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Efimov physics beyond universality

Richard Schmidt, Steffen Patrick Rath, and Wilhelm Zwerger
Physik Department, Technische Universität München, 85747 Garching, Germany

We provide an exact solution of the Efimov spectrum in ultracold gases within the standard two-
channel model for Feshbach resonances. It is shown that the finite range in the Feshbach coupling
makes the introduction of an adjustable three-body parameter obsolete. The solution explains the
empirical relation between the scattering length a− where the first Efimov state appears at the
atom threshold and the van der Waals length lvdw for open channel dominated resonances. There
is a continuous crossover to the closed channel dominated limit, where the scale in the energy level
diagram as a function of the inverse scattering length 1/a is set by the intrinsic length r⋆ associated
with the Feshbach coupling. Our results provide a number of predictions for non-universal ratios
between energies and scattering lengths that can be tested in future experiments.

PACS numbers: 03.65Nk, 11.10.Hi, 34.50.-s, 67.85.-d

Most of the basic features that distinguish quantum
from classical physics show up already at the single par-
ticle level. Genuine two-particle effects like the Hong-
Ou-Mandel two-photon interference are typically a conse-
quence of particle statistics, not of interactions [1]. Sur-
prisingly, novel quantum effects in which statistics and
interactions are combined appear at the level of three
particles. As shown by Efimov in 1970 [2], three par-
ticles which interact via a resonant short-range attrac-
tive interaction exhibit an infinite sequence of three-body
bound states or trimers. Remarkably, the trimers exist
even in a regime where the two-body interaction does not
have a bound state. Efimov trimers thus behave like Bor-
romean rings: three of them are bound together but cut-
ting one of the bonds makes the whole system fly apart.
While theoretically predicted in a nuclear matter context,
Efimov states have finally been observed with ultracold
atoms [3]. The assumption of short range interactions is
perfectly valid in this case and, moreover, the associated
scattering lengths can be tuned by an external magnetic
field, exploiting a Feshbach resonance [4]. One key sig-
nature of Efimov physics is the resonant enhancement of
the three-body recombination rate when the nth Efimov
state meets the atom threshold at a scattering length

a
(n)
−

. In most experiments, only the lowest Efimov state

at a−= a
(0)
−

can be observed because of large atom losses
as the scattering length increases. An important feature
of the Efimov trimers is that the binding energies exhibit
universal scaling behavior. In the limit where the two-
body interaction is just at the threshold to form a bound
state, the ratio E(n)/E(n+1) of consecutive binding ener-
gies approaches the universal value e2π/s0 ≃ 515.028 for
n ≫ 1 with the Efimov number s0 ≈ 1.00624. Similarly,
the ratio of consecutive values of the scattering length

a
(n)
−

approaches a
(n+1)
−

/a
(n)
−

→ eπ/s0 ≃ 22.6942. The ori-
gin of this universality can be understood from an ef-
fective field theory approach to the three-body problem
[5, 6]. There remains, however, a non-universal aspect in
the theory: Although the relative position of the trimer

states is universal, their exact position in the (a,E) plane
is not fixed and is determined by the so-called three-body
parameter (3BP). It is presumed that the 3BP is highly
sensitive to microscopic details of the underlying two-
body potential as well as genuine three-body forces [7].

As more experimental data have been accumulated in
recent years [8–15], a puzzling observation came to light:
In most experiments, no matter which alkali atoms were
used, the measured values for a− clustered around a− ≈

−9.45 lvdW. Where does this apparent ‘universality of the
three-body parameter’ come from? A possible answer to
this question is based on the observation that, typically,
Efimov trimers that are accessible with ultracold atoms
appear in a situation where the scattering length is tuned
via an open channel dominated Feshbach resonance. The
observed universality may thus be a simple consequence
of the fact that in all cases the interactions are, up to
a scale factor, almost identical. Indeed, within a single-
channel description, potentials with a van der Waals tail
have lvdw as the only relevant length scale at energies
much smaller than the depth of the potential well [16].
It is then plausible that lvdw provides the characteristic
scale for the 3BP. This has been confirmed in recent,
independent work on this problem by Chin [17] and by
Wang et al. [18], using single-channel potentials with a
van der Waals tail.

It is an open question, however, to which extent a
single-channel description captures the physics near a
Feshbach resonance. In the following, we will show that
a simple extension of the standard two-channel model for
Feshbach resonances [4], which takes into account the fi-
nite range of the Feshbach coupling, provides a complete
description of the Efimov spectrum in terms of only two
experimentally accessible parameters: the van der Waals
length lvdW and the intrinsic length r⋆. Depending on the
dimensionless resonance strength sres = 0.956 lvdw/r

⋆ [4],
there is a continuous change in the relation between the
trimer energy spectrum and the scattering length, with
the lowest Efimov state appearing at a− ≈ −8.3 lvdW
as sres ≫ 1 while a− ≈ −10.3 r⋆ in the opposite limit

http://arxiv.org/abs/1201.4310v2
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sres ≪ 1. In addition, we show that for the experimen-
tally accessible lowest Efimov states there are strong de-
viations from universality which have apparently been
observed in recent experiments.
Specifically, we consider non-relativistic bosons described
by the microscopic action (in units where 2m = ~ = 1)

S =

∫

r,t

{

ψ∗(r, t)[i∂t −∇2]ψ(r, t)

+ φ∗(r, t)P cl
φ φ(r, t)

}

+
g

2

∫

r1,r2,t

χ(r2 − r1)×

[

φ(
r1 + r2

2
, t)ψ∗(r1, t)ψ

∗(r2, t) + c.c.
]

, (1)

where ψ denotes the atoms and φ the molecule in the
closed channel. Here P cl

φ = i∂t −∇2/2 + ν with ν(B) =
µ(B − Bres) the bare detuning from the resonance and
µ is the difference in the magnetic moment between the
molecule and the open-channel atoms. For a description
of universal features of Efimov trimers like the asymp-

totic ratio a
(n+1)
−

/a
(n)
−

→ eπ/s0 , the atom-molecule con-
version amplitude ∼ g may be taken as pointlike in co-
ordinate space [5, 6]. In reality, however, the coupling
has a finite range σ which is determined by the scale of
the wave function overlap between the open and closed-
channel states. As has been pointed out by a num-
ber of authors [19–24], this can be accounted for by a
form factor χ(r) in Eq. (1). A convenient choice is
χ(r) ∼ e−r/σ/r which leads to χ(p) = 1/(1 + σ2p2) in
momentum space. It is important to note that the ac-
tion (1) can also be used to describe the situation where
the interaction is dominated by a large background scat-
tering length abg. Indeed, integrating out the closed-
channel field φ, one obtains a contribution ∼ (ψ∗ψ)2 that
properly describes background scattering of range σ and
scattering length ∼ g2/ν̃, provided the Feshbach coupling
g2 = 32π/r⋆ ≫ 1/lvdw is strong enough that the momen-
tum dependence of P cl

φ can be neglected. As has been
discussed in [20, 22–24], this does not work, however, in
the limit of closed channel dominated resonances.
In our model the scattering of two atoms is mediated

by the exchange of the closed-channel or dimer field φ.
The two-body problem is thus solved by computing the
renormalization of the inverse propagator of the dimer
G−1
φ . Evaluation of the standard ladder diagram yields

G−1
φ (E,q) = P cl

φ (E,q)−
g2/(32π)

σ

[

1 + σ
√

−E
2 + q2

4 − iǫ

]2 (2)

with P cl
φ (E,q) = −E + q2/2 − ν(B) − iǫ. The two-

atom scattering amplitude now follows from f(k) =
g2χ(k)2Gφ(2k

2,0)/(16π). Its standard low-energy expan-
sion then determines the scattering length a and the ef-
fective range re via

1

a
=

1

2σ
−

16π

g2
ν(B), re = −2r∗ + 3σ

(

1−
4σ

3a

)

. (3)

FIG. 1: Feynman diagrams contributing to the renormaliza-

tion of the atom-dimer vertex λ
(k)
3 (large circle). The small

black circle represents the atom-dimer coupling ∼ g and the
solid (dashed) line denotes the atom (dimer) propagator.

This allows to express the bare parameters g, σ, and
µBres which appear in (1) in terms of fixed, experi-
mental parameters. Close to a Feshbach resonance at
magnetic field B0, the scattering length can be writ-
ten as a(B) = −1/r∗ν̃(B) where ν̃(B) = µ(B − B0)
is the renormalized detuning in units of a wavenum-
ber squared, while r⋆ > 0 is the intrinsic length scale
which characterizes the strength of the Feshbach cou-
pling [4]. This fixes g2 = 32π/r∗. Moreover, the reso-
nance shift is given by µ(B0 − Bres) = 1/(r⋆σ), which
is always positive in our model. Comparing our result
for the resonance shift with the corresponding expres-
sion obtained for Feshbach resonances with interaction
potentials that have a van der Waals tail [25] yields the
identification σ = ā, with the so-called mean scattering
length ā = 4π/Γ(1/4)2lvdw ≈ 0.956 lvdw [26].
Based on the knowledge of the full two-body scatter-

ing amplitude, the three-body problem can be solved
exactly, keeping only s-wave interactions. In particu-
lar, the three-boson scattering can be expressed in terms
of an atom-dimer interaction ∼ φ∗ψ∗φψ. The cor-
responding one particle irreducible atom-dimer vertex
λ3(Q1, Q2, Q3) [Qi = (Ei,qi)] develops a complicated
energy and momentum dependence which determines the
full Efimov spectrum for arbitrary values of the scatter-
ing length. The derivation becomes particularly simple
using the functional renormalization group (fRG) [27].
The central quantity of the fRG is an RG scale k depen-
dent effective action Γk which interpolates between the
microscopic action S = Γk=Λ and the full quantum effec-
tive action Γ = Γk=0 by successively including quantum
fluctuations on momentum scales q & k. Here, we adopt
an RG strategy adjusted to the few-body problem as dis-
cussed in [28, 29], where the flowing action Γk is of the
form of S in (1) but with P cl

φ replaced by 1/Gφ from (2)
and an additional term

Γ3B
k = −

∫

Q1,Q2,Q3

λ
(k)
3 (Q1, Q2, Q3)×

φ∗(Q1)ψ
∗(Q2)φ(Q3)ψ(Q1 +Q2 −Q3). (4)

Since we do not consider a microscopic three-body force

here, we have λ
(Λ)
3 = 0 at the UV scale Λ. The atom-

dimer vertex λ
(k)
3 is then the only running coupling in

Γk. It is important to note that the truncation of Γk
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is complete for the solution of the three-body problem
as no additional couplings can be generated in the RG
flow [28, 29]. In our scheme the propagator of the bosons
ψ is not regularized and the dimer φ is supplemented
with a sharp momentum regulator. In Fig. 1 we show

the Feynman diagrams contributing to the flow of λ
(k)
3 .

The number of independent energies and momenta is re-
duced by working in the center-of-mass frame and by not-
ing that the loop frequency integration puts one internal
atom on mass-shell [6]. After performing the s-wave pro-

jection λ
(k)
3 (q1, q2;E) = 1/(2g)

∫

d cos θλ
(k)
3 (q1,q2;E),

θ = ∠(q1,q2), one finds the RG equation

∂kλ
(k)
3 (q1, q2;E) = −

g2k2Gφ(E − k2, k)

2π2
×

[

λ
(k)
3 (q1, k;E)λ

(k)
3 (k, q2;E) + λ

(k)
3 (q1, k;E)GE(k, q2)

+GE(q1, k)λ
(k)
3 (k, q2;E) +GE(q1, k)GE(k, q2)

]

, (5)

where

GE(p, q) ≡
1

2

∫ 1

−1

d cos θ
χ(

∣

∣p+ q

2

∣

∣)χ(
∣

∣q+ p

2

∣

∣)

−E + p2 + q2 + (p+ q)2 − iǫ
.

(6)
Making use of the binomial form of Eq. (5) the flow can
be integrated analytically and yields

fE(q1, q2) = gE(q1, q2)−

∫ Λ

0

dl gE(q1, l) ζE(l) fE(l, q2),

(7)
which is a modified form of the well-known STM equation
[30] with fE(q1, q2) = gE(q1, q2)+λ̃E(q1, q2), gE(q1, q2) =
16q1q2GE(q1, q2), λ̃E(q1, q2) = 16q1q2 λ3(q1, q2;E), and
ζE(l) = −g2ξGφ(E − l2, l)/(32π). Due to the presence of
the form factor χ in gE and the finite range corrections in
Eq. (2) the UV limit Λ → ∞ can safely be taken. This
explicitly demonstrates the independence of the cutoff
and leads to the disappearance of the 3BP.

- 0.5 0.0 0.5 1.0

- 1.5

- 1.0

- 0.5

0.0

-0.5 0.0 0.5 1.0
0.0

-0.5

-1.5

-1.0

FIG. 2: (color online). The Efimov spectrum in dimensionless
units for a broad Feshbach resonance of strength sres = 100.
The inset shows the spectrum for a resonance of intermediate
strength sres = 1. The dimer binding energy is shown in blue.

The knowledge of the full vertex λ3 gives all informa-
tion about the scattering of three bosons, such as bound
states, recombination rates, and lifetimes, by evaluat-
ing the corresponding tree-level diagrams [6]. In the
following we compute the trimer bound state spectrum
by identifying the poles of λ3 as a function of the en-
ergy E. In the vicinity of a bound state pole the atom-
dimer vertex can be parametrized as λ3(q1, q2;E) ≈

B(q1, q2)/[E + E
(n)
T + iΓ

(n)
T ]. When inserted into Eq. (7)

an integral equation for B is obtained which is solved
by discretization and amounts to evaluating the determi-
nant det[C − I] = 0 with C(q1, q2) = g2gE(q1, q2)Gφ(E −

q22 , q2)/(32π). C has a log-periodic structure where low-
momentum modes are suppressed by any finite 1/a 6= 0
and energyE < 0 below the atom-dimer threshold. High-
momentum modes are suppressed due to the finite range
potential of our model.
In Fig. 2 we show the Efimov spectrum including the

atom-dimer threshold for a broad and a Feshbach res-
onance of intermediate strength in dimensionless units.
The position of the trimer states in the (1/a,E) plane is
completely fixed by our calculation. The overall appear-
ance of the spectrum remains similar as the strength of
the resonance is varied. For narrow resonances it gets
pushed towards the unitarity point E = 1/a = 0 while
for open channel dominated resonances it reaches a max-
imal extent in the (1/a,E) plane. The detailed position
of the lowest energy levels depends on both the value
of the van der Waals length and the resonance strength
sres. Universality is only reached in the experimentally

hardly accessible limit n ≫ 1 where the ratios of a
(n)
−

,

a
(n)
∗ (the scattering length for which the trimer meets

the atom-dimer threshold), and E(n) for consecutive lev-

sres n 0 1 2 UT

100

E(n)/E(n+1) 530.871 515.206 515.035 515.028

a
(n+1)
−

/a
(n)
−

17.083 21.827 22.654 22.694

a
(n+1)
∗ /a

(n)
∗ 3.980 40.033 23.345 22.694

κ
(n)
∗ a

(n)
−

2.121 1.573 1.512 1.5076

1

E(n)/E(n+1) 515.830 515.039 515.035 515.028

a
(n+1)
−

/a
(n)
−

22.869 22.650 22.690 22.694

a
(n+1)
∗ /a

(n)
∗ 17.183 22.303 22.716 22.694

κ
(n)
∗ a

(n)
−

1.500 1.511 1.508 1.5076

0.1

E(n)/E(n+1) 521.273 515.059 515.010 515.028

a
(n+1)
−

/a
(n)
−

26.230 22.964 22.71 22.694

a
(n+1)
∗ /a

(n)
∗ 26.965 21.286 22.48 22.694

κ
(n)
∗ a

(n)
−

1.296 1.489 1.506 1.5076

TABLE I: The ratio between consecutive energies E(n) =

~
2(κ

(n)
∗ )2/m and threshold scattering lengths (a

(n)
−,∗) as well

as the product a
(n)
−

κ
(n)
∗ for a broad (sres = 100), intermediate

(sres = 1) and narrow (sres = 0.1) Feshbach resonance and
the three lowest-lying Efimov states n = 0, 1, 2. The right-
most column shows the predictions of universal theory.
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FIG. 3: (color online). Inverse threshold scattering length a−

(solid line) and wavenumber κ∗ (dashed line) in units of ā as
functions of the resonance strength sres. The dots with error
bars show the experimental results for 7Li [10, 13], 39K [11],
85Rb [15] and 133Cs [14].

els approach their universal values. It is instructive to
quantify to which extent the lowest states deviate from
the universal prediction. In Table I our results for vari-
ous quantities for a broad (sres = 100), an intermediate
(sres = 1), and a narrow (sres = 0.1) Feshbach resonance
are shown (for details cf. [31]). Although the third state
already follows almost universal behavior regardless of
the value of sres, the experimentally most relevant lowest
states exhibit large deviations. In fact, our prediction for
open channel dominated resonances is supported by re-
cent measurements of the position of the second Efimov
trimer in 6Li who find a ratio near 19.7 [32, 33]. Remark-
ably, for intermediate Feshbach resonances (sres ≈ 1), the
interplay between the scales r∗ and σ leads to ratios close
to their universal ones even for the lowest states. Note
that the values of a

(n)
∗ for small n are highly sensitive to

the precise form of the two-body bound state spectrum
which is strongly non-universal [37]. The ratios between

the lowest a
(n)
∗ are therefore in general not suitable for a

measurement of universal ratios. By contrast, this is not
the case for the Efimov spectrum in the regime a ≤ 0,
which is determined by energies on the order of or below
the scale set by the van der Waals length.

We finally study the dependence of a
(n)
−

and κ
(n)
∗ on

the strength of the Feshbach resonance. In Fig. 3 the
behavior for the lowest, experimentally accessible, state
is shown. For open channel dominated resonances a−/ā
and āκ∗ become independent of sres and thus of r∗ and we
find a− ≈ −8.27 lvdw and κ∗lvdw = 0.26. In the limit of
closed channel dominated resonances, the van der Waals
length becomes irrelevant and the scale for the full Efi-
mov spectrum is set by r∗ only. Specifically, we find

a
(n)
−

= ξ(n)r∗ and κ
(n)
∗ r∗ = η(n) with numbers ξ(n) and

η(n) which approach universal values as n→ ∞. In fact,
as n ≫ 1, we accurately reproduce the predictions for
narrow Feshbach resonances which were derived previ-

ously within a zero range model where σ = 0 [34, 35].
Note, however, that the low-lying Efimov states deviate
from these universal predictions. While universal theory
predicts for example a− = −12.90 r∗ and κ∗r

∗ = 0.117
[34, 35], we find a− = −10.3 r∗ and κ∗r

∗ = 0.125. Com-
paring to the experimental data, we find that the open
channel dominated resonances in 85Rb [15] and in 133Cs
[14], which also exhibit a large background scattering
length, fit well into our prediction, apart from a 12%
deviation. The regime of Feshbach resonances of inter-
mediate strength sres ≈ 1 is particularly interesting, since
both scales r∗ and σ are relevant. Our approach equally
applies to this regime, which is realized, e.g., in the case
of 39K, where sres ≃ 2.1 [11]. As shown in Fig. 3, the
observation [11] of a considerable deviation from the ap-
parent ‘universal’ result a− ≈ −9.45 lvdW in this case
is qualitatively explained by our theory. Unfortunately,
the case of 7Li, which seems to follow nicely the result
a−≈−9.45 lvdW [10, 13] despite the even smaller value
sres ≃ 0.58 [13] of the resonance strength is not consis-
tent with our prediction. A possible origin of this dis-
crepancy might be that the identification of the scale σ
of the Feshbach coupling with the van der Waals length
does not apply in this case [38]. Note, however, that the
proportionality between a− and lvdW is certainly invalid
in the limit sres ≪ 1.
In conclusion, we have presented a simple model contain-
ing only r∗ and lvdw as experimentally accessible param-
eters, which allows to predict the full Efimov spectrum in
quantitative terms for Feshbach resonances of arbitrary
strength without an adjustable 3BP. Our results provide
an explanation for why the 3BP appears to be a ‘univer-
sal’ number in terms of the van der Waals length, which
applies for open channel dominated resonances. It is im-
portant to stress, however, that for the lowest Efimov
states there is no universality in its standard meaning.
Beyond the dependence on the resonance strength, the
value of the ratio a−/lvdW exhibits a weak dependence on
the precise form of the cutoff function χ(r) in our model
(1). Moreover, these numbers will be changed by taking
into account three-body forces, e.g., of the Axilrod-Teller
type, that are present for neutral atoms with van der
Waals interactions [36]. Still, our exact solution of the
standard two-channel model for Feshbach resonances of
ultracold atoms captures the qualitative features neces-
sary for an understanding of Efimov physics beyond the
universal regime.
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Supplementary material

In this supplementary material we give results for the
dependence of various ‘universal’ ratios on the continuous
varied strength sres of the Feshbach resonance.
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FIG. 4: (color online). The ratio κ
(n)
∗ a

(n)
−

, which can be
viewed as a measure of the distortion of the trimer levels from
their universal shape in the (a,E) plane, as function of the
resonance strength sres. Shown are the results for the low-
est three levels (black). The universal result is shown in red.
While the third state almost behaves universally the lowest
state shows strong deviations from the universal prediction.
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FIG. 5: (color online). The ratio of scattering lengths
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/a
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where the consecutive trimer states meet the atom
threshold at E = 0 as function of the resonance strength sres
for the first two states (black). The universal prediction is
shown in red.
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FIG. 6: (color online). The ratio E(n)/E(n+1) of the consec-
utive trimer energies at unitarity 1/a = 0 as function of the
resonance strength sres for the first two states (black). The
universal prediction is shown in red.
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