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\ LOBULAR CELESTIAL NAVIGATION

1'BY MEANS OF TRANSFORMATION

" OF GEOCENTRIC PLANAR
MEASUREMENTS TO A SPHERICAL
COORDINATE SYSTEM



WHAT IS A TRANSFORMATION

One common transformation equation is the 2D translation equation, which allows you to
shift a point in a Cartesian coordinate system by a certain amount in the x and y directions.
The equation is as follows:

NewX = OldX + dx
NewY = OIdY + dy

In this equation, (OldX, OIldY) represents the original coordinates of the point, and (NewX,
NewY) represents the transformed coordinates after the translation. dx and dy represent
the amount of shift in the x and y directions, respectively.

The purpose of a transformation equation is to convert a set of coordinates from one
coordinate system to another. A coordinate system is a reference frame used to locate
points in space. It consists of an origin (a fixed point) and a set of axes (lines) that define
the directions and scales of measurement.



2. Symbols for heliocentric and geocentric coordinates 1G. INTRODUCTION

6. Figure of the Earth
geographic, or geodetic, latitude—see special note in section 2F
geocentric latitude tan ¢’ = (1 — ¢*) tan ¢

parametric latitude tan ¢, = (1 — f) tan ¢

T A e » = ellipticity, or eccentricity, of the Earth’s meridian
Geocentric: ;

- R = flattening 1 — f = (1 — e
spherical ecliptic ; ; S & G S s ‘ :

g . with appropriate = geocentric distance in units of the Earth’s equatorial radius
spherical equatorial i : T = b ol i “ye
rectangular equatorial P auxiliary functions such that psin ¢’ = S sin ¢

rectangular equatorial (Sun) 8 peos g’ = Ccos ¢ = cos ¢,




2. COORDINATE AND REFERENCE SYSTEMS
A. COORDINATE SYSTEMS

The fundamental astronomical reference systems are based on the celestial
equator, coplanar with the Earth’s equator, and the ecliptic, the plane’of the Earth’s
orbit round the Sun. The angular coordinates in these planes are measured from
the ascending node of the ecliptic on the equator, or the point at which the Sun in
its annual apparent path round the Earth crosses the equator from south to north;
and they are measured positively to the east, that is in the direction of the Sun’s
motion with respect to the stars. The ascending node of the ecliptic on the equator
is referred to as ““ the vernal equinox ”, *‘ the first point of Aries ”, or simply as
“ the equinox”. The axes of the corresponding rectangular coordinate systems
are right-handed, i.e. the x-axis is directed towards the equinox, the y-axis to a point
9o’ to the east, while the z-axis is positive to the north.

The position of a point in space may be specified astronomically by reference
to a wide variety of coordinate systems; and it may be given by means of (among
other less usual systems) either spherical coordinates, consisting of a direction and a
distance, or rectangular coordinates, consisting of the projections of the distance on

three rectangular axes.
characteristics:

The systems are determined by the two following

(a) Origin of coordinates—and designation.
(i) The observer—topocentric.
(ii) The centre of the Earth—geocentric.
(iii) The centre of the Sun—heliocentric.
(iv) The centre of mass of the solar system—barycentric.
(b) Reference planes and directions—and designation of spherical coordinates.
(1) The horizon and the local meridian—azimuth and altitude.
(i1) The equator and the local meridian—hour angle and declination.
(iii) The equator and the equinox—(equatorial) right ascension and declination.

(iv) The ecliptic and the equinox—ecliptic or celestial) longitude and
latitude.

(v) The plane of an orbit and its equatorial or ecliptic node—orbital longitude
and latitude.

24

*More strictly, the mean plane of the orbital motion, ignoring periodic perturbations.
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Barycentric coordinates are often referred to the centre of mass of the Sun and
the inner planets, and less often to other combinations. The equator, the ecliptic,
and the equinox are constantly in motion due to the effects of precession and
nutation, and must be further specified; this is done in sub-sections B and C.
A notation to distinguish the various systems in current use is introduced in
section 1G.

The reduction from geocentric to topocentric coordinates depends on the
figure of the Earth, and is considered in detail in sub-section F. In most cases of
astronomical interest, the differences are so small that they can be applied as first-
order differential corrections.

Positions may be of several kinds, including: the geometric position derived
from the actual position at the time of observation; the apparent position in which
an observer, situated at the origin of coordinates, would theoretically see the
object; and the astrometric position, in which corrections have been made for
some small terms of aberration in order that it may be directly comparable with the
tabulated catalogue positions of stars. The apparent position is derived from the
geometric position by the application of corrections for aberration, and where
relevant for refraction. However, refraction is dependent on the observer’s local
reference system and is invariably treated as a correction to the observation rather
than to the ephemeris position; exceptions only occur for phenomena that are
essentially topocentric, such as rising and setting and (in principle, though the
correction is neglected in practice) for eclipses and occultations. For geocentric
coordinates the apparent position is the direction in which an observer at the
centre of the Earth would see the object, and refraction does not enter. Aberration
is dealt with in sub-section D and refraction briefly in sub-section E.

In the present sub-section the effects of precession, nutation, aberration,
refraction, and parallax are ignored in order to present the relationships between
the coordinate systems. The general notation used is restricted to this purpose
and should not be confused with the more detailed notation in section 1G
necessary to distinguish between the different kinds of position.

Not all combinations of (a) and (b) occur and many are not used in the
Ephemeris; (a) (iv), in particular, is therefore not referred to again. Moreover, if
corrections for parallax be deferred, there is no difference between (a) (i) and
(a) (it), which can be treated together.

For geocentric spherical coordinates there are thus the four practical reference
systems of :

(i) azimuth (A4) measured from the north through east in the plane of the
horizon, and altitude (a) measured perpendicular to the horizon; in astronomy the
zenith distance (¥ = 9go” — a) is more generally used, but the altitude is retained in
the formulae for reasons of symmetry;

(i1) hour angle (%) measured westwards in the plane of the equator from the
meridian, and declination (8) measured perpendicular to the equator, positive
to the north;
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(iii) right ascension (a) measured from the equinox eastwards in the plane of
the equator, and declination (8);

(iv) longitude (A) measured from the equinox eastwards in the plane of the
ecliptic, and latitude (B) measured perpendicular to the ecliptic, positive to the north.

The formulae connecting these coordinates are:

Azimuth /altitude Hour angle/declination

cosasin A = —cosdsin &
cos a cos A sin & cos ¢
sin a = sin dsin ¢

cos 8 cos h sin ¢
cos 8 cos h cos ¢

cos d sin h —cos a sin A
cos & cos h sin @ cos ¢ — cos a cos 4 sin ¢
sin 8 = sin asin ¢ + cos @ cos 4 cos ¢
where ¢ is the latitude of the observer. Note that the conversion corresponds to a

simple rotation of the frame of reference through an angle go® — ¢ in the plane of
the meridian.

Hour angle/declination Right ascension/declination

The two systems are identical apart from the origin, and direction, of measure-
ment of hour angle and right ascension, which are connected by the relation:

h = local sidereal time — o
since local sidereal time is the hour angle of the equinox.

Right ascension [declination Longitude/latitude
cos 8 cos @ = cos 8 cos A
cos & sin @ = cos B sin A cos € — sin Bsin €

sin & = cos B sin Asin € + sin B cos ¢

cosfcos A = cosdcosa
cos B sin A cos d sin a cos € + sin d sin €
sin f —cos & sin a sin € + sin 8 cos €

where e is the obliquity of the ecliptic (corresponding to the particular equator and
ecliptic used). Geocentric longitude and latitude are used now only for the Sun
and Moon. Note that the conversions correspond to a simple rotation round the
x-axis through an angle e.

The corresponding equatorial rectangular coordinates and distance are denoted
by X, Y, Z, and R for the Sun and by £, », {, and 4 for the planets; they are
derived from the spherical coordinates by the formulae:

X/Ror é/d = cosdcosa
Y/R or /4 = cos 8 sin a
Z|R or {/4 = sin 3
Geocentric ecliptic rectangular coordinates are rarely (if ever) used.

For heliocentric coordinates there are only the two practical reference systems—
the equatorial and the ecliptic; and in the equatorial system only rectangular
coordinates are used. The relationships between the ecliptic rectangular
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coordinates (x5 Yo, 2o), the ecliptic longitude, latitude, and distance (I, b, 7),
and the equatorial rectangular coordinates (x, y, 2) are:

X = r cos b cos [

X

Yo =rcosbsin Il = +ycose + zsin e
% =rsin b = —ysin € + COS €
X o= X = r(cos b cos 1)
Y = y,C08 € — 3.8in € = r(cos bsin / cos e — sin b sin €)

2 = y.sin € + 2, €08 € = r(cos bsin [sin e + sin b cos €)

The conversion from heliocentric to geocentric coordinates is performed in terms
of equatorial rectangular coordinates through:

E=x +X
n=95+ Y
I =a 4+ 2Z

where X, Y, Z are the geocentric coordinates of the Sun.
The calculation of the spherical coordinates from the rectangular coordinates,
or from the known direction cosines, typified by:
dcosdcosa = &
dcos dsina =17
4 sin 8 =
is performed by:
tan a = 7/¢ cota = €&y
4 = (& + »* + &) sin 8 = [/4
The quadrant of « is determined by the signs of £ and 7, and that of & by the sign
of {; 4and 4 cos 6 are always positive. The formulae for a and 8 may be written:

a = tan~1y/é or arctan /¢
= cot~1¢/y or arccot £/x
0 = sin~1/4 or arcsin £/4

provided that the appropriate values, and not necessarily the principal values, of
the multi-valued functions are taken.

Notes on the technique of practical calculation using these formulae, and on
the most suitable trigonometric tables to use, are given in section 16A.

Many of the conversions above correspond to a simple rotation of the frame of
reference about one of its axes. These are special cases of the general conversion
from a set of axes designated by x, y, = to a set designated by x’, 3/, 2’; the two
systems are connected by the formulae:

’

= Lxt ¢ Ly ¥ L X' =Lax+my +mz
y=mx 4+ myy + myz ¥ =Lax+my+ ngz
Z2=mx + ny + ny 2 F=Lx+my+ nz

where [y, my, 1,5 La, my, 13 ls, Mg, 1, are the direction cosines of x', y’, 2’ referred to
the system ¥, y, . 'The direction cosines satisfy the relations typified by:
B4+mi+nd=1 B+B+ 8B =1
Lily +mymg + nany =0 myny + myNy + MyNy = 0
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These nine quantities can be expressed in terms of the Eulerian angles
6, ¢, ¢ by:
+cos ¢ cos 8 cos ¢ — sin ¢ sin ¢
—cos ¢ cos 0 sin y — sin ¢ cos
+cos ¢ sin

+sin ¢ cos 6 cos ¢
my —sin ¢ cos 6 sin ¢
mg = -+sin ¢ sin 6

n, —sin 6 cos ¥
n, +sin 0 sin ¢
ng +cos 6

In this case the conversion corresponds to a rotation ¢ about the z-axis, # about
the new position of the y-axis, and ¢ about the new (and final) position of the
z-axis. The transformation is equivalent to a single rotation about some line not
in general coincident with one of the axes; but such single rotations are not
frequently encountered in astronomical practice.
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Example 9.2. Test for occurrence of eclipse

g = ratio of daily motions (1961 February 15-16) of Moon and Sun in longitude
= 54143"/3636"-8 = 14-9
I(A.E. 1961, p. 51) = 5°1 tan I = 0-08¢g q/(g — 1) = 1:072
tan I’ = 0-095 secI’ = 1-0045

By interpolation in A.E. 1961 to 1961 February 159 o8" 11™:

e 61 05:7 sin s¢ = 0-2722 74 sin

s¢ 16 38-0 s¢ = 0"-08 +0-2722 39 7,

o 8'9

S 16 11:4 so = 16" 12”.97 (A.E., p. 21) — 1”55 (irradiation)

Thus sec I’ (m¢ — 7o + ¢ + Sg) = 1:0045 X 1°33" 46" = 1° 34" 11"

B¢ is ©° 54’ so that an eclipse is certain.

Besselian elements

The calculation of eclipses is carried out in accordance with Bessel’s method.
In solar eclipses the Besselian elements describe the geometric position of the
shadow of the Moon relative to the Earth. The exterior tangents to the surfaces
of the Sun and the Moon form the umbral cone, the interior tangents the penumbral
cone. The common axis of the two cones is the axis of the shadow. The
geocentric plane perpendicular to the axis of the shadow is called the fundamental
plane, and is taken as the xy-plane of a system of geocentric rectangular coordin-
ates. The x-axis is the intersection of the fundamental plane with the plane of
the equator and is directed positively towards the east; the y-axis is directed
positively towards the north. The 2-axis is parallel to the axis of the shadow and
is positive towards the Moon. See figure 9.2, which shows the projection of the
observer and the shadow on the fundamental plane.

Let a and d designate the right ascension and declination of the point Z on the
celestial sphere towards which the axis of the shadow is directed, and G the distance
between the centres of the Sun and Moon; then:

G cos d cos a = R cos 8, cos a;, — 7 COS 8¢ COS a
G cos dsin @ = R cos 8, sin ag — ¢ COs 8¢ sin a,
Gsind = Rsin 8, — 7 sin &,
In practice, it is convenient to set:
g =GR b = r(/R = sin my/sin =
which yields:
gcosdcosa = cos &, cos a; — b cos & cos a
g cos dsin a = cos 8, sin a; — b cos 8¢ sin a
gsin d = sin 8, — bsin &,
In numerical calculations b is evaluated from:
b = sin my/R sin 7

de
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WHY DRAW THE BOTTOM OF THE BALL
IF THAT IS NOT BEING USED

Figure 9.2. Projection of the observer and shadow on
the fundamental plane
P Projection of observer (¢, )
M Projection of axis of shadow (x, y)

fundamental plane, in units of the equatorial radius of the Earth, from:
x =7 {cosdsin(a; — a)}

=7¢{sin 8, cos d — cos &, sin d cos (a; — a) }

= r¢{sin 8, sin d + cos d¢ cos d cos (a; — a) }

e

in which:
r¢ = I/sin m

The coordinates x, y are also those of the intersection of the axis of shadow
with the fundamental plane.

In the tabulation of Besselian elements of eclipses, the right ascension a of

the point Z is conventionally replaced for practical use by the ephemeris hour
angle p of that point, given by:

p = ephemeris sidereal time — a

The angles f,, f, which the generators of the penumbral (subscript 1) and
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g "

bcosd  cosa, +0-0020 2166

g cos d cos a +0-8310 2162

tan a —0-6092 4464

a 328° 38" 54”10

a; — a —o° 25" 09”81
cos d, X

bcosst sina\: —o-;oxz 5237
g cos d sin a —0-50062 9547
g 0:9951 4625
£ ©-9975 7017

b sin 8: —0:0003 oo7§
gsind —o0-2195 7735
sin d —o0:2201 1219
cos d +0:9754 7456

sin (a; — a) —0-0073 1970 cos (a; — a) +0-9999 7321

sin (&, — @) —o-0071 6260 sin 8, cos d —o-2010 1657  sin d; sin d +0-0453 5864
—cos & sind x +cosd, cosd x
cos (a; — a) +o-2153 8218 cos (a; — a) +0-9545 1252
sum +0-0143 6561 sum +0-9998 7116
X —0:4030 40 y +0-8083 54 2z +56.2628 4
gR  0-9854 8o1 sinf; 0-0047 3273 5 sin f; 0-0047 0916 1
k0272274 k cosec f; 57:5299 5 k cosec f, 57-8179 4
x  56-2628 4 ¢, 1137927 9 €3 —1:5551 0
tan f; 0-0047 3278 8 tan f, 0-0047 0921 3
5, 0538557 Iy —0-0073 23
h m 8

‘“ Apparent sidereal time ” (4.E., p. 11) 17 40 21:093

= Ephemeris sidereal time at 8" E.'T. 26_; osl 16:40

a 328 38 54:10
Ephemeris hour angle, u 296 26 22-3
From a similar calculation for February 159 og"
p o= 311° 26" 29”2 sind = —0-2198 7475
hourly change = 15° 0o’ 06”-9 hourly change = +o0-0002 3744
' = 0-2618 328 d’ = +0.0002 4341
Coordinates of the observer

For an observer located on the surface of the Earth in ephemeris longitude A*,
geocentric latitude ¢’, at a distance p from the centre of the terrestrial spheroid,
his geocentric rectangular coordinates £, 7, {, referred to the x, y, = system of axes
in units of the Earth’s equatorial radius, are found in terms of the Besselian elements

—— & = pcos ¢ sin @

n = psin ¢’ cosd — p cos ¢ sin d cos f
{ = psin ¢’ sin d + p cos ¢’ cos d cos 0
0 =p— X%
Their hourly variations are found from:
¢ = +p' pcosd’ cos b
"= +pu' pcos ¢’ sin dsin @ — d' (psin ¢’ sin d + p cos ¢’ cos d cos 6)

n
{'! = —p pcos¢’cosdsind + d' (psin¢’ cosd — p cos ¢’ sin d cos 0)
tLongitude is here measured positively to the west.

in whicl;r:
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<

because it is a function of the latitude of the point. The problem of determining {
could be solved by successive approximations, but the procedure outlined below
was devised by Bessel to provide a direct computation.

If ¢ is the geodetic latitude of a point on the Earth’s surface and ¢’ its geo-
centric latitude, then:

psin ¢’ = (1 — ) sing (1 — esin®? ¢)* = Ssin ¢

pcos¢’ = cos¢ (1 — e sin? ¢)* = Ccos ¢
in which e is the ellipticity of the Earth’s spheroid. For Hayford’s spheroid,
e* is equal to 0-0067 2267. S and C are tabulated in table 2.8.

Let ¢, be the parametric latitude, such that:
sing, = psin ¢’ (1 — e2)* cos ¢; = pcos ¢’
and set:

pysin dy = sin d pz sin dy = sin d (1 — €}
prcosd, = cosd (1 — &)} pacosd, = cosd
m = n/py Title =1-88-n

By means of these new quantities, the equations for £, 7, { above may be trans-
formed into:

Il

sin? ¢, + cos? P, =1

¢ = cos ¢, sin 0

n, = sin ¢, cos d; — cos ¢, sin d, cos 8

{;, = sin ¢, sin d; + cos ¢, cos d, cos 0
and it may be noted that:

{ = pysin ¢, sin d; + p, cos ¢, cos d, cos O

{ = py{{ycos(dy — dy) — mysin(dy — dy)}
According to the above relations, it is seen that the quantities required for the
introduction of the flattening of the Earth into eclipse calculations are p,, ps, sin d,,
cos d,, sin (d; — d,), and cos (d; — d,). With these quantities, £, 7, {;, may be
calculated from given values of £, 7 to enable ¢, (and thus ¢) and 6 to be deduced;
and { can be calculated directly from values of 7,, {; and indirectly from £, 7.
They may be obtained from the following formulae:
pr = (1 — e cos? d)t
p1sind, = sind prcosd, = (1 — e?)icosd
prpesin (dy — dy) = e*sindcosd  py pycos(dy — dy) = (1 — €}

*¢? = 0.0066 0454 for 1068 onwards; corresponding values of S and C are tabulated in
A.E. Table VII.

or

pa = (1 — e*sin*d)}



WTF DID I JUST READ?

Here's the TL;DR: Using planar angle measurements of the sky, a 2D lat/long coordinate system can be made to fit a 3d spherical coordinate system using the provided transformations.
Long version:

1. Coordinate Systems: The fundamental reference systems in astronomy are based on the celestial equator and the ecliptic. Angular coordinates are measured from the ascending node
of the ecliptic on the equator, known as the vernal equinox or the first point of Aries.

2. Rectangular Coordinate Systems: Coordinate systems can be specified using either spherical coordinates (direction and distance) or rectangular coordinates (projections on three
axes). The axes of the rectangular coordinate systems are right-handed, with the x-axis directed towards the equinox, the y-axis to a point 90° east, and the z-axis positive to the north.

3. Origin of Coordinates: Coordinates can be based on different reference points: observer-topocentric, center of the Earth-geocentric, center of the Sun-heliocentric, or center of mass
of the solar system-barycentric.

4. Reference Planes and Directions: Spherical coordinates are determined by reference planes and directions, such as the horizon and local meridian (azimuth and altitude), the equator
and local meridian (hour angle and declination), the equator and equinox (right ascension and declination), the ecliptic and equinox (ecliptic or celestial longitude and latitude), and the
plane of an orbit and its node (orbital longitude and latitude).

5. Reduction to Topocentric Coordinates: The conversion from geocentric to topocentric coordinates depends on the figure of the Earth and involves small differential corrections.
6. Position Types: Positions in astronomy can be geometric (actual position at the time of observation), apparent (corrected for aberration and refraction), or astrometric (directly
comparable with catalog positions of stars).

7. Coordinate Conversions: The passage provides formulas for converting between different coordinate systems, such as azimuth/altitude, hour angle/declination, right

ascension/declination, and longitude/latitude.

The geocentric rectangular coordinates (x, y, z) can be converted to heliocentric coordinates (xc, yc, zc) using the following equations:

xc=x *+ X
ye=y+Y
zc=z+Z

In these equations, (X, Y, Z) represents the geocentric coordinates of the Sun.

The heliocentric coordinate system is derived from the geocentric coordinate system, specifically using the geocentric coordinates of the Sun. The geocentric coordinates serve as a
reference point for determining the position of celestial objects relative to the Earth. From the geocentric coordinates, the heliocentric coordinates can be derived by adding the
respective geocentric coordinates of the Sun. This conversion allows for a different perspective where the positions of celestial objects are described relative to the Sun instead of
the Earth.



EQUATION & VARIABLES DEFINED

¢ represents the geographic or geodetic latitude, which is the angle measured from the equatorial plane to a point on the Earth's surface.

tan @' = (I - e*2) tan ¢ is an equation relating the geocentric latitude (¢') to the geographic latitude (¢) and the ellipticity (e) of the
Earth's meridian. It states that the tangent of the geocentric latitude is equal to the product of the tangent of the geographic latitude and
the factor (I - e*2), where | represents the spherical radius of the Earth.

¢_1 represents the parametric latitude, which is another way of expressing the relationship between the geographic and geocentric
latitudes.

tan ¢_1 = (I - f) tan ¢ is an equation relating the parametric latitude (¢_1) to the geographic latitude (¢p) and the flattening (f) of the
Earth. It states that the tangent of the parametric latitude is equal to the product of the tangent of the geographic latitude and the factor
(I - f), where | represents the spherical radius of the Earth.

e represents the ellipticity or eccentricity of the Earth's meridian. It is a measure of the departure of the Earth's shape from a perfect
sphere.

p represents the geocentric distance, which is the distance from the center of the Earth to a point on the Earth's surface, measured in units
of the Earth's equatorial radius.

S and C are auxiliary functions used in calculations. They are defined such that p sin ¢' = S sin ¢p and p cos ¢' = C sin ¢ = cos p sin ¢p' =
S sin @_1. These functions are related to the trigonometric values of the latitudes and the geocentric distance.



TRANSFORMING A
INTO A

()&=
This equation represents the x-coordinate in the spherical system, where is the parametric latitude and
is the longitude.

()n=
This equation represents the y-coordinate in the spherical system. It involves the parametric latitude (), the
latitude (- ), and the longitude ( ).

()1C0=
This equation represents the z-coordinate in the spherical system. It also involves the parametric latitude
(1), the latitude (</,), and the longitude ( ).

The parametric latitude () is derived from the geocentric latitude (') and is used to calculate the
coordinates in the spherical system.

Additionally, the relationship between ¢ and 7/, (|, and the derived quantities
is expressed by: ( = This equation provides an alternative way to
calculate ( using the derived quantities and 7/,

In summary, these equations allow for the transformation of geocentric rectangular coordinates ( ) to
spherical coordinates ( )



APPLYING THE TRANSFORMATIONS

The given equations facilitate the transformation from geocentric rectangular coordinates (¢, 17, () in the XYZ
system to spherical coordinates (  , , )in a 3D space, representing latitude and longitude.
To summarize the process:

1. Start with geocentric rectangular latitude and longitude coordinates (-, 7, ()
2. Calculate the parametric latitude () using the geocentric latitude ().

3. Apply the flattening correction to account for the Earth's spheroid shape:
* Compute derived quantities =, , and using the geocentric latitude ()
and Earth's ellipticity (=).
* Use these derived quantities and to calculate the coordinates (¢, 17, () in the spherical system, as
described in the equations mentioned previously.

4. The resulting spherical coordinates (¢, ©, () represent the latitude and longitude in the 3D spherical
coordinate system, considering the Earth’s alleged spheroidal shape.

The flattening correction adjusts for the Earth's flattened shape, ensuring that the

match up with the . It is incorporated into the calculation of the derived
quantities p, P, , , Which are then used to determine the spherical coordinates. By
considering the flattening correction, the transformation accurately maps the geocentric rectangular latitude
and longitude coordinate system to a 3D spherical latitude and longitude coordinate system.
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