zotero-db/storage/WRZF3AKY/.zotero-ft-cache

1264 lines
29 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

1EDI EiceDRIVER™ Compact Separate output variant for IGBT
Single Channel IGBT Gate Driver IC
1EDI05I12AF 1EDI20I12AF 1EDI40I12AF 1EDI60I12AF
Data Sheet
Rev. 2.0, 2014-11-10
Industrial Power Control
Edition 2014-11-10
Published by Infineon Technologies AG 81726 Munich, Germany
© 2014 Infineon Technologies AG All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
1EDI EiceDRIVER™ Compact Separate output variant for IGBT
Revision History
Page or Item Subjects (major changes since previous revision)
Rev. 2.0, 2014-11-10
all pages
Final DS, completion of parameters and editorial changes
Rev. 1.01, 2014-10-14
all pages
completion of parameters
Trademarks of Infineon Technologies AG
AURIX™, BlueMoon™, C166™, CanPAK™, CIPOS™, CIPURSE™, COMNEON™, EconoPACK™, CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OmniTune™, OptiMOS™, ORIGA™, PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SMARTi™, SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™, X-GOLD™, X-PMU™, XMM™, XPOSYS™.
Other Trademarks
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. Mifare™ of NXP. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.
Last Trademarks Update 2010-10-26
Data Sheet
3
Rev. 2.0, 2014-11-10
1EDI EiceDRIVER™ Compact Separate output variant for IGBT
Table of Contents
1
2
3 3.1 3.2
4 4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.4 4.5
5 5.1 5.2 5.3 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5 5.3.6
6
7
8 8.1 8.2
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Pin Configuration and Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Pin Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Protection Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Undervoltage Lockout (UVLO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Active Shut-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Short Circuit Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Non-Inverting and Inverting Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Driver Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Operating Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Voltage Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Logic Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Gate Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Short Circuit Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Dynamic Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Active Shut Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Timing Diagramms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Application Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Reference Layout for Thermal Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Printed Circuit Board Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Data Sheet
4
Rev. 2.0, 2014-11-10
1EDI EiceDRIVER™ Compact Separate output variant for IGBT
List of Figures
Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10
Typical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Block Diagram 1EDI05I12AF, 1EDI20I12AF, 1EDI40I12AF and 1EDI60I12AF . . . . . . . . . . . . . . . 9 PG-DSO-8-51 (top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Application Example Bipolar Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Application Example Unipolar Supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Propagation Delay, Rise and Fall Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Typical Switching Behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 UVLO Behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 PG-DSO-8-51 (Plastic (Green) Dual Small Outline Package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Reference Layout for Thermal Data (JEDEC 1s0p, 100mm², Copper thickness 35 μm) . . . . . . . . 21
Data Sheet
5
Rev. 2.0, 2014-11-10
1EDI EiceDRIVER™ Compact Separate output variant for IGBT
List of Tables
Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Operating Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Voltage Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Logic Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Gate Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Short Circuit Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Dynamic Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Active Shut Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Data Sheet
6
Rev. 2.0, 2014-11-10
1EDI EiceDRIVER™ Compact Single Channel IGBT Gate Driver IC
Separate output variant for IGBT
1
Overview
Main Features
• Single channel isolated IGBT Driver • Input to output isolation voltage up to 1200 V • For high voltage power IGBTs • Up to 10 A typical peak current at rail-to-rail outputs • Separate source and sink outputs
Product Highlights
• Galvanically isolated Coreless Transformer Driver • Wide input voltage operating range • Suitable for operation at high ambient temperature
Typical Application
• AC and Brushless DC Motor Drives • High Voltage DC/DC-Converter and DC/AC-Inverter • Induction Heating Resonant Application • UPS-Systems • Welding • Solar
EDCompact
Description
The 1EDI05I12AF, 1EDI20I12AF, 1EDI40I12AF, and 1EDI60I12AF are galvanically isolated single channel IGBT driver in a PG-DSO-8-51 package that provide minimum output currents up to 6 A at separated output pins. The input logic pins operate on a wide input voltage range from 3 V to 15 V using CMOS threshold levels to support even 3.3 V microcontroller. Data transfer across the isolation barrier is realized by the Coreless Transformer Technology. Every driver family member comes with logic input and driver output under voltage lockout (UVLO) and active shutdown.
Product Name 1EDI05I12AF 1EDI20I12AF 1EDI40I12AF 1EDI60I12AF
Gate Drive Current (min) ±0.5 A ±2.0 A ±4.0 A ±6.0 A
Package PG-DSO-8-51 PG-DSO-8-51 PG-DSO-8-51 PG-DSO-8-51
Data Sheet
7
Rev. 2.0, 2014-11-10
1EDI EiceDRIVER™ Compact Separate output variant for IGBT
Overview
VCC1
VCC2,H
OUT+ IN+
IN-
EiceDRIVERTM 1EDIxxI12AF
OUT-
Control
GND1 VCC1
GND2,H VCC2,L
OUT+ IN+
IN-
EiceDRIVERTM 1EDIxxI12AF
OUT-
GND1
Figure 1 Typical Application
GND2,L
Data Sheet
8
Rev. 2.0, 2014-11-10
2
Block Diagram
1EDI EiceDRIVER™ Compact Separate output variant for IGBT
Block Diagram
VCC1 1
UVLO
IN+ 2 IN- 3
input filter
GND1 VCC1
input filter
&
active
TX
filter
UVLO
VCC2
& RX
Shoot through protection
5 VCC2
6 OUT+ 7 OUT-
GND1 4 Figure 2 Block Diagram 1EDI05I12AF, 1EDI20I12AF, 1EDI40I12AF and 1EDI60I12AF
8 GND2
Data Sheet
9
Rev. 2.0, 2014-11-10
1EDI EiceDRIVER™ Compact Separate output variant for IGBT
Pin Configuration and Functionality
3
Pin Configuration and Functionality
3.1
Pin Configuration
Table 1 Pin Configuration
Pin No. Name
Function
1
VCC1
Positive Logic Supply
2
IN+
Non-Inverted Driver Input (active high)
3
IN-
Inverted Driver Input (active low)
4
GND1
Logic Ground
5
VCC2
Positive Power Supply Output Side
6
OUT+
Driver Source Output
7
OUT-
Driver Sink Output
8
GND2
Power Ground
1
VCC1
2
IN+
3
IN-
4
GND1
Figure 3 PG-DSO-8-51 (top view)
3.2
Pin Functionality
GND2
8
OUT-
7
OUT+
6
VCC2
5
VCC1 Logic Input supply voltage of 3.3 V up to 15 V wide operating range.
IN+ Non Inverting Driver Input IN+ non-inverted control signal for driver output if IN- is set to low. (Output sourcing active at IN+ = high and IN- = low) Due to internal filtering a minimum pulse width is defined to ensure robustness against noise at IN+. An internal weak pull-down-resistor favors off-state.
Data Sheet
10
Rev. 2.0, 2014-11-10
1EDI EiceDRIVER™ Compact Separate output variant for IGBT
Pin Configuration and Functionality
IN- Inverting Driver Input IN- inverted control signal for driver output if IN+ is set to high. (Output sourcing active at IN- = low and IN+ = high) Due to internal filtering a minimum pulse width is defined to ensure robustness against noise at IN-. An internal weak pull-up-resistor favors off-state.
GND1 Ground connection of input circuit.
VCC2 Positive power supply pin of output driving circuit. A proper blocking capacitor has to be placed close to this supply pin.
OUT+ Driver Source Output Driver source output pin to turn on external IGBT. During on-state the driving output is switched to VCC2. Switching of this output is controlled by IN+ and IN-. This output will also be turned off at an UVLO event. During turn off the OUT+ terminal is able to sink approx. 100 mA.
OUT- Driver Sink Output Driver sink output pin to turn off external IGBT. During off-state the driving output is switched to GND2. Switching of this output is controlled by IN+ and IN-. In case of UVLO an active shut down keeps the output voltage at a low level.
GND2 Reference Ground Reference ground of the output driving circuit. In case of a bipolar supply (positive and negative voltage referred to IGBT emitter) this pin is connected to the negative supply voltage.
Data Sheet
11
Rev. 2.0, 2014-11-10
4
Functional Description
1EDI EiceDRIVER™ Compact Separate output variant for IGBT
Functional Description
4.1
Introduction
The 1EDI EiceDRIVER™ Compact is a general purpose IGBT gate driver. Basic control and protection features support fast and easy design of highly reliable systems.
The integrated galvanic isolation between control input logic and driving output stage grants additional safety. Its wide input voltage supply range support the direct connection of various signal sources like DSPs and microcontrollers.
The separated rail-to-rail driver outputs simplify gate resistor selection, save an external high current bypass diode and enhance dV/dt control.
+5V
SGND IN
VCC1 100n
GND1 IN+ IN-
Figure 4 Application Example Bipolar Supply
VCC2
OUT+ OUTGND2
+15V
1µ 10R
3R3
1µ -8V 0V
4.2
Supply
The driver can operate over a wide supply voltage range, either unipolar or bipolar.
With bipolar supply the driver is typically operated with a positive voltage of 15 V at VCC2 and a negative voltage of -8V at GND2 relative to the emitter of the IGBT as seen in Figure 4. Negative supply can help to prevent a dynamic turn on due to the additional charge which is generated from IGBTs input capacitance.
For unipolar supply configuration the driver is typically supplied with a positive voltage of 15 V at VCC2. In this case, careful evaluation for turn off gate resistor selection is recommended to avoid dynamic turn on (see Figure 5).
+5V
SGND IN
VCC1 100 n
GND1 IN+ IN-
VCC2
OUT+ OUTGND2
+15V
1µ 10R
3 R3
Figure 5 Application Example Unipolar Supply
Data Sheet
12
Rev. 2.0, 2014-11-10
4.3
Protection Features
1EDI EiceDRIVER™ Compact Separate output variant for IGBT
Functional Description
4.3.1 Undervoltage Lockout (UVLO)
To ensure correct switching of IGBTs the device is equipped with an undervoltage lockout for input and output independently. Operation starts only after both VCC levels have increased beyond the respective VUVLOH levels (see also Figure 8).
If the power supply voltage VVCC1 of the input chip drops below VUVLOL1 a turn-off signal is sent to the output chip before power-down. The IGBT is switched off and the signals at IN+ and IN- are ignored until VVCC1 reaches the power-up voltage VUVLOH1 again. If the power supply voltage VVCC2 of the output chip goes down below VUVLOL2 the IGBT is switched off and signals from the input chip are ignored until VVCC2 reaches the power-up voltage VUVLOH2 again. Note: VVCC2 is always referred to GND2 and does not differentiate between unipolar or bipolar supply.
4.3.2 Active Shut-Down
The Active Shut-Down feature ensures a safe IGBT off-state in case the output chip is not connected to the power supply or an under voltage lockout is in effect. The IGBT gate is clamped at OUT- to GND2.
4.3.3 Short Circuit Clamping
During short circuit the IGBTs gate voltage tends to rise because of the feedback via the Miller capacitance. An additional protection circuit connected to OUT+ limits this voltage to a value slightly higher than the supply voltage. A maximum current of 500 mA may be fed back to the supply through this path for 10 μs. If higher currents are expected or tighter clamping is desired external Schottky diodes may be added.
4.4
Non-Inverting and Inverting Inputs
There are two possible input modes to control the IGBT. At non-inverting mode IN+ controls the driver output while IN- is set to low. At inverting mode IN- controls the driver output while IN+ is set to high, please see Figure 7. A minimum input pulse width is defined to filter occasional glitches.
4.5
Driver Outputs
The output driver section uses MOSFETs to provide a rail-to-rail output. This feature permits that tight control of gate voltage during on-state and short circuit can be maintained as long as the drivers supply is stable. Due to the low internal voltage drop, switching behaviour of the IGBT is predominantly governed by the gate resistor. Furthermore, it reduces the power to be dissipated by the driver.
Data Sheet
13
Rev. 2.0, 2014-11-10
5
Electrical Parameters
1EDI EiceDRIVER™ Compact Separate output variant for IGBT
Electrical Parameters
5.1
Absolute Maximum Ratings
Note: Absolute maximum ratings are defined as ratings, which when being exceeded may lead to destruction of the integrated circuit. Unless otherwise noted all parameters refer to GND1.
Table 2 Absolute Maximum Ratings
Parameter
Symbol
Values
Min.
Max.
Unit Note / Test Condition
Power supply output side
VVCC2
-0.3
40
V
1)
Gate driver output
VOUT
VGND2-0.3 VVCC2+0.3 V
Positive power supply input side
VVCC1
-0.3
18.0
V
Logic input voltages (IN+,IN-)
VLogicIN
-0.3
18.0
V
Input to output isolation voltage (GND2)
VISO
-1200
1200
V
Junction temperature
TJ
-40
150
°C
Storage temperature Power dissipation (Input side) Power dissipation (Output side) Thermal resistance (Input side) Thermal resistance (Output side)
TS
-55
PD, IN
PD, OUT
RTHJA,IN
RTHJA,OUT
150
°C
25
mW
2) @TA = 25°C
400
mW
2) @TA = 25°C
145
K/W
2) @TA = 85°C
165
K/W
2) @TA = 85°C
ESD capability
VESD,HBM
2
kV
Human Body
Model3)
1) With respect to GND2.
2) See Figure 10 for reference layouts for these thermal data. Thermal performance may change significantly with layout and heat dissipation of components in close proximity.
3) According to EIA/JESD22-A114-C (discharging a 100 pF capacitor through a 1.5 kΩ series resistor).
Data Sheet
14
Rev. 2.0, 2014-11-10
5.2
Operating Parameters
1EDI EiceDRIVER™ Compact Separate output variant for IGBT
Electrical Parameters
Note: Within the operating range the IC operates as described in the functional description. Unless otherwise noted all parameters refer to GND1.
Table 3 Operating Parameters
Parameter
Symbol
Values
Min.
Max.
Power supply output side
VVCC2
13
35
Power supply input side
VVCC1
3.1
17
Logic input voltages (IN+,IN-)
VLogicIN
-0.3
17
Switching frequency
fsw
1.0
Ambient temperature
TA
-40
125
Thermal coefficient, junction-top
Ψth,jt
4.8
Common mode transient immunity |dVISO/dt|
100
(CMTI)
1) With respect to GND2.
2) do not exceed max. power dissipation
3) Parameter is not subject to production test - verified by design/characterization
Unit
V V V MHz °C K/W kV/μs
Note / Test Condition
1)
2) 3)
3) @TA = 85°C
3) @ 1000 V
5.3
Electrical Characteristics
Note: The electrical characteristics include the spread of values in supply voltages, load and junction temperatures given below. Typical values represent the median values at TA = 25°C. Unless otherwise noted all voltages are given with respect to their respective GND (GND1 for pins 1 to 3, GND2 for pins 5 to 7).
5.3.1 Voltage Supply
Table 4 Voltage Supply
Parameter
Symbol
UVLO threshold input chip
UVLO hysteresis input
chip (VUVLOH1 - VUVLOL1)
UVLO threshold output chip (IGBT supply)
UVLO hysteresis output
chip (VUVLOH2 - VUVLOL2)
VUVLOH1 VUVLOL1 VHYS1
VUVLOH2 VUVLOL2 VHYS2
Min. 2.55 90
10.5 700
Values Typ. 2.85 2.75 100
Max. 3.1
12.0
12.7
11.1
850
Unit Note / Test Condition
V
V
mV
V
V
mV
Data Sheet
15
Rev. 2.0, 2014-11-10
Table 4 Voltage Supply (contd)
Parameter
Symbol
Min.
Quiescent current input IQ1
chip
Quiescent current output IQ2
chip
5.3.2 Logic Input
1EDI EiceDRIVER™ Compact Separate output variant for IGBT
Electrical Parameters
Values Typ. 0.65
Max. 1.0
1.2
2.0
Unit mA
mA
Note / Test Condition
VVCC1 = 5 V
IN+ = High, IN- = Low =>OUT = High
VVCC2 = 15 V
IN+ = High, IN- = Low =>OUT = High
Note: Unless stated otherwise VCC1 = 5.0V
Table 5 Logic Input Parameter
IN+,IN- low input voltage IN+,IN- high input voltage IN+,IN- low input voltage IN+,IN- high input voltage IN- input current IN+ input current
5.3.3 Gate Driver
Symbol
VIN+L,VIN-L VIN+H,VIN-H VIN+L,VIN-L VIN+H,VIN-H IINIIN+,
Min. 70 3.5
Values Typ. 70 70
Max. 30 1.5 200 200
Unit
% % V V μA μA
Note / Test Condition
of VCC1 of VCC1
VIN- = GND1 VIN+ = VCC1
Table 6 Gate Driver
Parameter
Symbol
Values
Min.
Typ.
High level output peak IOUT+,PEAK
current (source)
1EDI05I12AF
0.5
1EDI20I12AF
2.0
1EDI40I12AF
4.0
1EDI60I12AF
6.0
1.3 4.0 7.5 10.0
Low level output peak IOUT-,PEAK
current (sink)
1EDI05I12AF
0.5
0.9
1EDI20I12AF
2.0
3.5
1EDI40I12AF
4.0
6.8
1EDI60I12AF
6.0
9.4
1) voltage across the device V(VCC2 - OUT+) or V(OUT- - GND2) < VVCC2.
Max.
Data Sheet
16
Unit A
Note / Test Condition
1)
IN+ = High, IN- = Low,
VVCC2 = 15 V
A
1)
IN+ = Low,
IN- = Low,
VVCC2 = 15 V
Rev. 2.0, 2014-11-10
5.3.4 Short Circuit Clamping
1EDI EiceDRIVER™ Compact Separate output variant for IGBT
Electrical Parameters
Table 7 Short Circuit Clamping
Parameter
Symbol
Min.
Clamping voltage (OUT+) VCLPout
(VOUT - VVCC2)
Values
Unit
Typ.
Max.
0.9
1.3
V
5.3.5 Dynamic Characteristics
Dynamic characteristics are measured with VVCC1 = 5 V and VVCC2 = 15 V.
Table 8 Dynamic Characteristics
Parameter
Symbol
Min.
Input IN to output propa- TPDON
270
gation delay ON
Input IN to output propa- TPDOFF
270
gation delay OFF
Input IN to output propa- TPDISTO -30
gation delay distortion
(TPDOFF - TPDON)
Input pulse suppression TMININ+, 230
IN+, IN-
TMININ-
Input IN to output
TPDONt
propagation delay ON
variation due to temp
Input IN to output
TPDOFFt
propagation delay OFF
variation due to temp
Input IN to output propagation delay
TPDISTOt
distortion variation due to
temp (TPDOFF-TPDON)
Rise time
TRISE
5
Values
Unit
Typ.
Max.
300
330
ns
300
330
ns
5
40
ns
240
ns
14
ns
14
ns
8
ns
10
20
ns
Fall time
TFALL
4
9
19
ns
1) The parameter is not subject to production test - verified by design/characterization
Note / Test Condition IN+ = High, IN- = Low, OUT = High
IOUT = 500 mA
pulse test,
tCLPmax = 10 μs)
Note / Test Condition
CLOAD = 100 pF VIN+ = 50%, VOUT=50% @ 25°C
1)CLOAD = 100 pF VIN+ = 50%, VOUT=50% 1)CLOAD = 100 pF VIN+ = 50%, VOUT=50% 1)CLOAD = 100 pF VIN+ = 50%, VOUT=50%
CLOAD = 1 nF VL 20%, VH 80% CLOAD = 1 nF VL 20%, VH 80%
Data Sheet
17
Rev. 2.0, 2014-11-10
5.3.6 Active Shut Down
Table 9 Active Shut Down
Parameter
Symbol
Active shut down voltage
V 1) ACTSD
Min.
1) With reference to GND2
1EDI EiceDRIVER™ Compact Separate output variant for IGBT
Electrical Parameters
Values Typ. 2.2
Max. 2.5
Unit V
Note / Test Condition
IOUT-/IOUT-,PEAK=0.1, VCC2 open
Data Sheet
18
Rev. 2.0, 2014-11-10
6
Timing Diagramms
50 %
IN+
50 %
OUT
TP DON
TP DOFF
Figure 6 Propagation Delay, Rise and Fall Time
IN+ IN
1EDI EiceDRIVER™ Compact Separate output variant for IGBT
Timing Diagramms
80 % 20 %
TRISE
TFALL
OUT
Figure 7 Typical Switching Behavior
IN+
VCC1
VCC2
VUVLOH 2 VUVLOL 2
OUT
Figure 8
UVLO Behavior
VUVLOH 1 VUVLOL 1
Data Sheet
19
Rev. 2.0, 2014-11-10
7
Package Outlines
1EDI EiceDRIVER™ Compact Separate output variant for IGBT
Package Outlines
Figure 9 PG-DSO-8-51 (Plastic (Green) Dual Small Outline Package)
Data Sheet
20
Rev. 2.0, 2014-11-10
8
Application Notes
1EDI EiceDRIVER™ Compact Separate output variant for IGBT
Application Notes
8.1
Reference Layout for Thermal Data
The PCB layout shown in Figure 10 represents the reference layout used for the thermal characterisation. Pin 4 (GND1) and pin 8 (GND2) require each a ground plane of 100 mm² for achieving maximum power dissipation. The Separate output variant for IGBT is conceived to dissipate most of the heat generated through these pins.
The thermal coefficient junction-top (Ψth,jt) can be used to calculate the junction temperature at a given top case
temperature and driver power dissipation:
Tj = Ψth,jt ⋅ PD + Ttop
Figure 10 Reference Layout for Thermal Data (JEDEC 1s0p, 100mm², Copper thickness 35 μm)
8.2
Printed Circuit Board Guidelines
The following factors should be taken into account for an optimum PCB layout.
• Sufficient spacing should be kept between high voltage isolated side and low voltage side circuits. • The same minimum distance between two adjacent high-side isolated parts of the PCB should be maintained
to increase the effective isolation and to reduce parasitic coupling. • In order to ensure low supply ripple and clean switching signals, bypass capacitor trace lengths should be kept
as short as possible.
Data Sheet
21
Rev. 2.0, 2014-11-10
www.infineon.com Published by Infineon Technologies AG