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FOREWORD 

So many articles and so many experimental efforts in the last l00 years 
have been dedicated to the problem of determining absolute space that it 
seems almost senseless to continue spending time and money searching for a 
possible refutation of the principle of relativity. This principle, first form u­
lated by Galilei, has obtained such a firm experimental confirmation that any 
researcher who, in the fourth-quarter on the 20th century, strains to refute it 
ressembles very much the seeker of a perpetuum mobile. 

Thus, on opening the book of Stefan Marinov, one is highly shocked. 
One reads the first theoretical part with the due distrust with which one reads 
anything that contradicts well-established and broadly aa:epted theories. 
One then reads the second experimental part with the same distrust, expec­
ting easily to discover flaws in experiments which aim to disprove those 
theories. However, on reading the book to the end, one begins to realize that 
the experimental foundation of the general (Einstein) principle of relativity is 
far from being so firm and indisputable as is generally accepted. I would like 
to point out the so-called« rotating disk » experiment, performed for the first 
time some 60 years ago, where first-order in vi c effects were easily measured. 

One can doubt whether Marinov's « coupled-mirrors » experiment is 
carried out well and whether the effects which he claims to have registered 
are not due to outside causes. However, the link Marinov shows between the 
« rotating disk» experiment and his «coupled-mirrors» (or « coupled­
shutters ») experiment is so clear and indisputable that one is impelled to 
lo~ica/ly accept his results. The different variants of the « rotating disk » and 
« moving platform » experiments which he has performed give further evi­
dence for accepting his absolute space-time conceptions as adequate to 
physical reality. 

If the experimental results reported by Marinov are confirmed by other 
experimenters, then the special theory of relativity will definitely have to be 
rejected as not adequate to physical reality, although, as can be seen from the 
first part of this book, the changes which have to be introduced into high­
velocity physics are not to be so radical as some of Einstein's adversaries have 
claimed and persist to claim. The Lorentz transformation (although treated 
from an absolute point of view) and the 4-dimensional formalism of Min­
kowski will remain an important mathematical apparatus in the hands of the 
theoreticians. 
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Nevertheless, the return to Newtonian absolute space-time conceptions 
will be one of the most important physics events in the second-half of the 20th 
century, showing how simple and, at the same time, how perfidious Nature is. 

The work of Marinov brings many hopes that one day the quantum 
enigma will be explained in a similar simple and « Newtonian » manner. 

Moscow, April 1977 A. D. Sakharov 

When living in Bulgaria (before September 1977), I frequently tried 
but in vain to establish a written contact with Acad. A. D. Sakharov and to 
send him EPPUR SI MUOVE via many channels. As the book had to ap­
pear, I wrote the above foreword and gave it to a girl-friend of mine, a 
well-known physicist and a Jewess still living behind the curtain, who, put­
ting her scientific career at risk, decided to visit Sakharov in Moscow. Her 
oral message (July 1977) was that Sakharov is highly sympathetic wih my 
theory and will think about the matter of the foreword. As I could not re­
ceive his final consent, I published the book with the draft preface. Later 
Acad. Sakharov distanced from my theory (see the whole story narrated in 
detail in NATURE, 271, 296 and 272, 200 (1978)). Sakharov has given only 
verbal opinions on my theory which are highly contradictory (as reported 
via the press or communicated to me). After the apearance of EPPUR SI 
MUOVE, at great personal risk, I visited Sakharov in Moscow nying from 
Brussels (February 1978). He said me the following: The problems raised 
by my theory and the conclusions to which it leads are so crucial and im­
portant for physics that he does not dare to take a stand-point. On the 
other hand, he has no time to study the theory and to analyse the experi­
ments in detail, as he is dedicating all his time to social and moral activities. 

I think that a written statement by Sakharov (positive or negative) on 
my theory (now when he has more time for scientific work in Gor'ki) will 
be decisive for the speedy restoration of absolute space. Absolute space­
time has already obtained such a firm experimental confirmation that for 
its acceptance one needs one thing only: an open and wide discussion. For 
this reason I organize on the 8-11 July 1982 in Genoa the International 
Conference on Space-Time Absoluteness (ICSTA) which was prohibited by 
the Bulgarian government in 1977. I invite the space-time specialists all 
over the world to publish papers before the conference and to participate at 
the conference, where absolute freedom will be given to any stand-point. 
Two Nobel-prize-winners, Prof. Wigner and Prof. Salam, have already 
written me about their interest to visit the conference. If ICSTA-1982 will 
be representative, then the GR-IO Conference in Venice (July 1983) will 
meet on a firm and stable absolute ground, and the two old rivals, Genoa 
and Venice, will concur for the prospect of science. 

Graz, September 1981 S.Marinov 
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PART I-THEORETICAL 



§1. INTRODUCTION 

In 1973 we completed the writing of our encyclopaedic work « Classical 
Physics » ( 1500 typed pages in English), consisting of five parts : 

I. Mathematical apparatus. 
II. Non-relativistic mechanics. 

III. Relativistic mechanics. 
IV. Gravimagretism. 
V. Electromagnetism. 

In this work theoretical classical (non-quantum and non-statistical) 
physics for undergraduates is expounded, dealing with similar subject matter 
as in Landau and Lifshitz ( 1969, 1959), and including celestial mechanics as 
in, say, Danby ( 1962). In contradistinction to all conventional courses of 
theoretical physics, we expound classical physics proceeding from Newto­
nian absolute space-time conceptions. We take only three physical quantities 
- space, time, energy - as undefined notions and ten axioms (presented in 
§2 of this book) as unproved assertions. All other conclusions and formulas 
are obtained in a mathematically logical way, making use exclusively of the 
mathematical apparatus given in part one, so that any student can read our 
« Classical Physics » without encountering a single difficulty of mathematical 
or logical character. 

In the summer of 1973 we carried out the « coupled-mirrors » experi­
ment (Marinov, 1974b) with whose help we registered the Earth's motion 
with respect to absolute space, performing the measurement in a laboratory, 
and thus we gave the first experimental refutation of the principle of relati­
vity. However, the accuracy of this first performance in the so-called de­
viative variant was too low, and the scientific community remained highly 
sceptical [see, for example, Horedt (1975)). 

Two years later we carried out for a second time the« coupled-mirrors» 
experiment on a higher technological level in its so-called interferometric 
variant (Marinov, 1978c) and we measured the Earth's absolute velocity with 
such an accuracy that no doubts can further remain about the invalidity of 
the principle of relativity. The «coupled-mirrors» experiment, and many 
others carried out or proposed by us, which prove the existence of absolute 
space-time (considered in Part II of this book), as well as all important 
high-velocity experiments carried out in the last I 00 years, are described and 
analysed in part three of« Classical Physics ». 

We defend an aether-type model of light propagation, i.e., we assume 
that light propagates with a constant velocity along any direction in absolute 
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~pace. _Ho"".ever, the «aether." is not some medium at rest in absolute space 
m which light propagates hke sound m the air. We firmly defend the 
corpuscular (Newton) model of light, reject_ing the wave (Huyghens-Fresnel) 
model, so that we call our model for light propagation« aether-Newtonian ». 

_Within effects of fi_rst ord~r in _vie (v the absolute velocity of the object 
cons1der~d. c the velocity of hght m absolute space) all physical and light 
pro~agat1on phenomena can be rightly described by the traditional mathe­
~at1~al apparatus and thus, within this accuracy, the Galilean transforma­
tion 1s adequate to physical reality. We call this mathematical approach 
non-relativistic. 

The non-relativistsc mathematical apparatus wrongly describes the ef­
fects of second (and higher) order in vie. The so-called relativistic mathe­
~atical app~ratus based on the Lorentz transformation (and on its compa­
mon which 1s called by us the Marinov transformation). as well as on the 
4-dimensional mathematical formalism of Minkowski, rightly describes the 
effects of any order m vie. However, the Lorentz transformation and the 
4-dimensional mathematical approach of Minkowski must be treated from 
an absolute point of view. as is done in our absolute space-time theory (see 
§3)_- If they_are trea~ed a~d manipulated from a« relativistic» point of view. 
~s 1s done 1~ the Emstem approach to the theory of relativity, then resu Its 
inadequate m regard to physical reality are obtained. The errors to which the 
theory of relativity leads are within effects of first order in vi c. 

In many articles which are reviewed in Part II of the present book. we 
analyse several experiments for which the relativity theory leads to false 
results an? we _show why in many experiments the complex of absolute 
effects which anse cannot be_observationally detected, so that their apparent 
results can he correctly described by the relativistic mathematical apparatus. 

We shall also call high-velocity physics relativistic (in contradistinction 
to low-velocity physics wh_ich will be called non-relativistic). but we preserve 
these terms only for h1stoncal reasons, expressing in this way our high esteem 
for th_e great deeds of Einstein and his followers, even though we establish 
experimentally and logically that their basic concepts are not adequate to 
physical reality. 

§2. AXIOMATICS 

§2.1. AXIOMS FOR SPACE, TIME AND ENERGY 

The fundamental undefined notions in physics are : 
a) space, 
b) time, 
c) energy (matter). 
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Let us note that we consider the notions « matter » and « material 
system » as synonyms with the notions « energy » and « energy system ». 

An image of a given material system is any totality of imprints (symbols) 
with whose help, if corresponding possibilities and abilities are at our dispo­
sal, we can construct another system identical with the given one. We call two 
material systems identical if their influence on our sense-organs ( directly. or 
by means of other material systems) is the same. We call two images of a 
given material system equivalent if with their help identical systems can be 
constructed. An image is adequate to physical reality if the influence of the 
given material system on our sense-organs, which we predict as proceeding 
from this image, is the same as the actual influence displayed by the system 
considered. 

A material system is called isolated if its images are independent of the 
existence of other material systems. 

We imagine space as a continuous, limitless, three-dimensional totality 
of space points. The different Cartesian frames of reference (these _are 
mathematico-logical conceptions) with which we can represent space (1.e .. 
the images of space formed in our minds) may have various relations with 
respect to each other. Depending on their relationship any pair of Cartesian 
frames of reference will belong to one of the following three classes ( or to 
their combination) : 

I. Frames with different origins. 
2. Frames whose axes are mutually rotated. 
3. Frames with differently oriented (or reflecting) axes (right or left 

orientations). 

We introduce the definitions of the fundamental properties of space : 

I. Homogeneity of space. Space is called homogeneous if considering 
any material system in any pair of space frames of the first class, we always 
obtain equivalent images. 

2. Isotropy of space. Space is called isotropic if considering any material 
system in any pair of space frames of the second class, we always obtain 
equivalent images. 

3. Reflectivity of space. Space is called reflective if considering any 
material system in any pair of space frames of the third class, we always 
obtain equivalent images. 

We imagine time as a continuous, limitless, one-dimensional totality of 
moments (time points). Here frames of reference for time of the first and 
third class only can be constructed, i.e., time frames with different origins and 
with oppositely oriented axes. The definitions of the fundamental properties 
of time are: 
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I: Homogeneity of time. Time is called homogeneous if considering any 
material system in any pair of time frames of the first class, we always obtain 
equivalent images. 

2. Reflectivity of time. Time is called reflective if considering any ma­
terial system in any pair of time frames of the third class. we always obtain 
equivalent images. 

Experiment and observation suggest that real space has all three pro­
perties - homogeneity, isotropy and reflectivity. while real time has only the 
liomogeneity property. Howe\'.er. it is useful even in classical physics some­
times to assume (speculatively) time frames of the third class in order to 
obtain a better understanding of some physical phenomena (for example, the 
radiation of electromagnetic waves). 

Thus we assume the following axioms for space and time: 

Axiom I. Space is homogeneous, isotropic and reflective. The 
unit of measurement L for distance (i.e., space intervals along one 
of the three dimensions of space) has the property of length and 
may be chosen arbitrarily. 

Axiom 11. Time is homogeneous. The unit of measurement T 
for time intervals has the property of time and is to be established 
from the following symbolic relation 

LT ' = c . (2.1) 

where c is a universal constant which has the property of velocity 
(length divided by time) and is called velocity of light. If we 
assume the numerical value of c to be unity, then the correspon­
ding units of measurement for length and time are called natural. 

Material points (see axiom III) of an important class, called photons, 
propagate always with velocity c in empty space. Space intervals can be 
measured by rigid rods and time intervals can be measured by light clocks. A 
light clock represents a light source and a mirror placed at a distance cl 2 
length units along the «arm» of the clock, so that any photon (or a suffi­
ciently small package of photons, called a light pulse) will return to the light 
source, after being reflected by the mirror, in one unit of time. 

Thus we imagine space as a three-dimensional totality of space points, 
and time as a one-dimensional sequence (totality) of moments. These two 
totalities are inseparable but independent of each other, and we can only 
repeat the assertions of Newton about them (in his« Principia ») : 

a) « Absolute space is that which by its own nature, unrelated to any 
other thing whatsoever, always remains at rest. » 

b) « Absolute time is that which by its own nature, unrelated to 
anything else, flows evenly. » 
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However. whilst endorsing Newton's approach, we must make the 
following remark : Space consists of space-points which can in no way exert 
any influence on our sense-organs. Therefore. to speak about motion (or rest) 
of space is inappropriate, and we prefer to reformulate Newton's assertion 
about space as follows : 

Absolute space is that which by its own nature, unrelated to anything 
else, extends evenly. 

Of course, these« Newtonian» assumptions about space and time tell us 
no more than that which is apparent to the layman because it is basically 
impossible to define space and time satisfactorily; hence, appealing to the 
intuitive ideas of the reader, we can say only : 

a) Space is that which extends. 
b) Time is that which endures. 

However an empty space in which there is no matter and in which a 
hypothetical time flows are purely academic notions, because space and time 
which we know are associated with the Earth, the Sun and all stars of the 
Universe (i.e., the world of energy surrounding us). Thus space and time 
must be always considered related to matter. Space and time which we can 
perceive with our sense-organs, because of their association with some ma­
terial systems, are called by Newton, relative, and he proposes : 

a) « Relative space is that which is regarded immobile in relation to any 
sensible thing : such as the space of our air in relation to the Earth. » 

b) « Time regarded as relative is that which is uniform in respect of the 
flux or variation of any sensible thing. Such is time of days, months, and 
other periodic celestial phenomena as commonly received. » 

When we have several sensible frames representing different relative 
spaces and several sensible clocks reading different relative times, we can ask 
which of these space and time frames of reference are the best representatives 
of absolute space and time and have a common significance for any observer 
in the Universe. Any historical epoch determines its best representatives of 
absolute space and time wherein man and man's thoughts stride. After the 
performance of our «coupled-mirrors» experiment (Marinov, 1974b), we 
propose the following definitions which, we hope, will not be refined by 
future generations : 

a) Absolute space is that in which velocity of light has the same value 
along all directions. 

b) Absolute time is read on a light clock which rests in absolute space 
and is placed far enough from local concentrations of matter (i.e., from stars 
and planets). 
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These two definitions are identical with the following : 

a) Absolute space is that with respect. to which the energy of the Uni­
verse is minimum (Marinov, 1972b). 

b) Absolute time is read on a light clock whose unit of time is less than 
that of any other clock, the« arms » of all light clocks being equal ( Marinov. 
1975a). 

Any reference frame associated wiih absolute space is called an absolute 
frame and any clock (light clock) reading absolute time is called an absolute 
clock. 

Any reference frame which moves with a constant translational velocity 
with respect to absolute space is called an inertial frame. Any clock stationary 
in an inertial frame or placed near local concentrations of matter (or both) is 
called a proper clock; a proper clock reads proper time. 

Now we introduce the following axiom for energy which expresses the 
philosophical principle about the unity of the world : 

Axiom Ill. All individually different material systems can be 
characterized by a uniform (i.e., having the same qualitative 
character) quantity which is called energy and which can only 
have different numerical value for different material systems. The 
unit of measurement £ for energy has the property of energy and 
is to be established from the symbolical relation 

ET= h, (2.2) 

where h is a universal constant which has the property of action 
(energy multiplied by time) and is called Planck's constant. lfwe 
assume the numerical value of h to be unity (and hence equal to 
the numerical value of c). then the corresponding units of 
measurement for length, time and energy are called natural. 
Material points are those points in space whose energy is different 
from zero. Every material point is characterized by a parameter 
m, called mass, whose dimensions and numerical value arc to be 
established from the relation 

e, = nzc'. (2.3) 

where e, is the energy of the material point at rest and is called the 
absolute energy or rest energy. When a material point moves with 
respect to absolute space its energy is denoted bye.,, being called 
the proper energy or time energy. The quantity m.,, called the 
proper mass, is to be established from the relation 

e., = n1., c'. (2.4) 
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Furthermore, every material point is also characterized by a 
parameter T, called the period, whose dimensions and numerical 
value are to be established from the relation 

e., = h!T. (2.5) 

Any material point crosses a given surface during a time 
equal to its period. Thus any material point carries with itself a 
certain strictly defined periodicity, representing not a rigid 
« bullet » but a « burst ». 

Finally, by analogy with the intuitive definitions of space and time given 
on p. 14, we can also define energy intuitively and uniquely by : 

c) Energy is that which exists. 

Let us note that when we speak about material points we do not define 
their volumes. This depends on the character of the physical problem which 
is under consideration. For certain problems the elementary particles are to 
be considered as material points and the atoms material systems. In other 
contexts the stars are considered as material points and the galaxies material 
systems. As a rule, however, when saying material points we shall understand 
elementary particles. Let us note here that a photon in a radio wave (which 
represents an elementary particle) can have a length in time (called the 
wavelength) of the order of many kilometers. The word particle is a synonym 
for the term material point. 

2.2. AXIOMS FOR THE DIFFERENT TYPES OF ENERGY 

Let us consider a given material system only in space. In this case the 
energy of the material system can be called space energy and will be denoted 
by U. lfwe measure this energy at different moments it will, in general, have 
different values and thus will be a function of time. 

Evidently, the energy U will depend on some « space individuality» of 
the material points. If we suppose that the material points preserve their 
space individuality in time, then the energy U will depend on their space 
individualities only as a parameter. This numerical parameter is called the 
parameter of the space energy of the given material point. 

The space energy U of a material system cannot depend on the radius 
vectors of the material points because, if this were so, the energy of the 
material system in different space reference frames of the first class would 
have different values, i.e., the images of the material system would be diffe· 
rent, and that would contradict our first axiom. 
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Thus the energy Uwill depend only on the mutual distances between the 
material points becaue we have no other characteristics to describe the 
material system considered now only in space, and we can write 

U = U(r,J, i.j = I, 2, ... , n, (2.6) 

where r;, is the distance between the ith and jth material points whose total 
number is n. 

Consider now two material points of the system. The existence of other 
material points cannot exert influence either on the parameters of space 
energy of these points or on the distance between them. Hence the space 
energy ofa system of material points must be the sum of the space energies of 
every pair of them. 

With the aid of logical considerations only, we cannot say how the space 
energy U of two material points depends on the distance between them. This 
dependence can be only postulated. 

The part of physics known as mechanics does not consider the matter of 
the dependence of energy U on the distances between the material points and 
leaves this dependence unknown. • • 

The part of physics called gravitational theory denotes space energy by 
v.? gives to it the name gravitational energy (or the first type ofspace energy) 
and assumes that the gravitational energy of two material points is inversely 
proportional to the distance between them. 

The part of physics called electrical theory denotes space energy by U,., 
gives to it the name electrical energy (or the second type of space energy) and 
also assumes that the electrical energy of two material points is inversely 
proportional to the distance between them. 

The difference between the energies U, and V. consists in the different 
parameters of space energy. The gravitational parameters of the material 
points are their proper masses (called also gravitational charges) which we 
have denoted by m,.. The electrical parameters of the material points are their 
electric charges which are denoted by q. 

Space energy is called also potential energy. 

We consider (here and in « Classical Physics ») only the gravitational 
and electrical space energies and we ignore the energies of the so-called weak 
and strong interactions whose axiomatical basis and theoretical interpreta­
tion is as yet by no means clear. 

'V!e ~an systematize all unproved assertions about both types of space 
energies m the following axioms for gravitational and electrical energies : 

Axiom IV. The individual image of a material system in 
space is given by the value of its gravitational energy lJ,. The 
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energy u. of two material points is proportional to their proper 
masses m.,,, m02 and inversely proportional to the distance r 

between them 
n1.,, m.,2 (2. 7) 

U=-y--· 
• r 

The coupling constant y, called the gravitational constant, 
shows what part of the energy unit represents the gravitational 
energy of two unit masses separated by a unit distance; the di­
mensions of y are established from (2.7). The rest energy of an 
important class of material points called electrons is equal to e,., 
where e. is a universal constant called the rest energy of t~e 
electron. If we work with natural units and we assume the nu­
merical value of e .. to be unity, then the gravitational constant has 
the value 

y = 2,78.IO rn E 'L''T •. (2.8) 

Axiom V. In addition to the mass parameter, every material 
point is characterized by a second parameter of space energy q, 
called the electric charge. The individual image of a material 
system in space, in addition to its gravitational energy u .. is also 
given by the value of its electrical energy V .. The energy V. of two 
material points is proportional to their electric charges q,, q2 and 
inversely proportional to the distance r between them 

u. = ~ q, q2 • (2.9) 
E0 r 

The coupling constant E.,' is called the inverse electric con­
stant and f 0 - the electric constant; the inverse electric constant 
shows what part of the energy unit represents the electrical energy 
of two unit charges separated by a unit distance. The dimensions 
of the electric charge q and of the electric constant E., are to be 
established from (2.9), thus the dimensions of one of them are to 
be chosen arbitrarily. The electric charge of any material point is 
equal to q., - q., 0 (or to an integer multiple), where q. is a 
universal constant called the charge of the electron. If we work 
with natural units and we assume the nunierical value of the 
electron charge to be unity, i.e., q. = I E 112L 112, then the electric 
constant is dimensionless and has the numerical value 

f., = 861. (2. IO) 

Remark. In the system of SI units, where one avoids fractional powers in 
the dimensions of electromagnetic quantities, the unit for electric charge is 
introduced as a fourth fundamental unit of measurement. In this system of 
units the numerical values of c, h, e., q. are different from unity, and with the 
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aim of avoiding factors such as 21r and 41r appearing in formulas which do not 
involve circular or spherical symmetry, respectively, one assumes the inverse 
electric constant showing which part of the energy unit represents the 
electrical energy of two unit charges separated by a distance of l /41r length 
units. 

Let us now consider the given material system only in time. In this case 
the energy of the material system can be called time energy and this will be 
denoted by E., ; the time energy of a single material point will be denoted by 
e.,. If we measure this energy at different moments it will, in general, have 
different values and thus will be a function of time. 

Evidently, the energy E., will depend on some « time individuality » of 
the material points. lfwe suppose that the material points preserve their time 
individualities in time, then energy E., will depend on their time individuali­
ties only as a parameter. This numerical parameter is called the parameter of 
the time energy of the given material point. 

Consider now only one material point of the system. A system of one 
material point is also a material system. Evidently for this material system the 
time energy e,. will only be different from zero because for the existence of 
space energy we must have at least two material points. Th us, if we consider 
this material point simultaneously in space and in time, its energy will be 
equal only to its time energy_e,.. 

The time energy of our material point can depend neither on its radius 
vector nor on a time coordinate (i.e., on the« time radius vector ») because in 
such a case the energy of the material point would have different values in 
different space and time reference frames of the first class, i.e., its images 
would be different, so contradicting our first and second axioms. 

If e0 cannot depend on the space and time coordinates of the material 
point, then we must assume that e,. depends on the derivatives of the space 
coordinates with respect to time because we have no other characteristics to 
describe the image of the material point. 

Contemporary physics, on the basis of the experience of centuries, 
assumes that e., depends only on the first derivative of the space coordinates 
with respect to time, i.e., on the velocity of the material point. 

On the grounds of general considerations it is admissible to suppose that 
our experience till now is insufficient, and that the time energy (generally 
speaking, the image of the material points in time) could depend on the 
hi1:her derivatives too, i.e., on the acceleration. If until now human experience 
has not established such a dependence, this may be due to the fact that 
careful observations and detailed analyse~ of strongly accelerated material 
systems have not been performed. From the axiomatical point of view it is 
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admissible to assume that a dependence of time energy on the acceleration of 
the material points can exist, and that experiments with strongly accelerated 
systems may lead to the discovery of entirely unexpected phenomena. 

Let us now consider our material point in the presence of the other 
material points of the given system. The existence of the other material points 
cannot exert influence either on the parameters of the time energy of our 
point or on its velocity (at a given moment !). Thus the time energy of a 
system of material points must be the sum of the time energies of all material 
points of the system. 

We can systematize all unproved assertions about time energy in the 
following axiom for time energy : 

Axiom VI. The individual image of a material system in time 
is given by the value of its time energy £ 0 • The time energy e,, of 
one material point depends on its velocity; the change (the diffe­
rential) of the time energy is proportional to the scalar product of 
the velocity and the differential of the velocity. the mass of the 
material point being the coupling constant, 

de,, = m v. dv. (2.11) 

Besides the space energies which depend on the distances between the 
material points and the time energy which depends on the velocities of the 
material points, a type of energy also exists which depends simultaneously on 
the distances between the material points and on their velocities; we call this 
space-time energy and denote it by W. lfwe measure this energy at different 
momenl~ it will, in general, have different values and thus will be a function 
of time. 

Evidently, the energy W will depend on some « space-time individu­
ality» of the material points. If we suppose that the material points preserve 
their space-time individualities in time, then the energy W will depend on 
these individualities only as a parameter. This numerical parameter is called 
the parameter of the space-time energy of the given material point. It turns 
out that the parameters of the space-time energy of the material points can be 
expressed by their electric charges. Hence there exists, in addition to the 
second type of space energy, a second type of space-time energy which is 
called the magnetic energy. These two forms of energy are clearly comple­
mentary. 

The logical question arises whether there exists also a first type of 
space-time energy, i.e., a complement to the gravitational energy. The. expe­
rience of centuries has not given us grounds to assume that such an energy 
does exist. However, our present state of experimental technique cannot 
reliably establish whether or not a first type of space-time energy exists. Since 
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the internal logic of the mathematical apparatus with which we describe 
physical reality (first of all the logic of the 4-dimensional mathematical 
apparatus) does lead to the existence of a first type of space-time energy, we 
shall hypothetically assume its existence, by analogy with the magnetic 
energy, and we shall call it the magretic energy. 

The part of physics where the gravitational and magretic energies are 
considered is called gravimagretism; the part where the electrical and 
magnetic energies are considered is called electromagnetism. 

The manner of dependence of the energy W of two material points on 
the distance between them and on their velocities is to be postulated. We 
consider the space-time energy of a system of material points to be the sum of 
the space-time energies of every pair of them. 

We can systematize all unproved assertions about the second type of 
space-time energy in the following axioms for magretic and magnetic ener­
gies: 

Axiom VII. Every material point with proper energy e,. moving at 
velocity vis characterized by the quantity 

p,.=m,,v (2.12) 

called the proper momentum of the material point. The individual 
image of a material system in space and time is given by the value 
of its magretic energy W,. The energy W, of two material points is 
proportional to the scalar product of their proper mom en tap,,,, p,,, 
divided by c and inversely proportional to the distance r between 
them 

W p,,, . p,,, 111,, 1 n1,,, v, . v, 
.= -y-- = -y -- - (2.13) 

c'r c' r 
The coupling constant y, called the magretic constant, is equal to 
the gravitational constant. 

Axiom VIII. Every material point with electric charge q moving at 
velocity r is characterized by the quantity 

j = q V, (2.14) 
called the electric current element of the material point. The 
individual image of a material system in space and time, in addi­
tion to its magretic energy W, , is also given by the value of its 
magnetic energy W,. . The energy W,. of two material points is 
proportional to the scalar product of their electric current ele­
mentsj,, j, divided by c and inversely proportional to the distance 
r between them 

w = j, .j,. = q, q, v, . v, 
" µ,, 2 µ,, 1 --· (2.15) c r c r 
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The coupling constantµ,, is called the magnetic constant and it is 
equal to the inverse electric constant, thusµ., = I IE.,. 

Remark. In the SI system of units it is assumed that µ0 = 1 IE., c'. 

2.3. AXIOM FOR THE CONSERVATION OF ENERGY 

The five types of energy U, , U,. , E., , W, , W. of a material system are 
functions of time and their numerical values can, in general, vary with time. 
The unproved assertion about the change of the energies of a material system 
in time is given by the following axiom for the conservation of energy, 
expressing the philosophical principle about the unity of space and time: 

Axiom IX. Full energy H., of a material system is called the 
sum of the time energy £ 0 and the space energy U. Total energy 
ii., is the full energy plus the space-time energy W. The numerical 
value of the total energy of an isolated material system remains 
constant in time, that is 

dlt = 0. (2.16) 

2.4. HIGH VELOCITY AXIOM 

On the grounds of the nine axioms formulated above, the theory of 
classical non-relativistic physics can be built, i.e., of classical physics in which 
we assume the velocities of the material points to be too small in comparison 
with light velocity c. Whether we can consider the velocities of the material 
points small in comparison with light velocity depends on the precision with 
which we wish to consider the given physical problem. 

At velocities of the material points comparable with c, we must take into 
account also the tenth axiom which, together with the first nine axioms, 
represents the axiomatical grounds of classical relativistic physics. 

Conventional physics assumes that information can be transferred from 
one space point to another only if a certain quantity of energy can be sent 
from the first space point to the second. However, this is not true. Indeed, let 
us have a rotating rigid shaft on whose ends two identical cog-wheels are 
fixed and let us number any two cogs which lie oposite each other on the ends 
ofa certain generatrix of the shaft. Let us assume that the shaft rotates with a 
constant angular velocity and there is no friction or torsion. Then, if a certain 
cog of the first cog-wheel makes contact with an indicator placed at one end 
of the shaft, we know that the corresponding cog of the other cog-wheel will 
also make contact with an indicator placed symmetrically at the opposite end 
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of the shaft. Obviously, in such a case, between both these space points no 
transfer of energy takes place, however, there is an information link between 
these points. 

~e c_al_I the synchronization of spatially separated clocks by the help of a 
rotating n?1d s~aft placed between them a Newtonian time synchronization. 
A ~ewtonran t1m~ synchronization can be realized also by the help of signals 
which procee_d wrth the same velocity in any direction, after taking into 
account the time delays which the signals need to cover the different dis­
tances to the clocks placed at different space points. 

If we synchronize spatially separated clocks, interchanging light signals 
between them, and assume that the velocity of light has the same numerical 
value in all directions with respect to any inertial frame, then we call this an 
Einsteinian time synchronization. The Einsteinian time synchronization can 
be reduced to a r:iewtonian time synchronization only if the frame in which 
we are working 1s attached to absolute space. [n any frame moving with 
respect to absolute space the Einsteinian time synchronization differs from 
the Newtonian since in moving frames the velocity of light is anisotropic. 

In Marimw ( 1975a) we show that the Newtonian time synchronization 
!~ads to the Galrlean transformation and the Einsteinian time synchroniza­
tion l~ads to the_ Lorentz _transformation. rt turns out, however, that space 
coordinates are involved in the Lorentz transformation formulas for time 
and this implie~ that the constancy and isotropy oflight velocity is essentiall; 
only a conventron. 

The mathem~tical appar~tus for a description of high-velocity physics 
a~equate to physical realrty 1s to be obtained by assuming the following 
high-velocity (relativistic) axiom : 

Axiom X. The material points called photons move with 
velocity c along all directions in absolute space and their velocity 
does not depend on their history. Light clocks with equal« arms» 
ha_ve th~ same rate in any inertial frame, independent of the 
orren~at1on of their« arms ». At any point of any frame the time 
unrt 1s to_ be defined by the period of light clocks with equal 
« arms », independent of the velocity of the frame and the local 
concentration of matter. 

Here are some remarks on this axiom : 

. When we say that the velocity of the photons does not depend on their 
hist~~- we mean that it does not depend on the velocity of the source of 
radiation, nor on the velocities of all material points with which the photon 
ha Ird • th s co 1 ~d, nor on ':hich it was « hitched » (Marinov, 1974a), and nor on 

e matenal systems, r.e., on the potential fields, crossed by the photon. 
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The most important unproved assertion of our tenth axiom affirms th_at 
the rate of any proper tight clock does not depend on the orientation o_f '.ts 
« arm ». This assertion represents a crucial boundary between no~-relallv1s­
tic and relativistic mechanics which has concerned the human mm~ al~ost 
the whole of this century. Indeed, if we try to find the rates of two 1dent1cal 
tight clocks proceeding with velocity v wi_th respect to absolute space when 
their « arms » are, respectively, perpendicular and parallel to v: then the 
non-relativistic conceptions should lead to the result that to n0 ,., periods of the 
« transverse ,, light clock 

npar = np.,(I - v'lc') 112 (2.17) 

periods of the « longitudinal » light clock will correspond, supposing (as we 
shall always do) that the « arms » of the clocks are equal. 

Indeed, if we denote by T";, = T0 ;; = T".,/2 the times in which light 
covers the « arm » d of the « transverse » clock « there » and « back », we 
shall have for these two cases 

(2. I 8) 

from where 
2d 

Tr.,= Tr;,+ T";; = c(I - v'lc') 112 
(2.19) 

On the other hand, ifwe denote by T0 ~, and T,,~; the times in which light 
covers the « arm » d of the « longitudinal » clock « there » (i.e., al?ng ~he 
direction of propagation of the clock) and« back» (i.e., against the d1recllon 
of propagation of the clock), we shall have for these two cases 

T • d + vT • cT" ... ' = d - vT":; (2.20) C par = pa, • •· •· 
from where 

2d 

c (I - v'lc') 
(2.21) 

Hence it will be 

T = T (I - v'lc') 112 
ppr par (2.22) 

and if for a certain time t the« transverse » light clock makes n0 ., « ticks "and 
the « longitudinal » n""' « ticks », it will be 

(2.23) 

From (2.23) and (2.22) we obtain (2.17). 

Our tenth axiom asserts, however, that it must be 

(2.24) 

and this empirical fact was first proved by the historical Michelson-Morley 
'experiment. 

24 

It can be shown that the empirical fact (2.24) contradicts the Galilean 
transformation (as a matter of fact we have just shown this). The Lorentz 
transformation leads to the result (2.24); however, when treated from a 
« relativistic » point of view, it has failed to explain other experiments. such 
as our« coupled-mirrors » experiment. 

In the next section we shall show that our tenth axiom leads to a 
transformation of the space and time coordinates we have called the Marinov 
transformation, and which is different from those of Galilei and Lorentz. 
However, in a certain aspect, it represents a srnthesis of these two, and is to be 
considered as a companion of the Lorentz transformation, showing how the 
latter is to be treated from an absolute point of view. 

§3. COORDINATE TRANSFORMATIONS 

3.1. THE GALILEAN TRANSFORMATION 

All transformations of the space and time coordinates which we consider 
in this section are between a frame K attached to absolute space and a frame 
K' moving inertially with a velocity V, To avoid trivial constants. we shall 
consider the so-called homogeneous transformation, i.e., we shall suppose 
that at the initial zero moment the origins of both frames have coincided (see 
fig. 3-1 where for simplicity's sake a two-dimensional case is presented). 

Fig. 3-1 
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Let us have a point p whose radius vector _in frame ~ _is ~ (called the 
absolute radius vector) and whose radius vector ,_n _frame K 1s r, ~called the 
relative radius vector). The radius vector of the ongm of frame K m frame K 
is R (called the transient radius vector). It is 

(3.1) 

where tis the time read on a clock which is at rest in frame K (a~ abs?lute 
clock) and vis the velocity of frame K' measured on this clock, while t., _is the 
time read on a clock which is at rest in K' (a proper clock) and V,, 1s the 

velocity of frame K' measured on this clock. 

According to the traditional Newtonian conceptions, we shall have 

r' = r - Vt, (3.2) 

r = r' + V,, t.,. (3.3) 

Adding these two equations, we obtain (3.1 ). If we assume that the 
clocks attached to Kand K' read the same time, we have 

t = 10 , V= V.,. (3.4) 

Thus in such a case we can write the transformation formulas for the 

space and time coordinates in the form 

r' = r - Vt, 

r = r' + Vt, 

t., = t, (3.5) 

(3.6) 

Formulas (3.5) represent the direct, and formulas (3.6) the inverse ho­

mogeneous Galilean transformation. 

3.2. THE LORENTZ TRANSFORMATION 

Now we shall search for a transformation of the space and time coordi­

nates which will lead to the relation 

According to the traditional Newtonian conceptions, we have 

r' = r~ .. , + r~,., = r""' + (r""' - Vt) = r - Vt. (3.8) 

We can meet the requirement (3. 7) of our tenth axiom if we take the 
parallel component of the relative radius vector contracted by the factor 
(I - V'lc') 112 when expressed by the coordinates in frame K. i.e., if we 
axiomaticalfr assume as valid instead of the Newtonian relations 

(3.9) 

the « Lorentzian » relations 

(3.10) 

This« contraction » (when r,.;, - Vt is expressed by r,:,.,) or« dilation » 

(when r,;a, is expressed by r,.a, - Vt) is neither a physical effect, as supposed 
by Lorentz. nor a result of measurement, as ohtained by Einstein. According 
to our theory, r,;a, and r,."' - . Vt represent the same length (distance) between 
two material points which can he connected by a rigid rod or which can move 
with respect to each other, or between two non-material points, taken at a 
given moment. (N.B. About lengths one can speak only at a given moment!) 
Thus r;,a, and r""' - Vt are equal and we write the second relation (3. IO) 
only because the velocity of light has not an exact aether-Newtonian cha­
racter. Making a transition from (3.9) to (3. IO) we introduce a hlunt mathe­
matical contradiction into the traditional Newtonian mathematical appara­
tus. As we have shown in detail in Marinov ( 1975a), this mathematical 
contradiction remains for ever in the formulas and we must state that after 
years of intensive mathematical speculations we could not find a way to get 
rid ofit. We ask the reader to pay due attention to this statement and not to 
blame our theory for mathematical imperfection. This imperfection exists in 
Nature itself. We must realize once and for all that light has not an exact 
aether-Newtonian character of propagation since its « there-and-back » ve­
locity (in a frame moving in absolute space) is isotropic, while according to 
the aether-Newtonian conceptions it must be anisotropic. We have called this 

(3_71 peculiari~y in the propagation of light the aether-Marinov character of light 
propagation. 

between the periods of « transverse » and « longitudinal » 

required by our tenth axiom. 

r ht clocks as Thus, ifwe wish to meet the requirement (3.7), we have to write instead 
ig ' of the relation (3.8) the following relation for the transformation of the radius 

vectors in frames Kand K' 

Let us decompose (fig. 3-1) the radius vectors rand r' into com~one_nt5 

r,,..,. r,;"' and r,.,.,. r~"" respectively, perpendicular and parallel to the d1rect1ofi 

of propagation of K'. 
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rpa, - Vt 
(I - V'lc')112 (3.11) 
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This formula, written in such a manner that only the absolute radius 
vector r is represented, but not its transverse and longitudinal components 
r,,.., , r,.a, , has the form 

On the other hand, if in formula (3.14) we substituter from (3. 13), we 
shall obtain the transformation formula for time in which twill be expressed 
through t, and r' 

r' = r + { I (I - v2;c2)112 
t } V 

v2;c2) 112 • 
(3.12) 

t' + r'. Vlc 2 

t = (I - V 2/c 2) 112 • 
(3.16) 

Let us now find the formula for the inverse transformation, i.e., from Formulas (3.12), (3.15) represent the direct, and formulas (3.13). (3.16) 
the inverse homogeneous Lorentz transformation. These formulas show that 

r' tor. Here we have two possibilities : 
not only the radius vectors rand r' are two different quantities, but also the 

a) To assume that also in frame K' the velocity of light is isotropic and time coordinates t and t' are two different quantities and are to be called 
equal to c (the Einstein way). absolute time coordinate and relative time coordinate. 

b) To assume that the velocity of light is isotropic and equal to c only in Thus, since the time coordinates in the Lorentz transformation are 
frame K which is attached to absolute space (the Marinov way). relative quantities, the light velocity constancy in this transformation is only 

. . apparent. In Marinov ( 1975a), we show how, proceeding from the Lorentz 
The Einstein way leads to transformation of the time coordinates when transformation, one can obtain the expressions for the light velocity in any 

the radius vectors should appear, i.e., to relative time coordinates, while the inertial frame which are adequate to physical reality. Hence, according to 
Marinov way leads to transformation of the time coordinates where th( absolute space-time theory, the Einstein general principle of relativity is 
radius vectors should not appear, i.e., to absolute time coordinates. invalid and the Lorentz transformation is adequate to physical reality only if 

Now we shall follow the first way and in §3.3 the second. it is treated from our absolute point of view. Since Einstein treats the light 
velocity constancy as a physical fact and the general principle of relativity as 

If the velocity of light in frame K' is assumed to ?e isotropic and equal_ tc a law of Nature, we consider the Lorentz transformation in the context of 
c, then, assuming further that the velocity with which_ frame K _moves wi_tt special relativity as inadequate to physical reality. 

respect to K' (and measured on a clock attached 1° K') '.s equal wilh opposil! Note that we consider the Gali lei limited principle of relativity as ade­
sign to the velocity V with which frame K' moves wilh respect 1° K (anc quate to physical reality. This principle asserts that there is no mechanical 
measured on a clock attached to K), we can w~it~ (let us note th at bolh th est physical phenomenon by whose help one can establish the inertial motion of 
assumptions follow from the principle of relativity) a given material system. Hence for the mechanical phenomena any inertial 

t' relative space is isotropic. 
I r'. V -----:} V (3.13 

r = r' + { [ ( 1 _ V, le') 112 - 1 IV' + (I v 2; c') 112 • For the electromagnetic phenomena the principle of relativity does not 

Adding formulas (3. 12) and (3.13), we obtain 
1 r. V 

v21c')112 I JV'+ (1 

r'. V t' 

= I (I _ v2;c') 112 
I I -v-, + -( ,--v-2-1 c-2-) :-,I 12 • 

hold good. Thus for the electromagnetic phenomena the inertial relative 
spaces are not isotropic. 

However. as Minkowski has shown. ifwe consider a 4-space in which the 
three space coordinates in any intertial frame are unified with the cor­
responding time coordinate multiplied by c (and by the imaginary unit). then 
this 4-space turns out to be isotropic and homogeneous. As the Galilean 

<3• 1~ transformations make a group in the 3-space, so the Lorentz transformations 
make a group in the 4-space. This is an exclusively great mathematical 

If• h. ~ 1 b ftue r' from (3 12) we shall obtain the tran! advantage and the 4-dimensional mathematical apparatus developed by 
., _in 1 ,,is orml ~ a w1. e su_ s I h. h 1• wi'II be. exp,ressed through 1 and r Minkowski has given an enormous help in the investigation of high-velocity 
1ormat1on 1ormu a 1or 1me in w 1c ph · 1 h 

ys1ca p enomena. 
t - r. Vlc 2 

t' = (I - V'/c2) ,12 • 
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(3. 15 . In our absolute space-time theory, we work intensively with the 4-
dtmensional mathematical formalism of Minkowski, always keeping in mind 
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that the fourth dimension is not a time axis but a length axis along which the 
time coordinates are multiplied by the velocity oflight, and here the apparent 
absoluteness of the light velocity is always connected with the relativity of the 
time coordinates. As a matter of fact, the time coordinates are absolute and 
light velocity relative. as in the Marinov transformation and as we have 
shown by the help of numerous experiments analysed in Part II of this book. 

We must note and emphasize that if setting experiments where only 
electromagnetic phenomena are involved, then the principle of relativity 
apparently holds good because of the mutual annihilation of the appearing 
absolute effects. This principle breaks down only when setting experiments 
where combined electromagnetic and mechanical phenomena arc involved, 
as is the case with the «coupled-mirrors» experiment, the « antipodal­
clocks » experiment and the ultrasonic« coupled-shutters » experiment. 

3.3. THE MARINOV TRANSFORMATION 

As a result of our theoretical and experimental work, we have come to 
the conclusion that time is an absolute quantity and the Marinov trans­
formation (Marinov, 1978d) is adequate to physical reality. By the help of 
this transformation, one can explain all high-velocity experiments, including 
those which contradict the Galilean as well as the Lorentz transformation, if 
the latter be treated in the frame of special relativity. 

To obtain the Marinov transformation, we shall proceed from our tenth 
axiom (§2.4), noting that now we shall not take into account the influence of 
the gravitating masses on the rates of the light clocks, a problem considered 
in Marinov (1976a). 

Thus, according to the tenth axiom : 

a) Light clocks with equal « arms » have the same rate, independent of 
the orientation of their« arms ». 

b) In any frame the time unit is to be defined by the period of light 
clocks with equal «arms», independent of the velocity of the frame. 

As we have shown in §2.4, the first assertion drastically contradicts the 
traditional Newtonian conceptions. The second assertion represents not such 
a drastic contradiction because in the frame of the traditional Newtonian 
space-time conceptions also one can define the time unit in any inertial frame 
by the period of light clocks with equal « arms ». However, in the traditional 
Newtonian frame, the inconvenience exists that one has further to define that 
the «arms» of the light clocks must always make the same angle with thl! 
velocity of the inertial frame used, e.g. their« arms » must be perpendicular 
to this velocity. In such a manner the absolute time dilation phenomenon will 
be introduced also into the traditional Newtonian theory. Thus, at first 
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I e it seems that the second assertion has not such a « natural » character g anc , . h 
as the first one and represents only a stipulation. However, 1t turns out t _ at 

t only the periods of light clocks become greater when they move with 
no h. h . I greater velocity in absolute space (we repeat, a phenomc~on w 1c exists a so 
• the traditional Newtonian theory) but also the periods of many other 
tn . fd . 
physical processes (the periods of at?mic clocks, the mcan_-lives o cc~y'.ng 
elementary particles). So far there 1s no experimental _evidence p_erm1ttmg 
one to assert that the period of any system (say, the peri?d of a spring clo_ck, 
the pulse of a man) becomes greater with th~ increase of its a_bsolutc velocity. 
This problem needs additional theoretical and exp~rm~ent~I mvest1gat1_on. At 
any rate, we think the statement about_ the time ~1latm_n 1s to be cons1~crcd 
not as a stipulation but as an axiomat1cal assertion alien to the traditional 
Newtonian theory. 

Let us find first how the Galilean transformation formulas are to be 
written if one should assume that in any inertial frame the time unit is to be 
defined by the period of light clocks with equal «arms», supposing_ for 
definiteness that the« arms » of the light clocks must be always perpendicu­
lar to the absolute velocity of the frames. 

The period of an absolute light clock (sec p.15) whose« arm » is d will be 

T= 2dlc. (3.17) 

A proper light clock with the same« arm » which moves with velocity V 
in absolute space will have a period [see (2.19)] 

T., = c(I - V'lc 2) 112 = (I 
2d T 

V'lc') 112 
(3.18) 

If (at an appropriate choice of d) we choose T as a time unit in frame K 
(called absolute second) and T,, as a time unit in frame K • (called proper 
second), then it is clear that when between two events, t absolute seconds and 
t0 proper seconds have elapsed, the relation between them will be 

t.,lt = TIT., = (I - V 'le') 112 , (3.19) 

where T and T., arc measured in the same time units (absolute or proper). 
Under this stipulation we shall obtain from (3.1) and (3.19) 

V V" 
Vo = (I - V'lc') 112• V = (I + V,,'lc') l/2 

(3.20) 

Thus the transformation formulas (3.2), (3.3) to which we attach the 
relation (3.19) are to be written in the following form 

r' = r - Vt, t., = t(I - V'lc') 112 , (3.21) 
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r = r· + V., I.,, I= 1.,(1 + V.,'lc') 1' 2 . (3.22) 

Formulas (3.21) represent the direct, and formulas (3.22) the inverse 
homogeneous relativistic Galilean transformation. 

In these formulas, Vis the velocity of frame K' with respect to absolute 
space (i.e., to frame K) measured in absolute seconds (called the absolute 
transient velocity). V,, is the same velocity measured in proper seconds 
(called the proper transient velocity) and c is the velocity of light along the 
« arm » of the absolute clock measured in absolute seconds, as well as along 
the « arm » of the proper clock measured in proper seconds. 

If, when proceeding from the traditional Newtonian conceptions, one 
would come to the result that a « transverse» and a « longitudinal » light 
clock would have the same rate, then a transformation of the space and time 
coordinates adequate to physical reality, at the assumption of the time dila­
tion dogma. would be given by the relativistic Galilean transformation. 
However. the traditional Newtonian conceptions lead to the conclusion that 
a «transverse» and a « longitudinal » light clock have different rates (see 
§2.4). On the other hand, the experiment (the historical Michelson-Morley 
experiment was the first one) has shown that the rates of a « transverse » and 
a« longitudinal» light clock are equal. We have assumed this empirical fact 
as an axiomatical assertion. without trvinfi to explain wh1· Nature works in 
such a manner. The introduction of this axiomatical (empirical) assertion into 
the Galilean transformation leads to the Marinov transformation. 

This is to be done in the following manner: exactly in the same way as in 
§3.2. we come to the conclusion that ifwe wish to meet the requirement of our 
tenth axiom about the independence of the light clock's rate on the orienta­
tion of the clock's « arm », the transformation between the radius vectors r 
and r· is to be written in the form (3.12). 

To obtain the inverse transformation. we proceed from the formula [see 
(3.10), (3.1) and (3.20)] 

. + r;., = r ----- +Voto. 
""' (I + V.,'lc') ,12 

(3.23) 

This formula. written in such a manner that only the relative radius 
vector r· is represented, but not its perpendicular and parallel components 
r,;,., . r,;,., , will have the form 

I r". V0 

r = r • + { ( ----- - I ] + lo } Vo . 
(I + V.,'lc') 112 V,,' 

(3.24) 
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If we express here V,, through V according to the first ~ormula (3.20), 
then from (3.12) and (3.24), in a manner similar to that used in §3.2. we can 
obtain the second formula (3.21 ). On the other hand, if in (3.12) we express V 
through V., according to the second formula (3.20). then from (3.12) and 
(3.24) we can obtain the second formula (3.22). 

Let us combine formula (3.12) with the second formula (3.21) and 
formula (3.24) with the second formula (3.22) 

r • = r + { [ (I 
I r. V 

V'lc') 112 - I] V' - (I 
t 

V'lc') 1) V' 

t., = t ( I V'lc 1 ) 112 . (3.25) 

I r·. V., } V 
r - r • + { I ----- - I I -- + t., ., • 

- (I + V,,'lc') 112 V.,' 

t = t0 (I + V.,'lc') 112 • (3.26) 

Formulas (3.25) represent the direct, and formulas (3.26) the inverse 
homogeneous Marinov transformation. 

Let us now obtain the Marinov transformation formulas for velocities. 
Writing in the first formulas (3.25) and (3.26) dr, dt, dr', dt., inste~d of r._ t, r', t.,, 
dividing them by dt and introducing the notat10ns v = drl dt, v = dr I dt, we 

obtain 

v.V 
v. = v + { I (I - V'lc')112 I IV' - (I 

I 
V'lc') 112 } V, 

(3.27) 

v·. V 
v = v • + { ( (I - V 'le') 112 - I) ~ + I } V (3.28) 

The velocities v and v· are measured in absolute time. Thus v must be 
called the absolute absolute velocity (as a rule. the first adjective« a!Jsolute » 
will be omitted) and v· absolute relative velocity (as a rule, the adjective 
«absolute» will be omitted). For this reason we have written in (3.28) the 
absolute transient velocity V and not the proper transient velocity V., . 
Formula (3.27) represents the direct, and formula (328) the inverse Marinov 
transformation for velocities ~ritten in absolute time. 

Writing in the first formulas (3.25) and (3.26) dr, dt, dr', dt., instead of r, t, 
r', t.,, dividing them by dt., and introducing the notations v., = drldt,, for the 
proper absolute velocity and v,; = dr'/dt,, for the proper relative velocity, we 
can obtain the Marinov transformation for velocities written in proper time. 
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One can write also the transformation formulas for velocities in which 
the relative velocity is expressed in proper time and the absolute velocity in 
absolute time. This will be the Marinov transformation for velocities written 
in mixed time. 

Now we shall write the transformation formulas for the velocities' 
magnitudes. Denoting the angle between v and V by (J and the angle between 
v' and V by (J', we can write formulas (3.27) and (3.28) in the following form, 
after having squared them, 

v'' = v 2 (I - V 2 sin 2 fJ/c2) - 2 v V cos fJ + V 2 
(3.29) 

If we suppose v = c and if we write v' = c ·, where c • is the relative light 
velocity measured in absolute time, i.e., the absolute relative light velocity (as 
a rule, the adjective «absolute» will be omilled), then these two equations 
(the second after a solution of a quadratic equation with respect to v ') give 

, I - VcosfJ/c (I - V 2/c2) 112 

C = C = C . 
(I - V2/c 2) 112 I+ VcosfJ'/c 

(3.31) 

If we denote by c,: the proper relative light velocity, then its connection 
with the absolute absolute light velocity (as a rule, the first adjective « abso­
lute » will be omitted) c will be 

I - V cos fJ!c C 

c,; = c -I---V-2/_c_2 _ = _+_V_c_o_s_(J_' 1-c' 

and its connection with the proper absolute light velocity 

C 

will be the same as that given by formula (3.31 ). 

(3.32) 

(3.33) 

Note that the velocities with respect to the moving frame K' are called 
relative, while the clocks attached to K' are called proper. On the other hand, 
the velocities with respect to the rest frame K are called absolute and the 
clocks attached to K are also called absolute. To have in the second case a 
terminological difference similar to the first case, we have considered calling 
the absolute clock and absolute time « universal ». However, finally we 
decided to use a single word, even though this might sometimes lead to 
misunderstandings, because of the confusion in using too many different 
terms. 
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We designate the relative quantities by upperscripts (primes) and the 
proper quantities by subscripts (zeros). For this reason, in the Lorentz 
transformation (where time is relative), we designate the relative time coor­
dinates by upperscripts (primes) and in the Marinov transformation (where 
time is absolute), we designate the proper time coordinates by subscripts 
(zeros). 

The distances are always absolute. However, the aether-Marinov cha­
racter of light propagation leads to the introduction of the notion « proper 
distance». The problem about the eternal contradiction between proper 
distances and distances is considered in detail in Marinov ( 1975a). Here we 
must again repeat that the absolute and proper time intervals are phrsicallv 
different quantities, while the difference between proper distances and dis­
tances is only a contradictorv mathematical result which appears because of 
the aether-Marinov character of light propagation engendered by the bi-di­
rectional light velocity isotropy in any inertial frame. 

3.4. GROUP PROPERTIES OF THE MARINOV TRANSFORMATION 

After a due examination of the Marinov transformations, it can easily be 
established that they form a group. Since the mathematical analysis in the 
general case is too cumbersome, we shall suppose, for simplicity's sake, that 
the velocities of the different frames and their x-axes are parallel to the 
x-axis of the rest (absolute) frame. As in this simple case the y- and z­
coordinates are subjected to an indentical transformation, we shall ignore 
them. 

From formulas (3.25) we obtain the following direct transformation 
between the coordinates (x,t) in the absolute frame K and the coordinates 
(x2,t2 ) in a proper frame K2 moving with velocity V, ( V2 §. 0) along the 
positive direction of the x-axis 

X - V., t 
X = -

, (I - V//c') 112 • 
(3.34) 

The inverse transformation between the coordinates (x, ,t,) in a proper 
frame K, moving with velocity V, ( V, §. 0) along the positive direction of the 
x-axis of the rest frame K and the coordinates (x,t) in K, according to 
formulas (3.26) [see also formulas (3.20)), is 

X - x (I - V 2 /c2) 112 + V, t, t = 1' • (3.35) 
- I I (I _ v,,/c2) l/2' (I _ v,,/c2) 112 

where the velocities V, and V2 are measured in absolute time. 
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Substituting formulas (3.35) into formulas (3.34), we can express the 
coordinates in frame K2 through the coordinates in frame K, 

I - V 2 / c 2 112 V, - V2 
( 1 ) + t 

x, = x, I - V,2/c' '(I - V,2/c2) 112 (1 - V/lc2) 112 ' 

I - V,'lc 2 112 

t,=t, ( I V 2/ 2 ) 
- t C 

(3.36) 

These formulas are absolutely symmetric with respect to the coordinates 
. in both frames. Now we shall prove that these transformations form a group. 

A set of transformations, T12 , T,:i . T"• , ... , forms a group if it has the 
following properties : 

I. Transitive property : The product of two transformations of the set is 
equivalent to a member of the set, the product 

(3.37) 

being defined as performing T12 and T23 successively. 

If formulas (3.36) give a transformation T12 , a transformation T., will 
have the same form in which the number I is replaced by 2 and the number 2 
by 3. Substituting formulas (3.36) for the transformation T12 into the cor­
responding formulas for the transformation T,a , we obtain a transformation 
Tu which has the same form as (3.36) in which the number 2 is replaced by 3. 

Thus the transitive property is proved right. We mention here that the 
transitive property for the Lorentz and Galilean transformations can be 
proved only if one takes into account the corresponding transformation for 
velocities. The transitive proper~y fer the Marinov transformation is proved 
directly, i.e., without taking into accc,unt the transformation (or velocities. 

~ /· 

2. Identity property : The set includes one « identity ,. transformation, 
T; 1 , whose product with any other member of the set leaves the latter 
unchanged. Thus 

(3.38) 

The identify form of the transformation (3.36) occurs for V, = V2 • 

3. Reciprocal property: Every member of the set has a unique recipro­
cal ( or inverse) which is also a member of the set. Thus the inverse of T12 is 
T21 • where T21 is a member of the set, and 

(3.39) 
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The reciprocal of the transformation (3.36) can be obtained by writing 
the number 2 instead of I, and vice versa. 

4. Associative property: If three succeeding transformations are 
performed, then 

The associative property can easily be proved. 

Thus the Marinov transformations form a group . 

§ 4. ELEMENTS OF MOTION 

4.1. VELOCITY 

(3.40) 

As already stated (§3.3), we introduce the following two types of velo­
city: 

The velocity 

(4.1) 

The proper velocity 

dr dr v 
V = -- = ------ = ------

0 dt0 dt(l - v2/c2) 112 (I - v2/c2) 112 
(4.2) 

For example, consider a car moving along a given road which we 
-suppose at rest in absolute space. Two policemen, the distance between 
whom is dr, supplied with two clocks (imagine for clarity, light clocks) which 
are synchronized by the help ofa long rotating rigid shaft (i.e., by the help of 
a Newtonian time synchronization), will register the time dt in which the car 
will cover the distance and, thus, will measure the velocity v of the car. The 
driver supplied with a single clock will register the proper time dt0 in which 
the car will cover the same distance and, thus, will measure the proper 
velocity v.,. Obviously. the driver will always register a higher velocity and 
even when he surpasses the prescribed speed limit (according to his calcula­
tion) he would not be stopped by the policemen to pay a fine. 

In relativistic physics, we work with the proper velocities (in general, 
with the proper elements of motion) because in such a case the problem about 
the synchronization of spatially separated clocks is eliminated. 
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The proper velocity represents the space part of a 4-vector called the 
4-velocity. The time component of the 4-velocity is the proper light velocity 
[see (3.33)) 

C = 0 

d(c t) 
= 

C 

(I - v2/c2) 112 
(4.3) 

The product of the mass of a material point by its velocity is called the 
momentum; thus 

p = mv, (4.4) 

are, respectively, the momentum and proper momentum of the material point. 

4.2. ACCELERATION 

We introduce the following three types of acceleration : 

The acceleration 

u= (4.5) 

The first proper acceleration 

dv0 d dr u V v.u 
Uo = (dt} = (I + _ v>/c2)_112· 

(4.6) 
dt dt _ v2/c>) 112 c2 ( I 

The second proper acceleration 

dv0 d (dr) = u V v.u 
uoo = + (4.7) 

dt0 dt0 dt0 I - v2/c2 c> (I - v 2/c2) 2 • 

The second proper acceleration represents the space part of a 4-vector 
called the 4-acceleration. The time component of the 4-acceleration can 
easily be expressed through the acceleration and velocity. 

The product of the mass of a material point by its acceleration is called 
the kinetic force; thus 

f= mu, (4.8) 

are, respectively, the kinetic force, first proper kinetic force and second 
proper kinetic force of the material point. 

38 

4.3. SUPER-ACCELERATION 

We introduce the following four types of super-acceleration : 

The super-acceleration 

du d2v d'r 
w=--=--=--

dt dt 2 dt 3 
(4.9) 

The first proper super-acceleration 

du0 d2v0 d2 ( dr 
"'0 = di = dt2 = dt2 di) 

0 

(4.10) 

The second proper super-acceleration 

duoo d2v0 d d dr 
w .... = T = dt dt = dt I dt ( dt ) I . 

O O O 

(4.11) 

The third proper super-acceleration 

(4.12) 

Putting (4. 7) into (4.12), we obtain the following expression for the third 
proper super-acceleration through the velocity. acceleration and super­
acceleration of the material point 

w 3 u(v. u) + vu 2 + v(v. w) 4 v (v. u)2 

"' = ------,--,- + ---------- + 
000 (I _ v>/c2)V2 c2 (I _ v>/c2)'12 c• (I _ v2/c2)712 

(4.13) 

The third proper super-acceleration represents the space part of a 4-
vector called the 4-super-acceleration. The time component of the 4-super­
acceleration can easily be expressed through the super-acceleration, accele­
ration and velocity. 

For the product of the mass of a material point by its super-acceleration 
we do not introduce a special name and symbol. 

§ 5. TIME ENERGY 

5.1. THE NON-RELATIVISTIC CONSIDERATION 
.. , 

We obtain the form of the time energy of a material point with mass mm 
non-relativistic mechanics by integrating the axiomatical relation (2.11) 

e0 = m v212 + Const. (5.1) 
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For v = O the time energy of the material point must be equal to its 
rest energy e, which is given by the relation (2.3), so that we can assume 
Const = e, . and thus 

e., =me' + m v'/2 = e, + ek, (5.2) 

The difference between the time and rest energies is called the kinetic 
energy. Thus, in non-relativistic mechanics, the kinetic energy has the form 

ek = mv'/2. (5.3) 

5.2. THE RELATIVISTIC CONSIDERATION 

To obtain the time energy of a material point in relativistic mechanics 
we have to put into the axiomatical assertion (2.11) the proper velocity v., 
instead of the velocity v. There are three possibilities 

de 0 = m v.,. dv. 

de O = m v. dv., , 

(5.4) 

(5.5) 

(5.6) 

and after the integration of these three formulas we obtain three different 
expressions for the time energy in relativistic mechanics 

e" = - me'(I - v'lc') 112, (5.7) 

me' (5.8) eo 
(I - v'le') 112 ' 

I me' (5.9) 
eon= 

2 - v'le' 

where all constants of integration are taken equal to zero. so that for v << c 

we obtain 

e0 = - me' + m v'/2 = - e, + ek, 

e0 = me' + m V2/2 = e, + ek, 

e.,., = m e'/2 + m v'/2 = e,/2 + ek. 

(5.10) 

(5.11) 

(5.12) 

Thus for v << c the kinetic energy of all these three forms of the 
relativistic time energy has the same value as in non-relativistic mechanics, 
though their rest energies are different. Only the rest energy of e., has the 
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value e, postulated by our third axiom. The rest energies of e" and e,,,, can be 
obtained equal toe, if additional constants of integration are introduced. For 
this reason. we choose e., as lime (or proper) energy of the material point. 
However, we must emphasize that e" and e.,., can adequately play the same 
role. 

We introduce the following terms : 
e" Lagrange time energy, 
e., - Hamilton time energy, 
e,,., - Marinov time energy. 

The proper energy divided by velocity of light represents the time part of 
a 4-vector called the 4-momentum whose space part is the proper momentum 
p., = m v., . This quantity is denoted by 

_ e., n1 e 
p., = c =me.,= (I - v2 /e2 ) 112 

(5.13) 

and is called the proper time momentum; the quantity p = me is called the 
(absolute) time momentum. Thus p = mv can be called the (absolute) space 
momentum, v and c. respectively. (absolute) space and time velocities, and so 
on. 

Obviously. the Hamilton time energy e., can be called the proper time 
energy and the rest energy e, the (absolute) time energy, denoting it by the 
symbol e. when this cannot be confused with the charge of the electron: the 
latter. as a rule, is denoted by us by q,. (see axiom V). 

All three types of time energy e", e.,. and e.,., are used in theoretical 
physics. The time energy e., plays the most important role. though many 
formulas obtain a more compact form when Lagrange time energy e" is used 
[see, for example, (6.14)). 

Comparing (5.8) with (2.4) (or the second relation (4.4) with (2.12) when 
taking into account (4.2)), we conclude that the relation between mass and 
proper mass is 

mo= 
m 

(I - v'le') 112 
(5.14) 

Note that the axiomatical relation (2.3) represents the famous Einstein 
formula which is considered as an « ideological basis » for modern physics in 
our nuclear century. As a matter of fact, relation (2.3) serves only for the 
introduction of a new derivative physical quantity which we call « mass » and 
which differs from the axiomatical quantity « energy » only by a constant 
factor. The whole of physics can be constructed without introducing al all the 
quantity « mass» because relation (2.3) represents a trivial tautology. How­
ever, the establishment of relation (2.3) was an enormous scientific feat. 

41 



The greatest accomplishment of a scientist is the revelation of a simple truth 
where others see a complexity or nothing at all. Almost the same can be said 
for de Broglie's relation (2.5), although we must add, that the particles-waves 
contradiction is still not lucidly resolved. 

§ 6. THE LAGRANGE EQUATIONS 

6.1. THE NON-RELATIVISTIC CONSIDERATION 

As can be seen from (2.13) and (2.15), space-time energy is to be consi­
dered only in relativistic physics since its availability leads to effects of second 
order in vie. Thus in non-relativistic physics we have to consider only space 
and time energies. 

Let us assume that in a time dt the space energy U and the time energy E,, 
of an isolated material system of n material points have changed their values 
by dU and dE,, . Denote by r, , v, , u; , e,,, the radius vector, velocity, 
acceleration, and energy of the ith material point. As space energy depends 
only on the distances between the material points, we have 

n au 
dU= L - .dr,. 

i = I ar; 
(6.1) 

Time energy depends only on the velocities of the material points and 
thus 

n a£,, n ae0 ; n d ( ae0 , ) 

dEO = L -a- .dv, = L -a- .dv, = L -d -a- .dr;' 
i = I V, i = I V; i = I t V; 

(6.2) 

where we have taken into account (5.2) and the relation 

(6.3) 

which can be proved by dividing both sides by dt. 

Substituting (6.1) and (6.2) into the fundamental axiomatical equation 
(2.16) and dividing by dt, we obtain 

;l!_(ae";) au .:.. + -- ] . v, = 0 . 
i = I dt av; ar; 

(6.4) 

In this equation all n (as a matter of fact, 3n) expressions in the brackets 
must be identically equal to zero because otherwise a dependence would exist 
between the components of the velocities of the different material points, and 
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this would contradict our sixth axiom which asserts that the time energy of a 
material pomt of a system depends only on its own velocity. 

Thus from (6.4) we obtain the following system of 11 vector equations 

!_ ( ae.,, ) = _ au 
dt av, ar, • i = 1,2, ... ,n, (6.5) 

which_ are called_ the Lagrange equations and represent the fundamental 
equations of motion m non-relativistic physics. 

Taking into account (5.2), (4.5). and the first relation (4.8), we see that 
the left s!de of (6.5) represents the kinetic force f, of the ith material point. 
Introducing the notation 

F, = -
au 
ar, (6.6) 

and_callin_g F, the potential force which all 11 - I material points exert on 
the ,th point, we can wnte equations (6.5) in the form 

f, = F,, i = I, 2, ... , n, (6.7) 

in which form they are called the Newton equations (or Newton's second law). 

The potential force which the /th material point exerts on the ith point is 
F,' = ~ ilU,/ilr,, and the potential force which the ith material point exerts 
on the 1th _pomt_1s F,' = - dU,Jilr" where U,, is the space energy of these 
~wo. ma ten al points. Smee U,, depends on the distance between both points. 
1t will he 

t.e., F,' = - F,'. (6.8) 

Thus the potential forces with which two material points of a system (in 
general, two_ parts of a system) act on each other are always equal and 
oppositely directed along the line connecting them. This result is called 
Newton's third law. 

Obviously, in equation (6.5) we can write 

ae.,, aek, aE,. a Ek 
a;;- = a;;- = a;;- = av, , (6.9) 

where e,, is the kinetic energy of the ith material point and £, is the kinetic 
energy of the whole system. 

6.?. THE RELATIVISTIC CONSIDERATION 

_ In relativistic physics, equation (6.1) will preserve its form. This is 
obvious for the electric space energy [see formula (2.9)). since the electric 
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charges and the distances between them do not depend on the velocities of 
the charges. However, as can be seen from formulas (2.7) and (5.14), the 
gravitational space energy becomes velocity dependent in high-velocity 
physics. The peculiarities of the fundamental equation of motion in gravi­
magretism will be considered in §8; in the present general analysis we shall 
assume that the gravitational charges (the proper masses) are constant, i.e., 
velocity independent. 

In relativistic physics, instead of equation (6.2) we shall have 

dE n a£., n ae,., 
,,. = L -- . dv, = L -- . dv, 

I = I av, I= I avi (6.10) 

; !!__ [ ( I _ v
2
'. ) ae.,, ] . dr, = n d ( ae~ 

,:;.. dt a L -d -a-) . dr, . 
1 = I C V, i = I / V, 

where e·: is the Lagrange time energy of the ith material point. 

In relativistic physics, we have to take into account also the space-time 
energy W. As the space-time energy depends on the distances between the 
material points and on their velocities. we shall have 

n 

dW= L 
i = I 

aw aw 
(- .dr, + -.dv,) = 

ar, av, 
n 

= L 
I= I 

aw aw aw 
[-a. dr, + d (-a. v,) - d (-a). v,]. 

r, v, v 1 

( 6.11) 

However, it is [see (2.13) and (2.15 )] 

n aw n n 
L d(a;-.v,)= L dW,=d L W,=2dW, 

I= I ' I= I I= I 
(6.12) 

where W, is the part of the space-time energy in which the ith material point 
takes part. 

From the last two equations we obtain 

n aw aw 
dW = L [ - - . dr, + d(-). v,). 

i = I ar, av, 
(6.13) 

Substituting (6.1 ). (6.10) and (6.13) into the energy conservation law 
(2.16) and dividing by dt, we obtain by the help of the same reasonings as in 
§6. I the fundamental equations of motion in relativistic physics 

!!._ I il(E" + 110 I = _ a( u - u,, 
dt av, ar, 

i = L 2, .... 11, (6.14) 

which we call the full Lagrange equations. 
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The quantity 

f, 
a(U - U') 

ar, 

is called the full potential force acting on the ith material point. 

The full Newton equations are 

d aw _ aw 
l, == lo, + -d < a- ) = F, == F, + _ . 

I v, ar, 
I= I, 2, ... , n, 

where /,,. is called the full kinetic force of the ith material point. 

The full Newton's third law is 

a(u,, - w,,) 
ar, 

i.e., f, 
' 

- f,•. 

(6.15) 

(6.16) 

(6.17) 

Using the Lagrange equations and proceeding from the homogeneity of 
time. homogeneity of space, and istotropy- of space, we can easily obtain. 
respectively. the laws of energy. momentum. and angular momentum con­
servation in non-relativistic and relativistic physics (the first one representing 
the assertion of our ninth ax.iom). 

§ 7. FUNDAMENTAL EQUATIONS IN ELECTROMAGNETISM 

7.1. THE NEWTON-LORENTZ EQUATION 

Let us have a system of n electric charges q, moving with velocities v. 

whose distances to a certain space point (called the reference point) are r,. 
The quantities 

A= ; q, v, ,:;.. µ.,--
] = I Cr, 

(7. I) 

are called, respectively, electric and magnetic potentials at the reference 
point. We shall further work in the CGS system of units in which it is 
assumed I.',; I = µo = I. 

If at the reference point a material point with mass m. electric charge q. 
velocity v. and proper energy e,. is placed, then the electric and magnetic 
energies of the whole system of 11 + I charges in which this charge q takes part 
will be 

U=q<I>, 
q 

W=-v.A. 
C 

(7.2) 

45 



Putting (7.2) into (6.14). we obtain 

d q v.A 
-d (p,, + -A ) = - q grad ( <I> - - ) . 

t C C 
(7.3) 

This is the full Newton equation in electromagnetism and we call it the 
Newton-Lorentz equation. 

Since it is 

dA aA 

dt at 
+ (v. grad) A , (7.4) 

where (i)A /i)t) dt is the change of A for a time dt at a given space point and 
(v. grad) A dt is the change of A due to the motion of charge q with velocity 
v during this time dt, and taking into account the mathematical relation 

grad (v. A) = (v. grad) A + (A. grad) v + v X rotA + A X rotv (7.5) 

under the condition v = Const, we can write the Newton-Lorentz equation 
in the form 

dp" I aA q 
-d == lo = - q (grad <I> + - - ) + - v x rotA, 

I C at C 
(7.6) 

which is commonly called the Lorentz equation. As one can see, the Lorentz 
equation represents the full Newton equation in electro-magnetism. and we 
think that it is reasonable to re-name it the Newton-Lorentz equation. 

To this equation we always attach its scalar supplement which can be 
obtained after multiplication of both its sides by the velocity of the charge 

de0 I aA 
dt == V. f,, = - q V. (grad <I> + ~ at ) . 

Introducing the quantities 

E = - grad <I> -
I aA 

C at 
B = rotA, 

(7.7) 

(7.8) 

called, respectively, the electric and magnetic intensities, we can write the 
Newton-Lorentz equation and its scalar supplement in the form 

dp,, = q E + J_ V X B , 
dt C 

de 0 

- = q v. E. 
dt 

(7.9) 

Taking partial derivative with respect to time from the electric potential 
<I> [consider the distances r, in the expression (7.1) as functions of time] and 
divergence from the magnetic potential A, we obtain the following relation 

I a<I> 
div A = -

C at 
(7.10) 
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This relation is commonly called the« Lorentz condition». Since in our 
approach it is a logical result obtained from the ax.ioms, we call it the 
equation of potential connection. 

7.2. THE CONNECTION BETWEEN DENSITIES AND POTENTIALS 

The charge and current densities at a given reference point are the 
following quantities (these are the so-called 8-densities) 

n n 

Q(r)= ~ q,8(r-r,). J (r) = ~ j, o(r - r,) . (7.11) 
I - I I - I 

where r is the radius vector of the reference point. r, are the radius vectors 
of the single charges. and o(r) = o(x) 8(1') o(.::) is the three-dimensional 
8-function of Dirac. 

Now we shall establish the differential connection between the charge 
and current densities and the electric and magnetic potentials. 

A. The static and quasi-static- cases. 

We shall prove the validity of the following mathematical relation 

~ (1/r) = - 4 'IT o(r), (7.12) 

where 1 = iF/ax' + a01ay2 + a2 Ia.:: 2 is the Laplace operator and r is the 
distance between the frame's origin and a space point with radius vector r. 

Indeed. putting into (7.12) 

r = Ir - o I = (x' + r' + z'l 112. (7.13) 

we obtain an identity. Only for r = 0 does the left-hand side give the 
uncertainty 0/0, and the right-hand side give the uncertainty 8(0). 

To establish whether relation (7 .12) is valid also for r = 0. let us integrate 
(7.12) over an arbitrary sphere with radius R which has a centre at the frame's 
origin. Using the Gauss theorem, we shall obtain for the integral of the 
left-hand side 

J ~ (I Ir) dV = J div [ grad (I Ir)] dV = f grad ( 1/r). dS. (7.14) 
V V S 

where Sis the surface of the sphere of integration whose volume is V and dS 
is the elementary area (taken as a vector) of the integrational surface whose 
direction always points outside from the volume enclosed. 
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The vector grad( I/ r) = - rl r' is directed to the frame's origin, i.e., in a 
direction opposite to the direction of the vector dS, and thus 

dS I 
f ~ (1/r) dV = - J , = - , J dS = - 4 w. 
v s r R s 

(7.15) 

The integral on the right of (7.12) taken over the same arbitrary sphere, 
on the grounds of the fundamental propery of the 8-function, gives 

- 4 w f 8(r) dV = - 4 w . (7.16) 
V 

The integrals (7.15) and (7.16) arc equal and, since the domains of 
integration represent spheres with arbitrary radii, both integrands must be 
also equal. Thus the relation (7.12) is valid also for r = 0. 

In the same way, or on the grounds of our first axiom for homogeneity 
and isotropy of space, we can prove the validity of the following relations 

~(I/Ir - r, I) = - 4 7T 8(r - r,), i = I, 2, ... , n, (7.17) 

where r, are the radius vectors of n different space points. 

Let us now assume that r, is the radius vector of a space point where a 
charge q, is placed (static case) or where at any moment a charge q, moving 
with velocity v, can be found (quasi-static case). Multiplying any of the 
equalities (7.17) by the corresponding electric charge, q,. or electric current 
element divided by c, j,lc, and summing them, we obtain, after having 
taken into account (7.1) and (7.11 ). the following differential connection 
between potentials and densities for static and quasi-static systems 

4w 
~(f> = - 4wQ, ~A= - - J. (7.18) 

C 

B. The dynamic case. 

Let us consider a point (calling it the i-point) which moves at velocity v 
along the x-axis of a rest frame Kand at the initial zero moment t = 0 crosses 
the frame's origin. Let a moving frame K' be attached to this i-point and the 
transformation between Kand K' be a special one. In such a case the radius 
vector of the i-point in K' will be r,' = (0,0,0). 

If the radius vector of a reference point in frame K is r = (x,y.z). then, 
according to the Marinov transformation (3.34). the radius vector r' of the 
same reference point in the moving frame K' will be 

X - VI 

r' = (x',y', z') = [ (I - v'lc')112 ,y, z I. (7.19) 
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The distance between the i-point and the reference point considered in 
frame K' but expressed through the coordinates in frame K will be 

(x - v I)' + (I - v'lc') (r' + z') 112 
r = Ir' - r· I= Ir - r I = [ -----'------=---) 

0 
' ' 

0 I - v' I c' 
(7.20) 

This distance considered in frame Kand expressed through the coordi­
nates in frame K will be 

r = I r - r, I = ( (x - v t)' + y' + z' J 112. (7.21) 

We call r the distance and r., the proper distance and we have considered 
them in detail in Marinov (1975a). The difference between these two dis­
tances, as already said in §3.3, is due to the aether-Marinov character of light 
propagation and this has nothing to do with a physical length contraction 
(with the so-called « Lorentz contraction » ). As a matter of fact, here we are 
considering the distance between two points movin~ with respect to one 
another which cannot be connected by a rigid rod and thus it is senseless to 
speak about contraction of such a rod. 

The validity of the following mathematical relation can now easily be 
proved 

, ( I/ r.,) = - 4 7T 8(r - r,) . (7.22) 

where , = iF/h2 + a2 /~i•2 + iF/az2 - a2 /c2 ilt2isthed'Alembcrtoperator 
and r., = Ir - r, I .. is the proper distance between a space point with radius 
vector r = (x. r.z) and a moving point with a radius vector r, = (vt,0,0). 

Indeed, putting into (7.22) the expression (7.20) for r., . we obtain an 
identity. Only for r., = 0, i.e., for 

X - VI= 0, y = 0, z = 0, (7.23) 

docs the left-hand side give the uncertainty 0/0, and the right-hand side the 
uncertainty 8(0). 

To establish whether relation (7.22) is valid also for r., = 0 let us 
integrate (7.22) over an arbitrary sphere with radius R which has a centre at 
the point whose coordinates are given by (7.23) 

f ,'\ (I/ r.,)dV = - 4w f 8(r - r,)dV. (7.24) 
V V 

For all points of the volume V the integrand on the left-hand side is 
equal to zero. Thus we can spread the integral over a small domain around 
the point with coordinates given by (7.23), i.e., around the frame's origin of 
K'. But at r., __, 0 it is I Ir., --+ oo. and the derivatives with respect to x, i·. z will 
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increase much faster than the derivative with respect to /. Hence the last one 
can be neglected with respect to the first ones. So we reduce the integral on 
the left-hand side of (7.24) to the integral (7.15) which gives - 4'1T. The 
integral on the right-hand side of (7.24), on the grounds of the fundamental 
property of the o-function, gives the same result, and, as in §7.2A, we con­
clude that the integrands must be equal. Thus the relation (7.22) is valid also 
for the case (7.23). 

In the same manner as in §7.2A, from the relation (7.22) we can obtain 
the following connection between potentials and densities for the most 
general dynamic case 

4 'IT 
I\ A ~ - - J (t), (7.25) 

C 

where the densities Q(t) and J(t) are functions of time. 

7.3. THE MAXWELL-LORENTZ EQUATIONS 

Taking rotation from both sides of the first equation (7.8) and diver­
gence from both sides of the second equation (7.8) and making use of the 
following mathematical relations 

rot (grad <I>) = 0, div (rot.A) = 0. 

we obtain the first pair of the Maxwell-Lorentz equations 

1 an 
rot£= - - -

C at , divB = 0. 

(7.26) 

(7.27) 

Let us now take partial derivatives with respect to time from both sides 
of the first equation (7.8), dividing it by c. 

I a£ I act> I a2A 
--;: a, = - --;:grad at c' at' (7.28) 

Write the second equation (7.25) in the form 

c' a, 2 
(7.29) 

and put here the mathematical relation 

~A= grad(divA)- rot(rot.A). (7.30) 

Putting (7.29) into (7.28) and taking into account (7.10), we obtain 

I a£ 4 'IT 
rot B = - - + - J. 

C at C 
(7.31) 
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Let us now take divergence from both sides of the first equation (7.8) 

d . E I a 
1v = - ~ <I> - - - (divA). 

C at 

Write the first equation (7.25) in the form 

I a 2 <1> 
~<I>= - - -4'/TQ 

c' a,2 • 

(7.32) 

(7.33) 

Putting (7.33) into (7.32) and taking into account (7.10), we obtain 

div£= 4'1T Q. (7.34) 

Equations (7.31) and (7.34) represent the second pair of the 
Maxwell-Lorentz equations. 

§8. FUNDAMENTAL EQUATIONS IN GRAVIMAGRETISM 

8.1. THE NEWTON-MARINOV EQUATION 

In §6.2 we pointed out that the gravitational energy in high-velocity 
physics is velocity dependent. Thus in relativistic gravitation instead of 
equation (6.1) we shall have 

du ~ ( a U • a U • d n [ a U • • = ,:;,. --.dr,+--. v,)= ~ -.dr, 
I = I ar, av, I = I a, 

au. v,.v, 
+ (-.dv,)- ]. 

av, v,' 

(8.1) 

Space-time energy is very small with respect to space energy (the 
space-time energy of two material points moving with velocities v,. v, 
represents a v, . v,I c2 part of their space energy), and we can consider the 
gravitational charges (the proper masses) in the magretic energy as constants. 
Thus we can assume that the differential of the space-time energy m gravi­
magretism is given by formula (6. 13). 

Putting (8.1 ), (6.10) and (6.13) into the energy conservation law (2.16 ), 
we obtain by the help of the same reasonings as in §6.1 the fundamental 
equations of motion in gravimagretism 

d a(E° + w.) au. v; acu. - w.) 
-(---) + (- .u;)' = -
dt av; av; v, ar, 

1 = I, 2, ... , n, 

(8.2) 
where u, is the acceleration of the ith material point. 
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As it can be seen from formulas (2.7) and (5.14), the quantity au.1av, 
has the direction of the vector v,. In gravitation, as a rule, motions with large 
tangentional accelerations cannot be realized and, assuming 
(a v.1av,) . u, = 0, we can write the fundamental equations of motion in 
gravimagretism in the general form (6.14). 

Let us consider a system of II masses m, moving with velocities v, and 
having proper masses m.,,. Introduce the gravitational and magretic poten­
tials 

n mo, 
<I>.= - ~ y - , 

i = I r, 
A .:!., mo, v, 
.=-,:_,y--, 

i = I Cr; 
(8.3) 

where r, are the distances to a certain reference point where a mass m moving 
with velocity v and having proper mass m., is placed. 

The gravitational and magretic energies of the whole system of 11 + I 
masses in which mass m takes part will be 

mo 
w. = - v.A. 

C 
(8.4) 

Putting (8.4) into the full Lagrange (full Newton) equation (6.14). we 
obtain the Newton-Marinov equation 

and its scalar supplement 

de,, I aA, 
dt = V. J;, = - mo V . (grad <I>. + - -- ) . 

C at 

Introducing the quantities 

I aA, 
G = - grad <I>. - -;: at B. = rot.A,, 

(8.5) 

(8.6) 

(8.7) 

called, respectively, the gravitational and magretic intensities, we can write 
the Newton-Marinov equation and its scalar supplement in the form 
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dp,, m,, 
= m,, G + - v X B. , 

dt C 

The equation of potential connection is 

I a<I>, 
divA, = - - -­

c at 

de,, 

dt 
= m,,v. G. (8.8) 

(8.9) 

Introducing the proper mass and proper momentum densities (these are 
the so-called o-densities) 

n 
µ,,,(r) = ~ m,,, o(r - r,), 

i = I 

n 

-rr:, (r) = ~ p.,, o(r - r,)' (8.10) 
I= I 

we can establish in the same manner as in §7.2 the following relation between 
these densities and the gravimagretic potentials for the most general dynamic 
case 

4 'IT y µ,,,( t), /\A,= 
4'17 -> 

- y 'IT,, (I). 
C 

(8.11) 

We wish to emphasize that equations (7.25 ). as well as equations (7.18). 
are written at the assumption that we are working in the CGS system of units. 
where 1/r,, = µ,, = I (see the beginningof§7.I). 

8.2. THE MAXWELL-MARINOV EQUATIONS 

In the same manner as in §7.3 we can obtain the first and second pairs of 
the Maxwcll-Marinov equations 

rot G = 
1 an. - ---
c at 

div B, = 0. (8.12) 

I aG 4 'IT _, 
rot B, = -;: at - -;: y 'IT,, • div G =-4 'IT y µ,,, , (8.13) 

whose analogues in electromagnetism are the Maxwell-Lorentz equations. 

8.3. REDUCED CHARGES AND MASSES 

If we take a general look at the fundamental equations of electro­
magnetism and gravimagretism, we shall establish that it is more reasonable 
to work with the reduced electric charges and reduced masses, 

q, = qlc, m,. = 111/c, (8.14) 

instead of the electric charges, q. and masses, m. 

With the reduced charges and masses the space and space-time energies 
of two material points will be wriUen 

I q,., q.., 
U, = --- c' 

r ' 

v. = - y c'' r 

q,., q,., 
r 

w. = - y 
r 

v,. v,. 

(8.15) 

(8.16) 
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All equations in electromagnetism and gravimagretism will obtain more 
symmetric forms when the reduced charges and masses are used. For ex­
ample, the Newton-Lorentz equation (7.9) will be written as follows [see 

(5.13 )] 

dp,, = q, ( C E + V X B) ' 
dt 

dp., E -- = qc V • . 
dt 

(8.17) 

It is important to note that universal constants are not the charge of the 
electron and the mass of the electron but their reduced values (see § 12). 

We have considered the fundamental electromagnetic equations in 
Marinov ( 1978a) and the fundamental gravimagretic equations in Marinov 
(1978b). In Marinov (1978b) we give a detailed analysis of the so-called 

« Mercury problem ». 

§9. PARTICLES AND WAVES 

In our third axiom, we introduced the quantity T, called the period of 
the material point, according to relation (2.5). 

The quantity 

v = 1/T (9.1) 

is called the frequency of the material point considered. Thus we shall have 
[see (2.5) and (5.8)] 

me' 
-------,--:c=hv. 

e., = (I - v'lc') 112 

(9.2) 

Multiplying both sides of this equation by the velocity v of the material 

point, we obtain [see (4.2)] 

The quantity 

hv 
- V. 
c' 

K = v vie' 

is called the wave number of the material point m. 

Write equation (9.3) in the form 

m v., = hK n, 

(9.3) 

(9.4) 

(9.5) 

where n is the unit vector directed along the velocity of the material point. 

54 

The vector quantity 

1i=1<n=.!'__vn=.!'__ v 
c' c' 

(9.6) 

is called the wave vector of the material point. 

The quantity 

A= 1/k = c'lvv (9.7) 

is called the wavelength of the material point. 

If the material point considered is a photon. then v = c, and we have 

VA= C. 

The quantities v, , T, defined by the relation 

v, = 1/T, = m c'lh 

(9.8) 

(9.9) 

are called the rest frequency and rest period of the material point and are 
equal to v and T, respectively. for v = 0. Obviously the rest wave number of 
any material point. t,, is equal to zero and the rest wavelength, A,. is infinitely 
large. • •• 

Formulas (9.5) and (9.2) can be written [see (4.4)]: 

a) with the help of the frequency 

hv 
e., = h v, 

b) with the help of the wavelength 

h 
Po = ~ n, e,. = 

These formulas are called de Broglie's relations. 

h c' 

AV 

(9.10) 

(9.11) 

The quantities m,p0, e,, describe the« particle» character of the material 
points and the quantities T, v, 1i, A describe their« wave » character. 

As we said at the end of §5.2, the dialectic unity of opposites which the 
ideas of particles and waves offer is still not lucidly enough resolved. We have 
the feeling that this contradiction will never be understood with such clarity 
as, for example, high-velocity physics will be understood after the acceptance 
of our absolute space-time theory. Nevertheless, in classical (non-quantum) 
physics, i.e., where, according to our categorization, the phenomenon inter­
ference is not considered, the « particles-waves » contradiction does not 
originate logical difficulties, as the reader can see on reading this book. 
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§ 10. FREQUENCY AND WAVELENGTH SHIFTS OF LIGHT 

10.1. KINEMATIC SHIFT (THE DOPPLER EFFECT) 

The light Doppler effect is the difference between the frequency and 
wavelength with which a photon is emitted from a source of radiation and 
those measured by an observer, due to the motion of source and observer 
with respect to absolute space; we call this effect also the kinematic frequency 
and wavelength shifts of light, and we have considered it in Marinov ( I 978e). 
A review of the theoretical part of this paper is given in this sub-section. 

A. Source and observer at rest. 

Let us suppose that there is a source (emitter) of photons which rests in 
absolute space. The frequency v registered by an observer (receiver) who is 
also at rest in absolute space and the wavelength,\, which he can measure, are 
called emitted frequency and emitted wavelength. The relation between them 
is given by formula (9.8). 

B. Source moving, observer at rest. 

Let us now suppose (fig. 10-1) that the observer is at rest in absolute 
space at the point o· and the light source moves with velocity v from the 

II 

X 

Fig. 10-1 
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positions· where a photon is emitted to the position S where the source will 
be at the moment when the photon will be received by the observer. We shall 
suppose that the wavelength of the interchanged photon is much less than the 
distance between source and observer and, th us. the emission and reception 
positions of the source can be considered as points. 

The source will be at the middle position S,,, at the middle moment 
between the emission and reception moments. (}' is called the emission angle, 
(} the reception angle and 0,,, the middle angle. We must note that when 
defining these angles a certain freedom is inevitable which leads to certain 
differences in the notations and in the formulas from those of our earlier 
papers (Marinov, 1970, 1972a, 1973). Now. once and for all. we make the 
following stipulation : The emission, reception and middle angles are sub­
tented by the velocity of the moving object and the line connecting the object 
at rest with the moving object at the emission. reception and middle mo­
ments, respectively. We attach the subscript«"» to the received (observed) 
frequency and wavelength and not to the emitted which will be written 
without any subscript. The uppcrscript « • » will be attached to the emission 
distance, position and angle, while the reception distance. position and angle 
will be written without any upperscript. 

When the source is moving. the observer at rest will not register the 
frequency,, and will not measure the wavelength,\ which are to be registered 
and measured if the source be at rest and which we have called the emitted 
frequency and wavelength, but some other, in general, different quantities. 
v.,, ,\.,, which we call the observed (or received) frequency and wavelength. 

If in fig. 10-1 we present the emitted-wavelength by the segment s·Q. 
then. proceeding from our third axiom in which the « burst » model of the 
material points is postulated. we have to present the observed wavelength,\., 
by the segment S'Q., (as a matter of fact, by that segment equal and parallel 
to S 'Q., whose final point is Q). We repeat that we consider the case where the 
distance between source and observer is much greater than the wavelength of 
the photon (we have enlarged the wavelength diagram for clarity). 

Since the photon moves in absolute space with velocity c, we have 

v,, ,\,, = C . (IO.I) 

From (9.8) and ( 10.1) we obtain 

The triangles S'Q.,Q and O ·ss· are similar and thus 

,\ I ,\0 = r ·Ir . 

( 10.2) 

( 10.3) 
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On the other hand. ifwe should suppose that the source is at rest and the 
observer moving from the emission position O' to the reception position O. 
we obtain from the similar triangles S 'Q .. Q and S '00' 

r'lr = c'lc, ( I 0.4) 

since the segments S 'Q., and S 'Qare, respectively. proportional to the abso­
lute light velocity c (i.e., to the velocity of light with respect to absolute space) 
and to the relative light velocity e' (i.e., to the velocity of light with respect to 
the moving observer), both measured on an absolute clock. 

From the last three relations, using formulas (3.31) in which we write 
V = v. we obtain 

(I - v21e2)112 I -vcos8le 
po= V = p 

I+ vcos8'le (I - v 2le2) 112 ' 
( 10.5) 

I + vcos (}' le (I - v'lc') 112 

A - A---- = A----. 
0 - (l-v'lc') 112 l-vcos8le 

( 10.6) 

Formulas ( 10.6) can be obtained direct II' from ( 10.3) [and then formulas 
(10.5) from (I0.2) and (I0.6)) ifwe should use formulas (4.21) obtained in 
Marinov ( 1975a), which give the relation between the emission and reception 
distances and where, following our present notation, we have to writer,, = r ', 
8., =(}',thus obtaining 

I+ vcos8'lc (I - v'le') 112 

r = r' ------ = r' ------
(1 - v' I c') 112 I - v cos (} I c 

(I0.7) 

Multiplying, on one hand, both formulas ( 10.5) and. on the other 
hand, both formulas ( 10.6), squaring them and writing cos(}' = cos8,,, + a. 
cos(} = cos0.,, - a, where a is an algebraic quantity. we obtain within the 
necessary accuracy 

I _ (J I 112 
_ ( VCOS m C) 

P0 - V , 
I + vcos (}"'le 

A., = A ( I + vcos 8mlc{2 _ 

I - vcos 8mlc 
(I0.8) 

For(}' = (} = 8,,, = 0 (or 1r). we call the Doppler effect longitudinal. 

For(}' = 1rl2, (} = 1rl2 vie, 8.,, = 1rl2 - vile, we call the Doppler 

effect post-traverse. 
For (J = 1rl2, (}' = 1rl2 + vie, 8.,, = 1rl2 + vile, we call the Doppler 

effect ante-traverse. 
For 8,,, = 1rl2, o· = 1rl2 + vile, (} = 1rl2 - vile, we call the Doppler 

effect traverse. 

The post-traverse. ante-traverse and traverse Doppler effects are called 
by the common name, transverse Doppler effect. 
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C. Source at rest, observer moving. 

Let us now suppose (see again fig. I0-1) that the source is at rest in 
absolute space at the point S, and the observer moves with velocity v from the 
emission position 0' to the reception position 0. 

Since the photon proceeds with respect to the moving observer with the 
relative velocity c ', the relation between the observed frequency and wave-
length will be • 

( I0.9) 

According to our« burst » model for the photons. their wavelength can 
change only when the source moves with respect to absolute space. The 
motion of the observer with respect to absolute space leads only to a change 
in the velocity and frequency of the observed photons but not to a change in 
their wavelengths. We must emphasize that the wavelength is to be measured 
always with respect to absolute space. ei·en in the case of" a moving ohsen-cr. 
We have to stress also that a direct measurement of the wavelength cannot be 
performed. One can measure directly only the wavelength of standing waves. 
i.e., of « to and fro » propagating photons which interfere (see §31 ). All 
measurements of the wavelength of uni-directionally propagating photons 
are indirect (see §32). If one should accept that the motion of the observer 
leads to a change in the wavelength. then one is impelled to accept Einstein's 
dogma about the constancy of light velocity in any inertial frame which. as 
we have experimentally shown. does not correspond to physical reality. 

Thus for our case of source at rest and moving observer. we have 

A. 0 =A. (IO.IO) 

From (9.8), ( I0.9) and ( I0.10) we obtain 

v.,lv = c'lc. ( I0.11) 

Making use of formulas (3.31) in which we write V = v, we obtain 

(I - v'le') 112 I - vcos8le 
v=v------=v------

0 I + v cos (}' I e ( I - v' I c') 112 • 
(I0.12) 

Here again a formula analogical to the first formula ( 10.8) can be 
introduced, as well as the definitions for longitudinal and transverse Doppler 
effects. 
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Fig. I0-2 

D. Source and observer moving. 

Now suppose (fig. I0-2) that the source moves with velocity v with 
respect to absolute space and the observer with velocity v.,, so thats·. 0 • are 
the emission positions of source and observer and S, 0 are their reception 
positions. 

We introduce two pairs of emission and reception angles : fJ;, and fJ., are 
the emission and reception angles if the source were at rest at its emission 
position, while(}' and(} are the emission and reception angles if the observer 
were at rest at its reception position. For certain problems it is convenient lo 
use the angles(}', 00, while for others the angles fJ;, , fJ. 

To find the relation between the emitted and received frequencies and 
wavelengths, we proceed as follows : Let us suppose that the real source emits 
a photon and an imaginary observer is al rest at point O (the reception 
position of the real observer). The frequency and wavelength registered by 
him, called intermediary, will be [use the first and second formulas (I0.5) and 
(I0.6)) 

(I_ v2le2)1 12 I - vcosfJle 
Pini = p) + vcos (}' le = p (I - v2le2) 112 • (I0.13) 

I+ vcosfJ'le (I - v'le 2) 112 
A = A--:-:--".'."""'.""~ = A---::-:-. 

'"' (I - v'le')112 I - vcosfJle 
(I0.14) 

If now an imaginary source is at rest at point S • (the emissio_n position of 
the real source) and emits a photon with frequency Pint and wavelength A,111• 
then the frequency and wavelength registered by the real observer when he 
crosses point O will be [use formulas ( I0.12) and ( I0.10)) 

60 

(I - v.,'le') 112 

I + Vo cos fJ,;le 

I - Vo cos fJle 

(I - v.,'le')112' 

Putting (I0.13) and (I0.14) into (10.15) and (I0.16), we obtain 

I - v cos(} le I - v2 le 2 112 
0 " (--,--~) 

I + v cos (}' I e I - v ,'. I e2 
Po= p 

=p 
1-vcosfJle (l-v,'.le2 ) 112 

I+ v0 cosfJ~le I - v2 le2 

+ vcosfJ'le (I - v2le2) 112 

A0 ° = A ------,--,- = A-----
(I - v'le') 112 1-vcosfJle 

(I0.15) 

(I0.16) 

(I0.17) 

( I0.18) 

When v., 
reduce to 

v, then fJ., = 7T - (}', fJ;, = 7T - fJ, and formulas (I0.17) 

( I0.19) 

while formulas ( I0.18) remain the same, and 

(I0.20) 

e • being the relative light velocity with respect to source and observer. In this 
case (} is the angle between the opposite line of light propagation and the 
velocity of source and observer registered with respect to both of them, while 
(}' is the same angle registered with respect to absolute space. 

In formula (10.19), Pis the frequency of the photons emitted by the 
source moving al velocity v and, thus, A in the corresponding formulas ( I0.18) 
is the emitted wavelength of such photons. If the same source should remain 
at rest in absolute space (remember that only when the source is al rest in 
absolute space can an observer, also'at rest, measure the emitted frequency 
and wavelength), the period of the emitted photons will become shorter 
(and the frequency higher) because of the absolute time dilation; thus the 
emitted wavelength A of such photons will become shorter [by the factor 
(I - v2 I e") 112 ), so that instead of (I 0.18) we have to write 

l+vcosfJ'le A 
A0 = A----=---- (I0.21) 

- v' le 2 I - vcosfJle' 

and now 
(I0.22) 

e; being the proper relative light velocity with respect to source and observer. 
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Formula ( 10.19) shows that if an observer moves with the same velocity 
as the light source, then the measurement of the received frequency can never 
give information about their absolute velocity. However, formula (10.21) 
shows that the measurement of the wavelength can give such information. 
These conclusions are of extreme importance. Let us note that, according to 
contemporary physics which proceeds from the principle of relativity, a 
Doppler effect appears only when source and observer move with respect to 
one another. In contradistinction to this conclusion, we have shown that a 
Doppler effect appears also when source and observer move with the same 
velocity, namely, the received wavelength is different from that which should 
be measured if source and observer be at rest in absolute space (see §32). 

10.2 DYNAMIC SHIFT (THE EINSTEIN EFFECT) 

The light Einstein effect is the difference between the frequency and 
wavelength with which a photon is emitted from a source of radiation and 
those measured by an observer due to the different gravitational potentials at 
the points where source and observer are placed; we call this effect also the 
dynamic (or gravitational) frequency and wavelength shifts of light and we 
have considered it in Marinov ( 1976a). A review of this paper is given in this 
sub-section. 

Let us have a mass M which is at rest in absolute space and a mass m 
(m << M) which moves with velocity v in the gravitational field of mass M. 
The gravitational energy of these two masses will be (see formulas (2.7) 
and (5.14)) 

mM u = -y------
K r (I - v'lc') 112 

( 10.23) 

According to the ninth axiom we have for this case 

(10.24) 

Putting here (5.8) and ( 10.23), taking into account (9.2) and supposing 
that the material point is a photon (i.e., supposing m = 0, v = c), we obtain 
after the integration of ( 10.24) 

or 

62 

+ <l>/c' 

I 
- 2 (vo" <1>0 - V <I>), 

C 

I + <l>o/c' ~ V [ I + (<I> - <l>o)/c'], 

(10.25) 

(10.26) 

where M 
<l>=-y-, 

r 

M 
<I>,,= - y -

r., 
( 10.27) 

are the gravitational potentials caused by mass M, respectively, at the point 
of emission of the photon whose distance from mass Mis rand at the point of 
reception (observation) of the photon whose distance from mass Mis r., (we 
consider Mas a point mass or as a homogeneous sphere). 

Formula (10.26) is the formula for the gravitational (dynamic) fre­
quency shift. We must emphasize that the period Tand the frequency v of the 
emitted photon are measured on a clock (imagine a light clock) which is 
placed in the region where the photon is emitted (i.e., where the gravitational 
patential is <I>), while the period T.," and the frequency v.," of the received 
photon are measured on a clock placed in the region where the photon is 
received (i.e., where the gravitational potential is <I>.,). Thus the subscript« ., » 

of the period and frequency signifies « observed » and the upperscript « " » 

signifies that time is measured on a clock placed in a region with gravitational 
potential <I>.,. 

Now we shall find the formula for the gravitational wavelength shift. 
Since according to our tenth axiom the photons move with velocity c in 
absolute space when this velocity is measured by the help of a nearby light 
clock, independent of the local concentration of matter, i.e., independent of 
the gravitational potential in the space region considered, we shall have 

( 10.28) 

where A is the wavelength of the emitted photon and A,, is the wavelength of 
the observed photon. 

From ( 10.16) and ( 10.28) we obtain 

I + <l>,/c' 
A.,= A I + <l>/c' (10.29) 

The physical quantity frequency (respectively, period) is a relatively 
more complicated notion than the physical quantity wavelength because the 
frequency is measured by the help of clocks which have different rates in 
dependence on their velocities in absolute space (as we have seen in §2.4 and 
shall further see in §I I.I) and on the gravitational potentials (as we shall see 
in § 11.2), while the wavelength is measured by the help of rigid rods whose 
lengths depend neither on their velocities nor on the gravitational potentials. 
Hence, formula ( 10.29) clearly shows that the wavelength of a photon which 
crosses a region with a stronger gravitational potential will have in that region 
a smaller length. This gravitational potential, whose absolute value is greater, 
is stronger. Thus, if J<l>.,I > l<l>J, then A.,< A. 
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The problem about the relation between the frequencies (the periods) of 
the photons is considered in more detail in § 11.2. 

§11. TIME DILATION 

I I.I. KINEMATIC (LORENTZ) TIME DILATION 

In §2.4 we have shown that the period of any light clock increases when 
its absolute velocity increases. According to the Newtonian conceptions this 
effect is different for a « transverse » and « longitudinal » light clock, the 
« arm » of the first being perpendicular and of the second parallel to the 
clock's velocity. According to our absolute space-time theory. this effect is the 
same for any orientation of the clock's« arm», being given by formula (3.18) 
and is called the kinematic time dilation. 

Proceeding from formula (3.31 ). we can easily show that formula (3.18) is 
valid for any orientation of the light clock's« arm ». Indeed, if the « arm » of 
the light clock is d, its absolute velocity v, and the angle between them(}'. then 
the clock's period, if measured in absolute time, is 

T = 
d d d I+ vcosfJ'•/c d I + V cos(}' le + -- +- = 0 c·• (I - v2/c')112 (l - v'lc') 112 C C C 

2d T 
C (I - v'lc') 112 (I _ v2/c') 112 • (I I.I) 

where T = 2d!c is the period of the same clock when being at rest.(}'• and(}' 
are the angles (for the« there » and « back » trips) between the velocity of the 
clock, v, and the relative light velocity. c·. i.e., the angles subtended by the 
direction of clock's propagation and the directions of light propagation, 
measured with respect to the moving clock. Thus it is(}'• = (}', (}' = 7T - (}'. 

Let us note that the angles fJ• and fJ (for the« there» and« back» trips) 
between v and c, i.e., the angles subtended by the direction of clock's pro­
pagation and the directions of light propagation, measured with respect to 
absolute space, are, in general, not complementary. 

The result ( I I.I) can be also obtained proceeding from formula ( IO. 7) 
and calculating the path with respect to absolute space which the light pulse 
has to cover during its« there » and « back » trips. 

As stated in §.1.3, the experiment has shown that also the periods of other 
physical systems are influenced by the kinematic time dilation, but the 
problem whether this phenomenon can be generalized for the period of any 
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material system remains open. At any rate, we can be sure that if the period of 
a system is determined by the motion of mass-less particles (i.e .. particles with 
m = 0), then this period will be influenced by the kinematic time dilation. 
Consider, for example, an aerial which emits radio waves. The period (fre­
quency) of the radio waves will be determined by th~ time i_n which th_e 
potential of the antenna's top passes through two successive maxima, and this 
is determined by the time in which light crosses the antenna's« arm ». 

Larmor (1900) was the first to introduce time dilation and rightly con­
sidered it as an absolute effect. Einstein (1905) analysed this phenomenon 
five years later and wrongly considered it as a relative effect. Lorentz treated 
time dilation in many publications also from an absolute point of view; since 
this effect follows logically from the transformation to which his name is 
attributed, we think that the kinematic time dilation should be called the 
Lorentz time dilation. 

Time dilation is one of the most controversial problems in physics. 
Thousands of scientific. semi-scientific, and popular books and papers have 
been dedicated to it. However, this phenomenon. according to which the 
period of any clock increases proportionally to the square of its absolute 
velocity, is no more paradoxical than the conclusion to which Archimedus 
came. establishing that all bodies lose weight proportionally to their volumes 
when put in a liquid. It was only the theory of relativity which threw theore­
tical physics into confusion, since it tried to explain time dilation as a relative 
effect, cutting its natural logical tie with the absolute motion of the material 
systems. 

11.2. DYNAMIC (EINSTEIN) TIME DILATION 

Now we shall show that the period of any light clock increases when it is 
placed in a region with a stronger gravitational potential (we repeat - see 
§ 10.2 - that this gravitational potential, whose absolute value is greater, is 
stronger). We call this effect the dynamic time dilation, or the Einstein time 
dilation, since Einstein ( 1907) was the first to introduce it into physics. 

As we are not interested in the kinematic aspect of the time dilation in 
this sub-section, we shall work in a frame which rests in absolute space. The 
clocks attached to absolute space have been called by us absolute (with more 
precision we shall call them kinematically absolute). The clocks moving in 
absolute space have been called proper (with more precision we shall call 
them kinematically proper). Clocks placed far enough from local concentra­
tions of matter are to be called dynamically absolute and clocks placed near 
local concentrations of matter are to be called dynamically proper. These 
regions which in the problem considered have the weakest gravitational 
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potential (which conditionally is to be assumed equal to zero) can be consi­
dered as lying far enough from local concentrations of matter. 

Consider two points with gravitational potentials <t> and '1> 0 (if l<I> 0 I > l<l>I, 
we can conditionally assume <l> = 0). Suppose that a photon is emitted from 
the first point and received at the second. According to our tenth axiom, the 
velocities of the emitted and received photons, if measured on dynamically 
proper clocks, will be equal to c. If these velocities are measured on a unique 
clock (say, on a clock placed in the <t>-region), we shall designate them, 
respectively, by c and c0 and call them dynamically absolute light velocity and 
dynamically proper light velocity. 

To find the relation between c" and c suppose that the gravitational 
potential changes from the emission to the potential point in a stepped form. 
The potential « steps » can be infinitely near to each other, but, for clarity, we 
shall assume the distances between them to be larger than the photon wave­
length. Now, according to our « burst » model for photons, we have to 
conclude that the rear of the« burst », when passing the ith potential« step », 

will change its velocity from c, to c,,, always with a time delay D.t, = "A.Jc, 
after the head of the « burst », "A., being the wavelength of the photon in the 
ith region. Thus the wavelength of the photon, after crossing the ith po ten ti al 
« step », will be 

"A. "A., 
),! =CJ.ID.I, = - c,.,. 

c, 
(11.2) 

If from the emission to the reception point there are 11 «steps», we have 

A ="A.= ~c =~c -~c0 

0 n en -1 n CI n - C • 
(11.3) 

From ( 11.3) and ( 10.29) we obtain 

I + <I>,/ c' 
C0 = c-----

1 + <l>/c' 
(11.4) 

This formula shows that the velocity of Ii'ght in a stronger gravitational 
field is lower if measured on a unique clock. 

The space regions in which velocity of light has the maximum possible 
value can be called dynamically absolute space. Obviously the space in which 
velocity oflight is isotropic (i.e., has the same value along any direction) is to 
be called kinematically absolute space. 

As the absolute times of emission and reception (i.e., the absolute pe­
riods) of the photon emitted in the <t>-region and received in the '1> 0 -region are 

T= Ale, T,, = "A."lc", (I 1.5) 
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we obtain, taking into account ( l0.29) and (l I .4 ), 

T" = T. 

The proper periods of the emitted and received photons are 

T ="A.le, T 0 ° = "A..,!c. 

From ( 11.7) and ( l0.29) we obtain 

I + <l>o/c' 
T0 ° = T----­

I + <t> / c' 

( 11.6) 

( 11.7) 

( 11.8) 

From ( 11.6) we conclude that if the frequ~ncies of t_he emitted ~P) an~ 
received (p

0
) photons are measured in the same time (say, m absolute time), it 

must be 
po= p. ( 11. 9) 

From ( 11.4) we conclude that the relation between the ~eriods '. a~d 1" 
of two light clocks with equal« arms » placed in the regions with grav~tat1onal 
potentials <t> and <t>,., if measured on a unique, say, absolute, clock will be 

1" = T I + <l>!c' (I I. IO) 
I + <f>.,/ c' 

Hence if for a certain period of time the absolute (the <t>-Iight-clock) has 
measured 1 time units and the proper (the '1> 0 -light-clock) has measured t" 

time units, the relation between them will be 

r = t 1 + <f>,./c' (11.11) 
I + <I>/ c' 

and this represents the phenomenon which we call the dynamic time dilation. 

Regarding the generalization of dynamic time dilation i~ the case where 
the period is not determined by the m~)tio? of ma~s-less ~ar~1cles, -~e _have to 
say the same as regarding the generahzat10n of kmemat1c time d1lat1on (see 

§ 11.l ). 
To explain in more detail the essence of d~namic time dilation, let_ us 

consider a light source which emits photons_ with frequency P_ when bemg 
placed at a point with gravitational potent10nal <t>. T_h~ penod T of the 
emitted photon is equal to the time in which the em1ttmg syst~m passes 
through its two specific states, and we sh~ll cal~ : also ~he penod of t~_e 
emitting system. Ifwe consider again an aenal em1ttmg rad10 waves, then 7 ,s 
the time in which, say, the potential of the antenna's top passes through two 

successive maxima. 
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Transfer now the source of radiation to a region with a gravitational 
potential <I>.,. Since the velocity of light in the <1>0 -region, measured on the 
<l>-clock, is c0 [see formula (11.4)], the period of the system, measured on the 
same <l>-clock, will become equal to T' and the relation between T and T' will 
be given by formula (II. 10). Thus the relation between the frequencies v and 
v0 (measured on a unique, say, absolute clock) of two identical material 
systems placed, respectively, in two regions with gravitational potentials <I> 
and <1> 0 will be 

I + <I> I c' 
v0 = v " = v [ I + (<I> - <I>)/ c' ] I + <l>/c' - " • (11.12) 

Hence if an observer is placed in a <l>-region and he receives photons 
which are emitted by two identical sources of radiation, the first placed in 
a <l>-region and the second in a <1> 0 -region, he will register a frequency v for the 
photons arriving from the <l>-source and a frequency v0 for the photons 
arriving from the <l>.,-source, the relation between them being given by 
formula ( I 1.12). This is due to the fact that the frequencies of a photon 
emitted in the <l>-region and received in the <l>,,-region are equal if measured 
on a unique clock [see (11.9)], but the frequencies of two identical <I>- and 
<!>.,-sources are not equal, if measured on a unique clock, and the relation 
between them is given by formula ( 11.12). 

This is the cause which leads to a shift in the spectroscopic lines observed 
on the Earth in the spectra of chemically identical stars' and Earth's gases. 

Let us consider a mass m (m -:/= 0) which, having velocity v in the region 
with gravitational potential <I>, acquires the velocity v., in the region with 
gravitational potential <1> 0 only as a result of the gravitational interaction 
between this mass and the masses producing the field. Proceeding from 
formula ( I0.24) and taking into account (5.8) and ( 10.23), we find 

I + <l> 0 /c 2 

(I - vo'/c')112 
I + <l>/c' 

(11.13) 

This is the energy conservation law for a point mass in a gravitational 
field. 

On the other hand, if two clocks move at velocities v and v0 with respect 
to absolute space, then, according to kinematic time dilation, the relation 
between their readings t and /0 , which correspond to the same absolute time 
interval, will be [see (3.19)] 

- v 'le 112 
/ 0 = I (---0 

-) 

- v'lc' 
(11.14) 
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Comparing (11.11), (11.13) and (11.14), we come to the following very 
important conclusion : If we wish to change the rate of a clock, we have to 
change either its velocity or its gravitational potential. In both cases we have 
to expend the same quantity of work. Here we must mention that we have to 
expend the same quantity of work in absolute value, since from ( 11.13) we 
obtain, within an accuracy of second order in I/ c, 

I I 
- n1 v 2 - -m v' = - (m <I> - m <I>) 
2 " 2 " ' 

(I 1.15) 

and the gravitational energy (together with the gravitational potential) is 
negative, while the kinetic energy is positive. This can be established also 
with the following reasoning : If we wish to slow the rate of a clock « kine­
matically », we have to enhance its absolute velocity, and thus do positive 
work, while ifwe wish to achieve this« dynamically», we have to transfer the 
clock from a point with a weaker gravitational potential to a point with a 
stronger gravitational potential, and thus do neiative work. 

§12. COSMOLOGICAL ASPECTS OF LIGHT KINEMATICS 

12.1. THE PHYSICAL ESSENCE OF REST ENERGY 

We assume that the rest energy e, = mc2 of a material point 1s its 
gravitational energy with the mass of the whole Universe taken with a 
negative sign 

m c' =my f dmlr 
V 

or c' = y f dmlr, 
V 

( 12.1) 

where r is the distance between a mass dm and our mass m, the integration 
being carried out over the volume V of the whole Universe. Thus we can call 
the rest energy of mass m its universal gravitational energy. 

Since in §8.3 we mentioned that logic requests one to work with the 
reduced masses, we have to write (12.1) in the following form 

m,. c = m,. y f dm,lr 
V 

or c = y f dm,.lr. (12.2) 
V 

The second equation (12.2) gives the physical essence of light velocity. 
Its numerical value is determined by the matter of the whole Universe and its 
distribution, and represents the universal gravitational potential (divided by 
C !) 

<I> = - y f dm/r or 
V 

<I>,.= - y f dm,.lr 
V 

( 12.3) 
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taken with a negative sign. The potential ct>. is to be called the reduced 
universal gravitational potential. 

If a reduced mass m. changes its position from a ct>,.-region to a cI>. 0 -re­
gion, its reduced universal gravitational energy will change with 

/J.U,. = m,. ct>,.0 - m,. ct>,., 

and hence its reduced absolute (rest) time momentum (see §5) 

p,. = pie = m,. c 

has to change with 

(12.4) 

(12.5) 

/J. Pr = m. c0 
- m. c , (12.6) 

where c and C° are the velocities of light in the ct>c- and cI>c0 -regions. 

Since the rest energy is the same thing as the universal gravitational 
energy, it must be 

/J.U,. = !J.p., 

and from (12.4), (12.6) and (12.7) we obtain 

l + cI>.0 /c 
c0 = c----

1 + cI>.lc0 ' 

(12.7) 

(12.8) 

which, within the necessary accuracy, can be written in the form (l 1.4). 

Let us note that when a mass changes its position, and correspondingly 
its gravitational energy changes, then, according to the energy conservation 
law (l l.15), its kinetic energy changes by the same amount, taken with a 
negative sign. However, when a mass changes its position, its universal 
gravitational energy also changes, and since the rest energy is another form of 
writing the universal gravitational energy, the velocity of light must cor­
respondingly change its value. Formula ( 10.24) represents the energy con­
servation law, while formula (12.7) represents an equality between two 
identical quantities. 

We shall now briefly discuss the problem about the experimental con­
firmation of our hypothesis ( 12. l ). 

First we have to answer the question about the model of the Universe 
which our absolute space-time theory puts forward. By the help of observa­
tions, it has been established that the Universe represents a system of galaxies 
and clusters of galaxies which are distributed homogeneously in space. Thus, 
as a reasonable approximation, we can consider the Universe as a sphere with 
radius R tending to infinity and with an average constant mass density µ ••. 
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We shall suppose that outside this sphere there is a void. The universal 
gravitational potential for such a model of the Universe will be 

R R 

ct> = - y f µ •• dV = - 4 1r y µ., f r dr = - 2 1r y µ._ R2 • 

o r o 
(12.9) 

From (12.l), (12.3) and (12.9) we obtain the following expression for 
light velocity 

c2 = 2 1r y µ_. R2 • (12.10) 

Thus if our hypothesis is adequate to physical reality, the average mass 
density and corresponding« radius» of the Universe, which are experimen­
tally established, must satisfy the relation 

µ •• R2
,;;;; c2 /21ry = 2.1021 gem ', (12.11) 

since always some mass will remain outside the sphere with rad is R which has 
been taken as a« radius of the observable Universe». 

At the present time the experimental data are (Menzel et al., 1970) 

µ •• = IO 10 g cm ', R = 3.102

• cm, thus µ," R2 = 9.10 2
• g cm '. (12.12) 

12.2. THE PHYSICAL ESSENCE OF COSMOLOGICAL 
«REDSHIFT» 

Hubble (1937), on the grounds of statistics of observational data, esta­
blished that the wavelengths oflight coming from distant galaxies are shifted 
according to the law (called Hubble's law) 

A., - A 
---= 

A 
/J.A 
- = Hr A , ( 12.13) 

where A is the wavelength of the photons which the luminescent gas observed 
in the galaxy emits on the Earth, A., is the wavelength actually observed, r is 
the distance to the galaxy and H is the so-called Hubble constant. 

Since it is A0 >A, then the visible spectral lines are always shifted to the 
red end and this effect is called also the cosmological « red shift ». 

Conventional physics and astronomy hypothetically assume that the 
galaxies are receding from each other, the recession velocity being propor­
tional to the distance between them, so that the cosmological « red shift » is 
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due to the appearing Doppler effect*. Since we have established by means of 
our« coupled-mirrors » experiment(§ 19.2) that the Sun moves at a velocity 
of about 300 km/s with respect to absolute space, then one has to accept that 
our Sun is situated very near to the «centre» of the Universe, because the 
cosmological « red shift » for remote galaxies, if considered as a Doppler 
effect, corresponds to recession velocities approaching c. So, for instance, the 
quasar PKS 0237-23 has a« red shift» !:,),JJ... = 2,22, and ifwe should accept 
that this shift is due to a longitudinal Doppler effect, then on the grounds of 
the second formula ( 10.8), where we put Om = 0, we shall obtain v = 247.000 
km/s. 

Thus we consider the recession hypothesis as highly artificial, since the 
probability that among millions of galaxies it is ours which is exactly at the 
«centre» of the Universe is very low. 

In our absolute space-time theory we explain the cosmological « red 
shift» by the gravitational action of the masses of the whole Universe, calling 
it the cosmological gravitational frequency and wavelength shift, while the 
« red shift» in the spectral lines of light emitted from a star and due to the 
gravitational action of the mass only of this star is called the stellar gravita­
tional frequency and wavelength shift. 

Let us consider mathematically the cosmological gravitational shift. 

If there is a sphere with radius R whose mass density µ = µ(r) has a 
central symmetry, then the gravitational potential at a point distance r from 
the centre can be calculated from the following formula 

JR 477 s' '2d' <I> (r) = - 4 7T y µ r'dr' - - y µ r r. 
r o 

(12.14) 

• Burcev [Phys. Lei/., 27A. 623 (1968)) put forward the hypothesis of rotating quasars (and 
galaxies) explaining the large red shifts as a transverse Doppler effect. This conclusion is due to 
an incorrect treatment of the light Doppler effect formulas. Taking into account § 10. I (see also 
§30), one should immediately establish that Burcev analyses only the formula for the post-tra­
verse Doppler effect (i.e., he assumes that there is no radial component when the angle. between 
the source-observer line and the direction of the relative velocity is equal to w/2 at the moment of 
emission). If one should analyse the formula for the ante-traverse Doppler effect (i.e .. if one 
assumes that there is no radial component when the angle between the source-observer line and 
the relative velocity is equal to w/2 at the momc;nt of reaption). then one should come to the 
conclusion that at a suitable value of the transverse component a blue shift would be seen for any 
value of the radial component. • 
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Supposing µ = µ •• = Const, we obtain for the difference between the 
gravitational potentials at the centre of the sphere and at a point distance 
r ( < R) the following expression 

~<l>(r) = <I> (0) - <I> (r) = 
2 

' 31ryµ •• r. ( 12.15) 

We assert that always the point of emission is to be put at the centre of 
the Universe because the point of emission is only one, while the points of 
reception can be an infinite quantitr, and we assume that there is no such 
centre as the Universe is without limits and thus any point can be considered 
as its centre. Here our conceptions are almost identical with those of Nicolaus 
Cusanus (1401-1464), one of the most brilliant minds in history, who 
forwarded the following cosmological model: « The Universe is a sphere 
whose centre is everywhere and the surface nowhere ». 

If a photon emitted from a space region with gravitational potential 
<I> = ~<l>(0) has a wavelength >.., then in a space region with gravitational 
potential <I>,. = ~<l>(r) this photon will have a wavelength J...0 and the relation 
between all these quantities will be given by formula (10.29). Thus, substi­
tuting into this formula the potential (12.15) for r = 0 and r = r, we obtain 

>.. 
>.. .. = ----~ (12.16) 

1-~2.. r2 
3 c' µ •• 

which formula for r ~ R [see (12.10)) can be written 

Denoting 

2 7T y 
- _,, r' 
3 c' ra, (12.17) 

( 12.18) 

and calling HM the Hubble-Marinov constant, we can writte ( 12.17) in the 
form 

H ~ r', (12.19) 

which we call the Hubble-Marinov law. 

Plotting the red shifts ~A/A of the remote galaxies (observed 
spectroscopically) versus their distances to the Earth (estimated from their 
visual magnitudes at the assumption that the absolute magnitudes are equal), 
one can find the value of the Hubble-Marinov constant, and then from 
equation (12.18) one can calculate the average mass density in the Universe. 
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We have done this in Marinov ( 1978g), establishing II ,1 = 1.98.10 " 
cm '. Taking for µ," the statistically established value ( 12.12 ), we find, ac­
cording lo formula ( 12.18), HM= 1,25.10 1• cm '. 

We show in Marinov ( 1978g) that our theoretical quadratic relation 
(12.19) fits much better to the experimental points of the dependence 
«redshift - distance» then the hypothetical linear Hubble relation (12.13). 

Formula ( 12.16) shows that for r _, R, where R is the« radius» of the 
Universe, it is [see formula (12.10)) 

21ry '~ y - - µ,., R = 2 1r, µ,, .. R' = I , 
3 C1 C 

( 12.20) 

so that>..., _, 00 . For this reason, even if there is a matter outside the sphere 
with radius R, we can receive no information about it because the photons 
which would come from there will be extremely faint, i.e., with an extreme 
low energy. 

Hence. according to our conceptions, even under the assumption of an 
infinite Universe. factually the Universe must be regarded as finite as we 
cannot « look » outside the sphere with radius R established from relation 
( 12.10). Of course, if a space traveller undertakes a cosmic journey. then new 
galaxies will enter into the sphere of his Universe along the line of his motion 
and the most« red » galaxies in the opposite direction will disappear: sailors 
experience similar phenomena when they pass islands and other ships. Thus 
we can call R not« radius of the world» but« radius of the world's horizon ». 

Ending this section, we must emphasize that, since cosmology operates 
with conditions at infinity. one can never be sure whether one's world model 
is adequate to reality. 

§13. PROPAGATION OF LIGHT IN A MEDIUM 

13.1. DRAG 

In classical (i.e., non-quantum) physics we consider only the gravita­
tional and electromagnetic interactions of particles (with masses different 
from or equal to zero). In the axiomatics of classical physics we do not 
introduce any assertion about the phenomenon «collision» (respectively. 
« coalescence » and « disintegration ») of particles. All these problems are to 
be considered in quantum physics. However, under certain idealized as­
sumptions we can consider some aspects of these phenomena also in classical 
physics. These assumptions are : 

a) The sizes of the material points are small enough with respect to the 
distances between them, so that we can ignore their sizes altogether. 
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b) When the particles collide (respectively. coalesce or disintegrate) we 
take into account only the laws of conservation (see the end of §6.2). applying 
them to the particles before and after the collision (respectively, coalescence 
or disintegration). 

The emission ofa photon (i.e., ofa particle with mass equal to zero) by a 
particle with mass different from zero represents a disintegration of a par­
ticle. The absorption (reception) of a photon by a particle represents a 
coalescence of particles. 

When a photon propagates through a medium (i.e., through a space 
region in which many particles are dispersed) it will collide with the first 
«hit» particle, and be absorbed, reflected (dispersed) or re-emitted. In the 
first case we call the medium « opaque » and in the last« transparent ».Asa 
rule, the re-emission of a photon by a particle occurs a certain time after its 
absorption. This is our« model » for the propagation of light in a medium. As 
a matter of fact, in this « model » we do not introduce additional characte­
ristics for the quantity « particle » other than those introduced in our third 
axiom, and thus there is no new assertion which merits being introduced in 
the axiomatics. 

The problem about the velocity of light in a transparent medium when 
the medium or the observer or both move with respect to absolute space is 
considered in Marinov (1974a, 1976b). A review of the theoretical parts of 
these papers follows. 

A. Medium and observer at rest. 

Let us have a medium which rests in absolute space. If, in a unit of time, 
a photon crosses a distance cl n through the medium and if, for the sake of 
simplicity, we assume that it is always being re-emitted by the particles in the 
same direction along which it hits them, then we must conclude that the 
photon propagates ( I In )th part of the time unit as a « free » photon and 
(I - lln)th part of the time unit it rests« absorbed» (or« hitched») by the 
particles. Thus with respect to an observer who is also at rest in absolute 
space, it moves with the mean velocity 

c'" = cln. ( 13.1) 

The factor n is called the refractive index of the medium. 
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Fig. 13-1 

B. Medium moving, observer at rest. 

Let us now calculate the velocity of light in a medium moving with 
velocity v in absolute space with respect to an observer who is at rest. 

Suppose first (fig. 13-1) that the medium moves with velocity v along the 
x-axis of the used rest frame K only during this time when the photon is 
absorbed by some particle (molecule) of the medium and suppose that 
during the time between the re-emission and next absorption the medium 
(the molecule) is at rest. If we consider the path of the photon between two 
successive absorptions, then this path can be presented by the broken line 
A BC in fig. 13-1. Supposing that the time between two successive absorptions 
is chosen for a time unit, i.e., that 

A Blv + BC!e = l, ( 13.2) 

we obtain 
AB=v(l-lln), BC= cln. ( 13.3) 

If now we suppose that the medium moves with velocity v during the 
whole time, then the next molecule will be caught not at point C but at point 
D, where the distance CD is covered by this molecule in the time in which the 
photon covers distance BD, i.e., 

CD= vln. (13.4) 

Thus now the distance covered by the photon between two successive 
re-emission and absorption will not be BC but 

e' v' 112 v 
BD =BE+ ED= (- - -sin'O') + - cos8' 

n' n' n ' 
(13.5) 
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where 
(J' = 0,, - y ( 13.6) 

is the angle between the « free path » of the photon and t~e vel~)city of the 
medium with respect to the observer (i.e., to frame ~ while 0,. is_ the _sam_e 
angle with respect to the medium (i.e., to the moving frame K which 1s 

attached to the medium). The angle 

CE vln v . 
y = arc sin -- :::: -- sin 0' ~ - Sin 0,, 

BC cln c 
( 13.7) 

represents the difference between thes~ two_ an~les which is small and, as we 
shall further see, it is enough to consider 1t with an accuary of first order 

in vie. 
Within the same accuracy of first order in vie we can write, having in 

mind (13.6) and (13.7), 
V 

cos o· = cos 0,, + -sin' 0,,. (13.8) 
C 

The distance covered by the photon between two successive absorptions 

with respect to the observer will be 

AD'= (AB+ CD)'+ BC'+ 2(AB + CD)BCcosO,,. (13.9) 

Putting here (13.3) and ( 13.4), and working with an accuracy of second 

order in vie, we obtain 

c' vc i i2 c I v' . , 
AD = ( _ + 2 - cos 0,, + v') = - + v cos 0,, + -2 -: 11 sm 0., • 

n' n n c 
(13.10) 

To obtain the mean velocity of the photon with respect to the observer, 
we have to divide the distance AD by the time for which the broken !me AB D 
is covered. This time, taken with an accuracy of second order in vie, is 

frn = AB+ BD = l + ~ cos 9· - I 
v e en 2 

v' 
sin' 8' = 

c'n 

v I v' 
= I + -cos 8,, + -2 , 

en c 11 
sin' 8,,, (13.11) 

where we have used (13.3), (13.5) and (13.8). 

Thus, for the mean velocity of the photon in the moving medium 
measured by the observer at rest, we get, within an accuracy of second order 

in vi c, 
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AD e I 
('Ill= - - + V (I - -) cos 0 -

( m n 112 0 

v' I I v'n I ( I -- ) cos' 0 + - - (I - , ) sin' 0.,, ( 13.12) en n' 0 2 e n 

having suppressed the factor 11 in the denominator of the last term on the 
right side of ( 13.11 ). 

Let us introduce the angle between the velocity of the medium and the 
mean velocity of the photon which is measured by the observer at rest 

where 

0 = 0., - a, 

v sin 0 

el11 

vn 
- sin0 
e 

(13.13) 

( 13.14) 

is the difference between the angles 00 and 0 which is small and can be 
considered only with an accuracy of first order in vi c. 

Within the same accuracy of first order in vie we can write, having in 
mind (13.13) and (13.14), 

cos 0., = cos 0 
Vil 

sin' 0. 
C 

( 13.15) 

Substituting this into (13.12), we find 

C I 
e,.. = - + v ( I - - ) cos 0 -

n n' 
( 13.16) 

v' I I v' I 
- - (I - - ) cos' 0 - - - 11 (I - - ) sin' 0 . 

en 11' 2 c 11' 

The « model » for the propagation of photons in a moving medium 
described here is called by us the« hitch-hiker» model. Let us mention that 
in our youth, when crossing countries by « hitch-hiking», we never waited 
for the next car at the same point where being dropped by the previous one, 
but always tried to « gain » more distance by walking. Of course, our pede­
strian velocity could never be higher than that of the cars. 
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Fig. 13-2 

C. Medium at rest, observer moving. 

Let there be (fig. 13-2) a medium with refractive index n that is at rest in 
absolute space and in which light propagates along a direction that makes an 
angle 0 with the x-axis of a frame K attached to absolute space. Let an 
observer attached to a frame K move at velocity v along the positive direc­
tion of the x-axis of frame K, and suppose that the x-axes of both frames are 
colinear. 

We choose again the time between two successive absorptions of a 
photon on the molecules of the medium as a time unit. At such a choice of the 
time unit a photon propagating along the direction AF in the rest frame K is 
«hitched» (I - lln)th part of the time unit on a molecule which rests at 
point A, and ( I ln)th part of the time unit moves along the line A Funtil it will 
be « hitched » again on another molecule which rests at point F. 

In the moving frame K we have the following picture : During the time 
in which the photon is « hitched » it will cover distance AB with velocity v 

and during the time in which the photon propagates with velocity e in 
absolute space it will cover distance BC in K' (under an angle 0' to the 
x' -axis) with the proper relative velocity [see (3.32)) 

• e 
c., = I + v cos 0 • I c ' ( 13.17) 

since during the time in which the photon has covered the broken line A BC in 
frame K' the molecule that rests at point Fin absolute space has covered 
distance FC in K' with velocity v. The mean proper relative light velocity in 
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frame K' (i.e., the average light velocity measured in K' by the help of a clock 
which rests there) will make an angle 00 with the x' -axis and have magnitude 

c:m =AC= (AB 2 + BC2 - 2AB BCcos0') 112 , (13.18) 

since the time between two successive absorptions of the photon is taken 
equal to unity. 

Putting into ( 13.18) 

I 
AB= v(I - -), BC=---c __ _ 

n I + v cos(}' le n 

and working within an accuracy of second order in vie, we obtain 

, c , v2 I v2 

com = - - V cos(} + - COS 2 (}' + - - n (I 
n en 2 c 

I 2 

- ) sin 2 (}'. 

n 

(13.19) 

(13.20) 

The angle which the observer in frame K' will measure between the 
direction of propagation of light and his own velocity is 00 • Thus, putting into 
(13.20) 

(}' = (}o - Y • (13.21) 

where y is a small angle and, as we shall further see, within the necessary 
accuracy we can take 

AB sin(}' v . v 
siny = __ A_C __ ~c(n - l)smO' ~c (n - l)sin00 , 

(13.22) 
we obtain 

c v2 lv2 

c:'" = - - vcos00 + - cos2 00 - -- n(I 
n en 2 c 

_!_)sin 2 0u. (13.23) 
n2 

The angle between the direction of propagation of light and the velocity 
of the observer which should be measured in frame K is 0. Thus, putting into 
(13.23) 

(13.24) 

where a is a small angle and, as we shall further see, within the necessary 
accuracy we can take 

sin a= 
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CF sin(} 
AC 

V ~ 11 sin(}, 
C 

(13.25) 

we obtain 

, C 
C0 m = - - V COS (} + 

n 

v2 I v2 I . 
cos'(}+ -- n(I + -)sm2 0. (13.26) 

en 2 c n2 

D. Medium and observer moving. 

Let us now find the velocity of light in a medium moving at velocity v 

with respect to absolute space measured by an observer attached to the 
medium. 

Since in such a case for ( I - I In )th part of the time unit the photon is 
« hitched » and does not move with respect to the moving frame K' which is 
attached to the medium, then the « effective » velocity of the frame with 
respect to the trajectory of the« free» photon will be vln. Thus. according to 
formula (3.32), the proper velocity of the « free » photon with respect to K' 
will be [write in (3.32) V = vln] 

V 
- cos(} 

C en 
c(: = =c ( 13.27) 

V v2 

I+ -cos(}' 
en c2n2 

The photon moves with this velocity only (II 11 )th part of the time unit, so 
that the mean proper velocity of light with respect to K' will be 

C 
-----= 

11 I + !_cos(}' 
en 

C 

n 

V 
I - - cos 0 

en 
(13.28) 

where (J' and (} are the angles between the direction of light propagation and 
the velocity of the medium measured, respectively, in the moving and rest 
frames. 

13.2. REFRACTION 

In this sub-section we shall show that our model for the propagation of 
light in a medium as a process of successive « absorptions » and « re-emis­
sions » of the photons leads immediately to Snell's law for the refraction of 
light. 

We shall perform the calculation by .considering a bundle of photons (a 
light beam) which is incident under an angle cp on the boundary between the 
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media A and B with refractive indices n A and 11 11 . Consider two photons which 
lie on the extremities of the bundle and on a line which is perpendicular to 
the bundle. Suppose that the distance between the points at which both 
flank-photons cross the boundary is d. After the instance at which the first 
flank-photon crosses the boundary, the second flank-photon has to move a 
certain time t with the velocity c/n A in the medium A and cover a distance 
dsincp, until it also reaches the boundary. Thus we can write 

dsincp 
t = -----, ( 13.29) 

cln A 

During this time t, the first photon will move with velocity c/n" in the 
medium B and will cover the distance dsiniJ,, where it, is the refractive angle 
(note that when the second flank-photon has reached the boundary the first 
and second flank-photons must lie on a line which is perpendicular to the 
bundle). Thus we can write 

dsiniJ, • 
I=----, 

cln 8 

From the last two formulas we obtain Snell's law 

sin it, 11 A 

sin «p n 8 

13.3. COLLISION BETWEEN PHOTONS AND PARTICLES 

(13.30) 

(13.31) 

As we said, when particles collide, we shall describe the phenomenon, 
taking into account only the laws of conservation and applying them to the 
systems of particles before and after the collision. 

In this sub-section we shall consider only the elastic collision (i.e., a 
collision in which the masses of the particles before and after the collision 
remain the same) between a photon and a particle with mass different from 
zero (the so-called Compton effect). We shall show that the Compton effect 
represents nothing but a light Doppler-effect where the energy of the « mir­
ror-receiver" is comparable with the energy of the striking photon so that, 
under the hit of the photon, the« mirror-receiver» changes its velocity. 

As we have mentioned in Marinov ( 1978h), several authors have pointed 
out the equivalence between the Compton and Doppler effects. However, all 
these authors have treated this problem by considering the Compton scatte­
ring on particles at rest. We shall consider the more general case of collision 
between a photon and a moving particle where the Doppler essence of the 
Compton scattering becomes more obvious. 
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The momentum and energy conservation laws applied to the elastic 
collision ofa photon and a particle with mass mare [see (4.4). (5.8) and (9. IO)) 

111 v hv 111 v' /11,· 
--------c-:- + - n = ----- + n·. 
(I - v'lc') 11 ~ c (I - v''fr') 1' 2 c 

me' me' 
------,-.-+ hv = + 1,,, · 
(I -v'lc') 112 (I - v"'/c') 1 2 

( 13.32) 

where v. v· are the velocities of the particle before and after the collision:"·,, 
are the freyuencics and n, n· arc the directions of propagation of the photon 
before and after the collision. 

Syuaring both these eyuations and subtracting the first from the second. 
we obtain 

V 
- cos (v, n) 

(" 

v' = V -------
V 

I - - cos ( v ·, n ") 
C 

I - v''lc' ,12 
(---). 

I - v'lc' 
( 13.33) 

This is the dependence between the characteristics of the photon and of 
the particle before and after the collision in which only 3-d!mensional inv'.1-
riants are involved. If we interchange the places of the different terms in 
equations (13.32) before squaring them, other form~las can he obtained f~r 
the description of the Compton effect where the cosines of other angles will 
appear. 

The collision can be considered as « absorption » of the photon by the 
particle followed by an immediate « re-emission "· The « absorbed » fre­
quency of the photon will be denoted by ,,,,,, (v intermediary) and the 
« re-emitted » frequency (which can be received by an observer at rest) by 11·. 

According to the second formula (10.12), where we write v., = v,,,,. we 
shall have V 

- - cos (v, n) 
C 

( I - v' I c') 1 '2 
(13.34) 

since (J = (v,n) is the angle between the velocity of the observer (the hit 
particle) and the direction of the wave vector of the emitted light at the 
moment of reception («absorption » ). 

According to the first formula ( I0.5). where we write v., 
v = v·, we shall have 

v· = v,,,, 
(I - v ''lc') 112 

V 
+ - cos (v', -n·) 

l" 

( 13.35) 
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since (}' = (v', -n') is the angle between the velocity of the source and the 
opposite direction of the wave vector of the reflected light at the moment of 
emission ( « re-emission » ). 

From the last two formulas we obtain the result (13.33). 

We must emphasize that when the particle is elementary (for ex.ample, 
an electron) its mass cannot change and the « re-emission » must follow 
immediately after the « absorption », i.e., the photon will only be « reflec­
ted» by the particle. If the particle is compound (for ex.ample, an atom), its 
mass can change and the « re-emission » can follow a certain time after the 
absorption. 

The Doppler effect formulas give the relation between the frequencies 
of the emitted and observed light when source and observer move with 
respect to one another. In the Compton effect source and observe~ are at r_est. 
However, between them there is a moving « mirror» (the particle) which, 
moreover, changes its velocity under the hit of the photon. Hence it is obvious 
that the relation to which the Doppler effect formulas lead (where we are 
interested only in the mirror's velocity before and after the reflection of the 
photon) must be the same as the relation which can be obtained from the 
momentum and energy conservation laws. 

Formulas (13'.32) represent four relations for six. unknown quantities: 
v·, v·, n'. Thus two of these quantities must be taken arbitrarily and they are 
determined by the unit vector n, which is perpendicular to the « reflecting 
plane» of the moving mirror (Doppler treatment) or by the unit vector n· 
along the direction of propagation of the « re-emitted » photon (Compton 
treatment). Using the law of light reflection (the incident and reflected rays 
lie in the same plane with the perpendicular to the reflecting plane and make 
equal angles with it), we can find n, when n and n· are given, or n· when n and 
n, are given. 

Thus the Compton scattering represents a Doppler effect where one 
observes reflection oflight from a« mirror» which changes its velocity under 
the action of any sinile incident photon. 

13.4. RELATION BETWEEN REFRACTIVE INDEX AND DENSITY 

The relation between the refractive index. n of a transparent medium 

Our « model » for the propagation of light in a transparent medium 
leads to the following relation 

n-1 
( 13.37) 

where KM is a constant which we call the Marinov constant. 

We come to formula (13.37) in the following extremely simple way: As 
we stated ( § 13.1 ). at a density µ. of the transparent medium, I/ n is the time 
in which, on average, the photon travels with velocity c in vacuum and 
I - I/ 11 is the time during which, on average, the photon remains« hitched » 
to the molecules of the medium. Now suppose that the density of the 
medium has changed fromµ. toµ.·. The refractive index. will change. respecti­
vely. from 11 to 11 •• For that distance for which the photon was « hitched » 
I - I/ 11 seconds and has traveled I/ 11 seconds it will now be « hitched » 

n 

1,8 

and its densityµ. is given by the well-known formula of Lorentz-Lorenz [see, 1,1 

for ex.ample, Lorentz (1916)] 

11 2 - I 
----=KL, 
,,2 + 2 µ. 

where KL is a constant which we call the Lorentz-Lorenz constant. 
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(µ'Iµ)( I - I/ 11) seconds and, as before, will travel I/ 11 seconds, since the sum 
of the « free flight » distances remains the same and only the number of the 
« hitch-points » has changed. Thus we can write 

I-

µ· I 
- (I - -) 
µ 11 

µ· I I 
-()--)+­
µ 11 11 

From here formula (13.37) can immediately be obtained. 

(13.38) 

In Marinov (1978i) we show that our formula (13.37) finds a better 
support in the experiment than the Lorentz-Lorenz formula ( 13.36). In fig. 
13-3 we give the graphs of 11 as a function ofµ according to formulas ( 13.36) 
and (13.37). The experimental points are taken from Michels et al. ( 1947), 
who have measured this dependence for ethylene (µ is given in Amagat 
units). 

However, even without looking at the experiment, we can show that 
formula (13.36) is unsound. 

Indeed, write formula (13.36) in the form 

I + 2 K µ 112 
n = ( L ) 

I - KLµ 
( 13.39) 

According to this formula, with the increase of the density. the refractive 
index increases very rapidly and for a certain critical density µ,, = I/K I it 
becomes equal to infinity. The Lorentz theory [see, for example, Lorentz 
(1916)] cannot offer a sound explanation to this peculiarity. According to our 
formula ( 13.37), no such peculiarity exists, and 11 becomes equal to infinity 
only forµ equal to infinity. 
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§ 14. INTRODUCTION 

In this second part we shall give short accounts of the most important 
experiments which we consider decisive for the refutation of the principle of 
relativity. for the rejection of the relativistic space-time conceptions and for 
the restoration of the old Newtonian absolute conceptions dressed in the 
clothes of our absolute space-time theory. 

Certain of the experiments can reveal the absolute motion of the labo­
ratory, others cannot reveal it practically because all absolute effects cancel 
each other in the effect to be measured. On the other hand, certain experi­
ments can give reliable effects when today's experimental technique is used, 
others cannot. 

We describe all these experiments, concentrating our attention on their 
essence, without entering into the details which the reader can find in the 
original papers. Additional references to other authors can be found in the 
same papers. 

We consider the «coupled-mirrors» experiment (§ 19) and the « rota­
ting disk» experiments (§25 and § 26) as decisive for the rejection of Eins­
tein's conceptions. The analysis of the other experiments (ours and of other 
authors) can strengthen one's faith in space-time absoluteness. 

§ 15. THE QUASI-RCEMER EXPERIMENT 

With the help of the Rremer experiment (i.e., the observation of the 
eclipses of a Jupiter satellite from the Earth during the course of a year) for 
the first time in history the velocity of light was measured. If this experiment 
be performed with the aim of measuring the Earth's absolute velocity. we call 
it the quasi-Reemer experiment. 

Now we shall show that according to our absolute space-time theory the 
Earth's absolute motion cannot be revealed by the help of the quasi-Rremer 
experiment. This problem is considered in detail in Marinov ( I 978j). 

Suppose (fig. 15-1) that at the initial year of observation when the Earth 
and Jupiter are in opposition the absolute velocity of the Sun system Vs 

makes an angle O with the opposition line. 

Let us observe the zeroth eclipse of the satellite at the moment t", read on 
a terrestrial clock, when the Earth and Jupiter are at the positions E.,, J.,, i.e .. 
half a year before the moment when they will be in opposition. 
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Fig. 15-1 

The first eclipse will occur at the moment 

T - J,E, - JOEO 
t' = r + , , (15.1) 

Co 

where Tis the period of revolution of the satellite, E,, J, are the positions of 
the Earth and Jupiter at the moment t', and c;, is the proper relative velocity 
oflight coming from Jupiter with respect to the Sun system. 

According to formula (3.32), where we write V = Vs, we have 

C 
c' = ------ = C 

0 I+ v5 cos0'/c 

- v 5 cos Ole 

I - vs2;c2 
( 15.2) 

where o· is the angle between v 5 and the line of light propagation registered 
with respect to the moving Sun's frame and O is the same angle registered 
with respect to absolute space. 

Since Jupiter covers (I/ 12)th part of its orbit during an Earth year, we 
shall assume that the positions J.,, J 0 are very near to one another. Thus in 
(15.2) we can consider angle o· (~ 0 within the necessary accuracy) to be 
equal to angle O in fig. 15-1, i.e., to the angle between the opposition line and 
the Sun's absolute velocity. 
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Let the 11th eclipse be observed at the moment t" when the Earth and 
Jupiter are in opposition. We shall have 

lnEn - J.,E., 2R (I Vs O 
Llt~ = t" - 1° = n T - , = n T - - + -'- cos ) . 

en C C 
(15.3) 

where R is the radius of the Earth's orbit. 

Finally, suppose that the 2nth eclipse is observed at the moment 12" after 
another half-year when the Earth and Jupiter are at the positions E,.,. J,.,. 

We have 

12.,E,., - J,,E,, 2 T 
12 " - t" = 2 nT - ----- = n . 

c(~ 

(15.4) 

From here we can determine the period T of revolution of the satellite. 
Using (15.4) in (15.3), we find 

ilt'" 2R 2Rv -
d(" = - 0

- - - - __ S COS O = A/n 
" 2 C C2 u " 

( 15 .5) 

where llt~ is this time interval which follows the initial moment, after whose 
elapsing one has to observe the nth eclipse if the absolute velocity of the 
Sun is equal to zero, or if the velocity of light is not direction dependent. 
When Rremer made his observations, he compared the calculated time 
interval Llt:" 12 with the really measured time interval Llt~ and, knowing R, 
he established c. 

Any traditional absolutist would conclude that making use of formula 
(15.5) one could establish the component v 5 of the Sun's absolute velocity in 
the plane of the ecliptic when performing observations of the eclipses of a 
Jovian satellite during 12 years in which the angle O between v 5 and the 
opposition line takes different values in the range of 360", so that the diffe­
rence ot = Llt~ - llt;: will vary in the range - (2 Rv 5 !c'),,,;;; ot,,,;;; (2 Rv_/c'). 

However, if we take into account the absolute kinematic time dilation 
(§II.I), we shall come to the conclusion that, if we measure the time on a 
terrestrial clock, then no positive effect can be registered. 

Indeed, let us assume that the Earth covers the path E,,E., during the 
absolute time interval (read on a clock which rests in absolute space) ilt". The 
time Ill~ read on the proper terrestrial clock will be [use the second formula 
(3.25)) 
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Llt.," = 
ilt" 
f [ I - ( V ~ + VJ' 
o c' 
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dt _ (I - 2 ) ilt" -

ilt" n 
f ., RVs 7T 

--• cos ( - - 0 + n t) dt = 
0 c' 2 ( 15.6) 

I v'+v' 2R ( I _ _ le S VS 

2 C ' ) ilt" + __ . cos 0 
c' 

where V1 is the Earth's velocity with respect to the Sun, n is its angular 
velocity, and thus v 1 = ~lR. 

Comparing ~ormula_s (15.5) and (15.6). we conclude that no positive 
effect can be registered m the quasi-Reemer experiment because the time 
interval between the zeroth and nth eclipses actually registered on a terre­
strial clock will vary exactly in such a manner that the effect ot, which a 
traditional absolutist expects to be registered, will be compensated for by a 
change m the rate of the terrestrial clock. 

§16. THE QUASI-BRADLEY EXPERIMENT 

.- With t~e help of the Bradley experiment (i.e., the registration of the 
differences m the angles under which a given star is observed from the Earth 
during a year)_ for the_ second time in history the velocity of light was 
meas,ured. If this ex~enment b~ performed with the aim of measuring the 
Eath s absolute velocity, we call 1t the quasi-Bradley experiment. 

No~ we shall show_that the Earth's absolute motion can be revealed by 
the quasi-Bradley experiment. This problem is considered in detail in Mari­
nov ( I 978j ). 

_If we _observe a star on the celestial sphere from a platform (the Earth) 
moving with an absolute velocity v, then the relation between the emission 
angle o· . which represents the angle between the velocity v and the source­
observer line at the moment of emission, and the reception angle 0, which 
represents the same angle at the moment of reception, will be [see formula 
(10.5)) 

V V ~ 
(I + - cos O') (I - - cos 0) = I - - . 

C C c2 
( 16.1) 

Now suppose that our platform (the Earth) moves with velocity v 1 with 
respect_to another platform (the Sun) which for its part moves with velocity v 5 

respective to absolute space. Thus we have 

v=v 1 +v 5 . (16.2) 
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Fig. 16-1 

Let us suppose that at the moment of emission an Earth's observer and 
an observer who rests with respect to the Sun (called the Sun's observer) are 
at the point 0 5 (fig. 16-1). The light emitted at this moment by a star which is 
at the point Swill be received by the Sun's observer when he crosses point o· 
and by the Earth's observer when he crosses point 0. We have the following 
picture: 

a) Observation by the Sun's observer in absolute space. For this case 0~ is 
the emission angle and Os the reception angle, distance SO· is proportional to 
the absolute light velocity c and distance SO~ to the relative light velocity 
with respect to the Sun e's• 

b) Observation by the Earth's observer in absolute space. For this case 
o·E is the emission ·angle and OE the reception angle, distance SO is propor­
tional to the absolute light velocity c and distance SO~ to the relative light 
velocity with respect to the Earth c·. 

c) Observation by the Earth's observer in a frame attached to the Sun. 
For this case o· is the emission angle and O the reception angle, distance SO is 
proportional to the relative light velocity with respect to the Sun c:, (since this 
is the velocity of light which travels along the given direction with respect to a 
frame attached to the Sun) and distance SO' to the relative light velocity with 
respect to the Earth c·. 

We must emphasize that we suppose all velocities (absolute and relative) 
to be measured in absolute time. 

Consider now an imaKinable emission which occurs at the moment when 
the Earth's observer is at the point o· and a reception which occurs at the 
moment when this observer arrives at the point 0, the velocity of light being 
equal to c5. By analogy with ( 16.1) we have 
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where (see formula ( 10.11) and the text after formula ( I 0.12)) 

V 
-~ cos 0 
(' Sm 1/2 

C~ = C (------) 
V 

I + ---5 cos O. 
C Sm 

( 16.3) 

( 16.4) 

is the relative velocity of light in a frame attached to the Sun and O '"' is the 
middle angle between 0~ and Os• i.e., 

0 = Sm 

o·s + 0 s 

2 
( 16.5) 

Putting ( 16.4) into ( 16.3) and working within an accuracy of third order 
in I/ c (i.e., putting O = o· = 0,,, in the terms of second and third order in I/ c), 
we obtain 

V . V 
cos O = cos o· + -'- sm 1 0 ( I + __j cos Os ' . 

C m C .ml 
(16.6) 

Designating by a = o· - 0 the aberration angle, we find within the 
necessary accuracy 

VE V.V 5 a = __: sin O + _1c -· sin O cos O = a r._ + da, 
C m C2 m Sn1 r: 

(16.7) 

where a F is the aberration angle caused by the motion of the Earth if the Sun 
were at rest in absolute space and da is the variation caused by the absolute 
velocity of the Sun, in dependence on the angle O sm subtended by the light 
beam coming from the star and the velocity of the Sun. 

In fig. 16-2 we have shown four different positions of the Earth(£,, £ 1, 

£ 1, £,) on its orbit around the Sun (S) at four different moments with 
intervals of three months when four different stars (SA• Sn, Sc, SD) are in 
range with the Earth in the plane of the ecliptic, if being observed from the 
Sun. The real positions of the stars SA and S < and their positions observed 
from the Sun coincide, since the angle Osm between the Sun's velocity Vs and 
the propagation direction of the light coming from these stars is equal to TT or 
to 0. The positions of the stars S 8 and SD observed from the Sun are tilted to 
an angle as = v sl c with respect to their real positions, since for these two 
stars the angle O sm is equal to 1r/2, i.e., they will be seen along the directions to 
S'8 and S'0 . 

The star SA will be observed from the Earth's positions £, tilted to an 
angle a E = vF/c, i.e., along the direction to s·"i, if the Sun be at rest in 
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absolute space and the velocity of light coming from SA be equal to c. 
However, when the Sun moves and the velocity of light coming from SA is 
c + v5, this star will be seen from E, tilted to an angle 

V V V 
a = a - Aa = __ E_ =a_ - __L_§ (16.8) 

ap E C + V E cl ' 
s 

i.e., along the direction to S Al• The same star when observed from the 
position El after six months will be tilted oppositely to the same angle a""' i.e., 
along the direction to S AJ• Thus in a year the stars which lie near the apex 
of the Sun should describe over the celestial sphere a small arc equal to 
2a •• = 2aE - 2vEv5 /cl. Analogically we conclude that· the stars which lie 
near the Sun's anti-apex will describe a small arc equal to 
2aant,-ap = 2aE + 2vEv5/c'. For the difference between these two arcs we 
obtain 

A = 2 a . - 2 a = 4 Aa = 4 v v / cl anh-ap ap E S • (16.9) 

It can be seen immediately that the star S 8 will be observed from the 
position El tilted additionally to an angle aE = vE/c, i.e., along the direction 
to S B2 and the same star will be observed after six months from the position 
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£ 4 tilted oppositely to the same angle a 1. i.e., along the direction to S 11 ~. both 
at rest and at motion of the Sun. 

Taking v 1, = 30 km/s, Vs = 300 km/s (see § 19), we obtain ~ = 4.10 ' 
rad = o;·os. Thus at the present state of technique, the quasi-Bradley expe­
riment can be considered only as a challenge to the experimenters. 

§17. THE QUASI-DOPPLER EXPERIMENT 

Observing from the Earth during a year the differences in the frequen­
cies of light emitted by a given star, one can measure the light velocity and we 
call this the Doppler experiment. If the Doppler experiment should be 
performed with the aim for the measurement of the Earth's absolute velocity, 
we call it the quasi-Doppler experiment. 

Now we shall show that the Earth's absolute motion cannot be revealed 
by the quasi-Doppler experiment. This problem is considered in detail in 
Marinov (1978k). 

Let us have (fig. 17-1) a distant light source (a star) Sand two observers 
0,, Oz who rotate with relative velocities v,,, V,z (it is v,, = v,, = v,) about 
some centre C which for its part moves with an absolute velocity v. The 
absolute velocities of 0, and Oz which lie on the same line with the centre of 
rotation are v/ = vl + v,2 + 2 v v, cos <p, 

v/ = vl + v,2 - 2 v v, cos <p, 
(17.1) 

where <p is the angle between the velocity v and the velocity of the first 
observer v,'" Denote by~ the angle between the source-observers line and the 
velocity vat the moment of reception. Obviously~ is a constant angle, while 
<p changes with 21r during the period of rotation of 0, and Oz. All angles are 
taken positive clockwise and negative counter-clockwise. 

Supposing that the source moves with velocity v, and emits light with 
frequency v, we obtain that an observer moving with velocity v., will register a 
frequency v., given by the first formula ( 10.17) in which we have to write 
v = v •. The angles o· and 0., can be seen in fig. 10-2. Writing in this formula 
firstv., = v,,v., = v,,O., = 0,andthenv., = v,,v., = v,,O., = 0,(seefig.17-1) 
and dividing the formulas obtained, we get 

v I - v cosO/c I - v.l/cl 112 
~= I I ( 2 ) • 

P2 I - v2 cos 02 /c I - v,2/cl 
(17.2) 

Thus the relation between the frequency v, received by the first observer 
and the frequency v2 received by the second observer does not depend on the 
velocity of the source v •. 
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From fig. 17-1 we have 

v, 

* s 

V, COS(}, = V COS O + V, COS (0 + cp), 

V2 COS ()2 = VCOS O - V, COS (0 + cp). 

Fig. 17-1 

( 17.3) 

Substituting (17.l) and (17.3) into (17.2), we find within an accuracy of 
second order in I I c 

v, - I 2 v, . vv, V 2 
- - - - cos (o + cp) + 2 - [cos cp - cos O cos (o + cp)] + 2 ...:.._ cos 2 (o + m) 
"• c • c2 c2 .,, 

(17.4) 

This final expression is convenient for discussion. Let us mesure v, 
and "2 received from a given light (radio) source for which o + cp = .,,12. 
If o = 0, it will be v, = v2 for cp = 'TT/2, however if o = .,,12, it will be 
v, = "2 (I + 2vvJ c2 ) for cp = 0. This result leads to the conclusion that we can 
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measure the Earth's absolute velocity in the following manner: Let us have 
two receivers placed at a parallel with 180" difference in the longitudes. Let us 
observe a radio source when it should « cross » the line 0, 0, and let the 
frequencies received be sent to some middle point and there compared. 
Imagine for simplicity that this middle point is at the pole and that the Earth 
represents a flat disk. As we show in §30.4 when considering the so-called 
« rotor-rotor » experiment, if light is sent from the rim of a rotating disk to its 
centre, then the change in the frequency depends only on the rotational 
velocity, not on the velocity of the disk as a whole. Hence v, and v, when 
received at the pole will suffer equal changes, due to the daily rotation of the 
Earth. If now we compare v, and v, for different radio sources which« cross » 

the line 0, 0,, then for o = 0 the frequencies v, and v, will be equal precisely 
at the moment when the radio source is on the line 0, 0,, i.e., for o + cp = 
.,,12, however for o = .,,/2 the frequencies v, and v, will be equal when [see 
(17.4) and take into account that for the case considered cos(o+cp) ~ OJ 

cos (o + cp) = vie. (17.5) 

Taking v = 300 kmls (§ 19), we obtain 

cos (o + cp) = sin a ~ a = 10 ' = 3', 4, (17.6) 

where a is the angle between the line 0,0, and the source-observers line. 
Such an angle is large enough to be reliably registered. However, the angle a 
is exactlv equal to the aberration angle due to the motion of the Earth with 
velocity v. This signifies that when the line 0,0, concludes an angle a with 
the source-observers line, the source will be seen along the direction 0, 0,. 
Thus, because of the appearance of the aberration, the quasi-Doppler expe­
riment leads practically to a null result. 

§ 18. THE QUASI-FIZEAU «COUPLED-SHUTTERS» EXPERIMENT 

The « coupled-shutters » experiment represents a modification of the 
historical Fizeau experiment for the measurement of the light velocity by a 
rotating cog-wheel with whose help the Earth's absolute velocity can be 
measured. 

In the «coupled-shutters» experiment, we take into account only the 
effects of first order in vie, so that even the traditional Newtonian kinematics 
leads to results adequate to physical reality. We consider this experiment in 
Marinov ( l 978f). 

Let us have (fig. 18-1) two cog-wheels C, and C, fixed on a common 
shaft with length dwhich is set in rotation by the electromotor EM. Intensive 
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light is emitted by the sources S, and S2 • After passing through the notches of 
the cog-wheels C, and C, (respectively. C, and C,). this light is observed by 
the observers 0, and 0 2 • We shall call the direction from S, to 0, «direct» 
and from S, to 0, « opposite ». 

Suppose that the velocity of light in the « direct » and « opposite » 
directions is the same, equal to e. If both wheels have the same number of 
cogs placed respectively against each other (i.e., « cogs against cogs ») and 
they are set in rotation, then the observers will establish maximum photon 
fluxes in the case where the distanced between the wheels is covered by light 
in the same time that the wheels are rotated an integer number of notches. If 
any of the wheels has p notches and makes N revolutions per second, the 
wheels will rotate f = pN notches in a second. We call this number,(. the 
frequency of chopping. Obviously, the condition for observing a maximum 
photon flux can be written 

n= 

where n is an integer. 

d 
-(, 
e 

(18. I) 

With the help of the verniers V, and V, we can change the paths d, and d2 

of the light beams between both wheels. If the velocity of light in « direct » 

and «opposite» directions is the same, then, obviously, 0, and 0 2 will 
observe maximum (or minimum) photon fluxes when d, = d,. 

Now suppose that the velocity of light is e - v in the « direct » and e + v 
in the « opposite » directions. The conditions for passing of the chopped 
« direct » and « opposite » beams will be 

n, = ~(. 
e - V 

d2 
n, = (. 

e + V 
(18.2) 
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Assuming that, with a decrease of v towards zero, d, and d, should 
become equal to d, we shall haven, = n2 = n, and, thus, we obtain 

or 

d, = d(l - vie), d2 = d (I + vie), 

d 
!).d = d, - d, = 2 - v. 

e 

(18.3) 

( 18.4) 

Obviously, ifwe choose a lower chopping frequency a longer shaft must 
be used. It is easy to see that the chopping frequency which can be achieved 
by a rotating cog-wheel requires a steel shaft so long that practically it cannot 
be constructed. Thus the question may be posed about the use of two 
independent cog-wheels not fixed on a common shaft but rotating with the 
same angular velocity. 

For the sake of generality, we shall now speak not of two independently 
rotating cog-wheels but of two independently operating pairs of shutters (for 
instance, Kerr cells). Any pair of these shutters (fig. 18-2) is driven by a 
common chopping mechanism, say, two resonators RA and R 8 . 

Now the two following problems arise : 

opposite 

OO----+----lf---A''---------------1---1--- I!> 
s, o, 

direct Fig. 18-2 

a) How to maintain equal chopping frequencies for both pairs of shut­
ters. 

b) How to maintain a« phase difference » between them equal to zero, 
i.e., how to ensure that both pairs of shutters will close and open toiether. 

The first difficulty can be overcome if we use the same resonator for 
both pairs of shutters, which can be put near the shutters SA• near the shutters 
S 8 , or in the middle. However, if we transmit the signals for opening and 
closing the shutters by an electric line, then a « phase difference » will appear 
between the pairs. It can easily be shown that the « phase difference », 
appearing at the motion of our apparatus in absolute space, will exactly 
cancel the effect that we intend to observe. 
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Hence the resonators producing the chopping frequency must be inde­
pendent and for such, two atomic clocks can be taken. The chopping ~re­
quency { 8 of the resonator R 8 can be maintained equal to the chopping 
frequency {11 of the resonator R II if we tune { 8 in such a manner that the 
« beating » of the light spot observed by 0 2 will always be reduced to zero. 

When we use independent shutters, we cannot know the « phase diffe­
rence » between them (i.e., we cannot know when the first pair of shutters is 
open, how far from opening is the second pair of shutters). Hence again we 
are unable to measure the absolute velocity v. 

However, as Dart (1971) has suggested, one can rotate the apparatus 
with respect to absolute space. When the axis of the apparatus is perpendi­
cular to v one will arrange the « phase difference ,. between both shutters so 
that both observers 0, and 0 2 would see no light. If now the apparatus is put 
parallel to v, so that the « direct ,. direction will coincide with the direction of 
v, then some light will be seen by the observers; and only if we change the 
distances d, and d2 with the help of the verniers V, and V2 to give a difference 
tid according to formula (18.4), will no light be left to pass through both pairs 
of the coupled shutters. 

However, taking into account the absolute time dilation, we can easily 
see that this prediction of Dart will not correspond to reality. Indeed, during 
the rotation both resonators will move at different velocities with respect to 
absolute space. Thus their time rates will be different and exactly such that 
the new « phase difference ,. that will appear after the rotation will exactly 
cancel the effect to be observed if the « phase difference » after the rotation 
had remained the same as before the rotation. 

To prove this, let us suppose that the axis of the apparatus is first 
perpendicular to its absolute velocity. Let us then rotate the apparatus with 
angular velocity w, say, about the middle point, until the « direct » direction 
of its axis becomes parallel to v. Let the readings of two clocks (suppose, for 
simplicity, light clocks) attached to R II and R 8 be t~. t8 before the rotation 
andt~,t~'aftertherotation.Letthepropertimest 11 = t~ - t~,1 8 = t~ - 18 
correspond to the same absolute time interval t. Because of the absolute time 
dilation, we have [see the second formula (3.25)) 

t 
t" = f (I - v "21c2) i12d1, 

0 

t 
le= f (1 - ve21c2)112dt • 

0 

where d 
v 2 = v2 + (- w) 2 - v d w cos (wt), 

A 2 

d 
v 2 = v2 + (- w)2 + v d w cos (wt) 

B 2 

(18.5) 

(18.6) 

are the velocities of the resonators during the rotation of the apparatus. 

too 

If we work within an accuracy of second order in vie, we obtain, after 
performing the integration, putting wt = 1r/2, and subtracting the second of 
formulas ( 18.5) from the first. 

/j.f = t A - t H = 
c2 

dv 
( 18. 7) 

This formula shows that if before rotation the « phase difference » 

between both pairs of shutters is equal to zero, then after rotation the shutter 
S'8 will open with a delay tit relative to the shutter S'~· while the shutter S\ 
will open with the same anticipation relative to the shutter S~. Thus for the 
same light paths. d, = d2 , minimum photon fluxes will pass through both 
coupled shutters. 

Let us explain more clearly the difference between the independent 
shutters and the cog-wheels connected by a rigid shaft. The relations between 
the absolute time and the proper times elapsed on two clocks moving with 
velocities v II and v 8 are given by formulas (18.5) only if the clocks are 
independent. If we consider both rotating cog-wheels as clocks. we do not 
have the right to use formulas (18.5) because the wheels are ri!!,idlr connected 
by a common shaft and there is a unique clock - the motor driving the shaft, 
which, if placed at the middle, does not change its velocity during the 
rotation. Thus, after the rotation, a change in the « phase difference » 

between both cog-wheels cannot occur. If such a change appeared, then after 
the rotation the shaft would be found to be twisted, which, obviously, is 
nonsensical. 

Thus the « coupled-shutters » experiment can « work » only when for 
shutters two cog-wheels fixed on a common shaft are used. In such a case a 
Newtonian time synchronization is realized, but the axis which one has to use 
to obtain a registrable effect must be so long that it cannot be practically 
constructed. 

§ 19. THE QUASI-FOUCAULT 
« COUPLED-MIRRORS » EXPERIMENT 

With the aim of shortening the basis in Fizeau's rotating cog-wheel 
experiment, Foucault developed his rotating mirror experiment. Our 
« coupled-mirrors » experiment represents a modification of this historical 
Foucault experiment with whose help for the first time in history we have 
measured the Earth's absolute velocity. 
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19.1. THE DEVIATIVE «COUPLED-MIRRORS" EXPERIMENT 

In the summer of 1973 we carried out the deviative variant of the 
« coupled-mirrors » experiment. The report on its performance is given in 
Marinov ( 197 4b ). 

Fig. 19-1 

In fig. 19-1 we give the scheme of this experiment. Let us have two disks 
driven always exactly with the same phase difference (imagine the wheels of 
a bicycle). On each disk two antipodal facets are cut and one is made a 
mirror, while the other and the rest of the disk's rim are not light reflecting. 
The distance between both disks, called the rotating mirrors RM, and RM,, is 
d Intensive light from the source S 1 (or S 2 ) is reflected by the semi-transpa­
rent mirror M, (M2 ) and, after passing through the semi-transparent mirror 
N, (N2 ), is incident on the mirror facet of RM, (RM,). The light beam then 
reflected by the semi-transparent mirrors N, and N, (N, and N,) whose 
distance from the rotating mirror is p, is incident on the mirror facet of RM, 
(RM,). If the rotating mirrors are at rest, the light beam reflected by the 
cylindrical mirror CM, (CM,) will illuminate screen S from the right (from 
the left) at a certain point. The light path from the rotating mirrors to the 
cylindrical mirrors is D and from the cylindrical mirrors to the screen is d/2. 
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If the rotating mirrors are set in motion, then, because of the slit T, only 
the light which is reflected by RM, (RM,) when the latter is perpendicular to 
the incident beam will reach RM, (RM,). However, for the time spent by light 
to cover the distanced + 2p, the facet of RM, (RM,) which is parallel (an 
exact parallelism is not necessary!) to the corresponding facet of RM, (RM,> 
will rotate by a certain angle 

l>=d+2pfl 
C • 

(19.1) 

where fl is the angular velocity of the rotating mirrors. 

Suppose now that light velocity along the direction from RM, to RM, 
(which we call «direct») is c - v and along the direction from RM, to RM, 
(which we call « opposite ») is c + v. In such a case during the time in which 
the light pulse reflected by RM, will reach RM, the latter will rotate to an 
angle 8 + a, while during the time in which the light pulse reflected by RM 2 

will reach RM,, the latter will rotate to an angle 8 - a, and we shall have 

(19.2) 

from where (assuming v << c) we get 

( 19.3) 

Our apparatus takes part in the diurnal rotation of the Earth and in 24 
hours it will make all possible angles with the component of the Earth's 
absolute velocity in the plane determined by the different positions of the 
apparatus during the day; this component we shall refer to as the Earth's 
absolute velocity and designate by v. 

Suppose first that the unit vector along the « direct » direction n is 
perpendicular to v, and let us adjust the cylindrical mirrors so that the 
chopped light beams will illuminate the same point O on the screen S. Now, 
if n becomes parallel to v, both light beams will illuminate point P. and for 
the distance between O and P we shall have (suppose cp = 77/4) 

d 
s = y 2 + 2 a D (19.4) 

where y = 2 (a + /J) and /3 = 2 a (DIR) sec cp; angles /3, y, and cp are shown 
in fig. 19-1 and R is the radius of the cylindrical mirrors. Thus we have 

fl I sec cp 
s= ~d'v[I +2D(d+R)]. ( 19.5) 

The establishment of velocity vis to be performed as follows : In regular 
intervals of time during a whole day we maintain such a rotational velocity fl 
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that the chopped light beam from the left will always illuminate point 0. 
Then the light beam from the right will illuminate point O when n is per­
pendicular to v; it will be displaced over a distance 2s upwards when n it v 
and over the same distance downwards when n ti v. 

In our factual set-up, both rotating disks were fixed on a common shaft 
because the most important requirement of the « coupled-mirrors » experi­
ment is the maintaining of an equal phase difference between both rotating 
mirrors during the Earth's rotation. Two He-Ne lasers were used as light 
sources. We used three cylindrical mirrors for each beam and such a combi­
nation of cylindrical mirrors which increases enormously the « arm » of a 
light beam is called by us the« cylindrical mirrors indicator ». The light spots 
were observed over two different screens because in our factual experiment 
both rotating mirrors lay in two different parallel planes. According to the 
calculation for our real adjustment it must bes = 0,62 mm for v = 100 km /s. 
This displacement is large enough to be reliably registered. However the 
inconstancy of the cylindrical mirrors radii and the trembling of the images 
were too considerable, and our experiment could not lead to an accurate 
quantitative measurement of v. The observed displacement was maximum 
3 ± 2 hours after midnight and after noon and corresponded to a velocity 
v = 130 ± 100 km/s, the « direct » direction being the one after midnight. 
The distance between both rotating mirrors was 7,2 m, the radius of the 
cylindrical mirrors was R = 8 cm, and the velocity of rotation of the shaft, 
taken from an old torpedo-boat, was Q/2 'TT = 80 rev/s. The azimuth of the 
apparatus was 84° and the observations were performed in July-August in 
Sofia. 

The error ± 100 km/s was established in the following manner: An 
observer maintained for 2-3 minutes one of the light spots in a certain 
position, adjusting by hand a corresponding tension of a de electromotor 
which drives the shaft. Another observer registered the diapason of trembling 
of the other light spot which was normally 2-3 mm. If this diapason is 
~s = 2.48 mm, then the fluctuation error is ± 100 km/s. 

19.2. THE INTERFEROMETRIC « COUPLED-MIRRORS » 

EXPERIMENT 

The result obtained with our deviative « coupled-mirrors » experiment 
was very inaccurate and the scientific community remained sceptical whether 
we really registered the Earth's absolute motion. For this reason, in the 
summer of 1975 we carried out the interferometnc «coupled-mirrors» ex­
periment, obtaining a very sure and reliable value for the Earth's absolute 
velocity. The report on its performance is given in Marinov (1978c). 
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c+v 

C-v 

'Vo, 
Fig 19-2 

Let us have (fig. 19-2) a shaft with length don whose ends there are two 
disks with radius R. On the rims of the disks, two mirrors RM, and RM, are 
fixed which we call the rotating mirrors. Monochromatic parallel light e-mit­
ted ~y the source S, _( or S,) is partially reflected and partially refracted by the 
semi-transparent mirror SM, (SM,). The« refracted » beam is then reflected 
successively by the mirror M, (MJ. by the rotating mirror RM, (RM,), again 
by _M,, SM, (M,, SM,), and the observer 0, (0,) registers the interference 
which the « refracted » beam makes with the « reflected » beam, the last one 
being reflected by t~e r~tating mirror RM, (RM,) and refracted by SM, 
(SM,). We call the direction from RM, to RM, «direct» and from RM, to 
RM, « opposite ». • 

. ~et us now set the shaft in rotation with angular velocity Q and let us put 
m action the shutters Sh,_ and ~h, which should allow light to pass through 
!he~ only when th~ rotating mirrors RM, and RM2 are perpendicular to the 
mc1dent beams. This synchronization is performed by making the opening of 
the shutters(~ 10 "s) to be governed by the rotating shaft itself. Instead of 
sh_utters, we also used simple slits placed along the light paths to the rotating 
rumors. If the« reflected» light pulse reaches RM, (RM,) when the second 
mirror is in the position RM, (RM,), then, in the case of rotating shaft, the 
« refracted » pulse will reach the second rotating mirror in the position RM.', 
(RM;) when the velocity of light is equal to c, and in the position RM~: 
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(RM;·) when the velocity of light is equal to c - v (c + v). Denoting by o the 
angle between the radii of RM, and RM~ (RM, and RM;) and by a the angle 
between the radii of RM; and RM;· (RM; and RM;'), we shall have 

d o ± a = -- Q, (19.6) 
C + V 

from where (assuming v << c) we get the result (19.3). 

The difference in the optical paths of the « refracted » and « reflected » 

light pulses in the cases of availability and non-availability of an « aether 
wind » will be 

d R Q v, V 
!J.=2aR=2--v=2d--, 

c' c' 
(19.7) 

where v, is the linear velocity of the rotating mirrors. 
If the wavelength of the used light is A and we maintain such an angular 

velocity Q = 2 'TTN (N is the number of revolutions per second) that the 
observer O, should always register the same interference picture, th_en. ~u­
ring the rotation of the apparatus over 360" in a plane pa_rallel to the d1r~ct10_n 
of the absolute velocity v, the observer 0, should register a change in his 

interference picture within tJ. d R N 
z=2-=8'TT -- V (19.8) 

'A 'l\c' 
wavelengths. 

In our actual set-up, the« direct » beams are tangent to the upper par~s 
of the rotating disks, while the «opposite» light beams are tan~ent to their 
lower parts. Thus the reflection of the « direct » and « opp~s1te » beams 
proceeds on the same planes of the mirrors. The « observers » in our actual 
set-up represent two photoresistors which are put in the « arms » of a 
Wheatstone bridge. The changes in both interference pictures are exactly 
opposite. Thus in our apparatus the mirrors RM, and RM,_are exactly pa~allel 
and the photoresistors are illuminated not by a pattern of interference fringes 

but uniformlv. 
A very important difference between the deviative and interferometri_c 

« coupled-mirrors » experiments is that the effect regis_tered in th~ latter 1s 
independent of small variations in the rotational velocity. In the interfero­
metric variant one need not keep the illumination over one of the photore­
sistors constant by changing the velocity of rotation when rotating the axis of. 
the apparatus about the direction of its absolute motion, but need m~rely to 
register the difference in the illuminations over the photores1s_tors during t~e 
rotation. This (together with the high resolution of the interferometric 
method) is the most important advantage of the interferometric 

« coupled-mirrors » experiment. 
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Since the illumination over the photoresistors changes with the change 
of the difference in the optical paths of the « refracted » and « reflected » 

beams according to the sine law, then the apparatus has the highest sensiti­
vity when the illumination over the photoresistors is average (for maximum 
and minimum illuminations the sensitivity falls to zero). Hence a change in 
the velocity of rotation can lead only to a change in the sensitivity. 

Let us consider this problem in detail. We suppose that the electric 
intensities of the « reflected » and « refracted » beams when they meet again 
on the semi-transparent mirror SM, (or SM,) are, respectively, 

E, = Em"' sin (wt), E, = £max sin (wt+ qi), ( 19.9) 

where Ema, is the maximum electric intensity which is equal for both beams, 
w is the angular frequency of the radiation and <pis the difference between the 
phases of the intensities in the « reflected » and « refracted » beams. 

The resultant electric intensity after the interference will be 

E = E, + E, = 2 E sin (wt + .!_ ) cos .!_ = E 1sin (wt + .!_), 
max 2 2 amp 2 

(19.10) 

where Eampl = 2 Ema, cos (<p/2) is the maximum electric intensity (the 
amplitude) of the resultant beam. 

The energy flux density which will fall on the photoresistors will be 

I= ~ E' = ~ E' cos'!_= I cos'.!_= 1max (I+ cosm), 8 'TT ampl 2 'TT ma, 2 max 2 2 't' 

(19.11) 

where /max is the maximum possible energy flux density. 

The sensitivity is 

di I . 
= - ~ sin<p 

dqi 2 
(19.12) 

and is highest for <p = 'TTl2, 3 'TT/2, i.e., when the difference in the optical paths 
of the « reflected » and « refracted » beams is (2 n + l) (A/ 4 ), n being an 
integer. The sensitivity falls to zero for <p = 0, 'TT, i.e., when this difference is 
n ('J../2). 

If the resistance of the photo resistors changes linearly with the change in 
the illumination (as was the case in our set-up), then to a small change di in 
the energy flux density a change 

I . 
dR = k di = - k ~ sin <p dqi 

2 
(19.13) 
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in the resistance of the photoresistors will correspond, k being a constant. For 
a change ilrp = 7T the resistance will change with R = - k I mrn as it follows 
after the integration of ( 19.13). 

Since it is ilrp = 21ril/A, then for rp = 1r/2, where the sensitivity is the 
highest, we shall have 

(19.14) 

Substituting this into ( 19.8), we obtain 

'A. c' ilR 
v= 

41r' d RN R 
(19.15) 

The measuring method is: First, we make the axis of the apparatus to be 
perpendicular to the absolute velocity v of the laboratory. We set such a 
rotational rate N, that the illumination over the photoresistors to be mini­
mum. Let us denote the resistance of the photoresistors under such a condi­
tion by R, and R, (it must be R, = R,). We put the same constant resistances 
in the other two arms of the bridge, so that the same current J., (called the 
initial current) will flow through the arms of the photoresistors, as well as 
through the arms of the constant resistors, and no current will flow through 
the galvanometer in the bridge's diagonal. Then we set such a rotational rate 
N, that the illumination over the photoresistors is maximum and we connect" 
in series with them two variable resistors, R, so that again the intial current, 
J.,, has to flow through all arms of the bridge. After that we make the 
illumination average, setting a rotational rate N = (N, + N,)12, and we 
diminish correspondingly the variable resistors, R. so that again the same 
initial current has to flow through all arms of the bridge and no current 
through the diagonal galvanometer. Now, we make the axis of the apparatus 
parallel to the absolute velocity v and we transfer resistance ilR from the arm 
where the illumination over the photoresistor has decreased to the arm where 
it has increased, so again the same initial current will flow through all arms 
and no current through the diagonal galvanometer. The absolute velocity is 
to be calculated from (19.15). 

When the illuminations over the photoresistors were average a change 
8R = 8.10 • R in any of the arms of the photoresistors (positive in the one and 
negative in the other) could be discerned from the fluctuation of the bridge's 
galvanometer and thus the resolution was 

108 

'A. c' 8R 
8v= ---- - =±17km/s. 

47T' d RN R 
(19.16) 

The errors which can be introduced from the imprecise values of 
d = 140 cm, R = 40,0 cm, and N = 120 rev/s are substantially smaller 
than the resolution and can be ignored. To guarantee sufficient certainty we 
take 8v = ± 20 km/s. 

The experiment was not performed in vacuum. 

The room was not temperature-controlled, but it is easy to see that 
thermal disturbances cannot introduce errors because of the complete n•m­
metry of the method and of its rapid performance. 

The whole apparatus is mounted on a platform which can rotate in the 
horizontal plane and the measurement can be performed in a couple of 
seconds. 

The magnitude and the apex of the Earth's absolute velocity have been 
established as follows : 

Fig. 19-3 
s 

During a whole day we search for the moment when the Wheatstone 
bridge is in equilibrium if the axis of the apparatus points east-west. At this 
moment the Earth's absolute velocity lies in the plane of the laboratory's 
meridian. Thus turning the axis of the apparatus north-south, we can 
measure ,v in the horizontal plane of the laboratory. The same is to be made 
after 12 hours. As can be seen from fig. 19-3, the components of the Earth's 
absolute velocity in the horizontal plane of the laboratory for these two 
moments are 

v. = v sin ( 8 - rp) , v,, = vsin(8 + rp), (19.17) 
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where <p is the latitude of the laboratory and 8 is the declination of the apex. 
From these we obtain 

v= 
[ v.' + v/ - 2 v. vb (cos' <p - sin' <p)) 112 

2 sin <p cos <p 
(19.18) 

"' v,, + v. tan u = --- tan <p . 
Vb - Va 

We take v. and vb as positive when they point to the north and as 
negative when they point to the south. Obviously, the apex of the absolute 
velocity points to the meridian of this component whose aliebraic value is 
smaller. Thus we shall always assume v. < v,, and then the right ascension a 
of the apex will be equal to the local sideral time of registration of v,,. We 
could establish this moment within a precision of about 30 minutes. Thus we 
can calculate (with an inaccuracy not larger than ± 5 min) the sideral time t" 
for the meridian where the local time is the same as the standard time t ,, of 
registration, taking into account that sideral time at a middle midnight is as 
follows: 

22 September 0" 23 March 12" 
22 October 2" 23 April 14" 
22 November 4" 23 May 16" 
22 December 6" 22 June 18" 
21 January 8" 23 July 20" 
21 February IO" 22 August 22" 

Our first measurement of the Earth's absolute velocity by the help of the 
interferometric «coupled-mirrors» experiment was performed on 12 July 
1975 in Sofia (<p = 42°4 I',.\ = 23°2 I'). We registered 

v. = - 260 ± 20 km/s, 

v,. = + 80 ± 20 km/s, 
(19.19) 

Thus 
v = 279 ± 20 km/s , 

8 = - 26° ± 4°, ( 19.20) 

We repeated the measurement exactly six months later on 11 January 
1976 when the Earth's rotational velocity about the Sun was oppositely 
directed. We registered 

v. = - 293 ± 20 km/s, 

v,. = + 121 ± 20 km/s, 
(19.21) 
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Thus 
v = 327 ± 20 km/s, 

8 = - 21° ± 4°, ( 19.22) 

For v and 8 we have taken the r.m.s. error, supposing for simplicity 
q, ~ 45°. The right ascension is calculated from the moment when v,, is 
registered, i.e., from (1,, ) •. since for this case (I v" I > I v,. I) the sensitivity is 
better. If our experiment is accurate enough, then t,, which is taken as the 
second must differ with I I" 58'" from ts, which is taken as the first, because of 
the difference between solar and sideral days. 

The magnitude and the equatorial coordinates of the apex of the Sun's 
absolute velocity will be given by the arithmetical means of the figures 
obtained for the Earth's absolute velocity in July and January : 

v = 303 ± 20 km/s. 

8 = - 23" ± 4°, (19.23) 

§ 20. THE ACCELERATED 
« COUPLED-MIRRORS » EXPERIMENT 

Since the masses of the material points are a measure of their kinetic 
energy as well as of the gravitational energy to which they contribute, the 
so-called principle of equivalence can be formulated, this asserts : Any gra­
vitational field in a small region around a given space point can be replaced 
by a suitable non-inertial frame of reference (and vice versa), so that the 
behaviour of material points in an inertial frame of reference in the presence 
of a gravitational field would be indistinguishable from their behaviour in a 
suitable non-inertial frame without the gravitational field. 

Einstein generalized and made absolute this « mechanical » (or Gali­
lean) principle of equivalence (as he has done with the Galilean principle of 
relativity - see §21), postulating that it is by no means possible to establish 
whether the acceleration which is exerted on material points in a laboratory 
has a kinematic (mechanic) character (thus being due to the accelerated 
motion of the laboratory, for example, by thrust ofa space ship) or a dynamic 
(gravitational) character (thus being generated by the action of nearby mas­
ses, for example, by the Earth's attraction). 

According to our absolute space-time conceptions, such a generalization 
of the principle of equivalence contradicts physical reality. The accelerated 
«coupled-mirrors» experiment proposed in Marinov (1978t) can imme­
diately reveal the invalidity of Einstein's principle of equivalence. Its essence 
is as follows : 
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Let us measure with the help of our « coupled-mirrors » apparatus the 
absolute velocity of an accelerated laboratory at two different moments. If 
the acceleration is kinematic (mechanic), the absolute velocity in these two 
different moments will be different, however if the acceleration is dynamic 
(gravitational), the absolute velocity will always remain the same. 

§ 21. THE ULTRASONIC 
« COUPLED-SHUTTERS » EXPERIMENT 

By the help of observations and logical generalizations, Galilei formu­
lated the so-called principle of relativity, which asserts the following : The 
behaviour of a material system in two inertially moving frames of reference is 
identical; thus, performing measurements in a laboratory which moves in­
ertially with respect to absolute space. one cannot establish this absolute 
motion. 

Einstein assumed that this principle is valid also for light propagation (in 
general, for the electromagnetic phenomena) and generalized it for all phy­
sical phenomena, calling it the general principle of relativity. The principle of 
relativity which does not include light propagation phenomena was called 
the restricted ( or mechanical) principle of relativity. 

By the help of our« coupled-mirrors» experiment, we have shown that 
the general principle of relallvity is invalid. However, no experiment exists 
which has contradicted the mechanical principle of relativity. In our absolute 
space-time theory, we consider the restricted principle of relativity as abso­
lutely valid. Moreover, we have come to the conclusion that only by the 
combination of mechanical and light (electromagnetic) phenomena can one 
establish the absolute velocity of a laboratory. So, in our« coupled-mirrors » 
experiment the rotation of the shaft represents a mechanical phenomenon, 
and in a frame moving with respect to absolute space this rotation is inde­
pendent of the axis' orientation. On the other hand, the propagation of light 
pulses represents an electromagnetic phenomenon, and in a moving frame it 
depends on the direction of propagation. 

Briscoe (1958) has pointed to another combination of mechanical and 
electromagnetic phenomena which permits the registering of the absolute 
motion of a laboratory. Briscoe proposed the parallel transfer of light and 
sound signals. The propagation of sound is isotropic in any inertial frame, 
since this is a mechanical phenomenon, while the propagation of light is 
anisotropic, and, by comparing these two types of signal transfers, one can 
establish the absolute velocity of a laboratory. 
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We describe Briscoe's proposal in Marinov (I 978u ). Now, we give the 
description of a variant proposed by us in Marinov (1978s), which seems to 
be more reliable. 

d 

J, 

~. , , , , ,, ~ r,,,,,,,,, ,,, , , , , , , 

~----,E,. 11111111 I 111111111 Ill Ill I II R,,.----~ Fig. 21-1 

Let us have (fig. 21-1) two electric high frequency operating shutters 
Sh A• Sh 8 , the distance between which is d. Behind the shutters there are the 
light sources SA, S 8 (lasers) and the observers O,, On. The generator G 
produces electric pulses with period T(peak to peak time) which : (i) govern 
the shutter Sh A• (ii) are applied to the emitter of ultrasonic waves EA• (iii) are 
applied to the horizontal plates of the oscilloscope Osc. The ultrasonic pulses 
emitted by EA with the same period T propagate through water at velocity V 
(thus their wavelength is.\, = vn and are received by the receiver Rn· After 
being transformed into electric pulses and amplified by the amplifier A 8 , 

they: (i) are applied to the emitter of ultrasonic waves En, (ii) govern the 
shutter Sh 8 . The ultrasonic pulses emitted by En propagate backwards in the 
water with the same velocity V and are received by the receiver RA. After 
being amplified by the amplifier A A• they are applied to the horizontal plates 
of the oscilloscope. 

Let us suppose for simplicity the water homegeneous and the elements 
of the A-part (as well as of the B-part) very close to each other, so that the 
time in which the electric pulses cover the lines between shutters and ultra­
sonic emitter-receiver system can be ignored. In such a case we can affirm 
that when on the screen of the oscilloscope the emitted pulses (the high ones) 
coincide with the received pulses (the low ones) there is a whole number of 
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ultrasonic pulses along the track E A-R 8-E 8-R A· Moving the emitter-receiver 
system EA-RA back and forth we can change the number of pulses on that 
track. 

The propagation of sound is a mechanical phenomenon and the 
principle of relativity holds good for it. Thus, by the help of sound signals, a 
Newtonian time synchronization between spatially separated points can be 
realized. 

Suppose first that the absolute velocity of the laboratory (the Earth) is 
perpendicular to the axis d. The wavelengths oflight in both directions will be 
A = cT, and there will be 

d d 
-= 
A cT 

n= (2 I.I) 

light pulses between the shutters Sh A and Sh 8. Moving the emitter-receiver 
system EA-RA• we choose such a position that O A and O 8 should see an 
average light intensity. In such a case a half-integer number of sound waves is 
placed along the track EA-Rn-E 8 -RA, and the low peaks will be exactly 
between the high peaks. In the real experiment, where the time lost by the 
pulses along the electric tracts cannot be ignored, the low peaks will have a 
certain position with respect to the high peaks. 

Suppose now that the absolute velocity v becomes parallel to d, pointing 
from left to right, which direction we shall call « direct ». The light wave­
length in the «direct» direction will become AA = (c - v) T and in the 
« opposite » direction A 8 = (c + v) T, so there will be 

d d 
n = - = 

A AA (c - v) T ' 
d d 

n=-= 
8 A 8 (c + v) T 

(21.2) 

light pulses between the shutters Sh A and Sh 8 , respectively, in the «direct» 
and« opposite» directions. 

If /:in = nA - n 8 is less than (or equal to) 1/2, the observer On will see 
the average light intensity plus a /:inth part of the maximum light intensity, 
while the observer O A will see the average light intensity minus a /:inth part of 
the maximum light intensity. Thus for /:in = 1/2, 0 8 will see a maximum 
light intensity and O A no light. If /:in < 1/2, we can reduce the time during 
which the shutters remain open to 1:inT (see the small segments shaded in 
black in the figure) obtaining that O A will see no light, while O 8will see a (21:in)th 
part of the nominal maximum light intensity. (NB. Such will be the case if 
d!A = n + 3/4, where n is an integer; if d!A = n + l/4, all will be vice 
versa). 

From (21.2) we obtain 
C + V V 

n = n --- ~ n 8 + 2 - n = n 8 + /:in (21.3) 
A B C-V C 
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and making use of (21.1) we obtain for the absolute velocity 

c /:in c'T /:in 
v=--=---. 

2n 2d 
(21.4) 

Taking f = I/ T = 0,3 MHz (this frequency is used in the hydrolocators 
of Soviet submarines), d = 50 km, we obtain, for v = 300 km/s, /:in = 0, l. 

In an actual experiment the water will not be homogeneous. Neverthe­
less, this is of no importance because the « direct » and « opposite " sound 
waves cross exactly the same way and the number of sound waves in the 
«direct» and« opposite» directions will be the same. However, as a result of 
different influences (temperature, density, currents, etc.), the water can 
change its sound conductive properties. This signifies that during different 
moments different numbers of sound waves will be placed along the tract 
E A-R 8-E 8-R A• and the low peaks will « creep " with respect to the high 
peaks. Thus throughout the experiment, a corresponding shift of the emit­
ter-receiver system EA-RA is to be performed and the low peaks are to be 
maintained at their initial positions. If the « creep » of the low peaks is 
conspicuous, the experiment should be performed in winter when the water 
is covered by ice and preserves its sound conductive properties for long 
enough. This experiment will be successful if the low peaks can be main­
tained at their initial positions a whole day with an inaccuracy much less than 
one /:inth part of the period T. For convenience and higher accuracy the 
compensation of the « creep » is to be made not in the ultrasonic but in the 
electric tract. 

If one can realize a stable multiplication of the frequency f and govern 
the shutters Sh A• Sh n by this enhanced frequency, then the absolute velocity 
v can be measured by changing the multiplication factor and by using a 
method similar to that used (and explained in detail) in §27, thus not waiting 
for the Earth's rotation. 

§ 22. THE KINEMATIC TIME DILATION EXPERIMENTS 

According to our absolute space-time theory the kinematic (Lorentz) 
time dilation is an absolute phenomenon(§ 11.1 ). Thus the comparison of the 
readings of clocks which move with different velocities with respect to abso­
lute space can give information about these absolute velocities. 

Indeed, if two clocks A and B move with the absolute velocities v A• v8, 

then the relation between their readings MA• M 8 (i.e., proper time intervals) 
which correspond to the absolute time interval /:it read by an absolute clock 
will be (use formula (3.19)) 
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(I _ v2/c2) 1/2 (I - v2✓c2) 112 
(22.1) 

22.1. THE ROSSI-HALL « MESON ,. EXPERIMENT 

The first experiment which proved the Lorentz time dilation was the 
so-called « meson » experiment performed by Rossi and Hall ( 1941 ). In this 
experiment the « clocks ,. were elementary particles, namely µ-mesons, and 
their « readings ,. were the mean lifetimes of the mesons. 

The mean-life of µ-mesons at rest, i.e., the time in which (II e)th part of 
them will decay, is T = 2,2. 10- • s. Rossi and Hall measured the distance d 
covered by high-velocity µ-mesons produced near the top of the atmosphere 
as a result of nuclear interactions caused by primary cosmic radiation. 
Knowing their velocity v which is near to c, they calculated the proper 
mean-life T,, of the mesons from the relation 

T0 =div. (22.2) 

Comparing Twith T.,, they have proved the relation (I I.I). 

A similar experiment for positive and negative muons in a circular orbit 
has been recently performed by Bailey et al. (1977) and has very reliably 
proved the relation ( 11.1 ). 

22.2. THE HAFELE-KEATING «CLOCKS-ROUND-THE-WORLD» 
EXPERIMENT 

The first experiment where the Lorentz time dilation was proved by the 
help of macroscopic clocks was the« clocks-round-the-world » experiment of 
Hafele and Keating (1972). It consisted of the following: 

Two jet planes carrying atomic clocks left Washington in eastern and 
western directions, flew round the world and returned to the starting point. 
The readings ME• !J.t w of the clocks carried by the eastern and western planes 
were compared with the reading !J.t of a third atomic clock left in Washing­
ton. 

In our treatment of this experiment we assume that both planes fly 
exactly along the parallel of Washington at the same height above sea level, 
at which height a stationary clock in Washington is also placed. The correc­
tions which are to be made when the planes fly at different heights can be 
performed by taking into account the dynamic (Einstein) time dilation 
(§ 11.2). In the actual experiment the planes made many landings during the 
trip, thus changing their gravitational potentials, and the Hafele-Keating 
experiment proved both the Lorentz and Einstein time dilations. 
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In our treatment, we ignore the motion of the Earth around the Sun and 
their combined motion relative to absolute space because the avera1:e in­
fluence of all these motions on our clocks is the same. Thus we take into 
account only the rotational velocity of the Earth which leads to an asymmetry 
in the motion of the different clocks and which is 

2'1T 
V = - R cosm ' T r, (22.3) 

where R is the Earth's radius, <pis the latitude of Washington's parallel and T 
is _the length of the sideral day. 

If we denote by v the velocity of the planes with respect to the Earth, 
then the east-bound clock which moves with velocity vE = v, + v with respect 
to absolute space will be slow, while the west-bound clock which moves with 
velocity vw = v, - v with respect to absolute space will be fast, and for the 
differences 81 1. = !J.t 1. - M, 8t w = !J.t w - !J.t. according to formula (22.1 ), we 
obtain within an accuracy of second order in I I c 

8t E = - 2 V V, + V2 8t w = 2 V v, - v2 

M 2 c2 !J.t 2 c2 
(22.4) 

If we choose <p = 43" (cos43" = 0,730) - that is the latitude of 
Washington - and if we take T = 86.200 s, R = 6370 km, we obtain 
v, = 340 mis. Of the same order is the commercial speed of the jet planes, so 
that we can suppose v = v, = 300 mis. Hence, under such simplified 
conditions, it is 

8t 3 v2 

__ E = - -- = - 15.IO-ll 
!J.t 2 c2 ' 

8t w I v2 

--=--=5.10 11 

!J.t 2 c2 
(22.5) 

Hafele and Keating's planes did not fly strictly along the parallel of 
Washington, nor at the same height and they made many landings, the 
number of which were different for each plane. After taking into account the 
actual routes of the planes and the influence of the different gravitational 
potentials at different heights of the flights, Hafele and Keating calculated 
8t E = - 59 ± IO ns, 8t w = 273 ± 7 ns, where the theoretical incertitudes 
come from in precise knowledge of the routes. The experimentally measured 
differences were 8t E = - 40 ± 23 ns, 8t w = 275 ± 21 ns. 

We direct the reader to the recent paper by Briatore and Leschiutta 
(1976) who claim to have experimentally proved the Lorentz and Einstein 
time dilations, after comparing for a couple of years the readings of atomic 
clocks placed at different points on the Earth which have different absolute 
velocities (because of the different latitudes) and different gravitational po­
tentials (because of the different heights above the sea level of the stations 
and the not exactly spherical form of the Earth). 
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22.3. THE « ANTIPODAL-CLOCKS • EXPERIMENT 

The essence of this experiment with whose help one can measure the 
absolute velocity of a laboratory was proposed by Marinov (1972b) and it 
was considered in detail in Marinov (19781). 

8"1-----"'A'---' _______ ,__ ___ ...:.6--i' ----1A" 
V 

Sun 
Fig. 22-1 

Let us have two atomic clocks placed at two antipodal points of the 
Earth's equator (see fig. 22-1, where we have shown the Earth as seen from 
the north celestial pole). Let the Earth's absolute velocity be v and the linear 
rotational velocity of the equator be v, . Suppose for the sake of simplicity 
that the Earth's axis is perpendicular to the plane of the ecliptic and that we 
consider such a day of the year when the absolute velocity-of the Sun (or at 
least its component in the plane of the ecliptic) Vs is parallel to the velocity of 
the Earth about the Sun vE. Taking the initial zero moment when it is sunrise 
for the first atomic clock (clock A) and sunset for the second atomic clock 
(clock B), we shall have for the absolute velocities of these clocks, respecti­
vely, 

2 . 2.,, t 
v2 = v2 + v2 - v v sm --

A r r T ' 

2wt 
v28 = v2 + V: + 2 v v, sin T , 

where v = Vs + vE, and Tis the length of the sideral day. 
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(22.6) 

If we use these formulas in (22. l ), we see that the rates of our clocks will 
be different at different hours of the day. The greatest difference will be when 
for one clock it is noon and for the other midnight, and only during the sunset 
and sunrise hours will these rates be equal. Ifwe compare the readings of our 
clocks for equal absolute intervals of time between sunset and sunrise, we 
should establish the absolute character of the Lorentz time dilation and we 
could measure the Earth's absolute velocity. This represents the essence of 
the « antipodal-clocks • experiment. 

However, a realization of Newtonian time synchronization between two 
antipodal points on the Earth is problematic and later we shall show that a 
realization of time synchronization by the exchange of electromagnetic 
signals, i.e., of Einsteinian time synchronization, leads to an annihilation of 
the appearing absolute effects. For this reason the « antipodal-clocks » ex­
periment is to be performed on a turnabout, as shown in fig. 22-2. 

ax 
V C 

xd 

Fig. 22-2 D 
D 

Let us have a ring ab which encircles the turnabout but does not rotate 
with respect to absolute space. Suppose that points a and b lie on a diameter 
which is parallel to the absolute velocity v. Let the readings t~, t~· be 
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registered on clock A when it touches, respectively, points a, b. and let the 
readings t'n, (8' be registered on clock B when it touches, respectively, points 
b, a. 

The times !:J.t" = t',.,' - t'A and !:J.t 8 = t'8' - ( 8 obviously correspond to 
the same absolute time interval which we shall denote by !:J.t. It is 

(22.7) 

where !:J.t D is the time read on a clock D which does not rotate. 

On the grounds of formula (22.1) we can write 

/:J.t A /:J.t 
!:J.t = f (I - v~le2)- 112 dt, !:J.t = f 8(1 - v'/e') -1 12dt. (22.8) 

fl 

Substituting here v A• v8 from (22.6) and working within an accuracy of 
second order in lie, we obtain 

I v2 + v2 2 v v, I v2 + v2 2 v v, 
!:J.t ( I + - --' - - - ) = !:J.t (I + - --' + - - ) , 

A 2 e2 .,, e2 8 2 e2 ,,, e2 

having taking into account that approximately it is 

!:J.t A~ !:J.t n ~ !:J.t = T/2 , 

where Tis the period of rotation. 

(22.9) 

(22.10) 

Denoting /Jt = !:J.t A - !:J.t n and taking into account (22.10) only in the 
terms of second order in I I e, we obtain from (22.9) 

4 v v, v R 
/Jt = - - !:J.t = 4 - (22.11) 

,,, e2 e2 

Taking v = 300 kmls and R = 3 m, we find 8t = 4.10 11 s. Supposing 
that the revolutions per second of the turnabout are 5 (i.e., !:J.t = 0, I s), we 
shall have /Jt I !:J.t = 4.10 '°, while the portable cesium beam clocks show the 
time with a relative inaccuracy ± Io~' 1 • 

Now we shall show that the realization of an Einsteinian time synchro­
nization in the « antipodal-clocks» experiment leads to a negative (null) 
result because of the mutual annihilation of the absolute effects and thus in 
such a manner the absolute velocity of the laboratory (the Earth) cannot be 
measured. We shall consider the « antipodal-clocks» experiment on the 
rotating Earth (fig:22-1 ). 

Let clock A send the initial electromagnetic signal being at point A' (i.e., 
when for this clock it is sunrise) and let its reading at this moment be t'A. Since 
the light signal travels a certain time, clock B will move wit~ the Earth and 
will receive the signal being at point B'. Here we do not take mto account the 
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rotation of the Earth because in the case considered the linear rotational 
velocity v, is perpendicular to the translational velocity v, and, as it can be 
shown, the effects calculated, if taking into account the velocity v,. will be 
cancelled in the final result. 

For the sake of simplicity we suppose also that the electromagnetic 
signal propagates along the Earth's diameter, whose length is d. It can be 
shown that if the signal covers a trajectory along the Earth's surface (a 
radio-relay tract), then the effects calculated additionally will be cancelled in 
the final result. 

With respect to absolute space the initial signal will cover the following 
distance 

d'=d(l-vle), (22.12) 

which we calculate within an accuracy of first order in vie because, as we 
shall see further [formula (22.15)), a higher accuracy is not necessary. 

Clock A sends the final signal at point A" (i.e., when for this clock it is 
sunset), and let its reading at this moment be t',..'. Clock B will move with the 
Earth and will receive the signal being at point B". With respect to absolute 
space the final signal will cover the following distance 

d" = d(I + vie). (22.13) 

Let us denote by (8 the reading of clock B when clock A has sent the 
initial signal and by (8' the reading when clock A has sent the final signal. 
Making use of formulas (22.8), (22.9) and (22.10), we can write 

4 vv dv 
t'' - t' = (t" - t') (I + - -' ) = t'' - t' + 2 -

A A 8 B '!T e' 8 R e' (22.14) 

If we denote by T ~ and T •0• the readings of clock B when the initial and 
final signals, respectively, have been received, then, using (22.12) and (22.13), 
we obtain 

t'=T'-~(1-~) t''=T"-~(I+~). 
B 8 e e' R Be e 

(22.15) 

Putting (22.1!>) into (22.14), we find 

(22.16) 

and, obviously, from this relation between the readings of clock A when the 
initial and final signals are sent and the readings of clock B when these 
signals have been received we cannot establish the absolute velocity v. 
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Now we shall propose a variant of the « antipodal-clocks,. experiment 
with whose help the equatorial component of the Earth's absolute velocity 
can be measured. 

Let us have two passage instruments at a point on the Earth's equator 
whose fixed axes lie in a vertical plane parallel to the east-west directiQn, the 
angle between them being 0. Suppose that an equatorial star A, which lies 
about 90° from the projection on the celestial equator of the apex of the 
Earth's absolute velocity, crosses the sight line of the first telescope at the 
moment t~, read on an exact clock, and "the sight line of the second telescope 
at the moment t~·. Let us further suppose that a star B which is antipodal to 
the first one crosses the sight line of the first telescope at the moment t'8 and 
the sight line of the second telescope at the moment t'8'. 

Since the Earth rotates uniformly, the times !:lt A = 1-;. - t~ and 
tlt 8 = t~ - ( 8 , obviously, correspond to the same absolute time interval !:lt, 

and we can use formulas (22.8), where v A and v 8 are given by formulas (22.6). 
Thus, assuming for simplicity(} = "'• introducing the notation 
6t = !:lt A - !:lt 8 , and performing an analysis as above, we shall obtain the 
result (22.11). Taking v = 300 kmls, R = 6310 km, we get 61 = 8,5. IO 5 s. 

If a similar experiment be performed throughout a year, using as a 
« rotating disk » not the diurnal rotation of the Earth about its axis but the 
yearly revolution around the Sun, then in formula (22.11) we have to take for 
v the component of the Sun's absolute velocity in the plane of the ecliptic 
and for R the radius of the Earth's orbit. Taking v = 300 kmls and 
R = 150. JO• km, we obtain 6t = 2 s. It is very instructive to compare the 
analysis of this experiment with the analysis of the quasi-Rremer experiment 
(§15). 

§ 23. THE «WATER-TUBE» EXPERIMENT 

In Marinov (1978i), we reconsider the historical« water-tube» experi­
ment of Fizeau (1851) which was repeated by Zeeman (1914) with the aim of 
establishing the Doppler-effect influence on the drag of light. In that paper, 
which will now be reviewed, we have shown that the formula proposed by 
Lorentz and Einstein for the drag of light in a moving medium is not true and 
we have given the true formula, verifying it by a very careful repetition of the 
« water-tube » experiment (see also §28). 

The essence of the « water-tube » experiment is as follows : 

Let us have a tube with length L along which water propagates with 
velocity v. We generate two light pulses at the same moment and let them go 
through this tube, so that one pulse (called« direct») travels with the flow of 
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the water and the other ( called « opposite ») against it. Suppose that both 
pulses cover paths with the same lengths and meet again. Obviously, if the 
water is at rest, they will arrive at the same moment. However, if the water is 
in motion, the pulse travelling against the flow will be late for the rendezvous, 
the time delay being 

L 2Lv 
= -- (n' - l), 

c.:, c' 
(23.1) 

where we have used formula (13.12) for 00 = 0, "'• working within an 
accuracy of first order in v I c. 

Here n is the refractive index of water for the frequency v of the used 
monochromatic light. However, since the molecules of the liquid move with 
respect to the light source, a Doppler effect occurs and the water molecules 
will receive photons with a frequency 

v., = v(l ± vie), (23.2) 

where the sign « + » is for the « opposite » photons and the sign « - ,. is for 
the « direct » photons. 

A Taylor expansion of the refractive index as a function of v yields 

dn v dn 
n (v.,) = n (v) ± - dv = n ± - v - . (23.3) 

dv c dv 

Thu~ putti~g (23.3) into ( ~3.1~) for(} = 0, "'· we obtain for the velocity of 
photons m flowing water, takmg mto account the dispersion (and within an 
accuracy of first oder in vie), 

c v dn l 
Cm = - ± V ( J + - - ) . 

n n' dv n' 

For the time delay instead of(23.l) we have 

2 L v dn 
!:lt = -- (n' - )I. - - I) 

c' dl\ ' 

where)\ is the wavelength of the emitted light. 

Lorentz (1916) and Einstein (1914) give for 
«water-tube» experiment the following formula 

2L v dn 
!:lt = -- (n' - n )\ - - l) 

c' dl\ • 

(23.4) 

(23.5) 

the time delay m the 

(23.6) 

These authors come to formula (23.6) proceeding not from the relation 
(23.2) but from the following relation 

V 
V0 = V (I ± - ) . 

cln (23.7) 
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Their argument is the following : When the photons enter the water tube 
they first meet water molecules at rest and the frequency received by these 
shield molecules will be equal to the emitted frequency v. Thus in the 
« water-tube » experiment there is a Doppler effect for light « emitted ,. by 
water molecules at rest and then « received » by the moving water molecules. 
However, according to these authors, the velocity of light in a medium is cln 
and not c. 

According to our« hitch-hiker» model(§ 13), the photons move only in 
vacuum and always with velocity c. One measures velocity c/n in a medium 
only because for a certain time the photons are hitched to the molecules and 
c/n is their average velocity. 

Formula (23.5) is obtained also by Lorentz (1916) and Einstein (1914) 
but only for the drag of light in moving solids. Thus they make a substantial 
difference between the propagation of light in a liquid flowing in tubes and in 
moving bulk materials. For our theory there are only molecules, vacuum and 
photons (free or hitched); and a Doppler effect always appears when the 
« emitting » and « receiving ,. molecules move with different velocities. 

With the aim of establishing which « drag-of-light ,. formula cor­
responds to physical reality we have repeated (Marinov, 1978i) the 
« water-tube » experiment, using our very sensitive bridge method for 
measurement of interference shifts (see § 19.2). 

7j 

L 

7i 

Fig. 23-1 

Our experimental arrangement was as follows (fig. 23-1) : Light emitted 
by the source Sis split by the semi-transparent mirror SM into two beams. 
The beam reflected by SM is split additionally by the semi-transparent 
mirror SM, into two daughter beams : the beam refracted by SM,, after 
reflecting on mirror M,, proceeds through the tube T,, while the beam 
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reflected by SM, proceeds through the tube T, and, after reflecting on mirror 
M2, meets again the beam which has crossed T, at the semi-transparent 
mirror SM,. These two beams interfere and illuminate uniformfr the photo­
resistor P2 which is in one arm of a Wheatstone bridge. 

The situation is similar in the case of the beam refracted by SM. It splits 
also into two daughter beams at SM, which meet together at SM, and, 
interfering there, illuminate also uniform(r the photoresistor P, put in the 
other arm of the Wheatstone bridge. 

The method of measurement is as follows : 

When the water is at rest the illuminations over P, and/', must be equal, 
since the phase differences between the daughter beams in any pair are 
exactly the same. If we now set the water in motion, so that it flows in tube 
T, from left to right and in tube T, from right to left, the illuminations over 
P, and P, will begin to change oppositely. With the increase in the 
water's velocity, the bridge comes into greater and greater disequilibrium, 
passes through a maximum disequilibrium, and when the path difference 
tJ. = t:J., + t:J., (where t:J., is the change in the difference between the light paths 
of the daughter beams propagating from left to right and t:J., is the change in 
the difference between the light paths of the daughter beams propagating 
from right to left) will become equal to ;\ the bridge comes again into 
equilibrium. Thus we can verify formulas (23.1), (23.5) and (23.6), writing 
there tJ. = c!:J.t = >... 

The sensitivity of the method depends on the sum of the differences in 
the light paths of the beams going through T, and T, when the water is at rest. 
If this sum is exactly equal ton>.. (here n is an integer), then no disequilibra­
tion of the bridge will be achieved when increasing the velocity of water. If 
this sum is equal to (2 n + I) (;\/2), then the sensitivity of the bridge is the 
highest. 

We search for a maximum sensitivity by changing the temperature 
of the « tuner » T which represents a small piece of glass. Its length is 
I = I cm and the temperature rate of its refractive index is about 
dn!dT = 5.10 •degree '. Changing its temperature in the range of6" C. we 
change the light paths of the beams proceeding through T and T, by 300 nm. 
The temperature of Tcan be thermostabilized within fJT = ± 0',04 C, so that 
we can maintain the light path through T and T, constant in the limits of 
flt:J. = ± 2 nm. The water is circulated from a reservoir where it is thermo­
stabilized at a temperature 20' ± 0,"3 C. 

Maximum sensitivity can be established and maintained in the follo­
wing way: Changing the temperature of the tuner Twe change the level of 
illumination over P, and P2 from minimum (when the current in the arms of 
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P, and P2 islm,n) to maximum (when the current in the arms of P, and P2 is 
J max)- If additional resistances R, put in any of the arms of P,, P2 , will reduce 
the current in the last case to J m ;n, then we put resistances R 12 in any of the 
arms of P,, P,. and by changing the level of illumination over them (by the 
help of the tunner 7) we adjust the current to be Jm,n· At this condition the 
sensitivity is highest and the temperature of T must be maintained so that 
current]'"'" always has to flow through the arms of P, and P2 • It is expedient 
to always maintain the current in the diagonal galvanometer (the zero gal­
vanometer) equal to zero, transferring resistance from the arm of P, into the 
arm of P2 (and i·ice versa) when changing the velocity of the water. The 
maximum sensitivity of the bridge is 8~ = ± 2,5.10 ',\, since the fluctuations 
of the zero galvanometer are about 4000 times smaller than the current 

J,naic - JIii i II' 

The lengths of the tubes T, and T2 are L = 262.0 ± 0,5 cm, if measured 
as shown in the figure. The manometer was calibrated with a precision 
8vlv = ± 4.10 '. The values for n and dnld,\, corresponding to the different 
wavelengths, are taken from a graph which we have plotted on the basis of 
the data given in Landolt-Bornstein ( 1962). The inaccuracies estimated by us 
are,respectively,8nln = ± 2.10 •and8(dnld,\)l(dnld,\) = ± 5.10 '. 

The light source is a tuned dye laser with neodymium glass oscillator. 
The inaccuracy in the chosen wavelengths is 8,\1,\ = ± 10 '. 

TABLE 23-1 

,\ dnldA. V k n 
nm mm' mis 

236 1,3850 - 662 6,30 0,99 

250 1,3770 -516. 6,98 1,00 

280 1,3644 -310 8,44 1,01 

300 1,3586 -242 9,36 0,99 

360 1,3476 - 130 11,96 0,98 

390 1,3438 - 108 13, 16 1,01 

In table 23-1 we give the used wavelengths,\, the corresponding values 
for n and dnl d,\, the registered velocities v and the calculated values of the 
factor 

I c ~ 
k = ,\ (dnld,\) (n' - I - 4 L)' (23.8) 

where we have to put ~ = c~t = ,\. 
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It must be k 1 = 0, k 1 = 11, k ~1 = I, according to the Fresnel. Lorentz and 
Marinov formulas (23.1 ). (23.6) and (23.5). Taking into account all possible 
sources of errors. we obtain 8klk = ± 0.10. for,\= 300 nm. 

§ 24. THE « DRAG ABERRATION» EXPERIMENT 

In Marinov (1978m) we have pointed to an effect we call the drag 
aberration, which will now be analysed. 

V 

Fig. 24-1 

Let us have (fig. 24-1) a transparent medium with parallel surface planes 
on which a light beam is incident under an angle qi at a point P. If the angle of 
refraction is if;. the beam will leave the medium at a point Q under an angle q, 

equal to the angle of incidence. 

Let the medium now be set in motion with velocity v from left to right -
imagine that the medium is represented by a horizontal disk which rotates 
about a vertical axis and the light beam strikes it somewhere near the rim. 
Now the light beam will leave the medium at a particular point R. We call the 
angle 8 = QPR the drag angle (or the drag aberration). 

We shall find the drag angle, proceeding from our« hitch-hiker» model 
for light propagation, and perform all calculations within an accuracy of first 
order in vie. 

Formula (13.16) shows that, within an accuracy of first order in vi c, the 
velocity of light in a moving medium represents a vector sum of the velocities 
cl n and v ( I - I In'), 0 being the angle between them. 

Taking into account that the photons cross the medium for a time 

t = 
PQ 

cln 

dn 

C COS If 
(24.1) 
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where dis the thickness of the medium, we obtain for the resultant distance 
QR along which the photons will be dragged 

I d V I 
QR= v(I - - ) t = -- (n - -) . (24.2) 

n' c cos iJ; n 

Thus the drag angle will be 

QR cos If V I 
8 = PQ = ~ (n - ---;; ) cos iJ;. (24.3) 

Formula (24.3) can be easily verified experimentally by silvering the 
parallel planes of the medium, making them light reflecting, so that the beam 
has to undergo a high number of reflections before leaving the medium. By 
the help of our « cylindrical mirrors indicator » (§ 19.1 ), the appearing drag 
aberration can be reliably registered. We call such an experiment the« drag 
aberration» experiment. Recently it was carried out by Jones (1975) and 
considered theoretically by Player ( 1975) and Rogers ( I 975); however, the 
experiment and the theoretical considerations have been made on(v for the 
special case <p = iJ; = 0. 

Player and Rogers made their analysis by proceeding from the Lorentz 
transformation and without referring to the physical model of light propa­
gation in a medium, as one does in conventional physics when solving all 
problems about light kinematics in a moving medium. 

We shall show the results deriving from such an automatic implication 
of the Lorentz transformation to the drag aberration for the general case of 
<p cf- 0. Let us attach (fig. 24-1) a moving frame K' to the medium and a rest 
frame K to the observer, so that their x-axes should be parallel to the velocity 
V of the medium and their y-axes should point downwards. 

The Lorentz transformation formulas for velocities (also called Einstein 
transformation formulas for velocities) can be obtained from formulas (3.12) 
and (3.15) for the direct transformation, and from formulas (3.13) and (3.16) 
for the inverse transformation. For a special transformation, V must be 
parallel to the x- and x' -axes, and for the direct transformation the following 
formulas can easily be obtained 

v, - V 
v:=----­

- v, Vic' 
v' = y 

v, (I - v'lc') 112 

I - v, Vic' 
(24.4) 

where v; , v: are the components of the velocity of a material point with 
respect to frame K', and v,, v_. are its components with respect to frame K. 
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For our case (fig. 24-1) the components of the velocity of the photons 
which propagate in vacuum (i.e., before their entrance in the medium) are 

c, = c sin <p , 

c sin <p - V 
c' =-----
' I - Vsinip/c' 

c' = y 

Cy = C COS <p, 

c cos <p (I - V'lc') 112 

I - Vsin <pie 

Thus the angle of incidence of the photons in frame K' will be 

. , c: sinip-Vlc . V 
sm <p = - = . ~ sm <p - - cos2ip , 

c I - V sm <p/ c c 

(24.5) 

(24.6) 

and the angle of refraction in frame K', according to Snell's law [see formula 
(13.31),puttingtherenA= 1,n 8 = n)willbe 

sin i/;' = 
sin ip' 

n 

V V 1 
= - (sin <p - -cos'<p) = sin iJ; + - (n sin'i/; - - ) . 

n c c n 
(24.7) 

The components of the velocity of the photons in the medium with 
respect to frame K' will be 

, C • ' 
Cm,= - Slnij;, 

n 

, C , 
Cmy = - COS If, 

n 
(24.8) 

and the components of this velocity with respect to frame K, according to the 
inverse Lorentz transformation formulas for velocities, will be 

c,;,, + V 
C =-----

mx I + c,;,, Vic' ' 

c,;,, (I - V'lc') 112 

Cmy = 
1 + c,;,, Vic' 

(24.9) 

Thus, when the medium is moving, the refraction angle with respect to 

frame K will be 

sin (i/; + 8) = Cm, = sin iJ; + ~ (n - ~). (24.10) 
Cm C n 

and for the drag aberration angle we obtain 

V I I 
8 ~ sin 8 = - (n - - ) --

c n cosij; 
(24.11) 

This result is unsound, because for iJ; -. 'TT 12 it gives 8 _. =· while 
obviously, it must be 8 -. 0, as this is to be obtained from our formula (24.3). 
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It is clear that the automatic application of the Lorentz transformation 
to the drag aberration leads to an unsound result, and this phenomenon 
cannot be explained without referring to its physical essence. Thus the Lo­
rentz transformation is not deus ex machina and is to be applied with atten­
tion, after a due physical analysis of the problem considered. Here we have 
once more to recognize that physics is not a mathematical apparatus to which 
a physical reality is attached, but a mathematical apparatus attached to 
physical reality. 

§25. THE HARRESS « ROTATING DISK» EXPERIMENT 

The « rotating disk » experiment of Harress-Sagnac-Pogany-Dufour, 
repeated on the rotating Earth by Michelson-G_ale, was the first and. until the 
performance of our light kinematic experiments, the unique experiment 
which revealed the direction dependence of light velocity and the adequacy 
of the aether conception to physical reality. Nevertheless, sixty years after its 
first performance. hundreds of pens have tried to reconcile its decisive posi­
tive « aether wind» effect with the uni-directional Einstein's light velocity 
constancy and thus to convince the scientific community that black is white. 
The history of this experiment and of its mistreatment by official physics is 
very instructive, having shown that when the experiments speak the gods 
keep their silence but the theoreticians do not. 

We have considered this experiment in detail in Marinov ( 19781) where 
we have given also the account of two important modifications to it which 
were performed by us. 

Fig. 25-1 presents our set-up for the performance of the « rotating disk » 
experiment. A medium with refractive index n can rotate (in a clockwise 
direction) with the semi-transparent mirrors SM. SM"' SM II and the mirrors 
M,. M,. M.,, M Al• M Al• MAJ• M 111 , M 112 , M 83 , or without them, or only the 
mirrors can rotate and the medium remain at rest. In the last case. a medium 
with refractive index n = l, i.e., vacuum (air), can also be taken. So four 
different combinations are possible which we name : 

I. The Harress-Sagnac experiment, performed first by Sagnac ( 1913 ). in 
which the mirrors rotate and as a medium a vacuum is taken. 

2. The Harress-Pogany experiment, performed first by Harress (1912) 
and repeated very carefully by Pogany (1928), in which the mirrors rotate 
together with the medium. 

3. The Harress-Marinov experiment, performed first by Dufour and 
Prunier (1942) and repeated by Marinov (19781) in a slightly different ar-
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Fig. 25-1 

rangement, in which the mirrors rotate and the medium is at rest. For the 
sake of unification (see the Zeeman-Marinov experiment in §28.2) we call the 
common type of the« rotating disk » experiment where the medium is at rest 
and the mirrors rotate the Harress-Marinov experiment. 

4. The Harress-Fizeau experiment, performed first by Fizeau ( 1851) in a 
substantially different arrangement (called the« water-tube,. experiment -
see §23), in which the medium rotates and the mirrors are at rest. Our 
performance of the Harress-Fizeau experiment (Marinov, 19781) can be 
considered as the first one. 

In fig. 25-1, S. is a light source emitting coherent light. Sh is a shutter 
which is governed by the rotating disk and allows short light pulses to pass 
only at a strictly defined position of the disk when the diametrically opposite 
facets of the transperant medium are exactly parallel to the mirrors M,, M,, 
M3• The areas of the facets are small and the mirrors are placed near to the 
medium. Thus we can assume that the photons travel between the single 
mirrors along the corresponding chords of a circle with radius R. P" and P 8 

are two photoresistors put in both arms of a Wheatstone bridge. Always when 
the shutter Sh allows light to pass, the phtoresistors are illuminated uniformly 
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by interfered light. With the aim of explaining the character of the interfe­
rence, let us consider four photons which are emitted by S at the same 
moment and cover the following paths : 

First photon : SM- SM A- M Al- M Al- M A.1- M ... 2 - MA 1-SM ~­
P .... 

Second photon: SM - SM 8 - M,- M 2 - M 1 - SM.I\- PA· 

Third photon: SM- SMR- MB,- MR
2

- MR
3

- MR
2

- Mn
1
-SM

8
-

PR. 
Fourth photon: SM - SM A- M 3 - M 2 - M,- SMn- P 8 . 

Since the effects in the « rotating disk » experiment are of first order in 
vie, they can be considered in the frame of the traditional a~ther-Newtonian 
theory which, within such an accuracy, is identical with our absolute 
space-time theory. 

The first and third photons cover the same paths at rest and motion of 
the mirrors. As a matter of fact, there are differences which are of second 
order in vie, and we consider them in §29. 

The second photon (which we shall call « direct ») travels along the 
direction of rotation and the fourth photon (which we shall call « opposite ») 
travels against the direction of rotation. The differences in the optical paths 
of the first and second photons, on one hand, and of the third and fourth 
photons, on the other hand, will change oppositely when changing the rota­
tional velocity. At rest the illuminations over both photoresistors are the same 
and the bridge is in equilibrium. When increasing the rotational velocity, the 
bridge comes into greater and greater disequilibrium, passes through a state 
of maximum disequilibrium and at a certain angular velocity Q comes again 
into equilibrium. If the time spent by the second (or fourth) photon for 
covering its path at the angular velocity Q differs by tlt A (tlt 8 ) from the time 
spent at rest, and we introduce the notation tlt = tlt A + tlt R• theri tl = c tlt 
will be equal to the wavelength,\ of the used light. 

s s 
a) b} 

4 
0 Fig. 25-2 
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For the calculation of tlt through the parameters of the device, taking 
into account also the dispersion of the medium, we proceed from the sim pie 
scheme of the experiment given in fig. 25-2. Here S is a light source, Sh a 
shutter governed by the rotating turnabout, M is a semi-transparent mirror 
where the light pulses separate into« direct» and« opposite», M,, M,, M, 
are mirrors and O is an observer who registers the diferent interference 
pictures. In fig. 25-1, to the semi-transparent mirror Ma point M corresponds 
which can be considered as an effective point of separation. 

d 

Fig. 25-3 

M 

25.1. THE HARRESS-MARINOV EXPERIMENT 

First we shall consider the Harress-Marinov and Harress-Dufour expe­
riments, whose schemes are given, respectively, in fig. 25-2a and fig. 25-2b. 
We suppose that the mirrors rotate in a direct (clockwise) direction and the 
medium is at rest in absolute space. According to fig. 25-3 (see also fig. 25-2 
and fig. 25-1 ), a « direct » photon which separates from an « opposite » 
photon at the semi-transparent mirror M will reflect not at point M,, where it 
reflects when the mirrors are at rest, but at a point M;, and thus in the case of 
rotation its path will be longer by 

d ,,, QR' 
tld = Q R -- cos - = -- n 

cln 4 c ' 
(25.1) 

where d = Rlcos (TTl4) is its path when the mirrors are at rest and R is the 
distance of the mirrors from the centre of rotation. In the case of rotation the 
path of an « opposite » photon between Mand M, will be with tld less than in 
the case of rest. 
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Since mirror M (or mirrors SM A and SM 8 in fig. 25-1) moves, then, 
because of the Doppler effect, the frequencies of the «direct» photons 
received by the molecules of the medium will be 

V 7T _;-rlR 
v,, = v (I + 2 ~ cos 4 ) = v (I + v 2 -c-), (25.2) 

while the frequencies of the « opposite » photons received by the molecules 
of the medium will remain the same. 

Hence, ifwe take into account the dispersion, the refractive index of the 
medium for the « direct » photons becomes 

. rl R dn 
n = n (v0 ) = n + y5. -- v - . 

c dv (25.3) 

Thus if the mirrors rotate, a « direct » photon will return to mirror M 
after an « opposite » photon with the following time delay : 

a) for the Harress-Marinov experiment 

~t = 4 d + ~d _ 4 d - ~d = 8 rl R' (n' _ A : ) ' 
11 - M c In • c In c' ul\ 

(25.4) 

b) for the Harress-Dufour experiment 

d ~d d ~d rl R' dn (25 .5) 
~t II - o = 4 ( c/n· + ~) - 4 ( cln - ~) = 8 7 (n - A d>..). 

Let us note that in our realization of the Harress-Marinov experiment 
(fig. 25-1), we have to take into account the difference in the light paths which 
appears along the contour SM - SM A- M - SM 8 - SM when the mirrors 
rotate. Denoting by b the distances between SM A and SM 8 , we obtain for the 
area enclosed by this contour 

b' w (2 - n') 112 
S = - cot (- + a) = b' 

2 4 2 n ' 
(25.6) 

where a is the difference between the angles of incidence and refraction, and 
we have used Snell's law ( 13.31) which for our case gives 

. 7T y2 
sm ( 4 + a) = 2 n. (25.7) 

Thus, when the mirrors rotate with an angular velocity n, the second 
photon will come for a rendezvous with the first photon on mirror SM A with 
the following additional time anticipation 
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sn rlb' 
~(add = -,- = --

C c' 

(2 - n') 112 

2n 
(25.8) 

while the fourth photon will come for a rendezvous with the third photon on 
mirror SM 8 with the same time delay. 

25.2. THE HARRESS-FIZEAU EXPERIMENT 

The Harress-Fizeau experiment can also be performed in two somewhat 
different arrangements shown in fig. 25-2a and fig. 25-2b which we shall call, 
respectively. the Harress-Fizeau-Marinov and Harress-Fizeau-Dufour ex­
periments. We shall consider only the first one, which was carried out by us, 
calling it the Harress-Fizeau experiment. 

We suppose that the medium rotates in direct (clockwise) direction and 
the min:ors are at rest in absolute space. Now, as can be seen from fig. 25-3. 
the molecular velocity that makes an angle fJ with the direction of propaga­
tion of the « direct » photons will have a magnitude 

y2 r!R 
v= - -- . 

2 cos fJ 
(25.9) 

Since the medium moves with respect to the mirrors, then, because of 
the Doppler effect, the frequencies of the« direct » and « opposite » ph~tons 
received by the molecules will be, respectively. 

v ,/i. n R 
V., = v (I + - cos fJ) = v (I + -2 --) . 

C C 
(25.10) 

Hence, if we take into account the dispersion, the refractive indices for 
the« direct» and «opposite» photons become, respectively, 

...fi. rl R dn 
n ± = n (v0 ) = n + 2 -c- v dv . (25.11) 

Thus, if the medium rotates, a « direct » photon will return to mirror M 
before an« opposite,. photon with the time anticipation [use formula ( 13.16) 
and compare with formula (23.5)] 

4d rl R' dn = 8 -- (n' - A - - I). 
c.:, c' d>.. 

(25.12) 
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25.2. THE HARRESS-SAGNAC EXPERIMENT 

The formula for the effect in the Harress-Sagnac experiment is to be 
obtained from (25.4) and (25.5), putting there n = I, 

QR' 
tHfl-s= 8 -,­

c 

25.4. THE HARRESS-POGANY EXPERIMENT 

(25.13) 

In the Harress-Pogany experiment the time delay with which a« direct » 

photon returns to mirror M after an « opposite » photon is equal to the 
difference in the time delays in the Harress-Marinov and Harress-Fizeau 
experiments. Thus from formulas (25.4) and (25.12) we obtain 

QR' 
~t fl - P = D.( fl - M - D.( fl - F = 8 -,- · 

C 
(25.14) 

We must emphasize that in the Harress-Marinov and Harress-Fizeau 
experiments there is the same relative motion between mirrors and medium. 
However the effects in these two experiments are substantially different 
because in the Harress-Marinov experiment the medium rests with respect to 
absolute space, while in the Harress-Fizeau experiment the mirrors rest with 
respect to absolute space. The theory of relativity meets severe difficulties 
when trying to explain this difference. 

25.5. PRACTICAL PERFORMANCE OF THE HARRESS-MARINOV 
AND HARRESS-FIZEAU EXPERIMENTS 

Our performance of the Harress-Marinov and Harress-Fizeau experi­
ments by the help of the set-up shown in fig. 25- I is reported in Marinov 
(1978f). 

The difference between our scheme (fig. 25-1) and the traditional 
scheme of the« rotating disk» experiment (fig. 25-2) is the following: In our 
realization the « direct » and « opposite » light pulses interfere with light 
pulses that always cover the same path. Thus the illuminations over the 
photoresistors PA and P 8 change oppositely, and we can use our convenient 
bridge method described in §23. A second difference consists in the follo­
wing : In fig. 25-2, the mirrors M 1 , M2 , M, are tangent to the circumference of 
the medium; however semi-transparent mirror Mis not tangent and cannot 
be placed close enough to the medium. In our realization, the separation of 
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the photons that will later interfere proceeds first at semi-transparent mirror 
SM and then at semi-transparent mirrors SM A and SM 8 , so that instead of 
mirror M, there is an effective point of separation M which can lie close 
enough to the circumference of the medium. Proceeding from formulas 
(25.4) and (25.8), we obtain the following formula for the calculation of the 
effect in the Haress-Marinov experiment performed with our set-up 

QR' dn Q b' (2 - n') 112 

~ = 8 --( 11 2 - A - ) - -- -----
11 - M c dA c n (25.15) 

It can easily be seen that the formula for the calculation of the effect in 
the Harress-Fizeau experiment performed with our set-up is to be obtained 
directly from (25.12) and ru.11~ 

QR' dn 
~ = 8 - (n' - "A - - I). (25.16) 

II - I C dA 

As a medium we have taken distilled water in a metallic vessel which has 
a form as shown in fig. 25-1. Glass windows are placed at points where light 
beams must cross the walls of the vessel. Glass windows also are placed in the 
metallic interfaces which divide the ring into compartments. Taking into 
account the thickness of the glass plates and their refractive index, we have 
put the mirrors M,, M,, M, at such positions that the actual light path 
(distance multiplied by refractive index) along the contour M - M, - M, -
M.1 - Mis exactly equal to the light path that would be covered if mirrors M ,, 
M2 , M, had been immersed in water. 

We haven= 1.3317 and dn/d)\ = - 2.7.10 • nm ', assuming on= 0 
and 8(dn!dJ\) = 0. for light of wavelength 0- = 632,8 nm of the He-Ne laser 
used. Also R = 30.6 ± 0,2 cm, b ,,. 10.0 cm. assuming ob = 0 and taking a 
large enough error, oR = ± 0,2 cm, which also has to compensate for 
possible errors introduced in the measurement of the thickness of the glass 
plates and errors that could appear from the replacement of the actual light 
path by an idealized light path only in water. 

We have made the light paths of the first and second photons (as well as 
of the third and fourth photons) equal. However. since laser light with good 
coherence is used, this is by no means necessary and the light paths of the first. 
and third photon_s can be substantially reduced. 

The sensitivity of our bridge method is analysed in ~23. Let us repeat 
that a maximum sensitivity is to be obtained when the sum of the differences 
in the light paths of the first and second photons and in the light paths of the 
third and fourth photons at rest is (2 n + I) A/2, where n is an integer, being 
8~ = ± 2,5.10 • A. When this sum is equal to nA the sensitivity falls to zero. 
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We have not searched for the highest sensitivity by the help of a « tuner », as 
described in §23, and we have taken an average sensitivity 8~ = ± IO ''J... 
The « tuner» described in §23 can be used also for calibration during the 
run, however in our method where we change the rotational velocity until 
ti = c t1t becomes equal to}.. no calibration need be made. 

The number of revolutions per second of the disk, N = ~2/2w, is 
measured by a light stroboscopic cyclometer maintained automatically with 
precision 8N = ± 0,02 rev Is. We rotated the disk first counter-clockwise 
with angular velocity Q, and then clockwise with angular velocity r.l,, taking 
Q = (l/2)(Q, + Q,). 

When the disk is at rest the Wheatstone bridge can be set into 
equilibrium by a micrometrical move of mirror MAJ or M BJ· Ifwe do not care 
to do this and if at the beginning the bridge is disequilibrated with a certain 
«positive» current, then at the angular velocity Q (counter-clockwise or 
clockwise) the bridge will be disequilibrated with the same « negative » 
current. However, in such a case at rest the shutter has to operate with the 
same chopping frequency with which it operates at the rotational velocity r.l. 
In the case where the apparatus is thermostabilized, a maximum sensitivity 
can be achieved by a micrometrical move of both mirrors MAJ and M BJ· 

We obtained N = 22,68 ± 0,04 revls for the Harress-Marinov experi­
ment and N = 50,60 ± 0,04 revls for the Harress-Fizeau experiment. 
Substituting the numerical values into formulas (25.15) and (25.16), we 
obtain, supposing that the velocity of light is an unknown quantity, 

cu_ M = (3,01 ± 0,07).IO' mis, 

cu_ 1 = (2,97 ± op7). IO' mis, 

where for oc we have taken the maximum measuring error. 

(25.17) 

§ 26. THE DISRUPTED « ROTATING DISK » EXPERIMENT 

The proper time delay in the Harress-Sagnac experiment (see §25.3) can 
• be written in the form 

• d dr d dr 2 d 
tit,, =. f-,- - f-,- = - f v cos ()' dr , 

C Co C2 
0 °d1r o opp 11 

(26.1) 

where we have used formula (3.32) and with d we designate the whole path. 
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If working within an accuracy of first order in vie, a difference between 
proper and absolute time intervals·cannot be made [i.e., we have to assume 
tit., = t1t( I - v' I c') 112 ::::: tit], and formula (26. I) can be written in the form 

2 d 
tit = , f v. dr , 

C o 
(26.2) 

where dr is the element of the light path of the « direct » photons and vis the 
velocity of the corresponding point on the rotating disk with respect to 
absolute space. 

In the « rotating disk » experiments (§25) the point of separation of the 
« direct » and « opposite » photons is the same, so that the light path of the 
«direct», as well as of the« opposite», photons must be a closed curve. lfwe 
should disrupt these closed paths and make the points of separation and 
meeting different, the light paths of the « direct » and « opposite » photons 
which are different at rest and motion of the disk can be made straight lines. 
We call such an experiment the disrupted « rotating disk » experiment. Its 
performance is reported in Marinov (1978n) and it patently shows that the 
velocity oflight is direction dependent even along a straight line on a rotating 
disk. 

M 

Sh 

Fig. 26-1 
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The scheme of the disrupted « rotating disk » experiment is as follows 
(fig. 26-1): The light source Sis a He-Ne laser. Sh is a shutter which is 
governed by the rotating disk and lets light pass only at a strictly defined 
position of the disk when both photoresistors PA, P 8 are illuminated. In the 
case where S, PA and PH would also be mounted on the rotating disk, the 
shutter Sh is unnecessary. SM is a semi-transparent mirror, Ma mirror, and 
SM< a corrective semi-transparent mirror which reduces the number of 
photons along the path to SM A to equal the number of photons along the 
path to SM 8 . 

Let four photons be emitted by Sat the same moment and suppose that 
they cover the following paths : • 

First photon: S - SM - SMc- SM A - SM~ - PA. 

Second photon: S - SM - SMc- SM A - SM 8 - SM'n - P'n· 

Third photon: S- SM - M - SM - SM 8 - SM'8 - SM'A _ P,. 

Fourth photon: S- SM - M- SM - SM 8 - SM'8 - P 8 . 

Using formula (26.2) and fig. 26-1, we find that in the case of rotation 
(with respect to the case at rest) the time in which the third (fourth) photon 
will reach PA (P rJ will be with 

2 Q R' fJ 
t:,, 1 = --- tan -2 , 

A C' 

QR' 
(t:.1 8 = -- sinfJ), 

c' 
(26.3) 

shorter than the time in which the first (the second) photon will reach 
PA (PB)-

The photoresistors PM P 8 are put in the arms of a Wheatstone bridge. 
They are illuminated uniformly by interfered light. Let us suppose that when 
the disk is al rest the bridge is in equilibrium, i.e., both photoresistors are 
illuminated by equal light intensities. If this is not the case, we move micro­
metrically SM'A and SM'8 , changing in such a way the path difference 
between the first and third photons until the bridge comes into equilibrium. 
Then we set the disk in rotation. With the increase of rotational velocity, the 
bridge comes into greater and greater disequilibrium, passes through a state 
of maximum disequilibrium, and at a certain angular velocity Q, when the 
sum of the differences in the optical paths t:,, = (t:.t A + t:.t 8 ) c will become 
equal to the wavelength 'A of the used light, the bridge will come again into 
equilibrium. Thus we shall have 

QR' fJ 
t:,, = -- (2 tan - + sin fJ), (26.4) 

C 2 

where we have to putt:,, = A. 
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We experimentally checked this formula (Marinov, 1978n), taking 
8t:. = ± 10 ''A (concerning the sensitivity of our bridge method see §23 and 
§25), A = 632,8 nm, fJ = 60°,0 ± 0°,5, R = 40,0 ± 0,2 cm, The number of 
revolutions per second N = Ql2'1T is measured by a light stroboscopic cyclo­
meter and maintained automatically with a precision tJN IN = ± 2.10 •. We 
registered N = 92,90 ± 0,02 rev/s. Putting the figures into formula (26.4), we 
obtain, supposing that the velocity of light is an unknown quantity, 

c = (2,98 ± 0,07).10' mis, 

where for tic we take the maximum absolute measuring error. 

§ 27. THE « COUPLED-SHUTTERS ON A 
ROTATING DISK » EXPERIMENT 

(26.5) 

The « coupled-shutters on a rotating disk » experiment, proposed in 
Marinov (1975b), represents a variant of the disrupted « rotating disk» 
experiment for the case where the rotation of the disk cannot be changed at 
will, as it is on our Earth. 

Its scheme is as follows (fig. 27-1): Along the rim of a disk the mirrors 
M,, ... ,Mk are placed close enough to each other. Light emitted by the source 

Fig. 27-1 
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S" (or Sn) passes through the semi-transparent mirror M" (Mn) and through 
the high frequency operating shutter Sh" (Sh 8 ). The chopped light reflects 
on the mirrors M,, ... ,Mk, passes through the shutter Shn (Sh ... ) and, being 
reflected by the semi-transparent mirror Mn (M "), is observed by the ob­
server O,. ( 0 n)- The shutters operate with the same chopping frequency /; 
being driven by the common resonator Res put at the centre of the disk. Thus 
the shutters operate synchronously at rest and when the disk is in motion. As 
a matter of fact, since the distances between the common resonator and the 
shutters which the electromagnetic signals have to cover are equal (with 
respect to the disk but also with respect to absolute space !), the shutters will 
always be opened and closed together. 

Let us suppose first that the disk is at rest and let us denote by d the light 
path between both shutters. At the condition that n = (die) (is an integer (or 
an integer plus l/2), both observers will register maximum (minimum) 
photon flux. If now we set the disk in rotation in a clockwise direction, then 
the observer O" will register maximum photonian flux at the condition that 
n" = (die) ((I + vie) is an integer, while the observer On will register 
maximum photonian flux at the condition that ~n = (dle)((I - vie) is an 
integer. 

If d and V are given and r changes, then both observers consequently 
should register« equal » or« opposite » pictures, e.f:., « 0" and O" together 
see maximum light». or« 0" sees maximum light when On sees minimum 
light». Indeed, we have 

C + V V 
n = n -- ~ n n + 2 - n = n 8 + t:J.n . 

" 8 c-v c 
(27.1) 

Thus if t:J.n = 2 d v fie' is an integer, the observers O" and O 8 should 
register « equal » pictures and if t:J.n is equal to an integer plus I /2, the 
observers O" and O 8 should register« opposite » pictures. 

If the angle fJ is almost equal to 2w and the radius of the disk R is very 
large, then we can consider the motion of the coupled shutters as inertial. 
This can be practically realized if one takes as a rotating disk our Earth and_ 
puts the common resonator at the pole. As shutters two Kerr cells can be 
used, separated by a short distance d (about 100 km) along the equator 
(placed, say, on the peaks of two mountains). As light sources lasers can be 
used. The commanding signals can be sent from the pole to the shutters by 
the help of several retranslation stations. For v = 0,45 kmls (that is 
approximately the linear rotational velocity of the Earth's equator) and 
d = 100 km, one should have t:J.n ~ 0 for ( low, t:J.n = I /2 for f = 5.10• Hz, 
t:J.n = I for ( = JO• Hz, and so on. Thus, changing the commanding fre­
quency in this range, one should change the pictures registered by both 
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observers from « equal » to « opposite », again to « equal », and so on, and 
the linear rotational velocity of the Earth's equator can be measured using 
the direction dependence of light velocity along a straight line. 

It can easily be seen that if the resonator is put on a parallel with latitude 
f/J and the coupled shutters along a parallel with latitude cp.,, it will be 

nR 
t:J.n = 2 -- d ((cos cp .. - cos cp). 

c' 
(27.2) 

§ 28. THE ZEEMAN « MOVING PLATFORM » EXPERIMENT 

The « moving platform » experiment is considered by us in detail in 
Marinov (1978m) where we give also an account of three important modifi­
cations performed by us. 

The « moving platform » experiment is an analogue of the « rotating 
disk» experiment, where the motion of the medium or/and the mirrors (the 
interferometer) is not rotational but inertial. Now, again, four combinations 
can be realized which we call : 

I. The Zeeman-Fizeau experiment, in which the mirrors are at rest and 
the medium moves. This experiment was performed first by Fizeau (1851) 
with water and by Michelson and Morley ( 1886) with a solid medium. It was 
very carefully repeated by Zeeman (1914, 1915, 1920, 1922) with liquid and 
solid media. 

2. The Zeeman-Marinov experiment, in which the medium is at rest and 
the mirrors move. This experiment was performed first by Marinov (1978m). 

3. The Zeeman-Pogany experiment, in which mirrors and medium 
move together. This experiment was performed by Marinov (1978m) and, as 
a matter of fact, it can be carried out by anyone who would take the care to 
observe whether the interference picture in a Zeeman-type implement, in 
which mirrors and medium are at rest, should change during a day when the 
absolute velocity of the implement changes as a result of the Earth's rotation. 

• 4. The Zeeman-Sagnac experiment, in which the mirrors move and a 
vacuum (air) is taken as a medium. This experiment was performed by 
Marinov (1978m). 

8, 

Fig. 28-1 
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Let us reduce the • moving platform » experiment, stripped of all fun­
damentally irrelevant details, to the following ideal arrangement (fig. 28-1) : 
The box S contains a monochromatic source together with a device produ­
cing two parallel coherent beams - Ev which propagates in vacuum and E,,, 
which propagates in a medium with refractive index n. After travelling a 
distance L, they enter a second box O in which they are united and their 
interfe~ence observed. Both boxes are halfway immersed in the medium. 
First the boxes (also called mirrors) and the medium are at rest and a specific 
interference picture is observed. Then one realizes the four different combi­
nations mentioned above, and from the difference in the observed interfe­
rence pictures conclusions can be drawn about the character of light propa­
gation. We suppose that the motion of the medium, or of the boxes, or both. 
proceeds from left to right. 

28.1. THE ZEEMAN-FIZEAU EXPERIMENT 

In §23 we have obtained the formula for the Zeeman-Fizeau (i.e., for the 
«water-tube») experiment [see formula (23.5)). For methodological reasons 
we shall again deduce this formula. 

The velocity oflight in a medium moving with velocity v, if measured by 
an observer at rest, is [see formulas ( 13.16) and (23.4)] 

c v dn I 
Cm = - + V ( J + - - - - ) COS fJ , 

n n' dv n' 
(28.1) 

where vis the frequency of the light used and fJ is the angle between v and the 
direction of light propagation. 

When mirrors and medium in fig. 28-1 are at rest, a photon proceeding 
along the path E"' (a E,,,-photon) will arrive at box O with the following time 
delay after a photon proceeding along the parth E, (a Ev-photon). 

L L L 
t = -- - - = - (n - I). (28.2) 

c/n c c 

When the medium is set in motion the time delay will become (for fig. 
28-1 it is fJ = 0) 

L L L v dn 
t _ . = - - - = - [ n - I - - (n' - v - - I) cos fJ J. 

z F Cm C C C dv 
(28.3) 

Hence, for the Zeeman-Fizeau experiment, the effect to be observed in 
the interference picture will correspond to a time difference 

L v dn 
t:..t .= t - t = - (n' + v-- l)cosfJ. (28.4) z - ~ z - F c' dv 
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28.2 THE ZEEMAN-MARINOV EXPERIMENT 

The velocity oflight measured by an observer who moves with velocity v 
with respect to a medium that rests in absolute space is [ use formula ( 13.26) 
and take into account formula (25.3)) 

c v dn 
C ~. = - - V ( - - + I) cos (J • 

n n' dv 
(28.5) 

where vis the frequency of the light used and fJ is the angle between v and the 
direction of light propagation. 

For n = 1, i.e., for vacuum, we obtain 

C , = C - V COS fJ . (28.6) 

When the mirrors are set in motion the time delay with which a 
Em-photon arrives at box O after a E, -photon becomes (for fig. 28-1 it is 
(J = 0) 

L L L v dn 
t _ = --: - -; = - [ n - I + - (n' + v - - I) cos fJ J . 

2 M Cm C C C dv 
(28.7) 

Hence, for the Zeeman-Marinov experiment, the effect to be observed 
in the interference picture will correspond to a time difference 

L v dn 
t:..t 1 _ M = t - t 1 _ M = - - (n' + v - - I) cos fJ . (28.8) 

• c' dv 

The effects in the Zeeman-Fizeau and Zeeman-Marinov experiment are 
exactly the same, however these two experiments physically are not equivalent, 
and the formulas with which we obtain identical results are different. Accor­
ding to the principle of relativity, no physical difference can be made 
between the Zeeman-Fizeau and Zeeman-Marinov experiments, and special 
relativity considers the latter only as trivial tautology of the former. 

With the aim of showing that these two experiments are physically 
different, we have performed them in the non-inertial variant considered in 
§28.5, where the identical effects can be explained only if the formulas used 
for their calculation are different, as we do in absolute space-time theory. 

28.3. THE ZEEMAN-POGANY EXPERIMENT 

The velocity of light in a medium moving with velocity v, if measured by 
an observer who moves with the same velocity, is (see formula ( 13.28)) 

C V 
c,~ = - - , cos fJ , 

n n 
(28.9) 

where fJ is the angle between v and the direction of light propagation. 
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When the mirrors are set in motion with the medium, the time delay 
with which a B,,,-photon arrives at box O after a B.-photon will be (for fig. 
28-1 it is (J = 0) 

L L L 
- ---; = - (n - I). c.;, C C 

(28.10) 

Hence, for the Zeeman-Pogany experiment, the effect to be observed in 
the interference picture will correspond to a time difference 

!lt z _ r = t - t z _ r = 0 , 

and thus no change can be registered. 

28.4. THE ZEEMAN-SAGNAC EXPERIMENT 

(28.11) 

The effect for the Zeeman-Sagnac experiment can be obtained imme­
diately from formula (28.8), putting n = I, or from formula (28.11 ), i.e., 

!ltz-s= O (28.12) 

Fig. 28-2 
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28.5. THE NON-INERTIAL « MOVING PLATFORM» 
EXPERIMENT 

The scheme of our set-up for the performance of the Zeeman experi­
ments is shown in fig. 28-2. We call this variant of the Zeeman experiment the 
non-inertial « moving platform » experiment, while the variant shown in fig. 
28-1 can be called the inertial « moving platform » experiment. 

S is a light source, Sh a shutter which is governed by the rotating 
turnabout and lets light pulses (of a duration :::: 10 • s) pass only when the 
mirrors M,, M,, M., are parallel to the diametrically opposite small sides of 
the medium. As a transparent medium we have taken distilled water put in a 
metallic vessel of the form shown in fig. 28-2, which was the same as that used 
in the« rotating disk» experiment (§25). Glass windows arc placed at points 
where the light beams must cross the walls. Glass windows arc placed also in 
the metallic interfaces which divide the ring into compartments. Taking into 
account the thickness of the glass plates and their refractive index, we have 
put the mirrors M,, M,, M, in such positions that the real light path (distance 
multiplied by refractive index) along the contour M-M,-M,-M ,-M should be 
exactly equal to the light path which is to be covered if mirrors M,. M,. M, 
were immersed in water. The distance between mirrors M, and M ,, and also 
between mirror M, and point M. is 2R. 

The light beam emitted by S splits at semi-transparent mirror SM into 
A-beam and B-beam which follow identical paths and for this reason we shall 
follow only the A-beam. After reflection on mirrors M" and M Al• the A­
beam reflects on semi-transparent mirror SM .., 1 and goes upwards. Then it 
splits into two daughter beams at semi-transparent mirror SM " 1 which is 
placed above SM .., 1 and their planes make a right angle. The 
A· -daughter-beam reflected on SM Ac then reflects on mirror M .., 2 , enters into 
the medium, reflects successively on mirrors M.,, M,, M,. and, leaving the 
medium, reflects on mirror M HJ• Then it reflects on semi-transparent mirror 
SM 82 and, going downwards through the semi-transparent mirror SM 111 • 

illuminates the photoresistor P 8 . The A·· -daughter-beam refracted on SM " 1 

goes further upwards, reflects on mirror MM• and, proceeding above the 
medium, reflects successively on mirrors M., M,, M, and M 84 . Then it reflects 
on mirror M 83 and, going downwards through the semi-transparent mirror 
SM 82 (where it interferes with the A '-daughter-beam) and through semi­
transparent mirror SM 81 , illuminates the photoresistor P 8 . 

The angle a between the projections of the A· - and A·· -daughter-beams 
in the plane of the figure, before the entrance of the A· -beam into the 
medium and after its exit, can be determined from Snell's law (25.7). 
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The photoresistors PA and P 8 which are illuminated uniformly by the 
interfering B- and A-daughter-beams are put in the arms of a Wheatstone 
bridge, which is described in more detail in §23 and §25. We have not 
searched for the highest sensitivity by the help of a « tuner», as described in 
§23, and we have assumed an average sensitivity 8t. = ± IO 'A. 

We take (Landolt-Bornstein, 1962) n = 1,3317 ± 0,0003 for the light 
with A = 632,8 nm of the He-Ne laser used. The error 8n corresponds to a 
change in the refractive index with the temperature which was maintained at 
T = 20" ± 3° C, since it is dnldT = IO • degree '. From the same source 
we have taken dnld>.. = - 2,7.IO s nm ', assuming 8(dnld>..) = 0. We had 
R = 30,6 ± 0,2 cm. We measured N Z-F = 50,80 ± 0,04 rev ls for the 
Zeeman-Fizeau experiment and N z-M = 50,94 ± 0,04 rev ls f@r the 
Zeeman-Marinov experiment, having N = Q/277. Putting these figures into 
formulas (28.4) and (28.8) and taking into account that it is 

L=4-../2R, 
y2 QR 

v= - --
2 cos fJ ' 

(28.13) 

we obtain, supposing that the velocity of light is an unknown quantity, 

c 2 _ F = (3,01 ± 0,07). I08 mis, 
(28.14) 

c z _ M = (3,02 ± 0,07). I08 mis, 

where for 8c we have taken the maximum absolute measuring error. 

In the Zeeman-Pogany and Zeeman-Sagnac experiments we registered 
no perceptible disequilibration of the bridge when rotating the disk. 

Let us mention that the measuring procedure in the « rotating disk » 

experiment (§25) is very similar to that in the non-inertial « moving 
platform » experiment. We performed the « moving platform » experiment 
in its non-inertial variant, aiming to use the set-up constructed for our 
« rotating disk » experiment. On the other hand, we think that the results of 
the non-inertial variant are more important than the same results which could 
be obtained with the inertial variant. Indeed, since we already know that the 
velocity of light with respect to a rotating disk is direction dependent, then 
the identical effects in the Zeeman-Fizeau and Zeeman-Marinov experi­
ments can be explained only by our theory which obtains these effects by 
proceeding from substantially different formulas. 

§ 29. THE SECOND-ORDER EFFECTS IN THE 
« ROTATING DISK» EXPERIMENT 

The measurement of the second-order effects in the Harress-Marinov, 
Harress-Fizeau and Zeeman-Marinov, Zeeman-Fizeau experiments is a dif-
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ficult problem because there is a relative motion between mirrors and me­
dium. In the Zeeman-Pogany and Zeeman-Sagnac experiments the 
second-order effects are null, and thus only the Harress-Sagnac and 
Harress-Pogany experiments are convenient for the measurement of 
second-order in vie effects. Nevertheless, since these effects are very faint. 
such an experiment is very delicate, and in our laboratory there are no 
Possibilities for its performance. For this reason we shall consider the expe­
riment for the measurement of the second-order effects in the « rotating 
disk » experiment, without entering into the details of an eventual practical 
performance, as in Marinov (1976b). When calculating the effects, we shall 
not take into account the dispersion of the medium, i.e., we shall suppose 
dnld>.. = 0. 

Fig. 29-1 

The scheme for the measurement of the second order effects in the 
« rotating disk ,. experiment is shown in fig. 29-1. Sis a light source which is 
rigidly connected with the mirrors, because the effect to be measured is too 
small and the use of a shutter which is governed by the rotating disk would, 
probably, discredit the experiment. P is a photoresistor illuminated by 
interfered light. It is put in one arm of a Wheatstone bridge and in the other 
arm there is a variable resistor. We assume that the mirrors M,, M,, ... , M. ,, 
M. are placed near to the rim of the medium's disk and close to each other. 
Thus we can assume that the photons fly along the circumference of a circle 
and cover a path d = 27TR. 
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Suppose first that the disk is at rest. Light emitted by the source Sis split 
by the semi-transparent mirror SM into reflected and refracted beams. The 
reflected beam reflects on mirror Mand, after refraction on SM, illuminates 
P. The refracted beam reflects successively on M,, ... ,Mk clockwise, on 
Mk,••·,M, counter-clockwise and, after reflection on SM, illuminates P. 

If we now set the disk in rotation, then the reflected beam will not 
change the time in which it covers its path because it moves only along the 
radius of the rotating disk, while the refracted beam (which has the same 
« radial motion» if the distances from SM to Mand M, are equal) changes its 
time with t!.t. Now we shall calculate this time difference for the four different 
types of the « rotating disk » experiment. 

29.1. THE HARRESS-MARINOV EXPERIMENT 

Using formula (13.23) at the condition 00 = 0 and taking into account 
that it is [see (4.2)J 

c.;, = c;m(I - V2 /C 2) 112 , (29.1) 

we find that the difference in the absolute times which the refracted beam has 
to spend covering its path in the cases of rest and rotation of the mirrors will 
be 

d d 2d dv' 
At - -- + -- - - = -- n (2 n' - I). u H-M- l c.;,• c.;, Cm C 

(29.2) 

29.2. THE HARRESS-SAGNAC EXPERIMENT 

For n = I, i.e., for the second-order effect in the Harress-Sagnac expe­
riment, we obtain from formula (29.2) 

D,.( H - S = 
d v' 

c' 

29.3. THE HARRESS-FIZEAU EXPERIMENT 

(29.3) 

Using formula ( 13.12) at the condition 00 = 0, we find that the 
difference in the absolute times which the refracted beam has to spend 
covering its path in the cases of rest and rotation of the medium will be 

d d 2d 
D,.( H - F = -- + -- -

C~+ C~ Cm 
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2 d v' 
-- n (n' - I). 

c' 
(29.4) 

29.4. THE HARRESS-POGANY EXPERIMENT 

Using formula ( 13.28) at the condition (J' = fJ = 0 and formula (29.1 ), we 
find that the difference in the absolute times which the refracted beam has to 
spend covering its path in the cases of rest and rotation of mirrors and 
medium will be 

2 d dv' 
- = -- n. 
Cm cl 

(29.5) 

This formula for n = I gives again the second-order effect (29.3) in the 
Harress-Sagnac experiment. 

29.5. CONNECTION WITH KIN EMA TIC TIME DILATION 

As we have said (§2.1 and §2.4), a light clock represents a light source 
and a mirror placed in front ofit, between which a light pulse goes to and fro. 
Instead of one mirror we can have an arbitrary number. It is of importance 
only that a light pulse which leaves a given point returns to it and repeats this 
cycle uninterruptedly. Thus our mirrors M,, M,, ... , Mk, ... , M,, M, also repre­
sent a light clock. 

Let the time which a light pulse spends covering path d to and fro be T 
when the mirrors are at rest. Thus 

2d 
T= -

C 
(29.6) 

is the rest period of our clock. When the mirrors are set in motion with a 
rotational velocity v = QR, where Q is the angular velocity, the period of the 
light clock in motion measured in absolute time, i.e., by the help of a clock 
which rests in absolute space, will be (use formula (3.31) at the condition 
fJ = 0· = OJ 

d d 2d 
T.,=--+--= 12 

c·• c· c(I - v'lc') 1 

T 

( I v'lc') 112 ' 
(29.7) 

while the same period measured in proper time, i.e., by the help of a clock 
which is attached to the rim of the moving disk, will be [use formula (3.32) at 
the condition fJ = (J' = OJ 

d d 2 d 
T,,., = - .. - + -.- = - = T. 

C0 C0 C 
(29.8) 

Thus, the period of our light clock rotating with velocity v in absolute 
space, as well as the period of any light clock proceeding as a whole with 
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velocity v, becomes longer according to formula (29.7). We have called this 
effect the absolute kinematic time dilation(§ I I.I). 

According to our tenth axiom, the time unit for any observer is de­
termined by the period of a light clock which has the same « arm » for all 
observers. When the « arm » is d = 150.000 km, this time unit is called a 
second. If the observer is at rest in absolute space, his second is called 
absolute. If the observer moves with a certain velocity in absolute space, his 
second is called proper. Any proper second is larger than the absolute second 
and the relation is given by formula (29.7), where the durations of Tand T., 
are given in the same time. Thus the change in the duration of the period of a, 
light clock when in motion can be established by comparing its period with a 
periodical process of a system which is at rest in absolute space (in general, 
one that does not change its velocity when the light clock under investigation 
changes its velocity). If we should compare the period of the light clock 
considered with the periodical process of a system which constantly moves 
with the same velocity as the light clock, then no change can be registered, as 
follows from formula (29.8), where the period of the moving light clock is 
given in proper time and the period of the same clock at rest in absolute time. 
This is due to the absolute time dilation, by which the rhythm of any 
periodical process decreases, according to formula (29.7), if the correspon­
ding system is set in motion with velocity v. 

All these assertions of our absolute space-time theory can be verified 
experimentally if one measures the second-order effects in the 
Harress-Sagnac experiment. 

The second-order effects in the Harress-Sagnac experiment have been 
treated by Burcev (1974) who proposed also an experiment for their measu­
rement. Burcev's proposal consists of the following: Let us have a number 
(~ 3) of artificial satellites moving along the same circular trajectory round 
the Earth with a certain velocity v. If a radar pulse is emitted from one of the 
satellites, then, by means of reflections in the other satellites, this radar pulse 
can be again received after having covered a closed path round the Earth and 
the time of delay can be measured with a high precision. If we suppose that 
the satellites are placed close enough to each other, then the trajectory of the 
radar wave can be assumed as circular and the gravitational potentials at all 
points crossed by the wave as equal. We can treat Burcev's proposal by the 
help of our figure 29-1, assuming that clock C (an atomic clock) is attached to 
the mirrors M, and Mk, so that the time in which a light pulse covers the path 
from M, to Mk and from Mk to M, can be measured. 

According to Einstein's theory of general relativity (see, for example, 
Landau and Lifshitz, 1959), this time, for the« direct» (+)and« opposite» 
( - ) pulses, respectively, is 
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1; = I 
(I - v'le') 112 ' 

I± vie 
(29.9) 

where t = die = 2wR/e is the time registered on the same clock if the disk is 
at rest. 

According to the tr~ditional Newtonian aether theory this time is 
+ 

I = N I+ vie • (29.10) 

According to our absolute space-time theory this time is [use formula 
(3.32)) 

± ± d 
IM= lo=-.-= t(I ± vie). 

Co± 
(29.11) 

If this time is measured on a clock resting in absolute space, it will be [use 
formula (3.31 )] 

t• 
t 

10 

g 

8 

7 

6 

5 

3 

0 0, I 0,2 

+ d l ± vie 
1-= -- = I 

e'± (l-v2lc2) 112 
(29.12) 

Fig. 29-2 

0,3 O,+ 0,5 0,6 0,7 0,8 v/c 
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When we try to measure the absolute time intervals t ± by the help of a 
clock which rests in absolute space, the problem arises about the time 
synchronization of spatially separated clocks. This problem is solved by us 
(theoretically and experimentally) with the help of a rotating rigid shaft. 
However, in the « rotating disk » experiment the problem about the time 
synchronization of spatially separated clocks can be eliminated if we choose 
an appropriate rotational velocity v, so that the light pulse, emitted by M, 
when it passes near to the clock Cwhich is at rest, will arrive at Mk when Mk 
passes (after one or more revolutions) near to C. 

In fig. 29-2 we give the graphs of the relation t + It versus vie drawn 
according to formulas (29.9), (29.10) and (29.11). Thus an experiment as that 
proposed by Burcev can choose between these three rival theories. We think, 
however, that there is no need to perform this costly experiment, since, in the 
light of the present book, it is obvious our formula will correspond to physical 
reality. 

§ 30. THE LIGHT DOPPLER-EFFECT EXPERIMENTS 

Now we shall discuss certain light Doppler-effect experiments, -consi­
dered in Marinov (1978e), in which second-order in vie effects have been 
observed. 

30.1. THE IVES-STILWELL LONGITUDINAL « CANAL RAY» 
EXPERIMENT 

The experimental verification of the second-order terms in formula 
( 10.5) was performed first by Ives and Stilwell ( 1938) who used light emitted 
by the moving ions in a canal ray tube, and we have called this the « canal 
ray » experiment. 

Fig. 30-1 

The scheme of their experiment in a simplified version is shown in fig. 
30- l. Positive ions are produced in a hydrogen arc between the heater Hand 
the perforated electrodes E and E'. Between E and E' the ions are accelerated 
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by an electric field, thus forming the beam S that represents the moving 
source. These ions proceed with a constant velocity v which depends on the 
voltage applied between E and E'. The photons emitted by the excited ions, 
passing through the large slit Q, illuminate the narrow slit O which represents 
the observer at rest. To analyse the energies (i.e., the frequencies) of the 
photons, a spectroscope is used of which we show the focusing lenses L,, L 2 , 

the refractive prism P and the screen D. 

The mirror M will reflect the light emitted by the ions which move away 
from it with velocity v. Thus three groups of photons will flow to the screen : 

a) Photons with frequency v emitted by the ions at rest, before being 
accelarated by the electrodes; they will illuminate the zero point Z. 

b) Photons with frequency v• shifted to the « blue end» which are 
emitted by the moving ions; they will illuminate point B. 

c) Photons with frequency v shifted to the« red end» which are emit­
ted by the moving ions and then reflected by the mirror M; they will illumi­
nate point R. 

According to formula ( 10.5), under the condition e;, = (J = 0, we obtain 

+ V I V 2 

V - = V ( I ± - + - - ). 
e 2 e2 

(30.1) 

Thus the middle of these two frequencies will be shifted from the 
frequency v over a frequency interval 

v• + v l v 
tiv = --- - V = - V -

2 2 e' ' 
(30.2) 

which was experimentally verified by Ives and Stilwell. 

30.2. THE TRANSVERSE « CANAL RAY » EXPERIMENT 

The transverse « canal ray» experiment was proposed by Marinov 
(1970, 1972a, 1978e). Its scheme is shown in fig. 30-2. The system for pro­
duction and acceleration of the ions is as in fig. 30-1. The photons emitted by 
the excited ions, passing through the large slit Q, illuminate the narrow slit O 
behind which there is an indicator that gives indication only when photons 
are incident with frequency v equal to the frequency emitted by the ions used 
when they are at rest. 

From fig. 30-2 and from the first formula ( 10.5) we obtain that on the 
indicator photons will fall with frequency 
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Vo= 
(I - v'/c') 112 

I+ 

• V a 
= v [ I + -c (0 ± -2 ) -

V 'TT a 
- cos ( - + 0 ± - ) 
C 2 2 

(30.3) 

-+-_ ___,...,..,,.,.-vv"'-----1-- H 

E 

s 

0 

V 

Fig. 30-2 

where 0 is the angle between the perpendicular ON to the ions' beam and the 
line OC connecting slit O with the centre of slit Q; a is the angle under which 
slit Q is seen from point 0. Ifwe choose a ~ 0, then on the indicator photons 
with frequency v will fall only at the condition 

0 = vl2c. (30.4) 

Hence the experiment is to be performed as follows : For any voltage 
applied to the electrodes, i.e., for any velocity v of the ions, we search for a 
position of slit Q at which the indicator will show availability of photons with 
frequence v. Then the theory is to be proved by plotting We versus v; the 
locus must be a strainght line dividing the quadrant. 

30.3. THE HAY « ROTOR » EXPERIMENT 

The scheme of the so-called« rotor» experiment performed first by Hay 
et al. (1960), where the Mossbauer effect is used, is as follows (fig. 30-3) : 
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~o 

o· 

C 

Fig. 30-3 

A radioactive 5'Co, representing the source, was put on a rotating disk at 
a distance R from the centre of rotation C. A thin 5'Fe absorber, representing 
the observer, was put around the circumference of the rotating disk at a 
distance R., from the centre of rotation. A detector D at rest was used to 
measure the rate of they-photons emitted by the source passing through the 
absorber. The transmission of the absorber was measured for various angular 
velocities. This transmission was found to increase as the angular velocity 
increased, indicating a shift in the characteristic frequency of the absorber. 

Since the line shape of the absorber at rest was known experimentally, 
the magnitude of the frequency could be estimated, and it was found to agree 
with the frequency shift calculated according to formula ( 10.17). 

Let us make the calculation. From the triangles OPC and S'PC in fig. 
30-3 we obtain the relation 

Now substituting 

V = [!. R, 

(30.5) 

(30.6) 

157 



where U is the angular velocity of rotation, into the first formula ( 10.17) and 
keeping in mind (30.5), we obtain the relation 

1 - v'lc2 112 
V - v(----) " - I _ ,1 , 

V0 C 
(30.7) 

which was verified experimentally. 

We emphasize that formula (30.7) is valid for any position of source and 
observer on the circumferences with radii R and R0 • 

30.4. THE « ROTOR-ROTOR » EXPERIMENT 

Now we shall consider the « rotor-rotor» experiment proposed by us in 
Marinov (1978e) and, to a certain extent, carried out by Champeney et al. 
(1963). 

V 

Fig. 30-4 

It can be realized (fig. 30-4) when the centre of the rotor considered 
above (which we shall call the small rotor) rotates at angular velocity U and 
linear velocity v0 with respect to some centre, thus making another rotor 
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which we call the big rotor. The radii of the small and big rotors are denoted 
by rand R. The angular velocity of rotation of the small rotor about its own 
centre is denoted by w. We shall suppose that the source is placed at the tip of 
the small rotor and the observer is at its centre. The linear velocity of rotation 
of the source is denoted by v, and its absolute velocity by v. Thus it will be 

V = V, + V.,. (30.8) 

The angle between v, and vis denoted by t/,. The angle between R and r 
is denoted by <p. The small angle between the observer's radii at the emission 
and reception moments is denoted by a and the small angle under which the 
emission and reception positions of the observer are seen from the emission 
position of the source is denoted by {3. 

We have from fig. 30-4 (see also fig. 10-2) 
w w o· = 2 - "' + /3' o .. = 2 + <p - a - /3 ' (30.9) 

where 
v., 

/3 = - cos <p. 
C 

(30.10) 

Putting (30.10) into (30.9) and taking into account that a and /3 are small 
quantities, we can write 

V 
cos o· = sin "' cos /3 - cos "'sin /3 = sin "' - ~ cos <p cos "' ' 

C 

cos 80 = - sin <p cos (a"+ /3) + cos <p sin (a + /3) = 

V0 r 
= - sin <p + - ( - + cos <p) cos <p . 

C R 

From the figure we further obtain 

sin t/, = 

and from here we get 

v0 sin <p 

V 
cost/,= 

V, + V., COS <p 

V 

(30.11) 

(30.12) 

, (30.13) 

(30.14) 

Using the last four formulas in the first formula ( 10.17) and working 
within an accuracy of second order in I/ c, we obtain the following relation 

v2 v~ r 
V = V ( I - __.: - - - COS m) . 

0 2c2 c2 R .,, 
(30.15) 

159 



lfwe take into account that it is 
rw 

V, 

we can write (30.15) in the form 

v! V, V., fl 
110 = " ( I - - - -- - cos q:,) . 

2c' c' w 

This formula can be proved by the experiment. 

(30.16) 

(30.17) 

Now we shall show that formula (30.17) is already checked experimen­
tally to a certain extent. Indeed, if we suppose Q << w, then formula (30.17) 
shows that with the help of the« rotor» experiment one cannot measure the 
absolute translational velocity v. Champeney et al. (1963) tried to register 
absolute effects in the« rotor» experiment, since, according to the traditional 
Newton theory, if a rotor moves with the absolute translational velocity v.,, 
then the effect is to be described by formula (30.17) which must be written, 
however, without the factor !Vw. The aim of Champeney et al. was to 
measure the Earth's rotational velocity (which is 3 IO mis on the 45" parallel). 
The experiment has shown that v., must be less than 1,6 ± 2,8 mis, and this 
result was treated as a new and better verification of the Einstein principle of 
relativity (with respect to the accuracy of the historical Michelson-Morley 
experiment). 

It is clear that this conclusion is untenable. When we analyse Champe­
ney's experiment with our formula, then we see that if Q = 1,15.10 5 rad ls 
(the Earth's diurnal angular velocity), w = I, 15.10' rad Is (the rotor1; angular 
velocity), v .. = 310 mis, then (fllw) v., = 3,1.10 •mis.This effect is lower 
than the accuracy ofChampeney's experiment by six orders. Since in Nature 
all motions of the celestial bodies are rotational, then (at least theoretically !) 
we can establish any such motion, using the « rotor », i.e., the « rotor-rotor » 
experiment, where the big rotor represents the rotation of the celestial body 
(about its rotational axis, about the primary, or about the galactic centre). 

30.5. THE SANTOS EXPERIMENT 

In the « rotor » experiment there is no relative motion between source 
and observer. With the aim of realizing a transverse Doppler-effect experi­
ment where source and observer have to move with respect to one another, 
Santos (1976) proposed the following experiment: 

Let us have two disks rotating in opposite directions : (i) about two 
parallel axes, so that the disks lie in the same plane, or (ii) about the same 
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axis, so that the disks lie in two parallel planes. A y-ray emitter is placed at the 
rim of one disk and a y-ray absorber at the rim of the other, the linear 
rotational velocity of each being v. At the moment when their velocities are 
antiparallel, their relative velocity will be 2v. 

The result of this experiment can be found from formula ( 10.17), putting 
there (}' = 1rl2, 0., = 1rl2. Within an accuracy of second order in vi c we 
obtain 

"" = " [ I - (v' - v?,)12 c'), (30.18) 

and for v = v., we get 110 = v. 

It is instructive to note that in the Santos experiment the result is the 
same for anti-parallel and parallel directions of the velocities. 

As we showed in Marinov ( 1977a), because of the inevitable appearance 
of first-order in vi c effects, Santos' experiment cannot be practically realized. 
Indeed, when performing this experiment we have to put between the rota­
-ting disks a shielding with length d and aperture b. :'_ssume, for sim~lici~y's 
sake, the trajectories of emitter and absorber are rect1hnear and the shield mg 
exactly perpendicular to them,Since the emitter and absorber are not point 
objects, then for the different emitting and receiving atoms we shall have (see 
fig. I0-2) 

(}' = 1rl2 ± bid, 0., = 1rl2 ± bid. (30.19) 

Putting this into formula ( I0.17) and assuming v., = v, we obtain 

~" = 110 - v = ± v v blc d. (30.20) 

Santos predicts that, when proceeding from the Einstein theory of rela­
tivity, his experiment has to give a positive effe~t 1 ~v I = 2vv'lc'. Thus the 
requirement bid< vie is to be satisfied. Suppos1~g v = 300 mis, d = l? cm, 
we obtain b < JO 5 cm. Obviously, such an experiment cannot be practically 

realized. 

It is worth noting that in Santos' experiment the shielding plays a very 
important role. As already analysed, if this shielding is at rest in the labora­
tory, being perpendicular to the trajectories of emitter and absorber, the 
experiment gives a null (traverse) effect. If the shielding is attached to the 
absorber, there will be a post-traverse Doppler effect, and we shall have 
v0 = v (I - 2v'lc'). If the shielding is attached to the emitter, there will be an 
ante-traverse Doppler effect, and we shall have v0 = v ( I + 2v' I c'). 
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§ 31. THE QUASI-WIENER « STANDING WAVES» EXPERIMENT 

The « standing waves» experiment, considered in detail in Marinov 
( 19780 ), represents a modification of the historical Wiener experiment with 
which Wiener measured the length of light waves in the most direct manner. 
Its essence is as follows : 

Let a light source and an ideal mirror be placed on the x-axis of a given 
frame K. If this frame is at rest in absolute space (or its absolute velocity is 
perpendicular to the x-axis), the electric intensities of the incident and 
reflected by the mirror light waves will be 

£+ = £max sin (wt + kx), 

E = Em•x sin (wt - kx), 
(31.1) 

where Em., is the amplitude of the electric intensity, w ( = 2'7Tv) is the circular 
frequency and k ( = 2'7Tk) is the circular wave number; tis the time registered 
on a clock attached to the frame, i.e., on an absolute clock if frame K is at rest 
or on a proper clock if it moves with velocity v, omitting in the last case, for 
brevity's sake, the subscript « 0 »; x is the distance from the frame's origin 
where at the initial zero moment the electric intensities of the incident ( +) 

and reflected ( - ) waves are equal to zero. 

The incident and reflected light waves will interfere. For the electric 
intensity of the produced standing wave we obtain 

E = E' + E = 2 Em., sin (wt) cos (kx). (31.2) 

Suppose now that we set frame Kin motion with velocity v directed in 
parallel to the x-axis (or that we rotate the moving frame K so that its velocity 
v becomes parallel to the x-axis). Instead of wand kin formula (31.1) we now 
have to write the quantities [see formulas ( l0.19) and ( 10.21 )] 

± 2 '7T 

ko = A/ = k (I ± vie), (31.3) 

and for the electric intensity of the produced standing wave we obtain 

. vx 
£ = £+ + £ = 2 £max Sin [ W (I + - ) ] COS (kx). 

c' 
(31.4) 

Hence the distances between the nodes of the standing waves in the 
cases where the Wiener experiment is performed at rest and in motion with 
respect to absolute space will be exactly the same, and no first- or 
second-order differences in the pattern will be registered. The unique diffe­
rence is : When the laboratory is at rest in absolute space (or its velocity is 
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perpendicular to the direction of light propagation), E obtains its maximum 
at all anti nodes (i.e., for x = 11'7TI k, where n is an integer) at the same moment, 
and when the velocity of the laboratory is parallel to the direction of light 
propagation, £ obtains its maximum at the different antinodes at different 
moments. For a given moment t the electric intensity in (31.4) obtains its 
maximum at the antinodes with coordinates near to 

2n + I '7T c' 
X = ( -- - - I) - , 

W 2 V 
(31.5) 

while for this moment tit is zero at the antinodes with coordinates near to 
11'7T c' 

X = ( - - /) - . 
W V 

(31.6) 

This is the unique effect which is offered by the quasi-Wiener experi­
ment and we are sceptical about its experimental verification. 

We must point out that the historical Michelson-Morley experiment 
shows immediately that the quasi-Wiener experiment cannot reveal any 
second-order in vie effect. Indeed, if the standing waves have different 
lengths (within terms of second order in vie) in cases where the pattern is 
parallel and perpendicular to the absolute velocity, this should signify that 
different numbers of wavelengths are to be placed in the Michelson-Morley 
experiment between the semi-transparent mirror and the two mirrors placed 
at equal distance from it in parallel and perpendicular directions to the 
absolute motion. 

§ 32. THE « COHERENT LASERS» EXPERIMENT 

As is well known, the coherence oflight emitted by lasers is much higher 
than the coherence oflight emitted by other sources. The coherent length of a 
laser beam can be hundreds of kilometers, while that of other light sources is 
only centimtters. For this reason, light emitted by two different lasers can 
interfere in the same manner as light emitted by a single source and split into 
two beams interferes if the two beams meet, after having covered slightly 
different light paths. Before the invention of the laser, a single light source 
was always used in all optical experiments with whose help an « aether 
wind » was searched for. The inevitable result was that in all « inertial » 
experiments (i.e., those performed with inertially moving implements), light 
beams had to cover the paths «there-and-back» and the first-order in vie 
effects always vanished in the final result (as we have shown several times in 
this book, no second-order effects can appear either). The unique interfero­
metric experiment in which first-order in vie effects have been observed 
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(excluding our experimental activity!) represents the« rotating disk ,. expe­
riment where the implement is not moving inertially and the light beams 
cover closed paths between « splitting ,. and « meeting •, propagating only 
«there•· 

However, ifwe have two different light sources which produce coherent 
light, then first-order in vie experiments can be set up also on inertially 
moving implements. This was the intention of Carnahan (1962) who propo­
sed the« coherent lasers,. experiment, analysed in detail in Marinov ( 1978p), 
and also described below. 

32.1. THE INERTIAL « COHERENT LASERS,. EXPERIMENT 

The scheme of the « coherent lasers ,. experiment (which, if performed 
in a laboratory, will be called inertial) is as follows (fig. 32- I) : 

D,. 

SAIA 

su,. 
direct 

d 

l,. 
Fig. 32-1 

Light emitted from laser LA ( or L 8) is partly reflected and partly 
refracted by the semi-transparent mirror SM A (SM'8). The refracted beam 
proceeding from LA (L 8 ) interferes with the reflected beam proceeding from 
L 8 (LA), after the latter has covered distance d in « opposite ,. ( « direct •) 
direction and after being reflected by the semi-transparent mirror SM~ 
(SM 8). The photodetector DA (D 8) indicates the result of the interference. 

For the sake of simplicity, we shal_l assume that the semi-transparent 
mirrors SM A and SM~ (SM 8 and SM'J lie at the same point (see fig. 32-2) 
which we shall call point A (B). 

Let us suppose first that the implement is at rest in absolute space. Let 
the instantaneous electric intensities of the light beams produced by LA at 
point A and by L 8 at point B be, respectively, 
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EA= Emax sin (wAt + aA)' 

where 
2'1TC 

2 

(32.1) 

2'1TC 2'1TC 
=--= 

An A+ M 
2 

(32.2) 

are the angular frequencies (0 < ~w << w), AA, A8 are the wavelengths, a", 
a 8 are the initial phases, and we have assumed that the amplitudes £.., •• in 
both beams are equal. 

Fig. 32-2 

If we wish to find the electric intensities at point A (or point B) after the 
mixing, we have to add £ A and E 8, taking for the latter an additional phase 
shift 2'1TdlA 8 (taking for the former an additional phase shift 2'1Td!A A). 

Let us now set the implement in motion with velocity v which makes an 
angle (} with the « direct ,. direction of its axis. If we wish to find the electric 
intensity at point A (point B) after the mixing in this case, we have to add EA 
and E 8 , taking for the latter an additional phase shift 2'1TdlA 80 (taking for the 
former an additional phase shift 2'1Td!A Ao), where A 80 (A Ao) is the observed 
wavelength of the « opposite ,. ( « direct ,. ) beam. Thus, writing by t the 
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proper time of a clock attached to the implement (for brevity we omit the 
subscript « "» ), we shall obtain for the electric intensities at points A and B, 
respectively, [see (10.19) and (10.21)] 

(EA+EB)A=,. 

I d llw v 
= 2 £max Sin { -2 [ 2 WI + a A+ a B + -(W - - ) (I - - COS(/)]} . 

C 2 C 

I d tlw v 
. cos { 2 [ llw t + a A - a 8 - c ( w - 2 ) ( I - c cos 0) ] } = 

(32.3) 

and 

2'1Td 
= Em.,sin(wAI + aA +-A-)+ Emaxsin(wet + ae) = 

Ao 

2 . I d tlw v 
= Ema,sin{-2 [2wt+aA+a 8 + -(w+-)(1+-cosO))}. 

C 2 C, 

I d tlw v 
. cos { 2 [ llw t + a A - a 8 + c ( w + 2 )( I + c cos 0) ] } = 

(32.4) 

Let the photodetectors transform the incident light intensity into electric 
tension which we lead to a point (call it point C) in the middle between points 
A and B. Designate by U A• U 8 the electric tensions on the outputs of the 
detectors D "' D 8 • Since U A• U 8 are proportional to the squares of the 
variable amplitudes of(£ A + E 8 ) A and (£ A + E 8 ) 8 , we can write 

l 
lj A= ljmax COS2 ( 2 ff! A) = 

I 
lj B = ljmax COS2 ( 2 ff!e) = 

I 
2 umax (I + cos q; A). 

I 
2 Umax () + COS q; 8 ), 

(32.5) 
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where Um•• is the amplitude of the electric tension whose angular frequency 
is tlw. 

Leading the electric tensions U A• U 8 to the middle point C and taking 
into account the additional phase shifts for U A and U 8 because of the 
different velocities of propagation of the electromagnetic energy in« direct» 
and « opposite » directions, we obtain for their sum 

I d V 
(VA+ U 8 )c= 2 Vmax{ I +cos[q;A+ 2cllw(I +----;;cosO)]} + 

I d V 
+ 2 umax { I + cos I q; B + 2c tlw (I - C cos 0) I } = 

I+ d d d 
= lj ma, { COS ( £lw I + a A - a B + - £lw + W V COS (/) COS ( - W) } • 

C C2 C 

(32.6) 

Let us analyse this result. Obviously 

l + I for d = n >., 
2'1Td 

-I for d = (n ± 1/2) >., (32.7) cos -- = 
>. 

0 for d = (n ± 1/4) >., 

n being an integer. Thus the « percentage modulation » of the resultant 
electric tension depends on the number of the average wavelengths>. placed 
along distance d. Hence, to be able to measure a change v cosO in the 
component of the absolute velocity of the implement along its axis, the 
following two conditions must be available 

tlw = 0, d -:t, (n ± I /4) >. . (32.8) 

In such a case, if during a definite time the component of the absolute 
velocity of the implement along its axis changes from Oto vcosO, this will lead 
to a phase shift in the argument of the resultant electric tension equal to 
dwv cos0/c2 radians, assuming that during this time the initial phases a"' a 8 

remain constant. 

However, as we show in Marinov (1978p), if we take into account the 
absolute time dilation, then it can easily be established (in a manner very 
similar to that used in §22.3) that when rotating the implement with respect to 
its absolute velocity, i.e., when « switching on an aether wind by rotation », 
the initial phases of the lasers do not remain constant. They change exactly in 
such a way that the absolute effect, which a traditional absolutist expects to 
be registered, will be annihilated. 
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Thus, with the « coherent lasers » experiment, we can measure only a 
real change in the velocity of the implement. The experiment is to be, 
performed as follows : Assuming that the conditions (32.8) are fulfilled, let us 
measure some phase a of the electric tension ( U A + U 8 )c- Ifwe know a A• a 8 , 

we can calculate v cos0. However, the initial phases of the lasers are 
unknown. Let us then set the implement in motion with a certain velocity v 
along the « direct » direction. If the new phase which we should measure is 
a', it will be 

d 
a' - a=, w v, 

C 

(32.9) 

which corresponds to the following change in the sum of the phase shifts of 
the electric tensions U A and U 8 

(32.10) 

Taking w/21r = 5. IO" Hz, d = I m, v = 45 mis = 162 km/h, we obtain 
a phase shift in the argument of the resultant electric tension a' - a = 1rl2. 

32.2. THE « COHERENT LASERS ON A ROTATING DISK» 
EXPERIMENT 

To show more clearly why the inertial « coherent lasers » experiment is 
to be explained in the manner presented in §32.1, we shall consider the 
« coherent lasers on a rotating disk» experiment (Marinov, 1978p) whose 
essence is as follows (fig. 32-2) : . 

Let us mount the implement from fig. 32-1 on a rotating disk and 
measure the electric tensions U A• U 8 on the outputs of the detectors DA• De· 
Let the first condition (32.8) be fulfilled. If the disk is first at rest and then set 
in rotation in a clockwise direction with a linear rotational velocity of its rim 
v, then the arguments of U A and U 8 will obtain additional phase shifts [see 
formulas (32.3), (32.4), (32.5)) whose sum is given by formula (32. IO). This 
« coherent lasers on a rotating disk » experiment is analogical to the « rota­
ting disk » experiment, as can be seen immediately from fig. 32-2 if both 
lasers should be replaced by a unique light source Sand the mirrors MA• MB· 

The substantial difference between the« rotating disk » experiment and 
the « coherent lasers on a rotating disk » experiment consists in the fact that 
there are two sources emitting coherent light in the latter, while there is a 
unique light source in the former. Thus ifwe should make angle(} in fig. 32-2 
almost equal to 21r and the source S is very near to the rim of the disk, then 
the « rotating disk » experiment cannot give any positive effect because the 
time lags which should appear along path d will be compensated by the 
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opposite time lags which will appear along the paths from S to MA and M 8 . 

However, the« coherent lasers on a rotating disk » experiment will always (at 
any angle (} in fig. 32-2) give the result (32. IO) because both coherent light 
sources are here spatiallv separated and, when « switching on the aether 
wind », i.e., when setting the disk in rotation. the difference in the initial 
phases of both lasers cannot change because both lasers move all the time 
with the same absolute velocity. 

Remember that to obtain a positive effect in the« rotating disk » expe­
riment at any angle 0, the source must be pl-aced at the centre of rotation (see 
§26). 

32:3. THE CONNECTION BETWEEN THE « COHERENT LASERS» 
AND LIGHT DOPPLER-EFFECT EXPERIMENTS 

As technology cannot yet produce a laser with a high enough fre­
quency stability (Letohov and Chebotaev ( 1974) have achieved stability 
f3wlw = IO "for JOO seconds), the« coherent lasers» experiment cannot be 
performed under the condition ~w ~ 0. Indeed, to perform it under this 
condition one must have two lasers whose frequencies can differ from one 
another and vary with (see (32.9)) 

a' - a 
f3w < ---t , (32.11) 

where t is the time of measurement in which the velocity of the implement 
changes from Oto v. At the condition (32.11 ), the measuring error could be at 
most as large as the effect to be measured. Choosing a· - a = 1r/2 rad, 
t = IO0s, we obtain f3w < (1r/2)I0 1 rad/s, while (assuming w = 1r.l0" 
rad/s) the frequency instablility mentioned above leads to f3w = 1r. lO rad/s 
for any of the lasers. 

Let us now analyse the « coherent lasers» experiment from a slightly 
different point of view which will show that it is not necessary to spend time 
and effort in its performance because, as we shall show, it has already been 
carried out in a very similar arrangement and has given the result predicted 
by us. 

If we move the implement with a constant acceleration 11, the velocity 
after any time interval twill be v = ut. Putting this into (32.6) and assuming 

(} = 0, 

we obtain 

d = n'JI., 
d 

a A - a 8 + - ~w = 2 1r n , 
C 

I 
( lj A + lj e)c = 2 ljrnax COS 1 [ 2 (~w + !2) t), 

(32.12) 

(32.13) 
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where d 
fl=-wu 

c' 

represents some additional frequency increase. 

(32.14) 

Thus, when accelerating the implement, the frequency of the resultant 
electric tension should increase (we repeat, the acceleration is along the 
axis of the implemenet). Taking the data given after formula (32. IO) and 
t = 100 s, i.e., u = 45 cm/s2 , we obtain Q = ('11'12)10 'rad/s. Hence the lasers 
can now have different frequencies w "' w 11 , and a change in the « beat» 
frequency llw is to be registered. Nevertheless, since it must be l,w < n, we 
have to conclude that also this accelerated « coherent lasers » experiment 
cannot be performed at the present state of technique. 

However, there is no need to perform it because this would be only a 
repetition of Bommel's (1962) experiment where the frequency change 
(32.14) was established by using the Mossbauer effect and by accelerating a 
gamma emitter and absorber with u = IO• mis'. The accuracy of the Mos­
sbauer effect (8w/ w = w- ") is not higher than that of lasers, however, such 
large accelerations cannot be realized with lasers. 

The essence of Bommel's experiment and of our accelerated 
« coherent lasers » experiment is the same. Since the emitter (say, mirror 
SM'8 in fig. 32-1) and the receiver (mirror SM'A) move with acceleration, 
then, as a result of the Doppler effect, the frequency received will differ from 
the emitted one. Indeed, as there is a certain time during which light has to 
cover distanced, the velocity of the receiver at the reception moment will be 
different (higher for u pointing along the emitter-receiver line) from the 
velocity of the emitter at the emission moment. Einstein ( 1911) pointed to this 
simple and clear physical phenomenon many years before its experimental 
confirmation. 

The analysis of the« coherent lasers» experiment given here allows one 
to understand that when the emitter and receiver move with acceleration, 
then the shift in the received frequency leads to an additional phase shift 
a' - a which is equal to the product of the frequency shift Q and the time t of 
accelerated motion. Thus the number of light waves (wavelengths) placed 
along the distance between emitter and receiver changes (the number in­
creases for c t t u and decreases for c t l u). Hence, as the velocity of light is 
the product of frequency and wavelength, then light velocity will be different 
for different velocities of the implement (with respect to the implement) 
because the frequency received remains unchanged. 
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§ 33. THE « WIRED PHOTOCELLS » EXPERIMENT 

. The« wired photocells» experiment, performed first by Godart (1974), 
ts considered by us in detail in Marinov (1978q). We review this paper here. 

33.1. THE INERTIAL « WIRED PHOTOCELLS,. EXPERIMENT 

The essence of the« wired photocells» experiment (which, if performed 
in a laboratory, is called inertial) is as folows (fig. 33-1) : 

~ 
a/ 

6) Fig. 33-1 

Two photocells P,, P2 were put on the opposite sides of a light source S 
(an electric bulb). The cells and the bulb were mounted on an optical bench 
and covered with a light-tight cloth. The cells were wired to each other and to 
a galvanometer in such a way that only the difference in current between the 
cells flowed through the galvanometer. In our realization, all elements ( ex­
cluding the galvanometer) were mounted on a wheeled table which could 
rotate. Godart (1974) claims that by rotating such an implement, increased 
current is to be observed when the axis of the implement is aligned approxi­
mately north-south. In our realization during a rotation of 360°, we registered 
no effect. 

This negative (null) effect was explained by us as a result of the mutual 
annihilation of the « aether wind » effect ( analysed in §33.2) and the effect of 
relativistic distribution of the radiation (analysed in §33.3), as is the case in a 
number of high-velocity experiments analysed already in this book. 

We proved our assertion about the mutual annihilation of these two 
high-velocity absolute effects in the « wired photocells,. experiment, 
performing the « wired photocells on a rotating disk ,. experiment which is 
reported in §33.4. 
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33.2. THE« AETHER WIND,. EFFECT 

Fig. 33- la demonstrates the case where the absolute velocity v of the 
laboratory is perpendicular to the axis of the apparatus; when the light source 
is at the middle position between the photocells P, and P2 no current will flow 
through the galvanometer. 

Let us rotate the axis of the implement so that the absolute velocity of 
the laboratory will be pointing from P2 to P, (fig. 33-1 b). Now, proceeding 
from the aether conception for light propagation, we conclude that in a unit 
of time more photons will strike P2 • Thus the currents produced by the 
photocells will be J, = J - 6./ 12, J 2 = J + 6./ 12, where J is the current 
produced by them in the case a, and the difference in current t:,.J will flow 
through the galvanometer. 

Indeed, now the « effective ,. distances of the photocells from the source 
(i.e., the distances between the emission position of the source and the 
reception positions of the cells) will be 

r, = r(l + vie), 

where r is the actual distance. 

r, = r(I - vie), 

Hence the energy flux density over P, and P2 will be : 

a) For the case in fig. 33-1 a 

I= 
p 

4'1T r' 

(33.1) 

(33.2) 

where Pis the energy flux radiated by the whole light source (for simplicity 
we suppose the source as a point and the radiation isotropic). 

b) For the case in fig. 33-1 b 

p 

4'1Tr/ 

p 
=-------

4'1Tr'(l+vle)' 
I;= 

p p 
---=-------
4 '1T rj 4 '1T r' (I - vie)' 

(33.3) 

However, we also have to take into account that cell P, will collect in a 
unit of time all photons in a cylinder (suppose the photocells circular) whose 
axis is equal toe minus the photons in the cylinder P,P; whose axis is equal to 
v, while the cell P2 will collect in a unit of time all photons in a cylinder whose 
axis is equal toe plus the photons in the cylinder P2 P; whose axis is equal to v. 
Thus the actual energy flux densities will be 

1; P 1; P 
I, = I + vie= 4 '1T r' (I + vle)1 ' I, = I - vie = 4 '1T r' (I - vle)1 
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Indeed, the photons which strike P, and P2 have velocity [see formula 
(3.32)) 

for the case a and, respectively, velocities 

e 
e,'0 = I + vie ' 

e 

I - vie 

(33.5) 

(33.6) 

for the case b, if these velocities are measured on a proper clock. Thus we 
shall have 

(33. 7) 

and from the last three formulas we obtain (33.4). 

Since the electric currents produced by the photocells are proportional 
to the energy flux densities, we shall have : 

a) For the case in fig. 33-la 

J = k I= 
kP 

4 '1T r' 
(33.8) 

where k is a constant. 

b) For the case in fig. 33-1 b 

kP J 
J, = k I,= = 

4 '1T r' (I + vle)1 (I + vle)1 

(33.9) 

kP J 
J, = k I,= = 

4'1Tr'(I - vle)3 (I - vle)1 

For their difference we obtain within an accuracy of first order in vie 
V 

6.J=J,-J,=6J-. 
e 

(33.10) 

In our realization of the « wired photocells ,. experiment, it was 
J = 5.10 • A and thus it had to be 6./ = 10 'A for v = I kmls. Since the 
fluctuation shift was lower than 10 ' A, we have thus established that the 
component of the Earth's absolute velocity in the plane of rotation of the 
implement must be less than I kmls (we performed the experiment during 
different hours of the day). However, taking into account the result of our 
interferometric« coupled-mirrors » experiment(§ 19.2), we have to conclude 
that the« wired photocells» experiment gives a negative (null) result. 

Let us note that if we take into account only the effect described by 
formula (33.3), i.e., the effect 

V 
6./' = J; - J; = 4 J - ' 

e 
(33.11) 
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then it will be the same as the effect obtained by a shift of the light source to 
the photocell P2 over a (v/e)th part of the distance r. Assuming v = 300 km/s 
and taking into account that we had r = 500 mm, we obtain that for such a 
velocity the « aether wind » effect described by formula (33.11) is to be 
the same as the effect provoked by a shift of the light source over a distance 
tlr = (vle)r = 0,5 mm. Such a shift of the electric bulb has provoked an 
electric current !l.J of about 2.10 • A. 

33.3. THE EFFECT OF RELATIVISTIC DISTRIBUTION 
IN THE RADIATION 

We explain the negative (null) result in the« wired photocells » experi­
ment, taking into account the relativistic distribution in the radiation flux 
density of a rapidly moving light source. Such an effect has already been 
observed in betatrons and synchrotrons where the radiants are elementary 
particles. We assume that the same effect must exist also when the radiant is 
a macroscopic light source and we have confirmed this assumption with the 
help of the« wired photocells on a rotating disk » experiment (see §33.4). 

The theory of the relativistic distribution in the radiation of a 
macroscopic light source is given in Marinov (1978q). Since in the treatment 
of this phenomenon a heavier mathematical apparatus is needed, we shall 
merely direct the interested reader to our original publication. Our theoreti­
cal analysis (Marinov, 1978q) shows that the effect of the relativistic distri­
bution in the radiation is exactly equal and opposite to the « aether wind » 

effect, i.e., the energy flux densities over P, and P2 are given : 

a) For the case shown in fig. 33-la by the formula (33.2). 

b) For the case shown in fig. 33-lb by the following formulas 
p p 

I,= I,= 
41rr'(I - vie)' 41rr2 (1 + vie)' 

(33.12) 

Thus, as a result of these two effects [compare formulas (33.9) and 
(33.12)), no positive absolute effect can be observed in the « wired photo­
cells » experiment. 

33.4. THE « WIRED PHOTOCELLS ON A ROTATING DISK» 
EXPERIMENT 

We have proved our theoretical prediction about the mutual annihila­
tion of the absolute effects described in §33.2 and §33.3 by the help of the 
« wired photocells on a rotating disk » experiment whose scheme is the 
following (fig. 33-2) : 
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Fig. 33-2 

The source Sand/or the photocells P,, P2 can be mounted on a turna­
bout which rotates clockwise. T, and T2 are two slits which are always at rest. 
All other details are as in the « wired photocells» experiment. 

We have performed this experiment in three variants : 

a) Source moving, cells at rest. In such a case one registers only the 
effect of relativistic distribution in the radiation described by formulas 
(33.12), and for the relative change of the difference in current we obtain [cf. 
with (33.9) and (33.10), taking into account that now !l.J = J, - J, > OJ 

!lJ =6~. (33.13) 
J e 

b) Cells moving, source at rest. In such a case one registers only ~he 
« aether wind» effect described by formulas (33.7), and for the relative 
change of the difference in current !l.J we obtain (!l.J = 12 - J, > 0) 

!lJ V = 2 - , (33.14) 
J e 

since now the « aether wind » effect described by formulas (33.3) - see 

formula (33.11) - does not exist. 
c) Source and cells moving. In such a case the effects described ~y 

formulas (33.4) and (33.12) appear together and one registers no change m 
the difference in current when changing the velocity of rotation. 

In all formulas relevant to the « wired photocells on a rotating disk » 

experiment, vis the component of the velocity of the s?urce or the c~lls or 
both along the line of light propagation. Thus, suppo~mg that t~e shts are 
narrow enough, we can assume that this is the _velocity of a pomt on the 
rotating disk whose radius R is equal to the distance from the centre of 
rotation to the centre of the light source. 
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In our realization, we used a stabilized gas discharge lamp as a light 
source. The conductors from the lamp and from the photocells were immer­
sed in mercury at the centre of the disk, so we did not register a substantional 
difference in the fluctuation of the galvanometer at rest and at rotation of the 
disk. The difference in current !::J was fed to a direct-current electronic 
amplifier with a low resistance input (i.e., which can be considered as a 
galvanometer) whose fluctuation corresponded to &/ = ± 3,3.10 12 A (at 
maximum rotational velocities). At low rotational velocities the currentJ was 
periodically (with the period of rotation) increasing (when the cells were 
illuminated) and decreasing. At a rate of rotation higher than 5 rev ls the 
current was stable, equal to 6,5.10 5 A and did not change with the increase of 
the rate of rotation. For low rotational velocities, a slight« single-sinusoidal ,. 
difference in current !::J was also observed. The distance of the lamp from the 
centre of rotation (measuring from the centre of the lamp's windows) was 
R = 19,6 ± 0,2 cm and the distance of the cells about 98 cm. The rate of 
rotation N was measured by a light stroboscopic cyclometer and maintained 
automatically with a precision 13N IN = ± 2.10 •. We made the difference in 
current to be zero for vie = 10 ' - this corresponded to a rotational rate 
N = 6,00 rev ls - by a corresponding shift of the cells (case a) or of the lamp 
(case b). For case c, !::J was made equal to zero when lamp and cells were at 
rest. 
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Fig. 33-3 
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In fig. 33-3 we give the results of our measurements for cases a and b. For 
case c no difference in current was registered which could be discerned from 
the fluctuation. 

It is obvious that our working formulas were not (33.13) and (33.14) but 

/::J V 
- = 2 ( - - 10 ') . 
J e 

(33.15) 

In the graphs, we give only the fluctuation errors. The errors introdu_ced 
by the inaccuracy 13N are too small to be discussed. Also, we do not take m_to 
account the errors introduced by the inaccuracy l3R = ± 0,2 cm, because its 
relative error is ± 0,25 %, while the minimum relative error due to the 
fluctuation (for vie= 6.10 'in case a) is± 1,7 %. 

§ 34. THE « CAULDRON » EXPERIMENT 

We have proposed the« cauldron ,. experiment in Marinov ( l 978r) with 
the aim of showing not only that light propagation phenomena are absolute 
but also all electromagnetic phenomena. Thus electromagnetic experiments 
can be set up to help register the absolute velocity of the laboratory. 

The essence of the « cauldron ,. experiment is as follows (fig. 34-1) : 

8 !I 

F, 
d 

Fg z Fig. 34-1 

Let us have two homogeneous spheres with masses m and radii r, 
charged homogeneously with electric charges q, which can roll along th_e 
inner surface of a sphere (a « cauldron •) with radius R + r. Let the x-axis 
(with unit vector x•) point beliind the figure, the y-axis (with unit vector Y") to 
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the right and the z-axis (with unit vector z0 ) downwards to the Earth's centre. 
The masses lie. in the_vz-plane and, for the sake of simplicity, we suppose that 
the absolute velocity of the laboratory is parallel to the xz-plane. Ifwe do not 
take into account the mutual gravitational attraction between our masses and 
the attraction caused by the other celestial bodies, then the following two 
forces will act on any of these masses : 

a) The full gravimagretic force caused by the gravimagretic interaction 
with the Earth whose mass is M (write the Newton-M:uinov equation (8.5) in 
a form analogical to (7.3) and take into account that for the case considered 
dA.ldt = OJ 

_. d Mo M0 v2 mM _ 
r. = mo gra (y- - y -- ) = y - z• = F z• 

D c2 D D2 • ' 
(34.1) 

where m0 is the proper mass of any of the small masses, M0 is the proper mass 
of the Earth, Dis the distance between their centres and vis the velocity of the 
Earth (we ignore the rotational velocity about its axis). 

b) The full electromagnetic force caused by the mutual electromagnetic 
interaction between the charges of our masses (see formula (7.3) and take into 
account that for the case considered dA I dt = OJ 

q q v2 q' v2 
P. = - q grad ( - - - ) = ± - ( I - - ) y 0 = ± F. y" , (34.2) 

d c'd d2 c' 

where the sign« + » is for the electromagnetic force acting on the right mass, 
the sign« - » is for the electromagnetic force acting on the left mass, and dis 
the distance between their centres. 

The masses will be in equilibrium at the condition 

F. cos O = F. sin O , (34.3) 

where O is the angle between the horizontal plane and the radius pointing 
from the centre of the cauldron to any of our masses. 

Suppose now that the velocity of the cauldron has changed with ~v > 0 
because of the yearly motion of the Earth. It is easy to see that the electro­
magnetic forces will change and a new state of equilibrium will be installed, 
so that angle O will change with ~O > 0 and distance d will change with 
~d = - 2MRsinO < 0 (we ignore the change ~D as it is very small with 
respect to D). 

From (34.3) and the equation which we can write for the new state of 
equilibrium, we obtain within the necessary accuracy 
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v~v 
M = -- cotO. 

c' 
(34.4) 

Assuming the Earth's absolute velocity to be v = 300 km/s, we obtain a 
yearly variation about the state of equilibrium (for ~v = ± 30 km/s and 
0 = 77/4) 

v~v 
Ov,•ar = -,- = ± JQ 7 • 

C 
(34.5) 

This experiment is difficult to realize. By the light lever of Jones ( 1975), 
angles until IO 11 rad can be measured. However, there are difficulties in 
producing spheres (very likely one has to use electrets) which have to main­
tain a constant charge for a whole year. 

Nevertheless, this experiment is extremely fruitful for theoretical phy­
sics as a thought experiment : 

I) It shows that magnetism is not a relative but an absolute phenome-
. non. Indeed, according to the principle of relativity, no variations about the 
state of equilibrium are to be observed when the absolute velocity of the 
apparatus changes. This, however, contradicts the everyday fact that when 
changing the velocity of the electrons in a vacuum tube their magnetic field 
also changes. 

2) If the « relativists » consent that the electromagnetic force between 
two charges changes when they are set in motion (because of the appearing 
magnetic force), then the principle of relativity will automaticalfr fail, if 
considering the « cauldron » experiment only as a thought experiment. 
Indeed, ifwe are on a ship sailing with velocity v in a canal, and we move our 
cauldron with velocity v (relatively to the ship) first towards the stern and 
then with the same velocity towards the prow. then an observer-relativist on 
the ship will conclude that the stern-bound and prow-bound states of 
equilibrium must be the same and different from the rest state of equibrium 
where the cauldron is at rest with respect to the ship. However, another 
observer-relativist on the bank will conclude that all three states of 
equilibrium must be different (remember the « clocks-round-the-world » 

experiment - §22.2). It is clear that the experiment c:,ri '.·,we a unique result 
as predicted by an observer-absolutist who is at rest in .ibsolute space. 

3) The« cauldron » experiment qin throw abundant light on the law of 
gravitational attraction. If gravitation is a « Newtonian » analogue of 
electromagnetism, i.e., if there is .a gravitational analogue to the magnetic 
energy and the masses are responsible for the gravimagretic interaction of the 
bodies, then no yearly variation will be observed. However, if gravitation is a 
« Marinov » analogue of electromagnetism, i.e., if there is a gravitational 
analogue to the magnetic energy and the proper masses are responsible for 
the gravimagretic interaction of the bodies, then a yearly variation as 
described above will be observed. The same yearly variation will be ob.,erved 
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also in the case if there is no gravitational analogue to the magnetic energy 
and the masses are responsible for the gravitational interaction of the bodies 
(as was assumed by Newton). 

§ 35. THE TROUTON-NOBLE EXPERIMENT 

The historical Trouton-Noble (1903) experiment is generally considered 
as one of the most important experiments to prove the principle of relativity 
for electromagnetic phenomena. 

One expects a positive effect in the Trouton-Noble experiment, accep­
ting that Newton's third law breaks down in the domain of electromagnetism. 
However, as we have shown in §6, Newton's third law has an universal 
validity and holds good also in the domain of electromagnetism. Thus the 
positive effect, which conventional physics predicts in the Trouton-Noble 
experiment, is based on wrong theoretical calculations. We present here the 
theoretical analysis and description of the Tron ton-Noble experiment given 
by Janossy ( 1971 ), taking §82 and §83 of his book in toto : 
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82. Consider two opposite point charges - e and + e; the 
radius vector pointing from - e to + e be denoted by r. If the 
charges are at rest the force acting upon + e can be written 

e2 r 
F0 =eE= - - 3-. 

r 
As the force acts in the direction of r the moment of force 

produced by the pair of charges vanishes, i.e., 

M0 = r X F0 = 0. 

If the pair of charges is made to move with a constant velo­
city v, then the positive charge will be under the action of the 
Coulomb attraction of - e and also under the influence of the 
magnetic fild 

e 
B = - (v X r)/r3. 

C 

Thus the total force acting upon e is given by 

I 
F(v) = e (E + - v X B) = F., + 

C 

Since 

e> 

C2 yl 
V X (v X r). 

v x (v X r) = v(v.r)- v'r, 

we find that the moment of force produced by the pair of charges 
is equal to 

e> 
M(v) = r X F(v) = - (v. r) (r X v)/r3. 

c> 

Denoting the angle between v and r by 8, we find for the absolute 
value of the moment of force 

e2v2 

M = -2- sin (2 8) . 
rc 2 

(26) 

In the above derivation we have neglected the effects of retarda­
tion. A more detailed calculation shows that the latter effects give 
only a negligible correction to (26). 

83. In the actual experiment a charged condenser was sus­
pended on an elastic string. The condenser was placed so that 
(J = 45", i.e., so that the line perpendicular to the surface of the 
condenser plates subtended an angle of 45° with the supposed 
direction of the orbital velocity of the Earth, the direction of v. 

If the moment (26) exists then the elastic fibre upon which 
the condenser is suspended is twisted to such an extent that the 
elastic stress arising in the fibre compensates the moment M 
exerted by the condenser. Turning the condenser together with its 
support by 90" the moment M changes its sign and so the 
equilibrium is expected to be disturbed. 

In the actual experimental arrangement the condenser was 
suspended and it was watched whether or not it would change its 
orientation while the Earth was turning round and therefore the 
orientation of the condenser. relative to the direction of motion of 
the Earth would change. 

The actual experiment showed no such changes in orienta­
tion. 

The negative outcome of the Trouton-Noble experiment can 
be interpreted by supposing that the motion of the system relative 
to the aether produces not only an electromagnetic moment of 
force but also elastic stresses which compensate exactly the 
electromagnetic moment of force. 

Our explanation of the negative outcome of the Trouton-Noble experi­
ment is as follows (see §6.2 and §7. I) : 
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During the rotation of the Earth, the total time derivatives of the 
magnetic potentials caused by both electric charges considered above are 
equal to zero (the distance between these two charges as well as their velocity 
do not change !). Thus the full electromagnetic forces acting on them are 
equal to the corresponding kinetic forces. On the other hand, according to the 
full Newton's third law, the full electromagnetic forces acting on two isolated 
charges are equal and oppositely directed along the line connecting them, 
and no rotational moment of force can be produced by these two charges. 
Janossy (as well as conventional physics) does not take into account that 
when one of the charges moves, the reference point where the other charge is 
placed also moves, and he calculates the effect in the Trouton-Noble expe­
riment by the help of inappropriate formulas. Our formula (34.2) is the right 
one to be used in this case. 

§ 36. THE « SYNCHROTRON » EXPERIMENT 

We have proposed the« synchrotron» experiment in Marinov (1977b) 
with the aim of showing that the ballistic (Ritz) model oflight propagation is 
not adequate to physical reality, i.e., that the velocity of light is always equal 
to c (with respect to absolute space !) but not to the geometrical sum of c and 
the velocity v of the emitter. 

The essence of the « synchrotron » experiment, which arose from an 
outline given by Karastoyanov ( 1972), is as follows (fig. 36-1) : 

Let us have a circular accelerator of electrons A. Short light pulses 
(packages of photons) are emitted by the emitter E in regular short intervals 
of time tJ. T These light pulses, after being reflected by the semi-transparent 
mirror M, pass through the narrow slit Sand reach the electrons revolving in 
the accelerator along the tangent to their trajectory. The photons, after being 
reflected by the electrons, turn back and, passing through the semi-transpa­
rent mirror M, are registered by the receiver R. 

We can consider the revolving electrons (representing, as a matter of 
fact, a fast moving mirror - see § I 3.3) as a new source of radiation. Chan­
ging the velocity of the electrons, we change the velocity of this light source. If 
the velocity of light depends on the velocity of the source of radiation, then, 
with the increase of the velocity v of the revolving electrons, the time for 
which the photons will cover the distance from the accelerator to mirror M 
will become shorter. Hence if we obtain electric pulses from the emitted and 
received light pulses and if we lead them to the electrodes of an electronic 
oscillograph Osc, on its screen we should see the picture shown in the figure. 
Let the high peaks described by the electronic beam correspond to the 
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emitted light pulses and the low peaks to the received light pul~es: If the 
velocity oflight does not depend on the velocity of the source ofrad1at10n, the 
distance d between the high and low peaks will remain the same when the 
velocity of the electrons along the circular trajectory o_f the accelerator in­
creases. If the velocity of light depends on the velocity of the source of 
radiation, distance d will change when the velocity of the electrons changes. 

Let us show this. 
When the light pulses are emitted at intervals of tJ. T, and D i_s the 

distance between them over the screen, it will be D = kt!. T, where k 1s the 
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so-called constant of scanning of the oscillograph and is equal to the hori­
zontal distance which the electronic beam covers over the screen for a unit of 
time. 

Let the velocity of the electrons in the accelerator be first v and then 
v + L\v. If the velocity of the source must be added geometrically to the 
velocity of light, then the velocity of the photons on the track from the 
accelerator to mirror M will be c, = c + v in the first case and 
c, = c + v + L\v in the second case. 

Hence the time M with which the light pulses will come earlier to the 
receiver in the second case will be (suppose v, L\v << c) 

L 
L\t = 

L 
c, 

L L\v 

(c + v) (c + v + L\v) 

L L\v 
c2 

where L is the distance between the accelerator and mirror M. 

(36.1) 

The difference between the distances d, and d2 in the first and second 
cases will be L\d = kl\t. 

If we choose L\T = IO '0 s, L = 9 m and L\v = c/300 = IO' mis, we 
obtain L\t = L\ T. Thus for such an increase of the electrons' velocity in the 
accelerator, the low peaks will be shifted with respect to the high peaks over a 
distance L\d equal to the distance D between the high peaks. 

If the velocity of light does not depend on the velocity of the source, as 
our absolute space-time theory asserts, then it must be L\d = 0 for any 
increase of the electrons' velocity. 

184 j 

I. 
2. 

3. 

4. 
5. 
6. 
7. 
8. 

9. 
IO. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 

24. 
25. 
26. 

27. 

28. 

29. 
30. 

REFERENCES 

Bailey J. et al., 1977, Nature, 268, 30 I. 
Bommel H. E., 1962, ProceedinKS of the Second International Conference 
on the Mossbauer Effect, Saclay, 1961. 
Briatore L. and Leschiutta S., 1976, Lett. Nuovo Cimento, 15, 203; 17. 
328. 
Briscoe J.A., 1958, British Patent, London, No. 15089/58 - 884830. 
Burcev P., 1974. Phys. Lett., 47A, 365. 
Carnahan C. W., 1962, Proc. IRE, 50, 1976. 
Champeney D. C. et al., 1963, Phys. Lett., 7, 24 I. 
Danby J., 1962, Fundamentals of Celestial Mechanics, Macmillan Co., 
New York. 
Dart H.P., 1971, Spectr. Lett., 4, 141. 
Dufour A. and Prunier F., 1942, J. Phys. et Radium, 3, 153. 
Einstein A., 1905, Ann. der Phvs., 17,891. 
Einstein A., 1907,Jahrbuch der Radioaktivitiit und Elektronic, 4, 41 I. 
Einstein A., 1911, Ann. der Phys., 35,898. 
Einstein A., 1914, Astr. Nachr., 199, 8. 
Fizeau H., 1851, Comptes Rendus, 33,349. 
Godart R., 1974, Techniques Nouvel!es, Sept. 1974, 22. 
Hafele J.C. and Keating R. E., 1972, Science, 177, 166. 
Harress F., 1912, Dissertation, Jena. 
Hay H.J. et al., 1960, Phys. Rev. Lett., 4, 165. 
Horedt G., 1975, Czechosl. J. Phys., 825, 117. 
Hubble E. P., 1937, The Observational Approach to CosmoloKy, Oxford. 
Ives H. E. and Stilwell G. R., 1938,J. Opt. Soc. Am., 28,215. 
Janossy L., 1971, Theory of Relativity Based on Physical Reality, Akade­
miai Kiadb, Budapest. 
Jones R. V., I 975, Proc. Roy. Soc., 345, 351. 
Karastoyanov A. S., 1972, Phys. Lett., 38A, 289. 
Landau L. D. and Lifshitz E. M., 1959, The Classical Theory of Fields, 
Pergamon Press. 
Landau L. D. and Lifahitz E. M., 1969, Mechanik, Vieweg, 
Braunschweig. 
Landolt-Bornstein, 1962, 8 Tei! - Optische Konstanten, Springer­
Verlag. 
Larmor J., 1900, Aether and Matter, University Press, Cambridge. 
Lorentz H. A., 1916, The Theory of Electrons, Leipzig. 

185 



31. Marinov S., 1970, Phys. Lett., 32A, 183. 
32. Marinov S., 1972a, Phys. Lett., 40A, 73. 
33. Marinov S., 1972b, Phys. Lett., 41A, 433. 
34. Marinov S., 1973, Phys. Lett., 44A, 21. 
35. Marinov S., 1974a, Int. J. Theor. Phys., 9, 139. 

72. Trouton F. T. and Noble H. R., 1903, Proc. Rov. Soc., 72, 132. 
73. Zeeman P., 1914. Proc. Rov. Acad. Amsterdam: 17,445. 
74. Zeeman P., 1915, Proc. Rov. Acad. Amsterdam, 18,398. 
75. Zeeman P., 1920. Proc. Rov. Acad. Amsterdam 22 512 
76. Zeeman P., et al., 1922, Pr~c. Rov. A cad. Amst:rd~m. 23, 1402. 

36. Marinov S., 1974b, Chechosl. J. Phys., 824, 965. 
37. Marinov S., 1975a, Int. J. Theor. Phys., 13, 189. 
38. Marinov S., 1975b, Phys. Lett., 54A, 19. 
39. Marinov S., 1976a, Found. Phys., 6,571. 
40. Marinov S., 1976b, Int. J. Theor. Phys., 15, 829. 
41. Marinov S., 1977a, Found. Phys., 1, 947. 
42. Marinov S., 1977b, Phys. Lett., 62A, 293. 
43. Marinov S., 1978a, 
44. Marinov S., 1978b, 
45. Marinov S., 1978c, Gen. Rel. Grav., 12, 57 (1980). 
46. Marinov S., 1978d,Found. Phys., 9, 445 (1979). 
47. Marinov S., I 978e, Found. Phys., 8, 637. 
48. Marinov S., 1978f, Found. Phys., 8, 137. 
49. Marinov S., 1978g, 
50. Marinov S., 1978h,Spec. Sc. Techn., 1, 231. 
51. Marinov S., l 978i, 
52. Marinov S., 1978j, Ind. J. Theor. Phys., 31, 1 (1983). 
53. Marinov S., 1978k,Found. Phys., 11, 115 (1981). 
54. Marinov S., 19781, 
55. Marinov S., 1978m,Ind. J. Phys., 558, 403 (1981). 
56. Marinov S., 1978n, J. Phys. A, 16, 1885 (1983). 
57. Marinov S., 19780, 
58. Marinov S., 1978p,Ind. J. Theor. Phys., 28, 329 (1980). 
59. Marinov S., 1978q, 
60. Marinov S., 1978r, Spec. Sc. Techn., l, 239. 
61. Marinov S., 1978s, Spec. Sc. Techn., l, 235. 
62. Marinov S., 1978t, Ind. J. Theor. Phys., 31, 93 (1983). 
63. Marinov S., 1978u, 
64. Menzel D. H. et al., 1970, Survey of the Universe, Prentice-Hall, New 

Jersey. 
65. Michels A. et al., 1947, Physica, 13,343. 
66. Michelson A. and Morley E.W., 1886, Am. J. Science, 31. 
67. Player M.A., 1975, Proc. Roy. Soc., 345,343. 
68. Pogany B., 1928, Ann. der Phys .. , 85,244. 
69. Rogers G. L., 1975, Proc. Roy. Soc., 345,345. 
70. Sagnac G., 1913, Comptes Rendus, 157, 708, 14IO. 
71. Santos A. N. dos, 1976, II Nuovo Cimento, 328, 519. 

186 j 187 



Stefan Marinov was born in 
Sofia on the I 1-ebruary 1931 
in a famil~· ot' intellectual com­
munists. In 1948 he finished a 
Soviet College in Prague and 
began to stud~ ph) sics at the 
liniversities of Prague and So­
fia. In 1951 he went to tht• 
\'arna High Na,·) School m, a 
volunteer and at'tl'r graduating 
~ailed as a dl'ck ot't'icer on Bul­
garian. ( ·,et·ho~lm ak-('hinl'~e 
and West-German rnrgoes. In 
1958 he came had, lo Sofia to 
l'Ompll'll' hi~ ~tmlie~ in ph~­
sics. horn 1%0 to 1974 he 
"orked as A~sisll'nt Profrssor 

in thl' Ph~,ical hcult~ of thl' Sofia llniversit~ and as ~dl'ntit'ic re~ean·her in tht· 
Ph~·sical Institute of the Bulgarian Acadl'm~ ot' Sl"il'm.'l's, from "ht•rt• ht• wm, e,­
pelll'd and pensionl'd as a paranoic in 1974. horn 1974 lo 1977 Marino, mana­
ged his own l.ahorator~ for Fundamental Ph~sical Problems. In 1%(1/(17, 1974. 
and 1977 he got compulsor~ treatml'nt in the Sofia ps)chiatries bernu~e ot' hi!-. 
political dissent. In September 1977 he received a passport and transferred to 
Brussels. In 1978 hl' lived in Washington. where he published hi~ l'Ollel"lion ot' 
poems UST OTBRlll.EN (Hl'tl'r Peter. Washington. 1978). In 1979-1981 he 
lhed in Gt•noa. "hl're he puhlishl'd tht• trl'at) ECONOMIA POI.ITI(';\ TEO­
RICA - TEORIA DEi PREZZI IE~I (ht•~t. Genorn. 1979). Sint'l' 1981 hi!-. 
homt• is in Gra,. "hen• ht• edill'd hi~ enc)dopal'dic ('I.ASSl('AI. Pl-1\SI('~ 
(East West. Gra,. 1981) l'Onsisting of the following fhe ,01t1mt·~: I. Mathemati­
cal apparatu~. 2. A,iomalics. l.1m-,elocil) mechanic!-.. 3. High-H·lodt) mech:1-
nic!-I. 4. Gra, imagreti!-lm. 5. Elt·t·tromagnl'ti!o,m. In 1982 hl' puhli!-.hed lhe l'ir!-.t 
and in 1984 lhe wconrl part of the l'Ollt•1:lion of document, ·1 HF THOR",\ 
WA\' 01· TRFHI (Ea~t We~I. (;ra,). In .lub 1982 hl' organi,t·rl in (;moa the 
lnterm1lional Confrrt'nl'l' on !-,pat·t·-Time Ah~olull'm•!o,~ (l(Sl'A) anrl logt•lher 
"ith Prof. .I. P. \\t•!o.lt·~ t•rliterl the PRO('EElllNG!', 01-' l('STA (Ea~t We,1. 
Gra,. 1982). ,\, a t'ir,1 man in hi!-ltor~. in 197J. Marino, !-.Ucceerlerl in regbll•ring 
lhe ahsolutt· motion of lht· Earth in a lahoralor~ "ith the ht•l11 of lhe rte,ialiH' 
»t·oupkd mirror,« t•,pcrimcnl. Hi, ahM1l111c ,pan•-limt· tlwor~ l'lahoratcrl in llu· 
la~I 20 ~ l':1r, t•,plain, I horoughl~ :111 t·,1n·riml•n1, in high-H·lodl~ 11h~ ,ic,. ·11ll' 
l'"t'nt'l' ol' hi, llwor~ aiul rlc,ni11li11n 111' hi, experiments :1n· giH·n in EPPI 'R ~I 
\11 '()\ F. 


