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Abstract Astronomical practice often requires addressing
remote sensing problems, whereby the radiation emitted by
a source far in the sky and measured through ‘ad hoc’ obser-
vational techniques, contains very indirect information on
the physical process at the basis of the emission. The main
difficulties in this investigations rely on the poor quality of
the measurements and on the ill-posedness of the mathe-
matical model describing the relation between the measured
data and the target functions. In the present paper we con-
sider a set of problems in solar physics in the framework
of the NASA Ramaty High Energy Solar Spectroscopic Im-
ager (RHESSI) mission. The data analysis activity is essen-
tially based on the regularization theory for ill-posed inverse
problems and a review of the main regularization methods
applied in this analysis is given. Furthermore, we describe
the main results of these applications, in the case of both
synthetic data and real observations recorded by RHESSI.

1 Introduction

A typical problem in applied sciences is the description of
a physical system having on our hands just indirect infor-
mation about it. This happens, for example, when we want
to recover some properties of a very far source from the
knowledge of its emitted radiation, or even when we use an
acoustic or electromagnetic radiation as a probe, in order
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to make it interact with a physical system which cannot be
explored directly and get information about its state. In all
these cases, the detectors measure physical quantities which
are related to the emitted or diffracted radiation; the result of
the experiment is a function (or, more realistically, a vector)
g which depends on one or more variables (space, time, en-
ergy, temperature) and the aim is the reconstruction, through
the elaboration of g, of a function f which describes an un-
known geometrical or physical property of the system.

When we have to deal with this kind of data, a first
method of analysis is a direct approach: we describe the un-
known property of the examined system as a function and
we assume several hypotheses about its explicit form. Then
we simulate the action of the physical system on these ex-
pressions of the unknown parameters and we identify the
ones which provide simulated data which are very close to
the real data. Unfortunately, this method can lead to very
unreliable results; in fact, due to reasons related to intrin-
sical mathematical properties of the problem, it may hap-
pen that among all the functions which reproduce faithfully
the data we find some of them which are very different one
from the other. A physical problem which presents such fea-
tures is said an ill-posed problem in the sense of Hadamard
[35]. An effective way to solve an ill-posed problem is
looking at the data analysis as an inversion problem, tak-
ing into account the pathological nature of most of inverse
problems which are numerically unstable. Reliable solutions
can be accomplished by applying a so-called regularization
method, which looks for an optimal trade-off between sta-
bility and data reproducibility.

In addition to the inverse problems in classical frame-
works like medical imaging, optics or geophysics, an in-
creasing attention has been recently addressed to the ap-
plication of inversion methods in astronomy and plasma
physics. Indeed, astronomy is based on the observation of
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phenomena which are not reproducible and in this sense it
represents an example of an observational rather than ex-
perimental science. Moreover, these phenomena take place
at great distances and concern physical systems with a high
number of degrees of freedom so that generally very differ-
ent theoretical models are formulated in order to describe
them. In other terms, the typical inverse problem in as-
tronomy is based on the reconstruction of a source func-
tion which, through an unknown physical process, produces
a radiation which propagates in the interstellar medium
whose properties are unknown, goes through the atmosphere
whose properties are doubtful and finally is intercepted by
a detector in order to provide the data. In a situation of
such a great ambiguity it becomes crucial to take into ac-
count the intrinsical mathematical properties of the inver-
sion process, describing rigorously the problem in an ana-
lytical way and applying properly the inversion techniques
of the regularization theory in order to obtain an approxi-
mated solution of the inverse problem which is numerically
stable.

We find a very significative example of this kind of prob-
lem in plasma physics when we deal with solar flares. So-
lar flares [55, 71, 77] are the most dramatic and mysterious
events in the solar system. These transients phenomena are
characterized by a sudden release of huge amounts of en-
ergy and their typical manifestations are the acceleration of
electrons in the solar plasma, a notable heating of the solar
atmosphere and a significant electromagnetic emission par-
ticularly in the X-ray range. All the theoretical modeliza-
tions of the physics of the solar flares formulated in the
last thirty years are essentially based on the well-established
equations of solar plasma physics and magnetohydrodynam-
ics [27]. Common ground for these models is the assumption
that the X-ray emission during flares is the consequence of a
collisional interaction between the accelerated electrons and
the ions of the plasma. Such an event, known as bremss-
trahlung collision, is fully described by a quantity, named
bremsstrahlung cross section, which represents the proba-
bility that an X-ray photon of given energy is produced by
an electron in the plasma of given (bigger) energy. How-
ever, for most flares, none of these theoretical models is able
to fully quantitatively predict the amounts of energy release
observed by the detectors. As clearly explained by Brown
et al. [17], the only way to bypass this puzzling situation is
to focus on the analysis of the observed X-ray data to deter-
mine the mean electron spectrum associated to the electrons
accelerated in the solar plasma. This function represents the
electron flux that would be required to produce the observed
X-ray flux in a homogeneous plasma source of given ion
density and volume. The importance of this function relies
on the fact that its determination from the observed X-rays
depends only on the bremsstrahlung cross section and does
not require any modeling assumption on the acceleration or

propagation mechanisms. Two ingredients are necessary in
order to infer information on the mean electron flux from
the observed X-ray spectra, the first one being the avail-
ability of a notable amount of high resolution X-ray mea-
surements. On February 5, 2002 the NASA Reuven Ramaty
High Energy Solar Spectroscopic Imager (RHESSI) mission
has been launched with the precise intent of providing X-ray
data of unprecedented spectral resolution and of combining
them with X-ray 2D images of unprecedented spatial res-
olution [57]; RHESSI is currently operating and its spectra
are at disposal of the scientific community. The second issue
is concerned with the mathematical aspects of the equation
relating the X-ray flux to the unknown mean electron flux.
In fact, such equation is a linear Volterra equation of the
first kind whose integral kernel is given by the bremsstrah-
lung cross section. In this paper the bremsstrahlung Volterra
equation is studied within a functional analytic setting and
an approach based on regularization theory to its solution is
discussed. Such an approach has been applied in the case of
very general forms of the bremsstrahlung cross section and
validated with both synthetic and real spectra measured by
RHESSI [59, 60].

Further interpretation of the mean electron spectrum re-
quires model dependent assumptions. For example, it is pos-
sible that bremsstrahlung arises not from energetic electrons
moving in a cool background plasma but rather from an in-
homogeneous hot plasma with electrons locally Maxwellian
everywhere but with the combined distribution of plasma
density and temperature (the emission measure differen-
tial in temperature) governing the photon spectrum. This
assumption leads to a Fredholm integral equation with a
Laplace kernel and consequently to an inverse problem
whose severe ill-posedness is well known [7]. This is due
to the very broad filtering action of the negative exponen-
tial kernel (compared to that in the basic bremsstrahlung in-
verse problem which is of Volterra type and not severely
filtering). The huge ill-posedness of the Laplace inversion
problem requires again the use of regularization methods
to avoid the solution being swamped by amplified noise. In
the paper the solution of this thermal bremsstrahlung inverse
problem is addressed by means of an ‘ad hoc’ formulation
of the Tikhonov regularization method in which the choice
of the function space where the solution is reconstructed and
smoothed (i.e., the form of the a priori information) plays a
key role. It must be pointed out that for the present appli-
cation the destructive effects of ill-posedness are even more
dramatic, due to the huge dynamic range of the input data
and the complexity of typical source functions. In this con-
text a particular implementation of the method is proposed
which allows to account for the variability of the data pre-
serving the reliability of the reconstructions. In this case, one
finds that the usual choice of the space of the square sum-
mable functions (zero-order regularization) does not provide
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a reliable approximation of the true solution. Better recon-
structions can be achieved by choosing a first-order regular-
ization approach, implemented by the assumption that the
first derivative of the solution belongs to the space of the
square summable functions (i.e. by the choice of an appro-
priate inner product in the source space) and by the addiction
of some boundary conditions [69].

The availability of spectroscopic methods is only one step
toward the investigation of solar flares. The other step is de-
veloping X-ray imaging methods which provide spatial in-
formation on the flaring mechanisms. Combining imaging
and spectroscopy is one of the main goal of the RHESSI
mission; the only practical method of obtaining ∼arcsecond
angular resolution in hard X-rays and gamma-rays within
the cost, mass, and launch constraints of a small satellite is
to use Fourier transform imaging [70]. One of the most pow-
erful Fourier techniques is rotational modulation synthesis,
first proposed by Mertz [62] and implemented by Schnopper
et al. [74]. This idea is at the basis of RHESSI, which uses
nine bi-grid collimators, each consisting of a pair of widely
separated grids (each pair with a different pitch) in front of a
Germanium detector, to modulate the X-ray emission during
solar flares [40]. Thanks to this hardware, RHESSI is able to
perform, in particular, hard X-ray imaging at an angular res-
olution in the range 2–7 arcseconds, a temporal resolution
of tens of milliseconds in the energy range from 3 keV to
400 keV and hard X-ray spectroscopy with a spectral reso-
lution from 0.5 keV to 2 keV, in the same energy range. So
far, typical imaging spectroscopy techniques have combined
these tools according to the following scheme: a) build a set
of count images of the source at different count energies; b)
extract count flux spectra from specific regions of the count
maps; c) reconstruct the corresponding electron flux spec-
tra through regularized inversion. What we want to do now
is to go one step further: we propose a method which uses
the same regularization technique in order to produce spa-
tial maps of the electron flux spectrum. Once these electron
maps are available, electron flux spectra from local regions
can be straightly extracted and compared. The method in-
volves three steps [68]: first, for each count energy chan-
nel, a set of count visibilities (i.e., of calibrated measure-
ments of spatial Fourier components of the source distrib-
ution) is extracted from RHESSI data in correspondence of
different spatial frequencies; then, Tikhonov method is ap-
plied to obtain a set of regularized electron visibilities for
each electron energy channel; finally, Fourier-based imag-
ing techniques are applied to these reconstructed electron
visibilities to obtain the two-dimensional electron flux maps
at different energies. This technique has three main advan-
tages: first, to provide information on the spatial distribution
of the electron flux, which is a quantity of greater interest
than the spatial distribution of the count flux; second, to uti-
lize as input data for the inversion count visibilities, which

are the best measurements available in the RHESSI frame-
work; finally, to impose a certain level of smoothness in the
electron energy direction, thus avoiding the unphysical arti-
facts produced by traditional imaging spectroscopy methods
which build up each count image independently and without
any spectral correlation.

This paper is divided in eight sections. The first two sec-
tions are devoted to the theoretical background which will
be used in the whole paper. In the first one a rigorous mathe-
matical formulation of a linear inverse problem is given and
the existence and uniqueness of its solution are discussed.
A particular attention is given to the concepts of general-
ized inverse operator and generalized solution, both in the
case of problems formulated in functional spaces (essen-
tially Hilbert spaces) and in the case of problems with dis-
crete data, which are more significant in applications. In the
second section we describe detailedly the Tikhonov regular-
ization method, which represents the fundamental tool that
we will use in the numerical applications.

The next three sections are dedicated to the analysis of
the linear Volterra equation of the first kind which relates the
X-ray flux to the unknown mean electron flux. In Sect. 3 the
inverse problem is described providing an analytical study of
the bremsstrahlung equation with three different cross sec-
tions; in Sect. 4 the regularization method described in the
previous section is applied to both simulated and real data in
order to test the efficiency of the method itself (in the simu-
lated cases) and to show the reconstructed solutions (in the
real cases). In all the reconstructions of the mean electron
spectrum a solid-angle-averaged form [37] for the bremss-
trahlung cross section has been used. However, for a given
photon emission, the cross section is in general a function
not only of the photon energy and electron energy, but also
of the incoming and outgoing electron directions and of the
polarization state of the emitted photon [32, 33]. In Sect. 5
the angle-dependency of the bremsstrahlung cross section is
considered and the consequences of this are investigated by
comparing the solutions in the case of a real spectrum.

Section 6 is devoted to the thermal problem and namely
to the inversion of the Fredholm integral equation which re-
lates the mean electron spectrum to the differential emis-
sion measure. In particular, the inverse problem is described
introducing and justifying the regularization method that is
used in order to find numerically stable solutions. Then, as
in the case of the non-thermal problem, the regularization
method is applied to both simulated and real data.

Finally, in the last part of the paper, the imaging spec-
troscopy topic in analyzed. In particular, in Sect. 7 we
describe the new method for the imaging spectroscopy
of RHESSI and we validate it both on synthetic and on
real flares. Some comments and conclusions are offered in
Sect. 8.
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2 Linear Inverse Problems and Regularization Theory

2.1 Ill-posedness

In 1976 Professor J.B. Keller gave the following definition
of what an inverse problem means: one calls two problems
inverse to each other if the formulation of one problem in-
volves the solution of the other one [43]. What one usually
does is to call one of these problems (usually the simpler
one or the one which was studied earlier) the direct prob-
lem, while the other one is the inverse problem. This choice
is less arbitrary if we have to deal with a mathematical prob-
lem applied to a concrete problem; in this case, there is a
quite natural distinction between the direct and the inverse
problem. For example, if we know a particular state of a
physical system and the physical laws that rule it and we
want to predict its future behavior, we are in front of a direct
problem. On the contrary, if we want to calculate the evolu-
tion of the system backwards in time or we want to identify
some physical parameter from observations of the evolution
of the system we are dealing with inverse problems.

In other words, we might say that inverse problems re-
gard the study of the causes for a specific effect.

Such inverse problems most often do not fulfill Hada-
mard’s postulates of well-posedness [35].

Definition 1 A problem is said well-posed in the sense of
Hadamard if all the following properties hold:

1. for all admissible data, a solution exists;
2. for all admissible data, the solution is unique;
3. the solution depends continuously on the data.

A problem is said ill-posed if at least one of the three
well-posedness conditions is not satisfied.

Let us consider an ill-posed problem. If we are handling
exact data, the existence of a solution is an important re-
quirement and its violation can usually be repaired by relax-
ing the notion of a solution. In the case of perturbed data, the
problem has to be “regularized” and hence changed anyway.

If the condition of uniqueness of the solution is not ful-
filled, we have to decide in some way which one among all
the solutions is of interest, typically through the assumption
of additional information about the solution itself. We ob-
serve that, when we work with real data, non-uniqueness is
usually introduced by the need for discretization.

Finally, a solution of an inverse problem which does not
depend continuously on the data causes serious numerical
problems. In fact, if we face the problem by using a “tra-
ditional” numerical method (as in the case of well-posed
problems), then we have to expect that the numerical so-
lution becomes unstable. We can partially repair this prob-
lem with the use of “regularization methods”, although we

have to keep in mind that no mathematical trick can make
an inherently unstable problem stable. All that a regulariza-
tion method can do is to recover partial information about
the solution as stably as possible. Our goal when we apply
regularization methods must always be to find the right com-
promise between accuracy and stability.

Definition 2 A general linear inverse problem can be for-
mulated according to a general scheme. First the corre-
sponding direct problem is defined; the solution of the di-
rect problem introduces a linear (continuous) operator A

whose domain is in the Hilbert space X of the solutions and
range in the Hilbert space Y of the functions representing the
measured data: the inverse problem consists in determining
f ∈ X from the knowledge of g ∈ Y when g and f are re-
lated by the equation

g = Af. (1)

In the following, we assume that X and Y are Hilbert spaces
and we denote with L(X,Y ) the space of the linear and con-
tinuous operators between X and Y .

In the case of a linear inverse problem (i.e., when A ∈
L(X,Y )), the well-posedness conditions can be syntheti-
cally written as:

1. D(A−1) = Y ;
2. N(A) = 0;
3. A−1 is continuous

where N(A) is the kernel of A and D(A−1) is the domain
of its inverse operator.

Ill-posedness is a typical feature common to most inverse
problems. For example, in the case of linear inverse prob-
lems with discrete data, i.e. in the case where Y is a finite
dimensional Euclidean space, uniqueness is not verified. Ex-
istence does not occur in many linear integral equation of the
first kind. In fact, when X = L2(a, b) and Y = L2(c, d),

g(x) = (Af )(x) =
∫ b

a

K(x, y)f (y)dy, x ∈ [c, d] (2)

is an analytical function of x if the integral kernel K(x,y)

is an analytical function of x. This implies that the set of
functions defined by (2) is a proper subset of Y and existence
does not occur for all g in L2(c, d). Finally, let us consider
the case where X = L1(E) and Y = C(F), E and F are
compact sets and A is the linear integral operator

(Af )(x) =
∫

E

K(x, y)f (y)dy, x ∈ F, (3)

with K(x,y) continuous in x and y. It can be proved that in
this case A−1 is unbounded.

Well-posedness is not a sufficient condition for the sta-
bility of the solution of a linear inverse problem. Indeed, let
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us assume that A−1 is well-defined and continuous. Then, if
in (1) δg is a small variation of the datum and δf is the cor-
responding variation on the solution, the continuity of A−1

implies

‖δf ‖X ≤ ‖A−1‖‖δg‖Y . (4)

On the other hand the continuity of A implies

‖f ‖X ≥ ‖g‖Y

‖A‖ (5)

so that

‖δf ‖X

‖f ‖X

≤ ‖A‖‖A−1‖‖δg‖Y

‖g‖Y

. (6)

Definition 3 The real positive number

C(A) = ‖A‖‖A−1‖ (7)

is said condition number and provides an estimate of the
instability of the problem.

From the inequality (6) we see that, if the condition num-
ber C(A) is much greater than 1, then a small relative vari-
ation on the data can produce very dramatic oscillations on
the solution. It follows that, in general, the presence of even
a small error on the data of an ill-posed inverse problem
(with an elevate condition number) may make its solution
extremely unstable.

2.2 Pseudosolutions and Generalized Inverse Operator

Definition 4 Let A ∈ L(X,Y ), g ∈ Y . A function u ∈ X is
called normal solution or pseudosolution of the linear in-
verse problem (1) if

‖Au − g‖Y = inf{‖Af − g‖Y : f ∈ X}. (8)

The following theorem gives a complete description of
the pseudosolutions of a linear inverse problem:

Theorem 1 If A ∈ L(X,Y ), u ∈ X, g ∈ Y , A∗ is the adjoint
operator of A and P : Y → R(A) is the linear projection
onto the closure of the range of A, then the following condi-
tions are equivalent:

(1) Au = Pg;
(2) ‖Au − g‖Y ≤ ‖Af − g‖Y ∀f ∈ X;
(3) A∗Au = A∗g.

Proof (1) ⇒ (2) from the decomposition Y = R(A) ⊕
R(A)⊥ we have that Au− g = Pg − g ∈ R(A)⊥; moreover,
given f ∈ X, we have that Af − Pg ∈ R(A) and then from
(1) it follows that

‖Af − g‖2 = ‖Af − Pg‖2 + ‖Au − g‖2 ≥ ‖Au − g‖2. (9)

(2) ⇒ (3) since Pg ∈ R(A) and R(A) is closed, there ex-
ists a sequence {fn}∞n=1 ⊆ R(A) such that Pg = limn→∞ Afn.
Then

‖Au − g‖2 = ‖Au − Pg‖2 + lim
n→∞‖Afn − g‖2

≥ ‖Au − Pg‖2 + ‖Au − g‖2. (10)

It follows that Au − Pg = 0 and then Au − g = Pg − g.
Since Pg − g ∈ R(A)⊥ = N(A∗), (3) is true.

(3) ⇒ (1) if (3) holds, then Au − g ∈ N(A∗) = R(A)⊥
and (1) follows. �

From Theorem 1 it follows that a pseudosolution of the
linear inverse problem (1) exists if and only if the datum
g belongs to R(A) ⊕ R(A)⊥ (which is dense in Y ). In
this case, the set of pseudosolution is convex and closed
in the Hilbert space X, and therefore there always exists a
unique pseudosolution u† of the linear inverse problem (1)
with minimum norm. This property leads us to the following
definition:

Definition 5 Let A ∈ L(X,Y ), g ∈ R(A) ⊕ R(A)⊥.
A function u† ∈ X is called generalized solution of the lin-
ear inverse problem (1) if u† is the only pseudosolution of
(1) such that

‖u†‖X = inf{‖u‖X : u is a pseudosolution of (1)}. (11)

The operator A† : R(A) ⊕ R(A)⊥ → X defined by

A†g = u† (12)

is said generalized inverse operator.

The generalized solution u† is the unique pseudosolution
in N(A)⊥. In fact, the decomposition

u† = u1 + u2 (13)

with u1 ∈ N(A)⊥ and u2 ∈ N(A) implies that u1 is a
pseudosolution too. Then

‖u†‖2 = ‖u1 + u2‖2 = ‖u1‖2 + ‖u2‖2 ≥ ‖u1‖2. (14)

The definition of generalized solution imply that u1 = u†

and u2 = 0.
The previous remark allows us to show that the operator

A† is linear. In fact, if g1 and g2 belong to R(A) ⊕ R(A)⊥,
then

AA†g1 + AA†g2 = Pg1 + Pg2

= P(g1 + g2) = AA†(g1 + g2). (15)

Therefore A†g1 +A†g2 −A†(g1 + g2) is in the kernel of A.
But A†g1, A†g2 and A†(g1 + g2) are the generalized solu-
tions of the linear inverse problems (1) corresponding to the
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different data g1, g2 and g1 + g2 and each generalized solu-
tion is orthogonal to the kernel of A. Since N(A)⊥ is a linear
subspace of X and N(A) ∩ N(A)⊥ = {0}, we have that

A†(g1 + g2) = A†g1 + A†g2. (16)

On the other hand

AA†αg = Pαg = αPg = αAA†g = AαA†g. (17)

Therefore A†αg − αA†g is in N(A) ∩ N(A)⊥, i.e. A†αg =
αA†g.

The relation between the range of the generalized inverse
operator and the range of the adjoint operator is described
by the following theorem:

Theorem 2 Let A ∈ L(X,Y ). Then R(A∗) ⊆ R(A†). More-
over, if R(A) is closed, then R(A∗) = R(A†).

Proof Let assume that u ∈ R(A∗); then u ∈ R(A∗) =
N(A)⊥. If we define g = Au, then u is the generalized
solution of the linear inverse problem (1) corresponding
to the datum g (because u is a pseudosolution and be-
longs to N(A)⊥). It follows that u = A†g and therefore
R(A∗) ⊆ R(A†).

Let now assume that u ∈ R(A†); we notice that u is a
generalized solution, so we have that u ∈ N(A)⊥. But R(A)

closed implies R(A∗) closed and then N(A)⊥ = R(A∗) =
R(A∗); it follows that u ∈ R(A∗) and R(A†) ⊆ R(A∗). �

The introduction of the generalized solution and the gen-
eralized inverse operator allows us to formulate a new in-
verse problem which is made up of the solution of two suc-
cessive minimum problems, described by the two equations
(8) and (11). This problem is well-posed if, for all func-
tion g in Y , the generalized solution exists unique and the
generalized inverse operator is continuous. We show now
that if the range of the operator A is closed, then the well-
posedness of the problem is guaranteed. First of all, if R(A)

is closed, then we have that Y = R(A) ⊕ R(A)⊥; it follows
that the projection of g onto R(A) belongs to R(A) and con-
sequently the space of the pseudosolutions is not empty. The
existence and the uniqueness of the generalized solution are
straight consequences of its own definition, while the conti-
nuity of the generalized inverse operator is provided by the
following lemma and theorem:

Lemma 1 If R(A) is closed, then there exists a positive con-
stant m such that

‖Af ‖Y ≥ m‖f ‖X (18)

for all f in N(A)⊥.

Proof We observe that the restriction A′ : N(A)⊥ −→ R(A)

of A is a bijective operator between two Hilbert spaces; then,
for the Open Mapping Theorem, (A′)−1 is continuous. It
follows that, for any function f in N(A)⊥,

‖f ‖X = ‖A−1Af ‖X ≤ ‖A−1‖‖Af ‖Y (19)

so we can choose m = 1/‖A−1‖ and the claim is proved. �

Theorem 3 Let A ∈ L(X,Y ). Then A† is continuous if and
only if R(A) is closed.

Proof Let A† be a continuous operator, and let us sup-
pose that R(A) is not closed. Then the domain of A† is
R(A) ⊕ R(A)⊥, which is dense in Y ; it follows that, for
any function g in R(A) ⊕ R(A)⊥, we have

AA†g = Pg, (20)

where P is the linear projection onto R(A). But A† is lin-
ear and so, for the B.L.T. Theorem (see [72]) there exists a
continuous linear extension Â† of A† whose domain is the
space Y and such that

AÂ†g = Pg (21)

for all g in Y . This is a contradiction, because we can always
find a function g which belongs to R(A) \ R(A).

Let us suppose now that R(A) is closed. From Lemma 1
we have that, for any function g in Y ,

‖g‖Y ≥ ‖Pg‖Y = ‖AA†g‖Y ≥ m‖A†g‖X (22)

and, consequently,

‖A†g‖X ≤ 1

m
‖g‖Y . � (23)

Theorem 3 shows that, if the range of the operator A is
closed, then the problem of the determination of the gen-
eralized solution is well-posed; on the contrary, if R(A) is
not closed, the determination of u† is an ill-posed problem.
Among the operators whose range is not closed, we find very
significant classes of operators that people frequently use in
applications. An important example is given by the compact
operators, as we can see in the following theorem:

Theorem 4 If A ∈ L(X,Y ) is compact and R(A) is closed,
then R(A) is finite-dimensional.

Proof The operator A : X −→ R(A) is linear, bounded and
surjective between two Hilbert spaces. Then, from the Open
Mapping Theorem, given g = Af , the open unit sphere in
X with center f is mapped by A onto an open set of R(A)

containing g. Since A is compact, the closure of this open
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set (which still belongs to R(A)) is compact; this means that
R(A) is locally compact and therefore that it has finite di-
mension [73]. �

In conclusion we notice that, as we have already observed
in the previous section, the closure of the range of the oper-
ator A does not guarantee the stability of the generalized
solution: the inequality

‖δu†‖X

‖u†‖X

≤ C(A)
‖δg‖Y

‖g‖Y

(24)

is true with, this time, C(A) = ‖A‖‖A†‖. If C(A) is large
and the datum is affected by noise, the generalized solution
is numerically unstable.

2.3 Linear Inverse Problems with Discrete Data

The usual linear inverse problem in physics can be formu-
lated in the following way: an unknown property of the sys-
tem we are studying is described by a function f and is re-
lated to another function g through a linear relation A. In
actual applications, we do not have the function g for each
value of the independent variable x; what we usually know
is a set of numbers {g1, . . . , gN } which represents the out-
put of the physical system and which are in some way con-
nected to the values of the function f (x) in the set of points
{x1, . . . , xN }. In particular, if the response of the system is
linear, then each gn is linearly related to the value of the data
function g in the point xn; it follows that, if we neglect the
constant which depends on the efficiency of the instruments,
the relation between the vector of the data and the unknown
function is given by

gn = g(xn) = (Af )n (25)

where A is a linear operator which maps the Hilbert space X

into the Euclidean space Y equipped with the inner product

(g,h)Y =
N∑

m,n=1

gmwmnh
∗
n. (26)

The numbers wmn are the elements of a weight-matrix W ,
positive definite, whose choice depends on the properties of
the physical system.

If the operator A is continuous, the Riesz’s Lemma al-
lows us to formulate the inverse problem with discrete data
in a particular way: given the set of functions {φ1, . . . , φN }
in the Hilbert space X and the element g = {g1, . . . , gN } in
the Euclidean space Y , find f ∈ X such that [8]

gn = (f,φn)X, n = 1, . . . ,N (27)

where (·, ·)X is the inner product in X. In this way, the n-
th component of the element Af of the Euclidean space Y

corresponds to the value of the bounded linear functional
described by

(Af )n = (f,φn)X. (28)

If the functions {φ1, . . . , φN } are linearly independent,
there exists at least one solution of (27) for each g ∈ Y . In
fact, if we suppose that A is not surjective, then R(A) is a
closed subspace of Y and, consequently, there exists an ele-
ment c ∈ (Af )⊥ for all f ∈ X, i.e.

c1(f,φ1)X + · · · + cN(f,φN)X = 0 ∀f ∈ X. (29)

From this relation it follows that

c1φ1 + · · · + cNφN = 0 (30)

and so the functions φ1, . . . , φN are linearly dependent,
which is a contradiction. This solution is obviously not
unique because, if XN = span{φ1, . . . , φN }, f0 is a solution
of the problem and f1 ∈ (XN)⊥, then f0 + f1 is still a solu-
tion of the problem. But the set of the solutions of the prob-
lem is closed and convex, so there exists a unique solution
with minimum norm, called again generalized solution, de-
noted by u† and belonging to XN . The explicit form of the
generalized solution can be easily obtained by writing u† as
a linear combination of the functions φn, i.e. posing

u† =
N∑

n=1

anφn. (31)

If we insert this expression of u† in (27) we obtain

gn =
N∑

m=1

am(φm,φn)X, n = 1, . . . ,N. (32)

In a natural way (32) leads to the following definition [8]:

Definition 6 We call the Gram matrix and we denote by G

the matrix whose entries are given by

Gmn = (φm,φn)X, m,n = 1, . . . ,N. (33)

The Gram matrix G is invertible because the φn are lin-
early independent, so the coefficients an in (32) become

an =
N∑

m=1

gm(G−1)mn, n = 1, . . . ,N. (34)

If we insert this expression of the coefficients an in (31) we
obtain

u† =
N∑

m,n=1

gm(G−1)mnφn. (35)
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Equation (35) shows that the generalized solution de-
pends continuously on the data and so its determination is
a well-posed problem.

This property is not true if the functions φn are lin-
early dependent. In this case, XN ′ = span{φ1, . . . , φN } and
YN ′ = R(A) are two subspaces of X and Y respectively
whose dimension is N ′ < N ; it follows that a solution of
problem (27) exists if and only if the datum belongs to YN ′ .
On the contrary, if g does not belong to the range of A, then
it is natural to introduce the least-squares problem

‖Af − g‖Y = min (36)

whose solutions are called, as in the previous section,
pseudosolutions.

Theorem 1 holds even in the case of linear inverse prob-
lems with discrete data, so the pseudosolutions u satisfy the
equations

Au = P g, (37)

where P is the projection onto YN ′ , and

A∗Au = A∗g. (38)

We can obtain the explicit form of the adjoint operator A∗ if
we observe that

(Af,g)Y =
N∑

m,n=1

(Af )mwmng
∗
n

=
N∑

m,n=1

(f,φm)Xwmng
∗
n

=
(

f,

N∑
m,n=1

φmwmngn

)

X

, (39)

so that A∗ : Y −→ X is the operator which maps a vector
g ∈ Y in

A∗g =
N∑

m=1

(
N∑

n=1

wmngn

)
φm. (40)

The set of the pseudosolutions is still closed and convex, so
there exists a unique pseudosolution with minimum norm u†

of problem (36).
If the generalized solution u† belongs to the subspace XN

(or, more precisely, XN ′ if the φn are not linearly indepen-
dent; in the following we will assume for sake of simplicity
that N = N ′) of X, then we can write it as a linear combi-
nation of the elements of any basis of XN . Among all the
possible choices, there is one particular basis of XN which
will result very useful in the following. In order to produce
this basis, we have to introduce the operators A∗A and AA∗;

these two operators are linear, bounded, self-adjoint, posi-
tive definite and with finite rank N . A∗A is defined on the
Hilbert space X and its explicit form, using (40), is given by

A∗Af =
N∑

m=1

(
N∑

n=1

wmn(f,φn)X

)
φm (41)

while AA∗ acts on the Euclidean space Y and its k-th com-
ponent is given by

(AA∗g)k =
N∑

m,n=1

(φm,φk)Xwmngn, k = 1, . . . ,N. (42)

If we remind the definition (33) of the Gram matrix, we ob-
tain the relation

AA∗ = GT W. (43)

The eigenvalues of AA∗, each with its multiplicity, are de-
noted by σ 2

n and ordered in order to provide the non increas-
ing sequence

σ 2
1 ≥ · · · ≥ σ 2

N. (44)

The corresponding eigenvectors {vn}Nn=1 of AA∗ form an
orthonormal basis of Y . The operator A∗A has the same
eigenvalues σ 2

n of AA∗ with the same multiplicity and the
corresponding eigenfunctions {un}Nn=1 form an orthonormal
basis in XN . It can be shown [8] that we can always choose
the eigenfunctions un and the eigenvectors vn such that the
shifted-eigenvalues problem

Aun = σnvn, A∗vn = σnun (45)

holds.

Definition 7 The set of triples {σn;un,vn}Nn=1 which satisfy
the shifted-eigenvalues problem (45) is called the singular
system of the operator A; the real numbers σn are the sin-
gular values, the functions un are the singular functions and
the vectors vn are the singular vectors.

The knowledge of the singular system of the operator rep-
resents a crucial point in regularization theory. The singular
values and the singular vectors can be calculated in a sim-
ply way by diagonalizing the matrix (43) while the singular
functions can be obtained from the relations (45) and the
explicit form (40) of the adjoint operator:

uk = 1

σk

N∑
m=1

(
N∑

n=1

wmn(vk)n

)
φm. (46)

From the singular system of the operator A we can obtain a
very meaningful expression for the generalized solution of
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the inverse problem (25). This function, as we have already
observed, has to be a pseudosolution (and so it solves (38))
and has minimum norm among all the pseudosolutions (and
so it belongs to XN , i.e. it has no component in (XN)⊥). It
follows that, if we replace the expansions

u† =
N∑

n=1

anun (47)

and

g =
N∑

n=1

(g,vn)Y vn (48)

in (38) and we compare the two sums term by term, we can
deduce the following expression for the coefficients an:

an = 1

σn

(g,vn)Y , n = 1, . . . ,N. (49)

Consequently, the generalized solution becomes

u† =
N∑

n=1

(g,vn)Y

σn

un. (50)

From this formula we can notice that, if we want to show ex-
plicitly the generalized solution of an inverse problem with
discrete data, it is necessary to start with the choice of the
topology on the data space Y . Then, from (50) we can de-
duce immediately the continuous dependence of the gener-
alized solution from the datum (in accordance with the fact
that the range of a linear bounded functional is closed).

The knowledge of the singular system of the operator A

gives us also a quantitative analysis of the instability of the
generalized solution; in fact, it can be shown that the condi-
tion number is given by

C(A) = σ1

σN

, (51)

where σ1 is the greatest singular value while σN is the small-
est one. Indeed we have that (see [72])

‖A‖2 = ‖A∗A‖ = sup
k=1,...,N

σ 2
k = σ 2

1 (52)

while

‖A†‖2 = ‖A†(A†)∗‖ = sup
k=1,...,N

1

σ 2
k

= 1

σ 2
N

. (53)

In order to show that the numbers 1
σ 2

k

, k = 1, . . . ,N are the

eigenvalues of the operator A†(A†)∗, we observe that

A†vk =
N∑

n=1

(vk,vn)Y

σn

un = 1

σk

uk (54)

and, since

(
(A†)∗uk,vn

)
Y

= (uk,A
†vn

)
X

=
(

uk,
1

σn

un

)
X

= 1

σn

δkn (55)

we obtain that

(A†)∗uk =
N∑

n=1

(
(A†)∗uk,vn

)
Y

vn

=
N∑

n=1

1

σn

δknvn = 1

σk

vk. (56)

It follows that the set of triples { 1
σn

;un,vn}Nn=1 satisfies the
shifted-eigenvalues problem

A†vn = 1

σn

un, (A†)∗un = 1

σn

vn (57)

and so it is the singular system of the operator A†; from (57)
we have that

A†(A†)∗uk = 1

σk

A†vk = 1

σ 2
k

uk (58)

and therefore the numbers 1
σ 2

k

, k = 1, . . . ,N are the eigen-

values of the operator A†(A†)∗.
Expression (51) of the condition number shows that, even

if the determination of the generalized solution of an inverse
problem with discrete data is a well-posed problem, the nu-
merical stability is not guaranteed. In fact, the more the sin-
gular values fastly decrease, the more the ratio (51) increases
and the propagation of the error from the datum to the gen-
eralized solution produces very significative effects.

2.4 Regularization Theory: General Formulation

In general terms, regularization is the best approximation of
an ill-posed problem by a family of neighboring well-posed
problems. We motivate the definition of a regularization op-
erator and of a regularization method in this way: we want
to approximate the best-approximate solution u† = A†g of
the inverse problem (1) for a specific right-hand side g in the
situation where the “exact data” g are not known precisely,
but only an approximation g(δ) with

‖g(δ) − g‖Y ≤ δ (59)

is available; we will call g(δ) the noisy data and δ the noise
level.

In the ill-posed case, and above all when the condition
number is particularly great, A†g(δ) is certainly not a good
approximation of A†g due to the high numerical instability.
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In order to repair this pathology, we look for some approx-
imation, say f

(δ)
λ , of u† which does, on the one hand, de-

pend continuously on the (noisy) data g(δ), so that it can be
computed in a stable way, and has, on the other hand, the
property that as the noise level δ decreases to zero and the
regularization parameter λ is chosen appropriately (what-
ever this means), then f

(δ)
λ tends to u†.

These considerations lead to the following definition:

Definition 8 Let A be a linear continuous operator with do-
main in the Hilbert space X and range in the Hilbert space
Y . The one-parameter family of operator {Rλ}λ>0 such that

(1) Rλ : Y → X is bounded ∀λ;
(2) limλ→0 ‖Rλg − u†‖X = 0 for every g in Y such that

Pg ∈ R(A), where P is the linear projection onto R(A),

is said a regularization algorithm.
The regularization algorithm {Rλ}λ>0 is said linear if Rλ

is linear for each value of the regularization parameter λ.

The operators Rλ represent continuous approximations
of the generalized inverse operator of A; in particular, con-
dition (2) can be replaced by

lim
λ→0

‖Rλg − A†g‖X = 0, (60)

and this relation is true for every g in R(A) ⊕ R(A)⊥,
which is dense in Y .

The application of a regularization algorithm provides an
approximation of the generalized solution of an ill-posed
linear inverse problem in the case of noise-free data. How-
ever the use of regularization is crucial in the case where the
data g is affected by experimental error. In this case g(δ) can
be represented in the form

g(δ) = Au† + w(δ) (61)

with

‖w(δ)‖Y = δ. (62)

Expression (61) may not be explicitly known but it is always
possible to assume that it exists. Furthermore, it does not
necessarily mean that the noise is additive, since w(δ) may
depend on u†. In the case of a linear regularization algorithm
one easily obtains

‖Rλg
(δ) − u†‖X ≤ ‖RλAu† − u†‖X + δ‖Rλ‖. (63)

Equation (63) represents a basic inequality in linear regular-
ization theory. The first term at the right hand side represents
the approximation error due to the use of Rλ instead of the
generalized inverse operator; from condition (2) it tends to
zero when λ tends to zero. On the other hand, the second
term measures the error on the regularized solution Rλg

(δ)

due to the presence of noise on the data and typically grows
up to infinity when λ tends to 0. Every regularization al-
gorithm requires a strategy for choosing the parameter λ in
dependence on the error level δ in order to achieve an ac-
ceptable total error for the regularized solution. On the one
hand, the accuracy of the approximation asks for a small er-
ror ‖RλAu† − u†‖X , i.e., for a small parameter λ. On the
other hand, the stability requires a small ‖Rλ‖, i.e., a large
parameter λ. An optimal choice would find a value λopt(δ)

of the regularization parameter such that the right hand side
of (63) becomes minimal. This choice of the regularization
parameter realizes a compromise between accuracy and sta-
bility. For a reasonable regularization strategy we expect the
regularized solution to converge to the exact solution when
the error level tends to zero. We express this requirement
through the following definition:

Definition 9 A regularization algorithm {Rλ}λ>0 is said
regular if, for δ → 0, λopt(δ) → 0 and Rλopt(δ)g

(δ) → u†.

When we deal with a strongly ill-posed linear inverse
problem, λopt(δ) changes very slowly for different values
of δ. Moreover, we observe that, even if a function λopt(δ)

exists, this does not mean that it is easy to determine it. In
general, the estimate of a reliable λopt(δ) is the main prob-
lem in regularization theory.

2.5 A Regularization Algorithm: The Tikhonov Method

The Tikhonov method is, historically, the first algorithm rig-
orously described in regularization theory and it has been
introduced in order to solve Fredholm integral equations of
the first kind [79, 80]. The first step in the definition of
such method (in a general context) is the minimization of
the functional

�λ[f ] = ‖Af − g‖2
Y + λ‖f ‖2

X (64)

with λ a real positive number. It is not difficult to prove that
for each λ the minimum problem is equivalent to the Euler
equation

(A∗A + λI)f = A∗g. (65)

Indeed, fλ is a solution of the minimum problem if and only
if, for any t in C and for any function φ in the Hilbert space
X, we have

‖Afλ − g‖2
Y + λ‖fλ‖2

X

≤ ‖A(fλ + tφ) − g‖2
Y + λ‖fλ + tφ‖2

X. (66)

By writing the norms as scalar products one easily obtains

|t |2(‖Aφ‖2
Y + λ‖φ‖2

X) + t{(Aφ,Afλ − g)Y + λ(φ,fλ)X}
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+ t{(Afλ − g,Aφ)Y + λ(fλ,φ)X} ≥ 0. (67)

From the arbitrariness of the complex number t we have that
relation (67) holds if and only if the linear term in λ

(Afλ − g,Aφ)Y + λ(fλ,φ)X (68)

is zero for all φ in X and therefore the Euler equation fol-
lows.

Since A∗A + λI is (strictly) positive definite, its inverse
operator is continuous.1 It follows that the function fλ which
solves the Euler equation is given by

fλ = (A∗A + λI)−1A∗g. (69)

If we define the operator

Rλ = (A∗A + λI)−1A∗, (70)

then the following theorem holds:

Theorem 5 The one-parameter family of operator {Rλ}λ>0

defined by

Rλ = (A∗A + λI)−1A∗ (71)

is a linear regularization algorithm. The algorithm is also
regular.

Proof First of all, the relation

(A∗A + λI)A∗ = A∗(AA∗ + λI) (72)

holds and, if we multiply both members on the left by
(A∗A+λI)−1 and on the right by (AA∗ +λI)−1, we obtain

Rλ = A∗(AA∗ + λI)−1. (73)

This means that the range of the regularized inverse operator
Rλ is contained in the range of A∗; then, from Theorem 2,
we have that the range of Rλ is contained in the range of A†.

The continuity of Rλ is a consequence of the inequality

‖Rλg‖2
X ≤ ‖AA∗(AA∗ + λI)−1‖‖(AA∗ + λI)−1‖‖g‖2

Y

(74)

obtained by using the Schwartz inequality in the relation

‖Rλg‖2
X = (A∗(AA∗ + λI)−1g,A∗(AA∗ + λI)−1g)X

= (AA∗(AA∗ + λI)−1g, (AA∗ + λI)−1g)X. (75)

1In fact, if λ > 0 and f ∈ X, then

λ‖f ‖2 = (λf,f )X ≤ ((A∗A + λI)f,f )X ≤ ‖(A∗A + λI)f ‖X‖f ‖X

and the claim follows from Theorem 12.12(c) of [73].

Now, if �(AA∗) is the spectrum of AA∗, then

‖AA∗(AA∗ + λI)−1‖ = sup
ω∈�(AA∗)

ω

ω + λ
≤ 1 (76)

and

‖(AA∗ + λI)−1‖ = sup
ω∈�(AA∗)

1

ω + λ
≤ 1

λ
(77)

so that

‖Rλ‖ ≤ 1√
λ

, (78)

i.e. Rλ is continuous for all λ > 0.
In order to prove the second property of the regularization

algorithms, we need arguments based on the spectral theory
of linear continuous operator. Let f ∈ N(A)⊥; then

‖RλAf − f ‖X =
∥∥∥∥
∫ ‖A‖2

0

λ

ω + λ
dEωf

∥∥∥∥
X

(79)

where dEω is the spectral measure associated to the operator
A∗A (which is self-adjoint and positive semidefinite).2 The
function ω �→ λ

ω+λ
is integrable with respect to the spec-

tral measure over [0,‖A‖2] and is bounded by 1, integrable
over the same interval. The Dominated Convergence Theo-
rem now implies

lim
λ→0

‖RλAf − f ‖X = ‖E0f ‖ (80)

where E0 is the projection onto N(A∗A) = N(A). It follows
that E0f = 0.

Finally the regularity of the algorithm is guaranteed by
the choice of a function λopt(δ) such that δ√

λ
→ 0 since in

this case inequality (63) becomes

‖Rλg
(δ) − u†‖X ≤ ‖RλAu† − u†‖X + δ√

λ
. � (81)

In the case of linear inverse problems with discrete data,
the knowledge of the singular system of the operator A al-
lows us to write the regularized solution fλ (i.e. the function
which minimizes the Tikhonov functional defined in (64))
in a very useful way for the applications. In fact, if we write
the data vector g as

g =
N∑

n=1

(g,vn)Y vn (82)

2From the Spectral Theorem (see [72]) we have that

h(A∗A) =
∫

�(A∗A)

h(ω)dEω.

In this case h(ω) = | ω
ω+λ

− 1| = λ
ω+λ

.

Moreover, since supω∈�(A∗A) |ω| = ‖A∗A‖ = ‖A‖2, it follows that
�(A∗A) ⊆ [0,‖A‖2].



120 M. Prato

and we recall the shifted-eigenvalues problem (45) which
defines the singular system of the operator A, then the Euler
equation (65) becomes [9]

fλ =
N∑

k=1

σk

σ 2
k + λ

(g,vk)Y uk. (83)

However, it is interesting to notice that, in the case of a lin-
ear inverse problem with discrete data, the knowledge of the
singular system of the operator is not necessary if we want
to find the function which minimizes the Tikhonov func-
tional (64). In fact we can obtain Rλ also from (73); but
(AA∗+λI) assumes values in the Euclidean space Y with fi-
nite dimension N , so it can be described by a N ×N matrix.
It follows that the determination of Rλ implies the inversion
of a matrix followed by the application of the operator A∗.

2.6 Optimal Choice of the Regularization Parameter

The parameter choice rule λ = λ(δ, g(δ)) depends explicitly
on the noise level δ and on the actual perturbed data g(δ).
Also, it usually depends on every specific g in the domain
of the generalized inverse operator A†; since g is not known,
this dependence can only be on some qualitative a-priori
knowledge about g like smoothness properties. Finally, λ

depends also on the operator A.
We distinguish between two types of parameter choice

rules:

Definition 10 Let λ = λ(δ, g(δ)) be a parameter choice rule.
If λ does not depends on g(δ), but only on δ, then we call λ

an a-priori parameter choice rule. Otherwise, we call λ an
a-posteriori parameter choice rule.

Thus, an a-priori parameter choice rule depends only on
the noise level, not on the actual data and, hence, not on re-
sults obtained during the actual computation like the residual
‖Afλ − g(δ)‖Y , where fλ = Rλg

(δ) is the regularized solu-
tion. Such a rule may be devised before the actual calcula-
tion, hence the name a-priori parameter choice rule.

Let us consider now the specific case of the Tikhonov reg-
ularization algorithm. According to Theorem 5, any a-priori
choice of the regularization parameter λ = λ(δ) satisfying
δ2/λ(δ) → 0 as δ → 0 leads to a regular algorithm for the
solution of the linear inverse problem Af = g. Although this
asymptotic result may be theoretically satisfying, it would
seem that a choice of the regularization parameter that is
based on the actual computations performed, that is an a-
posteriori choice of the regularization parameter, would be
more effective in practice. One such a-posteriori strategy is
the discrepancy principle of Morozov (see [9]). The idea of
the strategy is to choose the regularization parameter so that

the size of the residual ‖Afλ −g(δ)‖Y is the same as the error
level in the data, i.e.,

‖Afλ − g(δ)‖Y = δ. (84)

In the case of linear inverse problems with discrete data,
assuming that the signal-to-noise ratio is larger than one, that
is ‖g(δ)‖ > δ, and that g ∈ R(A), then it is not hard to see
that there is an unique positive parameter λ satisfying (84).
To do this, we use the singular value decomposition

‖Afλ − g(δ)‖2
Y =

N∑
k=1

(
λ

σ 2
k + λ

)2

|(g(δ),vk)|2 + ‖P g(δ)‖2

(85)

where P is the projector of Y onto R(A)⊥. From (85) we
see that the real function

f (λ) = ‖Afλ − g(δ)‖2
Y (86)

is a continuous, increasing function of λ satisfying (since
P g = 0)

lim
λ→0+ f (λ) = ‖P g(δ)‖ = ‖P g(δ) − P g‖

≤ ‖g(δ) − g‖ ≤ δ (87)

and

lim
λ→+∞f (λ) = ‖g(δ)‖ > δ. (88)

Therefore, by the Intermediate Value Theorem, there is a
unique λ = λ(δ,g(δ)) satisfying (84).

We close this section by showing that the choice λ(δ, g(δ))

as given by the discrepancy method (84) leads to a regular
scheme for approximating A†g, that is

fλ(δ,g(δ)) → u† as δ → 0. (89)

To do this it is sufficient to show that for any sequence δn →
0 there is a subsequence, which for notational convenience
we will denote by {δk}, such that

fλ(δk,g
(δk)) → u†. (90)

We are assuming that g ∈ R(A) and we recall that u† is the
unique vector in X satisfying Au† = g and u† ∈ N(A)⊥.
For sake of simplicity we will neglect the dependency of
λ(δ, g(δ)) on g(δ).

From the functional characterization (64) of the Tik-
honov approximation we have

�λ(δ)[fλ(δ)] ≤ �λ(δ)[u†] (91)
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that is,

δ2 + λ(δ)‖fλ(δ)‖2
X = ‖Afλ(δ) − g(δ)‖2

Y + λ(δ)‖fλ(δ)‖2
X

≤ �λ(δ)[u†]
= ‖g − g(δ)‖2

Y + λ(δ)‖u†‖2
X

≤ δ2 + λ(δ)‖u†‖2
X (92)

and hence ‖fλ(δ)‖X ≤ ‖u†‖X . Therefore, for any sequence
δn → 0 there is a subsequence δk → 0 with fλ(δk) ⇀ z for
some z ∈ X (where the arrow ⇀ denote the weak conver-
gence). Since

fλ(δ) = A∗(AA∗ + λ(δ)I )−1g(δ) ∈ R(A∗) ⊆ N(A)⊥ (93)

and N(A)⊥ is weakly closed, we find that z ∈ N(A)⊥. Also,
since

‖Afλ(δk) − g(δk)‖Y → 0 (94)

we see that Afλ(δk) → g. But A is weakly continuous and
therefore

Afλ(δk) ⇀ Az. (95)

It follows that Az = g and z ∈ N(A)⊥, i.e., z = u†.
We observe now that, since

fλ(δk) ⇀ u† (96)

and the operator f → ‖f ‖X is continuous and convex, from
Corollary 1.8.3 of [2] we have that

‖u†‖X ≤ lim
k→+∞ inf‖fλ(δk)‖X. (97)

But ‖fλ(δk)‖X ≤ ‖u†‖X ∀k, and therefore

‖fλ(δk)‖X → ‖u†‖X. (98)

From relations (96) and (98) it follows that

fλ(δk) → u†, (99)

(see Theorem 1.8.3 of [2]) and the proof is complete.

3 Application to Solar Physics: Non Thermal
Bremsstrahlung

3.1 The Bremsstrahlung Equation

A solar flare is the rapid release of a large amount of en-
ergy stored in the solar atmosphere. During a flare, gas is
heated from 10 to 20 million degrees Kelvin and radiates
both soft X-rays and longer-wavelength emission (hard X-
rays and γ -rays). It is important to notice that the analysis

of the X-ray spectra provides information about the physi-
cal processes that take place in the magnetized plasma of the
solar atmosphere during a flare, such as impulsive energy re-
lease, particle acceleration and particle and energy transport
[78]. This high-energy processes play a major role at sites
throughout the universe ranging from magnetosphere to ac-
tive galaxies. Consequently, the importance of understand-
ing these processes transcends the field of solar physics, and
represents one of the major goals of space physics and as-
trophysics.

Hard X-rays are emitted by electrons with relativistic ve-
locities, typically impossible to reach if we take into account
simply the agitation due to the temperature of the plasma.
Soft X-rays have lower energies and are emitted by electrons
with lower or thermal velocities. In the last case the electrons
assume shift velocities (about 0.05 times c) that make them
leave their original atomic nuclei. These electrons are then
attracted by other atomic nuclei which slow them down. The
excess energy is released in the form of X-rays in a process
known with the German term bremsstrahlung (“braking” ra-
diation). The same process is followed also by electrons with
relativistic velocities, but in this case the energies involved
are much bigger and cause the emission of hard X-rays.

The bremsstrahlung of electrons with the ions of the
plasma is then a collisional process and so it is characterized
by a cross section which, generally, depends on the energies
of the photons and of the X-ray producing electrons. If this
cross section is analytically known, the photon spectrum can
be directly related to the electron distribution. Generally, the
study of the emission process can be made under particular
hypotheses about the physical conditions of the source. First
of all, bremsstrahlung radiation is considered optically thin
[15], that is absorption can be neglected; this implies that the
observed X-ray spectra are quite similar to the ones emerg-
ing from the emitting region. Moreover the electron velocity
distribution is characterized by isotropic conditions. Finally
the plasma is assumed to be hydrogen dominated, so that the
ions are almost completely protons. Under these hypotheses,
the equation linking the distribution function of electrons
with the hard X-ray intensity observed at distance R from
a source can be written in the following way [20]:

I (ε) = 1

4πR2

∫
V

n(r)
∫ ∞

ε

F (E, r)Q(ε,E)dEdr (100)

where V is the source volume, n(r) is the local proton den-
sity in the plasma, E is the electron energy, ε is the pho-
ton energy, F(E, r) is the electron distribution function,
Q(ε,E) is the bremsstrahlung cross section, differential in
ε, I (ε) is the total rate of photon emission measured in pho-
tons cm−2 s−1 keV−1. It must be noted that I (ε) represents
the flux at the sun; in practice, measurements regard fluxes
at the earth, but here only the shape of the spectrum and the
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relative errors in it are considered, so that the multiplicative
constants are irrelevant.

Averaging the electron distribution function over the vol-
ume of the emitting region and weighting this function with
the density of the ions, one obtains the relation [20]:

I (ε) = nV

4πR2

∫ ∞

ε

F (E)Q(ε,E)dE, (101)

where the mean electron spectrum F(E) is given by

F(E) = 1

nV

∫
V

n(r)F (E, r)dr, (102)

and the mean target ion density in the source is defined as

n = 1

V

∫
V

n(r)dr. (103)

For sake of simplicity, we define

f (E) = nV F(E), (104)

g(ε) = 4πR2I (ε) (105)

and the integral equation we are interested in becomes

g(ε) =
∫ ∞

ε

f (E)Q(ε,E)dE. (106)

Equation (106) is the bremsstrahlung equation in solar
plasma physics: it can be written without any assumption on
the physical processes in the source and just for this reason it
is the most general equation describing the X-ray emission
mechanism during solar flares. We point out that this ap-
proach is completely isotropic, i.e. no angular dependency
in the mean electron spectrum or in the cross section is con-
sidered. First investigations toward anisotropic modelization
of the emission will be described in Sect. 5, although further
generalizations of (106) are in progress.

A crucial role in (106) is played by the cross section
Q(ε,E) differential in the photon energy ε at electron en-
ergy E. In practice, Q(ε,E) measures the probability that an
X-ray photon of energy ε is emitted by an electron of energy
E ≥ ε. This function carries a significant physical meaning,
describing the effectiveness of the bremsstrahlung process.
Furthermore, on the mathematical side, its analytical shape
has important consequences on the numerical stability of the
solution process and provides a reliable indication of the in-
formation content which can be retrieved from the X-ray
data. According to the physical conditions where the emis-
sion process takes place, many different forms of such a
cross section can be written [44]. Among them, three rep-
resentatives are particularly meaningful, representing three
different amounts of the impact due to the relativistic effects
on the emission process. These three cross sections, repre-
sented in Fig. 1, are:

Fig. 1 Cross sections: (a) Kramers approximation; (b) Bethe-Heitler
approximation; (c) highly relativistic cross section

• The Kramers cross section

QK(ε,E) = Q0

εE
. (107)

It is a completely classical formula, where the relativistic
effects are neglected. In (107) the multiplicative constant
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factor Q0 is defined as

Q0 = 8

3

Zr2
0

137
mc2, (108)

where r0 is the classical radius of the electron, m is its rest
mass, c is the speed of light in the vacuum and Z is the
average atomic number in the plasma (Z is of the order of
1, since the plasma is mostly made of ionized hydrogen).

• The Bethe-Heitler formula

QBH (ε,E) = Q0

εE
log

1 +
√

1 − ε
E

1 −
√

1 − ε
E

, (109)

where Q0 is as in (108) and which accounts for mild rel-
ativistic effects in the logarithmic factor at the right hand
side.

• The highly relativistic formula given by equation (3BN)
in [44]. Such cross section is considered the most general
one for this kind of process and its analytical form is

Q3BN(ε,E)

= Z2r2
0

137

pf

kp0

{
4

3
− 2E0Ef

(
p2

f + p2
0

p2
f p2

0

)

+ ν0Ef

p3
0

+ νf E0

p3
f

− ν0νf

p0pf

+ L

[
8E0Ef

3p0pf

+ k2(E2
0E2

f + p2
0p

2
f )

p3
0p

3
f

+ k

2p0pf

((
E0Ef + p2

0

p3
0

)
ν0

−
(

E0Ef + p2
f

p3
f

)
νf + 2kE0Ef

p2
f p2

0

)]}
(110)

where

k = ε

mc2
; E0 = E

mc2
+ 1; Ef = E0 − k;

p0 =
√

E2
0 − 1; pf =

√
E2

f − 1

L = 2 ln

[
E0Ef + p0pf − 1

k

]
;

ν0 = ln

(
E0 + p0

E0 − p0

)
; νf = ln

(
Ef + pf

Ef − pf

)
.

There are two reasons why it is interesting to study (106)
for different forms of the cross section. The first one is phys-
ical and is the fact that the differences in the solution f (E)

for the three different forms of Q(ε,E) previously intro-
duced can provide quantitative information on the incidence

of the relativistic corrections on the photon production in the
solar plasma. The second reason is computational and is the
fact that the numerical solution of (106) is notably less oner-
ous in the case of (107) and (109) and then it is helpful to
verify to what extent the highly relativistic effects can be ne-
glected in the solution procedure. In the next two sections an
analytical study of the solution of the bremsstrahlung prob-
lem will be performed in the case of continuous and discrete
photon spectra for the Kramers and Bethe-Heitler approx-
imations. The case concerned with the more complicated
cross section (110) will be treated in Sect. 3.4.

3.2 Analytical Study of the Bremsstrahlung Equation

In the case of the Kramers and Bethe-Heitler cross sec-
tions, (106) can be analytically solved by applying the the-
ory of Mellin transform [76]. The Mellin transform of a
function f : (0,∞) −→ C such that

∫ ∞

0
|f (x)|xσ−1dx < ∞ (111)

for some real number σ in (0, 1
2 ) is defined as

f̃ (ξ) =
∫ ∞

0
f (x)x− 1

2 +iξ dx, (112)

where ξ belongs to (−∞,+∞).

Theorem 6 Let f : (0,∞) −→ C be a continuously differ-
entiable function such that condition (111) holds. Then

f (x) = 1

2π

∫ +∞

−∞
f̃ (ξ)x− 1

2 −iξ dξ (113)

for every x ∈ (0,∞).

Proof If we do the change of variable x = e−t in (112), we
see that the Mellin transform of a function x �→ f (x) coin-
cides with the Fourier transform of the function t �→ F(t) =
f (e−t )e−t/2. In fact,

f̃ (ξ) =
∫ ∞

0
f (x)x− 1

2 +iξ dx

=
∫ +∞

−∞
f (e−t )e( 1

2 −iξ)t e−t dt

=
∫ +∞

−∞

[
f (e−t )e− t

2

]
e−iξ t dt

=
∫ +∞

−∞
F(t)e−iξ t dt = F̂ (ξ). (114)

This equality and the inversion formula for the Fourier trans-
form lead to the inversion formula for the Mellin transform.
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Indeed

f (e−t )e− t
2 = F(t) = 1

2π

∫ +∞

−∞
f̃ (ξ)eiξ t dξ. (115)

Coming back to the variable x we have

f (x)
√

x = 1

2π

∫ +∞

−∞
f̃ (ξ)x−iξ dξ (116)

and the explicit form of the Mellin inverse transform fol-
lows:

f (x) = 1

2π

∫ +∞

−∞
f̃ (ξ)x− 1

2 −iξ dξ. � (117)

The Mellin transform is particularly helpful in the case
of linear integral equations of the first kind when the kernel
depends on the variables ratio. Indeed the following theorem
holds:

Theorem 7 We consider the integral equation

g(x) =
∫ +∞

0
k

(
x

y

)
f (y)

dy

y
. (118)

The application of the Mellin transform to both sides of this
equation leads to the diagonalization

g̃(ξ) = f̃ (ξ )̃k(ξ). (119)

Proof We have

g̃(ξ) =
∫ ∞

0
g(x)x− 1

2 +iξ dx

=
∫ ∞

0

(∫ +∞

0
k

(
x

y

)
f (y)

dy

y

)
x− 1

2 +iξ dx

=
(∫ ∞

0
f (y)y− 1

2 +iξ dy

)

×
(∫ ∞

0
k

(
x

y

)(
x

y

)− 1
2 +iξ

dx

y

)

=
(∫ ∞

0
f (y)y− 1

2 +iξ dy

)(∫ ∞

0
k(z)z− 1

2 +iξ dz

)

= f̃ (ξ )̃k(ξ). � (120)

When Q(ε,E) assumes the forms (107) or (109) the
bremsstrahlung equation (106) assumes the same form
as (118). In fact, if one introduces the new integral kernel

K(ε,E) =
{

0, E < ε,
εE
Q0

Q(ε,E), E ≥ ε
(121)

and defines the new data function

J (ε) = εg(ε)

Q0
, (122)

(106) becomes

J (ε) =
∫ ∞

0
f (E)K(ε,E)

dE

E
. (123)

Now let us introduce the functions

k(ε/E) = kK(ε/E) =
{

1, ε/E ≤ 1,

0, otherwise
(124)

for the Kramers cross section and

k(ε/E) = kBH (ε/E)

=
⎧⎨
⎩

log
1+√

1− ε
E

1−√
1− ε

E

, ε/E ≤ 1,

0, otherwise
(125)

for the Bethe-Heitler cross section, so that (123) can be writ-
ten as

J (ε) =
∫ ∞

0
f (E)k(ε/E)

dE

E
. (126)

It follows that, if the Mellin transform of the integral kernels
(124) and (125) does not vanish anywhere, the analytical
solution of (106) when these two cross sections are used can
be easily obtained by using Theorems 6 and 7.

Theorem 8 Let f : (0,∞) −→ C be a continuously differ-
entiable function such that condition (111) holds. Then the
solution of (106) is given by

f (E) = 1

2π

∫ +∞

−∞
1 + 2iξ

2
J̃ (ξ) E−( 1

2 +iξ)dξ (127)

in the case of the Kramers cross section and by

f (E) = 1

2π

∫ +∞

−∞
1 + 2iξ

2
√

π

�(1 + iξ)

�( 1
2 + iξ)

J̃ (ξ) E−( 1
2 +iξ)dξ

(128)

in the case of the Bethe-Heitler cross section.

Proof Let us introduce the Beta function B(p,q) defined as

B(p,q) =
∫ 1

0
xp−1(1 − x)q−1dx, Re(p) > 0, Re(q) > 0

(129)

and its relation B(p,q) = �(p)�(q)
�(p+q)

with the Gamma func-
tion defined as

�(z) =
∫ ∞

0
e−t t z−1dt, Re(z) > 0. (130)
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We observe that, for the Kramers case,

k̃K(ξ) =
∫ 1

0
x− 1

2 +iξ dx = B

(
1

2
+ iξ,1

)

= �( 1
2 + iξ)�(1)

�( 3
2 + iξ)

= 2

1 + 2iξ
, (131)

where in the last equality we used the relations �(1) = 1 and
�(1 + z) = z�(z), z ∈ C.

For the Bethe-Heitler case, integration by parts leads to

k̃BH (ξ) =
∫ 1

0
log

1 + √
1 − x

1 − √
1 − x

x− 1
2 +iξ dx

= −
∫ 1

0

−1

x
√

1 − x
· x

1
2 +iξ

1
2 + iξ

dx

= 1
1
2 + iξ

∫ 1

0

1√
1 − x

x− 1
2 +iξ dx

= 1
1
2 + iξ

B

(
1

2
+ iξ,

1

2

)
. (132)

Since �(1/2) = √
π we have

k̃BH (ξ) =
√

π

1
2 + iξ

�( 1
2 + iξ)

�(1 + iξ)
= 2

√
π

1 + 2iξ

�( 1
2 + iξ)

�(1 + iξ)
. (133)

We finally observe that both k̃K(ξ) and k̃BH (ξ) do not van-
ish anywhere. �

Even if Theorem 8 formally gives the solutions of (106)
in the case of both Kramers and Bethe-Heitler cross sec-
tions, we have to point out the intrinsic ill-posedness of
this procedure. In fact, k̃K and k̃BH are analytical func-
tions which tend to zero when |ξ | → ∞. Indeed, while in
the Kramers approximation the computation is trivial, in the
Bethe-Heitler case we have that

lim|ξ |→∞
∣∣̃kBH (ξ)

∣∣

= lim|ξ |→∞

∣∣∣∣∣
2
√

π

1 + 2iξ
· �( 1

2 + iξ)

�(1 + iξ)

∣∣∣∣∣

= lim|ξ |→∞
2
√

π√
1 + 4ξ2

· |�( 1
2 + iξ)|

|�(1 + iξ)|

= lim|ξ |→∞
2
√

π√
1 + 4ξ2

· |�( 1
2 + iξ)|

|iξ�(iξ)|

= lim|ξ |→∞
2
√

π√
1 + 4ξ2

·
√

π

cosh(πξ)
· 1

|ξ | ·
√ |ξ | |sinh(πξ)|

π

= lim|ξ |→∞
2
√

π√
1 + 4ξ2

·
√∣∣∣∣ tanh(πξ)

ξ

∣∣∣∣= 0, (134)

where we used the properties of the Gamma function
(see [1])

� (iξ)� (−iξ) = |� (iξ)|2 = π

ξ sinh(πξ)
; (135)

�

(
1

2
+ iξ

)
�

(
1

2
− iξ

)
=
∣∣∣∣�
(

1

2
+ iξ

)∣∣∣∣
2

= π

cosh(πξ)
. (136)

Therefore a small perturbation of J̃ (ξ) for large values of ξ

produces a completely different solution, since, as follows
from (127) and (128), this small perturbation is divided by
the vanishing values of k̃K and k̃BH . In general, the integrals
(127) and (128) do not converge when (119) is replaced by
the more realistic one

g̃(ξ) = f̃ (ξ )̃k(ξ) + ñ(ξ) (137)

where ñ(ξ) is a function describing the effect of the noise
on the data.

For practical applications, (127) and (128) are of little
interest. Indeed, in order to obtain the mean electron spec-
trum from the analytic solutions of the bremsstrahlung equa-
tion provided by the previous theorem, the photon spectrum
should be known over the whole energy interval (ideally,
up to infinite photon energies) and with an accuracy suffi-
ciently high to make the computation of the Mellin trans-
form of the data possible. However, in real observations,
the detectors provide data vectors whose components cor-
respond to noisy values of the X-ray spectra sampled over
a bounded range of photon energies. Therefore it is natural
to study the functional analytic properties of the operator
A1 : L2(εmin,∞) → L2(εmin, εmax) defined as

(A1f )(ε) =
∫ ∞

εmin

f (E)K(ε,E)
dE

E
(138)

when εmin > 0, εmax < ∞ and the integral kernel is given by
(121) with Q(ε,E) as in (107) for the Kramers case and as
in (109) for the Bethe-Heitler case.

The following theorem proves that such an operator is
compact.

Theorem 9 Let us consider the linear integral operator
A1 : L2(εmin,∞) −→ L2(εmin, εmax) defined in (138). For
both the Kramers and the Bethe-Heitler integral kernels this
operator is compact.

Proof Let us consider the functions

E �→ 1

E2
K2(ε,E) (139)
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and

ε �→
∫ ∞

εmin

1

E2
K2(ε,E)dE; (140)

for the Fubini’s Theorem, if we show that the first one
belongs to L1(εmin,∞) and the second one belongs to
L1(εmin, εmax), we have that the function

(ε,E) �→ 1

E
K(ε,E) (141)

is in L2 ([εmin, εmax] × [εmin,∞)) and, therefore, that A1 is
Hilbert-Schmidt. But, in the Kramers case,
∫ ∞

εmin

1

E2
K2(ε,E)dE ≤ 1

εmin
(142)

while, in the Bethe-Heitler case,
∫ ∞

εmin

1

E2
K2(ε,E)dE

=
∫ ∞

ε

1

E2

⎛
⎝log

1 +
√

1 − ε
E

1 −
√

1 − ε
E

⎞
⎠

2

dE

≤
∫ ∞

εmin

1

E2

⎛
⎝log

1 +
√

1 − ε
E

1 −
√

1 − ε
E

⎞
⎠

2

dE

≤
∫ ∞

εmin

1

E2

⎛
⎝log

1 +
√

1 − εmin
E

1 −
√

1 − εmin
E

⎞
⎠

2

dE < ∞ (143)

where we use the fact that the function

ε �→
⎛
⎝log

1 +
√

1 − ε
E

1 −
√

1 − ε
E

⎞
⎠

2

is a decreasing function of ε.
The proof is completed by observing that [εmin, εmax] is

compact. �

The linear inverse problem

J = A1f (144)

is ill-posed in the sense of Hadamard. In particular, the
compactness of A1 implies that the solution of the problem
does not depend continuously on the data. From a practical
viewpoint, the impact of ill-posedness on the inversion of
real photon spectra is notable. In fact, any discretization of
(144) must account for the numerical ill-conditioning conse-
quence of the presence of the measurement noise on the ob-
served spectra. It follows that at some stage of the inversion

process a regularization procedure must be introduced, in or-
der to reduce the numerical instabilities and to provide phys-
ically reliable approximate solutions of the inverse problem.

3.3 The Inverse Problem with Discrete Data

During flare observations, X-ray detectors provide sets of
numbers which are proportional to the integral of the photon
spectrum over small ranges of photon energies. However, in
the case of last generation devices such as RHESSI, it is
realistic to assume that the difference between these counts
and the point values of g(ε) at some energy value in the
channel are negligible (for a quantitative discussion of this
difference, see [63]). It follows that the equation we have to
deal with when treating observed spectra is

g(εn) =
∫ ∞

εn

f (E)Q(εn,E)dE, n = 1, . . . ,N, (145)

where εn denotes the sampled photon energies for n =
1, . . . ,N . In the case of the Kramers and Bethe-Heitler in-
tegral kernels, we want to address the study of this equation
by maintaining its solution in an infinite dimensional space.
In fact, we still assume that the source space is L2(εmin,∞)

and we choose as data space the finite dimensional vector
space Y equipped with the weighted inner product

(g,h)Y =
N∑

m,n=1

gmwmnhn. (146)

Then we consider the finite-rank linear operator A2 :
L2(εmin,∞) → Y defined by

(A2f )n =
∫ ∞

εn

f (E)Q(εn,E)dE, n = 1, . . . ,N (147)

and the inverse problem we are interested in can be de-
scribed by the equation

g = A2f. (148)

Equation (148) shows that the problem of the determina-
tion of the distribution function of electrons from the knowl-
edge of the photon spectrum is a linear inverse problem with
discrete data. In the cases of the Kramers and the Bethe-
Heitler cross sections, we can follow the approach described
in Sect. 2.3 and compute analytically the functions φn(E)

defined in (27) and the entries of the Gram matrix given in
(33). If we adopt the Kramers approximation, the explicit
form of the functions φn is given by

φn(E) =
{

0, E < εn,
1

εnE
, E ≥ εn

(149)
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and a straightforward integration shows that the mn entry of
the Gram matrix is

Gmn =
{

1
ε2
mεn

, m ≥ n,

Gnm, m < n.
(150)

If we adopt the Bethe-Heitler cross section, the explicit form
of the functions φn is given by

φn(E) =
⎧⎨
⎩

0, E < εn,

1
εnE

log
1+√

1− εn
E

1−√
1− εn

E

, E ≥ εn

(151)

and the mn entry of the Gram matrix is

• for m > n:

Gmn = 4

(εnεm)
3
2 log

1+
√

εn
εm

1−
√

εn
εm

− 2
εnε2

m
log εn

εm

+ 2

εnε2
m

(
1 + εm

εn

)
log

(
1 − εn

εm

)
; (152)

• for m = n:

Gmm = 8 log 2

ε3
m

; (153)

• for m < n:

Gmn = Gnm. (154)

In the case of the relativistic cross section (110), the ex-
plicit form of the functions φn(E) is extremely complicated
and the entries of the Gram matrix can be computed only
through some numerical integration.

3.4 The Relativistic Cross Section

Owing to computational reasons, in the case of the highly
relativistic cross section Q3BN(ε,E) we have preferred not
to maintain the solution in an infinite dimension space but to
fully discretize the integral equation (106) and to study the
resulting rectangular linear system

g = Af, (155)

where g is the data vector with components

(g)n = g(εn), n = 1, . . . ,N, (156)

f is the solution vector with components

(f)m = f (Em), m = 1, . . . ,M (157)

and A is the rectangular matrix with entries

Anm = Q(εn,Em)ηnm, (158)

ηnm being the quadrature coefficients (which depend on the
kind of sampling used). Here, for reasons related to the
physics of the problem and, in particular, to the character-
istics of the acquisition procedure followed by RHESSI, we
will always have M > N . The determination of the general-
ized solution of the linear system (155), i.e. the vector solv-
ing the constrained least-squares problem

‖g − Af‖ = min, ‖f‖ = min, (159)

is given by

f† =
N∑

k=1

1

σk

(g,vk)uk, (160)

where {σk;vk,uk}Nk=1 is the singular system of the matrix A
defined by means of

Auk = σkvk, Atvk = σkuk. (161)

Analogously, the Tikhonov regularized solution of (155) is
given by

fλ =
N∑

k=1

σk

σ 2
k + λ

(g,vk)uk (162)

and the optimal value of the regularization parameter can be
fixed by applying the discrepancy principle in its obvious
discrete formulation.

4 Reconstruction of the Mean Electron Spectrum

The aim of this section is two-fold. From one side we want
to study the effectiveness of the Tikhonov regularization
method for solving the general bremsstrahlung equation, by
using simulated spectra. On the other hand, we want to de-
scribe the sensitivity of this inversion approach to the use
of different integration kernels, i.e. for different choices of
the bremsstrahlung cross section. In particular, our discus-
sion will be organized into two sections. In the first one we
will study the conditioning of the problem by means of the
Singular Value Decomposition of the integral operator. In
the second one we will use realistic synthetic data to test the
effectiveness of the Tikhonov method and of the optimal cri-
terion for choosing the regularization parameter. In the last
section, we will give an example of application of the Tik-
honov method to real X-ray data recorded by RHESSI.

4.1 Condition Number for the Different Cross Sections

A critical point in the numerical solution of integral equa-
tions is the dependence of the numerical instability degree
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on the shape of the integral kernel. In the case of the bremss-
trahlung equation, such an issue assumes a particularly rel-
evant role, owing to the notable physical meaning of the ap-
proximations leading to the different forms of the bremss-
trahlung cross section. The key question, here, is to assess
if and under which physical conditions, the use of simpli-
fied cross sections may increase the ill-conditioning of the
inverse problem and, therefore, the reliability of the corre-
sponding regularized solutions. From a computational view-
point, the use of the singular system of the finite rank opera-
tor (147), in the case of the Kramers and Bethe-Heitler cross
sections, and of the rectangular matrix (158) in the case of
the relativistic cross section, allows to easily determine the
condition number

C = σ1

σN

(163)

for different values of the number of sampling points and for
different values of the photon sampled energies.

Let us consider first the computation of the singular sys-
tem for a fixed range [εmin, εmax] of photon energies and a
fixed number N of sampling points. For this application we
chose εmin = 10 keV, εmax = 99 keV, N = 90 in the case of
a uniform sampling with sampling distance equal to 1 keV
(these experimental conditions are compatible with the typ-
ical parameters used during the pre-processing of RHESSI
observations). Table 1 contains the first ten singular values
for the three cross sections while Fig. 2 shows the first four
singular functions uk for the three cross sections. Finally,
Table 2 contains the condition numbers corresponding to the
three kernels with εmin = 10 keV and three different values
of the maximum photon energy. Under the assumption that
the cross section (110) represents the exact emission prob-
ability in the bremsstrahlung process (or, at least, its most
accurate approximation), these results point out that:

• when the Kramers form is used, i.e., when all the rela-
tivistic effects are neglected, the resulting singular system
is significantly different than the exact one. In particular,
the Kramers singular spectrum runs first below and then
above the exact one with relative differences of even more
than 50% for the largest and smallest singular values.

• The singular functions corresponding to the Kramers
cross section systematically reaches larger maximum val-
ues than the exact ones and, what is more important, their
zeros occur at smaller energy values. Since the regular-
ized solution can be expanded on the basis given by the
singular functions or vectors (see (83) and (162)), this
implies that the spectral resolution achievable when the
Kramers approximation is assumed for the inversion de-
teriorates with energy more rapidly than for the other two
cross sections.

• The semi-relativistic Bethe-Heitler approximation pro-
vides a singular spectrum which is close to the exact one

Fig. 2 Singular functions of the finite-rank operator A2 for the
Kramers and Bethe-Heitler integral kernels and of the matrix A in the
case of the relativistic cross section: (a) first singular function; (b) sec-
ond singular function; (c) third singular function; (d) fourth singular
function
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Table 1 Singular values of the finite-rank operator A2 for the Kramers
and Bethe-Heitler integral kernels and of the matrix A in the case of
the fully relativistic cross section. The experimental conditions are:
εmin = 10 keV, εmax = 99 keV, N = 90, uniform sampling with 1 keV
sampling distance

Kramers Bethe–Heitler Cross 3BN

σ1 0.69675061 1.4327710 1.6616698

σ2 0.23456303 0.3009761 0.3251901

σ3 0.14120844 0.1354425 0.1442251

σ4 0.10133624 0.0817600 0.0865855

σ5 0.07936335 0.0561889 0.0589741

σ6 0.06555440 0.0418901 0.0434190

σ7 0.05611209 0.0329645 0.0335835

σ8 0.04916533 0.0270082 0.0269361

σ9 0.04366882 0.0227958 0.0221901

σ10 0.03908788 0.0196456 0.0186748

Table 2 Condition numbers for the linear inverse problem with dis-
crete data when the cross sections are given by the Kramers and Bethe-
Heitler formulas and for the fully discretized problem in the case of
the relativistic cross section. The minimum sampled photon energy is
εmin = 10 keV in all cases, while three different values of the maximum
sampled photon energy are considered

Kramers Bethe–Heitler Cross 3BN

εmax = 99 764.32 9662.26 17572.21

εmax = 149 1424.45 28069.19 54625.84

εmax = 199 3043.64 60945.02 117049.32

(the relative error is smaller than 15% for all the singular
values). The singular functions are very similar too.

• As one may expect, the conditioning of the problem wors-
ens when the sampling range increases. Anyway, the in-
verse problem corresponding to the Kramers kernel is al-
ways better conditioned.

4.2 Reconstructions: Synthetic Data

The inversion of simulated photon spectra allows to vali-
date two important aspects of the regularization approach:
the robustness of data reduction to modifications of the inte-
gral kernel and the effectiveness of the discrepancy principle
for the optimal choice of the regularization parameter. In or-
der to study such issues we have generated simulated data
corresponding to three different experimental situations.

Power-law: small solar flares typically generate photon
spectra characterized by a monotonically steeply decreas-
ing behavior approximated by

g(ε) ∼ ε−γ (164)

Fig. 3 Synthetic data: (a) the three theoretical electron spectra; (b) the
three corresponding photon spectra. In both figures, in order to distin-
guish the ‘power-law’ case (solid) and the ‘power-law plus dip’ case
(dotted) from the ‘power-law plus dip plus thermal component’ case
(dashed), a ×1000 and a ×100 artificial scale factors have been used
respectively

with, typically, γ ≥ 3. Simple asymptotic considerations
on (106) show that this kind of photon spectrum is gener-
ated by an averaged electron spectrum of the kind

f (E) ∼ E−δ (165)

with δ ∼ γ − 1.
In our simulations we have assumed

f (E) = 104
(

E

50

)−δ

, (166)

where the numerical constants have been introduced for
physical reasons.

Dip: in [67] a rather surprising small wavelength structure
has been reconstructed in the mean electron spectrum cor-
responding to a photon spectrum emitted during the July
23, 2002 flare. The nature and origin of such an intermedi-
ate energy dip are still under investigation. Here we mimic
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Fig. 4 Reconstruction of three different forms of the averaged elec-
tron spectrum for the three cross sections considered: (a) the power
law when λ is chosen by minimizing the distance between the theo-
retical and regularized solutions; (b) as in (a), with λ chosen by the
discrepancy principle. Artificial scale factors have been used to better
distinguish the three cases

its presence by means of the analytical form

f (E) =
{

0.25 · 104
(

E
50

)−δ
, 50 ≤ E ≤ 60,

104
(

E
50

)−δ
, E < 50, E > 60.

(167)

Thermal component: particularly in the case of intense
flares, part of the low energy X-ray emission is not due
to the injection of accelerated electrons into a cold plasma
but directly comes from a thermal emission corresponding
to peak temperatures of some million degrees. In the ana-
lytical form

f (E) =
{

0.25 · 104
(

E
50

)−δ
, 50 ≤ E ≤ 60

104
[(

E
50

)−δ + 5 · 105e−E/2.7
]
, otherwise,

(168)

the thermal component is represented by the negative ex-
ponential function at E < 50 keV.

In all simulations, we have assumed the realistic value δ = 4.
The photon spectra have been computed by inserting the

Fig. 5 Reconstruction of three different forms of the averaged electron
spectrum for the three cross sections considered: (a) the power law
plus an intermediate energy dip when λ is chosen by minimizing the
distance between the theoretical and regularized solutions; (b) as in
(a), with λ chosen by the discrepancy principle. Artificial scale factors
have been used to better distinguish the three cases

functions (166), (167) and (168) into the bremsstrahlung
equation by using the relativistic formula Q3BN as inte-
gral kernel. The photon data have been sampled from εmin =
10 keV to εmax = 99 keV with a uniform sampling of 1 keV
bin. Finally, realistic Poisson noise has been added to the
photon data vectors. The three theoretical input mean elec-
tron spectra and the corresponding photon spectra are plot-
ted in Fig. 3. This plot clearly shows that, due to the blurring
action played by the integral kernel, slightly distinguishable
differences in the output data correspond to notably different
input functions. The regularized solutions have been com-
puted by means of (83) for the Kramers and Bethe-Heitler
cases and of (162) for the highly relativistic cross section.
The regularization parameter has been fixed according to
two different approaches: 1) by minimizing the Euclidean
distance between the regularized solution and the theoreti-
cal input function (criterion I); 2) by applying the discrep-
ancy principle (criterion II). The results of this computation
are described in Figs. 4–6 and Table 3. Figures 4–6 contain
the reconstructions of the three theoretical averaged electron
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Fig. 6 Reconstruction of three different forms of the averaged electron
spectrum for the three cross sections considered: (a) the power law plus
dip plus a low energy thermal component, when λ is chosen by mini-
mizing the distance between the theoretical and regularized solutions;
(b) as in (a), with λ chosen by the discrepancy principle. Artificial scale
factors have been used to better distinguish the three cases

spectra provided by the Tikhonov regularization method for
the three cross sections; in the top panels the regularization
parameter has been fixed by minimizing the distance be-
tween the theoretical and regularized solutions while in the
bottom panels the discrepancy principle has been applied.
Table 3 contains the reconstruction errors defined as

ρ = ‖f − fλ‖2

‖f ‖2
, (169)

where ‖·‖2 is the L2 norm in the Kramers and Bethe-Heitler
cases and the canonical Euclidean norm in the highly rela-
tivistic case, while λ is fixed with the two criteria. These
results point out that:

• in general Tikhonov regularization provides satisfactory
reconstructions of the theoretical mean electron spectra.
The regularized solutions are sufficiently stable and the
overall behavior is always correctly reproduced.

• The reconstructions given by criterion I are more stable
but cannot reproduce the intermediate dip. This is due to

Table 3 Reconstruction errors provided by Tikhonov regularization
while reproducing three different forms of the averaged electron spec-
trum for the three cross sections adopted. The regularization parameter
is fixed by determining the minimum distance to the theoretical form
(criterion I) and by applying the discrepancy principle (criterion II)

P.l. P.l.+dip P.l.+dip+thermal

I II I II I II

K 0.045 0.082 0.045 0.081 0.136 0.144

BH 0.328 0.439 0.330 0.319 0.344 0.419

3BN 0.019 0.257 0.019 0.257 0.021 0.291

the fact that in minimizing the overall error a more signifi-
cant role is played by the low energy part of the spectrum,
where the actual values of the function are significantly
bigger. The use of the discrepancy principle focuses on
the residuals and provides smaller λ: therefore the recon-
structions are more unstable (see, in particular, the low
energy parts) but more reliable in reproducing small fea-
tures.

• If λ is chosen by means of criterion I, the inversion with
the highly relativistic formula is the most reliable (as one
may expect, since the data have been simulated by using
just that cross section). If λ is chosen with criterion II, the
minimum restoration error is obtained by using Kramers
approximation. This is again reasonable since the discrep-
ancy principle provides smaller λ and, as pointed out in
the previous section, the conditioning is smaller when the
Kramers kernel is adopted.

4.3 Reconstructions: Application to RHESSI Data

As an example of application of the Tikhonov method to real
X-ray data recorded by RHESSI, we consider the photon
spectrum corresponding to emission peak during the August
21, 2002 flare. In the restoration of real data two further is-
sues must be accounted for, both concerning the physical in-
terpretation of the regularized reconstructions. The first item
is the determination of the uncertainty on the reconstruction.
This assessment can be accomplished by producing the so-
called confidence strip of the regularized solution [3]. Such
a construction is performed by generating different random
realizations of the photon data, produced by modifying each
X-ray vector component according to a Gaussian distribu-
tion of zero mean and standard deviation equal to the exper-
imental one. The regularized solutions for all these realiza-
tions are determined and superimposed in order to evaluate
the robustness of the regularization algorithm to data insta-
bility. The height of the confidence strip at each value of the
electron energy provides the propagation error on the regu-
larized solution.

The second item is concerned with the assessment of the
energy resolution achievable by the method. Our approach
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Fig. 7 Inversion of a real spectrum emitted during the August 21, 2002
flare: (a) the photon spectrum at the emission peak; (b) the recon-
structed mean electron spectrum provided by the Tikhonov method.
The regularization parameter has been fixed by means of the discrep-
ancy principle

follows the method introduced in [4] and is based on the ob-
servation that in the expansions (83) and (162) not all the
singular components actually contribute to the form of the
regularized solution with the same significance. In fact, for
increasing k values, the contribution of the corresponding
singular functions is increasingly filtered out by the coeffi-
cient σk

σ 2
k +λ

. We use the truncation rule

σk ≥ √
λ (170)

in these expansions and observe that, since the singular val-
ues are decreasingly ordered, there will be an index k for
which condition (170) is satisfied for the last time. There-
fore a reasonable estimate of the resolution achievable by
the method is given by the distance between the successive
zeros of uk .

Figure 7 contains the result of the application of Tik-
honov regularization to the inversion of the real spectrum
recorded during the August 21, 2002 flare. The photon spec-
trum corresponding to the emission peak is given in Fig. 7(a)
while Fig. 7(b) presents the corresponding reconstruction
provided by the Tikhonov method. In this plot the confi-

dence strip is represented together with the horizontal reso-
lution bars. In this reconstructed spectrum the thermal com-
ponent at low energies is fairly visible, together with a spec-
tral ‘knee’ at energies in the range 20–40 keV. The asymp-
totic electron spectral index (i.e., the exponent of the power
law best fitting the spectrum at high energies) is δ � 2.45
while the photon spectral index is γ � 3.54, and this is in
accordance with the ‘rule of thumb’ γ � δ + 1 based on as-
ymptotic approximations.

5 Anisotropic Bremsstrahlung Emission

5.1 Angular Dependency of the Bremsstrahlung Equation

In the previous sections we showed how to apply regular-
ization techniques to the inversion of high resolution X-ray
spectra from solar flares with the aim of inferring informa-
tion on the electron flux spectrum in the source. In our analy-
sis we considered particular forms [37] for the bremsstrah-
lung cross section Q(ε,E) which depend only on the photon
energy ε and the electron energy E. However, the correct
cross section to use must in practice take into account two
important aspects of the geometrical and physical environ-
ment. First, the direction of the precollision electron is not,
in general, univocally definite, but there will be a significant
spread in the incoming directions of the electrons (e.g., [45,
46]). Second, the guiding magnetic field may be inclined
away from the vertical toward the observer, and a similar
inclination in guiding field direction angle may be appro-
priate for the bremsstrahlung-producing electron beam [75].
It follows that the probabilistic kernel which describes the
bremsstrahlung phenomenon is, in general, a function also
of the incoming and outcoming electron directions and of
the polarization state3 of the emitted photon [33]. In princi-
ple, also components due to both electron-ion and electron-
electron bremsstrahlung have to be considered, but it can
be shown that the latter is quite negligible except at mildly
or extremely relativistic energies [50]. Several authors (e.g.,
[13, 25, 26, 36, 38, 53, 54]) showed how the X-ray emis-
sion from a particular electron source changes significantly
for different viewing directions. In this section we consider
the expression for the electron-photon bremsstrahlung cross
section, integrated over the direction of the outgoing elec-
tron and summed over the polarization states of the emit-
ted photon, provided by Gluckstern & Hull [32]. This kernel
Q(ε,E; θ) is a function of three variables: besides the en-
ergies E of the electron (keV) and ε of the photon (keV),
also the dependency on the angle θ between the directions

3Because propagating light consists of a transverse electric and mag-
netic field, a single photon will oscillate on a line perpendicular to the
propagation direction.
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of the incoming electron and the emitted photon is kept in
consideration.

Let us generalize now the concept of mean source elec-
tron flux spectrum given in Sect. 3.1 [12, 17] to the case of
an anisotropic cross section and/or source electron distrib-
ution function. The hard X-ray intensity I (ε) observed at
distance R from a source can be written as

I (ε) = 1

4πR2

∫ ∞

ε

∫
�

∫
V

Q(ε,E; θ)

× F(E, r,�)n(r)drd�dE, (171)

where F(E, r,�) is the electron flux differential in elec-
tron energy E, position r, and solid angle of the incoming
electron direction �, and Q(ε,E;�) is the cross section for
bremsstrahlung emission in the direction of the observer. If
we define

F̂ (E,�) =
∫
V

F (E, r,�)n(r)dr∫
V

n(r)dr

=
∫
V

F (E, r,�)n(r)dr

nV
, (172)

where we recall that n = (1/V )
∫
V

n(r)dr, then (171) can
be written as

I (ε) = nV

4πR2

∫ ∞

ε

∫
�

Q(ε,E; θ)F̂ (E,�)d�dE. (173)

If F̂ (E,�) is isotropic, then we define F(E) ≡ F̂ (E) and
let

Q(ε,E) =
∫

�

Q(ε,E; θ)d�. (174)

Then we can write

I (ε) = nV

4πR2

∫ ∞

ε

F (E)Q(ε,E)dE. (175)

This is the expression we used to define the “mean elec-
tron spectrum” F(E) in (101) and (102). It should be noted
that (175) also applies in the (somewhat hypothetical) case
where Q(ε,E; θ) is independent of θ , with Q ≡ Q and

F(E) =
∫

�

F̂ (E,�)d�. (176)

In the physically realistic case, neither Q(ε,E; θ) nor
F̂ (E,�) is isotropic. To make progress, therefore, requires
some further assumptions on the form of F̂ (E,�). In this
section we restrict ourselves to the simplest assumption,
namely that F̂ (E,�) is separable in E and �, i.e.,

F̂ (E,�) = F(E)
h(�)∫

�
h(�)d�

. (177)

With such an assumption, (173) can be written as

I (ε) = nV

4πR2

∫ ∞

ε

F (E)dE

[∫
�

Q(ε,E;�)h(�)d�∫
�

h(�)d�

]
.

(178)

If we define

Q(ε,E) =
∫
�

Q(ε,E;�)h(�)d�∫
�

h(�)d�
, (179)

then (178) is formally identical to (175) and can be solved
for any adopted form of h(�) once Q(ε,E) is evaluated us-
ing (179). We remark that in practice, e.g., in a collisional
thick target, the E and � dependencies of F̂ (E,�) are not
separable and further vary along the electron paths. To deal
with that situation more properly requires explicit modeling
of the electron propagation, i.e., of electron scattering and
energy losses; in general, this can probably be done only by
forward modeling. Nevertheless, the results of our separa-
ble inversion formulation will provide a better starting point
than the assumption of isotropy used hitherto.

5.2 Anisotropic Form of the Cross Section

The form of the angle-dependent cross section Q(ε,E; θ)

has been given by Gluckstern & Hull [32] and Koch & Motz
([44], formula 2BN). Here we reprint this result in our nota-
tion (and in units of cm−2 keV−1 sr−1),4 and we also present
a polar diagram of the angular dependence for various elec-
tron and photon energies in order to make some of the dis-
cussion in the following sections more comprehensible.

Formally, the cross section Q(ε,E; θ) for electron-ion
bremsstrahlung, differential in photon energy ε, electron en-
ergy E, and the angle between the incoming electron and
the emitted photon (but integrated over the direction of the
emergent electron and summed over the polarization states
of the emitted photon) is

Q(ε,E; θ)

= Z2 α

2

r2
0

mec2

(
1

ε̃

) √
(Ẽ − ε̃)2 − 1√

Ẽ2 − 1

×
{

8
2Ẽ2 + 1

(Ẽ2 − 1)�4
sin2 θ − 2

5Ẽ2 + 2Ẽ(Ẽ − ε̃) + 3

(Ẽ2 − 1)�2

− 2
Ẽ2 − ε̃2 − 1

T 2�2
+ 4

Ẽ − ε̃

(Ẽ2 − 1)�

4The steradian (sr) is defined as the solid angle subtended at the center
of a sphere of radius r by a portion of the surface of the sphere hav-
ing an area r2. Since the surface area of this sphere is 4πr2, then the
definition implies that a sphere measures 4π steradians.
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+ L√
((Ẽ − ε̃)2 − 1)(Ẽ2 − 1)

×
[

4Ẽ(3ε̃ − (Ẽ2 − 1)(Ẽ − ε̃))

(Ẽ2 − 1)�4
sin2 θ

+ 4Ẽ2(Ẽ2 + (Ẽ − ε̃)2)

(Ẽ2 − 1)�2

+ −2(7Ẽ2 − 3Ẽ(Ẽ − ε̃) + (Ẽ − ε̃)2) + 2

(Ẽ2 − 1)�2

+ 2ε̃
Ẽ2 + Ẽ(Ẽ − ε̃) − 1

(Ẽ2 − 1)�

]
+ γT

T

√
(Ẽ − ε̃)2 − 1

×
[

4

�2
− 6ε̃

�
− 2ε̃(Ẽ2 − ε̃2 − 1)

T 2�

]

− 4γ

�

√
(Ẽ − ε̃)2 − 1

⎫⎬
⎭

× β(1 − e−2πZα/β)

β ′(1 − e−2πZα/β ′
)
,

where Z is the atomic number of the ion, α � 1/137 is the
fine-structure constant, r0 � 2.8 × 10−13 cm is the classical
electron radius, mec

2 � 511 keV is the electron rest energy,
and

Ẽ = 1 + E

mec2
, ε̃ = ε

mec2
,

β =
√

1 − 1

Ẽ2
, β ′ =

√
1 − 1

(Ẽ − ε̃)2
,

� = Ẽ −
√

Ẽ2 − 1 cos θ,

T =
(

Ẽ2 − 1 + ε̃2 − 2ε̃

√
Ẽ2 − 1 cos θ

)1/2

,

L = ln

⎧⎨
⎩

Ẽ(Ẽ − ε̃) − 1 +
√

(Ẽ2 − 1)[(Ẽ − ε̃)2 − 1]
Ẽ(Ẽ − ε̃) − 1 −

√
(Ẽ2 − 1)[(Ẽ − ε̃)2 − 1]

⎫⎬
⎭ ,

γT = ln

⎡
⎣T +

√
(Ẽ − ε̃)2 − 1

T −
√

(Ẽ − ε̃)2 − 1

⎤
⎦ ,

γ = ln

⎡
⎣ (Ẽ − ε̃) +

√
(Ẽ − ε̃)2 − 1

(Ẽ − ε̃) −
√

(Ẽ − ε̃)2 − 1

⎤
⎦ .

The last factor in the definition of Q(ε,E; θ)—involving
the velocity β (in units of the speed of light c)—is the El-
wert [24] Coulomb correction and does not appear in the

Fig. 8 Polar diagram of the bremsstrahlung cross section for
E = 100 keV and photon energies ε = 30 keV (solid line), ε = 50 keV
(dotted line), and ε = 80 keV (dashed line); the radial coordinate is
proportional to the size of the cross section and the angle from the
x-axis corresponds to the angle between the incoming electron direc-
tion and the line to the observer. Note that at energies E � ε the cross
section peaks at θ = 0◦, while for E � ε the cross section peaks at
θ � 30◦–40◦

expressions in [32]. This correction is sufficiently accurate
(to within a few percent) except at electron energies above
∼ 100 keV and approaching the “high-frequency limit” ε →
E; in such regimes more elaborate expressions are appropri-
ate. For more details, see [44]. It should be noted that the
expression of Q(ε,E; θ) is indeterminate at ε = E; in prac-
tice this can be handled in numerical computation by setting
E slightly higher than ε.

Figure 8 shows the angular dependency of such a cross
section. As we can see, for electron energies E � ε, the
form of Q(ε,E; θ) is a decreasing function of θ ; there is
a preference for photons to be emitted in the direction of the
incoming electron. However, at electron energies compara-
ble to the photon energy there must be a substantial scat-
tering angle between the incoming and outgoing electrons,
and hence the photons tend to be emitted preferentially at
a significant angle relative to the incoming electron veloc-
ity. Hence, at electron energies E slightly greater than ε, the
cross section peaks not in the forward direction but rather at
a modest angle (30◦–40◦—see Fig. 8).

5.3 Recovering the Electron Spectrum as a Function
of Viewing- Angle

In order to analyse the effects of the anisotropic cross section
with respect to the results obtained in Sect. 3 with several
angle-averaged kernels, we keep on considering the photon
spectrum corresponding to emission peak during the August
21, 2002 flare (represented in Fig. 7(a)). The location of the
flare on the solar disk is x = 696′′, y = −248′′ (with re-
spect to a fixed heliocentric coordinate system whose origin
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Fig. 9 The uniform distribution of the target-averaged incoming elec-
tron velocities. The z-axis (labeled with the electron energy E) repre-
sents the mean direction of the electron

is placed in the center of the Sun), which corresponds to a
heliocentric angle of ∼ 50◦.

We assume that, for each energy, all the possible direc-
tions of the precollision electrons are uniformly distributed
over a solid angle within a cone of half-angle α centered on
a direction that makes an angle θ0 relative to the direction of
photon emission, i.e. (with β as the polar angle relative to
the axis of the cone—see Fig. 9),

h(�) =
{

1, β ≤ α,

0, otherwise.
(180)

With this form of h(�) the average cross section Q(ε,E)

defined in (179) is

Q(ε,E; θ0, α)

= 1

2π(1 − cosα)

∫ 2π

0

∫ α

0
Q(ε,E; θ) sinβdβdϕ, (181)

where θ is the angle between the observer and an elementary
electron beam oriented at polar coordinates (β,ϕ) relative to
the axis of the cone, viz.,

cos θ = cos θ0 cosβ + sin θ0 sinβ cosϕ. (182)

We observe that in (181) we used the fact that

d� = d�

r2
= (r sinβdϕ)(rdβ)

r2
= sinβdβdϕ (183)

as we can see from Fig. 10.
Expression (181) for Q(ε,E; θ0, α) has been used to in-

vert (178) (with the atomic number Z set equal to 1.2) and
regularized electron spectra Fθ0,α(E) have been recovered
for mean angles θ0 over the range from 0◦ (photon emis-
sion parallel to the direction of the incoming electron) to
180◦ (photon emission in the anti-parallel direction). Sev-
eral values for the spread angle α (10◦,30◦,60◦,90◦, and

Fig. 10 The infinitesimal solid angle d�

Fig. 11 Fθ0,α(E) for θ = 130◦ and the values of α (spread in incom-
ing electron directions) shown. The dashed curve (labeled α = 180◦) is
the spectrum obtained using the angle-averaged cross section Q(ε,E)

180◦) were used; from our reconstructions we found that an-
gles α up to 10◦ provide essentially the same results. More-
over, we remark that the maximum value we chose (namely,
α = 180◦) corresponds to an integration over the entire
sphere, i.e., to the angle-averaged cross section Q(ε,E) de-
scribed in Sects. 3 and 4. Following what we have done in
Sect. 4.3, a “confidence strip” of Fθ0,α(E) forms based on
different realizations of the (noisy) data was produced for
each photon spectrum I (ε) and the mean of this confidence
strip was used for further analysis.

The August 21, 2002 flare was located at a heliocentric
angle of approximately 50◦. If we assume that the mean di-
rection of the incoming electrons was vertically downward
at this location, then the corresponding value of θ0 is 130◦.
Figure 11 shows the reconstructed Fθ0,α(E) corresponding
to θ0 = 130◦ and various values of α, including α = 180◦,
i.e., the solid-angle–averaged cross section.

It should be recognized that the assumption of a vertical
mean incoming electron direction, and so the choice of θ0 =
130◦ is not rigorously justified. For comparison, therefore,
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Fig. 12 As for Fig. 11, but for values of θ0 = 0◦,45◦,90◦,135◦, and
180◦. The curves have the same significance as in Fig. 11, with the
uppermost solid curves corresponding to the lowest values of α

Fig. 12 shows the same results for values of θ0 ranging from
0◦ to 180◦ in 45◦ steps.

5.4 Results and Discussion

Let us consider the reconstructed Fθ0,α(E) for the fixed
value θ0 = 130◦ of Fig. 11 and for different spread angles
α. The case α = 0◦ corresponds to all the emission concen-
trated at θ = θ0. On the other hand, for values of α which
are different from zero, the X-ray emission is spread over a
range of θ from θ0 − α to θ0 + α. Owing to the asymmetry
of the emission polar diagram which grows for increasing
electron energies (see Fig. 8), the enhanced emission in the
θ0 − α direction more than compensates for the decreased
emission in the θ0 + α direction, so that fewer total elec-
trons are required to produce a given photon flux than for
the unidirectional (α = 0◦) case. Figure 11 shows that the
magnitude of the reconstructed Fθ0,α(E) does indeed de-
pend quite strongly on the range of incoming electron direc-
tions α, especially at high electron energies E (at 500 keV,
the required electron flux is less by a factor of ∼ 4). Since
this effect becomes more important with increasing energy,
the reconstructed Fθ0,α(E) also becomes steeper with in-
creasing α. Recognizing that the extreme maximum case
α = 180◦ corresponds to the angle-averaged cross section
used in the previous sections, we see that the use of a cross
section that more realistically reflects the range of incom-
ing electron velocity vectors always flattens the high-energy
part of the inferred electron spectrum relative to that found
using the angle-averaged cross section Q(ε,E).

We discuss now the different forms of Fθ0,α(E) when
several viewing angles θ0 are used. For θ0 = 180◦ (Fig. 12),
corresponding to vertically downward electrons in a disk-
center flare, the recovered flux Fθ0,α(E) for modest values
of α is, at high energies, significantly (an order of magni-
tude or so) greater than the value of Fθ0,180◦(E), i.e., to the

Fig. 13 Spectral index variation for θ = 130◦ and values of α indi-
cated

result using the angle-averaged cross section Q(ε,E). This
is due to the very low values of the normalized cross sec-
tion Q(ε,E; θ) appropriate to this viewing angle (Fig. 8)
and hence the inefficiency of photon production in such a
direction. Such large fluxes may introduce issues of beam
stability. Conversely, for θ = 90◦ (corresponding to verti-
cally downward electrons in a limb flare; see Fig. 12), the
enhancement over the angle-averaged (α = 180◦) case is
less pronounced; indeed the recovered spectra are remark-
ably similar to that derived using the angle-averaged cross
section, particularly at energies slightly greater than 30 keV.

Values of θ0 < 90◦ correspond to the case in which the
mean velocity of the electrons has a component toward the
observer, and therefore away from the Sun. In general, θ0

values in this first quadrant lead to a decreased value of
Fθ0,α(E) relative to the angle-averaged result Fθ0,180◦(E),
because of the preferential tendency for photons to be emit-
ted in the forward hemisphere (relative to the incoming elec-
tron velocity) and hence the smaller number of electrons
needed. However, at very low values of θ0 (slightly smaller
than 30◦), the required Fθ0,α(E) is, for low energies, greater
than both the θ0 = 45◦ case and the angle-averaged case
(dashed line); this is a consequence of the angular behav-
ior of Q(ε,E; θ) (in particular the low value near θ = 0◦)
shown in Fig. 8 and noted at the end of Sect. 5.2. The
greatest deviations between the correct spectrum and the
one deduced using the angle-averaged cross section are thus
achieved for θ0 � 45◦ (correct spectrum steeper) and for
θ0 � 180◦ (correct spectrum flatter).

Figure 13 shows the variation of the local spectral index
δE as a function of E, for the θ0 = 130◦ spectra of Fig. 11.
Compared to the results for the isotropic case (α = 180◦),
the spectral indices for the anisotropic electron distribu-
tions are substantially smaller (flatter spectrum) at low ener-
gies (between about 40 and 200 keV), and larger (steeper
spectrum) at high energies (greater than about 200 keV).
In all cases the value of δE increases with decreasing en-
ergy below ∼ 50 keV, indicative of the transition to a softer,
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more thermal, spectrum. At low energies (smaller than about
25 keV), the value of δE changes to a form that increases
with E, indicative of the general steepening trend associated
with thermal spectra.

In conclusion, in determining the mean source electron
population F(E) responsible for a given hard X-ray spec-
trum, it is very important to use a bremsstrahlung cross sec-
tion Q that accurately represents the geometric relationship
between the source and the observer. As we have shown
in our analysis, the use of the correct, direction-dependent
cross section can yield recovered mean source electron spec-
tra of significantly different shape than the results using the
usual angle-averaged cross section.

5.5 Open Problems

The results obtained in the simplified cases of the previous
sections are the first attempt to face the problem of deeply
understanding the angular dependency of the reconstructed
electron spectrum. In the general case, the inversion of the
anisotropic bremsstrahlung equation

I (ε) = nV

4πR2

∫ ∞

ε

∫
�

Q(ε,E; θ)F̂ (E,�)d�dE, (184)

where all the functions and constants are defined in Sect. 5.1,
leads to the reconstruction of the function of two variables
F̂ (E,�) from the knowledge of noisy measurements of the
function of one variable I (ε). This kind of problem is known
as bivariate problem and its resolution implies notable diffi-
culties.

As described before, our results have been obtained under
the simple assumption that F̂ (E,�) is separable in E and
�—see (177); furthermore, we chose a particular form for
the function describing the angular dependence of F̂ (E,�)

and we reconstructed the mean electron spectrum F(E),
which is the part of F̂ (E,�) that depends only on the elec-
tron energy E. The results that we provided clearly pointed
out that the angular dependency of F̂ (E,�) cannot be ne-
glected.

A distinct but important problem to study is now to as-
sume the E-dependence of F̂ (E,�) as known and still sep-
arable and to see if we can recover the θ -dependence from
the photon spectrum.

From (184) and (183) we can write

I (ε) = nV

4πR2

∫ ∞

ε

∫ π

0

∫ 2π

0
f (E,β)

× Q(ε,E; θ(β,ϕ, θ0)) sinβdϕdβdE (185)

where f (E,β) = F̂ (E,�) (we have not any dependence on
ϕ since symmetries). If we define

K(ε,E,β) = nV

4πR2

∫ 2π

0
Q(ε,E; θ(β,ϕ, θ0)) dϕ, (186)

(185) becomes

I (ε) =
∫ ∞

ε

∫ π

0
f (E,β)K(ε,E,β) sinβdβdE. (187)

The problem is now univariate in β if we assume for exam-
ple f (E,β) = E−δG(β) (i.e., a power law behavior for the
E-dependence of f ). It follows that

I (ε) =
∫ ∞

ε

∫ π

0
E−δG(β)K(ε,E,β) sinβdβdE

=
∫ π

0
G(β)

[∫ ∞

ε

E−δK(ε,E,β)dE

]
sinβdβ

=
∫ π

0
G(β)H(ε,β) sinβdβ, (188)

where

H(ε,β) =
∫ ∞

ε

E−δK(ε,E,β)dE. (189)

The inversion of (188) is a Fredholm problem to find G(β)

from I (ε).
Both the problem univariate in E and the problem uni-

variate in β have the drawbacks that they are not the right
way to invert (184) and they need strong assumptions about
the form of F̂ (E,�). On the other hand, they have the great
advantage to reduce the bivariate problem to simpler uni-
variate problems whose resolution can be easily performed.
Anyway, the main goal of the anisotropic problem is to in-
vert (184) directly. To this aim, our idea is to perform a lex-
icographical re-arrangement of the variables followed by a
standard zero-order regularization inversion. In other terms,
we consider the discretized form of (187) (with weights in-
cluded in K)

Ii =
nel−1∑
j=0

nβ−1∑
k=0

Kijkfjk (190)

where nel and nβ are the number of the electron energies
sampled and the number of the angles β considered re-
spectively. Then we merge indexes j and k in a single one
(l = nβ · j + k, l = 0, . . . , nβnel − 1), converting the matrix
fjk in a vector f ′

l and the tensor Kijk in a matrix K ′
il . It

follows that (190) becomes

Ii =
nelnβ−1∑

l=0

K ′
ilf

′
l (191)

so that we can recover f ′
l and then deduce fjk from the

knowledge of the one-to-one relationship between l and
(j, k).
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6 Application to Solar Physics: Thermal
Bremsstrahlung

6.1 The Differential Emission Measure

In the previous sections we proposed some regularization
techniques to infer information on the electron distribution
in the source starting from its measured X-ray emission,
given a certain form for the probabilistic kernel which de-
scribes the emission process. Once that realistic electron
spectra have been provided, the next step is to investigate
to what extent the electron distribution responsible for the
emission comprises

(a) non-thermal particles trapped in a low density plasma
(thin-target);

(b) particles “injected into” and stopped in a dense plasma
(thick-target);

(c) a spatial distribution of locally Maxwellian electrons
with a location-dependent temperature (T ),

or some mixture of these three situations.
Under a purely thermal interpretation of (100) [14], the

electron distribution is assumed to be locally Maxwellian,
i.e. (with T in energy units)

F(E, r) = 23/2

(πme)1/2

n(r)E
[T (r)]3/2

e−E/T (r), (192)

so that (100) becomes

I (ε) = 1

4πR2
· 23/2

(πme)1/2

∫ ∞

0

∫ ∞

ε

n2(T )
E

T 3/2

× e−E/T Q(ε,E)dE
dr
dT

dT , (193)

and the photon spectrum then provides information on the
differential emission measure loosely defined, for stratified
structures, by

ξ(T ) = n2(T )
dr
dT

. (194)

A direct connection between I (ε) and ξ(T ) can be estab-
lished by inserting expression (192) for the local electron
distribution into the model-independent equation (100), with
a Kramers approximation used for Q(ε,E) (see (107)). Be-
cause of the extreme simplicity of the Kramers form, the re-
sult is a Laplace-transform-like integral equation relating the
photon spectrum (I (ε)) directly to the differential emission
measure (ξ(T )). This equation has been studied by Piana,
Brown and Thompson [66] in the framework of regulariza-
tion theory for inverse problems and applications to high-
resolution balloon data [56] have been considered. Craig &
Brown [20] noticed that an analogous approximate equation
could be obtained for the more complex Bethe-Heitler form

of the cross section Q(ε,E) (see (109)). However, both of
these use a rather coarse approximation to the true cross
section, which as well as being quite smooth, has a much
more complex analytic form, like for example the highly
relativistic formula given by equation (3BN) in [44] and re-
ported in Sect. 3.1 (see (110)). As we showed in Sect. 4, the
ill-posedness of the integral inversion problem implies that
small changes in the kernel (Q here) can result in significant
changes in the solution [5, 42, 51] so that results using ap-
proximate representations of Q may not be reliable. It fol-
lows that a completely rigorous description of the thermal
model requires the introduction of two integral equations.
First, the (isotropic) source-averaged, effective electron flux
spectrum F(E), defined in (102) is related to the photon
spectrum I (ε) by means of the Volterra integral equation

I (ε) = nV

4πR2

∫ ∞

ε

F (E)Q(ε,E)dE, (195)

with a fully correct form of Q(ε,E). Then, (192), (194) and
(102) lead to the Fredholm integral equation relationship be-
tween F(E) and ξ(T ) [15]

F(E) = 1

nV

23/2E

(πme)1/2

∫ ∞

0

ξ(T )

T 3/2
e−E/T dT . (196)

The aim of this section is to address the following two ba-
sic questions concerning the thermal model: 1) is the avail-
able photon spectrum compatible with a thermal interpre-
tation, i.e., can the observed I (ε) be fully explained by a
non-negative ξ(T )? And 2) if the answer to 1) is yes, what
is the actual form of ξ(T ) for that particular form of I (ε)?
One way to see whether an entire I (ε), or even part of it, is
compatible with a thermal model for the emission process,
is to test whether the corresponding F(E) obtained by solv-
ing (195) satisfies criteria arising from (196), making al-
lowances for the data-induced noise. One such test is the
“derivative test” for thermality found by Brown and Em-
slie [15]. This follows directly by differentiating (196) (with
both sides divided by E) i times and states that an elec-
tron spectrum (F(E)) is compatible with a purely-thermal
interpretation if and only if the quantity F(E)/E is “com-
pletely monotonic”, i.e. its i-th derivative has sign (−)i at
all E. This approach has a technical limitation. Equation
(195) can be solved by using regularization techniques (see
Sects. 3 and 4) but derived electron spectra are affected by
noise in the photon spectra used. Successive derivatives in
the thermality test therefore have rapidly escalating errors,
due to the instability of numerical differentiation. It fol-
lows that the computation of only the first two or three or-
ders of derivative is reliable [28], with the higher-i terms
in the “derivative test” too noisy to be useful. On the other
hand, we can be confident that any F(E) clearly failing the
“derivative test” at a high confidence level, for given noise,
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can be ruled out as entirely due to a thermal distribution
with an everywhere non-negative ξ(T ). However, even if the
F(E) does pass the “derivative” test, this itself does not tell
us the (non-negative) form of ξ(T ) to which F(E) corre-
sponds. Therefore, in principle a much more effective tech-
nique would be to solve (196), where F(E) is obtained by
solving (195), thus describing the ξ(T ) corresponding to an
observed photon spectrum: if ξ(T ) ≥ 0 for all T , then the
photon spectrum can be reliably interpreted according to a
thermal model for the bremsstrahlung emission; if ξ(T ) < 0
for some temperature interval, then at least part of the emis-
sion is certainly non-thermal. Furthermore the knowledge
of possible features in such reconstructed form could yield
important information on plasma heating and conduction
processes [14, 16]. In recent years this inversion problem
has achieved an unprecedented level of importance because
of the high-resolution photon spectra (�ε � 1 keV) obtained
from the RHESSI mission [57]. Combined with optimiza-
tion of computational methods for regularized solutions of
the ill-posed inverse problem involved [19, 20, 41, 48, 49,
58, 63, 67, 78] it is now possible to infer mean source elec-
tron spectra with which specific physical source models can
be compared [17].

A basic technical difficulty in the reconstruction of ξ(T )

is due to the fact that solving the second inverse problem
(196) is extremely problematic. Simple changes of vari-
ables reduce this problem to a Laplace transform inversion
problem with noisy data. There is a vast literature [22,
31, 81] showing that this problem is intrinsically highly
pathological, due to the very broad filtering action of the
Fredholm-Laplace integral kernel (compared to that in the
basic bremsstrahlung inverse problem (195) which is of
Volterra type and not severely filtering). Several regulariza-
tion methods [7, 11, 61] have been introduced to handle this
inversion by reducing the unphysical oscillations due to the
presence of noise. For all of them two considerations are
mandatory: first, that, as stated by Davies and Martin [22]
“[in the Laplace inversion problem with noisy data] no sin-
gle method gives optimum results for all purposes. . .”, and
therefore no general method exists which is effective at the
highest level for all physical situations and all kinds of data;
second, that, whatever method is applied, even with very ac-
curate data, only a coarse resolution will be achieved in the
recovered solution [6].

Most inversion methods for the real Laplace transform
have been formulated within the framework of regulariza-
tion theory for ill-posed inverse problems [3]. At the core
of these approaches there is the search for an optimal trade-
off between stability against unphysical oscillations and ac-
curate reproducibility of the data. Such an optimization re-
sult is obtained either by fixing a real positive regularization
parameter in Tikhonov-like methods (see Sect. 2.5) or by

applying some stopping rule to iterative procedures. How-
ever, the present application is particularly challenging ow-
ing to the particular nature of the solar spectral data involved
here. Typical solar F(E) are characterized by a large dy-
namic range (at least three orders of magnitude for around
one order of magnitude in the E range) and, more signif-
icantly, the corresponding ξ(T ) have completely different
forms at low and high T : at small T , a near-thermal (δ func-
tion) component which differs from zero only in a small T

range (narrow support); at high T , a monotonic component
spread over a large interval. A consequence of this complex-
ity in the source function is that regularization approaches
may lose some (or most) of their effectiveness. For exam-
ple, the reconstruction of ξ(T ) at low T with classical Tik-
honov regularization may correctly reproduce the location
of the temperature peak but typically presents ringing ef-
fects whose negative components, which are numerical arte-
facts, might suggest that the spectrum is not thermally in-
terpretable. Negative ringing can be eliminated by applying
a reconstruction method with a positivity constraint. How-
ever such an approach is not effective at recovering the high-
temperature part of ξ(T ) which has a power-law-like behav-
ior and requires regularization methods with more smooth-
ing power. To deal with these kinds of difficulty, here we
utilize the following approach: an iterative scheme with a
positivity constraint is applied for the inversion of the low-
energy part of F(E), in order to eliminate unphysical ring-
ing effects with negative oscillations in the reconstruction of
the part of ξ(T ) characterized by a narrow support; then, a
first-order Tikhonov regularization method is applied for the
inversion of the high-energy part of F(E), where an appro-
priate boundary condition constrains the reconstructed ξ(T )

to behave well (i.e., with a slope compatible with the spectral
index of the photon data) at high T . The two reconstructed
ξ(T ) are then connected together noting that the connection
temperature is easily determined by the T value where the
thermal ξ(T ) goes to zero, i.e. the high-T limit of the narrow
support of the thermal ξ(T ). We observe that, as far as the in-
version of the low energy part of F(E) is concerned, the use
of the positivity constraint in the inversion makes the ther-
mality test based on the verification that the reconstructed
ξ(T ) is positive at all T , inappropriate, since positivity is
forcefully imposed in the inversion procedure. Therefore for
this inverse problem the compatibility between the data and
the thermal model is tested by checking whether the residu-
als in F(E) corresponding to the ξ(T ) recovered by exploit-
ing the positivity constraint are statistically acceptable.

6.2 Regularization Methods

We could in principle proceed directly from (196) to see
whether some F(E) could be wholly thermal in origin if
we had a completely reliable inversion method: given a data
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vector F(E), a wholly thermal interpretation of it is possible
if and only if the ξ(T ) obtained by the inversion method has
no statistically significant negative values over any range of
temperature (T ). Our aim here is to address this problem by
means of two numerical algorithms based on regularization
theory for ill-posed inverse problems, keeping in mind that
the effectiveness of any regularized inversion approach in
the present case is much weaker than for most other linear
inverse problems due to the extreme numerical instability of
the Laplace problem, with its very broad kernel. A quan-
titative estimate [34] for the instability of linear equations
like (196) is given in terms of the condition number C of
the kernel (cross section) matrix (see Sect. 2.1). It can be
shown [20, 66] that, for typical solar data parameters, the
condition number associated with the (Fredholm) equation
(196) is of the order of 1010, which is much bigger, for sim-
ilar parameters, than the condition number associated with
the (Volterra) bremsstrahlung spectrum to electron spectrum
inversion problem (195) (see Table 2). The actual conse-
quences of ill-conditioning are highly significant. A regu-
larization algorithm essentially expresses the approximate
smoothed solution as a truncated linear sum of some basis
functions. In the basic bremsstrahlung spectrum inversion
problem (195), F(E) can be expressed in terms of around
ten basis functions for typical noise in the case of a data vec-
tor with around 100 points, while in the differential emission
measure inversion problem (196) we find that only two, or at
most three, basis functions can be meaningfully included in
the expansion of ξ(T ). Therefore, in the recovery of ξ(T ) it
is necessary to introduce much more severe constraints than
the one adopted in the F(E) inversion procedure described
in Sects. 3 and 4. Even incorporating these constraints, it
will be impossible to achieve a temperature resolution any-
where nearly comparable with the spectral resolution with
which F(E) can be reconstructed through the solution of
the bremsstrahlung equation (195) (cf. the analysis of the
temperature resolution problem in [20]).

Adopting the change of variable y = 1/T , (196) becomes

K
n̄V F(E)

E
=
∫ ∞

0
f (y) exp(−Ey)dy, (197)

where K = √
πme/8 = 1.89 × 10−14 gm1/2 = 4.73 ×

10−10 keV1/2 cm−1 s and f (y) (cm−3 keV−1/2) is defined
as

f (y) = ξ(1/y)

y1/2
, (198)

with ξ(T ) in units of cm−3 keV−1. Equation (197) involves
a continuous representation of the model (f (y)) and of the
data (F(E)), while real data are discrete, truncated and
affected by measurement and systematic noise. In reality,

therefore, the situation is described by the (finite rank lin-
ear) operator L : X → Y such that

(Lf )n =
∫ ∞

0
f (y) exp(−Eny)dy, n = 1, . . . ,N, (199)

where the {En}Nn=1 are the sampled electron energies, X is
the functional space containing the solution and Y is the
Euclidean space containing the data. Then our problem is
to solve

Lf = g, (200)

with data vector g in Y having components

gn = K
nV F(En)

En

, n = 1, . . . ,N. (201)

As already stated, (200) is a strongly ill-conditioned lin-
ear problem and the only way to obtain a realistic approxi-
mate solution in the presence of noise is some reconstruction
technique based on regularization theory for linear inverse
problems. One approach is the first order Tikhonov method,
which solves the minimization over f of

‖Lf − g‖2
Y + λ‖f ′‖2

X = minimum, (202)

where λ is the (real positive) regularization parameter. It can
be proved [66] that under boundary conditions

f (0) = 0 (203)

and

lim
y→∞f ′(y) = 0 (204)

the analytical solution of (202) is

fλ(y) =
N∑

k=1

σk

σ 2
k + λ

(g,vk)Y uk(y), (205)

where the σk and vk are respectively the eigenvalues and
eigenvectors of the Gram matrix (see Definition 6)

Gnm =
∫ ∞

0
φ′

n(y)φ′
m(y)dy, (206)

φn(y) = 1

E2
n

(
1 − e−Eny

)
(207)

and

uk(y) = 1

σk

N∑
n=1

(vk)nφn(y). (208)

For this problem, first-order regularization is more ef-
fective than zero-order regularization for two basic reasons.
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First of all, it prescribes a bound on the first derivative of the
regularized solution which, in this case of large numerical
oscillations, is a sensible thing to do. Second, in this par-
ticular implementation, condition (203) constrains the reg-
ularized solution to behave well at y = 0 (T → ∞), thus
improving the restoration accuracy for ξ(T ) at high T . It
is also true, however, that condition (204) has no physical
basis, and hence may yield artefacts at low T .

The main disadvantage of using Tikhonov regularization
is that solutions with negative components can result from
noisy data. In particular, in the reconstruction of the low
temperature component of ξ(T ), typically characterized by
a very narrow support, an effective method would allow us to
constrain the restored solution to be positive, thus avoiding
unphysical ringing effects due to the presence of noise on
the data. The introduction of such a constraint [64] has the
effect of increasing the resolution power of the inversion ap-
proach, allowing reconstruction of more details in the source
function. The method with positivity applied in this section
is the projected Landweber method, first formulated by La-
gendijk, Biemond and Boekee [52] for the image restora-
tion problem. The mathematical properties of this method
are discussed, for example, by Eicke [23] and an accelerated
version has been provided by Piana and Bertero [65]. We
first consider the discretized version of (200)

g = Lf (209)

where f comes from the sampling of (198) and L is the ma-
trix with entries

Lmn = exp(−Enym)δy (210)

where the ym, m = 1, . . . ,M are uniformly sampled and δy

is an appropriate integration weight. The projected Landwe-
ber method provides reconstructions of f (y) (and therefore
of ξ(T )) by optimally stopping the iteration

fk+1 = P+(fk + τLT (g − Lfk)), f0 = 0, (211)

where τ is a relaxation parameter, LT is the transpose matrix
of L, and P+ sets to zero all the negative components at each
iteration.

As already stated in the previous section, the regular-
ization effects on the approximate solutions provided by
Tikhonov first-order regularization and by the projected
Landweber method can be obtained by fixing λ in (205) and
the iteration number in (211). To this purpose many criteria
have been introduced [21]; here we adopted the same ap-
proach as in Piana et al. [67], based on the analysis of the
regularized cumulative residuals. For example, in the case
of first-order Tikhonov method we consider the function

Sλ(k) = 1

k

k∑
i=1

rλ
i , k = 1, . . . ,N (212)

where rλ
i is the i-th normalized regularized residual corre-

sponding to the regularized ξ(T ). For completely uncorre-
lated noise, the normalized cumulative residuals exhibit a
random walk with expected deviation 1/

√
k. In (212) the

presence of the regularization parameter increasingly corre-
lates the rλ

i for increasing values of λ. Therefore an optimal
criterion to fix λ is to look for the largest value of λ such
that |Sλ(k)| is bounded by 3/

√
k. An analogous procedure

is followed for stopping the projected iterations, whereby, in
this case, the regularization parameter is represented by the
iteration number.

6.3 Simulations

In this section we wish to test the effectiveness of the regu-
larization approach as introduced before. In particular, we
describe the case of a power law with a low-energy cut-
off showing that if the mean electron spectrum is sampled
starting from energies bigger than the cutoff, the reconstruc-
tion is rather accurate (in fact, the problem becomes that
of recovering a pure power law in a limited domain) while
the reconstruction dramatically fails if the minimum sam-
pled energy is smaller than the energy cut-off, in accor-
dance with the fact that a power law with a low-energy cut-
off is not compatible with thermal bremsstrahlung emission.
Then, the temperature resolution achievable by the method
is discussed, the performance of the method in reconstruct-
ing power laws is tested and, finally, a realistic form of F(E)

obtained by regularized inversion of a synthetic photon spec-
trum is considered.

• Compatibility Test
We want to verify whether an F(E) reconstructed from
photon data I (ε) can be interpreted as consistent with
a purely thermal model. The “derivative test” of Brown
& Emslie [15] provides a possible approach, but does
not yield information on the temperature structure of the
source. A more informative approach is to apply a recon-
struction method and to check if the reconstructed ξ(T )

is non-negative for all T . As an example, let us consider
the case of a mean source electron spectrum

F(E) ∝
{
E−δ, E ≥ Ec,

0, E < Ec,
(213)

with Ec a low-energy cutoff. Before performing the inver-
sion, however, we discuss some informative analytic as-
pects of (213) in relation to the general expression (196)
for F(E) from a purely thermal source, which we rewrite,
ignoring constant factors, as

F(E) ∝ E

∫ ∞

0

ξ(T )

T 3/2
e−E/T dT . (214)

First it is obvious that if ξ(T ) is greater than zero over any
T interval then the corresponding F(E) is never zero at
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Fig. 14 Reconstruction of the differential emission measure corre-
sponding to an electron spectrum in the form of a power law with
a low-energy cutoff, for two different values of the cutoff energy
(Ec) and of the minimum sampled energy (Emin). The reconstruction
method is first-order Tikhonov regularization with boundary condi-
tions. If Emin ≥ Ec , the sampled electron spectrum does not include
a cutoff and ξ(T ) is faithfully recovered (dotted line). If Emin < Ec ,
the sampled electron spectrum does include a cutoff and so is not com-
patible with a thermal interpretation. In this case the reconstruction
of ξ(T ) is unphysical (dashed line). The solid line is proportional to
T −5/2 in the range 10–100 keV

any E. Thus the F(E) in (213) cannot be purely thermal
(it clearly fails the derivative test at E = Ec). Second, we
note that for a pure power law ξ(T ) ∝ T −α at all T with α

constant, the resulting F(E) is proportional to E−α+ 1
2 at

all E. Consequently, for α = δ + 1
2 a pure (untruncated)

power-law ξ(T ) predicts F(E) in (213) perfectly in the
range E ≥ Ec but completely contradicts it in the range
E < Ec. Thus a thorough thermality test must be applied
to all E; failure (within the allowed uncertainties) at even
one value of E is enough to rule out a purely thermal
model.

A somewhat surprising result here is that a wholly-
thermal model is ruled out by the form of F(E) at low
rather than at high energies. We also emphasize that the
power-law relation between ξ(T ) and F(E) only holds (at
E ≥ Ec) for a complete power-law ξ(T ). If ξ(T ) is only
a power law over some finite range, say (T1, T2), the cor-
responding F(E) is not a power law at any E but rather,
with x = T/E,

F(E) ∝ E−α+1/2
∫ T2/E

T1/E

x−α−3/2e−1/xdx. (215)

We now show that application of our inversion method to
(213) agrees well with these analytic results.

For the inversion, the data (213) is discretized accord-
ing to uniform sampling starting from a minimum sam-
pled energy (Emin), realistic Poisson noise is added to
the corresponding photon spectrum and errors on F(E)

are generated by inverting the noisy I (ε). We applied the
first-order Tikhonov inversion method for two possible
experimental situations concerning the relative values of

the pair Ec, Emin, and for δ = 2 with the results shown in
Fig. 14. When Ec ≤ Emin (i.e., the cutoff is not sampled),
a stable differential emission measure is restored. There
are some slight, long-wavelength oscillations in the re-
covered ξ(T ) of roughly the width of the kernel but the
mean temperature spectral index is close to the theoret-
ical value α = 2.5. On the other hand, when Emin < Ec

(and so the cutoff is sampled), the reconstruction con-
tains large negative ranges and is absolutely unphysical as
expected. This behavior is consistent with the fact that a
mean source electron spectrum with any cutoff is incom-
patible with a purely thermal interpretation of the emis-
sion (since any Maxwellian contains electrons of all E).

• Temperature Resolution.
Heuristically, the effective temperature resolution achiev-
able by our inversion method can be assessed by recon-
structing ξ(T ) forms using the F(E) corresponding to
input δ functions ξ(T ) ∼ δ(T − T0). The resulting re-
constructed forms of ξ(T ) are characterized by finite Full
Widths at Half Maximum (FWHM) which estimate the
resolution achievable around T = T0. Therefore for in-
verse problems the resolution power depends on the re-
construction method. In Table 4 the FWHM values real-
ized through application of the two reconstruction meth-
ods discussed in Sect. 6.2 to F(E) spectra are given for
different values of T0. The averaged electron spectra are
obtained by inverting the corresponding photon spectra
(affected by realistic Poisson noise) and contain 50 points
in the energy range 1–50 keV. Table 4 also contains values
for the “centroid” temperature of the reconstructed distri-
butions, defined by 〈T 〉 = ∫ T ξ(T )dT /

∫
ξ(T )dT . In the

case of first-order regularization these 〈T 〉 are 10% or so
higher than the Tmax at which the recovered ξ(T ) peaks
because the ξ(T ) are skewed, and they compare well with
the single input T0 of the originally-assumed δ functions.
In the case of the iterative projected Landweber method,
〈T 〉 and Tmax coincide in most cases and are very close to
the theoretical T0.

When first-order regularization is applied in the case
of multi-thermal sources, the FWHM values given in Ta-
ble 4 may be overly optimistic estimates of the temper-
ature resolution particularly when trying to separate nar-
row features. As an example, we consider reconstructions
of two δ functions with both methods, where the first
is peaked at T1 = 2.5 keV and the second is peaked at
T2 = 10,7,5,4.5 keV, respectively—see Fig. 15.

Also in this case for the reconstruction we considered
F(E) sampled in the energy range 1–50 keV. We note
that the use of the positivity constraint increases the reso-
lution limit as explained for example in Piana and Bertero
[64] by means of arguments based on the analytic con-
tinuation principle. Furthermore, the ξ(T ) reconstructed
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Fig. 15 Reconstructions of two δ functions (solid line) by means of
first-order regularization (dashed) and projected-Landweber method
(dotted). The averaged electron spectrum contains 50 points uni-
formly sampled in the range 1–50 keV and is obtained by invert-
ing the corresponding photon spectrum with realistic Poisson noise
added: (a) T1 = 2.5 keV, T2 = 10 keV; (b) T1 = 2.5 keV, T2 = 7 keV;
(c) T1 = 2.5 keV, T2 = 5 keV; (d) T1 = 2.5 keV, T2 = 4.5 keV

Table 4 Full Widths at Half Maximum (FWHM) for the reconstruc-
tion of δ functions peaked at different temperatures. The maximum and
the centroid values of T corresponding to the reconstructed ξ(T ) are
also given. The inversion methods are first-order regularization with
boundary conditions and projected-Landweber method with positivity

Input T0 (keV) 2.5 3.5 4.5 5.5 6.5

Tmax (Tikhonov) 2.3 2.8 3.4 3.9 4.5

〈T 〉 (Tikhonov) 2.6 3.3 4.6 5.7 7.1

FWHM (Tikhonov) 1.5 2.0 3.3 4.2 5.6

Tmax (positivity) 2.5 3.6 4.6 5.6 6.6

〈T 〉 (positivity) 2.5 3.6 4.6 5.6 6.6

FWHM (positivity) 0.8 0.9 1.1 0.9 1.5

Input T0 (keV) 7.5 8.5 9.5 10.5 11.5

Tmax (Tikhonov) 5.2 6.1 7.3 7.9 8.6

〈T 〉 (Tikhonov) 8.5 9.0 9.6 10.5 11.6

FWHM (Tikhonov) 7.3 9.4 11.8 12.3 13.2

Tmax (positivity) 7.6 8.3 9.6 10.6 11.6

〈T 〉 (positivity) 7.6 8.5 9.7 10.8 11.6

FWHM (positivity) 1.3 2.6 2.3 2.3 2.4

by means of the Tikhonov method have unphysical nega-
tive components. We conclude that for the recovery of the
low-temperature part of the differential emission measure
the projected algorithm is significantly more effective. We
also observe that the energy range 1–50 keV, where F(E)

was sampled for this inversion, is in some sense optimal,
since it always includes the peak temperatures to be re-
covered. In real F(E), energies up to typically 10 keV
must be avoided owing to the presence of (or problemat-
ical correction for) lines of non-bremsstrahlung origin or
to systematic errors introduced by the hardware. In other
words, a typical experimental situation is that F(E) is in-
verted from electron energies larger than the temperatures
involved in the thermal process. In order to study the ef-
fect of this on the inversion method, we considered the
test shown in Fig. 16.

The electron spectrum corresponding to an isother-
mal ξ(T ) with T0 = 7 keV is inverted for different elec-
tron energy sampling ranges: 2–20 keV (solid), 2–7 keV
(dashed), 7–20 keV (dotted) and 20–70 keV (dot-dashed).
We found that if T0 is higher than the energy range con-
sidered, the reconstruction preserves the symmetry of the
δ function (so that Tmax and 〈T 〉 more or less coincide)
but the peak temperature is notably overestimated (almost
20%). If T0 is smaller than the sampled energies (which is
the realistic situation), the reconstruction is rather skewed
(in such a way that Tmax is bigger than 〈T 〉, as opposed to
the case of Tikhonov regularization), presents a widened
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Fig. 16 Reconstruction of a δ function peaked at T0 = 7 keV when the
corresponding F(E) is sampled over different electron energy ranges:
2–20 keV (solid); 2–7 keV (dashed); 7–20 keV (dotted); 20–70 keV
(dot-dashed). The reconstruction method is the projected-Landweber
method with positivity

Fig. 17 Inversion of F(E) corresponding to the case ξ(T ) ∼ T −5/2:
(a) F(E) uniformly sampled with N = 140 points in the energy
range 50–189 keV; (b) theoretical ξ(T ) (solid), reconstruction given
by first order regularization (dashed), reconstruction given by the pro-
jected-Landweber method (dotted)

FWHM and the peak temperature is slightly underesti-
mated: for example, if the selected range is 20–70 keV,
the reconstructed Tmax is ∼ 5% smaller than the true
one.

• Power Laws
The situation is notably different for the recovery of the
high temperature part of ξ(T ). In this range the typical
behavior is close to a power law T −α , which generates a
power-law shape E−δ in the corresponding high energy
part of F(E) (the approximate relation α ∼ δ + 1/2 has
been already discussed before). In this case, the small
y (high T ) boundary condition (203) plays a constructive
role in the recovery of ξ(T ) and makes first-order regular-
ization more effective than the projected iterative scheme
(in this case the action of the positivity constraint is in-
significant, since the ξ(T ) to be recovered has a wide sup-
port i.e. is everywhere far from zero and possible residual
oscillations do not induce negative components). A test
example is represented in Fig. 17, where we invert the
spectrum F(E) corresponding to the input form

ξ(T ) ∼ T −5/2. (216)

This electron spectrum has been obtained by inverting
the corresponding photon spectrum given by (195) with
the addition of realistic Poisson noise. F(E) in Fig. 17(a)
has been uniformly sampled with N = 140 points in the
range 50–189 keV (in the case of power laws the sensi-
tivity of the reconstruction qualities on the energy range
adopted for the inversion is not very significant) and in-
verted in Fig. 17(b) by means of the first-order regular-
ization method and for the projected Landweber method.
The results of this computation clearly show that first-
order regularization with the boundary condition (203) is
particularly effective in this case. We finally note that for
notably larger values of δ a certain deterioration of the re-
constructions may occur, due to the fact that λ is a global
regularization parameter which works in a less effective
way when the function to reconstruct is steep. However
this deterioration can be reduced by means of an appro-
priate rescaling of the power law (see [49]).

• More Realistic Spectra
A mean electron flux spectrum reconstructed from a real
photon spectrum is often assumed [39] to comprise an
isothermal component at low electron energies plus a
power-law behavior at high energies. A simple example is
given by the model electron spectrum (with T ,E in keV)

F(E) = 100T
−3/2
0 Ee

− E
T0 + �(δ + 1)

100

(
E

50

)−δ

; (217)

application of the derivative test [15] shows that this spec-
trum is consistent with a wholly thermal source; indeed
the corresponding differential emission measure is

ξ(T ) = 100δ(T − T0) + 0.5(50)δ−1T −(δ+0.5). (218)

We discretized the F(E) form (217) with a uniform 1 keV
sampling from 1 keV to 250 keV with T0 = 4 keV and
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�Fig. 18 Inversion of F(E) corresponding to ξ(T ) given in (218) for
T0 = 4 keV and δ = 2: (a) electron spectrum with N = 250 sam-
pled energies in the range 1–250 keV; (b) theoretical ξ(T ) (solid)
with the reconstructions given by first-order regularization (dashed)
and projected-Landweber method (dotted); (c) theoretical ξ(T ) (solid)
and reconstruction (dashed) obtained by inverting the low-energy part
of the electron spectrum with the projected-Landweber method and
the high-energy part with first-order Tikhonov regularization and by
connecting the two restorations; (d) cumulative regularized residuals
(solid) for the method with positivity (upper panel) and Tikhonov reg-
ularization (lower panel) compared to the statistical bound ±3/

√
k

(dashed)

δ = 2. We then generated the corresponding photon spec-
trum (I (ε)) using an exact (isotropic) cross section and
added random Poisson noise, resulting in corresponding
noise in F(E). Figure 18(a) shows the resulting simu-
lated F(E) while Fig. 18(b) contains the restorations pro-
vided by the two methods. Both reconstructions present
notable unphysical artefacts which are essentially due to
the fact that neither method is able to fully restore the two
completely different behaviors of the source function at
low and high T . Therefore we considered an approach
whereby the two different inversion methods are applied
one to the low- and one to the high-energy part of the elec-
tron spectrum separately. More precisely, the projected
Landweber method is applied to F(E) in the low-energy
range (here we used 2–36 keV, which approximately cor-
responds to the range where the spectrum is optimally
fitted by the isothermal component). On the other hand,
first-order Tikhonov regularization with boundary condi-
tions is applied to F(E) in the high-energy range (here
we used 55–204 keV, which approximately corresponds
to the range where the spectrum is optimally fitted by a
power-law). The two reconstructed ξ(T ) are connected
together at the temperature where the thermal peak goes
to zero and plotted in Fig. 18(c) while Fig. 18(d) shows
that the regularized cumulative residuals (212) are statisti-
cally reliable for the chosen value of the iteration number
and of the Tikhonov regularization parameter.

6.4 Application to RHESSI Data

In order to address the analysis of real spectra provided by
RHESSI, we first need to check the compatibility between
condition (203) and the asymptotic behavior of the recorded
photon spectrum at high energies. Such an issue can be ad-
dressed by simple integral computations showing that, if a
function F(t), for t → 0, is

F(t) ∼ Atβ (219)

with β > −1, then its Laplace transform (LF)(s), for t →
∞, is

(LF)(s) ∼ A
�(β + 1)

sβ+1
, (220)

with

�(z) =
∫ ∞

0
e−t t z−1dt. (221)
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�Fig. 19 August 21 2002 flare recorded by RHESSI in the time in-
terval 01:38:44–01:39:04 UT: (a) photon spectrum; (b) mean source
electron spectrum reconstructed by zero-order Tikhonov regulariza-
tion; ; (c) reconstruction obtained by inverting the low-energy part
of the electron spectrum with the projected-Landweber method and
the high-energy part with first-order Tikhonov regularization and by
connecting the two restorations; (d) cumulative regularized residuals
(solid) for the method with positivity (upper panel) and Tikhonov reg-
ularization (lower panel) compared to the statistical bound ±3/

√
k

(dashed)

Therefore condition (203) is compatible with the mean
source electron spectrum with an asymptotic (E → ∞) elec-
tron spectral index δ > 0 (corresponding to a photon spectral
index γ > 1).

The reconstruction procedure described in the previous
section has been applied to three photon spectra observed by
RHESSI corresponding to three different flares. Figure 19(a)
shows the photon spectrum corresponding to the August 21
2002 flare in the time interval 01:38:44–01:39:04 UT, while
Fig. 19(b) shows the corresponding averaged electron spec-
trum obtained by using zero-order Tikhonov regularization.

The low energy part of this spectrum (11–24 keV) has
been inverted by means of the Landweber iterative scheme
with positivity for 105 iterations while the high energy part
(50–189 keV) has been inverted by using first-order Tik-
honov regularization with boundary conditions (again the
two electron energy ranges correspond to the intervals where
F(E) is optimally fitted by a thermal component and a
power-law respectively). The two reconstructed ξ(T ) are
connected together and plotted in Fig. 19(c) while the cumu-
lative residuals contained in Fig. 19(d) show that the recon-
struction is statistically reliable. At small T , ξ(T ) presents a
peak at T ∼ 2.9 keV, FWHM ∼ 1.5 keV and 〈T 〉 ∼ 2.8 keV
(the temperature provided by best-fitting F(E) is 2.6 keV).
In order to study the compatibility of this spectrum with
a single-temperature thermal interpretation we produced a
synthetic F(E) corresponding to a δ-function peaked at
2.9 keV and inverted it with the same projected Landwe-
ber method applied to the same electron energy range. The
restoration presented a FWHM of around 1.5 keV show-
ing that this flare can be reliably interpreted according to
an isothermal model. At higher temperatures, ξ(T ) presents
a dip between 60 and 70 keV and an asymptotic power-
law-like behavior with α ∼ 2.8 (this value is in accordance
with the fact that the asymptotic electron spectral index
is δ ∼ 2.3). In order to study the statistical relevance of
the non-monotonic structure in the 60–70 keV temperature
range, in Fig. 20 we constructed the confidence strip for the
regularized ξ(T ) [63, 67] by means of repeated inversions
using different realizations of the data set and by superim-
posing the corresponding regularized solutions. The strip re-
sults to be notably large in correspondence with the dip, thus
allowing to interpret this structure in terms of a ‘plateau’, a
broken-power-law or even a simple power-law behavior.
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Fig. 20 The confidence strip for the regularized ξ(T ) at high T ,
corresponding to the August 21 2002 flare in the time interval
01:38:44–01:39:04 UT. The strip has been obtained by repeated in-
versions of F(E) in Fig. 19(b) using 20 different random realizations
of this data set. The inversion method is first-order Tikhonov regular-
ization

�Fig. 21 November 3 2003 flare recorded by RHESSI in the time in-
terval 09:57:00–09:57:20 UT: (a) photon spectrum; (b) mean source
electron spectrum reconstructed by zero-order Tikhonov regulariza-
tion; (c) reconstruction obtained by inverting the low-energy part
of the electron spectrum with the projected-Landweber method and
the high-energy part with first-order Tikhonov regularization and by
connecting the two restorations; (d) cumulative regularized residuals
(solid) for the method with positivity (upper panel) and Tikhonov reg-
ularization (lower panel) compared to the statistical bound ±3/

√
k

(dashed)

An analogous procedure has been applied for the analy-
sis of the photon spectrum in the time interval 09:57:00–
09:57:20 UT of the November 3 2003 flare (see Fig. 21(a)
for the photon spectrum and Fig. 21(b) for the inverted av-
eraged electron spectrum). F(E) has been inverted with
the positivity method in the 13.5–40.5 keV range and with
first-order regularization in the 56.5–180.5 keV range. The
reconstructed ξ(T ) in Fig. 21(c) presents a peak at T ∼
3.1 keV with FWHM ∼ 1.4 keV and 〈T 〉 ∼ 2.8 keV (the
best-fitting temperature is 3.2 keV). As for the previous
flare, in this case a single-temperature interpretation of this
part of the spectrum is acceptable. At higher T there is a
feature in the range 70–80 keV, which is more pronounced
than the one in the August 21 2002 flare (although, also in
this case, the confidence strip at these temperatures is very
wide). The asymptotic α is around 3.1, which must be com-
pared with an asymptotic δ in F(E) of around 2.7 (once
more, the asymptotic relation α ∼ δ + 0.5 is satisfied). The
cumulative residuals in Fig. 21(d) show that these results are
statistically reliable.

Things are notably different in the case of the photon
and electron spectra in Fig. 22(a) and (b) respectively, cor-
responding to the time interval 00:30:00–00:30:20 UT of
the July 23 2002 flare. This F(E) fails the derivative test at
several points in the low-energy range. We have computed

the first five derivatives of F(E)/E and found failures of
the test for different points in the second, third, fourth, and
fifth derivative. Figure 22(c) contains, for example, the third
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�Fig. 22 July 23 2002 flare recorded by RHESSI in the time interval
00:30:00–00:30:20 UT: (a) photon spectrum; (b) mean source electron
spectrum reconstructed by zero-order Tikhonov regularization; (c) nu-
merical third derivative of F(E)/E with corresponding statistical er-
rors; (d) cumulative regularized residual (solid) for the method with
positivity (upper panel) in the case of 106 iterations and Tikhonov
regularization (lower panel) compared to the statistical bound ±3/

√
k

(dashed)

derivative which should be negative for a thermal spectrum
and is in fact positive (with statistical significance) at 16 and
19 keV. By applying the constrained-Landweber method to
F(E) at low energies (for example between 12 and 21 keV)
we found that the cumulative residuals never present the ex-
pected random walk, even for huge numbers of iterations
(the residuals in Fig. 22(d), upper panel, correspond to 106

iterations). This behavior seems to suggest that a thermal in-
terpretation of this photon spectrum could be problematic,
although we also observe that this photon data set proba-
bly suffers a notable pulse pile-up, which may imply arte-
facts in the reconstruction of F(E). For the high-energy part
of the spectrum, first-order regularization provides a power-
law-like ξ(T ) with α ∼ 2.7 at high T (δ for this spectrum is
around 2).

6.5 Conclusions

The inference of differential emission measure functions
ξ(T ) from observed photon spectra (I (ε)) with a realistic
bremsstrahlung cross section is substantially more difficult
than the single-step inversion analysis of Piana, Brown, and
Thompson [66] based on an approximate Q. A proper pro-
cedure involves two inverse problems. The first of these is
the inversion of I (ε), through an exact solid-angle-averaged
bremsstrahlung cross section kernel and a zero-order Tik-
honov regularization method, to obtain the mean source
electron spectrum F(E). The second uses an approach for
inverting F(E) which involves the application of a projected
algorithm with positivity constraint in the inversion of the
low energy part of the spectrum and of a first-order regular-
ization method with boundary conditions in the inversion of
the high energy part of the spectrum. The main findings are:

– the approach correctly identifies certain properties of
F(E) (such as bumps or energy cut-offs) as being incon-
sistent with any physical ξ(T ) ≥ 0;

– the use of the positivity constraint allows us to obtain a
satisfactory temperature resolution in the recovery of δ

functions while the use of first-order regularization with
boundary conditions provides reliable reconstructions for
smooth forms such as power-laws;

– application of the method to observed RHESSI photon
spectra has revealed two cases in which the recovered
ξ(T ) is spectrally consistent with a roughly isothermal
low-temperature plasma plus a very broad form of ξ(T )

at high temperatures. In a third case, a spectrum from the
July 23 2002 flare, the reconstruction method at low tem-
peratures produces unacceptable large residuals. This re-
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sult is in accordance with the fact that the same spectrum
fails to satisfy the derivative test which verifies the com-
patibility with a purely thermal interpretation. Possible
physical motivations for this behaviour are still unclear
and, for example, may be related to the fact that this flare
produced spectra which deviate from a power-law behav-
iour in a manner consistent with non-uniform ionization
[47]. However we also observe that the spectrum used in
our analysis suffers a notable pulse pile-up which may
imply artefacts in the analysis results.

The availability of a reconstruction approach for addressing
the difficult inverse problem of restoring ξ(T ) from recon-
structions of F(E) may have important consequences in the
analysis and interpretation of RHESSI spectra. In future re-
search we will apply the method to study the influence of
albedo effects on the modification of the differential emis-
sion measure and to deduce important physical properties
on the thermal plasma from the reconstructed ξ(T ).

7 Application to Solar Physics: Imaging-Spectroscopy

7.1 From Spectroscopy to Imaging-Spectroscopy

The high X-ray energy resolution achievable with RHESSI’s
hardware and the consequent measurements of the precise
shape of the X-ray continuum, together with suitable math-
ematical tools to stably invert the bremsstrahlung equation,
allow to provide unique information on the spectrum of the
accelerated electrons and on the heated plasma. However,
the purposes of the RHESSI mission go further: the new
approach is to combine, for the first time, high-resolution
spectroscopy in X-ray and γ -ray with high-resolution im-
ages, so that a detailed energy spectrum can be obtained at
each point of the map. In fact, RHESSI produces hard X-ray
and γ -ray images with the finest angular and spectral reso-
lutions ever achieved [57]; imaging spectroscopy analysis of
this data is a powerful tool with which to explore the under-
lying physics of particle acceleration and transport in solar
flares. Traditional imaging spectroscopy methods (e.g., [30])
start by constructing two-dimensional maps of the source at
different count energies by applying image processing algo-
rithms (e.g., back projection, CLEAN, Maximum Entropy,
Pixon). This results in a series of images which are consis-
tent both with the broad assumptions of the particular algo-
rithm used and with the imaging information contained in
the data. Spatially resolved count spectra are then obtained
from this set of images by selecting particular regions in the
field of view and comparing the intensity in those regions as
a function of count energy. Finally, the corresponding spa-
tially resolved electron spectra are constructed by applying
regularized spectral inversion methods (e.g., [18]) to the spa-
tially resolved count spectra.

In this section we introduce a new approach to imaging
spectroscopy which is optimized to the distinctive way in
which spatial information is encoded in the RHESSI data.
The RHESSI instrument employs a rotation modulation col-
limator (RMC) imaging technique, in which rapid time vari-
ations of the detected counts are effected by the placement
of a set of RMCs, each with a different pitch, in front of
each detector. Spatial information is encoded in the tempo-
ral modulation of the detected flux [40]. As the RMC rotates,
the amplitude and phase of this pseudo-periodic modulation
over a limited range of angles provides a direct, calibrated
measurement of a single Fourier component of the source
distribution. Such a Fourier components is termed a visibil-
ity [70], and is the same quantity provided by the correlated
signal from a pair of antennas in a radio interferometer. In
this case, the spatial frequency of the measured visibility
is determined by the angular resolution of the RMC and
its instantaneous orientation. Combining data from multi-
ple RMC’s at a variety of orientations, the set of visibilities
can then be used to reconstruct the spatial distribution of the
source. Since visibilities can be summed linearly, this per-
spective on the data provides a convenient basis for combin-
ing data from multiple rotations into a tractable number of
visibility measurements with well-defined statistical errors.

The “traditional” approach to imaging spectroscopy, in
which images at different count energies are “stacked” and
compared, not only fails to take full advantage of the partic-
ular nature in which spatial information is contained in the
RHESSI data, it also has two significant drawbacks:

– while imaging algorithms can reduce statistical and point-
response artifacts in each image, they are completely inef-
fective in smoothing along the count energy direction, so
that recovered images corresponding to adjacent energy
bins can exhibit substantial differences;

– owing to these energy-dependent fluctuations, the deter-
mination of the count spectrum at a particular point (x, y)

(or, more accurately, a particular region [x±�x,y±�y])
in the source image can be problematic, as is the deter-
mination of the statistical error on the count flux. As is
well-known (e.g., [20]), such noise-related spectral vari-
ations are greatly magnified upon performing a spectral
inversion to obtain the corresponding electron spectrum.

In addition, as with any indirect imaging technique, the in-
complete spatial frequency sampling results in spatial side-
lobes in the point response function which can cause con-
tamination by neighboring sources. Further, the statistical
noise from all source components contributes to the noise in
each selected region of the source.

It is crucial to recognize that it is not the observed counts
(or even photons) that are of interest per se, but rather the
electrons that produce them: the real science goal is to obtain
physically plausible (i.e., “sufficiently smooth”) electron
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spectra throughout the source. Our new method of imag-
ing spectroscopy analysis therefore involves an interchange
of two steps in the data processing chain. First, one applies
a count to electron inversion algorithm to obtain smoothed
electron spectra at each point in the spatial frequency do-
main. Once such electron flux visibility spectra have been
obtained, they can be processed using standard image re-
construction techniques to yield electron flux images for the
entire field of view. Since the electron flux visibility spec-
tra are regularized, so also are the corresponding electron
flux spectra at each location in the image. This renders these
spatially-resolved spectra more suitable for further analysis.

We perform the count to electron inversion step us-
ing the familiar Tikhonov regularization technique that has
proven so effective (see Sects. 3 and 4) in the inference
of spatially-integrated electron spectra F(E) from observa-
tions of spatially-integrated count (or photon) spectra I (ε).
Applied to visibilities, the Tikhonov regularization method
forces smoothness in the inferred electron visibility spec-
tra at each point in the spatial frequency domain and thus
enhances real features that persist over a relatively wide
energy band, while suppressing noise-related features that
show up only over a narrow range of energies. The combina-
tion of visibility data and Tikhonov regularization method-
ology therefore allows us to derive the most robust infor-
mation on the spatial structure of the electron flux spectrum
image, the key quantity of physical interest.

7.2 Methodology

Define a Cartesian coordinate system (x, y, z) such that
(x, y) (in units of arcseconds) represents a location in the
image plane and z (cm) represents distance along the line
of sight into the source. Let the local density of target parti-
cles along the line-of-sight depth �(x, y) (cm) be n(x, y, z)

(cm−3) and let the differential electron flux spectrum (elec-
trons cm−2 s−1 keV−1) at the point (x, y, z) in the source be
F(x, y, z;E).

Since the source is optically thin, the relation between
F(x, y, z;E) and the corresponding observed photon spec-
trum image I (x, y; ε) (photons cm−2 s−1 keV−1 arcsec−2)
is

I (x, y; ε) = a2

4πR2

∫ ∞

ε

∫ �(x,y)

0
n(x, y, z)

× F(x, y, z;E)Q(ε,E)dz dE, (222)

where a = 7.25 × 107 cm arcsec−1 at R = 1 AU and
Q(ε,E) (cm2 keV−1) is the cross section for emission of a
photon at energy ε. Here we consider the isotropic bremss-
trahlung cross section Q(ε,E) given by equation (3BN) in
[44] and reported in Sect. 3.1 (see (110)).

We define the mean electron flux spectrum F(x, y;E)

(electrons cm−2 s−1 keV−1 at the Sun) by

F(x, y;E) = 1

N(x,y)

∫ �(x,y)

0
n(x, y, z)F (x, y, z;E)dz,

(223)

where the column density (cm−2) at each point (x, y) in the
image is given by N(x,y) = ∫ �(x,y)

0 n(x, y, z) dz. Then, by
(222) and (223), we may write

I (x, y; ε) = a2

4πR2

∫ ∞

ε

N(x, y)F (x, y;E)Q(ε,E)dE.

(224)

Next we introduce spatial frequencies u and v in the x-
and y-directions, respectively, and define the count visibility
spectrum V (u, v;q) (counts cm−2 s−1 keV−1) as the two-
dimensional spatial Fourier transform of the count spectrum
image J (x, y;q) (counts cm−2 s−1 keV−1 arcsec−2):

V (u, v;q) =
∫

x

∫
y

J (x, y;q) e2πi(ux+vy) dx dy. (225)

The count spectrum and photon spectrum images are related
by the instrument’s detector response matrix. Hence we may
write

V (u, v;q)dq =
∫

x

∫
y

∫ ∞

q

D(q, ε) I (x, y; ε)

× e2πi(ux+vy) dε dx dy, (226)

where the dimensionless quantity D(q, ε) is the differential
element of the detector response matrix5 corresponding to
the generation of a count with energy in the energy range
[q, q + dq] from a photon in the energy range [ε, ε + dε].

Combining (224) and (226) gives the rather formidable
expression

V (u, v;q)dq

= a2

4πR2

∫
x

∫
y

∫ ∞

q

∫ ∞

ε

[N(x,y)F (x, y;E)]

5The range of ε corresponding to a count of energy q is taken to be
[q,∞); only photons of energy ≥ q can generate a count of energy q .
This (linear) formalism therefore ignores the possibility of the creation
of a count of energy q from the arrival at the same detector of two (or
more) photons of energy < q within a very short time interval. This
“pulse pileup” process is intrinsically nonlinear (the detector response
matrix depends on the incoming photon flux) and so cannot be readily
accommodated within the present formalism. Our analysis will there-
fore be restricted to medium-flux events for which pileup is not likely
to be significant.
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× D(q, ε)Q(ε,E) e2πi(ux+vy) dE dε dx dy, (227)

which provides the formal relationship between [N(x,y)

F (x, y;E)], the quantity of most direct physical interest,
and the observed count visibility spectra V (u, v;q). We
now introduce the count cross section K(q,E) (cm2 keV−1)
through the expression

K(q,E)dq =
∫ ∞

q

D(q, ε)Q(ε,E)dε (228)

and the electron flux visibility spectrum (electrons
cm−2 s−1 keV−1)

W(u,v;E)

= a2
∫

x

∫
y

N(x, y)F (x, y;E)e2πi(ux+vy) dx dy. (229)

With these definitions, and reversing the order of integration
with respect to ε and E, (227) can be written as the straight-
forward integral equation

V (u, v;q) = 1

4πR2

∫ ∞

q

W(u, v;E)K(q,E)dE. (230)

Equation (230) is formally identical to the relation (101)
between the spatially-integrated photon spectrum and the
source-integrated electron spectrum and so can be solved for
the visibilities W(u,v;E) from the observed count visibility
spectra V (u, v;q) by applying Tikhonov regularization, that
have proven so effective in the solution of (101) for nV F(E)

given I (ε) (see Sects. 3 and 4).
To briefly summarize the Tikhonov methodology in the

visibility case, (230) is first discretized in both count and
electron energy spaces to yield, at each sampled point (u, v)

in the spatial frequency domain, the data visibility vector
V[u,v] (the elements of which depend on count energy q) and
the source visibility vector W[u,v] (the elements of which
depend on electron energy E). These are related through the
matrix equation

V[u,v] = K · W[u,v], (231)

where K is the kernel matrix, the elements of which are
formed from the values of K(q,E) at the discretized count
and electron energy points. Then the zero-order regulariza-
tion problem

‖V[u,v] − K · W[u,v]‖2 +λ[u,v]‖W[u,v]‖2 = minimum (232)

is solved for W[u,v] given the prescribed visibility vector
V[u,v] at each sampled point in (u, v) space, using an ap-
propriate value (see below) of the regularization parame-
ter λ[u,v]. This results in electron visibility spectra that are
“smooth” in the sense that the large variations in W(u,v;E)

from energy bin to energy bin are suppressed. This tech-
nique therefore enhances spatial features (Fourier compo-
nents) that persist over a wide range of energies, and sup-
presses (noise) features that exist over only a limited sub-
set of energy bins. Once the electron visibility spectra have
been determined, the electron flux spectral image may be
determined through the inverse Fourier transform of (229).

7.3 Application to Data

We illustrate the method by applying it to data obtained near
the peak of the C7.5 flare of February 20, 2002 (11:06:02–
11:06:34 UT), using visibilities from RHESSI RMCs 3
through 9, corresponding to spatial resolutions from ∼ 7 to
∼ 183 arcseconds. For comparison purposes, we first con-
struct count images by means of the visibility technique and
apply the “traditional” imaging spectroscopy approach, in
which count images in different energy bands are compared.
After discussing the drawbacks of this “traditional” method,
we use our new method to obtain more physically useful
electron flux maps of the flare.

The “traditional” method begins by converting the X-ray
count rate data to a set of visibilities. This requires pre-
selecting the number of angular intervals (roll bins) per rota-
tion. The number of roll bins should be maximized to avoid
degradation of sensitivity near the edge of the field of view.
However, for this application, each roll bin must contain at
least one complete modulation cycle to enable the visibil-
ity to be well-measured. Using an iterative technique, we
maximized the number of roll bins for each detector subject
to this constraint and then used a χ2 analysis to determine
statistically acceptable visibilities. Then, since V (u, v) and
V (−u,−v) are complex conjugates (see (225)), the visibil-
ities measured at angles separated by 180 degrees are com-
bined to improve the signal-to-noise ratio. Finally, the error
bars on the real and imaginary parts of each visibility for
each energy channel are computed by propagating the sta-
tistical error in the counts through to the calculation of each
visibility. The resulting visibilities are used as input to the
Maximum Entropy (“MEM-NJIT”) algorithm [10] as im-
plemented in the Solar SoftWare (SSW) package, to produce
80 arcsec × 80 arcsec maps with 0.4 arcsec pixels. This was
done for 16 4-keV wide energy intervals from 10 to 74 keV.

Figure 23 shows some of these count-based images. Two
bright features, which we interpret as emission from chro-
mospheric footpoints, are apparent. In addition, there is
some evidence for a “strand” of emission linking the two
bright features; this we interpret as emission from the coro-
nal region of the magnetic loop linking the footpoints. The
lower left panel of Fig. 23 shows the areally-averaged count
spectrum (counts cm−2 s−1 keV−1 arcsec−2) for the north-
ern footpoint region highlighted by the square in each im-
age; this spectrum has been constructed by averaging, for
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Fig. 23 Top panels: Count images for the 20 February, 2002
(11:06:02–11:06:34 UT) event, for the energy intervals shown, pro-
duced using the MEM-NJIT algorithm. Lower panels: Areally-
averaged count spectrum (counts cm−2 s−1 keV−1 arcsec−2;

left) and electron flux confidence strip spectra (electrons
cm−2 s−1 keV−1 arcsec−2; right) for the footpoint region highlighted
in the images

each energy channel, the intensities of the pixels that con-
stitute the highlighted region (to get the total count spec-
trum for the region [counts cm−2 s−1 keV−1], simply mul-
tiply by the area of the region, in this case 14.4 × 14.4 =
207.36 arcsec2). The error bars have been computed as the
combination of a count (Poisson) error plus background
noise. The lower right panel shows the recovered electron
flux spectrum confidence strip (i.e., a series of realizations
of the electron flux spectrum, each based on a different
noisy realization of the data; see Sect. 4.3) for this feature.
Each electron spectrum realization was obtained by invert-
ing the count spectrum using the zero-order regularization
method applied in Sects. 3 and 4 for spatially integrated
spectroscopy.

The count spectrum is conspicuously weak in the 26–
30 keV image. This leads to a relatively flat count spectrum
in this range (lower left panel of Fig. 23) and hence (since
the electron spectrum is, crudely, related to the derivative of
the photon spectrum—[12]) to a dip in the recovered elec-
tron spectrum (lower right panel) for this feature. Although
such spectral dips have been inferred for spatially-integrated
electron spectra (e.g., [67]), the spatially-integrated count
spectra on which such spatially-integrated electron spectra
are based are not subject to the imaging artifacts that render
suspect the count spectra determined for a particular spatial
region. Therefore it is possible, or indeed likely, that the fea-
ture in Fig. 23 is not real, but rather an artifact imposed by

isolating attention on a limited range of spatial coordinates,
rather than on the overall patterns (Fourier components) of
emission present in the spatially-integrated emission.

As discussed in Sect. 7.1, because spatial information is
fundamentally encoded by RHESSI in Fourier components,
rather than in “pixels,” a more cogent approach to imaging
spectroscopy involves performing the count to electron in-
version step in the spatial frequency domain, i.e., on the
visibility data. By focusing on the information in distinct
Fourier components, we remove the deleterious effects of
imaging artifacts that are evident in the more “traditional”
approach to imaging spectroscopy.

Figure 24 shows the amplitude (upper panels) and phase
(lower panels) of the count visibilities V (u, v;q) (counts
cm−2 s−1 keV−1) for the same event and time interval as
Fig. 23, for three count energy ranges. The amplitude of
the visibilities generally increases with increasing grid pitch
(decreasing value of the corresponding spatial frequency√

u2 + v2). Highlighted by a red star in each plot in Fig. 24
is the (somewhat arbitrary) point (u∗ = −0.0042 arcsec−1,
v∗ = −0.0422 arcsec−1); this point corresponds to a spatial
periodicity 1/

√
u∗2 + v∗2 = 23.6 arcsec, which is the spa-

tial periodicity corresponding to (i.e., twice the angular reso-
lution of) RHESSI grid 4. The top panels of Fig. 25 show the
amplitude |V (u∗, v∗;q)| and phase Arg(V [u∗, v∗;q]) of the
differential count visibility spectrum for this representative
point in the spatial frequency domain.
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Fig. 24 (Color online) The observed count visibilities (amplitude and
phase) for three representative energy bands. In each panel, the region
between each pair of dotted vertical lines represents measurements
with a single RMC at a fixed spatial period, with the orientation of
the measurement increasing from 0 to 180 degrees; successive regions
correspond to different RMC’s. The angular resolutions for the re-

gions increase in a geometric progression (with a ratio of
√

3 between
successive regions), and span 7 arcseconds on the left to 183 arcsec-
onds on the right. The point (u∗ = −0.0042 arcsec−1, v∗ = −0.0422
arcsec−1), highlighted with a red star in each plot, is used in the illus-
trative spectral plots of Fig. 25

In order to preserve the inherent linearity of the process,
a polar to rectangular transformation was performed to con-
vert the amplitude and phase information into real and imag-
inary components Re{V (u∗, v∗;q)} and Im{V (u∗, v∗;q)}.
Each of these components was then subjected to the regular-
ized inversion analysis of (232) to obtain the real and imag-
inary parts of the corresponding (regularized) electron visi-
bility spectrum W(u∗, v∗;E) at the point (u∗, v∗). Through
an inverse rectangular to polar transform, we then recover
the amplitude and phase of the electron visibility spectrum
W(u∗, v∗,E) at this particular point, as shown in the bottom
panels of Fig. 25.

Repeating this regularized inversion process for each
sampled point in the (u, v) plane (using a value of the reg-
ularization parameter λ[u,v] appropriate6 to each sampled

6The value of the regularization parameter λ[u∗,v∗] was chosen using
the “3σ cumulative residual criterion” approach discussed in detail
in Sect. 6.2; in general, such a procedure for determining λ[u,v] re-
sults in more faithful representations of electron flux spectra than the
commonly-used “discrepancy principle”.

(u, v) point), we arrive at complete information on the elec-
tron flux visibility spectrum. This information is presented
in Fig. 26 in the same format of Fig. 24.

We can now use the set of electron flux visibility spec-
tra to construct electron spectral flux images in each energy
range. Images of the electron flux spectrum F(x, y;E), re-
covered by applying the MEM-NJIT algorithm, are shown
in Fig. 27. These images represent the quantity of key phys-
ical interest.

Figure 27, like Fig. 23, shows evidence for two foot-
points, again connected by a “strand” of coronal flux. To the
extent that variations in count intensity are a consequence of
data noise, the regularization algorithm used to develop the
electron flux images of Fig. 27 removes such irregularities,
resulting in a more coherent variation of source structure
with energy. Consequently, the electron flux images vary
much more smoothly with energy, and the coronal “strand”
is more persistent at low energies.

The footpoints in the electron images are seen to persist
up to electron energies ∼ 75 keV, an energy significantly
greater than the maximum photon energy used. As pointed
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Fig. 25 Top panels: Amplitude (left; counts cm−2 s−1 keV−1) and
phase (right; degrees) of the count visibility spectrum V (u∗, v∗;q)

at the point (u∗ = −0.0042, v∗ = −0.0422) in the spatial frequency
domain. Bottom panels: Amplitude (left; in units of 1050 electrons

cm−2 s−1 keV−1) and phase (right; degrees) of the corresponding elec-
tron spectrum visibilities W(u∗, v∗;E) at the same (u, v) point, ob-
tained through regularized inversion of (230) using the zero-order Tik-
honov method

out by Kontar et al. [48], information on the electron spec-
trum at high energies is indeed contained in the photon spec-
trum at lower energies, and can be faithfully extracted using
the Tikhonov regularization procedure.

It is instructive to reconstruct the count images corre-
sponding to the regularized electron spectral flux images
in Fig. 27 and compare them with the original spatial im-
ages obtained through processing of the raw count visibil-
ity data using the MEM algorithm. This comparison is pre-
sented in Fig. 28. The top row of figures shows the recovered
count images at the energies shown, while the bottom row
reproduces the original count-based images from Fig. 23.
The original count-based images (lower row of images in
Fig. 28) show evidence principally of a double-footpoint
structure, with some additional evidence for an extension
of the emission into the region between the footpoints (see,
e.g., the 18–22 keV and 42–46 keV images). However, there
is no clear systematic variation with count energy q , either
of the intensity of this “strand” emission or of the relative
intensity of the two footpoints. By contrast, the count im-
ages deduced from the regularized electron flux images (up-
per row of images in Fig. 28) show much more clearly the
evolution of the spatial structure with energy. The “strand”
of emission between the footpoints is clearly evident up to
30 keV, but diminishes rapidly at higher energies, and the

relative intensity of the two footpoint sources is more in-
dependent of count energy q . These physically plausible en-
hancements in the image structure are recovered through use
of the visibility-based regularized inversion technique, be-
cause of its inherent requirement that the source structure
vary smoothly from one electron energy E to the next. This
requirement in turn forces the count images to change more
smoothly with count energy q than do the images deduced
directly from the (noisy) data.

7.4 Physical Implications of the Results

The electron spectral flux images of Fig. 27 are quite plausi-
bly interpreted in terms of the collisional thick target model
[12] of hard X-ray emission in solar flares.

Consider three different spatial subregions in the source,
labelled in Fig. 29. Two of these regions correspond to the
footpoint sources visible at higher energies and the other
one to similarly-sized regions located approximately mid-
way between the two footpoints. The lower panel of Fig. 29
shows the areally-averaged7 electron flux spectra (electrons

7To get the total count spectrum for each region [counts
cm−2 s−1 keV−1], simply multiply the areally-averaged spectrum by
the area of that region, viz. 14.4×14.4 = 207.36 arcsec2 (Footpoint 1),
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Fig. 26 Recovered regularized electron flux visibilities (scaled by
10−50), presented as in Fig. 24. The sharp minima in the amplitude
plots are real, and reflect the two-component nature of the source. The
y-intercept to the right is determined by the total flux, while the rate

at which the amplitudes fall off (to the left) is determined by the size
of the sources, and reflects, for example, the larger source size at 26–
30 keV. The broad similarity of the phase plots reflects the broadly
similar location of the sources at various electron energies

cm−2 s−1 keV−1 arcsec−2), for each of these three subre-
gions. The region labeled “Footpoint 1” is identical to the re-
gion highlighted in Fig. 23; comparison of the electron flux
spectra for this region (Fig. 23 and 29) show that the “dip” at
∼ (26−30) keV obtained using the “traditional” approach to
imaging spectroscopy is indeed an artifact of the data trun-
cation and overspill issues associated with identification of
the flux in a local spatial region; the real electron flux spec-
trum in this region is smooth and monotonically decreasing
with energy E.

At low energies E ≈ 60 keV, the electron flux at the
more southern footpoint (Footpoint 2) is much smaller than
that at the more northern footpoint (Footpoint 1). However,
the spectrum of Footpoint 2 is very hard (δ � 1) and by
∼ 60 keV the electron flux at each footpoints has become
roughly equal, as is apparent from the spatial images.

Above E ∼ 40 keV, the spectra corresponding to the two
footpoint regions are visibly flatter (harder) than that corre-
sponding to the region between these footpoints. Such a re-

22.8 × 9 = 205.2 arcsec2 (Middle), and 14.4 × 14.4 = 207.36 arcsec2

(Footpoint 2), respectively.

sult is qualitatively consistent with the acceleration of elec-
trons in a source midway between the footpoints, and the
subsequent propagation of these electrons to the footpoints.
To concentrate the observed degree of spectral hardening
in the footpoints constrains the intervening column den-
sity to an upper limit N < E2/2K ∼ 2 × 1017[E(keV)]2 ∼
3 × 1020 cm−2 (here K = 2πe4� � 2.6 × 10−18 cm2 keV2,
where e is the electronic charge and � the Coulomb loga-
rithm). This in turn establishes an upper limit on the coronal
density n ∼ N/d , where d is the distance between the coro-
nal source and the footpoint parallel to the guiding magnetic
field. The plane-of-sky projected distance between the “mid-
dle” and “footpoint” sources is ∼ 10 arcsec ∼ 7 × 108 cm.
Assuming a semicircular geometry for the loop connect-
ing the footpoints, d ∼ (π/2) times this projected distance,
i.e., ∼ 109 cm. We hence infer that the coronal density
n < 3 × 1011 cm−3, an entirely reasonable constraint.

7.5 Summary

We have developed, and illustrated the effectiveness of, a
new approach to solar hard X-ray imaging spectroscopy. In
this approach, two-dimensional Fourier transforms of the



156 M. Prato

Fig. 27 Electron flux spectral images corresponding to the regularized electron flux spectral visibilities of Fig. 26, obtained through application
of the MEM-NJIT algorithm [10]

Fig. 28 Top panels: Regularized count-based images corresponding to the electron flux spectral images of Fig. 27, compared with (bottom panels)
the original images from Fig. 23

image in the count domain are transformed, through a regu-
larized inversion procedure that enhances features that per-
sist over a range of energy channels, into Fourier transforms
of the electron flux maps. A final image reconstruction based
on an inverse Fourier transform then gives the electron flux
maps themselves. Because data obtained through rotating
modulation collimator instruments such as RHESSI are con-

centrated into a relatively small number of discrete Fourier
components (“visibilities”), this approach is highly effective
at analyzing such data, and results in recovered spectra that
are determined more precisely than with a method that in-
volved regularized inversion of the count spectrum within a
spatial subregion of the source (which necessarily involves
a combination of spatial Fourier components). Application
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Fig. 29 Top panels: Electron
images in the energy ranges
22–26 keV and 42–46 keV,
respectively. Three sub-regions
of interest are labeled on each
image. Two of these correspond
to bright footpoint-like sources
and one to a region midway
between the footpoints. Bottom
panel: Areally-averaged
electron flux spectra (electrons
cm−2 s−1 keV−1 arcsec−2) for
each of the three subregions
shown

of the method to a flare on February 20, 2002 yielded a

series of electron flux images. Varying smoothly with en-

ergy, these images in turn permitted recovery of smooth,

regularized, electron flux spectra at different regions in the

source. Such smooth, regularized, electron flux spectra con-

trast with those obtained using the more “traditional” ap-

proach to imaging spectroscopy (e.g., Fig. 23), in which un-

physical features may result from focusing on a particular

spatial region.

For the illustrative event studied, the electron spectra

at the two bright chromospheric footpoints evident in the

images were systematically harder than the spectrum ob-

tained at similarly-sized region between the footpoints. Such

a spectral hardening is broadly consistent with collisional

modification of an accelerated electron beam if the interven-

ing density is less than 3 × 1011 cm−3.

In future papers, we intend to apply our new technique

to a variety of flare events. The resulting sample of elec-

tron flux spectrum images provides the required input to

the next stage of inquiry, wherein the nature of the physical

processes affecting the bremsstrahlung-producing electrons

is determined through analysis (e.g., [29]) of variation in the

electron flux spectrum throughout the source.

8 Conclusions

This paper wants to be a collection of recent results which
show how the regularization theory for linear inverse prob-
lems can be applied to recover stable and physically mean-
ingful solutions of real problems in solar X-ray and imag-
ing spectroscopy. The leading wire of this kind of problems
is the ill-posedness which characterizes them and the con-
sequent inefficiency of any mathematical tool which does
not account for this pathology. The regularization algorithms
considered proved to be an effective way to clash the com-
bined effect of the ill-posed nature of the models and the
noise which affects the data measurements.

The opportunity to study the problems we faced in the
paper has been given by the RHESSI mission, launched by
NASA in 2002 with the aim of providing X-ray imaging and
spectroscopy with unprecedented spatial and spectral reso-
lution. The X-ray spectra provided by the spacecraft and the
electron distribution in the Sun from which they have been
produced via a collisional bremsstrahlung process are linked
through an integral equation of Volterra type. Several prob-
abilistic kernel have been analyzed, also accounting for the
influence of anisotropies in the emission mechanism, and
the differences in the corresponding reconstructed electron
spectra have been discussed both in simulated and in real
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cases to investigate the effects of a more or less realistic (and
complicated) cross section.

The output of this model-independent problem has been
used as input for a following Fredholm integral equation
which, under a purely thermal interpretation of the bremss-
trahlung process, describes the electron distribution in the
source as a combination of Maxwellian functions weighted
by the differential emission measure. This problem can be
traced to the inversion of the Laplace transform, which is an
extremely challenging problem due to the huge filtering ef-
fect of the exponential kernel. In the paper we proposed to
split the input electron spectrum in two parts and to apply to
each of them a different regularization algorithm which bet-
ter perform on recovering the corresponding solutions. As
in the previous case, tests on both synthetic and real spectra
have been provided.

In the last part of the paper we discussed the imaging
spectroscopy item, which is one of the main goals of the
RHESSI mission as it allows to obtain detailed energy spec-
trum for different portions of the solar chromosphere. While
traditional imaging spectroscopy methods typically require
notable computational efforts and affect the reconstructed
local electron spectra with unphysical artifacts, we proposed
a new method which avoids both drawbacks. The algorithm
involves the regularized inversion of spectra of count visibil-
ities, which are calibrated measurements of spatial Fourier
components of the source distribution, followed by the ap-
plication of a Fourier-based imaging reconstruction tech-
nique.

The computational methods described in the present pa-
per, all based on the regularization theory for ill-posed prob-
lems, represent one possible approach to data analysis in so-
lar X-ray imaging and spectroscopy. However, other tech-
niques can in fact be applied. Inversion by means of sta-
tistical methods, for example, may explicitly account for
the statistical properties of the noise affecting the data; or,
more in general, the use of a Bayesian framework may al-
low encoding a priori information on the solution or on the
model in the probability density functions introduced in the
game. In the specific case of RHESSI measurements, a re-
alistic strategy for imaging, could be the use of multiple de-
convolution approaches, whereby the data provided by the
nine RHESSI detectors are simultaneously processed to pro-
duce reconstructions of the source with enhanced spatial
resolution. Finally, from the physical viewpoint, RHESSI
data, characterized by such a notable observational quality,
can be used to investigate more sophisticated astrophysical
processes like free-bound recombination or electron prop-
agation in the plasma during flares. The results of these in-
vestigations, based on the application of computational tools
like the ones described in this paper, may provide new fun-
damental insights toward the comprehension of the physi-
cal processes in the solar atmosphere and may represent the

conceptual basis of new solar missions like Solar Orbiter, in
preparation by ESA for the near future.
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