

Mx�

m
, 

Mxy

m � � (5
7, 0, 514)
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 dx dy �
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 x2 dx dy
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3 �x�y2
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 My� � yyy
E

 x� dV � y
1

�1
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1

y
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0
 x� d�  dx dy
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10. , where is bounded by the planes , ,
, and 

11. , where is the solid tetrahedron with vertices
, , , and 

12. , where is the solid tetrahedron with vertices
, , , and 

13. , where is bounded by the parabolic cylinder
and the planes , , and 

14. , where is bounded by the parabolic cylinder
and the planes , , and 

15. , where is bounded by the paraboloid 
and the plane 

16. , where is bounded by the cylinder and
the planes , , and in the first octant

17Ð20|||| Use a triple integral to find the volume of the given solid.

The tetrahedron enclosed by the coordinate planes and the
plane 

18. The solid bounded by the cylinder and the planes
, and y � 9� � 4� � 0,

y � x2

2x � y � � � 4
17.

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

� � 0y � 3xx � 0
y2 � � 2 � 9ExxxE �  dV

x � 4
x � 4y2 � 4� 2ExxxE x dV

� � 0x � yx � �y � x2
ExxxE �x � 2y� dV

x � �1x � 1� � 0� � 1 � y2
ExxxE x

2ey dV

�0, 1, 1��1, 1, 0��0, 1, 0��0, 0, 0�
ExxxE x�  dV

�0, 0, 3��0, 2, 0��1, 0, 0��0, 0, 0�
ExxxE xy dV

2x � 2y � � � 4� � 0
y � 0x � 0ExxxE y dV1. Evaluate the integral in Example 1, integrating first with

respect to , then , and then .

2. Evaluate the integral , where

using three different orders of integration.

3Ð6 |||| Evaluate the iterated integral.

3. 4.

5. 6.

7Ð16 |||| Evaluate the triple integral.

7. , where

8. , where

, where lies under the plane 
and above the region in the -plane bounded by the curves

, , and x � 1y � 0y � sx
xy

� � 1 � x � yExxxE 6xy dV9.

E � ��x, y, � � � 0 � x � 1, 0 � y � x,� x � � � 2x	
xxxE y�  cos�x5� dV

E � { �x, y, � � � 0 � y � 2, 0 � x � s4 � y2, 0 � � � y}
xxxE 2x dV

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��
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 � ey dx d�  dy
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0
 2xy�  d�  dy dxy

1

0
 y

�

0
 y

x��

0
 6x�  dy dx d�

E � ��x, y, � � � �1 � x � 1, 0� y � 2, 0� � � 1	

xxxE �x� � y3� dV
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19. The solid enclosed by the cylinder and the planes
and 

20. The solid enclosed by the paraboloid and the
plane 

(a) Express the volume of the wedge in the first octant that is
cut from the cylinder by the planes and

as a triple integral.
(b) Use either the Table of Integrals (on the back Reference

Pages) or a computer algebra system to find the exact value
of the triple integral in part (a).

22. (a) In the Midpoint Rule for triple integrals we use a triple
Riemann sum to approximate a triple integral over a box 

, where is evaluated at the center 
of the box . Use the Midpoint Rule to estimate

, where is the cube defined by
, , . Divide into eight

cubes of equal size.
(b) Use a computer algebra system to approximate the integral

in part (a) correct to two decimal places. Compare with the
answer to part (a).

23Ð24|||| Use the Midpoint Rule for triple integrals (Exercise 22)
to estimate the value of the integral. Divide into eight sub-boxes
of equal size.

23. , where

24. , where 

25Ð26|||| Sketch the solid whose volume is given by the iterated
integral.

26.

27Ð30|||| Express the integral as an iterated inte-
gral in six different ways, where is the solid bounded by the
given surfaces.

27. , ,

28. , , ,

29. , ,

30.
�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

9x2 � 4y2 � � 2 � 1

x2 � 1 � y� � y� � 0

� � y � 2xy � 2x � 0� � 0

y � 6y � 0x2 � � 2 � 4

E
xxxE f �x, y, � � dV

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

y
2

0
 y

2�y

0
 y

4�y 2

0
 dx d�  dy

y
1

0
 y

1�x

0
 y

2�2�

0
 dy d�  dx25.

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

B � ��x, y, � � � 0 � x � 4, 0 � y � 2,� 0 � � � 1	
xxxB sin�xy2� 3� dV 

B � ��x, y, � � � 0 � x � 4, 0 � y � 8,� 0 � � � 4	

xxxB 
1

ln�1 � x � y � � �
 dV

B

CAS

B0 � � � 10 � y � 10 � x � 1
BxxxB e

�x 2�y 2�� 2 dV
Bijk

�xi, yj , � k�f �x, y, � �B

CAS

x � 1
y � xy2 � � 2 � 1

21.

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

x � 16
x � y2 � � 2

� � 1y � � � 5
x2 � y2 � 9 31. The figure shows the region of integration for the integral

Rewrite this integral as an equivalent iterated integral in the
five other orders.

32. The figure shows the region of integration for the integral

Rewrite this integral as an equivalent iterated integral in the
five other orders.

33Ð34|||| Write five other iterated integrals that are equal to the
given iterated integral.

34.

35Ð38|||| Find the mass and center of mass of the solid with the
given density function .

35. is the solid of Exercise 9;

36. is bounded by the parabolic cylinder and the
planes , , and ;

is the cube given by , , ;
� �x, y, � � � x2 � y2 � � 2

0 � � � a0 � y � a0 � x � aE37.

� �x, y, � � � 4� � 0x � 0x � � � 1
� � 1 � y2E

� �x, y, � � � 2E

�
E

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��
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x 2

0
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y

0
 f �x, y, � � d�  dy dx

y
1

0
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1
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y

0
 f �x, y, � � d�  dx dy33.
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0
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45. The joint density function for random variables , , and is
if , and

otherwise.
(a) Find the value of the constant .
(b) Find .
(c) Find .

46. Suppose , , and are random variables with joint density
function if , , ,
and otherwise.
(a) Find the value of the constant .
(b) Find .
(c) Find .

47Ð48|||| The average valueof a function over a solid
region is defined to be 

where is the volume of . For instance, if is a density func-
tion, then is the average density of .

Find the average value of the function over the
cube with side length that lies in the first octant with one ver-
tex at the origin and edges parallel to the coordinate axes.

48. Find the average value of the function 
over the region enclosed by the paraboloid 
and the plane .

49. Find the region for which the triple integral 

is a maximum.

yyy
E

�1 � x2 � 2y2 � 3� 2� dV

E

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

� � 0
� � 1 � x2 � y2

f �x, y, � � � x2� � y2�

L
f �x, y, � � � xy�47.

E�ave

�EV�E�

fave �
1

V�E�
 yyy

E

 f �x, y, � � dV

E
f �x, y, � �

P�X � 1, Y � 1, Z � 1�
P�X � 1, Y � 1�

C
f �x, y, � � � 0

� � 0y � 0x � 0f �x, y, � � � Ce��0.5x�0.2y�0.1� �
ZYX

P�X � Y � Z � 1�
P�X � 1, Y � 1, Z � 1�

C
f �x, y, � � � 0

0 � x � 2, 0 � y � 2, 0 � � � 2f �x, y, � � � Cxy�
ZYX38. is the tetrahedron bounded by the planes , , 

, ;

39Ð40|||| Set up, but do not evaluate, integral expressions for 
(a) the mass, (b) the center of mass, and (c) the moment of inertia
about the -axis.

39. The solid of Exercise 19;

40. The hemisphere , ; 

41. Let be the solid in the first octant bounded by the cylinder
and the planes , , and with the

density function . Use a computer
algebra system to find the exact values of the following quan-
tities for .
(a) The mass
(b) The center of mass
(c) The moment of inertia about the -axis

42. If is the solid of Exercise 16 with density function
, find the following quantities, correct 

to three decimal places.
(a) The mass
(b) The center of mass
(c) The moment of inertia about the -axis

43. Find the moments of inertia for a cube of constant density 
and side length if one vertex is located at the origin and three
edges lie along the coordinate axes.

44. Find the moments of inertia for a rectangular brick with dimen-
sions , , and , mass , and constant density if the center of
the brick is situated at the origin and the edges are parallel to
the coordinate axes.
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L
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� � 0x � 0y � �x2 � y2 � 1
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� �x, y, � � � sx2 � y2 � � 2

� � 0x2 � y2 � � 2 � 1

� �x, y, � � � sx2 � y2
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�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

� �x, y, � � � yx � y � � � 1� � 0
y � 0x � 0E
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Volumes of Hyperspheres

In this project we find formulas for the volume enclosed by a hypersphere in -dimensional
space.

1. Use a double integral and trigonometric substitution, together with Formula 64 in the Table
of Integrals, to find the area of a circle with radius .

2. Use a triple integral and trigonometric substitution to find the volume of a sphere with 
radius .

3. Use a quadruple integral to find the hypervolume enclosed by the hypersphere
in . (Use only trigonometric substitution and the reduction 

formulas for or .)

4. Use an -tuple integral to find the volume enclosed by a hypersphere of radius in 
-dimensional space . [Hint: The formulas are different for even and odd.]nn� nn

rn

x cosnx dxx sinnx dx
� 4x2 � y2 � � 2 � w 2 � r 2

r

r

n

DISCOVERY PROJECT



|||| 15.8 Triple Integrals in Cylindrical and Spherical Coordinates

We saw in Section 15.4 that some double integrals are easier to evaluate using polar coor-
dinates. In this section we see that some triple integrals are easier to evaluate using cylin-
drical or spherical coordinates.

Cylindrical Coordinates

Recall from Section 12.7 that the cylindrical coordinates of a point are , where ,
, and are shown in Figure 1. Suppose that is a type 1 region whose projection on

the -plane is conveniently described in polar coordinates (see Figure 2). In particular,
suppose that is continuous and

where is given in polar coordinates by

We know from Equation 15.7.6 that

But we also know how to evaluate double integrals in polar coordinates. In fact, combin-
ing Equation 1 with Equation 15.4.3, we obtain

Formula 2 is the formula for triple integration in cylindrical coordinates . It says that
we convert a triple integral from rectangular to cylindrical coordinates by writing

, , leaving as it is, using the appropriate limits of integration for 
, , and , and replacing by . (Figure 3 shows how to remember this.) It is

worthwhile to use this formula when is a solid region easily described in cylindrical
coordinates, and especially when the function involves the expression .x2 � y2f �x, y, � �

E
r d�  dr d	dV	r�
�y � r sin 	x � r cos 	

yyy
E

 f �x, y, � � dV � y
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yyy
E
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D

 �y
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FIGURE 1
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EXAMPLE 1 A solid lies within the cylinder , below the plane , and
above the paraboloid . (See Figure 4.) The density at any point is pro-
portional to its distance from the axis of the cylinder. Find the mass of .

SOLUTIONIn cylindrical coordinates the cylinder is and the paraboloid is
, so we can write

Since the density at is proportional to the distance from the -axis, the density
function is

where is the proportionality constant. Therefore, from Formula 15.7.13, the mass of 
is

EXAMPLE 2 Evaluate .

SOLUTIONThis iterated integral is a triple integral over the solid region 

and the projection of onto the -plane is the disk . The lower surface of
is the cone and its upper surface is the plane . (See Figure 5.) This

region has a much simpler description in cylindrical coordinates:

Therefore, we have

Spherical Coordinates

In Section 12.7 we defined the spherical coordinates of a point (see Figure 6) and
we demonstrated the following relationships between rectangular coordinates and spheri-
cal coordinates:

� � � cos �y � � sin � sin 	x � � sin � cos 	3

��, 	, ��

� 2 [ 1
2r 4 �

1
5r 5]0

2
� 16
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2

0
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0
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2

r
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E
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x2 � y2 � 4xyE
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In this coordinate system the counterpart of a rectangular box is a spherical wedge

where , , and . Although we defined triple integrals by divid-
ing solids into small boxes, it can be shown that dividing a solid into small spherical
wedges always gives the same result. So we divide into smaller spherical wedges by
means of equally spaced spheres , half-planes , and half-cones .
Figure 7 shows that is approximately a rectangular box with dimensions , (arc
of a circle with radius angle ), and (arc of a circle with radius 
angle ). So an approximation to the volume of is given by

In fact, it can be shown, with the aid of the Mean Value Theorem (Exercise 39), that the
volume of is given exactly by

where is some point in . Let be the rectangular coordinates of
this point. Then

But this sum is a Riemann sum for the function

Consequently, we have arrived at the following formula for triple integration in spherical
coordinates.

where is a spherical wedge given by

Formula 4 says that we convert a triple integral from rectangular coordinates to spher-
ical coordinates by writing

using the appropriate limits of integration, and replacing by . This is
illustrated in Figure 8.

This formula can be extended to include more general spherical regions such as

E � ���, 	, �� � � � 	 � 
, c � � � d, t1�	, �� � � � t2�	, ��	

�2 sin � d� d	 d�dV

� � � cos �y � � sin � sin 	x � � sin � cos 	

E � ���, 	, �� � a � � � b, � � 	 � 
, c � � � d	
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� y
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c
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In this case the formula is the same as in (4) except that the limits of integration for are
and .

Usually, spherical coordinates are used in triple integrals when surfaces such as cones
and spheres form the boundary of the region of integration.

EXAMPLE 3 Evaluate where is the unit ball:

SOLUTIONSince the boundary of is a sphere, we use spherical coordinates:

In addition, spherical coordinates are appropriate because

Thus, (4) gives

NOTE�� It would have been extremely awkward to evaluate the integral in Example 3 with-
out spherical coordinates. In rectangular coordinates the iterated integral would have been

EXAMPLE 4 Use spherical coordinates to find the volume of the solid that lies above the
cone and below the sphere . (See Figure 9.)

SOLUTIONNotice that the sphere passes through the origin and has center . We
write the equation of the sphere in spherical coordinates as

� � cos �or�2 � � cos �
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The equation of the cone can be written as

This gives , or . Therefore, the description of the solid in
spherical coordinates is

Figure 11 shows how E is swept out if we integrate first with respect to , then , and
then . The volume of E is

FIGURE 11
¨ varies from 0 to 2π.
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FIGURE 10

|||| Figure 10 gives another look (this time drawn
by Maple) at the solid of Example 4.

Visual 15.8 shows an animation of 
Figure 11.

5Ð6 |||| Set up the triple integral of an arbitrary continuous function
in cylindrical or spherical coordinates over the solid

shown.

5. 6.

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��
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1Ð4 |||| Sketch the solid whose volume is given by the integral and
evaluate the integral.

1.
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4.
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|||| 15.8 Exercises
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22. Evaluate , where lies between the spheres 
and and above the cone .

23. Find the volume of the solid that lies above the cone 
and below the sphere .

Find the volume of the solid that lies within the sphere
, above the -plane, and below the cone

.

25. Find the centroid of the solid in Exercise 21.

26. Let be a solid hemisphere of radius whose density at any
point is proportional to its distance from the center of the base.
(a) Find the mass of .
(b) Find the center of mass of .
(c) Find the moment of inertia of about its axis.

27. (a) Find the centroid of a solid homogeneous hemisphere of
radius .

(b) Find the moment of inertia of the solid in part (a) about a
diameter of its base.

28. Find the mass and center of mass of a solid hemisphere of
radius if the density at any point is proportional to its 
distance from the base.

29Ð32|||| Use cylindrical or spherical coordinates, whichever seems
more appropriate.

Find the volume and centroid of the solid that lies above the
cone and below the sphere .

30. Find the volume of the smaller wedge cut from a sphere of
radius by two planes that intersect along a diameter at an
angle of .

31. Evaluate , where lies above the paraboloid 
and below the plane . Use either the

Table of Integrals (on the back Reference Pages) or a 
computer algebra system to evaluate the integral.

32. (a) Find the volume enclosed by the torus .
; (b) Use a computer to draw the torus.

33Ð34|||| Evaluate the integral by changing to cylindrical
coordinates.

33.

34.

35Ð36|||| Evaluate the integral by changing to spherical
coordinates.

35.

36.

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��
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0
 y
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0
 y

s18�x2�y2

sx2�y2
 �x2 � y2 � � 2� d�  dx dy

y
3

�3
 y
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�s9�x2
 y

s9�x2�y2

0
 � sx2 � y2 � � 2 d�  dy dx

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

y
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0
 y
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0
 y
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x 2�y2
 xy�  d�  dx dy

y
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 y
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x 2�y2
 �x2 � y2�3�2 d�  dy dx

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

� � sin �

� � 2y� � x2 � y2

ExxxE �  dVCAS

��6
a

x2 � y2 � � 2 � 1� � sx2 � y2

E29.

�� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � ��

a

a

H
H

H

aH

� � sx2 � y2

xyx2 � y2 � � 2 � 4
24.

� � 4 cos �
� � ��3

� � ��3� � 4
� � 2ExxxE xy�  dV7Ð16 |||| Use cylindrical coordinates.

Evaluate , where is the region that lies
inside the cylinder and between the planes

and .

8. Evaluate , where is the solid in the Þrst
octant that lies beneath the paraboloid .

9. Evaluate , where is enclosed by the paraboloid
, the cylinder , and the -plane.

10. Evaluate , where is enclosed by the planes 
and and by the cylinders and

.

Evaluate , where is the solid that lies within 
the cylinder , above the plane , and below the
cone .

12. Find the volume of the solid that lies within both the cylinder
and the sphere .

13. (a) Find the volume of the region bounded by the parabo-
loids and .

(b) Find the centroid of (the center of mass in the case where
the density is constant).

14. (a) Find the volume of the solid that the cylinder 
cuts out of the sphere of radius centered at the origin.

; (b) Illustrate the solid of part (a) by graphing the sphere and
the cylinder on the same screen.

15. Find the mass and center of mass of the solid bounded by the
paraboloid and the plane if has
constant density .

16. Find the mass of a ball given by if the
density at any point is proportional to its distance from the 
-axis.

17Ð28|||| Use spherical coordinates.

Evaluate , where is the unit ball
.

18. Evaluate , where is the hemispherical
region that lies above the -plane and below the sphere

19. Evaluate , where lies between the spheres
and in the Þrst octant.

20. Evaluate , where is enclosed by the sphere
in the Þrst octant.

21. Evaluate , where is bounded by the -plane and
the hemispheres and .y � s16 � x2 � � 2y � s9 � x2 � � 2

x�ExxxE x
2 dV

x2 � y2 � � 2 � 9
ExxxE e

sx2�y2�� 2 dV

x2 � y2 � � 2 � 4x2 � y2 � � 2 � 1
ExxxE �  dV

x2 � y2 � � 2 � 1.
xy

HxxxH �x2 � y2� dV
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BxxxB �x

2 � y2 � � 2� dV17.
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E
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37. In the Laboratory Project on page 844 we investigated the 
family of surfaces that have been 
used as models for tumors. The Òbumpy sphereÓ with 
and is shown. Use a computer algebra system to Þnd the
volume it encloses.

38. Show that

(The improper triple integral is deÞned as the limit of a triple
integral over a solid sphere as the radius of the sphere increases
indeÞnitely.)

39. (a) Use cylindrical coordinates to show that the volume of the
solid bounded above by the sphere and below
by the cone (or ), where

, is

V �
2�a3

3
 �1 � cos� 0�

0 
 � 0 
 ��2
� � � 0� � r cot � 0

r 2 � � 2 � a2

y
�

�� y
�

�� y
�

��
 sx2 � y2 � � 2 e��x2�y2�� 2� dx dy d� � 2�

n � 5
m � 6

� � 1 �
1
5 sin m	 sin n�

CAS (b) Deduce that the volume of the spherical wedge given by
, , is

(c) Use the Mean Value Theorem to show that the volume in
part (b) can be written as

where lies between and , lies between and ,
, , and .

40. When studying the formation of mountain ranges, geologists
estimate the amount of work required to lift a mountain from
sea level. Consider a mountain that is essentially in the shape
of a right circular cone. Suppose that the weight density of 
the material in the vicinity of a point is and the height 
is .
(a) Find a deÞnite integral that represents the total work done

in forming the mountain.
(b) Assume that Mount Fuji in Japan is in the shape of a right

circular cone with radius 62,000 ft, height 12,400 ft, and
density a constant 200 lb�ft . How much work was done in
forming Mount Fuji if the land was initially at sea level?

P

3

h�P�
t�P�P

�� � � 2 � �1�	 � 	2 � 	1�� � � 2 � �1

� 2�1�
�

� 2�1��

�V � �� 2 sin �
�

�� �	 ��

�V �
� 2

3 � � 1
3

3
 �cos �1 � cos � 2��	 2 � 	1�

�1 � � � � 2	1 � 	 � 	 2�1 � � � � 2

Roller Derby

Suppose that a solid ball (a marble), a hollow ball (a squash ball), a solid cylinder (a steel bar),
and a hollow cylinder (a lead pipe) roll down a slope. Which of these objects reaches the bottom
Þrst? (Make a guess before proceeding.)

To answer this question we consider a ball or cylinder with mass , radius , and moment of
inertia (about the axis of rotation). If the vertical drop is , then the potential energy at the top
is . Suppose the object reaches the bottom with velocity and angular velocity , so .
The kinetic energy at the bottom consists of two parts: from translation (moving down the
slope) and from rotation. If we assume that energy loss from rolling friction is negligible,
then conservation of energy gives

1. Show that

where I * �
I

mr2v2 �
2th

1 � I *

mth � 1
2mv2 �

1
2 I2

1
2 I2

1
2mv2

v � rvmth
hI

rm
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The Intersection of Three Cylinders

The Þgure shows the solid enclosed by three circular cylinders with the same diameter that inter-
sect at right angles. In this project we compute its volume and determine how its shape changes
if the cylinders have different diameters.

1. Sketch carefully the solid enclosed by the three cylinders , , and
. Indicate the positions of the coordinate axes and label the faces with the equa-

tions of the corresponding cylinders.

2. Find the volume of the solid in Problem 1.

3. Use a computer algebra system to draw the edges of the solid.

4. What happens to the solid in Problem 1 if the radius of the Þrst cylinder is different from 1?
Illustrate with a hand-drawn sketch or a computer graph.

5. If the Þrst cylinder is , where , set up, but do not evaluate, a double
integral for the volume of the solid. What if ?a � 1

a 
 1x2 � y2 � a2

CAS

y2 � � 2 � 1
x2 � � 2 � 1x2 � y2 � 1

2. If is the vertical distance traveled at time then the same reasoning as used in Problem
1 shows that at any time . Use this result to show that satisÞes the
differential equation

where is the angle of inclination of the plane.

3. By solving the differential equation in Problem 2, show that the total travel time is

This shows that the object with the smallest value of wins the race.

4. Show that for a solid cylinder and for a hollow cylinder.

5. Calculate for a partly hollow ball with inner radius and outer radius . Express your
answer in terms of . What happens as and as ?

6. Show that for a solid ball and for a hollow ball. Thus, the objects Þnish in the
following order: solid ball, solid cylinder, hollow ball, hollow cylinder.

I * � 2
3I * � 2

5

a � ra � 0b � a�r
raI*

I * � 1I* � 1
2

I *

T � �2h�1 � I *�
t sin2�

�

dy
dt

� � 2t

1 � I *
 �sin ��sy

ytv2 � 2ty��1 � I * �
t,y�t�
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|||| 15.9 Change of Variables in Multiple Integrals

In one-dimensional calculus we often use a change of variable (a substitution) to simplify
an integral. By reversing the roles of and , we can write the Substitution Rule (5.5.6) as

where and , . Another way of writing Formula 1 is as follows:

A change of variables can also be useful in double integrals. We have already seen one
example of this: conversion to polar coordinates. The new variables and are related to
the old variables and by the equations

and the change of variables formula (15.4.2) can be written as

where is the region in the -plane that corresponds to the region in the -plane.
More generally, we consider a change of variables that is given by a transformation

from the -plane to the -plane:

where and are related to and by the equations

or, as we sometimes write,

We usually assume that is a C transformation, which means that and have contin-
uous Þrst-order partial derivatives.

A transformation is really just a function whose domain and range are both subsets
of . If , then the point is called theimageof the point .
If no two points have the same image, is called one-to-one. Figure 1 shows the effect of
a transformation on a region in the -plane. transforms into a region in the 

-plane called the image of S, consisting of the images of all points in .
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If is a one-to-one transformation, then it has an inverse transformation from the
-plane to the -plane and it may be possible to solve Equations 3 for and in terms

of and :

EXAMPLE 1A transformation is deÞned by the equations

Find the image of the square , .

SOLUTIONThe transformation maps the boundary of into the boundary of the image. So
we begin by Þnding the images of the sides of . The Þrst side, , is given by 

. (See Figure 2.) From the given equations we have , , and so
. Thus, is mapped into the line segment from to in the -plane.

The second side, is and, putting in the given equations, we
get

Eliminating , we obtain

which is part of a parabola. Similarly, is given by , whose image is
the parabolic arc

Finally, is given by whose image is , , that is,
. (Notice that as we move around the square in the counterclockwise direc-

tion, we also move around the parabolic region in the counterclockwise direction.) The
image of is the region (shown in Figure 2) bounded by the -axis and the parabolas
given by Equations 4 and 5.

Now letÕs see how a change of variables affects a double integral. We start with a small
rectangle in the -plane whose lower left corner is the point and whose dimen-
sions are and . (See Figure 3.)

The image of is a region in the -plane, one of whose boundary points is
. The vector

r �u, v� � t�u, v� i � h�u, v� j

�x0, y0� � T�u0, v0�
xyRS

FIGURE 3
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FIGURE 2

T

0

√

u

(0, 1) (1, 1)

(1, 0)

S

S£

S¡

S™S¢

0

y

x(_1, 0)

(0, 2)

(1, 0)

R

x=1-
¥
4x=      -1

¥
4



is the position vector of the image of the point . The equation of the lower side of 
is , whose image curve is given by the vector function . The tangent vector
at to this image curve is

Similarly, the tangent vector at to the image curve of the left side of (namely,
) is

We can approximate the image region by a parallelogram determined by the
secant vectors

shown in Figure 4. But

and so

Similarly

This means that we can approximate R by a parallelogram determined by the vectors
and . (See Figure 5.) Therefore, we can approximate the area of by the area

of this parallelogram, which, from Section 12.4, is

Computing the cross product, we obtain

i j k

The determinant that arises in this calculation is called the Jacobianof the transformation
and is given a special notation.

Definition The Jacobianof the transformation given by and
is
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� � �x
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R � T�S�

r v � tv�u0, v0� i � hv�u0, v0� j �
�x
�v

 i �
�y
�v

 j

u � u0

S�x0, y0�

r u � tu�u0, v0� i � hu�u0, v0� j �
�x
�u

 i �
�y
�u

 j

�x0, y0�
r �u, v0�v � v0

S�u, v�
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r  (u¸, √ ¸) Îu r u

Î√ r √

FIGURE 4

FIGURE 5

r  (u¸, √ ¸)

r  (u¸+Îu, √¸)

R

a

b

r  (u¸, √¸+Î√)

|||| The Jacobian is named after the German
mathematician Carl Gustav Jacob Jacobi
(1804Ð1851). Although the French mathematician
Cauchy Þrst used these special determinants
involving partial derivatives, Jacobi developed
them into a method for evaluating multiple 
integrals.



With this notation we can use Equation 6 to give an approximation to the area 
of :

where the Jacobian is evaluated at .
Next we divide a region in the -plane into rectangles and call their images in the
-plane . (See Figure 6.)

Applying the approximation (8) to each we approximate the double integral of 
over as follows:

where the Jacobian is evaluated at . Notice that this double sum is a Riemann sum
for the integral

The foregoing argument suggests that the following theorem is true. (A full proof is
given in books on advanced calculus.)

Change of Variables in a Double Integral Suppose that is a transformation
whose Jacobian is nonzero and that maps a region in the -plane onto a region

in the -plane. Suppose that is continuous on and that and are type I or
type II plane regions. Suppose also that is one-to-one, except perhaps on the
boundary of . Then

Theorem 9 says that we change from an integral in and to an integral in and by
expressing and in terms of and and writing

dA � 
 ��x, y�
��u, v� 
  du dv

vuyx
vuyx

yy
R

 f �x, y� dA � yy
S

 f �x�u, v�, y�u, v�� 
 ��x, y�
��u, v� 
  du dv

S
T

SRRfxyR
uvS
C1T9

yy
S

 f �t�u, v�, h�u, v�� 
 ��x, y�
��u, v� 
  du dv

�ui, vj �

 	 �
m

i�1
 �

n

j�1
 f �t�ui, vj �, h�ui, vj �� 
 ��x, y�

��u, v� 
 �u �v

 yy
R

 f �x, y� dA 	 �
m

i�1
 �

n

j�1
 f �xi, yj � �A

R
fRij ,

FIGURE 6

T
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x

R
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Rij

0

√

u

S Î√
Îu

(u i, √ j)

Sij

Rijxy
SijuvS

�u0, v0�

�A 	 
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 �u �v8

R
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Other examples of velocity vector fields are illustrated in Figure 2: ocean currents and
flow past an airfoil.

Another type of vector field, called a force field, associates a force vector with each
point in a region. An example is the gravitational force field that we will look at in
Example 4.

In general, a vector field is a function whose domain is a set of points in (or ) and
whose range is a set of vectors in (or ).

Definition Let be a set in (a plane region). A vector field on is a func-
tion that assigns to each point in a two-dimensional vector .

The best way to picture a vector field is to draw the arrow representing the vector 
starting at the point . Of course, it’s impossible to do this for all points , but we
can gain a reasonable impression of by doing it for a few representative points in as
in Figure 3. Since is a two-dimensional vector, we can write it in terms of its com-
ponent functions and as follows:

or, for short,

Notice that and are scalar functions of two variables and are sometimes called scalar
fields to distinguish them from vector fields.

Definition Let be a subset of . A vector field on is a function that
assigns to each point in a three-dimensional vector .

A vector field on is pictured in Figure 4. We can express it in terms of its compo-
nent functions , , and as

As with the vector functions in Section 13.1, we can define continuity of vector fields 
and show that is continuous if and only if its component functions , , and are 
continuous.

RQPF

F�x, y, z� � P�x, y, z� i � Q�x, y, z� j � R�x, y, z� k

RQP
� 3F

F�x, y, z�E�x, y, z�
F� 3� 3E2

QP

F � P i � Q j

F�x, y� � P�x, y� i � Q�x, y� j � �P�x, y�, Q�x, y��

QP
F�x, y�

DF
�x, y��x, y�

F�x, y�

F�x, y�D�x, y�F
� 2� 2D1

V3V2

� 3� 2

Nova Scotia

(a) Ocean currents off the coast of Nova Scotia (b) Airflow past an inclined airfoil

FIGURE 2 Velocity vector fields
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FIGURE 3
Vector field on R@
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F(x, y)

FIGURE 4
Vector field on R#
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(x, y, z)
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We sometimes identify a point with its position vector and write
instead of . Then becomes a function that assigns a vector to a 

vector .

EXAMPLE 1 A vector field on is defined by

Describe by sketching some of the vectors as in Figure 3.

SOLUTION Since , we draw the vector starting at the point in
Figure 5. Since , we draw the vector with starting point .
Continuing in this way, we calculate several other representative values of in the
table and draw the corresponding vectors to represent the vector field in Figure 5.

It appears from Figure 5 that each arrow is tangent to a circle with center the origin.
To confirm this, we take the dot product of the position vector with the
vector :

This shows that is perpendicular to the position vector and is therefore
tangent to a circle with center the origin and radius . Notice also that

so the magnitude of the vector is equal to the radius of the circle.

Some computer algebra systems are capable of plotting vector fields in two or three
dimensions. They give a better impression of the vector field than is possible by hand
because the computer can plot a large number of representative vectors. Figure 6 shows a
computer plot of the vector field in Example 1; Figures 7 and 8 show two other vector
fields. Notice that the computer scales the lengths of the vectors so they are not too long
and yet are proportional to their true lengths.

5

_5

_5 5

6

_6

_6 6

5

_5

_5 5

FIGURE 6
F(x, y)=k_y, xl

FIGURE 7
F(x, y)=ky, sin xl

FIGURE 8
F(x, y)=k ln(1+¥), ln(1+≈)l

F�x, y�

� F�x, y� � � s��y�2 � x 2 � sx 2 � y 2 � � x �
� x � � sx 2 � y 2

�x, y�F�x, y�

 � �xy � yx � 0

 x � F�x� � �x i � y j� � ��y i � x j�
F�x� � F�x, y�

x � x i � y j

F�x, y�
�0, 1���1, 0 �F�0, 1� � �i
�1, 0�j � �0, 1 �F�1, 0� � j

F�x, y�F

F�x, y� � �y i � x j

� 2

x
F�x�FF�x, y, z�F�x�

x � �x, y, z��x, y, z�

FIGURE 5
F(x, y)=_y i+x j

F (1, 0)

F(0, 3) F (2, 2)

x0

y

�3, 0��0, �3���3, 0 ��0, 3�
�2, 2��2, �2���2, �2 ���2, 2�
�1, 0��0, �1���1, 0 ��0, 1�

�0, �3 ���3, 0��0, 3��3, 0�
�2, �2 ���2, �2���2, 2 ��2, 2�
�0, �1 ���1, 0��0, 1��1, 0�

F�x, y��x, y�F�x, y��x, y�
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EXAMPLE 2 Sketch the vector field on given by .

SOLUTION The sketch is shown in Figure 9. Notice that all vectors are vertical and point
upward above the -plane or downward below it. The magnitude increases with the
distance from the -plane.

We were able to draw the vector field in Example 2 by hand because of its particularly
simple formula. Most three-dimensional vector fields, however, are virtually impossible to
sketch by hand and so we need to resort to a computer algebra system. Examples are
shown in Figures 10, 11, and 12. Notice that the vector fields in Figures 10 and 11 have simi-
lar formulas, but all the vectors in Figure 11 point in the general direction of the negative
y-axis because their y-components are all �2. If the vector field in Figure 12 represents a
velocity field, then a particle would be swept upward and would spiral around the -axis in
the clockwise direction as viewed from above.

EXAMPLE 3 Imagine a fluid flowing steadily along a pipe and let be the 
velocity vector at a point . Then assigns a vector to each point in a
certain domain (the interior of the pipe) and so is a vector field on called a
velocity field. A possible velocity field is illustrated in Figure 13. The speed at any given
point is indicated by the length of the arrow.

Velocity fields also occur in other areas of physics. For instance, the vector field in
Example 1 could be used as the velocity field describing the counterclockwise rotation 
of a wheel. We have seen other examples of velocity fields in Figures 1 and 2.

EXAMPLE 4 Newton’s Law of Gravitation states that the magnitude of the gravitational
force between two objects with masses and is

where is the distance between the objects and is the gravitational constant. (This 
is an example of an inverse square law.) Let’s assume that the object with mass is 
located at the origin in . (For instance, could be the mass of the Earth and the origin
would be at its center.) Let the position vector of the object with mass be .
Then , so . The gravitational force exerted on this second object acts r 2 � � x �2r � � x �

x � �x, y, z�m
M� 3

M
Gr

� F � �
mMG

r 2

Mm

� 3VE
�x, y, z�V�x, y, z�

V�x, y, z�

z

1

0

_1

y 10_1
x1

0
_1

FIGURE 10
F(x, y, z)=y i+z j+x k

z

1

0

-1

y 10-1 x1
0

-1

FIGURE 11
F(x, y, z)=y i-2 j+x k

z

5

3

1

y 1
0

_1 x
1

0
_1

FIGURE 12

F(x, y, z)=    i-    j+    k
y
z

x
z

z
4

z

xy
xy

F�x, y, z� � z k� 3

FIGURE 9
F(x, y, z)=zk

y

0
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x

FIGURE 13
Velocity field in fluid flow
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In Visual 16.1 you can rotate the vector
fields in Figures 10–12 as well as 
additional fields.
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toward the origin, and the unit vector in this direction is

Therefore, the gravitational force acting on the object at is

[Physicists often use the notation instead of for the position vector, so you may see
Formula 3 written in the form .] The function given by Equation 3 is
an example of a vector field, called the gravitational field, because it associates a vector
[the force ] with every point in space.

Formula 3 is a compact way of writing the gravitational field, but we can also write it
in terms of its component functions by using the facts that and

:

The gravitational field is pictured in Figure 14.

EXAMPLE 5 Suppose an electric charge is located at the origin. According to Coulomb’s
Law, the electric force exerted by this charge on a charge located at a point

with position vector is

where is a constant (that depends on the units used). For like charges, we have 
and the force is repulsive; for unlike charges, we have and the force is attrac-
tive. Notice the similarity between Formulas 3 and 4. Both vector fields are examples of
force fields.

Instead of considering the electric force , physicists often consider the force per unit
charge:

Then is a vector field on called the electric field of .

G r a d i e n t  F i e l d s

If is a scalar function of two variables, recall from Section 14.6 that its gradient (or
grad ) is defined by

Therefore, is really a vector field on and is called a gradient vector field. Likewise,
if is a scalar function of three variables, its gradient is a vector field on given by

� f �x, y, z� � fx�x, y, z� i � fy�x, y, z� j � fz�x, y, z� k

� 3f
� 2∇ f

� f �x, y� � fx�x, y� i � fy�x, y� j

f
∇ ff

Q� 3E

E�x� �
1

q
 F�x� �

�Q

� x �3  x

F

qQ � 0
qQ � 0�

F�x� �
�qQ

� x �3  x4

x � �x, y, z��x, y, z�
qF�x�

Q

F

F�x, y, z� �
�mMGx

�x 2 � y 2 � z2 �3�2  i �
�mMGy

�x 2 � y 2 � z2 �3�2  j �
�mMGz

�x 2 � y 2 � z2 �3�2  k

� x � � sx 2 � y 2 � z 2

x � x i � y j � z k

xF�x�

F � ��mMG�r 3 �r
xr

F�x� � �
mMG

� x �3  x3

x � �x, y, z�

�
x

� x �

FIGURE 14
Gravitational force field
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EXAMPLE 6 Find the gradient vector field of . Plot the gradient vector
field together with a contour map of f. How are they related?

SOLUTION The gradient vector field is given by

Figure 15 shows a contour map of with the gradient vector field. Notice that the gradi-
ent vectors are perpendicular to the level curves, as we would expect from Section 14.6.
Notice also that the gradient vectors are long where the level curves are close to each
other and short where they are farther apart. That’s because the length of the gradient
vector is the value of the directional derivative of and close level curves indicate a
steep graph.

A vector field is called a conservative vector field if it is the gradient of some scalar
function, that is, if there exists a function such that . In this situation is called
a potential function for .

Not all vector fields are conservative, but such fields do arise frequently in physics. For
example, the gravitational field F in Example 4 is conservative because if we define

then

In Sections 16.3 and 16.5 we will learn how to tell whether or not a given vector field is
conservative.

 � F�x, y, z�

 �
�mMGx

�x 2 � y 2 � z 2 �3�2  i �
�mMGy

�x 2 � y 2 � z 2 �3�2  j �
�mMGz

�x 2 � y 2 � z 2 �3�2  k

 � f �x, y, z� �
�f

�x
 i �

�f

�y
 j �

�f

�z
 k

f �x, y, z� �
mMG

sx 2 � y 2 � z 2

F
fF � ∇ ff

F

f

f

� f �x, y� �
�f

�x
 i �

�f

�y
 j � 2xy i � �x 2 � 3y 2 � j

f �x, y� � x 2y � y 3

9. 10.

11–14 |||| Match the vector fields with the plots labeled I– IV.
Give reasons for your choices.

12.

13.

14. F�x, y� � � y, 1�x�

F�x, y� � �x � 2, x � 1�

F�x, y� � �1, sin y�

F�x, y� � � y, x�11.

F

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

F�x, y, z� � j � iF�x, y, z� � y j1–10 |||| Sketch the vector field by drawing a diagram like 
Figure 5 or Figure 9.

1. 2.

3. 4.

6.

7.

8. F�x, y, z� � z j

F�x, y, z� � j

F�x, y� �
y i � x j
sx 2 � y 2

F�x, y� �
y i � x j
sx 2 � y 2

5.

F�x, y� � �x � y� i � x jF�x, y� � y i �
1
2 j

F�x, y� � i � x jF�x, y� � 1
2�i � j�

F

4

_4

_4 4

FIGURE 15

|||| 16.1 Exercises
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15–18 |||| Match the vector fields on with the plots labeled
I– IV. Give reasons for your choices.

15.

16.

18.

19. If you have a CAS that plots vector fields (the command 
is fieldplot in Maple and PlotVectorField in 

CAS

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

z

1

0

_1

y 10_1 x1 0 _1

z
1

0

_1

y 10_1 x1 0 _1

0
y 1_1 x1 0 _1

z

1

0

_1

z

1

0

_1

y 10_1 1 0 _1
x

I II

III IV

F�x, y, z� � x i � y j � z k

F�x, y, z� � x i � y j � 3 k17.

F�x, y, z� � i � 2 j � z k

F�x, y, z� � i � 2 j � 3 k

�3F

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

3

_3

_3 3

5

_5

_5 5

5

_5

_5 5

I II

III IV3

_3

_3 3

Mathematica), use it to plot

Explain the appearance by finding the set of points such
that .

20. Let , where and . Use a
CAS to plot this vector field in various domains until you can
see what is happening. Describe the appearance of the plot and
explain it by finding the points where .

21–24 |||| Find the gradient vector field of .

21. 22.

24.

25–26 |||| Find the gradient vector field of and sketch it.

25. 26.

27–28 |||| Plot the gradient vector field of together with a contour
map of . Explain how they are related to each other.

27. 28.

29–32 |||| Match the functions with the plots of their gradient vec-
tor fields (labeled I– IV). Give reasons for your choices.

29. 30.

32.

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

4

_4

_4 4

4

_4

_4 4

4

_4

_4 4

4

_4

_4 4

I II

III IV

f �x, y� � sx 2 � y 2f �x, y� � x 2 � y 231.

f �x, y� � x 2 � y 2f �x, y� � xy

f

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

f �x, y� � sin�x � y�f �x, y� � sin x � sin y

f
fCAS

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

f �x, y� � 1
4�x � y�2f �x, y� � xy � 2x

f∇ f

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

f �x, y, z� � x cos�y�z�f �x, y, z� � sx 2 � y 2 � z 223.

f �x, y� � x 	e�
xf �x, y� � ln�x � 2y�

f

F�x� � 0

r � � x �x � �x, y�F�x� � �r 2 � 2r�xCAS

F�x, y� � 0
�x, y�

F�x, y� � �y 2 � 2xy� i � �3xy � 6x 2 � j



|||| 16.2 L i n e  I n t e g r a l s

In this section we define an integral that is similar to a single integral except that instead
of integrating over an interval , we integrate over a curve . Such integrals are called
line integrals, although “curve integrals” would be better terminology. They were invented
in the early 19th century to solve problems involving fluid flow, forces, electricity, and
magnetism.

We start with a plane curve given by the parametric equations

or, equivalently, by the vector equation , and we assume that is a
smooth curve. [This means that is continuous and . See Section 13.2.] If we
divide the parameter interval into n subintervals of equal width and we let

and , then the corresponding points divide into subarcs
with lengths (See Figure 1.) We choose any point in the th
subarc. (This corresponds to a point in .) Now if is any function of two vari-
ables whose domain includes the curve , we evaluate at the point , multiply by
the length of the subarc, and form the sum

which is similar to a Riemann sum. Then we take the limit of these sums and make the fol-
lowing definition by analogy with a single integral.

Definition If is defined on a smooth curve given by Equations 1, then the
line integral of f along C is

if this limit exists.

In Section 10.2 we found that the length of is

L � y
b

a

 �	dx

dt 
2

� 	dy

dt 
2

 dt

C

y
C
 f �x, y� ds � lim 

n l �
 �

n

i�1
 f �xi*, yi*� �si

Cf2

�
n

i�1
 f �xi*, yi*� �si

�si

�xi*, yi*�fC
f�ti�1, titi*

iPi*�xi*, yi*��s1, �s2, . . . , �sn.
nCPi�xi, yi �yi � y�ti�xi � x�ti�

�ti�1, ti�a, b
r�t� � 0r

Cr�t� � x�t� i � y�t� j

a � t � by � y�t�x � x�t�1

C

C�a, b
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equations to find an equation of the flow line that passes
through the point (1, 1).

34. (a) Sketch the vector field and then sketch
some flow lines. What shape do these flow lines appear to
have?

(b) If parametric equations of the flow lines are 
, what differential equations do these functions 

satisfy? Deduce that .
(c) If a particle starts at the origin in the velocity field given

by F, find an equation of the path it follows.

dy�dx � x
y � y�t�

x � x�t�,

F�x, y� � i � x j

The flow lines (or streamlines) of a vector field are the paths
followed by a particle whose velocity field is the given vector
field. Thus, the vectors in a vector field are tangent to the flow
lines.
(a) Use a sketch of the vector field to draw

some flow lines. From your sketches, can you guess the
equations of the flow lines?

(b) If parametric equations of a flow line are ,
explain why these functions satisfy the differential equations

and . Then solve the differential dy�dt � �ydx�dt � x

y � y�t�x � x�t�,

F�x, y� � x i � y j

33.

FIGURE 1
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A similar type of argument can be used to show that if is a continuous function, then the
limit in Definition 2 always exists and the following formula can be used to evaluate the
line integral:

The value of the line integral does not depend on the parametrization of the curve, pro-
vided that the curve is traversed exactly once as t increases from a to b.

If is the length of C between and , then

So the way to remember Formula 3 is to express everything in terms of the parameter 
Use the parametric equations to express and in terms of t and write ds as

In the special case where is the line segment that joins to , using as the
parameter, we can write the parametric equations of as follows: , ,

. Formula 3 then becomes

and so the line integral reduces to an ordinary single integral in this case.
Just as for an ordinary single integral, we can interpret the line integral of a positive

function as an area. In fact, if , represents the area of one side of
the “fence” or “curtain” in Figure 2, whose base is and whose height above the point

is .

EXAMPLE 1 Evaluate , where is the upper half of the unit circle
.

SOLUTION In order to use Formula 3 we first need parametric equations to represent C.
Recall that the unit circle can be parametrized by means of the equations

and the upper half of the circle is described by the parameter interval (See
Figure 3.) Therefore, Formula 3 gives

 � 2� �
2
3

 � y
�

0
 �2 � cos2t sin t� dt � �2t �

cos3t

3 �
0

�

 � y
�

0
 �2 � cos2t sin t�ssin2 t � cos2 t dt

 y
C
 �2 � x 2y� ds � y

�

0
 �2 � cos2t sin t��	dx

dt 
2

� 	dy

dt 
2

 dt

0 � t � �.
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x 2 � y 2 � 1
CxC �2 � x 2y� ds

f �x, y��x, y�
C

xC f �x, y� dsf �x, y� � 0

y
C
 f �x, y� ds � y

b

a
 f �x, 0� dx

a � x � b
y � 0x � xC

x�b, 0��a, 0�C

ds � �	dx

dt 
2

� 	dy

dt 
2

 dt

yx
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ds

dt
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dt 
2
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dt 
2
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y
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b

a
 f �x�t�, y�t���	dx

dt 
2

� 	dy

dt 
2

 dt  3
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|||| The arc length function is 
discussed in Section 13.3.
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Suppose now that is a piecewise-smooth curve; that is, is a union of a finite num-
ber of smooth curves where, as illustrated in Figure 4, the initial point of

is the terminal point of Then we define the integral of along as the sum of the
integrals of along each of the smooth pieces of :

EXAMPLE 2 Evaluate , where consists of the arc of the parabola from
to followed by the vertical line segment from to .

SOLUTION The curve is shown in Figure 5. is the graph of a function of , so we can
choose as the parameter and the equations for become

Therefore

On we choose as the parameter, so the equations of are

and

Thus

Any physical interpretation of a line integral depends on the physical inter-
pretation of the function . Suppose that represents the linear density at a point

of a thin wire shaped like a curve . Then the mass of the part of the wire from 
to in Figure 1 is approximately and so the total mass of the wire is approx-
imately . By taking more and more points on the curve, we obtain the mass

of the wire as the limiting value of these approximations:

[For example, if represents the density of a semicircular wire, then the
integral in Example 1 would represent the mass of the wire.] The center of mass of the
wire with density function is located at the point , where

Other physical interpretations of line integrals will be discussed later in this chapter.
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 y

C
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C
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C
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xC f �x, y� ds

y
C
 2x ds � y

C1

 2x ds � y
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EXAMPLE 3 A wire takes the shape of the semicircle , , and is thicker
near its base than near the top. Find the center of mass of the wire if the linear density at
any point is proportional to its distance from the line .

SOLUTION As in Example 1 we use the parametrization , , ,
and find that . The linear density is

where is a constant, and so the mass of the wire is

From Equations 4 we have

By symmetry we see that , so the center of mass is

See Figure 6.

Two other line integrals are obtained by replacing by either or
in Definition 2. They are called the line integrals of along with

respect to x and y:

When we want to distinguish the original line integral from those in Equa-
tions 5 and 6, we call it the line integral with respect to arc length.

The following formulas say that line integrals with respect to and can also be 
evaluated by expressing everything in terms of : , , ,

.

 y
C
 f �x, y� dy � y

b

a
 f �x�t�, y�t��y	�t� dt

 y
C
 f �x, y� dx � y

b

a
 f �x�t�, y�t�� x	�t� dt7

dy � y	�t� dt
dx � x	�t� dty � y�t�x � x�t�t

yx

xC f �x, y� ds

 y
C
 f �x, y� dy � lim

n l �
 �

n

i�1
 f �xi*, yi*� �yi6

 y
C
 f �x, y� dx � lim

n l �
 �

n

i�1
 f �xi*, yi*� �xi5

Cf�yi � yi � yi�1

�xi � xi � xi�1�si

�0,  
4 � 


2�
 � 2�� 
 �0, 0.38�

x � 0

 �
4 � 


2�
 � 2�

 �
1


 � 2
 y




0
 �sin t � sin2t� dt �

1


 � 2
 [�cos t �

1
2 t �

1
4 sin 2t]0




 y �
1

m
 y

C
 y��x, y� ds �

1

k�
 � 2�
 y

C
 yk�1 � y� ds

 � k[t � cos t]0



� k�
 � 2�

 m � y
C
 k�1 � y� ds � y




0
 k�1 � sin t� dt

k

��x, y� � k�1 � y�

ds � dt
0 � t � 
y � sin tx � cos t

y � 1

y � 0x 2 � y 2 � 1
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It frequently happens that line integrals with respect to and occur together. When
this happens, it’s customary to abbreviate by writing

When we are setting up a line integral, sometimes the most difficult thing is to think of
a parametric representation for a curve whose geometric description is given. In particular,
we often need to parametrize a line segment, so it’s useful to remember that a vector rep-
resentation of the line segment that starts at and ends at is given by

(See Equation 12.5.4.)

EXAMPLE 4 Evaluate , where (a) is the line segment from 
to and (b) is the arc of the parabola from to .
(See Figure 7.)

SOLUTION
(a) A parametric representation for the line segment is

(Use Equation 8 with and .) Then , , and
Formula 7 gives

(b) Since the parabola is given as a function of , let’s take as the parameter and write
as

Then and by Formula 7 we have

Notice that we got different answers in parts (a) and (b) of Example 4 even though the
two curves had the same endpoints. Thus, in general, the value of a line integral depends
not just on the endpoints of the curve but also on the path. (But see Section 16.3 for con-
ditions under which the integral is independent of the path.)

 � ��
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� 4y�
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� 40 5
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 � y
2

�3
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C2
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 � 5�25t 3

3
�

25t 2

2
� 4t�

0

1

� �
5

6

 � 5 y
1

0
 �25t 2 � 25t � 4� dt

 y
C1

 y 2 dx � x dy � y
1

0
 �5t � 3�2�5 dt� � �5t � 5��5 dt�

dy � 5 dtdx � 5 dtr1 � 0, 2 �r0 � �5, �3 �

0 � t � 1y � 5t � 3x � 5t � 5

�0, 2���5, �3�x � 4 � y 2C � C2�0, 2�
��5, �3�C � C1xC y 2 dx � x dy

0 � t � 1r�t� � �1 � t�r0 � t r18

r1r0

y
C
 P�x, y� dx � y

C
 Q�x, y� dy � y

C
 P�x, y� dx � Q�x, y� dy

yx
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Notice also that the answers in Example 4 depend on the direction, or orientation, of the
curve. If denotes the line segment from to , you can verify, using the
parametrization

that

In general, a given parametrization , , , determines an orien-
tation of a curve , with the positive direction corresponding to increasing values of the
parameter (See Figure 8, where the initial point corresponds to the parameter value 
and the terminal point corresponds to .)

If denotes the curve consisting of the same points as but with the opposite ori-
entation (from initial point to terminal point in Figure 8), then we have

But if we integrate with respect to arc length, the value of the line integral does not change
when we reverse the orientation of the curve:

This is because is always positive, whereas and change sign when we reverse
the orientation of .

L i n e  I n t e g r a l s  i n  S p a c e

We now suppose that is a smooth space curve given by the parametric equations

or by a vector equation . If is a function of three variables
that is continuous on some region containing , then we define the line integral of
along (with respect to arc length) in a manner similar to that for plane curves:

We evaluate it using a formula similar to Formula 3:

Observe that the integrals in both Formulas 3 and 9 can be written in the more compact
vector notation

y
b

a
 f �r�t��� r	�t� � dt

y
C
 f �x, y, z� ds � y

b

a
 f �x�t�, y�t�, z�t����dx

dt �2

� �dy

dt �2

� �dz

dt�2

 dt9

y
C
 f �x, y, z� ds � lim

n l �
 �

n

i�1
 f �xi*, yi*, zi*� �si

C
fC

fr�t� � x�t� i � y�t� j � z�t� k

a � t � bz � z�t�y � y�t�x � x�t�

C

C
�yi�xi�si

y
�C

 f �x, y� ds � y
C
 f �x, y� ds

y
�C

 f �x, y� dy � �y
C
 f �x, y� dyy
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C
 f �x, y� dx

AB
C�C

t � bB
aAt.

C
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y
 

�C1

 y 2 dx � x dy � 5
6
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��5, �3��0, 2��C1
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For the special case , we get

where is the length of the curve (see Formula 13.3.3).
Line integrals along with respect to , , and can also be defined. For example,

Therefore, as with line integrals in the plane, we evaluate integrals of the form

by expressing everything , , , , , in terms of the parameter 

EXAMPLE 5 Evaluate , where is the circular helix given by the equations
, , , . (See Figure 9.)

SOLUTION Formula 9 gives

EXAMPLE 6 Evaluate , where consists of the line segment from
to followed by the vertical line segment from to .

SOLUTION The curve is shown in Figure 10. Using Equation 8, we write as

or, in parametric form, as

Thus

 � y
1

0
 �10 � 29t� dt � 10t � 29 

t 2

2 �0

1

� 24.5

 y
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2 sin 2t]0
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� s2
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2


0
 sin2tssin2t � cos2t � 1 dt

 y
C
 y sin z ds � y

2


0
 �sin t� sin t��dx

dt �2

� �dy

dt �2

� �dz

dt�2

 dt
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z � ty � sin tx � cos t
CxC y sin z ds

t.dz�dydxzy�x

y
C
 P�x, y, z� dx � Q�x, y, z� dy � R�x, y, z� dz10

 � y
b

a
 f �x�t�, y�t�, z�t��z	�t� dt

 y
C
 f �x, y, z� dz � lim 

n l �
 �
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i�1
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zyxC
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y
C
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b

a
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Likewise, can be written in the form

or

Then , so

Adding the values of these integrals, we obtain

L i n e  I n t e g r a l s  o f  V e c t o r  F i e l d s

Recall from Section 6.4 that the work done by a variable force in moving a particle
from to along the -axis is . Then in Section 12.3 we found that the
work done by a constant force in moving an object from a point to another point in
space is , where 

l
is the displacement vector.

Now suppose that is a continuous force field on , such as the
gravitational field of Example 4 in Section 16.1 or the electric force field of Example 5 in
Section 16.1. (A force field on could be regarded as a special case where and 
and depend only on and .) We wish to compute the work done by this force in mov-
ing a particle along a smooth curve .

We divide into subarcs with lengths by dividing the parameter interval
into subintervals of equal width. (See Figure 1 for the two-dimensional case or

Figure 11 for the three-dimensional case.) Choose a point on the th subarc
corresponding to the parameter value . If is small, then as the particle moves from

to along the curve, it proceeds approximately in the direction of , the unit tan-
gent vector at . Thus, the work done by the force in moving the particle from to

is approximately

and the total work done in moving the particle along is approximately

where is the unit tangent vector at the point on . Intuitively, we see that
these approximations ought to become better as becomes larger. Therefore, we define the
work done by the force field as the limit of the Riemann sums in (11), namely,

Equation 12 says that work is the line integral with respect to arc length of the tangential
component of the force.

W � y
C
 F�x, y, z� � T�x, y, z� ds � y

C
 F � T ds12

FW
n

C�x, y, z�T�x, y, z�

�
n

i�1
 �F�xi*, yi*, zi*� � T�xi*, yi*, zi*�� �si11

C

F�xi*, yi*, zi*� � ��si T�ti*�� � �F�xi*, yi*, zi*� � T�ti*�� �si

Pi

Pi�1FPi*
T�ti*�PiPi�1

�siti*
iPi*�xi*, yi*, zi*�
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�siPi�1PiC

C
yxQ
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� 3F � P i � Q j � R k
D � PQW � F � D

QPF
W � x

b
a  f �x� dxxba
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y
C
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y
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 y dx � z dy � x dz � y
1

0
 3��5� dt � �15
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If the curve is given by the vector equation , then
, so using Equation 9 we can rewrite Equation 12 in the form

This integral is often abbreviated as and occurs in other areas of physics as well.
Therefore, we make the following definition for the line integral of any continuous vector
field.

Definition Let be a continuous vector field defined on a smooth curve 
given by a vector function , . Then the line integral of along C is

When using Definition 13, remember that is just an abbreviation for
, so we evaluate simply by putting , , and 

in the expression for . Notice also that we can formally write .

EXAMPLE 7 Find the work done by the force field in moving a par-
ticle along the quarter-circle , .

SOLUTION Since and , we have

and

Therefore, the work done is

NOTE ● Even though and integrals with respect to arc length are
unchanged when orientation is reversed, it is still true that

because the unit tangent vector is replaced by its negative when is replaced by 

EXAMPLE 8 Evaluate , where and is the twisted
cubic given by

0 � t � 1z � t 3y � t 2x � t

CF�x, y, z� � xy i � yz j � zx kxC F � dr

�C.CT

y
�C

 F � dr � �y
C
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xC F � dr � xC F � T ds

 � 2 
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3 �
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� �
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 y
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	2

0
 F�r�t�� � r	�t� dt � y


	2

0
 ��2 cos2t sin t� dt

 r	�t� � �sin t i � cos t j

 F�r�t�� � cos2t i � cos t sin t j

y � sin tx � cos t

0 � t � 
	2r�t� � cos t i � sin t j
F�x, y� � x 2 i � xy j

dr � r	�t� dtF�x, y, z�
z � z�t�y � y�t�x � x�t�F�r�t��F�x�t�, y�t�, z�t��

F�r�t��

y
C
 F � dr � y

b

a
 F�r�t�� � r	�t� dt � y

C
 F � T ds

Fa � t � br�t�
CF13

xC F � dr

� y
b

a
 F�r�t�� � r	�t� dt W � y

b

a
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r	�t�

� r	�t� � � � r	�t� � dt
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SOLUTION We have

Thus

Finally, we note the connection between line integrals of vector fields and line integrals
of scalar fields. Suppose the vector field on is given in component form by the equa-
tion . We use Definition 13 to compute its line integral along :

But this last integral is precisely the line integral in (10). Therefore, we have

For example, the integral in Example 6 could be expressed as
where

F�x, y, z� � y i � z j � x k

xC F � dr
xC y dx � z dy � x dz

where F � P i � Q j � R ky
C
 F � dr � y

C
 P dx � Q dy � R dz

 � y
b
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 �P�x�t�, y�t�, z�t��x	�t� � Q�x�t�, y�t�, z�t��y	�t� � R�x�t�, y�t�, z�t��z	�t�� dt

 � y
b
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 �P i � Q j � R k� � �x	�t� i � y	�t� j � z	�t� k� dt

 y
C
 F � dr � y

b

a
 F�r�t�� � r	�t� dt
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� 3F

 � y
1

0
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4
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5t 7

7 �0

1

�
27
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 y
C
 F � dr � y

1

0
 F�r�t�� � r	�t� dt

 F�r�t�� � t 3 i � t 5 j � t 4 k

 r	�t� � i � 2t j � 3t 2 k

 r�t� � t i � t 2 j � t 3 k

, consists of line segments from
to and from to 

8. , consists of the top half of the circle
from to and the line segment from

to 

9. , ,

10. , is the line segment from (0, 6, �1) to (4, 1, 5)

, is the line segment from (0, 0, 0) to (1, 2, 3)

12. , : , , , 0 � t � 1z � t 3y � t 2x � tCxC �2x � 9z� ds

CxC xe yz ds11.

Cx
C
 x 2z ds

0 � t � 
	2C: x � 4 sin t, y � 4 cos t, z � 3tx
C
 xy 3 ds

��2, 3���1, 0�
��1, 0��1, 0�x 2 � y 2 � 1

Cx
C
 sin x dx � cos y dy

�3, 2��2, 0��2, 0��0, 0�
Cx

C
 xy dx � �x � y� dy7.1–16 |||| Evaluate the line integral, where is the given curve.

1. ,

2. ,

, is the right half of the circle 

4. , C is the line segment joining (1, 2) to (4, 7)

5. ,
C is the arc of the parabola from (1, 1) to (3, 9)

6. ,
C is the arc of the curve from (1, 0) to �e, 1�x � e y
xC xe y dx

y � x 2
xC �xy � ln x� dy

xC ye x ds

x 2 � y 2 � 16CxC xy 4 ds3.

C: x � t 4, y � t 3, 1
2 � t � 1xC �y	x� ds

C: x � t 2, y � t, 0 � t � 2xC y ds

C

|||| Figure 13 shows the twisted cubic in
Example 8 and some typical vectors acting at
three points on .C
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,
,

22. ,
,

23–24 |||| Use a graph of the vector field F and the curve C to guess
whether the line integral of F over C is positive, negative, or zero.
Then evaluate the line integral.

23. ,
is the arc of the circle traversed counter-

clockwise from (2, 0) to 

24. ,

is the parabola from to (1, 2)

25. (a) Evaluate the line integral , where
and is given by 

, .

; (b) Illustrate part (a) by using a graphing calculator or com-
puter to graph and the vectors from the vector field 
corresponding to , , and 1 (as in Figure 13).

26. (a) Evaluate the line integral , where
and is given by

, .

; (b) Illustrate part (a) by using a computer to graph and 
the vectors from the vector field corresponding to 
and (as in Figure 13).

27. Find the exact value of , where is the part of the
astroid , in the first quadrant.

28. Find the exact value of , where 

and is the line 
segment from to .

29. If C is the curve with parametric equations , ,
, use a calculator or CAS to evaluate the line integral

correct to three decimal places.

30. (a) Find the work done by the force field 
on a particle that moves once around the circle 
oriented in the counterclockwise direction.

(b) Use a computer algebra system to graph the force field and
circle on the same screen. Use the graph to explain your
answer to part (a).

A thin wire is bent into the shape of a semicircle ,
. If the linear density is a constant , find the mass and

center of mass of the wire.

32. Find the mass and center of mass of a thin wire in the shape 
of a quarter-circle , , , if the density
function is .��x, y� � x � y

y � 0x � 0x 2 � y 2 � r 2

kx � 0
x 2 � y 2 � 431.

CAS

x 2 � y 2 � 4
F�x, y� � x 2 i � xy j

xC x sin y ds
1 � t � 2

y � e�tx � ln t

�6, 4, 5��1, 2, 1�
CF�x, y, z� � x 4e y i � ln z j � sy 2 � z 2 k

xC F � drCAS

y � sin3tx � cos3t
CxC x 3y 5 dsCAS

�
1
2

t � �1
C

�1 � t � 1r�t� � 2t i � 3t j � t 2 k
CF�x, y, z� � x i � z j � y k

xC F � dr

1	s2t � 0
C

0 � t � 1r�t� � t 2 i � t 3 j
CF�x, y� � e x�1 i � xy j

xC F � dr

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

��1, 2�y � 1 � x 2C

F�x, y� �
x

sx 2 � y 2
 i �

y

sx 2 � y 2
 j

�0, �2�
x 2 � y 2 � 4C

F�x, y� � �x � y� i � xy j

CAS

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

0 � t � 
r�t� � t i � sin t j � cos t k
F�x, y, z� � z i � y j � x k

0 � t � 1r�t� � t 3 i � t 2 j � t k
F�x, y, z� � sin x i � cos y j � xz k21.13. , : , , ,

14. , : , , ,

15. , consists of line
segments from to and from to

16. , consists of line segments from
to and from to 

Let be the vector field shown in the figure.
(a) If is the vertical line segment from to ,

determine whether is positive, negative, or zero.
(b) If is the counterclockwise-oriented circle with radius 3

and center the origin, determine whether is posi-
tive, negative, or zero.

18. The figure shows a vector field and two curves and .
Are the line integrals of over and positive, negative,
or zero? Explain.

19–22 |||| Evaluate the line integral , where is given by
the vector function .

19. ,
,

20. ,
, 0 � t � 2r�t� � t i � t 2 j � t 3 k

F�x, y, z� � yz i � xz j � xy k

0 � t � 1r�t� � t 2 i � t 3 j
F�x, y� � x 2y 3 i � ysx j

r�t�
Cx

C
 F � dr

y

x

C¡

C™

C2C1F
C2C1F

y

x0 1

1

2 3

2

3

_3 _2 _1

_3

_2

_1

x
C2

 F � dr
C2

x
C1

 F � dr
��3, 3���3, �3�C1

F17.

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

�3, 2, 0��1, 2, �1��1, 2, �1��0, 0, 0�
Cx

C
 x 2 dx � y 2 dy � z 2 dz

�2, 5, 2�
�2, 3, 1��2, 3, 1��1, 0, 1�

Cx
C
 �x � yz� dx � 2x dy � xyz dz

0 � t � 1z � t 2y � t 3x � t 2Cx
C
 z dx � x dy � y dz

0 � t � 1z � t 2y � tx � t 3Cx
C
 x 2 ysz dz
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33. (a) Write the formulas similar to Equations 4 for the center of
mass of a thin wire with density function 
in the shape of a space curve .

(b) Find the center of mass of a wire in the shape of the helix
, , , , if the density

is a constant .

34. Find the mass and center of mass of a wire in the shape of the
helix , , , , if the density at
any point is equal to the square of the distance from the origin.

35. If a wire with linear density lies along a plane curve 
its moments of inertia about the - and -axes are defined as

Find the moments of inertia for the wire in Example 3.

36. If a wire with linear density lies along a space curve
, its moments of inertia about the -, -, and -axes are

defined as

Find the moments of inertia for the wire in Exercise 33.

Find the work done by the force field 
in moving an object along an arch of the cycloid

, .

38. Find the work done by the force field 
on a particle that moves along the parabola from

to .

39. Find the work done by the force field
on a particle that moves

along the line segment from to .

40. The force exerted by an electric charge at the origin on a
charged particle at a point with position vector

is where is a constant. (See
Example 5 in Section 16.1.) Find the work done as the particle
moves along a straight line from to .

A 160-lb man carries a 25-lb can of paint up a helical staircase
that encircles a silo with a radius of 20 ft. If the silo is 90 ft
high and the man makes exactly three complete revolutions,
how much work is done by the man against gravity in climbing
to the top?

42. Suppose there is a hole in the can of paint in Exercise 41 and
9 lb of paint leaks steadily out of the can during the man’s
ascent. How much work is done?

43. (a) Show that a constant force field does zero work on a 
particle that moves once uniformly around the circle

.x 2 � y 2 � 1

41.

�2, 1, 5��2, 0, 0�

KF�r� � Kr	� r �3r � x, y, z �
�x, y, z�

�3, 4, 2��1, 0, 0�
F�x, y, z� �  y � z, x � z, x � y�

�2, 4���1, 1�
y � x 2

F�x, y� � x sin y i � y j

0 � t � 2
r�t� � �t � sin t� i � �1 � cos t� j

F�x, y� � x i � � y � 2� j37.

 Iz � y
C
 �x 2 � y 2 ���x, y, z� ds

 Iy � y
C
 �x 2 � z2 ���x, y, z� ds

 Ix � y
C
 � y 2 � z2 ���x, y, z� ds

zyxC
��x, y, z�

Iy � y
C
 x 2��x, y� dsIx � y

C
 y 2��x, y� ds

yx
C,��x, y�

0 � t � 2
z � sin ty � cos tx � t

k
0 � t � 2
z � 3ty � 2 cos tx � 2 sin t

C
��x, y, z��x, y, z �

(b) Is this also true for a force field , where is a
constant and ?

44. The base of a circular fence with radius 10 m is given by
. The height of the fence at position

is given by the function , so
the height varies from 3 m to 5 m. Suppose that 1 L of paint
covers . Sketch the fence and determine how much paint
you will need if you paint both sides of the fence.

45. An object moves along the curve shown in the figure from
(1, 2) to (9, 8). The lengths of the vectors in the force field 
are measured in newtons by the scales on the axes. Estimate
the work done by on the object.

46. Experiments show that a steady current in a long wire pro-
duces a magnetic field that is tangent to any circle that lies in
the plane perpendicular to the wire and whose center is the axis
of the wire (as in the figure). Ampère’s Law relates the electric
current to its magnetic effects and states that

where is the net current that passes through any surface
bounded by a closed curve and is a constant called the
permeability of free space. By taking to be a circle with
radius , show that the magnitude of the magnetic
field at a distance from the center of the wire is

B

I

B �
0 I

2
r

r
B � � B �r

C
0C

I

y
C
 B � dr � 0 I

B
I

0 1

1

y
(meters)

x
(meters)

C

C

F

F
C

100 m2

h�x, y� � 4 � 0.01�x 2 � y 2��x, y�
x � 10 cos t, y � 10 sin t

x � x, y�
kF�x� � kx



|||| 16.3 T h e  F u n d a m e n t a l  T h e o r e m  f o r  L i n e  I n t e g r a l s

Recall from Section 5.3 that Part 2 of the Fundamental Theorem of Calculus can be writ-
ten as

where is continuous on . We also called Equation 1 the Net Change Theorem: The
integral of a rate of change is the net change.

If we think of the gradient vector of a function of two or three variables as a sort
of derivative of , then the following theorem can be regarded as a version of the Funda-
mental Theorem for line integrals.

Theorem Let be a smooth curve given by the vector function , .
Let be a differentiable function of two or three variables whose gradient vector

is continuous on . Then

NOTE ■■ Theorem 2 says that we can evaluate the line integral of a conservative vector
field (the gradient vector field of the potential function ) simply by knowing the value of

at the endpoints of . In fact, Theorem 2 says that the line integral of is the net
change in f. If is a function of two variables and is a plane curve with initial point

and terminal point , as in Figure 1, then Theorem 2 becomes

If is a function of three variables and is a space curve joining the point 
to the point , then we have

Let’s prove Theorem 2 for this case.

FIGURE 1

y

0

z

x

A(x¡, y¡, z¡)
B(x™, y™, z™)

C

x0

y

A(x¡, y¡) B(x™, y™)

C

y
C
 � f � dr � f �x2, y2, z2 � � f �x1, y1, z1 �

B�x2, y2, z2 �
A�x1, y1, z1 �Cf

y
C
 � f � dr � f �x2, y2 � � f �x1, y1 �

B�x2, y2 �A�x1, y1 �
Cf

∇ fCf
f

y
C
 � f � dr � f �r�b�� � f �r�a��

C∇ f
f

a � t � br�t�C2

f
f∇ f

�a, b�F�

y
b

a
 F��x� dx � F�b� � F�a�1
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Proof of Theorem 2 Using Definition 16.2.13, we have

(by the Chain Rule)

The last step follows from the Fundamental Theorem of Calculus (Equation 1).

Although we have proved Theorem 2 for smooth curves, it is also true for piecewise-
smooth curves. This can be seen by subdividing into a finite number of smooth curves
and adding the resulting integrals.

EXAMPLE 1 Find the work done by the gravitational field

in moving a particle with mass from the point to the point along a
piecewise-smooth curve . (See Example 4 in Section 16.1.)

SOLUTION From Section 16.1 we know that is a conservative vector field and, in fact,
, where

Therefore, by Theorem 2, the work done is

I n d e p e n d e n c e  o f  P a t h

Suppose and are two piecewise-smooth curves (which are called paths) that have the
same initial point and terminal point . We know from Example 4 in Section 16.2 that,
in general, . But one implication of Theorem 2 is that

whenever is continuous. In other words, the line integral of a conservative vector field
depends only on the initial point and terminal point of a curve.

In general, if is a continuous vector field with domain , we say that the line integral
is independent of path if for any two paths and in C2C1x

 
C1

 F � dr � x
 
C2

 F � drx
C
 F � dr

DF

∇ f

y
 

C1

 � f � dr � y
 

C2

 � f � dr

x
 
C1

F � dr � x
 
C2

 F � dr
BA

C2C1

 �
mMG

s22 � 22
�

mMG

s32 � 42 � 122
� mMG� 1

2s2
�

1

13�
 � f �2, 2, 0� � f �3, 4, 12�

 W � y
C
 F � dr � y

C
 � f � dr

f �x, y, z� �
mMG

sx 2 � y 2 � z 2

F � ∇ f
F

C
�2, 2, 0��3, 4, 12�m

F�x� � �
mMG

� x �3  x

C

 � f �r�b�� � f �r�a��

 � y
b

a
 

d

dt
 f �r�t�� dt

 � y
b

a
 � �f

�x
 
dx

dt
�

�f

�y
 
dy

dt
�

�f

�z
 
dz

dt� dt

 y
C
 � f � dr � y

b

a
 � f �r�t�� � r��t� dt
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that have the same initial and terminal points. With this terminology we can say that line
integrals of conservative vector fields are independent of path.

A curve is called closed if its terminal point coincides with its initial point, that is,
. (See Figure 2.) If is independent of path in and is any closed

path in , we can choose any two points and on and regard as being composed
of the path from to followed by the path from to . (See Figure 3.) Then

since and have the same initial and terminal points.
Conversely, if it is true that whenever is a closed path in , then we

demonstrate independence of path as follows. Take any two paths and from to 
in and define to be the curve consisting of followed by . Then

and so . Thus, we have proved the following theorem.

Theorem is independent of path in if and only if for
every closed path in .

Since we know that the line integral of any conservative vector field is independent
of path, it follows that for any closed path. The physical interpretation is that
the work done by a conservative force field (such as the gravitational or electric field in
Section 16.1) as it moves an object around a closed path is 0.

The following theorem says that the only vector fields that are independent of path are
conservative. It is stated and proved for plane curves, but there is a similar version for
space curves. We assume that is open, which means that for every point in there is
a disk with center that lies entirely in . (So doesn’t contain any of its boundary
points.) In addition, we assume that is connected. This means that any two points in 
can be joined by a path that lies in .

Theorem Suppose is a vector field that is continuous on an open connected
region . If is independent of path in , then is a conservative vector
field on ; that is, there exists a function such that .

Proof Let be a fixed point in . We construct the desired potential function by
defining

for any point in . Since is independent of path, it does not matter 
which path from to is used to evaluate . Since is open, there
exists a disk contained in with center . Choose any point in the disk with

and let consist of any path from to followed by the horizontal
line segment from to . (See Figure 4.) Then

f �x, y� � y
 

C1

 F � dr � y
 

C2

 F � dr � y
�x1, y�

�a, b�
 F � dr � y

 

C2

 F � dr

�x, y��x1, y�C2

�x1, y��a, b�C1Cx1 � x
�x1, y��x, y�D

Df �x, y��x, y��a, b�C
xC F � drD�x, y�

f �x, y� � y
�x, y�

�a, b�
 F � dr

fDA�a, b�

∇ f � FfD
FDxC F � drD

F4

D
DD

DDP
DPD

xC F � dr � 0
F

DC
xC F � dr � 0DxC F � dr3

x
 
C1

 F � dr � x
 
C2

 F � dr

0 � y
C
 F � dr � y

 

C1

 F � dr � y
 

�C2

 F � dr � y
 

C1

 F � dr � y
 

C2

 F � dr

�C2C1CD
BAC2C1

DCxC F � dr � 0
�C2C1

y
C
 F � dr � y

 

C1

 F � dr � y
 

C2

 F � dr � y
 

C1

 F � dr � y
 

�C2

 F � dr � 0

ABC2BAC1

CCBAD
CDxC F � drr�b� � r�a�

D
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Notice that the first of these integrals does not depend on , so

If we write , then

On , is constant, so . Using as the parameter, where , we have

by Part 1 of the Fundamental Theorem of Calculus (see Section 5.3). A similar argu-
ment, using a vertical line segment (see Figure 5), shows that

Thus

which says that is conservative.

The question remains: How is it possible to determine whether or not a vector field 
is conservative? Suppose it is known that is conservative, where and 
have continuous first-order partial derivatives. Then there is a function such that

, that is,

Therefore, by Clairaut’s Theorem,

Theorem If is a conservative vector field, where
and have continuous first-order partial derivatives on a domain , then

throughout we have

The converse of Theorem 5 is true only for a special type of region. To explain this, we
first need the concept of a simple curve, which is a curve that doesn’t intersect itself any-
where between its endpoints. [See Figure 6; for a simple closed curve, but

when .]
In Theorem 4 we needed an open connected region. For the next theorem we need a

stronger condition. A simply-connected region in the plane is a connected region such  D

a � t1 � t2 � br�t1 � � r�t2 �
r�a� � r�b�

�P

�y
�

�Q

�x

D
DQP

F�x, y� � P�x, y� i � Q�x, y� j5

�P

�y
�

�2 f

�y �x
�

�2 f

�x �y
�

�Q

�x

Q �
�f

�y
andP �

�f

�x

F � ∇ f
fQ

PF � P i � Q jF

F

F � P i � Q j �
�f

�x
 i �

�f

�y
 j � ∇ f

�

�y
 f �x, y� �

�

�y
 y

 

C2

 P dx � Q dy �
�

�y
 y

y

y1

 Q�x, t� dt � Q�x, y�

�
�

�x
 y

x

x1

 P�t, y� dt � P�x, y� 
�

�x
 f �x, y� �

�

�x
 y

C2

 P dx � Q dy

x1 � t � xtdy � 0yC2

y
 

C2

 F � dr � y
 

C2

 P dx � Q dy

F � P i � Q j

�

�x
 f �x, y� � 0 �

�

�x
 y

 

C2

 F � dr

x
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that every simple closed curve in encloses only points that are in . Notice from Figure
7 that, intuitively speaking, a simply-connected region contains no hole and can’t consist
of two separate pieces.

In terms of simply-connected regions we can now state a partial converse to Theorem 5
that gives a convenient method for verifying that a vector field on is conservative. The
proof will be sketched in the next section as a consequence of Green’s Theorem.

Theorem Let be a vector field on an open simply-connected
region . Suppose that and have continuous first-order derivatives and

Then is conservative.

EXAMPLE 2 Determine whether or not the vector field

is conservative.

SOLUTION Let and . Then

Since , is not conservative by Theorem 5.

EXAMPLE 3 Determine whether or not the vector field

is conservative.

SOLUTION Let and . Then

Also, the domain of is the entire plane , which is open and simply-
connected. Therefore, we can apply Theorem 6 and conclude that is conservative.

In Example 3, Theorem 6 told us that is conservative, but it did not tell us how to find
the (potential) function such that . The proof of Theorem 4 gives us a clue as to
how to find . We use “partial integration” as in the following example.

EXAMPLE 4
(a) If , find a function such that .

(b) Evaluate the line integral , where is the curve given by
, .0 � t � 	r�t� � e t sin t i � e t cos t j

Cx
C
 F � dr

F � ∇ ffF�x, y� � �3 � 2xy� i � �x 2 � 3y 2 � j

f
F � ∇ ff

F

F
�D � � 2 �F

�P

�y
� 2x �

�Q

�x

Q�x, y� � x 2 � 3y 2P�x, y� � 3 � 2xy

F�x, y� � �3 � 2xy� i � �x 2 � 3y 2 � j

F�P	�y � �Q	�x

�Q

�x
� 1

�P

�y
� �1

Q�x, y� � x � 2P�x, y� � x � y

F�x, y� � �x � y� i � �x � 2� j

F

 throughout D
�P

�y
�

�Q

�x

QPD
F � P i � Q j6

� 2

DD
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FIGURE 7
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|||| Figures 8 and 9 show the vector fields in
Examples 2 and 3, respectively. The vectors in
Figure 8 that start on the closed curve all
appear to point in roughly the same direction as

. So it looks as if and there-
fore is not conservative. The calculation in
Example 2 confirms this impression. Some of the
vectors near the curves and in Figure 9
point in approximately the same direction as the
curves, whereas others point in the opposite
direction. So it appears plausible that line inte-
grals around all closed paths are . Example 3
shows that is indeed conservative.F
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F
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SOLUTION
(a) From Example 3 we know that is conservative and so there exists a function 
with , that is,

Integrating (7) with respect to , we obtain

Notice that the constant of integration is a constant with respect to , that is, a function
of , which we have called . Next we differentiate both sides of (9) with respect to :

Comparing (8) and (10), we see that

Integrating with respect to , we have

where is a constant. Putting this in (9), we have

as the desired potential function.

(b) To use Theorem 2 all we have to know are the initial and terminal points of ,
namely, and . In the expression for in part (a), any
value of the constant will do, so let’s choose . Then we have

This method is much shorter than the straightforward method for evaluating line inte-
grals that we learned in Section 16.2.

A criterion for determining whether or not a vector field on is conservative is given
in Section 16.5. Meanwhile, the next example shows that the technique for finding the
potential function is much the same as for vector fields on .

EXAMPLE 5 If , find a function such that
.

SOLUTION If there is such a function , then

 fz�x, y, z� � 3ye 3z13

 fy�x, y, z� � 2xy � e 3z12

 fx�x, y, z� � y 211

f

∇ f � F
fF�x, y, z� � y 2 i � �2xy � e 3z � j � 3ye 3z k

� 2

� 3F

 � e 3	 � ��1� � e 3	 � 1

 y
C
 F � dr � y

C
 � f � dr � f �0, �e	 � � f �0, 1�

K � 0K
f �x, y�r�	� � �0, �e	 �r�0� � �0, 1�

C

f �x, y� � 3x � x 2y � y 3 � K

K

t�y� � �y 3 � K

y

t��y� � �3y 2

fy�x, y� � x 2 � t��y�10

yt�y�y
x

f �x, y� � 3x � x 2y � t�y�9

x

 fy�x, y� � x 2 � 3y 28

 fx�x, y� � 3 � 2xy7

∇ f � F
fF
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Integrating (11) with respect to , we get

where is a constant with respect to . Then differentiating (14) with respect to ,
we have

and comparison with (12) gives

Thus, and we rewrite (14) as

Finally, differentiating with respect to and comparing with (13), we obtain 
and, therefore, , a constant. The desired function is

It is easily verified that .

C o n s e r v a t i o n  o f  E n e r g y

Let’s apply the ideas of this chapter to a continuous force field that moves an object
along a path given by , , where is the initial point and 
is the terminal point of . According to Newton’s Second Law of Motion (see Sec-
tion 13.4), the force at a point on is related to the acceleration by the
equation

So the work done by the force on the object is

(Theorem 13.2.3, Formula 4)

(Fundamental Theorem of Calculus)

 �
m

2
 (� r��b� �2 � � r��a� �2 )

 �
m

2
 [� r��t� �2]a

b

 �
m

2
 y

b

a
 

d

dt
 � r��t� �2 dt

 �
m

2
 y

b

a
 

d

dt
 �r��t� � r��t�� dt

 � y
b

a
 mr��t� � r��t� dt

 W � y
C
 F � dr � y

b

a
 F�r�t�� � r��t� dt

F�r�t�� � mr��t�

a�t� � r��t�CF�r�t��
C

r�b� � Br�a� � Aa � t � br�t�C
F

∇ f � F

f �x, y, z� � xy 2 � ye 3z � K

h�z� � K
h��z� � 0z

f �x, y, z� � xy 2 � ye 3z � h�z�

t�y, z� � ye 3z � h�z�

ty�y, z� � e 3z

fy�x, y, z� � 2xy � ty�y, z�

yxt�y, z�

f �x, y, z� � xy 2 � t�y, z�14

x



SECTION 16.3 THE FUNDAMENTAL THEOREM FOR LINE INTEGRALS ❙ ❙ ❙ ❙ 1081

Therefore

where is the velocity.
The quantity , that is, half the mass times the square of the speed, is called the

kinetic energy of the object. Therefore, we can rewrite Equation 15 as

which says that the work done by the force field along is equal to the change in kinetic
energy at the endpoints of .

Now let’s further assume that is a conservative force field; that is, we can write
. In physics, the potential energy of an object at the point is defined as

, so we have . Then by Theorem 2 we have

Comparing this equation with Equation 16, we see that

which says that if an object moves from one point to another point under the influence
of a conservative force field, then the sum of its potential energy and its kinetic energy
remains constant. This is called the Law of Conservation of Energy and it is the reason
the vector field is called conservative.

BA

P�A� � K�A� � P�B� � K�B�

 � P�A� � P�B�

 � ��P�r�b�� � P�r�a���

 W � y
C
 F � dr � �y

C
 �P � dr

F � �∇PP�x, y, z� � �f �x, y, z�
�x, y, z�F � ∇ f

F
C

C

W � K�B� � K�A�16

1
2 m � v�t� �2

v � r�

W � 1
2 m � v�b� �2 �

1
2 m � v�a� �215

3–10 |||| Determine whether or not is a conservative vector field.
If it is, find a function such that .

3.

4.

5.

6.

7.

8.

F�x, y� � �ye x � sin y� i � �e x � x cos y� j9.

F�x, y� � �1 � 2xy � ln x� i � x 2 j

F�x, y� � �2x cos y � y cos x� i � ��x 2 sin y � sin x� j

F�x, y� � e y i � xe y j

F�x, y� � xe y i � ye x j

F�x, y� � �x 3 � 4xy� i � �4xy � y 3 � j

F�x, y� � �6x � 5y� i � �5x � 4y� j

F � � ff
F

1

3

8

6

5

2

4

7

9

x
y

0

1

2

0 1 2
1. The figure shows a curve and a contour map of a function 

whose gradient is continuous. Find .

2. A table of values of a function with continuous gradient is
given. Find , where has parametric equations

.x � t 2 � 1, y � t 3 � t, 0 � t � 1
Cx

C
 � f � dr

f

y

x0

10

20
30

40
50

60

C

xC � f � dr
fC

|||| 16.3 Exercises



22. ; ,

Is the vector field shown in the figure conservative? Explain.

24–25 |||| From a plot of guess whether it is conservative. Then
determine whether your guess is correct.

24.

25.

26. Let , where . Find curves and
that are not closed and satisfy the equation.

(a) (b)

Show that if the vector field is conserva-
tive and , , have continuous first-order partial derivatives,
then

28. Use Exercise 27 to show that the line integral
is not independent of path.

29–32 |||| Determine whether or not the given set is (a) open,
(b) connected, and (c) simply-connected.

30.

31.

32.

Let .

(a) Show that .
(b) Show that is not independent of path. 

[Hint: Compute and , where and 
are the upper and lower halves of the circle 
from to .] Does this contradict Theorem 6?��1, 0��1, 0�

x 2 � y 2 � 1
C2C1x

 
C2

 F � drx
 
C1

 F � dr
xC F � dr
�P	�y � �Q	�x

F�x, y� �
�y i � x j

x 2 � y 233.

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■


�x, y� � x 2 � y 2 � 1 or 4 � x 2 � y 2 � 9�


�x, y� � 1 � x 2 � y 2 � 4�


�x, y� � x � 0�
�x, y� � x 
 0, y 
 0�29.

xC y dx � x dy � xyz dz

�Q

�z
�

�R

�y

�P

�z
�

�R

�x

�P

�y
�

�Q

�x

RQP
F � P i � Q j � R k27.

y
C2

 F � dr � 1y
C1

 F � dr � 0

C2

C1f �x, y� � sin�x � 2y�F � � f

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

F�x, y� �
�x � 2y� i � �x � 2� j

s1 � x 2 � y 2

F�x, y� � �2xy � sin y� i � �x 2 � x cos y� j

FCAS

x

y

23.

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

Q�4, �2�P�1, 1�F�x, y� � �y 2	x 2 � i � �2y	x� j10.

The figure shows the vector field and
three curves that start at (1, 2) and end at (3, 2).
(a) Explain why has the same value for all three

curves.
(b) What is this common value?

12–18 |||| (a) Find a function such that and (b) use 
part (a) to evaluate along the given curve .

12. ,
is the upper semicircle that starts at (0, 1) and ends at (2, 1)

13. ,
: ,

14. ,

: ,

,
is the line segment from to 

16. ,
: , , ,

17. ,
: ,

18. ,
: ,

19–20 |||| Show that the line integral is independent of path and
evaluate the integral.

19. , is any path from to 

20. , is any path from to 

21–22 |||| Find the work done by the force field in moving an
object from to .

21. ; , Q�2, 4�P�1, 1�F�x, y� � 2y 3	2 i � 3xsy j

QP
F

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

�1, 2��0, 1�CxC �1 � ye�x � dx � e�x dy

�2, 		4��1, 0�CxC tan y dx � x sec2 y dy

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

0 � t � 1r�t� � t i � t 2 j � t 3 kC
F�x, y, z� � e y i � xe y j � �z � 1�ez k

0 � t � 	r�t� � t 2 i � sin t j � t kC
F�x, y, z� � y 2 cos z i � 2xy cos z j � xy 2 sin z k

0 � t � 1z � 2t � 1y � t � 1x � t 2C
F�x, y, z� � �2xz � y2� i � 2x y j � �x 2 � 3z2� k

�4, 6, 3��1, 0, �2�C
F�x, y, z� � yz i � xz j � �xy � 2z� k15.

0 � t � 1r�t� � t 2 i � 2t jC

F�x, y� �
y 2

1 � x 2
 i � 2y arctan x j

0 � t � 1r�t� � st i � �1 � t 3 � jC
F�x, y� � x 3y 4 i � x 4y 3 j

C
F�x, y� � y i � �x � 2y� j

CxC F � dr
F � ∇ ff

y

x0 3

3

2

1

21

x
C
 F � dr

F�x, y� � �2xy, x 2 11.

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

F�x, y� � �xy cosh xy � sinh xy� i � �x 2 cosh xy � j
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|||| 16.4 G r e e n’s  T h e o r e m

Green’s Theorem gives the relationship between a line integral around a simple closed
curve and a double integral over the plane region bounded by . (See Figure 1. We
assume that consists of all points inside as well as all points on .) In stating Green’s
Theorem we use the convention that the positive orientation of a simple closed curve 
refers to a single counterclockwise traversal of . Thus, if is given by the vector func-
tion , , then the region is always on the left as the point traverses .
(See Figure 2.)

Green’s Theorem Let be a positively oriented, piecewise-smooth, simple closed
curve in the plane and let be the region bounded by . If and have continu-
ous partial derivatives on an open region that contains , then

NOTE ■■ The notation

g
C

is sometimes used to indicate that the line integral is calculated using the positive orienta-
tion of the closed curve . Another notation for the positively oriented boundary curve of C

P dx � Q dyor�y
C
 P dx � Q dy

y
C
 P dx � Q dy � yy

D

 ��Q

�x
�

�P

�y � dA

D
QPCD

C

FIGURE 2 (a) Positive orientation

y

x0

D

C

(b) Negative orientation

y

x0

D

C

Cr�t�Da � t � br�t�
CC

C
CCD
CDC
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34. (a) Suppose that is an inverse square force field, that is,

for some constant , where . Find the
work done by in moving an object from a point along
a path to a point in terms of the distances and from
these points to the origin.

(b) An example of an inverse square field is the gravitational
field discussed in Example 4 in 
Section 16.1. Use part (a) to find the work done by the
gravitational field when the Earth moves from aphelion 

F � ��mMG �r	� r �3

d2d1P2

P1F
r � x i � y j � z kc

F�r� �
cr

� r �3

F (at a maximum distance of km from the Sun) 
to perihelion (at a minimum distance of km). 
(Use the values kg, kg,
and 

(c) Another example of an inverse square field is the 
electric field discussed in Example 5 in 
Section 16.1. Suppose that an electron with a charge of

C is located at the origin. A positive unit
charge is positioned a distance m from the elec-
tron and moves to a position half that distance from the
electron. Use part (a) to find the work done by the electric
field. (Use the value .)� � 8.985  1010

10�12
�1.6  10�19

E � �qQr	� r �3

N�m2	kg2.�G � 6.67  10�11
M � 1.99  1030m � 5.97  1024

1.47  108
1.52  108

FIGURE 1

y

x0

D

C

|||| Recall that the left side of this equation is
another way of writing , where

.F � P i � Q j
x

C F � dr
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is , so the equation in Green’s Theorem can be written as

Green’s Theorem should be regarded as the counterpart of the Fundamental Theorem of
Calculus for double integrals. Compare Equation 1 with the statement of the Fundamental
Theorem of Calculus, Part 2, in the following equation:

In both cases there is an integral involving derivatives ( , , and ) on the left
side of the equation. And in both cases the right side involves the values of the original
functions ( , , and ) only on the boundary of the domain. (In the one-dimensional case,
the domain is an interval whose boundary consists of just two points, and .)

Green’s Theorem is not easy to prove in the generality stated in Theorem 1, but we can
give a proof for the special case where the region is both of type I and of type II (see
Section 15.3). Let’s call such regions simple regions.

Proof of Green’s Theorem for the Case in Which Is a Simple Region Notice that Green’s Theorem
will be proved if we can show that

and

We prove Equation 2 by expressing as a type I region:

where and are continuous functions. This enables us to compute the double integral
on the right side of Equation 2 as follows:

where the last step follows from the Fundamental Theorem of Calculus.
Now we compute the left side of Equation 2 by breaking up as the union of the

four curves , , , and shown in Figure 3. On we take as the parameter and
write the parametric equations as , , . Thus

Observe that goes from right to left but goes from left to right, so we can write
the parametric equations of as , , . Therefore

y
 

C3

 P�x, y� dx � �y
 

�C3

 P�x, y� dx � �y
b

a
 P�x, t2�x�� dx

a � x � by � t2�x�x � x�C3

�C3C3

y
 

C1

 P�x, y� dx � y
b

a
 P�x, t1�x�� dx

a � x � by � t1�x�x � x
xC1C4C3C2C1

C

� y
b

a
 �P�x, t2�x�� � P�x, t1�x��� dx yy

D

 
�P

�y
 dA � y

b

a
 y

t2�x�

t1�x�
 
�P

�y
 �x, y� dy dx4

t2t1

D � ��x, y� � a � x � b, t1�x� � y � t2�x��

D

y
C
 Q dy � yy

D

 
�Q

�x
 dA3

y
C
 P dx � �yy

D

 
�P

�y
 dA2

D

ba�a, b�
PQF

�P	�y�Q	�xF�

y
b

a
 F��x� dx � F�b� � F�a�

yy
D

 
�Q

�x
�

�P

�y � dA � y
�D

 P dx � Q dy1

�DD

|||| Green’s Theorem is named after the 
self-taught English scientist George Green
(1793–1841). He worked full-time in his father’s
bakery from the age of nine and taught himself
mathematics from library books. In 1828 he 
published privately An Essay on the Application
of Mathematical Analysis to the Theories of
Electricity and Magnetism, but only 100 copies
were printed and most of those went to his
friends. This pamphlet contained a theorem 
that is equivalent to what we know as Green’s 
Theorem, but it didn’t become widely known 
at that time. Finally, at age 40, Green entered 
Cambridge University as an undergraduate 
but died four years after graduation. In 1846 
William Thomson (Lord Kelvin) located a copy 
of Green’s essay, realized its significance, and
had it reprinted. Green was the first person to 
try to formulate a mathematical theory of elec-
tricity and magnetism. His work was the basis
for the subsequent electromagnetic theories of
Thomson, Stokes, Rayleigh, and Maxwell.

FIGURE 3

y

x0 a b

D

C¡

y=g™(x)

y=g¡(x)

C™

C£

C¢



On or (either of which might reduce to just a single point), is constant, so
and

Hence

Comparing this expression with the one in Equation 4, we see that

Equation 3 can be proved in much the same way by expressing as a type II region (see
Exercise 28). Then, by adding Equations 2 and 3, we obtain Green’s Theorem.

EXAMPLE 1 Evaluate , where is the triangular curve consisting of the
line segments from to , from to , and from to .

SOLUTION Although the given line integral could be evaluated as usual by the methods of
Section 16.2, that would involve setting up three separate integrals along the three sides
of the triangle, so let’s use Green’s Theorem instead. Notice that the region enclosed
by is simple and has positive orientation (see Figure 4). If we let and

, then we have

EXAMPLE 2 Evaluate , where is the circle
.

SOLUTION The region bounded by is the disk , so let’s change to polar
coordinates after applying Green’s Theorem:

 � 4 y
2�

0
 d�  y

3

0
 r dr � 36�

 � y
2�

0
 y

3

0
 �7 � 3� r dr d�

 � yy
D

 � �

�x
 (7x � sy 4 � 1) �

�

�y
 �3y � e sin x� dA

�y
C
 �3y � e sin x � dx � (7x � sy 4 � 1) dy

x 2 � y 2 � 9CD

x 2 � y 2 � 9
C�x

C
 �3y � e sin x � dx � (7x � sy 4 � 1) dy

 � �
1
6 �1 � x�3 ]0

1
� 1

6

 � y
1

0
 [ 1

2 y 2 ]y�0
y�1�x

 dx � 1
2 y

1

0
 �1 � x�2 dx

 y
C
 x 4 dx � xy dy � yy

D

 
�Q

�x
�

�P

�y � dA � y
1

0
 y

1�x

0
 �y � 0� dy dx

Q�x, y� � xy
P�x, y� � x 4CC

D

�0, 0��0, 1��0, 1��1, 0��1, 0��0, 0�
CxC x 4 dx � xy dy

D

y
C
 P�x, y� dx � �yy

D

 
�P

�y
 dA

 � y
b

a
 P�x, t1�x�� dx � y

b

a
 P�x, t2�x�� dx

 y
C
 P�x, y� dx � y

 

C1

 P�x, y� dx � y
 

C2

 P�x, y� dx � y
 

C3

 P�x, y� dx � y
 

C4

 P�x, y� dx

y
 

C2

 P�x, y� dx � 0 � y
 

C4

 P�x, y� dx

dx � 0
xC4C2
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|||| Instead of using polar coordinates, we could
simply use the fact that is a disk of radius 3
and write

yy
D

 4 dA � 4 � ��3�2 � 36�

D

FIGURE 4

y

x

C

(1, 0)(0, 0)

(0, 1) y=1-x

D
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In Examples 1 and 2 we found that the double integral was easier to evaluate than the
line integral. (Try setting up the line integral in Example 2 and you’ll soon be convinced!)
But sometimes it’s easier to evaluate the line integral, and Green’s Theorem is used in the
reverse direction. For instance, if it is known that on the curve ,
then Green’s Theorem gives

no matter what values and assume in the region .
Another application of the reverse direction of Green’s Theorem is in computing areas.

Since the area of is , we wish to choose and so that

There are several possibilities:

Then Green’s Theorem gives the following formulas for the area of :

EXAMPLE 3 Find the area enclosed by the ellipse .

SOLUTION The ellipse has parametric equations and , where
. Using the third formula in Equation 5, we have

Although we have proved Green’s Theorem only for the case where is simple, we can
now extend it to the case where is a finite union of simple regions. For example, if is
the region shown in Figure 5, then we can write , where and are both
simple. The boundary of is and the boundary of is so, apply-
ing Green’s Theorem to and separately, we get

 y
C2���C3 �

 P dx � Q dy � yy
D2

 
�Q

�x
�

�P

�y � dA

 y
 

C1�C3

 P dx � Q dy � yy
D1

 
�Q

�x
�

�P

�y � dA

D2D1

C2 � ��C3�D2C1 � C3D1

D2D1D � D1 � D2

DD
D

 �
ab

2
 y

2�

0
 dt � �ab

 � 1
2 y

2�

0
�a cos t��b cos t� dt � �b sin t���a sin t� dt

 A � 1
2 y

C
 x dy � y dx

0 � t � 2�
y � b sin tx � a cos t

x 2

a 2 �
y 2

b 2 � 1

A � �y
C
 x dy � ��y

C
 y dx � 1

2 �y
C
 x dy � y dx5

D

 Q�x, y� � 1
2 x Q�x, y� � 0 Q�x, y� � x

P�x, y� � �
1
2 yP�x, y� � �yP�x, y� � 0

�Q

�x
�

�P

�y
� 1

QPxxD 1 dAD

DQP

yy
D

 
�Q

�x
�

�P

�y � dA � y
C
 P dx � Q dy � 0

CP�x, y� � Q�x, y� � 0

FIGURE 5

C¡

_C£C£

C™D¡ D™



If we add these two equations, the line integrals along and cancel, so we get

which is Green’s Theorem for , since its boundary is .
The same sort of argument allows us to establish Green’s Theorem for any finite union

of nonoverlapping simple regions (see Figure 6).

EXAMPLE 4 Evaluate , where is the boundary of the semiannular
region in the upper half-plane between the circles and .

SOLUTION Notice that although is not simple, the -axis divides it into two simple
regions (see Figure 7). In polar coordinates we can write

Therefore, Green’s Theorem gives

Green’s Theorem can be extended to apply to regions with holes, that is, regions that
are not simply-connected. Observe that the boundary of the region in Figure 8 con-
sists of two simple closed curves and . We assume that these boundary curves are 
oriented so that the region is always on the left as the curve is traversed. Thus, the
positive direction is counterclockwise for the outer curve but clockwise for the inner
curve . If we divide into two regions and by means of the lines shown in
Figure 9 and then apply Green’s Theorem to each of and we get

Since the line integrals along the common boundary lines are in opposite directions, they
cancel and we get

which is Green’s Theorem for the region .

EXAMPLE 5 If , show that for every
positively oriented simple closed path that encloses the origin.

SOLUTION Since is an arbitrary closed path that encloses the origin, it’s difficult to 
compute the given integral directly. So let’s consider a counterclockwise-oriented circle 

C

xC F � dr � 2�F�x, y� � ��y i � x j�	�x 2 � y 2 �

D

yy
D

 
�Q

�x
�

�P

�y � dA � y
 

C1

 P dx � Q dy � y
 

C2

 P dx � Q dy � y
C
 P dx � Q dy

 � y
�D�

 P dx � Q dy � y
�D	

 P dx � Q dy

 yy
D

 
�Q

�x
�

�P

�y � dA � yy
D�

 
�Q

�x
�

�P

�y � dA � yy
D	

 
�Q

�x
�

�P

�y � dA

D	,D�
D	D�DC2

C1

CD
C2C1

DC

 � y
�

0
 sin � d�  y

2

1
 r 2 dr � [�cos �]0

� [ 1
3 r 3 ]1

2
�

14

3

 � yy
D

 y dA � y
�

0
 y

2

1
 �r sin �� r dr d�

 �y
C

 y 2 dx � 3xy dy � yy
D

 � �

�x
 �3xy� �

�

�y
 �y 2 � dA

D � ��r, �� � 1 � r � 2, 0 � � � ��

yD

x 2 � y 2 � 4x 2 � y 2 � 1D
C�xC y 2 dx � 3xy dy

C � C1 � C2D � D1 � D2

y
 

C1�C2

 P dx � Q dy � yy
D

 
�Q

�x
�

�P

�y � dA

�C3C3
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with center the origin and radius , where is chosen to be small enough that lies
inside . (See Figure 10.) Let be the region bounded by and . Then its positively
oriented boundary is and so the general version of Green’s Theorem gives

Therefore

that is,

We now easily compute this last integral using the parametrization given by
, . Thus

We end this section by using Green’s Theorem to discuss a result that was stated in the
preceding section.

Sketch of Proof of Theorem 16.3.6 We’re assuming that is a vector field on an
open simply-connected region , that and have continuous first-order partial deriva-
tives, and that

If is any simple closed path in and is the region that encloses, then Green’s
Theorem gives

A curve that is not simple crosses itself at one or more points and can be broken up into
a number of simple curves. We have shown that the line integrals of around these 
simple curves are all 0 and, adding these integrals, we see that for any
closed curve . Therefore, is independent of path in by Theorem 16.3.3. It
follows that is a conservative vector field.F

Dx
C
 F � drC

x
C
 F � dr � 0

F

�y
C
 F � dr � �y

C
 P dx � Q dy � yy

R

 
�Q

�x
�

�P

�y � dA � yy
R

 0 dA � 0

CRDC

 throughout D
�P

�y
�

�Q

�x

QPD
F � P i � Q j

 � y
2�

0
 dt � 2�

 � y
2�

0
 
��a sin t���a sin t� � �a cos t��a cos t�

a 2 cos2t � a 2 sin2t
 dt

 y
C
 F � dr � y

C�
 F � dr � y

2�

0
 F�r�t�� � r��t� dt

0 � t � 2�r�t� � a cos t i � a sin t j

 y
C
 F � dr � y

C�
 F � dr

 y
C
 P dx � Q dy � y

C�
 P dx � Q dy

 � 0

 � yy
D

 � y 2 � x 2

�x 2 � y 2 �2 �
y 2 � x 2

�x 2 � y 2 �2 dA

 y
C
 P dx � Q dy � y

�C�
 P dx � Q dy � yy

D

 
�Q

�x
�

�P

�y � dA

C � ��C��
C�CDC

C�aaC�

FIGURE 10
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1–4 |||| Evaluate the line integral by two methods: (a) directly and
(b) using Green’s Theorem.

1. ,
is the rectangle with vertices (0, 0), (2, 0), (2, 3), and (0, 3)

2. ,
is the circle with center the origin and radius 1

,
is the triangle with vertices (0, 0), (1, 0), and (1, 2)

4. , consists of the line segments from to
and from to and the parabola 

from to 

5–6 |||| Verify Green’s Theorem by using a computer algebra sys-
tem to evaluate both the line integral and the double integral.

5. , ,
is the circle 

6. , ,
consists of the arc of the parabola from (0, 0) to 

(1, 1) followed by the line segment from (1, 1) to (0, 0)

7–12 |||| Use Green’s Theorem to evaluate the line integral along
the given positively oriented curve.

7. ,
is the square with sides , , , and 

8. ,
is the triangle with vertices (0, 0), (1, 3), and (0, 3)

,
is the boundary of the region enclosed by the parabolas

and 

10. ,
is the boundary of the region between the circles

and 

, is the circle 

12. , is the ellipse 

13–16 |||| Use Green’s Theorem to evaluate . (Check the
orientation of the curve before applying the theorem.)

13. ,
consists of the arc of the curve from to 

and the line segment from to 

14. ,
is the triangle from to to to 

15. ,
is the circle oriented clockwisex 2 � y 2 � 25C

F�x, y� � �e x � x 2 y, e y � xy 2 �

�0, 0��2, 0��2, 6��0, 0�C
F�x, y� � � y 2 cos x, x 2 � 2y sin x �

�0, 0���, 0�
��, 0��0, 0�y � sin xC

F�x, y� � �sx � y 3, x 2 � sy �

xC F � dr

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

x 2 � xy � y 2 � 1CxC sin y dx � x cos y dy

x 2 � y 2 � 4CxC y 3 dx � x 3 dy11.

x 2 � y 2 � 4x 2 � y 2 � 1
C
xC xe�2x dx � �x 4 � 2x 2y 2� dy

x � y 2y � x 2
C
xC (y � esx ) dx � �2x � cos y 2 � dy9.

C
xC x 2 y 2 dx � 4xy 3 dy

y � 1y � 0x � 1x � 0C
xC e y dx � 2xe y dy

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

y � x 2C
Q�x, y� � x 2 sin yP�x, y� � y 2 sin x

x 2 � y 2 � 1C
Q�x, y� � �x 7y 6P�x, y� � x 4y 5

CAS

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

�0, 1��1, 0�
y � 1 � x 2�1, 0��0, 0��0, 0�

�0, 1�C�xC x dx � y dy

C
�xC xy dx � x 2 y 3 dy3.

C
�xC y dx � x dy

C
�xC xy 2 dx � x 3 dy

16. , is the circle
oriented counterclockwise

Use Green’s Theorem to find the work done by the force
in moving a particle from the 

origin along the -axis to , then along the line segment 
to , and then back to the origin along the -axis.

18. A particle starts at the point , moves along the -axis to
, and then along the semicircle to the start-

ing point. Use Green’s Theorem to find the work done on this
particle by the force field .

19. Use one of the formulas in (5) to find the area under one arch
of the cycloid .

; 20. If a circle with radius 1 rolls along the outside of the circle
, a fixed point on traces out a curve called 

an epicycloid, with parametric equations ,
. Graph the epicycloid and use (5) to find

the area it encloses.

(a) If is the line segment connecting the point to the
point , show that

(b) If the vertices of a polygon, in counterclockwise order, are
, , show that the area of the

polygon is

(c) Find the area of the pentagon with vertices , ,
, , and .

22. Let be a region bounded by a simple closed path in the 
-plane. Use Green’s Theorem to prove that the coordinates 

of the centroid of are

where is the area of .

23. Use Exercise 22 to find the centroid of the triangle with 
vertices , , and .

24. Use Exercise 22 to find the centroid of a semicircular region 
of radius .

25. A plane lamina with constant density occupies a
region in the -plane bounded by a simple closed path .
Show that its moments of inertia about the axes are

Iy �



3
 �y

C
 x 3 dyIx � �




3
 �y

C
 y 3 dx

Cxy

�x, y� � 


a

�0, 1��1, 0��0, 0�

DA

y � �
1

2A
 �y

C
 y 2 dxx �

1

2A
 �y

C
 x 2 dy

D�x, y �
xy

CD

��1, 1��0, 2��1, 3�
�2, 1��0, 0�

 A � � �xn�1 yn � xn yn�1 � � �xn y1 � x1 yn ��

 A � 1
2 ��x1 y2 � x2 y1 � � �x2 y3 � x3 y2 � � � � �

�xn, yn ��x2, y2 �, . . . , �x1, y1 �

y
C
 x dy � y dx � x1 y2 � x2 y1

�x2, y2�
�x1, y1�C21.

y � 5 sin t � sin 5t
x � 5 cos t � cos 5t

CPx 2 � y 2 � 16
C

x � t � sin t, y � 1 � cos t

F�x, y� � �x, x 3 � 3xy 2 �

y � s4 � x 2�2, 0�
x��2, 0�

y�0, 1�
�1, 0�x

F�x, y� � x�x � y� i � xy 2 j
17.

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

�x � 2�2 � �y � 3�2 � 1
CF�x, y� � � y � ln�x 2 � y 2�, 2 tan�1� y	x� �
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|||| 16.4 Exercises



|||| 16.5 C u r l  a n d  D i v e r g e n c e

In this section we define two operations that can be performed on vector fields and that
play a basic role in the applications of vector calculus to fluid flow and electricity and mag-
netism. Each operation resembles differentiation, but one produces a vector field whereas
the other produces a scalar field.

C u r l

If is a vector field on and the partial derivatives of , , and 
all exist, then the curl of is the vector field on defined by

As an aid to our memory, let’s rewrite Equation 1 using operator notation. We introduce
the vector differential operator (“del”) as

It has meaning when it operates on a scalar function to produce the gradient of :

If we think of as a vector with components , , and , we can also consider
the formal cross product of with the vector field as follows:

 � curl F

 � 
�R

�y
�

�Q

�z � i � 
�P

�z
�

�R

�x � j � 
�Q

�x
�

�P

�y � k

 ∇ � F � � i
�

�x

P

j
�

�y

Q

k
�

�z

R �
F∇

�	�z�	�y�	�x∇

∇ f � i 
�f

�x
� j 

�f

�y
� k 

�f

�z
�

�f

�x
 i �

�f

�y
 j �

�f

�z
 k

f

∇ � i 
�

�x
� j 

�

�y
� k 

�

�z
 

∇

curl F � 
�R

�y
�

�Q

�z � i � 
�P

�z
�

�R

�x � j � 
�Q

�x
�

�P

�y � k1

� 3F
RQP� 3F � P i � Q j � R k
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where :

Here is the region in the -plane that corresponds to the
region in the -plane under the transformation given by

, .
[Hint: Note that the left side is and apply the first part

of Equation 5. Convert the line integral over to a line inte-
gral over and apply Green’s Theorem in the -plane.]uv�S

�R
A�R�

y � h�u, v�x � t�u, v�
uvS

xyR

yy
R

 dx dy � yy
S

 � ��x, y�
��u, v� �  du dv

f �x, y� � 126. Use Exercise 25 to find the moment of inertia of a circular disk
of radius with constant density about a diameter. (Compare
with Example 4 in Section 15.5.)

If is the vector field of Example 5, show that 
for every simple closed path that does not pass through or
enclose the origin.

28. Complete the proof of the special case of Green’s Theorem by
proving Equation 3.

29. Use Green’s Theorem to prove the change of variables 
formula for a double integral (Formula 15.9.9) for the case 

xC F � dr � 0F27.


a



Thus, the easiest way to remember Definition 1 is by means of the symbolic expression

EXAMPLE 1 If , find .

SOLUTION Using Equation 2, we have

Recall that the gradient of a function of three variables is a vector field on and so
we can compute its curl. The following theorem says that the curl of a gradient vector field
is .

Theorem If is a function of three variables that has continuous second-order
partial derivatives, then

Proof We have

by Clairaut’s Theorem.

Since a conservative vector field is one for which , Theorem 3 can be rephrased
as follows:

If is conservative, then .

This gives us a way of verifying that a vector field is not conservative.

curl F � 0F

F � ∇ f

 � 0 i � 0 j � 0 k � 0

 � 
 �2 f

�y �z
�

�2 f

�z �y� i � 
 �2 f

�z �x
�

�2 f

�x �z� j � 
 �2 f

�x �y
�

�2 f

�y �x� k

 curl� f � �  � � f � � �
i
�

�x

�f

�x

j
�

�y

�f

�y

k
�

�z

�f

�z
�

curl� f � � 0

f3

0

� 3f

 � �y�2 � x� i � x j � yz k

 � ��2y � xy� i � �0 � x� j � �yz � 0� k

� � �

�x
 �xyz� �

�

�y
 �xz� k

 � � �

�y
 ��y 2 � �

�

�z
 �xyz� i � � �

�x
 ��y 2 � �

�

�z
 �xz� j

 curl F �  � F � � i
�

�x

xz

j
�

�y

xyz

k
�

�z

�y 2 �
curl FF�x, y, z� � xz i � xyz j � y 2 k

curl F � ∇ � F2

SECTION 16.5 CURL AND DIVERGENCE ❙ ❙ ❙ ❙ 1091

|||| Most computer algebra systems have com-
mands that compute the curl and divergence of
vector fields. If you have access to a CAS, use
these commands to check the answers to the
examples and exercises in this section.

|||| Notice the similarity to what we know 
from Section 12.4: for every 
three-dimensional vector .a

a � a � 0

|||| Compare this with Exercise 27 in 
Section 16.3.
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EXAMPLE 2 Show that the vector field is not 
conservative.

SOLUTION In Example 1 we showed that

This shows that and so, by Theorem 3, is not conservative.

The converse of Theorem 3 is not true in general, but the following theorem says the
converse is true if is defined everywhere. (More generally it is true if the domain is 
simply-connected, that is, “has no hole.”) Theorem 4 is the three-dimensional version 
of Theorem 16.3.6. Its proof requires Stokes’ Theorem and is sketched at the end of
Section 16.8.

Theorem If is a vector field defined on all of whose component functions
have continuous partial derivatives and , then is a conservative vector
field.

EXAMPLE 3
(a) Show that is a conservative vector field.
(b) Find a function such that .

SOLUTION
(a) We compute the curl of :

Since and the domain of is , is a conservative vector field by 
Theorem 4.

(b) The technique for finding was given in Section 16.3. We have

Integrating (5) with respect to , we obtain

Differentiating (8) with respect to , we get , so comparison
with (6) gives . Thus, and

fz�x, y, z� � 3xy 2z2 � h��z�

t�y, z� � h�z�ty�y, z� � 0
fy�x, y, z� � 2xyz3 � ty�y, z�y

f �x, y, z� � xy 2z3 � t�y, z�8

x

 fz�x, y, z� � 3xy 2z27

 fy�x, y, z� � 2xyz36

 fx�x, y, z� � y 2z35

f

F� 3Fcurl F � 0

 � 0

 � �6xyz2 � 6xyz2 � i � �3y 2z2 � 3y 2z2 � j � �2yz3 � 2yz3 � k

 curl F �  � F � � i
�

�x

y 2z 3

j
�

�y

2xyz 3

k
�

�z

3xy 2z 2 �
F

F �  ff
F�x, y, z� � y 2z3 i � 2xyz3 j � 3xy 2z2 k

Fcurl F � 0
� 3F4

F

Fcurl F � 0

curl F � �y�2 � x� i � x j � yz k

F�x, y, z� � xz i � xyz j � y 2 k



Then (7) gives . Therefore

The reason for the name curl is that the curl vector is associated with rotations. One
connection is explained in Exercise 35. Another occurs when represents the velocity
field in fluid flow (see Example 3 in Section 16.1). Particles near (x, y, ) in the fluid tend
to rotate about the axis that points in the direction of and the length of this
curl vector is a measure of how quickly the particles move around the axis (see Figure 1).
If at a point , then the fluid is free from rotations at and is called irro-
tational at . In other words, there is no whirlpool or eddy at P. If , then a 
tiny paddle wheel moves with the fluid but doesn’t rotate about its axis. If , the
paddle wheel rotates about its axis. We give a more detailed explanation in Section 16.8 as
a consequence of Stokes’ Theorem.

D i v e r g e n c e

If is a vector field on and , , and exist, then
the divergence of is the function of three variables defined by

Observe that is a vector field but is a scalar field. In terms of the gradient oper-
ator , the divergence of can be written symbolically
as the dot product of and :

EXAMPLE 4 If , find .

SOLUTION By the definition of divergence (Equation 9 or 10) we have

If is a vector field on , then is also a vector field on . As such, we can
compute its divergence. The next theorem shows that the result is 0.

Theorem If is a vector field on and , , and have
continuous second-order partial derivatives, then

div curl F � 0

RQP� 3F � P i � Q j � R k11

� 3curl F� 3F

 � z � xz

 div F �  � F �
�

�x
 �xz� �

�

�y
 �xyz� �

�

�z
 ��y 2 �

div FF�x, y, z� � xz i � xyz j � y 2 k

div F �  � F10

F
F � ��	�x� i � ��	�y� j � ��	�z� k

div Fcurl F

div F �
�P

�x
�

�Q

�y
�

�R

�z
9

F
�R	�z�Q	�y�P	�x� 3F � P i � Q j � R k

curl F � 0
curl F � 0P

FPPcurl F � 0

curl F�x, y, z�
z

F

f �x, y, z� � xy 2z3 � K

h��z� � 0
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FIGURE 1

(x, y, z)

curl F(x, y, z)
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Proof Using the definitions of divergence and curl, we have

because the terms cancel in pairs by Clairaut’s Theorem.

EXAMPLE 5 Show that the vector field can’t be written as
the curl of another vector field, that is, .

SOLUTION In Example 4 we showed that

and therefore . If it were true that , then Theorem 11 would give

which contradicts . Therefore, is not the curl of another vector field.

Again, the reason for the name divergence can be understood in the context of fluid
flow. If is the velocity of a fluid (or gas), then represents the net rate
of change (with respect to time) of the mass of fluid (or gas) flowing from the point 
per unit volume. In other words, measures the tendency of the fluid to diverge
from the point . If , then is said to be incompressible.

Another differential operator occurs when we compute the divergence of a gradient vec-
tor field . If is a function of three variables, we have

and this expression occurs so often that we abbreviate it as . The operator

is called the Laplace operator because of its relation to Laplace’s equation

We can also apply the Laplace operator to a vector field

in terms of its components:

� 2F � � 2P i � � 2Q j � � 2R k

F � P i � Q j � R k

� 2

� 2 f �
�2 f

�x 2 �
�2 f

�y 2 �
�2 f

�z2 � 0

� 2 � � � �

� 2 f

div�� f � � � � �� f � �
�2 f

�x 2 �
�2 f

�y 2 �
�2 f

�z2

f� f

Fdiv F � 0�x, y, z�
div F�x, y, z�

�x, y, z�
div F�x, y, z�F�x, y, z�

Fdiv F � 0

div F � div curl G � 0

F � curl Gdiv F � 0

div F � z � xz

F � curl G
F�x, y, z� � xz i � xyz j � y 2 k

 � 0

 �
�2R

�x �y
�

�2Q

�x �z
�

�2P

�y �z
�

�2R

�y �x
�

�2Q

�z �x
�

�2P

�z �y

 �
�

�x
 ��R

�y
�

�Q

�z � �
�

�y
 ��P

�z
�

�R

�x � �
�

�z
 ��Q

�x
�

�P

�y �
 div curl F � � � �� � F�|||| Note the analogy with the scalar triple 

product: .a � �a � b� � 0

|||| The reason for this interpretation of 
will be explained at the end of Section 16.9 as a
consequence of the Divergence Theorem.

div F



V e c t o r  F o r m s  o f  G r e e n ’s  T h e o r e m

The curl and divergence operators allow us to rewrite Green’s Theorem in versions that
will be useful in our later work. We suppose that the plane region , its boundary curve 

, and the functions and satisfy the hypotheses of Green’s Theorem. Then we con-
sider the vector field . Its line integral is

and its curl is

Therefore

and we can now rewrite the equation in Green’s Theorem in the vector form

Equation 12 expresses the line integral of the tangential component of along as the
double integral of the vertical component of over the region enclosed by . We
now derive a similar formula involving the normal component of .

If is given by the vector equation

then the unit tangent vector (see Section 13.2) is

You can verify that the outward unit normal vector to is given by

(See Figure 2.) Then, from Equation 16.2.3, we have

 � y
C
 P dy � Q dx � yy

D

 ��P

�x
�

�Q

�y � dA

 � y
b

a
 P�x�t�, y�t�� y��t� dt � Q�x�t�, y�t�� x��t� dt

 � y
b

a
 �P�x�t�, y�t�� y��t�

� r��t� � �
Q�x�t�, y�t�� x��t�

� r��t� � � � r��t� � dt

 �y
C
 F � n ds � y

b

a
 �F � n��t� � r��t� � dt

n�t� �
 y��t�

� r��t� �  i �
x��t�

� r��t� �  j

C

T�t� �
x��t�

� r��t� �  i �
 y��t�

� r��t� �  j

a � t � br�t� � x�t� i � y�t� j

C
F

CDcurl F
CF

�y
C
 F � dr � yy

D

 �curl F� � k dA12

�curl F� � k � ��Q

�x
�

�P

�y �k � k �
�Q

�x
�

�P

�y

curl F � � i
�

�x

P�x, y�

j
�

�y

Q�x, y�

k
�

�z

0 � � ��Q

�x
�

�P

�y � k

�y
C
 F � dr � �y

C
 P dx � Q dy

F � P i � Q j
QPC

D
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by Green’s Theorem. But the integrand in this double integral is just the divergence of .
So we have a second vector form of Green’s Theorem.

This version says that the line integral of the normal component of along is equal to
the double integral of the divergence of over the region enclosed by .CDF

CF

�y
C
 F � n ds � yy

D

 div F�x, y� dA13

F
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12. Let be a scalar field and a vector field. State whether 
each expression is meaningful. If not, explain why. If so, state
whether it is a scalar field or a vector field.
(a) (b)
(c) (d)
(e) (f )
(g) (h)
(i) ( j)
(k) (l)

13–18 |||| Determine whether or not the vector field is conservative.
If it is conservative, find a function such that .

13.

14.

16.

17.

18.

Is there a vector field on such that
? Explain.

20. Is there a vector field on such that
? Explain.

Show that any vector field of the form

where , , are differentiable functions, is irrotational.htf

F�x, y, z� � f �x� i � t�y� j � h�z� k

21.

curl G � yz i � xyz j � xy k
� 3G

curl G � xy 2 i � yz2 j � zx 2 k
� 3G19.

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

F�x, y, z� � y cos xy i � x cos xy j � sin z k

F�x, y, z� � ye�x i � e�x j � 2z k

F�x, y, z� � e z i � j � xe z k

F�x, y, z� � 2xy i � �x 2 � 2yz� j � y 2 k15.

F�x, y, z� � 3z 2 i � cos y j � 2xz k

F�x, y, z� � yz i � xz j � xy k

F � ∇ ff

div�curl�grad f ���grad f � � �div F�
div�div F�curl�curl F�
grad�div f �div�grad f �
grad�div F�grad F
curl�grad f �div F
grad fcurl f

Ff

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

y

x0

11.1–8 |||| Find (a) the curl and (b) the divergence of the vector field.

2.

3.

4.

5.

6.

7.

8.

9–11 |||| The vector field F is shown in the xy-plane and looks the
same in all other horizontal planes. (In other words, F is indepen-
dent of and its -component is 0.)
(a) Is div F positive, negative, or zero? Explain.
(b) Determine whether curl . If not, in which direction does

curl F point?

9.

10. y

x0

y

x0

F � 0

zz

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

F�x, y, z� � 	xe�y, xz, ze y 


F�x, y, z� � 	 ln x, ln�xy�, ln�xyz�


x

x 2 � y 2 � z 2  i �
y

x 2 � y 2 � z 2  j �
z

x 2 � y 2 � z 2  kF �x, y, z� �

F�x, y, z� � e x sin y i � e x cos y j � z k

F�x, y, z� � cos xz j � sin xy k

F�x, y, z� � i � �x � yz� j � (xy � sz) k
F�x, y, z� � x 2 yz i � xy 2z j � xyz 2 k

F�x, y, z� � xyz i � x 2y k1.

|||| 16.5 Exercises
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22. Show that any vector field of the form

is incompressible.

23–29 |||| Prove the identity, assuming that the appropriate partial
derivatives exist and are continuous. If is a scalar field and ,
are vector fields, then , , and are defined by

23. div

24. curl

25. div

26. curl

27. div

28. div

29.

30–32 |||| Let and .

30. Verify each identity.
(a) (b)
(c)

Verify each identity.
(a) (b)
(c) (d)

32. If , find div . Is there a value of for which 
div ?

33. Use Green’s Theorem in the form of Equation 13 to prove
Green’s first identity:

where and satisfy the hypotheses of Green’s Theorem 
and the appropriate partial derivatives of and exist and are
continuous. (The quantity occurs in the line inte-
gral. This is the directional derivative in the direction of the
normal vector and is called the normal derivative of .)

34. Use Green’s first identity (Exercise 33) to prove Green’s 
second identity:

where and satisfy the hypotheses of Green’s Theorem 
and the appropriate partial derivatives of and exist and are
continuous.

35. This exercise demonstrates a connection between the curl 
vector and rotations. Let be a rigid body rotating about theB

tf
CD

yy
D

 � f �2
t � t�2f � dA � �y

C
 � f �t � t� f � � n ds

tn

�t � n � Dn t

tf
CD

yy
D

 f �2
t dA � �y

C
 f ��t� � n ds � yy

D

 � f � �t dA

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

F � 0
pFF � r�r p

� ln r � r�r 2��1�r� � �r�r 3
� � r � 0�r � r�r

31.

� 2r 3 � 12r
� � �rr� � 4r� � r � 3

r � � r �r � x i � y j � z k

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

curl�curl F� � grad�div F� � � 2F
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Since the -component is positive, this is the upward unit normal. If we now use Formula 2
to evaluate the surface integral (7) with

we get

or

For a downward unit normal we multiply by . Similar formulas can be worked out if 
is given by or . (See Exercises 33 and 34.)

EXAMPLE 4 Evaluate , where and is the boundary
of the solid region enclosed by the paraboloid and the plane .

SOLUTION consists of a parabolic top surface and a circular bottom surface . (See
Figure 12.) Since is a closed surface, we use the convention of positive (outward) ori-
entation. This means that is oriented upward and we can use Equation 8 with being
the projection of on the -plane, namely, the disk . Since

on and

we have
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The disk is oriented downward, so its unit normal vector is and we have

since on . Finally, we compute, by definition, as the sum of the sur-
face integrals of over the pieces and :

Parametric Surfaces If is given by a vector function , then is given by Equa-
tion 5, and from Definition 7 and Equation 3 we have

where is the parameter domain. Thus, we have

Notice that, in view of Equation 16.6.7, we have

and so Formula 8 is just a special case of Formula 9.

EXAMPLE 5 Find the flux of the vector field across the unit
sphere .

SOLUTION Using the parametric representation

we have

and, from Example 10 in Section 16.6,

Therefore
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 0 � � � 2


x 2 � y 2 � z2 � 1
F�x, y, z� � z i � y j � x k

rx � ry � �
�t

�x
 i �

�t

�y
 j � k

yy
S

 F � dS � yy
D

 F � �ru � rv � dA9

D

 � yy
D

 
F�r�u, v�� �
ru � rv

� ru � rv � �� ru � rv � dA

 yy
S

 F � dS � yy
S

 F �
ru � rv

� ru � rv �  dS

nr�u, v�S

yy
S

 F � dS � yy
S1

 F � dS � yy
S2

 F � dS �



2
� 0 �




2

S2S1F
xxS F � dSS2z � 0

yy
S2

 F � dS � yy
S2

 F � ��k� dS � yy
D

 ��z� dA � yy
D
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|||| Compare Equation 9 to the similar expres-
sion for evaluating line integrals of vector fields
in Definition 16.2.13:

y
C
 F � dr � y

b

a
 F�r�t�� � r��t� dt

|||| Figure 13 shows the vector field in
Example 5 at points on the unit sphere.

F
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and, by Formula 9, the flux is

by the same calculation as in Example 2.

If, for instance, the vector field in Example 5 is a velocity field describing the flow of a
fluid with density 1, then the answer, , represents the rate of flow through the unit
sphere in units of mass per unit time.

Although we motivated the surface integral of a vector field using the example of fluid
flow, this concept also arises in other physical situations. For instance, if is an electric
field (see Example 5 in Section 16.1), then the surface integral

is called the electric flux of through the surface . One of the important laws of electro-
statics is Gauss’s Law, which says that the net charge enclosed by a closed surface is

where is a constant (called the permittivity of free space) that depends on the units used.
(In the SI system, C � .) Therefore, if the vector field in
Example 5 represents an electric field, we can conclude that the charge enclosed by is

.
Another application of surface integrals occurs in the study of heat flow. Suppose the

temperature at a point in a body is . Then the heat flow is defined as the
vector field

where is an experimentally determined constant called the conductivity of the sub-
stance. The rate of heat flow across the surface in the body is then given by the surface
integral

EXAMPLE 6 The temperature in a metal ball is proportional to the square of the distance
from the center of the ball. Find the rate of heat flow across a sphere of radius with
center at the center of the ball.
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SOLUTION Taking the center of the ball to be at the origin, we have

where is the proportionality constant. Then the heat flow is

where is the conductivity of the metal. Instead of using the usual parametrization 
of the sphere as in Example 5, we observe that the outward unit normal to the sphere

at the point is

and so

But on we have , so . Therefore, the rate of heat
flow across is

 � �2aKCA�S� � �2aKC�4
a 2 � � �8KC
a 3

 yy
S
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 F � n � �
2KC

a
 �x 2 � y 2 � z2 �

 n �
1

a
 �x i � y j � z k�

�x, y, z�x 2 � y 2 � z2 � a 2

K

F�x, y, z� � �K �u � �KC�2x i � 2y j � 2z k�

C

u�x, y, z� � C�x 2 � y 2 � z2 �

6. ,
is the triangular region with vertices (1, 0, 0), (0, 2, 0),

and (0, 0, 2)

7. ,
is the part of the plane that lies in the 

first octant

8. ,
is the surface , ,

9. ,
is the part of the cone that lies between the

planes and 

10. ,
is the surface , ,

11. ,
is the part of the paraboloid that lies inside the

cylinder 

12. ,
is the boundary of the region enclosed by the cylinder

and the planes and 

,
is the hemisphere , z � 0x 2 � y 2 � z2 � 4S

xx
S
 �x 2z � y 2z� dS13.

x � y � 2y � 0x 2 � z2 � 1
S
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S
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 x 2z2 dS
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3 �x 3�2 � y 3�2 �S

xx
S
 y dS

x � y � z � 1S
xxS yz dS

S
xxS xy dS1. Let be the cube with vertices . Approximate

by using a Riemann sum as in Defini-
tion 1, taking the patches to be the squares that are the faces
of the cube and the points to be the centers of the squares.

2. A surface consists of the cylinder , ,
together with its top and bottom disks. Suppose you know 
that is a continuous function with 

, and . Estimate the value of
by using a Riemann sum, taking the patches 

to be four quarter-cylinders and the top and bottom disks.

3. Let be the hemisphere , and 
suppose is a continuous function with 

, and . 
By dividing into four patches, estimate the value of

.

Suppose that , where is a 
function of one variable such that . Evaluate

, where is the sphere .

5–18 |||| Evaluate the surface integral.

,
is the part of the plane that lies above the

rectangle �0, 3	 � �0, 2	
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xx
S
 x 2yz dS5.
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|||| 16.7 Exercises



31. Find the value of correct to four decimal places,
where is the part of the paraboloid that
lies above the -plane.

32. Find the flux of 
across the part of the cylinder that lies above 
the -plane and between the planes and with
upward orientation. Illustrate by using a computer algebra 
system to draw the cylinder and the vector field on the same
screen.

33. Find a formula for similar to Formula 8 for the case
where is given by and is the unit normal that
points toward the left.

34. Find a formula for similar to Formula 8 for the case
where is given by and is the unit normal that
points forward (that is, toward the viewer when the axes are
drawn in the usual way).

Find the center of mass of the hemisphere ,
, if it has constant density.

36. Find the mass of a thin funnel in the shape of a cone
, , if its density function is

.

37. (a) Give an integral expression for the moment of inertia 
about the -axis of a thin sheet in the shape of a surface 
if the density function is .

(b) Find the moment of inertia about the -axis of the funnel in
Exercise 36.

38. The conical surface , , has constant
density . Find (a) the center of mass and (b) the moment of
inertia about the -axis.

39. A fluid with density 1200 flows with velocity
. Find the rate of flow upward through the

paraboloid , .

40. A fluid has density 1500 and velocity field
. Find the rate of flow outward through

the sphere .

41. Use Gauss’s Law to find the charge contained in the solid
hemisphere , , if the electric field is

.

42. Use Gauss’s Law to find the charge enclosed by the cube 
with vertices if the electric field is

.

The temperature at the point in a substance with con-
ductivity is . Find the rate of
heat flow inward across the cylindrical surface ,

.

44. The temperature at a point in a ball with conductivity is
inversely proportional to the distance from the center of the
ball. Find the rate of heat flow across a sphere of radius 
with center at the center of the ball.

aS

K
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u�x, y, z� � 2y 2 � 2z2K � 6.5
�x, y, z�43.
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z
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z
	

Sz
Iz

	�x, y, z� � 10 � z
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z � 0
x 2 � y 2 � z2 � a 235.

nx � k�y, z�S
xxS F � dS

ny � h�x, z�S
xxS F � dS
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4y 2 � z2 � 4

F�x, y, z� � sin�xyz� i � x 2 y j � z2e x�5 kCAS

xy
z � 3 � 2x 2 � y 2S

xxS x
2 y 2z2 dSCAS14. ,

is the part of the sphere that lies above the
cone 

15. ,
is the part of the cylinder between the planes

and 

16. ,
consists of the cylinder in Exercise 15 together with its top

and bottom disks

17. ,
is the surface with parametric equations , ,

,

18. ,
is the helicoid with vector equation

, ,

19–28 |||| Evaluate the surface integral for the given 
vector field and the oriented surface . In other words, find the
flux of across . For closed surfaces, use the positive (outward) 
orientation.

, is the part of the parabo-
loid that lies above the square 

, and has upward orientation

20. , S is the surface ,
, , with upward orientation

21. ,
is the part of the plane in the first octant and

has downward orientation

22. ,
is the part of the cone beneath the plane 

with downward orientation

23. ,
is the part of the sphere in the first octant,

with orientation toward the origin

24. ,
is the hemisphere , , oriented in the

direction of the positive -axis

,
consists of the paraboloid , , and the

disk ,

26. , is the surface of Exercise 12

27. ,
is the cube with vertices 

28. ,
is the helicoid of Exercise 18 with upward orientation

29. Evaluate correct to four decimal places, where is
the surface , , .

30. Find the exact value of , where is the surface in
Exercise 29.
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z � sx 2 � y 2

x 2 � y 2 � z2 � 1S
xxS xyz dS
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Stokes’ Theorem can be regarded as a higher-dimensional version of Green’s Theorem.
Whereas Green’s Theorem relates a double integral over a plane region to a line integral
around its plane boundary curve, Stokes’ Theorem relates a surface integral over a surface

to a line integral around the boundary curve of (which is a space curve). Figure 1 shows
an oriented surface with unit normal vector . The orientation of induces the positive
orientation of the boundary curve C shown in the figure. This means that if you walk in
the positive direction around with your head pointing in the direction of , then the sur-
face will always be on your left.

Stokes’ Theorem Let be an oriented piecewise-smooth surface that is bounded 
by a simple, closed, piecewise-smooth boundary curve with positive orientation.
Let be a vector field whose components have continuous partial derivatives on an
open region in that contains . Then

Since

Stokes’ Theorem says that the line integral around the boundary curve of of the tangen-
tial component of is equal to the surface integral of the normal component of the curl 
of .

The positively oriented boundary curve of the oriented surface is often written as 
, so Stokes’ Theorem can be expressed as

There is an analogy among Stokes’ Theorem, Green’s Theorem, and the Fundamental
Theorem of Calculus. As before, there is an integral involving derivatives on the left side
of Equation 1 (recall that is a sort of derivative of ) and the right side involves the
values of only on the boundary of .

In fact, in the special case where the surface is flat and lies in the -plane with
upward orientation, the unit normal is , the surface integral becomes a double integral,
and Stokes’ Theorem becomes

This is precisely the vector form of Green’s Theorem given in Equation 16.5.12. Thus, we
see that Green’s Theorem is really a special case of Stokes’ Theorem.

Although Stokes’ Theorem is too difficult for us to prove in its full generality, we can
give a proof when is a graph and , , and are well behaved.CSFS

y
C
 F � dr � yy

S

 curl F � dS � yy
S

 �curl F� � k dA

k
xyS

SF
Fcurl F

yy
S

 curl F � dS � y
�S

 F � dr1

�S
S

F
F

S

yy
S

 curl F � dS � yy
S

 curl F � n dSandy
C
 F � dr � y

C
 F � T ds

y
C
 F � dr � yy

S

 curl F � dS

S� 3
F

C
S

nC

Sn
SS

D
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FIGURE 1

|||| Stokes’ Theorem is named after the Irish
mathematical physicist Sir George Stokes
(1819–1903). Stokes was a professor at Cam-
bridge University (in fact he held the same 
position as Newton, Lucasian Professor of 
Mathematics) and was especially noted for his
studies of fluid flow and light. What we call
Stokes’ Theorem was actually discovered by 
the Scottish physicist Sir William Thomson
(1824–1907, known as Lord Kelvin). Stokes
learned of this theorem in a letter from Thomson
in 1850 and asked students to prove it on an
examination at Cambridge University in 1854.
We don’t know if any of those students was 
able to do so.
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Proof of a Special Case of Stokes’ Theorem We assume that the equation of is 
, where has continuous second-order partial derivatives and is a simple

plane region whose boundary curve corresponds to . If the orientation of is
upward, then the positive orientation of corresponds to the positive orientation of .
(See Figure 2.) We are given that , where the partial derivatives of

, , and are continuous.
Since is a graph of a function, we can apply Formula 16.7.8 with replaced by

. The result is

where the partial derivatives of , , and are evaluated at . If

is a parametric representation of , then a parametric representation of is

This allows us, with the aid of the Chain Rule, to evaluate the line integral as follows:

where we have used Green’s Theorem in the last step. Then, using the Chain Rule again
and remembering that , , and are functions of , , and and that is itself a func-
tion of and , we get

Four of the terms in this double integral cancel and the remaining six terms can be
arranged to coincide with the right side of Equation 2. Therefore

y
C
 F � dr � yy

S

 curl F � dS
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EXAMPLE 1 Evaluate , where and is the curve
of intersection of the plane and the cylinder . (Orient to be
counterclockwise when viewed from above.)

SOLUTION The curve (an ellipse) is shown in Figure 3. Although could be
evaluated directly, it’s easier to use Stokes’ Theorem. We first compute

Although there are many surfaces with boundary C, the most convenient choice is the
elliptical region S in the plane that is bounded by . If we orient upward,
then has the induced positive orientation. The projection of on the -plane is the
disk and so using Equation 16.7.8 with , we have

EXAMPLE 2 Use Stokes’ Theorem to compute the integral , where
and is the part of the sphere that 

lies inside the cylinder and above the -plane. (See Figure 4.)

SOLUTION To find the boundary curve we solve the equations and
. Subtracting, we get and so (since ). Thus, is the

circle given by the equations , . A vector equation of is

so

Also, we have

Therefore, by Stokes’ Theorem,

 � s3 y
2


0
 0 dt � 0

 � y
2


0
 (�s3 cos t sin t � s3 sin t cos t) dt

 yy
S

 curl F � dS � y
C
 F � dr � y

2


0
 F�r�t�� � r��t� dt

F�r�t�� � s3 cos t i � s3 sin t j � cos t sin t k

 r��t� � �sin t i � cos t j

0 � t � 2
 r�t� � cos t i � sin t j � s3 k

Cz � s3x 2 � y 2 � 1
Cz � 0z � s3z2 � 3x 2 � y 2 � 1

x 2 � y 2 � z2 � 4C

xyx 2 � y 2 � 1
x 2 � y 2 � z2 � 4SF�x, y, z� � xz i � yz j � xy k

xxS curl F � dS

 � 1
2 �2
� � 0 � 


 � y
2


0

 
 r 2

2
� 2 

r 3

3
 sin ��

0

1

 d� � y
2


0
 ( 1

2 �
2
3 sin �) d�

 � y
2


0
 y

1

0
 �1 � 2r sin �� r dr d�

 y
C
 F � dr � yy

S

 curl F � dS � yy
D

 �1 � 2y� dA

z � t�x, y� � 2 � yx 2 � y 2 � 1
xySDC

SCy � z � 2

curl F � � i
�

�x

�y 2

j
�

�y

x

k
�

�z

z2 � � �1 � 2y� k

xC F � drC

Cx 2 � y 2 � 1y � z � 2
CF�x, y, z� � �y 2 i � x j � z2 kxC F � dr

FIGURE 3
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,
is the ellipsoid 

12. ,
is the surface of the tetrahedron bounded by the planes

, , and 

13. ,
is the surface of the solid bounded by the paraboloid

and the plane 

14. ,
is the surface of the solid bounded by the cylinder

and the planes and 

15. ,
is the sphere with radius and center the origin

16. ,
is the surface of the solid bounded by the hemispheres

, and the plane 

17. ,
is the surface of the solid that lies above the -plane 

and below the surface ,

18. Use a computer algebra system to plot the vector field

in the cube cut from the first octant by the planes ,
, and . Then compute the flux across the 

surface of the cube.

19. Use the Divergence Theorem to evaluate , where

and is the top half of the sphere .
[Hint: Note that is not a closed surface. First compute 
integrals over and , where is the disk ,
oriented downward, and .]

20. Let . Find the
flux of across the part of the paraboloid 
that lies above the plane and is oriented upward.

21. Verify that for the electric field

22. Use the Divergence Theorem to evaluate

where is the sphere .x 2 � y 2 � z2 � 1S

yy
S

 �2x � 2y � z2 � dS

E�x� �
�Q

� x �3  x

div E � 0

z � 1
x 2 � y 2 � z � 2F

F�x, y, z� � z tan�1�y 2 � i � z3 ln�x 2 � 1� j � z k

S2 � S � S1

x 2 � y 2 
 1S1S2S1

S
x 2 � y 2 � z2 � 1S

F�x, y, z� � z2x i � ( 1
3 y

3 � tan z) j � �x 2z � y 2 � k

xxS F � dS

z � ��2y � ��2
x � ��2

F�x, y, z� � sin x cos2 y i � sin3y cos4z j � sin5z cos6x k
CAS

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

�1 
 y 
 1
�1 
 x 
 1,z � 2 � x 4 � y 4

xyS
F�x, y, z� � e y tan z i � ys3 � x 2 j � x sin y kCAS

z � 0z � s1 � x 2 � y 2z � s4 � x 2 � y 2

S
F�x, y, z� � �x 3 � y sin z� i � �y 3 � z sin x� j � 3z k

RS
F�x, y, z� � 4x 3z i � 4y 3z j � 3z 4 k

z � 0z � x � 2x 2 � y 2 � 1
S
F�x, y, z� � x 4 i � x 3z 2 j � 4xy 2z k

z � 4z � x 2 � y 2
S
F�x, y, z� � �cos z � xy 2� i � xe�z j � �sin y � x 2z� k

x � 2y � z � 2z � 0y � 0x � 0,
S
F�x, y, z� � x 2y i � xy 2 j � 2xyz k

x 2�a2 � y 2�b2 � z 2�c2 � 1S
F�x, y, z� � xy sin z i � cos�xz� j � y cos z k11. 23–28 |||| Prove each identity, assuming that and satisfy the

conditions of the Divergence Theorem and the scalar functions 
and components of the vector fields have continuous second-order
partial derivatives.

, where is a constant vector

24. , where 

25.

26.

27.

28.

29. Suppose and satisfy the conditions of the Divergence Theo-
rem and is a scalar function with continuous partial deriva-
tives. Prove that

These surface and triple integrals of vector functions are
vectors defined by integrating each component function.
[Hint: Start by applying the Divergence Theorem to ,
where is an arbitrary constant vector.]

30. A solid occupies a region with surface and is immersed in
a liquid with constant density . We set up a coordinate system
so that the -plane coincides with the surface of the liquid and
positive values of are measured downward into the liquid.
Then the pressure at depth is , where is the acceler-
ation due to gravity (see Section 8.3). The total buoyant force
on the solid due to the pressure distribution is given by the sur-
face integral

where is the outer unit normal. Use the result of Exercise 29
to show that , where is the weight of the liquid
displaced by the solid. (Note that is directed upward because

is directed downward.) The result is Archimedes’ principle:
The buoyant force on an object equals the weight of the dis-
placed liquid.

z
F

WF � �Wk
n

F � �yy
S

 pn dS

tp � �tzz
z

xy
�

SE

c
F � f c

yy
S

 f n dS � yyy
E

 � f dV

f
ES

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

yy
S

 � f �t � t� f � � n dS � yyy
E

 � f � 2
t � t� 2f � dV

yy
S

 � f �t� � n dS � yyy
E

 � f � 2
t � � f � �t� dV

yy
S

 Dn f dS � yyy
E

 � 2f dV

yy
S

 curl F � dS � 0

F�x, y, z� � x i � y j � z kV�E � � 1
3 yy

S

 F � dS

ayy
S

 a � n dS � 023.

ES



|||| 16.10 S u m m a r y

The main results of this chapter are all higher-dimensional versions of the Fundamental
Theorem of Calculus. To help you remember them, we collect them together here (with-
out hypotheses) so that you can see more easily their essential similarity. Notice that in
each case we have an integral of a “derivative” over a region on the left side, and the right
side involves the values of the original function only on the boundary of the region.

Fundamental Theorem of Calculus

Fundamental Theorem for Line Integrals

Green’s Theorem

Stokes’ Theorem

Divergence Theorem E

S

n

nyyy
E

 div F dV � yy
S

 F � dS

C

S

n

yy
S

 curl F � dS � y
C
 F � dr

C

Dyy
D

 ��Q

�x
�

�P

�y � dA � y
C
 P dx � Q dy

r(a)

r(b)

C
y

C
 � f � dr � f �r�b�� � f �r�a��

a by
b

a
 F��x� dx � F�b� � F�a�
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1. What is a vector field? Give three examples that have physical
meaning.

2. (a) What is a conservative vector field?
(b) What is a potential function?

3. (a) Write the definition of the line integral of a scalar function
along a smooth curve with respect to arc length.

(b) How do you evaluate such a line integral?
(c) Write expressions for the mass and center of mass of a thin

wire shaped like a curve if the wire has linear density
function .

(d) Write the definitions of the line integrals along of a
scalar function with respect to , , and .

(e) How do you evaluate these line integrals?

4. (a) Define the line integral of a vector field along a smooth
curve given by a vector function .

(b) If is a force field, what does this line integral represent?
(c) If , what is the connection between the line

integral of and the line integrals of the component func-
tions , , and ?

5. State the Fundamental Theorem for Line Integrals.

6. (a) What does it mean to say that is independent 
of path?

(b) If you know that is independent of path, what can
you say about ?

7. State Green’s Theorem.

8. Write expressions for the area enclosed by a curve in terms
of line integrals around .

9. Suppose is a vector field on .
(a) Define curl .
(b) Define div .F

F
�3F

C
C

F
xC F � dr

xC F � dr

RQP
F

F � �P, Q, R�
F

r�t�C
F

zyxf
C

��x, y�
C

Cf

(c) If is a velocity field in fluid flow, what are the physical
interpretations of curl and div ?

10. If , how do you test to determine whether is
conservative? What if is a vector field on ?

11. (a) What is a parametric surface? What are its grid curves?
(b) Write an expression for the area of a parametric surface.
(c) What is the area of a surface given by an equation

?

12. (a) Write the definition of the surface integral of a scalar func-
tion over a surface .

(b) How do you evaluate such an integral if is a parametric
surface given by a vector function ?

(c) What if is given by an equation ?
(d) If a thin sheet has the shape of a surface , and the density

at is , write expressions for the mass and
center of mass of the sheet.

13. (a) What is an oriented surface? Give an example of a non-
orientable surface.

(b) Define the surface integral (or flux) of a vector field F over
an oriented surface S with unit normal vector n.

(c) How do you evaluate such an integral if S is a parametric
surface given by a vector function ?

(d) What if S is given by an equation ?

14. State Stokes’ Theorem.

15. State the Divergence Theorem.

16. In what ways are the Fundamental Theorem for Line Integrals,
Green’s Theorem, Stokes’ Theorem, and the Divergence Theo-
rem similar?

z � t�x, y�
r�u, v�

��x, y, z��x, y, z�
S

z � t�x, y�S
r�u, v�

S
Sf

z � t�x, y�

�3F
FF � P i � Q j

FF
F

|||| 16 Review
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Determine whether the statement is true or false. If it is true, explain why.
If it is false, explain why or give an example that disproves the statement.

1. If is a vector field, then div is a vector field.

2. If is a vector field, then curl is a vector field.

3. If has continuous partial derivatives of all orders on , then
.

4. If has continuous partial derivatives on and is any 
circle, then .x

C
 � f � dr � 0

C� 3f

� f � � 0div�curl
� 3f

FF

FF

5. If and in an open region , then is
conservative.

6.

7. If is a sphere and is a constant vector field, then
.

8. There is a vector field such that

curl F � x i � y j � z k

F

xxS F � dS � 0
FS

x
�C f �x, y� ds � �xC f �x, y� ds

FDPy � QxF � P i � Q j
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1. A vector field , a curve , and a point are shown.
(a) Is positive, negative, or zero? Explain.
(b) Is positive, negative, or zero? Explain.

2–9 |||| Evaluate the line integral.

2. ,
is the arc of the parabola from (0, 0) to (1, 1)

3. ,
: , , ,

4. ,
is the sine curve ,

5. ,
is the circle with counterclockwise 

orientation

6. ,
is given by ,

7. ,
consists of the line segments from to and

from to 

8. , where and is given by
,

9. , where and 
is given by ,

10. Find the work done by the force field

in moving a particle from the point to the point
along

(a) A straight line
(b) The helix , ,

11–12 |||| Show that is a conservative vector field. Then find a
function such that .

11.

12.
■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

F�x, y, z� � sin y i � x cos y j � sin z k

F�x, y� � �1 � xy�e xy i � �e y � x 2e xy � j

F � ∇ ff
F

z � 3 sin ty � tx � 3 cos t

�0, ��2, 3�
�3, 0, 0�

F�x, y, z� � z i � x j � y k

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

0 	 t 	 1r�t� � t 2 i � t 3 j � t kC
F�x, y, z� � e z i � xz j � �x � y� kx

C
 F � dr

0 	 t 	 �r�t� � sin t i � �1 � t� j
CF�x, y� � xy i � x 2 jxC F � dr

�3, 1, 4��1, 1, 2�
�1, 1, 2��0, 0, 0�C

xC y dx � z dy � x dz

0 	 t 	 1r�t� � t 4 i � t 2 j � t 3 kC
xC sxy dx � e y dy � xz dz

x 2 � y 2 � 1C
xC x 3y dx � x dy

0 	 x 	 ��2y � sin xC
xC xy dx � y dy

0 	 t 	 ��2z � 2 cos ty � tx � 2 sin tC
xC x 3z ds

y � x 2C
xC x ds

y

x

P

C

div F�P�
xC F � dr

PCF 13–14 |||| Show that is conservative and use this fact to evaluate
along the given curve.

13. ,
: ,

14. ,
is the line segment from to 

15. Verify that Green’s Theorem is true for the line integral
, where consists of the parabola 

from to and the line segment from to
.

16. Use Green’s Theorem to evaluate

where is the triangle with vertices , , and 

17. Use Green’s Theorem to evaluate , where 
is the circle with counterclockwise orientation.

18. Find curl and div if

19. Show that there is no vector field such that

20. Show that, under conditions to be stated on the vector fields 
and ,

21. If is any piecewise-smooth simple closed plane curve and 
and are differentiable functions, show that

22. If and are twice differentiable functions, show that

23. If is a harmonic function, that is, , show that the line
integral is independent of path in any simple
region .

24. (a) Sketch the curve with parametric equations

(b) Find .

25. Find the area of the part of the surface that lies
above the triangle with vertices , , and .

26. (a) Find an equation of the tangent plane at the point
to the parametric surface S given by

, �3 	 v 	 30 	 u 	 3r�u, v� � v2 i � uv j � u 2 k

�4, �2, 1�

�1, 2��1, 0��0, 0�
z � x 2 � 2y

xC 2xe 2y dx � �2x 2e 2y � 2y cot z� dy � y 2 csc2z dz

0 	 t 	 2�z � sin ty � sin tx � cos t

C

D
x fy dx � fx dy

� 2 f � 0f

� 2� ft� � f � 2
t � t� 2f � 2� f � �t

tf

y
C
 f �x� dx � t�y� dy � 0

t

fC

curl�F 
 G� � F div G � G div F � �G � � �F � �F � � �G

G
F

curl G � 2x i � 3yz j � xz2 k

G

F�x, y, z� � e�x sin y i � e�y sin z j � e�z sin x k

FF

x 2 � y 2 � 4
CxC x 2 y dx � xy 2 dy

�1, 3�.�1, 0��0, 0�C

y
C
 s1 � x 3 dx � 2xy dy

��1, 1�
�1, 1��1, 1���1, 1�

y � x 2Cx
C
 xy 2 dx � x 2 y dy

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

�4, 0, 3��0, 2, 0�C
F�x, y, z� � e y i � �xe y � e z� j � ye z k

0 	 t 	 1r�t� � �t � sin � t� i � �2t � cos � t� jC
F�x, y� � �4x 3y 2 � 2xy 3� i � �2x 4 y � 3x 2y 2 � 4y 3� j

x
C
 F � dr

F
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; (b) Use a computer to graph the surface and the tangent
plane found in part (a).

(c) Set up, but do not evaluate, an integral for the surface area
of .

(d) If

find correct to four decimal places.

27–30 |||| Evaluate the surface integral.

27. , where is the part of the paraboloid that
lies under the plane 

28. , where is the part of the plane
that lies inside the cylinder 

29. , where and is the
sphere with outward orientation

30. , where and is the
part of the paraboloid below the plane with
upward orientation

31. Verify that Stokes’ Theorem is true for the vector field

where is the part of the paraboloid that lies
above the -plane and has upward orientation.

32. Use Stokes’ Theorem to evaluate , where
, is the part of the sphere

that lies above the plane , and is ori-
ented upward.

33. Use Stokes’ Theorem to evaluate , where
and is the triangle with ver-

tices , , and , oriented counterclockwise
as viewed from above.

34. Use the Divergence Theorem to calculate the surface integral
, where and is the

surface of the solid bounded by the cylinder and
the planes and .

35. Verify that the Divergence Theorem is true for the vector field

where is the unit ball .

36. Compute the outward flux of

through the ellipsoid .4x 2 � 9y 2 � 6z2 � 36

F�x, y, z� �
x i � y j � z k

�x 2 � y 2 � z2 �3�2

x 2 � y 2 � z2 	 1E

F�x, y, z� � x i � y j � z k

z � 2z � 0
x 2 � y 2 � 1

SF�x, y, z� � x 3 i � y 3 j � z3 kxx
S
 F � dS

�0, 0, 1��0, 1, 0��1, 0, 0�
CF�x, y, z� � xy i � yz j � zx k

xC F � dr

Sz � 1x 2 � y 2 � z2 � 5
SF�x, y, z� � x 2 yz i � yz2 j � z3e xy k

xxS curl F � dS

Sxy
z � 1 � x 2 � y 2S

F�x, y, z� � x 2 i � y 2 j � z2 k

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

z � 1z � x 2 � y 2
SF�x, y, z� � x 2 i � xy j � z kxxS F � dS

x 2 � y 2 � z2 � 4
SF�x, y, z� � xz i � 2y j � 3x kxx

S
 F � dS

x 2 � y 2 � 4z � 4 � x � y
Sxx

S
 �x 2z � y 2z� dS

z � 4
z � x 2 � y 2Sxx

S
 z dS

xx
S
 F � dS

F�x, y, z� �
z2

1 � x 2  i �
x 2

1 � y 2  j �
 y 2

1 � z2  k

CAS

S

S 37. Let

Evaluate , where is the curve with initial point
and terminal point shown in the figure.

38. Let

Evaluate , where is shown in the figure.

39. Find , where and is
the outwardly oriented surface shown in the figure (the bound-
ary surface of a cube with a unit corner cube removed).

40. If the components of have continuous second partial deriva-
tives and is the boundary surface of a simple solid region,
show that .xx

S
 curl F � dS � 0

S
F

y

z

x

(0, 2, 2)

(2, 0, 2)

(2, 2, 0)

1

1

S

1

SF�x, y, z� � x i � y j � z kxxS F � n dS

0 x

y

C

C�xC F � dr

F�x, y� �
�2x 3 � 2xy 2 � 2y� i � �2y 3 � 2x 2 y � 2x� j

x 2 � y 2

0

z

x

y

(0, 0, 2)

(0, 3, 0)

(1, 1, 0)

(3, 0, 0)

�0, 3, 0��0, 0, 2�
CxC F � dr

F�x, y, z� � �3x 2 yz � 3y� i � �x 3z � 3x� j � �x 3 y � 2z� k



1. Let be a smooth parametric surface and let be a point such that each line that starts at 
intersects at most once. The solid angle subtended by at is the set of lines starting
at and passing through . Let be the intersection of with the surface of the sphere
with center and radius . Then the measure of the solid angle (in steradians) is defined to be

Apply the Divergence Theorem to the part of between and to show that

where is the radius vector from to any point on , , and the unit normal vector is
directed away from .

This shows that the definition of the measure of a solid angle is independent of the radius 
of the sphere. Thus, the measure of the solid angle is equal to the area subtended on a unit
sphere. (Note the analogy with the definition of radian measure.) The total solid angle sub-
tended by a sphere at its center is thus steradians.

2. Find the positively oriented simple closed curve for which the value of the line integral

is a maximum.

3. Let be a simple closed piecewise-smooth space curve that lies in a plane with unit normal
vector and has positive orientation with respect to . Show that the plane area
enclosed by is

1
2 y

C
 �bz � cy� dx � �cx � az� dy � �ay � bx� dz 

C
nn � �a, b, c�

C

y
C
 �y 3 � y� dx � 2x 3 dy 

C

P

S

S(a)

a

4�

a
P

nr � � r �SPr

� ��S � � � yy
S

 
r � n

r 3   dS

SS�a���S �

� ��S � � �
area of S�a�

a 2

aP
��S �S�a�SP

PS��S �S
PPS

PROBLEMS 
PLUS



4. The figure depicts the sequence of events in each cylinder of a four-cylinder internal combus-
tion engine. Each piston moves up and down and is connected by a pivoted arm to a rotating
crankshaft. Let and be the pressure and volume within a cylinder at time , where

gives the time required for a complete cycle. The graph shows how and vary
through one cycle of a four-stroke engine.

During the intake stroke (from ① to ②) a mixture of air and gasoline at atmospheric pres-
sure is drawn into a cylinder through the intake valve as the piston moves downward. Then the
piston rapidly compresses the mix with the valves closed in the compression stroke (from ② to
③) during which the pressure rises and the volume decreases. At ③ the sparkplug ignites the
fuel, raising the temperature and pressure at almost constant volume to ④. Then, with valves
closed, the rapid expansion forces the piston downward during the power stroke (from ④ to
⑤). The exhaust valve opens, temperature and pressure drop, and mechanical energy stored in
a rotating flywheel pushes the piston upward, forcing the waste products out of the exhaust
valve in the exhaust stroke. The exhaust valve closes and the intake valve opens. We’re now
back at ① and the cycle starts again.
(a) Show that the work done on the piston during one cycle of a four-stroke engine is

, where is the curve in the -plane shown in the figure.
[Hint: Let be the distance from the piston to the top of the cylinder and note that

the force on the piston is , where is the area of the top of the piston. Then
, where is given by . An alternative approach is

to work directly with Riemann sums.]
(b) Use Formula 16.4.5 to show that the work is the difference of the areas enclosed by the

two loops of .C

r�t� � x�t� i, a � t � bC1W � x
C 1

 F � dr
AF � AP�t� i

x�t�
PVCW � xC P dV

P

V0

C

! @

#

$

%

In
ta

ke

C
om

pr
es

si
on

Ex
pl

os
io

n

Ex
ha

us
tio

n

Flywheel

Crankshaft
Connecting rod

Water

VPa � t � b
tV�t�P�t�



Second-Order Differential Equations

The charge in an electric

circuit is governed by the

differential equations that 

we solve in Section 17.3.



The basic ideas of differential equations were explained in 

Chapter 9; there we concentrated on first-order equations. In this 

chapter we study second-order linear differential equations and

learn how they can be applied to solve problems concerning the

vibrations of springs and electric circuits. We will also see how

infinite series can be used to solve differential equations.

|||| 17.1 S e c o n d - O r d e r  L i n e a r  E q u a t i o n s

A second-order linear differential equation has the form

where , , , and are continuous functions. We saw in Section 9.1 that equations of
this type arise in the study of the motion of a spring. In Section 17.3 we will further pur-
sue this application as well as the application to electric circuits.

In this section we study the case where , for all , in Equation 1. Such equa-
tions are called homogeneous linear equations. Thus, the form of a second-order linear
homogeneous differential equation is

If for some , Equation 1 is nonhomogeneous and is discussed in Section 17.2.
Two basic facts enable us to solve homogeneous linear equations. The first of these says

that if we know two solutions and of such an equation, then the linear combination
is also a solution.

Theorem If and are both solutions of the linear homogeneous equa-
tion (2) and and are any constants, then the function

is also a solution of Equation 2.

Proof Since and are solutions of Equation 2, we have

and  P�x�y2� � Q�x�y2� � R�x�y2 � 0

 P�x�y1� � Q�x�y1� � R�x�y1 � 0

y2y1

y�x� � c1y1�x� � c2y2�x�

c2c1

y2�x�y1�x�3

y � c1y1 � c2y2

y2y1

xG�x� � 0

P�x� 
d 2y

dx 2 � Q�x� 
dy

dx
� R�x�y � 02

xG�x� � 0

GRQP

P�x� 
d 2y

dx 2 � Q�x� 
dy

dx
� R�x�y � G�x�1



Therefore, using the basic rules for differentiation, we have

Thus, is a solution of Equation 2.

The other fact we need is given by the following theorem, which is proved in more
advanced courses. It says that the general solution is a linear combination of two linearly
independent solutions and This means that neither nor is a constant multiple
of the other. For instance, the functions and are linearly dependent,
but and are linearly independent.

Theorem If and are linearly independent solutions of Equation 2, and 
is never 0, then the general solution is given by

where and are arbitrary constants.

Theorem 4 is very useful because it says that if we know two particular linearly inde-
pendent solutions, then we know every solution.

In general, it is not easy to discover particular solutions to a second-order linear equa-
tion. But it is always possible to do so if the coefficient functions , , and are constant
functions, that is, if the differential equation has the form

where , , and are constants and .
It’s not hard to think of some likely candidates for particular solutions of Equation 5 if

we state the equation verbally. We are looking for a function such that a constant times
its second derivative plus another constant times plus a third constant times is equal
to 0. We know that the exponential function (where is a constant) has the prop-
erty that its derivative is a constant multiple of itself: . Furthermore, .
If we substitute these expressions into Equation 5, we see that is a solution if

or

But is never 0. Thus, is a solution of Equation 5 if is a root of the equation

Equation 6 is called the auxiliary equation (or characteristic equation) of the differen-
tial equation . Notice that it is an algebraic equation that is obtained
from the differential equation by replacing by , by , and by .1yry�r 2y�

ay� � by� � cy � 0

ar 2 � br � c � 06

ry � erxe rx

 �ar 2 � br � c�erx � 0

 ar 2erx � brerx � cerx � 0

y � erx
y� � r 2erxy� � re rx

ry � erx
yy�y�

y

a � 0cba

ay� � by� � cy � 05

RQP

c2c1

y�x� � c1y1�x� � c2y2�x�

P�x�y2y14

t�x� � xexf �x� � ex
t�x� � 5x 2f �x� � x 2

y2y1y2.y1

y � c1y1 � c2y2

 � c1�0� � c2�0� � 0

 � c1�P�x�y1� � Q�x�y1� � R�x�y1� � c2 �P�x�y2� � Q�x�y2� � R�x�y2�

 � P�x��c1y1� � c2y2�� � Q�x��c1y1� � c2y2�� � R�x��c1y1 � c2y2�

 � P�x��c1y1 � c2y2�� � Q�x��c1y1 � c2y2�� � R�x��c1y1 � c2y2�

P�x�y� � Q�x�y� � R�x�y
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Sometimes the roots and of the auxiliary equation can be found by factoring. In
other cases they are found by using the quadratic formula:

We distinguish three cases according to the sign of the discriminant .

CASE I ■■

In this case the roots and of the auxiliary equation are real and distinct, so 
and are two linearly independent solutions of Equation 5. (Note that is not a
constant multiple of .) Therefore, by Theorem 4, we have the following fact.

If the roots and of the auxiliary equation are real and
unequal, then the general solution of is

EXAMPLE 1 Solve the equation .

SOLUTION The auxiliary equation is

whose roots are , . Therefore, by (8) the general solution of the given differen-
tial equation is

We could verify that this is indeed a solution by differentiating and substituting into the
differential equation.

EXAMPLE 2 Solve .

SOLUTION To solve the auxiliary equation we use the quadratic 
formula:

Since the roots are real and distinct, the general solution is

CASE II ■■

In this case ; that is, the roots of the auxiliary equation are real and equal. Let’s
denote by the common value of and Then, from Equations 7, we have

2ar � b � 0sor � �
b

2a
9

r2.r1r
r1 � r2

b 2 � 4ac � 0

y � c1e (�1�s13 )x�6 � c2e (�1�s13 )x�6

r �
�1 � s13

6

3r 2 � r � 1 � 0

3 
d 2y

dx 2 �
dy

dx
� y � 0

y � c1e 2x � c2e�3x

�3r � 2

r 2 � r � 6 � �r � 2��r � 3� � 0

y� � y� � 6y � 0

y � c1er1x � c2er2 x

ay� � by� � cy � 0
ar 2 � br � c � 0r2r18

er1x
e r2 xy2 � er2 x

y1 � er1xr2r1

b2 � 4ac � 0

b 2 � 4ac

r2 �
�b � sb 2 � 4ac

2a
r1 �

�b � sb 2 � 4ac

2a
7

r2r1
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_5

_1 1

5f+g
f+5g

f g

f-g
g-f

f+g

FIGURE 1

|||| In Figure 1 the graphs of the basic solutions
and of the differential

equation in Example 1 are shown in black and
red, respectively. Some of the other solutions, 
linear combinations of and , are shown 
in blue.

tf

t�x� � e�3xf �x� � e 2x



We know that is one solution of Equation 5. We now verify that is also
a solution:

The first term is 0 by Equations 9; the second term is 0 because is a root of the auxiliary
equation. Since and are linearly independent solutions, Theorem 4 pro-
vides us with the general solution.

If the auxiliary equation has only one real root , then the
general solution of is

EXAMPLE 3 Solve the equation .

SOLUTION The auxiliary equation can be factored as

so the only root is . By (10) the general solution is

CASE III ■■

In this case the roots and of the auxiliary equation are complex numbers. (See Appen-
dix G for information about complex numbers.) We can write

where and are real numbers. [In fact, , .] Then,
using Euler’s equation

from Appendix G, we write the solution of the differential equation as

where , . This gives all solutions (real or complex) of the dif-
ferential equation. The solutions are real when the constants and are real. We sum-
marize the discussion as follows.

c2c1

c2 � i�C1 � C2�c1 � C1 � C2

 � e � x�c1 cos 	x � c2 sin 	x�

 � e � x��C1 � C2 � cos 	x � i�C1 � C2 � sin 	x�

 � C1e � x�cos 	x � i sin 	x� � C2e � x�cos 	x � i sin 	x�

  y � C1er1x � C2er2 x � C1e ���i	�x � C2e ���i	�x

e i
 � cos 
 � i sin 


	 � s4ac � b 2��2a�� � �b��2a�	�

r2 � � � i	r1 � � � i	

r2r1

b 2 � 4ac � 0

y � c1e�3x�2 � c2 xe�3x�2

r � �
3
2

�2r � 3�2 � 0

4r 2 � 12r � 9 � 0

4y� � 12y� � 9y � 0

y � c1erx � c2 xerx

ay� � by� � cy � 0
rar 2 � br � c � 010

y2 � xerxy1 � erx
r

 � 0�erx � � 0�xerx� � 0

 � �2ar � b�erx � �ar 2 � br � c�xerx

 ay2� � by2� � cy2 � a�2re rx � r 2xerx� � b�erx � rxe rx � � cxerx

y2 � xerxy1 � erx
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|||| Figure 2 shows the basic solutions
and in 

Example 3 and some other members of the 
family of solutions. Notice that all of them
approach 0 as .x l �

t�x� � xe�3x�2f �x� � e�3x�2

FIGURE 2
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If the roots of the auxiliary equation are the complex num-
bers , , then the general solution of 
is

EXAMPLE 4 Solve the equation .

SOLUTION The auxiliary equation is . By the quadratic formula, the
roots are

By (11) the general solution of the differential equation is

I n i t i a l - V a l u e  a n d  B o u n d a r y - V a l u e  P r o b l e m s

An initial-value problem for the second-order Equation 1 or 2 consists of finding a solu-
tion of the differential equation that also satisfies initial conditions of the form

where and are given constants. If , , , and are continuous on an interval and
there, then a theorem found in more advanced books guarantees the existence

and uniqueness of a solution to this initial-value problem. Examples 5 and 6 illustrate the
technique for solving such a problem.

EXAMPLE 5 Solve the initial-value problem

SOLUTION From Example 1 we know that the general solution of the differential equa-
tion is

Differentiating this solution, we get

To satisfy the initial conditions we require that

From (13) we have and so (12) gives

Thus, the required solution of the initial-value problem is

y � 3
5 e 2x �

2
5 e�3x

c2 � 2
5 c1 � 3

5c1 �
2
3 c1 � 1

c2 � 2
3 c1

 y��0� � 2c1 � 3c2 � 013

 y�0� � c1 � c2 � 112

y��x� � 2c1e 2x � 3c2e�3x

y�x� � c1e 2x � c2e�3x

y��0� � 0y�0� � 1y� � y� � 6y � 0

P�x� � 0
GRQPy1y0

y��x0 � � y1y�x0 � � y0

y

y � e 3x�c1 cos 2x � c2 sin 2x�

r �
6 � s36 � 52

2
�

6 � s�16

2
� 3 � 2i

r 2 � 6r � 13 � 0

y� � 6y� � 13y � 0

y � e � x�c1 cos 	x � c2 sin 	x�

ay� � by� � cy � 0r2 � � � i	r1 � � � i	
ar 2 � br � c � 011
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|||| Figure 3 shows the graphs of the solu-
tions in Example 4, and

, together with some linear
combinations. All solutions approach 0 
as .x l ��

t�x� � e 3x sin 2x
f �x� � e 3x cos 2x

FIGURE 3

3

_3

_3 2
f

g

f-g

f+g

|||| Figure 4 shows the graph of the solution of
the initial-value problem in Example 5. Compare
with Figure 1.

FIGURE 4

20

0
_2 2
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EXAMPLE 6 Solve the initial-value problem

SOLUTION The auxiliary equation is , or , whose roots are . Thus
, , and since , the general solution is

Since

the initial conditions become

Therefore, the solution of the initial-value problem is

A boundary-value problem for Equation 1 consists of finding a solution y of the dif-
ferential equation that also satisfies boundary conditions of the form

In contrast with the situation for initial-value problems, a boundary-value problem does
not always have a solution.

EXAMPLE 7 Solve the boundary-value problem

SOLUTION The auxiliary equation is

whose only root is . Therefore, the general solution is

The boundary conditions are satisfied if

The first condition gives , so the second condition becomes

Solving this equation for by first multiplying through by , we get

so

Thus, the solution of the boundary-value problem is

y � e�x � �3e � 1�xe�x

c2 � 3e � 11 � c2 � 3e

ec2

e�1 � c2e�1 � 3

c1 � 1

 y�1� � c1e�1 � c2e�1 � 3

 y�0� � c1 � 1

y�x� � c1e�x � c2 xe�x

r � �1

�r � 1�2 � 0orr 2 � 2r � 1 � 0

y�1� � 3y�0� � 1y� � 2y� � y � 0

y�x1� � y1y�x0 � � y0

y�x� � 2 cos x � 3 sin x

y��0� � c2 � 3y�0� � c1 � 2

 y��x� � �c1 sin x � c2 cos x

 y�x� � c1 cos x � c2 sin x

e 0x � 1	 � 1� � 0
�ir 2 � �1r 2 � 1 � 0

y��0� � 3y�0� � 2y� � y � 0

■■ The solution to Example 6 is graphed in 
Figure 5. It appears to be a shifted sine curve
and, indeed, you can verify that another way of
writing the solution is

where tan  � 2
3y � s13 sin�x � �

|||| Figure 6 shows the graph of the solution of
the boundary-value problem in Example 7.

FIGURE 5

5

_5

_2π 2π

FIGURE 6

5

_5

_1 5
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Summary: Solutions of ay�� � by� � c � 0

Roots of General solution

y � e� x�c1 cos 	x � c2 sin 	x�r1, r2 complex: � � i	
y � c1erx � c2 xerxr1 � r2 � r
y � c1er1x � c2er2 xr1, r2 real and distinct

ar 2 � br � c � 0

20. , ,

, ,

22. , ,

, ,

24. , ,

25–32 |||| Solve the boundary-value problem, if possible.

25. , ,

26. , ,

27. , ,

28. , ,

29. , ,

, ,

31. , ,

32. , ,

33. Let be a nonzero real number.
(a) Show that the boundary-value problem ,

, has only the trivial solution for
the cases and .

(b) For the case , find the values of for which this prob-
lem has a nontrivial solution and give the corresponding
solution.

34. If , , and are all positive constants and is a solution 
of the differential equation , show that

.lim x l � y�x� � 0
ay� � by� � cy � 0

y�x�cba

�� � 0
� � 0� � 0

y � 0y�L� � 0y�0� � 0
y� � �y � 0

L

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

y��� � 1y�0� � 09y� � 18y� � 10y � 0

y���2� � 1y�0� � 2y� � 4y� � 13y � 0

y�1� � 0y�0� � 1y� � 6y� � 9y � 030.

y��� � 2y�0� � 1y� � 6y� � 25y � 0

y��� � 5y�0� � 2y� � 100y � 0

y�3� � 0y�0� � 1y� � 3y� � 2y � 0

y�1� � 2y�0� � 1y� � 2y� � 0

y��� � �4y�0� � 34y� � y � 0

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

y��1� � 1y�1� � 0y� � 12y� � 36y � 0

y��0� � 1y�0� � 2y� � 2y� � 2y � 023.

y���� � 2y��� � 0y� � 2y� � 5y � 0

y����4� � 4y���4� � �3y� � 16y � 021.

y��0� � 4y�0� � 12y� � 5y� � 3y � 01–13 |||| Solve the differential equation.

1. 2.

4.

5. 6.

7. 8.

10.

12.

13.

; 14–16 |||| Graph the two basic solutions of the differential equation
and several other solutions. What features do the solutions have in
common?

14.

15.

16.

17–24 |||| Solve the initial-value problem.

, ,

18. , ,

19. , , y��0� � �1.5y�0� � 14y� � 4y� � y � 0

y��0� � 3y�0� � 1y� � 3y � 0

y��0� � �4y�0� � 32y� � 5y� � 3y � 017.

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

d 2y

dx 2 � 2 
dy

dx
� 5y � 0

d 2y

dx 2 � 8 
dy

dx
� 16y � 0

6 
d 2y

dx 2 �
dy

dx
� 2y � 0

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

d 2y

dt 2 �
dy

dt
� y � 0

d 2y

dt 2 � 6 
dy

dt
� 4y � 0

d 2y

dt 2 � 2 
dy

dt
� y � 011.

9y� � 4y � 04y� � y� � 09.

16y� � 24y� � 9y � 04y� � y � 0

3y� � 5y�y� � 2y� � y � 0

2y� � y� � y � 0y� � 8y� � 41y � 03.

y� � 4y� � 8y � 0y� � 6y� � 8y � 0

|||| 17.2 N o n h o m o g e n e o u s  L i n e a r  E q u a t i o n s

In this section we learn how to solve second-order nonhomogeneous linear differential equa-
tions with constant coefficients, that is, equations of the form

ay� � by� � cy � G�x�1

|||| 17.1 Exercises



where , , and are constants and is a continuous function. The related homogeneous
equation

is called the complementary equation and plays an important role in the solution of the
original nonhomogeneous equation (1).

Theorem The general solution of the nonhomogeneous differential equation (1)
can be written as

where is a particular solution of Equation 1 and is the general solution of the
complementary Equation 2.

Proof All we have to do is verify that if is any solution of Equation 1, then is a
solution of the complementary Equation 2. Indeed

We know from Section 17.1 how to solve the complementary equation. (Recall that the
solution is , where and are linearly independent solutions of Equa-
tion 2.) Therefore, Theorem 3 says that we know the general solution of the nonhomoge-
neous equation as soon as we know a particular solution . There are two methods for
finding a particular solution: The method of undetermined coefficients is straightforward
but works only for a restricted class of functions . The method of variation of parameters
works for every function but is usually more difficult to apply in practice.

T h e  M e t h o d  o f  U n d e t e r m i n e d  C o e f f i c i e n t s

We first illustrate the method of undetermined coefficients for the equation

where ) is a polynomial. It is reasonable to guess that there is a particular solution 
that is a polynomial of the same degree as because if is a polynomial, then

is also a polynomial. We therefore substitute a polynomial (of the
same degree as ) into the differential equation and determine the coefficients.

EXAMPLE 1 Solve the equation .

SOLUTION The auxiliary equation of is

with roots , . So the solution of the complementary equation is

yc � c1ex � c2e�2x

�2r � 1

r 2 � r � 2 � �r � 1��r � 2� � 0

y� � y� � 2y � 0

y� � y� � 2y � x 2

G
yp�x� �ay� � by� � cy

yGyp

G�x

ay� � by� � cy � G�x�

G
G

yp

y2y1yc � c1y1 � c2y2

� t�x� � t�x� � 0

 � �ay� � by� � cy� � �ayp� � byp� � cyp �

 a�y � yp �� � b�y � yp �� � c�y � yp � � ay� � ayp� � by� � byp� � cy � cyp

y � ypy

ycyp

y�x� � yp�x� � yc�x�

3

ay� � by� � cy � 02

Gcba
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Since is a polynomial of degree 2, we seek a particular solution of the form

Then and so, substituting into the given differential equation, we
have

or

Polynomials are equal when their coefficients are equal. Thus

The solution of this system of equations is

A particular solution is therefore

and, by Theorem 3, the general solution is

If (the right side of Equation 1) is of the form , where and are constants,
then we take as a trial solution a function of the same form, , because the
derivatives of are constant multiples of .

EXAMPLE 2 Solve .

SOLUTION The auxiliary equation is with roots , so the solution of the
complementary equation is

For a particular solution we try . Then and . Substi-
tuting into the differential equation, we have

so and . Thus, a particular solution is

and the general solution is

If is either or , then, because of the rules for differentiating the
sine and cosine functions, we take as a trial particular solution a function of the form 

yp�x� � A cos kx � B sin kx

C sin kxC cos kxG�x�

y�x� � c1 cos 2x � c2 sin 2x �
1
13 e 3x

yp�x� � 1
13 e 3x

A � 1
1313Ae 3x � e 3x

9Ae 3x � 4�Ae 3x � � e 3x

yp� � 9Ae 3xyp� � 3Ae 3xyp�x� � Ae 3x

yc�x� � c1 cos 2x � c2 sin 2x

�2ir 2 � 4 � 0

y� � 4y � e 3x

e k xe k x
yp�x� � Aek x

kCCek xG�x�

y � yc � yp � c1ex � c2e�2x �
1
2 x 2 �

1
2 x �

3
4 

yp�x� � �
1
2 x 2 �

1
2 x �

3
4

C � �
3
4B � �

1
2A � �

1
2

2A � B � 2C � 02A � 2B � 0�2A � 1

 �2Ax 2 � �2A � 2B�x � �2A � B � 2C � � x 2

 �2A� � �2Ax � B� � 2�Ax 2 � Bx � C � � x 2

yp� � 2Ayp� � 2Ax � B

yp�x� � Ax 2 � Bx � C

G�x� � x 2
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|||| Figure 1 shows four solutions of the differen-
tial equation in Example 1 in terms of the partic-
ular solution and the functions 
and .t�x� � e�2x

f �x� � e xyp

|||| Figure 2 shows solutions of the differential
equation in Example 2 in terms of and the
functions and .
Notice that all solutions approach as 
and all solutions resemble sine functions when 
is negative.

x
x l ��

t�x� � sin 2xf �x� � cos 2x
yp

FIGURE 1

8

_5

_3 3
yp

yp+3g
yp+2f

yp+2f+3g

FIGURE 2

4

_2

_4 2
yp

yp+g

yp+f

yp+f+g
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EXAMPLE 3 Solve .

SOLUTION We try a particular solution

Then

so substitution in the differential equation gives

or

This is true if

The solution of this system is

so a particular solution is

In Example 1 we determined that the solution of the complementary equation is
. Thus, the general solution of the given equation is

If is a product of functions of the preceding types, then we take the trial solu-
tion to be a product of functions of the same type. For instance, in solving the differential
equation

we would try

If is a sum of functions of these types, we use the easily verified principle of super-
position, which says that if and are solutions of

respectively, then is a solution of

EXAMPLE 4 Solve .

SOLUTION The auxiliary equation is with roots , so the solution of the com-
plementary equation is . For the equation we try

yp1�x� � �Ax � B�ex

y� � 4y � xexyc�x� � c1e 2x � c2e�2x
�2r 2 � 4 � 0

y� � 4y � xex � cos 2x

ay� � by� � cy � G1�x� � G2�x�

yp1
� yp2

ay� � by� � cy � G2�x�ay� � by� � cy � G1�x�

yp2
yp1

G�x�

yp�x� � �Ax � B� cos 3x � �Cx � D� sin 3x

y� � 2y� � 4y � x cos 3x

G�x�

y�x� � c1ex � c2e�2x �
1
10 �cos x � 3 sin x�

yc � c1ex � c2e�2x

yp�x� � �
1
10 cos x �

3
10 sin x

B � �
3
10A � �

1
10

�A � 3B � 1and�3A � B � 0

 ��3A � B� cos x � ��A � 3B� sin x � sin x

 ��A cos x � B sin x� � ��A sin x � B cos x� � 2�A cos x � B sin x� � sin x

yp� � �A cos x � B sin xyp� � �A sin x � B cos x

yp�x� � A cos x � B sin x

y� � y� � 2y � sin x



Then , , so substitution in the equation
gives

or

Thus, and , so , , and

For the equation , we try

Substitution gives

or

Therefore, , , and

By the superposition principle, the general solution is

Finally we note that the recommended trial solution sometimes turns out to be a solu-
tion of the complementary equation and therefore can’t be a solution of the nonhomoge-
neous equation. In such cases we multiply the recommended trial solution by (or by 
if necessary) so that no term in is a solution of the complementary equation.

EXAMPLE 5 Solve .

SOLUTION The auxiliary equation is with roots , so the solution of the com-
plementary equation is

Ordinarily, we would use the trial solution

but we observe that it is a solution of the complementary equation, so instead we try

Then

 yp��x� � �2A sin x � Ax cos x � 2B cos x � Bx sin x

 yp��x� � A cos x � Ax sin x � B sin x � Bx cos x

yp�x� � Ax cos x � Bx sin x

yp�x� � A cos x � B sin x

yc�x� � c1 cos x � c2 sin x

�ir 2 � 1 � 0

y� � y � sin x

yp�x�
x 2x

yp

y � yc � yp1 � yp2 � c1e 2x � c2e�2x � ( 1
3 x �

2
9 )ex �

1
8 cos 2x 

yp2
�x� � �

1
8 cos 2x

�8D � 0�8C � 1

 �8C cos 2x � 8D sin 2x � cos 2x

 �4C cos 2x � 4D sin 2x � 4�C cos 2x � D sin 2x� � cos 2x

yp2
�x� � C cos 2x � D sin 2x

y� � 4y � cos 2x

yp1
�x� � (� 1

3 x �
2
9 )ex

B � �
2
9A � �

1
32A � 3B � 0�3A � 1

 ��3Ax � 2A � 3B�ex � xex

 �Ax � 2A � B�ex � 4�Ax � B�ex � xex

yp1� � �Ax � 2A � B�exyp1� � �Ax � A � B�ex
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|||| In Figure 3 we show the particular solution
of the differential equation in

Example 4. The other solutions are given in terms
of and .t�x� � e�2xf �x� � e 2x

yp � yp1
� yp2

FIGURE 3

5

_2

_4 1
yp

yp+g

yp+f

yp+2f+g
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Substitution in the differential equation gives

so , , and

The general solution is

We summarize the method of undetermined coefficients as follows:

1. If , where is a polynomial of degree , then try ,
where is an th-degree polynomial (whose coefficients are determined by 
substituting in the differential equation.)

2. If or , where is an th-degree
polynomial, then try

where and are th-degree polynomials.

Modification: If any term of is a solution of the complementary equation, multiply 
by (or by if necessary).

EXAMPLE 6 Determine the form of the trial solution for the differential equation
.

SOLUTION Here has the form of part 2 of the summary, where , , and
. So, at first glance, the form of the trial solution would be

But the auxiliary equation is , with roots , so the solution
of the complementary equation is

This means that we have to multiply the suggested trial solution by . So, instead, we
use

T h e  M e t h o d  o f  V a r i a t i o n  o f  P a r a m e t e r s

Suppose we have already solved the homogeneous equation and writ-
ten the solution as

where and are linearly independent solutions. Let’s replace the constants (or parame-y2y1

y�x� � c1y1�x� � c2y2�x�4

ay� � by� � cy � 0

yp�x� � xe 2x�A cos 3x � B sin 3x�

x

yc�x� � e 2x�c1 cos 3x � c2 sin 3x�

r � 2 � 3ir 2 � 4r � 13 � 0

yp�x� � e 2x�A cos 3x � B sin 3x�

P�x� � 1
m � 3k � 2G�x�

y� � 4y� � 13y � e 2x cos 3x

x 2x
ypyp

nRQ

yp�x� � ekxQ�x� cos mx � ekxR�x� sin mx

nPG�x� � ekxP�x� sin mxG�x� � ekxP�x� cos mx

nQ�x�
yp�x� � ekxQ�x�nPG�x� � ekxP�x�

y�x� � c1 cos x � c2 sin x �
1
2 x cos x 

yp�x� � �
1
2 x cos x

B � 0A � �
1
2

yp� � yp � �2A sin x � 2B cos x � sin x

FIGURE 4

4

_4

_2π 2π

yp

|||| The graphs of four solutions of the differen-
tial equation in Example 5 are shown in Figure 4.



ters) and in Equation 4 by arbitrary functions and . We look for a particu-
lar solution of the nonhomogeneous equation of the form

(This method is called variation of parameters because we have varied the parameters 
and to make them functions.) Differentiating Equation 5, we get

Since and are arbitrary functions, we can impose two conditions on them. One con-
dition is that is a solution of the differential equation; we can choose the other condition
so as to simplify our calculations. In view of the expression in Equation 6, let’s impose the
condition that

Then

Substituting in the differential equation, we get

or

But and are solutions of the complementary equation, so

and Equation 8 simplifies to

Equations 7 and 9 form a system of two equations in the unknown functions and .
After solving this system we may be able to integrate to find and and then the par-
ticular solution is given by Equation 5.

EXAMPLE 7 Solve the equation , .

SOLUTION The auxiliary equation is with roots , so the solution of
is . Using variation of parameters, we seek a solution 

of the form

Then

Set

u1� sin x � u2� cos x � 010

yp� � �u1� sin x � u2� cos x� � �u1 cos x � u2 sin x�

yp�x� � u1�x� sin x � u2�x� cos x

c1 sin x � c2 cos xy� � y � 0
�ir 2 � 1 � 0

0 � x � ��2y� � y � tan x

u2u1

u2�u1�

a�u1�y1� � u2�y2�� � G9

ay2� � by2� � cy2 � 0anday1� � by1� � cy1 � 0

y2y1

u1�ay1� � by1� � cy1� � u2�ay2� � by2� � cy2 � � a�u1�y1� � u2�y2�� � G8

a�u1�y1� � u2�y2� � u1y1� � u2y2�� � b�u1 y1� � u2y2�� � c�u1y1 � u2y2 � � G

yp� � u1�y1� � u2�y2� � u1y1� � u2y2�

u1�y1 � u2�y2 � 07

yp

u2u1

yp� � �u1�y1 � u2�y2 � � �u1y1� � u2y2��6

c2

c1

yp�x� � u1�x�y1�x� � u2�x�y2�x�5

ay� � by� � cy � G�x�
u2�x�u1�x�c2c1
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Then

For to be a solution we must have

Solving Equations 10 and 11, we get

(We seek a particular solution, so we don’t need a constant of integration here.) Then,
from Equation 10, we obtain

So

(Note that for .) Therefore

and the general solution is

y�x� � c1 sin x � c2 cos x � cos x ln�sec x � tan x�

 � �cos x ln�sec x � tan x�

 yp�x� � �cos x sin x � �sin x � ln�sec x � tan x�� cos x

0 � x � ��2sec x � tan x 	 0

u2�x� � sin x � ln�sec x � tan x�

u2� � �
sin x

cos x
 u1� � �

sin2x

cos x
�

cos2x � 1

cos x
� cos x � sec x

u1�x� � �cos xu1� � sin x

u1��sin2x � cos2x� � cos x tan x

yp� � yp � u1� cos x � u2� sin x � tan x11

yp

yp� � u1� cos x � u2� sin x � u1 sin x � u2 cos x

FIGURE 5

π
2

2.5

_1

0
yp

|||| Figure 5 shows four solutions of the 
differential equation in Example 7.

12.

13–18 |||| Write a trial solution for the method of undetermined
coefficients. Do not determine the coefficients.

13.

14.

15.

17.

19–22 |||| Solve the differential equation using (a) undetermined
coefficients and (b) variation of parameters.

19. 20. y� � 3y� � 2y � sin xy� � 4y � x

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

y� � 4y � e 3x � x sin 2x18.

y� � 2y� � 10y � x 2e�x cos 3x

y� � 3y� � 4y � �x 3 � x�e x16.

y� � 9y� � 1 � xe 9x

y� � 9y� � xe�x cos �x

y� � 9y � e 2x � x 2 sin x

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

2y� � 3y� � y � 1 � cos 2x1–10 |||| Solve the differential equation or initial-value problem
using the method of undetermined coefficients.

1. 2.

3. 4.

6.

7. , ,

8. , ,

, ,

10. , ,

; 11–12 |||| Graph the particular solution and several other solutions.
What characteristics do these solutions have in common?

11. 4y� � 5y� � y � e x

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

y��0� � 0y�0� � 1y� � y� � 2y � x � sin 2x

y��0� � 1y�0� � 2y� � y� � xe x9.

y��0� � 2y�0� � 1y� � 4y � e x cos x

y��0� � 0y�0� � 2y� � y � e x � x 3

y� � 2y� � y � xe�xy� � 4y� � 5y � e�x5.

y� � 6y� � 9y � 1 � xy� � 2y� � sin 4x

y� � 9y � e 3xy� � 3y� � 2y � x 2

|||| 17.2 Exercises



SECTION 17.3 APPLICATIONS OF SECOND-ORDER DIFFERENTIAL EQUATIONS ❙ ❙ ❙ ❙ 1155

22.

23–28 |||| Solve the differential equation using the method of varia-
tion of parameters.

23. ,

24. , 0 � x � ��2y� � y � cot x

0 � x � ��2y� � y � sec x

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

y� � y� � e x

y� � 2y� � y � e2x21.

26.

27.

28.

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

y� � 4y� � 4y �
e�2x

x 3

y� � y �
1

x

y� � 3y� � 2y � sin�e x �

y� � 3y� � 2y �
1

1 � e�x25.

|||| 17.3 A p p l i c a t i o n s  o f  S e c o n d - O r d e r  D i f f e r e n t i a l  E q u a t i o n s

Second-order linear differential equations have a variety of applications in science and
engineering. In this section we explore two of them: the vibration of springs and electric
circuits.

V i b r a t i n g  S p r i n g s

We consider the motion of an object with mass at the end of a spring that is either ver-
tical (as in Figure 1) or horizontal on a level surface (as in Figure 2).

In Section 6.4 we discussed Hooke’s Law, which says that if the spring is stretched (or
compressed) units from its natural length, then it exerts a force that is proportional to :

where is a positive constant (called the spring constant). If we ignore any external resist-
ing forces (due to air resistance or friction) then, by Newton’s Second Law (force equals
mass times acceleration), we have

This is a second-order linear differential equation. Its auxiliary equation is 
with roots , where . Thus, the general solution is

which can also be written as

where (frequency)

(amplitude)

(See Exercise 17.) This type of motion is called simple harmonic motion.

�
 is the phase angle�sin 
 � �
c2

A
cos 
 �

c1

A

 A � sc1
2 � c2

2

 � � sk�m

x�t� � A cos��t � 
�

x�t� � c1 cos �t � c2 sin �t

 � � sk�mr � ��i
mr 2 � k � 0

m 
d 2x

dt 2 � kx � 0orm 
d 2x

dt 2 � �kx1

k

restoring force � �kx

xx

m

FIGURE 2

FIGURE 1

x0 x

equilibrium position

m

m

x

0

x m

equilibrium
position



EXAMPLE 1 A spring with a mass of 2 kg has natural length m. A force of N is
required to maintain it stretched to a length of m. If the spring is stretched to a length
of m and then released with initial velocity 0, find the position of the mass at any
time .

SOLUTION From Hooke’s Law, the force required to stretch the spring is

so . Using this value of the spring constant , together with 
in Equation 1, we have

As in the earlier general discussion, the solution of this equation is

We are given the initial condition that . But, from Equation 2,
Therefore, . Differentiating Equation 2, we get

Since the initial velocity is given as , we have and so the solution is

D a m p e d  V i b r a t i o n s

We next consider the motion of a spring that is subject to a frictional force (in the case of
the horizontal spring of Figure 2) or a damping force (in the case where a vertical spring
moves through a fluid as in Figure 3). An example is the damping force supplied by a
shock absorber in a car or a bicycle.

We assume that the damping force is proportional to the velocity of the mass and acts
in the direction opposite to the motion. (This has been confirmed, at least approximately,
by some physical experiments.) Thus

where is a positive constant, called the damping constant. Thus, in this case, Newton’s
Second Law gives

or

m 
d 2x

dt 2 � c 
dx

dt
� kx � 03

m 
d 2x

dt 2 � restoring force � damping force � �kx � c 
dx

dt

c

damping force � �c 
dx

dt

x�t� � 1
5 cos 8t

c2 � 0x��0� � 0

x��t� � �8c1 sin 8t � 8c2 cos 8t

c1 � 0.2
x�0� � c1.x�0� � 0.2

x�t� � c1 cos 8t � c2 sin 8t2

2 
d 2x

dt 2 � 128x � 0

m � 2kk � 25.6�0.2 � 128

k�0.2� � 25.6

t
0.7

0.7
25.60.5
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FIGURE 3
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Equation 3 is a second-order linear differential equation and its auxiliary equation is
. The roots are

According to Section 17.1 we need to discuss three cases.

CASE I ■■ (overdamping)
In this case and are distinct real roots and

Since , , and are all positive, we have , so the roots and given by
Equations 4 must both be negative. This shows that as . Typical graphs of 

as a function of are shown in Figure 4. Notice that oscillations do not occur. (It’s pos-
sible for the mass to pass through the equilibrium position once, but only once.) This is
because means that there is a strong damping force (high-viscosity oil or grease)
compared with a weak spring or small mass.

CASE II ■■ (critical damping)
This case corresponds to equal roots

and the solution is given by

It is similar to Case I, and typical graphs resemble those in Figure 4 (see Exercise 12), but
the damping is just sufficient to suppress vibrations. Any decrease in the viscosity of the
fluid leads to the vibrations of the following case.

CASE III ■■ (underdamping)
Here the roots are complex:

where

The solution is given by

We see that there are oscillations that are damped by the factor . Since and
, we have so as . This implies that as

that is, the motion decays to 0 as time increases. A typical graph is shown in Figure 5.
t l �;x l 0t l �e��c�2m�t l 0��c�2m� � 0m 	 0

c 	 0e��c�2m�t

x � e��c�2m�t�c1 cos �t � c2 sin �t�

� �
s4mk � c 2

2m

r1

r2
� � �

c

2m
� �i

c2 � 4mk � 0

x � �c1 � c2t�e��c�2m�t

r1 � r2 � �
c

2m

c2 � 4mk � 0

c 2 	 4mk

tx
t l �x l 0

r2r1sc 2 � 4mk � ckmc

x � c1er1t � c2er2t

r2r1

c2 � 4mk 	 0

r2 �
�c � sc 2 � 4mk

2m
r1 �

�c � sc 2 � 4mk

2m
4

mr 2 � cr � k � 0

FIGURE 4
Overdamping

x

t0

x

t0

FIGURE 5
Underdamping

x

t0

x=Ae–(c/2m)t

x=_Ae–(c/2m)t



EXAMPLE 2 Suppose that the spring of Example 1 is immersed in a fluid with damping
constant . Find the position of the mass at any time if it starts from the equili-
brium position and is given a push to start it with an initial velocity of m�s.

SOLUTION From Example 1 the mass is and the spring constant is , so the
differential equation (3) becomes

or

The auxiliary equation is with roots 
and , so the motion is overdamped and the solution is

We are given that , so . Differentiating, we get

so

Since , this gives or . Therefore

F o r c e d  V i b r a t i o n s

Suppose that, in addition to the restoring force and the damping force, the motion of the
spring is affected by an external force . Then Newton’s Second Law gives

Thus, instead of the homogeneous equation (3), the motion of the spring is now governed
by the following nonhomogeneous differential equation:

The motion of the spring can be determined by the methods of Section 17.2.

m 
d 2x

dt 2 � c 
dx

dt
� kx � F�t�5

 � �kx � c 
dx

dt
� F�t�

 m 
d 2x

dt 2 � restoring force � damping force � external force

F�t�

x � 0.05�e�4t � e�16t �

c1 � 0.0512c1 � 0.6c2 � �c1

 x��0� � �4c1 � 16c2 � 0.6

 x��t� � �4c1e�4t � 16c2e�16t

c1 � c2 � 0x�0� � 0

x�t� � c1e�4t � c2e�16t

�16
�4r 2 � 20r � 64 � �r � 4��r � 16� � 0

 
d 2x

dt 2 � 20 
dx

dt
� 64x � 0

 2 
d 2x

dt 2 � 40 
dx

dt
� 128x � 0

k � 128m � 2

0.6
tc � 40
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|||| Figure 6 shows the graph of the position
function for the overdamped motion in Example 2.

FIGURE 6
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A commonly occurring type of external force is a periodic force function

In this case, and in the absence of a damping force ( ), you are asked in Exercise 9 to
use the method of undetermined coefficients to show that

If , then the applied frequency reinforces the natural frequency and the result is
vibrations of large amplitude. This is the phenomenon of resonance (see Exercise 10).

E l e c t r i c  C i r c u i t s

In Sections 9.3 and 9.6 we were able to use first-order separable and linear equations to
analyze electric circuits that contain a resistor and inductor (see Figure 5 on page 603 or
Figure 4 on page 635) or a resistor and capacitor (see Exercise 29 on page 637). Now that
we know how to solve second-order linear equations, we are in a position to analyze the
circuit shown in Figure 7. It contains an electromotive force (supplied by a battery or
generator), a resistor , an inductor , and a capacitor , in series. If the charge on the
capacitor at time is , then the current is the rate of change of with respect 
to : . As in Section 9.6, it is known from physics that the voltage drops across
the resistor, inductor, and capacitor are

respectively. Kirchhoff’s voltage law says that the sum of these voltage drops is equal to
the supplied voltage:

Since , this equation becomes

which is a second-order linear differential equation with constant coefficients. If the charge
and the current are known at time 0, then we have the initial conditions

and the initial-value problem can be solved by the methods of Section 17.2.

Q��0� � I�0� � I0Q�0� � Q0

I0Q0

L 
d 2Q

dt 2 � R 
dQ

dt
�

1

C
 Q � E�t�7

I � dQ�dt

L 
dI

dt
� RI �

Q

C
� E�t�

Q

C
L 

dI

dt
RI

I � dQ�dtt
QQ � Q�t�t

CLR
E

�0 � �

x�t� � c1 cos �t � c2 sin �t �
F0

m��2 � � 0
2 �

 cos �0t 6

c � 0

where �0 � � � sk�mF�t� � F0 cos �0t
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A differential equation for the current can be obtained by differentiating Equation 7
with respect to and remembering that :

EXAMPLE 3 Find the charge and current at time in the circuit of Figure 7 if ,
H, F, , and the initial charge and current are

both 0.

SOLUTION With the given values of , , , and , Equation 7 becomes

The auxiliary equation is with roots

so the solution of the complementary equation is

For the method of undetermined coefficients we try the particular solution

Then

Substituting into Equation 8, we have

or

Equating coefficients, we have

or
or

The solution of this system is and , so a particular solution is

and the general solution is

� e�20t�c1 cos 15t � c2 sin 15t� �
4

697 �21 cos 10t � 16 sin 10t�Q�t� � Qc�t� � Qp�t�

Qp�t� � 1
697 �84 cos 10t � 64 sin 10t�

B � 64
697A � 84

697

 �16A � 21B � 0 �400A � 525B � 0

 21A � 16B � 4 525A � 400B � 100

�525A � 400B� cos 10t � ��400A � 525B� sin 10t � 100 cos 10t

� 625�A cos 10t � B sin 10t� � 100 cos 10t

��100A cos 10t � 100B sin 10t� � 40��10A sin 10t � 10B cos 10t�

 Qp��t� � �100A cos 10t � 100B sin 10t

 Qp��t� � �10A sin 10t � 10B cos 10t

 Qp�t� � A cos 10t � B sin 10t

Qc�t� � e�20t�c1 cos 15t � c2 sin 15t�

r �
�40 � s�900

2
� �20 � 15i

r 2 � 40r � 625 � 0

d 2Q

dt 2 � 40 
dQ

dt
� 625Q � 100 cos 10t8

E�t�CRL

E�t� � 100 cos 10tC � 16 � 10�4L � 1
R � 40 �t

L 
d 2I

dt 2 � R 
dI

dt
�

1

C
 I � E��t�

I � dQ�dtt
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Imposing the initial condition , we get

To impose the other initial condition we first differentiate to find the current:

Thus, the formula for the charge is

and the expression for the current is

NOTE 1 ■■ In Example 3 the solution for consists of two parts. Since as
and both and are bounded functions,

So, for large values of ,

and, for this reason, is called the steady state solution. Figure 8 shows how the graph
of the steady state solution compares with the graph of in this case.

NOTE 2 ■■ Comparing Equations 5 and 7, we see that mathematically they are identical.
This suggests the analogies given in the following chart between physical situations that,
at first glance, are very different.

We can also transfer other ideas from one situation to the other. For instance, the steady
state solution discussed in Note 1 makes sense in the spring system. And the phenomenon
of resonance in the spring system can be usefully carried over to electric circuits as elec-
trical resonance.

Q
Qp�t�

Q�t� � Qp�t� � 4
697 �21 cos 10t � 16 sin 10t�

t

as t l 	Qc�t� � 4
2091 e�20t��63 cos 15t � 116 sin 15t� l 0

sin 15tcos 15tt l 	
e�20t l 0Q�t�

I�t� � 1
2091 �e�20t��1920 cos 15t � 13,060 sin 15t� � 120��21 sin 10t � 16 cos 10t��

Q�t� �
4

697
 � e�20t

3
 ��63 cos 15t � 116 sin 15t� � �21 cos 10t � 16 sin 10t�	

c2 � �
464
2091 I�0� � �20c1 � 15c2 �

640
697 � 0

� 40
697 ��21 sin 10t � 16 cos 10t�

 I �
dQ

dt
� e�20t���20c1 � 15c2 � cos 15t � ��15c1 � 20c2 � sin 15t�

c1 � �
84
697Q�0� � c1 �

84
697 � 0

Q�0� � 0

FIGURE 8

0.2

_0.2

0 1.2

Qp

Q

 L 
d 2Q

dt 2 �  R 
dQ

dt
�  

1

C
 Q � E�t�7

 m 
d 2x

dt 2 �  c 
dx

dt
�  kx � F�t�5

Spring system Electric circuit

x displacement Q charge
velocity current

m mass L inductance
c damping constant R resistance
k spring constant elastance

external force electromotive forceE�t�F�t�
1�C

I � dQ�dtdx�dt



12. Consider a spring subject to a frictional or damping force.
(a) In the critically damped case, the motion is given by

. Show that the graph of crosses the 
-axis whenever and have opposite signs.

(b) In the overdamped case, the motion is given by
, where . Determine a condition on

the relative magnitudes of and under which the graph
of crosses the -axis at a positive value of .

A series circuit consists of a resistor with , an induc-
tor with H, a capacitor with F, and a 12-V
battery. If the initial charge and current are both 0, find the
charge and current at time t.

14. A series circuit contains a resistor with , an inductor
with H, a capacitor with F, and a 12-V bat-
tery. The initial charge is C and the initial current 
is 0.
(a) Find the charge and current at time t.

; (b) Graph the charge and current functions.

15. The battery in Exercise 13 is replaced by a generator producing
a voltage of . Find the charge at time t.

16. The battery in Exercise 14 is replaced by a generator producing
a voltage of .
(a) Find the charge at time t.

; (b) Graph the charge function.

Verify that the solution to Equation 1 can be written in the
form .

18. The figure shows a pendulum with length L and the angle 
from the vertical to the pendulum. It can be shown that , as a
function of time, satisfies the nonlinear differential equation

where is the acceleration due to gravity. For small values of 
we can use the linear approximation and then the

differential equation becomes linear.
(a) Find the equation of motion of a pendulum with length 1 m

if is initially 0.2 rad and the initial angular velocity is
.

(b) What is the maximum angle from the vertical?
(c) What is the period of the pendulum (that is, the time to

complete one back-and-forth swing)?
(d) When will the pendulum first be vertical?
(e) What is the angular velocity when the pendulum is vertical?

¨ L

d
�dt � 1 rad�s



sin 
 � 


t

d 2


dt 2 �
t

L
 sin 
 � 0






x�t� � A cos��t � ��
17.

E�t� � 12 sin 10t

E�t� � 12 sin 10t

Q � 0.001
C � 0.005L � 2

�R � 24

C � 0.002L � 1
�R � 2013.

ttx
c2c1

r1  r2x � c1er 1 t � c2er 2 t

c2c1t
xx � c1ert � c2tert

1. A spring with a 3-kg mass is held stretched m beyond its
natural length by a force of 20 N. If the spring begins at its
equilibrium position but a push gives it an initial velocity of 

m�s, find the position of the mass after seconds.

2. A spring with a 4-kg mass has natural length 1 m and is main-
tained stretched to a length of m by a force of N. If the
spring is compressed to a length of m and then released
with zero velocity, find the position of the mass at any time t.

A spring with a mass of 2 kg has damping constant 14, and a
force of 6 N is required to keep the spring stretched m
beyond its natural length. The spring is stretched 1 m beyond
its natural length and then released with zero velocity. Find the
position of the mass at any time t.

4. A spring with a mass of 3 kg has damping constant 30 and
spring constant 123.
(a) Find the position of the mass at time if it starts at the 

equilibrium position with a velocity of 2 m�s.

; (b) Graph the position function of the mass.

5. For the spring in Exercise 3, find the mass that would produce
critical damping.

6. For the spring in Exercise 4, find the damping constant that
would produce critical damping.

; 7. A spring has a mass of 1 kg and its spring constant is .
The spring is released at a point 0.1 m above its equilibrium
position. Graph the position function for the following values
of the damping constant c: 10, 15, 20, 25, 30. What type of
damping occurs in each case?

; 8. A spring has a mass of 1 kg and its damping constant is
The spring starts from its equilibrium position with a

velocity of 1 m�s. Graph the position function for the following
values of the spring constant k: 10, 20, 25, 30, 40. What type of
damping occurs in each case?

Suppose a spring has mass and spring constant and let
. Suppose that the damping constant is so small 

that the damping force is negligible. If an external force
is applied, where , use the method 

of undetermined coefficients to show that the motion of the
mass is described by Equation 6.

10. As in Exercise 9, consider a spring with mass , spring con-
stant , and damping constant , and let . 
If an external force is applied (the applied 
frequency equals the natural frequency), use the method of
undetermined coefficients to show that the motion of the mass
is given by .

11. Show that if , but is a rational number, then the
motion described by Equation 6 is periodic.

���0�0 � �

x�t� � c1 cos �t � c2 sin �t � �F0 ��2m���t sin �t

F�t� � F0 cos �t
� � sk�mc � 0k

m

�0 � �F�t� � F0 cos �0t

� � sk�m
km9.

c � 10.

k � 100

t

0.5
3.

0.8
24.31.3

t1.2

0.6

|||| 17.3 Exercises
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|||| 17.4 S e r i e s  S o l u t i o n s

Many differential equations can’t be solved explicitly in terms of finite combinations of
simple familiar functions. This is true even for a simple-looking equation like

But it is important to be able to solve equations such as Equation 1 because they arise from
physical problems and, in particular, in connection with the Schrödinger equation in quan-
tum mechanics. In such a case we use the method of power series; that is, we look for a
solution of the form

The method is to substitute this expression into the differential equation and determine the
values of the coefficients This technique resembles the method of undeter-
mined coefficients discussed in Section 17.2.

Before using power series to solve Equation 1, we illustrate the method on the simpler
equation in Example 1. It’s true that we already know how to solve this equa-
tion by the techniques of Section 17.1, but it’s easier to understand the power series
method when it is applied to this simpler equation.

EXAMPLE 1 Use power series to solve the equation .

SOLUTION We assume there is a solution of the form

We can differentiate power series term by term, so

In order to compare the expressions for and more easily, we rewrite as follows:

Substituting the expressions in Equations 2 and 4 into the differential equation, we
obtain

or



	

n�0
 ��n � 2��n � 1�cn�2 � cn �xn � 05



	

n�0
 �n � 2��n � 1�cn�2 xn � 


	

n�0
 cn xn � 0

y� � 

	

n�0
 �n � 2��n � 1�cn�2 xn4

y�y�y

 y� � 2c2 � 2 � 3c3 x � � � � � 

	

n�2
 n�n � 1�cn xn�23

 y� � c1 � 2c2 x � 3c3 x 2 � � � � � 

	

n�1
 ncn xn�1

y � c0 � c1 x � c2 x 2 � c3 x 3 � � � � � 

	

n�0
 cn xn2

y� � y � 0

y� � y � 0

c0, c1, c2, . . . .

y � f �x� � 

	

n�0
 cn xn � c0 � c1 x � c2 x 2 � c3 x 3 � � � �

y� � 2xy� � y � 01
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|||| By writing out the first few terms of (4), you
can see that it is the same as (3). To obtain (4)
we replaced by and began the sum-
mation at 0 instead of 2.

n � 2n
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If two power series are equal, then the corresponding coefficients must be equal. There-
fore, the coefficients of in Equation 5 must be 0:

Equation 6 is called a recursion relation. If and are known, this equation allows 
us to determine the remaining coefficients recursively by putting in 
succession.

By now we see the pattern:

Putting these values back into Equation 2, we write the solution as

Notice that there are two arbitrary constants, and c1.c0

 � c0 

	

n�0
 ��1�n 

x 2n

�2n�!
� c1 


	

n�0
 ��1�n 

x 2n�1

�2n � 1�!

 � � c1�x �
x 3

3!
�

x 5

5!
�

x 7

7!
� � � � � ��1�n 

x 2n�1

�2n � 1�!
� � � ��

 � c0�1 �
x 2

2!
�

x 4

4!
�

x 6

6!
� � � � � ��1�n 

x 2n

�2n�!
� � � ��

 y � c0 � c1x � c2x 2 � c3x 3 � c4x 4 � c5x 5 � � � �

 For the odd coefficients, c2n�1 � ��1�n 
c1

�2n � 1�!

 For the even coefficients, c2n � ��1�n 
c0

�2n�!

 Put n � 5: c7 � �
c5

6 � 7
� �

c1

5! 6 � 7
� �

c1

7!

 Put n � 4: c6 � �
c4

5 � 6
� �

c0

4! 5 � 6
� �

c0

6!

 Put n � 3: c5 � �
c3

4 � 5
�

c1

2 � 3 � 4 � 5
�

c1

5!

 Put n � 2: c4 � �
c2

3 � 4
�

c0

1 � 2 � 3 � 4
�

c0

4!

 Put n � 1: c3 � �
c1

2 � 3

 Put n � 0: c2 � �
c0

1 � 2

n � 0, 1, 2, 3, . . .
c1c0

n � 0, 1, 2, 3, . . .cn�2 � �
cn

�n � 1��n � 2�
6

�n � 2��n � 1�cn�2 � cn � 0

xn



NOTE 1 ■■ We recognize the series obtained in Example 1 as being the Maclaurin series
for and . (See Equations 11.10.16 and 11.10.15.) Therefore, we could write the
solution as

But we are not usually able to express power series solutions of differential equations in
terms of known functions.

EXAMPLE 2 Solve .

SOLUTION We assume there is a solution of the form

Then

and

as in Example 1. Substituting in the differential equation, we get

This equation is true if the coefficient of is 0:

We solve this recursion relation by putting successively in Equation 7:

 Put n � 3: c5 �
5

4 � 5
 c3 �

1 � 5

2 � 3 � 4 � 5
 c1 �

1 � 5

5!
 c1

 Put n � 2: c4 �
3

3 � 4
 c2 � �

3

1 � 2 � 3 � 4
 c0 � �

3

4!
 c0

 Put n � 1: c3 �
1

2 � 3
 c1

 Put n � 0: c2 �
�1

1 � 2
 c0

n � 0, 1, 2, 3, . . .

n � 0, 1, 2, 3, . . .cn�2 �
2n � 1

�n � 1��n � 2�
 cn7

�n � 2��n � 1�cn�2 � �2n � 1�cn � 0

xn

 

	

n�0
 ��n � 2��n � 1�cn�2 � �2n � 1�cn �xn � 0

 

	

n�0
 �n � 2��n � 1�cn�2 xn �  


	

n�1
 2ncn xn � 


	

n�0
 cn xn � 0

 

	

n�0
 �n � 2��n � 1�cn�2 xn � 2x 


	

n�1
 ncn xn�1 � 


	

n�0
 cn xn � 0

 y� � 

	

n�2
 n�n � 1�cn xn�2 � 


	

n�0
 �n � 2��n � 1�cn�2 xn

 y� � 

	

n�1
 ncn xn�1

 y � 

	

n�0
 cn xn

y� � 2xy� � y � 0

y�x� � c0 cos x � c1 sin x

sin xcos x

SECTION 17.4 SERIES SOLUTIONS ❙ ❙ ❙ ❙ 1165



	

n�1
 2ncn x n � 


	

n�0
 2ncn x n
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In general, the even coefficients are given by

and the odd coefficients are given by

The solution is

or

NOTE 2 ■■ In Example 2 we had to assume that the differential equation had a series solu-
tion. But now we could verify directly that the function given by Equation 8 is indeed a
solution.

NOTE 3 ■■ Unlike the situation of Example 1, the power series that arise in the solution of
Example 2 do not define elementary functions. The functions

and  y2�x� � x � 

	

n�1
 
1 � 5 � 9 � � � � � �4n � 3�

�2n � 1�!
 x 2n�1

 y1�x� � 1 �
1

2!
 x 2 � 


	

n�2
 
3 � 7 � � � � � �4n � 5�

�2n�!
 x 2n

 � � c1�x � 

	

n�1
 
1 � 5 � 9 � � � � � �4n � 3�

�2n � 1�!
 x 2n�1�

 y � c0�1 �
1

2!
 x 2 � 


	

n�2
 
3 � 7 � � � � � �4n � 5�

�2n�!
 x 2n�8

 � � c1�x �
1

3!
 x 3 �

1 � 5

5!
 x 5 �

1 � 5 � 9

7!
 x 7 �

1 � 5 � 9 � 13

9!
 x 9 � � � ��

 � c0�1 �
1

2!
 x 2 �

3

4!
 x 4 �

3 � 7

6!
 x 6 �

3 � 7 � 11

8!
 x 8 � � � ��

 y � c0 � c1 x � c2 x 2 � c3 x 3 � c4 x 4 � � � �

c2n�1 �
1 � 5 � 9 � � � � � �4n � 3�

�2n � 1�!
 c1

c2n � �
3 � 7 � 11 � � � � � �4n � 5�

�2n�!
 c0

 Put n � 7: c9 �
13

8 � 9
 c7 �

1 � 5 � 9 � 13

9!
 c1

 Put n � 6: c8 �
11

7 � 8
 c6 � �

3 � 7 � 11

8!
 c0

 Put n � 5: c7 �
9

6 � 7
 c5 �

1 � 5 � 9

5! 6 � 7
 c1 �

1 � 5 � 9

7!
 c1

 Put n � 4: c6 �
7

5 � 6
 c4 � �

3 � 7

4! 5 � 6
 c0 � �

3 � 7

6!
 c0
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are perfectly good functions but they can’t be expressed in terms of familiar functions. We
can use these power series expressions for and to compute approximate values of the
functions and even to graph them. Figure 1 shows the first few partial sums 
(Taylor polynomials) for , and we see how they converge to . In this way we can
graph both and in Figure 2.

NOTE 4 ■■ If we were asked to solve the initial-value problem

we would observe from Theorem 11.10.5 that

This would simplify the calculations in Example 2, since all of the even coefficients would
be 0. The solution to the initial-value problem is

y�x� � x � 

	

n�1
 
1 � 5 � 9 � � � � � �4n � 3�

�2n � 1�!
 x 2n�1

c1 � y��0� � 1c0 � y�0� � 0

 y��0� � 1y�0� � 0y� � 2xy� � y � 0

y2y1

y1y1�x�
T0, T2, T4, . . .

y2y1

11. , ,

12. The solution of the initial-value problem

is called a Bessel function of order 0.
(a) Solve the initial-value problem to find a power series

expansion for the Bessel function.

; (b) Graph several Taylor polynomials until you reach one that
looks like a good approximation to the Bessel function on
the interval .��5, 5�

y��0� � 0y�0� � 1x 2 y� � xy� � x 2 y � 0

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

y��0� � 1y�0� � 0y� � x 2 y� � xy � 01–11 |||| Use power series to solve the differential equation. 

1. 2.

4.

5. 6.

7.

8.

, ,

10. , , y��0� � 0y�0� � 1y� � x 2 y � 0

y��0� � 0y�0� � 1y� � xy� � y � 09.

y� � xy

�x 2 � 1�y� � xy� � y � 0

y� � yy� � xy� � y � 0

�x � 3�y� � 2y � 0y� � x 2 y3.

y� � xyy� � y � 0

15

_15

_2.5 2.5

›

fi

FIGURE 1

2

_8

_2 2

T¸

T¡¸

FIGURE 2

1. (a) Write the general form of a second-order homogeneous 
linear differential equation with constant coefficients.

(b) Write the auxiliary equation.
(c) How do you use the roots of the auxiliary equation to solve

the differential equation? Write the form of the solution for
each of the three cases that can occur.

2. (a) What is an initial-value problem for a second-order differ-
ential equation?

(b) What is a boundary-value problem for such an equation?

3. (a) Write the general form of a second-order nonhomogeneous
linear differential equation with constant coefficients.

(b) What is the complementary equation? How does it help
solve the original differential equation?

(c) Explain how the method of undetermined coefficients
works.

(d) Explain how the method of variation of parameters works.

4. Discuss two applications of second-order linear differential
equations.

5. How do you use power series to solve a differential equation?

|||| 17 Review
■■ C O N C E P T  C H E C K  ■■

|||| 17.4 Exercises
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■■ T R U E - F A L S E  Q U I Z  ■■

Determine whether the statement is true or false. If it is true, explain why.
If it is false, explain why or give an example that disproves the statement.

1. If and are solutions of , then is also 
a solution of the equation.

2. If and are solutions of , then
is also a solution of the equation.c1 y1 � c2 y2

y� � 6y� � 5y � xy2y1

y1 � y2y� � y � 0y2y1

3. The general solution of can be written as

4. The equation has a particular solution of the form

yp � Ae x

y� � y � e x

y � c1 cosh x � c2 sinh x

y� � y � 0

1–10 |||| Solve the differential equation.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10. ,

11–14 |||| Solve the initial-value problem.

11. , ,

12. , ,

13. , ,

14. , ,

15. Use power series to solve the initial-value problem

y��0� � 1y�0� � 0y� � xy� � y � 0

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

y��0� � 2y�0� � 19y� � y � 3x � e �x

y��0� � 1y�0� � 0y� � 5y� � 4y � 0

y��0� � 1y�0� � 2y� � 6y� � 25y � 0

y��1� � 12y�1� � 3y� � 6y� � 0

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

0 � x � ��2
d 2y

dx 2 � y � csc x

d 2y

dx 2 �
dy

dx
� 6y � 1 � e�2x

d 2y

dx 2 � 4y � sin 2x

d 2y

dx 2 � 2 
dy

dx
� y � x cos x

d 2y

dx 2 �
dy

dx
� 2y � x 2

d 2y

dx 2 � 4 
dy

dx
� 5y � e 2x

4y� � 4y� � y � 0

y� � 3y � 0

y� � 4y� � 13y � 0

y� � 2y� � 15y � 0

16. Use power series to solve the equation

17. A series circuit contains a resistor with , an inductor
with H, a capacitor with F, and a 12-V bat-
tery. The initial charge is C and the initial current 
is 0. Find the charge at time t.

18. A spring with a mass of 2 kg has damping constant 16, and a
force of N keeps the spring stretched m beyond its 
natural length. Find the position of the mass at time if it 
starts at the equilibrium position with a velocity of m�s.

19. Assume that the earth is a solid sphere of uniform density with
mass and radius mi. For a particle of mass 
within the earth at a distance from the earth’s center, the
gravitational force attracting the particle to the center is

where is the gravitational constant and is the mass of the
earth within the sphere of radius .

(a) Show that .

(b) Suppose a hole is drilled through the earth along a diame-
ter. Show that if a particle of mass is dropped from rest,
at the surface, into the hole, then the distance of
the particle from the center of the earth at time is given by

where .
(c) Conclude from part (b) that the particle undergoes simple

harmonic motion. Find the period T.
(d) With what speed does the particle pass through the center

of the earth?

k 2 � GM�R3 � t�R

y��t� � �k 2 y�t�

t
y � y�t�

m

Fr �
�GMm

R3  r

r
MrG

Fr �
�GMr m

r 2

r
mR � 3960M

2.4
t

0.212.8

Q � 0.01
C � 0.0025L � 2

�R � 40

y� � xy� � 2y � 0
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Calculus is based on the real number system. We start with the integers:

Then we construct the rational numbers, which are ratios of integers. Thus, any rational
number can be expressed as

Examples are

(Recall that division by is always ruled out, so expressions like and are undefined.)
Some real numbers, such as , can’t be expressed as a ratio of integers and are therefore
called irrational numbers. It can be shown, with varying degrees of difficulty, that the fol-
lowing are also irrational numbers:

The set of all real numbers is usually denoted by the symbol . When we use the word
number without qualification, we mean “real number.”

Every number has a decimal representation. If the number is rational, then the corre-
sponding decimal is repeating. For example,

(The bar indicates that the sequence of digits repeats forever.) On the other hand, if the
number is irrational, the decimal is nonrepeating:

If we stop the decimal expansion of any number at a certain place, we get an approxima-
tion to the number. For instance, we can write

where the symbol is read “is approximately equal to.” The more decimal places we
retain, the better the approximation we get.

The real numbers can be represented by points on a line as in Figure 1. The positive
direction (to the right) is indicated by an arrow. We choose an arbitrary reference point ,
called the origin, which corresponds to the real number . Given any convenient unit of
measurement, each positive number is represented by the point on the line a distance of

units to the right of the origin, and each negative number is represented by the point
units to the left of the origin. Thus, every real number is represented by a point on the

line, and every point on the line corresponds to exactly one real number. The number
associated with the point is called the coordinate of and the line is then called a coor-PP

P
x

�xx
x

0
O

�

� � 3.14159265

� � 3.141592653589793 . . .s2 � 1.414213562373095 . . .

 157
495 � 0.317171717 . . . � 0.317 9

7 � 1.285714285714 . . . � 1.285714

 12 � 0.5000 . . . � 0.50  2
3 � 0.66666 . . . � 0.6

�

log10 2sin 1��s
3 2s5s3

s2

0
0

3
00

0.17 � 17
10046 � 46

1�
3
7

1
2

where m and n are integers and n � 0r �
m

n

r

. . . , �3, �2, �1, 0, 1, 2, 3, 4, . . .

A2 ❙ ❙ ❙ ❙ APPENDIX A NUMBERS, INEQUALITIES, AND ABSOLUTE VALUES
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dinate line, or a real number line, or simply a real line. Often we identify the point with
its coordinate and think of a number as being a point on the real line.

The real numbers are ordered. We say is less than and write if is a pos-
itive number. Geometrically, this means that lies to the left of on the number line.
(Equivalently, we say is greater than and write .) The symbol (or )
means that either or and is read “ is less than or equal to .” For instance,
the following are true inequalities:

In what follows we need to use set notation. A set is a collection of objects, and these
objects are called the elements of the set. If is a set, the notation means that is
an element of , and means that is not an element of . For example, if repre-
sents the set of integers, then but . If and are sets, then their union

is the set consisting of all elements that are in or (or in both and ). The inter-
section of and is the set consisting of all elements that are in both and . In
other words, is the common part of and . The empty set, denoted by ∅, is the
set that contains no element.

Some sets can be described by listing their elements between braces. For instance, the
set consisting of all positive integers less than 7 can be written as

We could also write in set-builder notation as

which is read “ is the set of such that is an integer and .”

I n t e r v a l s

Certain sets of real numbers, called intervals, occur frequently in calculus and correspond
geometrically to line segments. For example, if , the open interval from to con-
sists of all numbers between and and is denoted by the symbol . Using set-builder
notation, we can write

Notice that the endpoints of the interval—namely, and —are excluded. This is indicated
by the round brackets and by the open dots in Figure 2. The closed interval from to

is the set

Here the endpoints of the interval are included. This is indicated by the square brackets 
and by the solid dots in Figure 3. It is also possible to include only one endpoint in an inter-
val, as shown in Table 1.

� �

�a, b� � �x � a � x � b�

b
a� 	

ba

�a, b	 � �x � a � x � b�

�a, b	ba
baa � b

0 � x � 7xxA

A � �x � x is an integer and 0 � x � 7�

A

A � �1, 2, 3, 4, 5, 6�

A

TSS � T
TSS � TTS

TSTSS � T
TS� � Z�3 � Z

ZSaa � SS
aa � SS

2 � 2s2 � 2s2 � 2�3 � ��7 � 7.4 � 7.5

baa � ba � b
b � aa � bb � aab

ba
b � aa � bba

FIGURE 1 0 1 2 3 4_1_2_3

_2.63 2 π_ œ„
1
2

3
7

a b

FIGURE 2
Open interval (a, b)

a b

FIGURE 3
Closed interval [a, b]



Table of Intervals

We also need to consider infinite intervals such as

This does not mean that (“infinity”) is a number. The notation stands for the set
of all numbers that are greater than , so the symbol simply indicates that the interval
extends indefinitely far in the positive direction.

I n e q u a l i t i e s

When working with inequalities, note the following rules.

Rules for Inequalities

1. If , then .

2. If and , then .

3. If and , then .

4. If and , then .

5. If , then .

Rule 1 says that we can add any number to both sides of an inequality, and Rule 2 says
that two inequalities can be added. However, we have to be careful with multiplication.
Rule 3 says that we can multiply both sides of an inequality by a positive number, but

| Rule 4 says that if we multiply both sides of an inequality by a negative number, then we
reverse the direction of the inequality. For example, if we take the inequality and
multiply by , we get , but if we multiply by , we get . Finally, Rule 5
says that if we take reciprocals, then we reverse the direction of an inequality (provided
the numbers are positive).

EXAMPLE 1 Solve the inequality .

SOLUTION The given inequality is satisfied by some values of but not by others. To solve
an inequality means to determine the set of numbers for which the inequality is true.
This is called the solution set.

x
x

1 	 x � 7x 	 5

�6 � �10�26 � 102
3 � 5

1
a � 1
b0 � a � b

ac � bcc � 0a � b

ac � bcc � 0a � b

a 	 c � b 	 dc � da � b

a 	 c � b 	 ca � b

2


a
�a, 
	


�a, 
	 � �x � x � a�

1 Notation Set description Picture

(set of all real numbers)���
, 
	

�x � x � b���
, b�

�x � x � b���
, b	

�x � x � a��a, 
	

�x � x � a��a, 
	

�x � a � x � b��a, b�

�x � a � x � b��a, b	

�x � a � x � b��a, b�

�x � a � x � b��a, b	

A4 ❙ ❙ ❙ ❙ APPENDIX A NUMBERS, INEQUALITIES, AND ABSOLUTE VALUES

|||| Table 1 lists the nine possible types of inter-
vals. When these intervals are discussed, it is
always assumed that .a � b

a b

a b

a b

a b

a

a

b

b
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First we subtract 1 from each side of the inequality (using Rule 1 with ):

Then we subtract from both sides (Rule 1 with ):

Now we divide both sides by (Rule 4 with ):

These steps can all be reversed, so the solution set consists of all numbers greater than
. In other words, the solution of the inequality is the interval .

EXAMPLE 2 Solve the inequalities .

SOLUTION Here the solution set consists of all values of that satisfy both inequalities.
Using the rules given in (2), we see that the following inequalities are equivalent:

(add 2)

(divide by 3)

Therefore, the solution set is .

EXAMPLE 3 Solve the inequality .

SOLUTION First we factor the left side:

We know that the corresponding equation has the solutions 2 and 3.
The numbers 2 and 3 divide the real line into three intervals:

On each of these intervals we determine the signs of the factors. For instance,

Then we record these signs in the following chart:

Another method for obtaining the information in the chart is to use test values. For
instance, if we use the test value for the interval , then substitution in

gives

12 � 5�1	 	 6 � 2

x 2 � 5x 	 6
��
, 2	x � 1

x � 2 � 0 ? x � 2 ? x � ��
, 2	

�3, 
	�2, 3	��
, 2	

�x � 2	�x � 3	 � 0

�x � 2	�x � 3	 � 0

x 2 � 5x 	 6 � 0

�2, 5	

 2 � x � 5

 6 � 3x � 15

 4 � 3x � 2 � 13

x

4 � 3x � 2 � 13

(� 2
3, 
)�

2
3

x � �
4
6 � �

2
3

c � �
1
6�6

�6x � 4

c � �7x7x

x � 7x 	 4

c � �1

FIGURE 4

x0

y

y=≈-5x+6

1 2 3 4

|||| A visual method for solving Example 3 is to
use a graphing device to graph the parabola

(as in Figure 4) and observe
that the curve lies on or below the -axis when

.2 � x � 3
x

y � x 2 � 5x 	 6

Interval

� � 	

	 � �

	 	 	 x � 3
 2 � x � 3

 x � 2

�x � 2	�x � 3	x � 3x � 2
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The polynomial doesn’t change sign inside any of the three intervals, so we
conclude that it is positive on .

Then we read from the chart that is negative when . Thus,
the solution of the inequality is

Notice that we have included the endpoints 2 and 3 because we are looking for values of
such that the product is either negative or zero. The solution is illustrated in Figure 5.

EXAMPLE 4 Solve .

SOLUTION First we take all nonzero terms to one side of the inequality sign and factor the
resulting expression:

As in Example 3 we solve the corresponding equation and use the
solutions , , and to divide the real line into four intervals ,

, , and . On each interval the product keeps a constant sign as shown
in the following chart:

Then we read from the chart that the solution set is

The solution is illustrated in Figure 6.

A b s o l u t e  V a l u e

The absolute value of a number , denoted by , is the distance from to on the real
number line. Distances are always positive or , so we have

For example,

In general, we have

 � a � � �a if a � 0

 � a � � a  if a � 03

� 3 � � � � � � 3� s2 � 1 � � s2 � 1� 0 � � 0� �3 � � 3� 3 � � 3

for every number a� a � � 0

0
0a� a �a

�x � �4 � x � 0 or x � 1� � ��4, 0	 � �1, 
	

�1, 
	�0, 1	��4, 0	
��
, �4	x � 1x � 0x � �4

x�x � 1	�x 	 4	 � 0

x�x � 1	�x 	 4	 � 0 orx 3 	 3x 2 � 4x � 0

x 3 	 3x 2 � 4x

x

�x � 2 � x � 3� � �2, 3�

�x � 2	�x � 3	 � 0
2 � x � 3�x � 2	�x � 3	

��
, 2	
x 2 � 5x 	 6

Interval x

� � � �

� � 	 	

	 � 	 �

	 	 	 	 x � 1
 0 � x � 1

 �4 � x � 0
 x � �4

x �x � 1	�x 	 4	x 	 4x � 1

0 x2 3

+ - +

FIGURE 5

0 1_4

FIGURE 6

|||| Remember that if is negative, then 
is positive.

�aa
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EXAMPLE 5 Express without using the absolute-value symbol.

SOLUTION

Recall that the symbol means “the positive square root of.” Thus, means
| and . Therefore, the equation is not always true. It is true only when

. If , then , so we have . In view of (3), we then have the
equation

which is true for all values of .
Hints for the proofs of the following properties are given in the exercises.

Properties of Absolute Values Suppose and are any real numbers and is an
integer. Then

1. 2. 3.

For solving equations or inequalities involving absolute values, it’s often very helpful
to use the following statements.

Suppose . Then

4. if and only if

5. if and only if

6. if and only if or

For instance, the inequality says that the distance from to the origin is less
than , and you can see from Figure 7 that this is true if and only if lies between and .

If and are any real numbers, then the distance between and is the absolute value
of the difference, namely, , which is also equal to . (See Figure 8.)

EXAMPLE 6 Solve .

SOLUTION By Property 4 of (6), is equivalent to

So or . Thus, or .x � 1x � 42x � 22x � 8

2x � 5 � �3or2x � 5 � 3

� 2x � 5 � � 3

� 2x � 5 � � 3

� b � a �� a � b �
baba

a�axa
x� x � � a

x � �ax � a� x � � a

�a � x � a� x � � a

x � �a� x � � a

a � 06

� an � � � a �n�b � 0	� a

b � � � a �
� b �� ab � � � a � � b �

nba5

a

sa 2 � � a �4

sa 2 � �a�a � 0a � 0a � 0
sa 2 � as � 0s 2 � r

sr � ss1

 � �3x � 2

2 � 3x

if x �
2
3

if x �
2
3

 � 3x � 2 � � �3x � 2

��3x � 2	
if 3x � 2 � 0

if 3x � 2 � 0

� 3x � 2 �

0 a_a x

a a

| x |

FIGURE 7

| a-b |

ab

| a-b |

ba

FIGURE 8
Length of a line segment=| a-b |
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EXAMPLE 7 Solve .

SOLUTION 1 By Property 5 of (6), is equivalent to

Therefore, adding 5 to each side, we have

and the solution set is the open interval .

SOLUTION 2 Geometrically, the solution set consists of all numbers whose distance from
5 is less than 2. From Figure 9 we see that this is the interval .

EXAMPLE 8 Solve .

SOLUTION By Properties 4 and 6 of (6), is equivalent to

In the first case , which gives . In the second case , which gives
. So the solution set is

Another important property of absolute value, called the Triangle Inequality, is used fre-
quently not only in calculus but throughout mathematics in general.

The Triangle Inequality If and are any real numbers, then

Observe that if the numbers and are both positive or both negative, then the two
sides in the Triangle Inequality are actually equal. But if and have opposite signs,
the left side involves a subtraction and the right side does not. This makes the Triangle
Inequality seem reasonable, but we can prove it as follows.

Notice that

is always true because equals either or . The corresponding statement for is

Adding these inequalities, we get

If we now apply Properties 4 and 5 (with replaced by and by ), we
obtain

which is what we wanted to show.

� a 	 b � � � a � 	 � b �

� a � 	 � b �aa 	 bx

�(� a � 	 � b �) � a 	 b � � a � 	 � b �

�� b � � b � � b �

b�� a �� a �a

�� a � � a � � a �

ba
ba

� a 	 b � � � a � 	 � b �
ba7

{x � x � �2 or x �
2
3 } � ��
, �2� � [ 2

3, 
)

x � �2
3x � �6x �

2
33x � 2

3x 	 2 � �4or3x 	 2 � 4

� 3x 	 2 � � 4

� 3x 	 2 � � 4

�3, 7	
x

�3, 7	

3 � x � 7

�2 � x � 5 � 2

� x � 5 � � 2

� x � 5 � � 2

3 5 7

22

FIGURE 9
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EXAMPLE 9 If and , use the Triangle Inequality to estimate
.

SOLUTION In order to use the given information, we use the Triangle Inequality with
and :

Thus � �x 	 y	 � 11 � � 0.3

 � 0.1 	 0.2 � 0.3

 � � x � 4 � 	 � y � 7 �
 � �x 	 y	 � 11 � � � �x � 4	 	 �y � 7	 �

b � y � 7a � x � 4

� �x 	 y	 � 11 �
� y � 7 � � 0.2� x � 4 � � 0.1

ture in degrees Celsius and is the temperature in degrees
Fahrenheit. What interval on the Celsius scale corresponds to
the temperature range ?

40. Use the relationship between and given in Exercise 39 to
find the interval on the Fahrenheit scale corresponding to the
temperature range .

41. As dry air moves upward, it expands and in so doing cools at a
rate of about C for each 100-m rise, up to about 12 km.
(a) If the ground temperature is C, write a formula for the

temperature at height .
(b) What range of temperature can be expected if a plane takes

off and reaches a maximum height of 5 km?

42. If a ball is thrown upward from the top of a building 128 ft
high with an initial velocity of 16 ft
s, then the height above
the ground seconds later will be

During what time interval will the ball be at least 32 ft above
the ground?

43–46 |||| Solve the equation for .

43. 44.

45. 46.

47–56 |||| Solve the inequality.

47. 48.

49. 50.

51. 52.

52. 54.

55. 56.

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

0 � � x � 5 � �
1
21 � � x � � 4

� 5x � 2 � � 6� 2x � 3 � � 0.4

� x 	 1 � � 3� x 	 5 � � 2

� x � 6 � � 0.1� x � 4 � � 1

� x � � 3� x � � 3

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

� 2x � 1

x 	 1 � � 3� x 	 3 � � � 2x 	 1 �

� 3x 	 5 � � 1� 2x � � 3

x

h � 128 	 16t � 16t 2

t
h

h
20�

1�

20 � C � 30

FC

50 � F � 95

F1–12 |||| Rewrite the expression without using the absolute value
symbol.

1. 2.

3. 4.

5. 6.

7. if 8. if 

9. 10.

11. 12.

13–38 |||| Solve the inequality in terms of intervals and illustrate the
solution set on the real number line.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33.

34.

35. 36.

37. 38.

39. The relationship between the Celsius and Fahrenheit tempera-
ture scales is given by , where is the tempera-CC � 5

9 �F � 32	

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

�3 �
1

x
� 1

1

x
� 4

x 3 	 3x � 4x 2x 3 � x

�x 	 1	�x � 2	�x 	 3	 � 0

x 3 � x 2 � 0

x 2 � 5x 2 � 3

x 2 	 x � 1x 2 	 x 	 1 � 0

x 2 � 2x 	 82x 2 	 x � 1

�2x 	 3	�x � 1	 � 0�x � 1	�x � 2	 � 0

2x � 3 � x 	 4 � 3x � 24x � 2x 	 1 � 3x 	 2

�5 � 3 � 2x � 90 � 1 � x � 1

1 � 3x 	 4 � 16�1 � 2x � 5 � 7

1 	 5x � 5 � 3x2x 	 1 � 5x � 8

4 � 3x � 61 � x � 2

3x � 11 � 42x 	 7 � 3

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

� 1 � 2x 2 �� x 2 	 1 �
� 2x � 1 �� x 	 1 �

x � 2� x � 2 �x � 2� x � 2 �
�� �2 � � � �3 ��� s5 � 5 �
� � � 2 �� �� �
� 5 � � � �23 �� 5 � 23 �

|||| A Exercises
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57–58 |||| Solve for , assuming , , and are positive constants.

57. 58.

59–60 |||| Solve for , assuming , , and are negative constants.

59. 60.

61. Suppose that and . Use the 
Triangle Inequality to show that .

62. Show that if , then .

63. Show that if , then .

64. Use Rule 3 to prove Rule 5 of (2).

a �
a 	 b

2
� ba � b

� 4x 	 13 � � 3� x 	 3 � �
1
2

� �x 	 y	 � 5 � � 0.05
� y � 3 � � 0.04� x � 2 � � 0.01

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

ax 	 b

c
� bax 	 b � c

cbax

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

a � bx 	 c � 2aa�bx � c	 � bc

cbax 65. Prove that . [Hint: Use Equation 4.]

66. Prove that .

67. Show that if , then .

68. Prove that . [Hint: Use the Triangle
Inequality with and .]

69. Show that the sum, difference, and product of rational numbers
are rational numbers.

70. (a) Is the sum of two irrational numbers always an irrational
number?

(b) Is the product of two irrational numbers always an
irrational number?

b � ya � x � y
� x � y � � � x � � � y �

a 2 � b 20 � a � b

� a

b � � � a �
� b �

� ab � � � a � � b �

|||| B C o o r d i n a t e  G e o m e t r y  a n d  L i n e s

Just as the points on a line can be identified with real numbers by assigning them coordi-
nates, as described in Appendix A, so the points in a plane can be identified with ordered
pairs of real numbers. We start by drawing two perpendicular coordinate lines that inter-
sect at the origin on each line. Usually one line is horizontal with positive direction to
the right and is called the -axis; the other line is vertical with positive direction upward
and is called the -axis.

Any point in the plane can be located by a unique ordered pair of numbers as follows.
Draw lines through perpendicular to the - and -axes. These lines intersect the axes in
points with coordinates and as shown in Figure 1. Then the point is assigned the
ordered pair . The first number is called the x-coordinate of ; the second number

is called the y-coordinate of . We say that is the point with coordinates , and
we denote the point by the symbol . Several points are labeled with their coordi-
nates in Figure 2.

By reversing the preceding process we can start with an ordered pair and arrive
at the corresponding point . Often we identify the point with the ordered pair and
refer to “the point .” [Although the notation used for an open interval is the �a, b	�a, b	

�a, b	PP
�a, b	

0 x1 2 3 4 5_1_2_3

1

2

3

4

_2

_3

_1

y

_4

(5, 0)

(1, 3)
(_2, 2)

(_3, _2)

(2, _4)

FIGURE 2

x1 2 3 4 5_1_2_3
a

O

2

4

_2
_1

b

y

1

3

P(a, b)

III

IVIII
_3

FIGURE 1

_4

P�a, b	
�a, b	PPb

Pa�a, b	
Pba

yxP
P

y
x

O



same as the notation used for a point , you will be able to tell from the context which
meaning is intended.]

This coordinate system is called the rectangular coordinate system or the Cartesian
coordinate system in honor of the French mathematician René Descartes (1596–1650),
even though another Frenchman, Pierre Fermat (1601–1665), invented the principles of
analytic geometry at about the same time as Descartes. The plane supplied with this coor-
dinate system is called the coordinate plane or the Cartesian plane and is denoted by .

The - and -axes are called the coordinate axes and divide the Cartesian plane into
four quadrants, which are labeled I, II, III, and IV in Figure 1. Notice that the first quad-
rant consists of those points whose - and -coordinates are both positive.

EXAMPLE 1 Describe and sketch the regions given by the following sets.

(a) (b) (c )

SOLUTION
(a) The points whose -coordinates are 0 or positive lie on the -axis or to the right of it
as indicated by the shaded region in Figure 3(a).

(b) The set of all points with -coordinate 1 is a horizontal line one unit above the -axis
[see Figure 3(b)].

(c) Recall from Appendix A that

The given region consists of those points in the plane whose -coordinates lie between
and . Thus, the region consists of all points that lie between (but not on) the hori-

zontal lines and . [These lines are shown as dashed lines in Figure 3(c) to
indicate that the points on these lines don’t lie in the set.]

Recall from Appendix A that the distance between points and on a number line is
. Thus, the distance between points and on a hor-

izontal line must be and the distance between and on a ver-
tical line must be . (See Figure 4.)

To find the distance between any two points and , we note
that triangle in Figure 4 is a right triangle, and so by the Pythagorean Theorem 
we have

 � s�x2 � x1	2 	 �y2 � y1	2

 � P1P2 � � s� P1P3 �2 	 � P2P3 �2 � s� x2 � x1 �2 	 � y2 � y1 �2

P1P2 P3

P2�x2, y2 	P1�x1, y1	� P1P2 �
� y2 � y1 �

P3�x2, y1	P2�x2, y2 	� x2 � x1 �
P3�x2, y1	P1�x1, y1	� a � b � � � b � a �

ba

y � �1y � 1
1�1

y

�1 � y � 1if and only if� y � � 1

xy

FIGURE 3

x0

y

x0

y

y=1

x0

y

y=1

y=_1

(a) x � 0 (b) y=1 (c) | y |<1

yx

{�x, y	 � � y � � 1}��x, y	 � y � 1���x, y	 � x � 0�

yx

yx
� 2

�a, b	
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Distance Formula The distance between the points and is

EXAMPLE 2 The distance between and is

L i n e s

We want to find an equation of a given line ; such an equation is satisfied by the coordi-
nates of the points on and by no other point. To find the equation of we use its slope,
which is a measure of the steepness of the line.

Definition The slope of a nonvertical line that passes through the points
and is

The slope of a vertical line is not defined.

Thus, the slope of a line is the ratio of the change in , , to the change in , . (See
Figure 5.) The slope is therefore the rate of change of y with respect to x. The fact that the
line is straight means that the rate of change is constant.

Figure 6 shows several lines labeled with their slopes. Notice that lines with positive
slope slant upward to the right, whereas lines with negative slope slant downward to the
right. Notice also that the steepest lines are the ones for which the absolute value of the
slope is largest, and a horizontal line has slope 0.

Now let’s find an equation of the line that passes through a given point and
has slope . A point with lies on this line if and only if the slope of the line
through and is equal to ; that is,

This equation can be rewritten in the form

and we observe that this equation is also satisfied when and . Therefore, it is
an equation of the given line.

Point-Slope Form of the Equation of a Line An equation of the line passing through
the point and having slope is

y � y1 � m�x � x1�

mP1�x1, y1�
3

y � y1x � x1

y � y1 � m�x � x1�

y � y1

x � x1
� m

mPP1

x � x1P�x, y�m
P1�x1, y1�

�xx�yy

m �
�y

�x
�

y2 � y1

x2 � x1

P2�x2, y2 �P1�x1, y1�
2

LL
L

s�5 � 1� 2 � �3 � ��2�� 2 � s42 � 52 � s41

�5, 3��1, �2�

� P1P2 � � s�x2 � x1�2 � �y2 � y1�2

P2�x2, y2 �P1�x1, y1�1

FIGURE 5

P™(x™, y™)

P¡(x¡, y¡)

L

Îy=fi-›
=rise

Îx=¤-⁄
=run

x0

y

x0

y

m=1

m=0

m=_1
m=_2

m=_5

m=2
m=5

m= 1
2

m=_ 1
2

FIGURE 6



EXAMPLE 3 Find an equation of the line through with slope .

SOLUTION Using with , , and , we obtain an equation of the
line as

which we can rewrite as

EXAMPLE 4 Find an equation of the line through the points and .

SOLUTION By Definition 2 the slope of the line is

Using the point-slope form with and , we obtain

which simplifies to

Suppose a nonvertical line has slope and -intercept . (See Figure 7.) This means it
intersects the -axis at the point , so the point-slope form of the equation of the line,
with and , becomes

This simplifies as follows.

Slope-Intercept Form of the Equation of a Line An equation of the line with slope 
and -intercept is

In particular, if a line is horizontal, its slope is , so its equation is , where
is the -intercept (see Figure 8). A vertical line does not have a slope, but we can write

its equation as , where is the -intercept, because the -coordinate of every point
on the line is .

Observe that the equation of every line can be written in the form

because a vertical line has the equation or ( , , ) and
a nonvertical line has the equation or ( , ,

). Conversely, if we start with a general first-degree equation, that is, an equation
of the form (5), where , , and are constants and and are not both 0, then we can
show that it is the equation of a line. If , the equation becomes or

, which represents a vertical line with -intercept . If , the equationB � 0�C�Axx � �C�A
Ax � C � 0B � 0

BACBA
C � �b

B � 1A � �m�mx � y � b � 0y � mx � b
C � �aB � 0A � 1x � a � 0x � a

Ax � By � C � 05

a
xxax � a

yb
y � bm � 0

y � mx � b

by
m4

y � b � m�x � 0�

y1 � bx1 � 0
�0, b�y

bym

3x � 2y � 1

y � 2 � �
3
2 �x � 1�

y1 � 2x1 � �1

m �
�4 � 2

3 � ��1�
� �

3

2

�3, �4���1, 2�

x � 2y � 13 � 0or2y � 14 � �x � 1

y � 7 � �
1
2 �x � 1�

y1 � �7x1 � 1m � �
1
2�3�

�
1
2�1, �7�
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x0

y

b
y=mx+b

FIGURE 7

0

y

b

xa

x=a

y=b

FIGURE 8
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can be rewritten by solving for :

and we recognize this as being the slope-intercept form of the equation of a line
( , ). Therefore, an equation of the form (5) is called a linear 
equation or the general equation of a line. For brevity, we often refer to “the line

” instead of “the line whose equation is .”

EXAMPLE 5 Sketch the graph of the equation .

SOLUTION Since the equation is linear, its graph is a line. To draw the graph, we can sim-
ply find two points on the line. It’s easiest to find the intercepts. Substituting 
(the equation of the -axis) in the given equation, we get , so is the 
-intercept. Substituting in the equation, we see that the -intercept is . This

allows us to sketch the graph as in Figure 9.

EXAMPLE 6 Graph the inequality .

SOLUTION We are asked to sketch the graph of the set and we do so
by solving the inequality for :

Compare this inequality with the equation , which represents a line with
slope and -intercept . We see that the given graph consists of points whose 
-coordinates are larger than those on the line . Thus, the graph is the

region that lies above the line, as illustrated in Figure 10.

P a r a l l e l  a n d  P e r p e n d i c u l a r  L i n e s

Slopes can be used to show that lines are parallel or perpendicular. The following facts are
proved, for instance, in Precalculus: Mathematics for Calculus, Fourth Edition by Stewart,
Redlin, and Watson (Brooks�Cole Publishing Co., Pacific Grove, CA, 2002).

Parallel and Perpendicular Lines

1. Two nonvertical lines are parallel if and only if they have the same slope.

2. Two lines with slopes and are perpendicular if and only if ;
that is, their slopes are negative reciprocals:

EXAMPLE 7 Find an equation of the line through the point that is parallel to the line
.

SOLUTION The given line can be written in the form

y � �
2
3 x �

5
6

4x � 6y � 5 � 0
�5, 2�

m2 � �
1

m1

m1m2 � �1m2m1

6

y � �
1
2 x �

5
2y

5
2y�

1
2

y � �
1
2 x �

5
2

 y � �
1
2 x �

5
2

 2y � �x � 5

 x � 2y � 5

y
��x, y� � x � 2y � 5	

x � 2y � 5

�3yx � 0x
x � 53x � 15x

y � 0

3x � 5y � 15

Ax � By � C � 0Ax � By � C � 0

b � �C�Bm � �A�B

y � �
A

B
 x �

C

B

y

FIGURE 9

y

0 x(5, 0)

(0, _3)

3x-5y=15

FIGURE 10

0

y
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19. 20.

21–36 |||| Find an equation of the line that satisfies the given 
conditions.

21. Through , slope 

22. Through , slope 

23. Through , slope 

24. Through , slope 

25. Through and 

26. Through and 

27. Slope , -intercept 

28. Slope , -intercept 

29. -intercept , -intercept 

30. -intercept , -intercept 

31. Through , parallel to the -axis

32. Through , parallel to the -axis

33. Through , parallel to the line 

34. -intercept , parallel to the line 

35. Through , perpendicular to the line 

36. Through , perpendicular to the line 

37–42 |||| Find the slope and -intercept of the line and draw 
its graph.

37. 38. 2x � 5y � 0x � 3y � 0

y

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

4x � 8y � 1( 1
2, � 2

3 )

2x � 5y � 8 � 0��1, �2�

2x � 3y � 4 � 06y

x � 2y � 6�1, �6�

y�4, 5�

x�4, 5�

6y�8x

�3y1x

4y2
5

�2y3

�4, 3���1, �2�

�1, 6��2, 1�

�
7
2��3, �5�

2
3�1, 7�

�3��1, 4�

6�2, �3�

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

� y � � 1xy � 0
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which is in slope-intercept form with . Parallel lines have the same slope, so the

required line has slope and its equation in point-slope form is

We can write this equation as .

EXAMPLE 8 Show that the lines and are perpendicular.

SOLUTION The equations can be written as

from which we see that the slopes are

Since , the lines are perpendicular.m1m2 � �1

m2 � 3
2andm1 � �

2
3

y � 3
2 x �

1
4andy � �

2
3 x �

1
3

6x � 4y � 1 � 02x � 3y � 1

2x � 3y � 16

y � 2 � �
2
3 �x � 5�

�
2
3

m � �
2
3

1–6 |||| Find the distance between the points.

1. , 2. ,

3. , 4. ,

5. , 6. ,

7–10 |||| Find the slope of the line through and .

7. 8. ,

9. , 10. ,

11. Show that the triangle with vertices , , and
is isosceles.

12. (a) Show that the triangle with vertices , ,
and is a right triangle using the converse of the
Pythagorean Theorem.

(b) Use slopes to show that is a right triangle.
(c) Find the area of the triangle.

13. Show that the points , , , and are the
vertices of a square.

14. (a) Show that the points , , and 
are collinear (lie on the same line) by showing that

.
(b) Use slopes to show that , , and are collinear.

15. Show that , , , and are vertices
of a parallelogram.

16. Show that , , , and are vertices
of a rectangle.

17–20 |||| Sketch the graph of the equation.

17. 18. y � �2x � 3

D�0, 6�C�10, 8�B�11, 3�A�1, 1�

D��1, 7�C�5, 10�B�7, 4�A�1, 1�

CBA
� AB � � � BC � � � AC �

C�5, 15�B�3, 11�A��1, 3�

��5, 3��1, 0��4, 6���2, 9�

ABC

C�2, �2�
B�11, �3�A�6, �7�

C��4, 3�
B��3, �1�A�0, 2�

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

Q�6, 0�P��1, �4�Q��1, �6�P��3, 3�

Q�4, �3�P��1, 6�Q�4, 11�P�1, 5�, 

QP

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

�b, a��a, b��4, �7��2, 5�

��1, �3��1, �6���1, 3��6, �2�

�5, 7��1, �3��4, 5��1, 1�

|||| B Exercises
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57. Show that the lines and are not 
parallel and find their point of intersection.

58. Show that the lines and 
are perpendicular and find their point of intersection.

59. Find an equation of the perpendicular bisector of the line seg-
ment joining the points and .

60. (a) Find equations for the sides of the triangle with vertices
, , and .

(b) Find equations for the medians of this triangle. Where do
they intersect?

61. (a) Show that if the - and -intercepts of a line are nonzero
numbers and , then the equation of the line can be put in
the form

This equation is called the two-intercept form of an equa-
tion of a line.

(b) Use part (a) to find an equation of the line whose 
-intercept is 6 and whose -intercept is .

62. A car leaves Detroit at 2:00 P.M., traveling at a constant speed
west along I-96. It passes Ann Arbor, 40 mi from Detroit, at
2:50 P.M.
(a) Express the distance traveled in terms of the time elapsed.
(b) Draw the graph of the equation in part (a).
(c) What is the slope of this line? What does it represent?

�8yx

x

a
�

y

b
� 1

ba
yx

R��1, 6�Q�3, 4�P�1, 0�

B�7, �2�A�1, 4�

10x � 6y � 50 � 03x � 5y � 19 � 0

6x � 2y � 102x � y � 439. 40.

41. 42.

43–52 |||| Sketch the region in the -plane.

43. 44.

45. 46.

47.

48.

49.

50.

51.

52.

53. Find a point on the -axis that is equidistant from 
and .

54. Show that the midpoint of the line segment from to
is

55. Find the midpoint of the line segment joining the given points.
(a) and (b) and 

56. Find the lengths of the medians of the triangle with vertices
, , and . (A median is a line segment from

a vertex to the midpoint of the opposite side.)
C�8, 2�B�3, 6�A�1, 0�

�8, �12���1, 6��7, 15��1, 3�


 x1 � x2

2
, 

 y1 � y2

2 �
P2�x2, y2 �

P1�x1, y1�

�1, 1�
�5, �5�y

■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■   ■■

{�x, y� � �x � y �
1
2 �x � 3�}

��x, y� � 1 � x � y � 1 � 2x	

��x, y� � y � 2x � 1	

��x, y� � 0 � y � 4 and x � 2	

{�x, y� � � x � � 3 and � y � � 2}
{�x, y� � � x � � 2}

��x, y� � x � 1 and y � 3	��x, y� � xy � 0	

